1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
// Copyright (C) 2014-2022 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
// { dg-do run { target c++17 } }
// { dg-require-cstdint "" }
#include <algorithm>
#include <random>
#include <testsuite_hooks.h>
#include <testsuite_iterators.h>
std::mt19937 rng;
using std::sample;
using __gnu_test::test_container;
using __gnu_test::input_iterator_wrapper;
using __gnu_test::output_iterator_wrapper;
using __gnu_test::forward_iterator_wrapper;
using __gnu_test::random_access_iterator_wrapper;
void
test01()
{
const int in[] = { 1, 2 };
test_container<const int, random_access_iterator_wrapper> pop(in);
const int sample_size = 10;
int samp[sample_size] = { };
// population smaller than desired sample size
auto it = sample(pop.begin(), pop.end(), samp, sample_size, rng);
VERIFY( it == samp + std::distance(pop.begin(), pop.end()) );
const auto sum = std::accumulate(pop.begin(), pop.end(), 0);
VERIFY( std::accumulate(samp, samp + sample_size, 0) == sum );
}
void
test02()
{
const int in[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
test_container<const int, random_access_iterator_wrapper> pop(in);
const int sample_size = 10;
int samp[sample_size] = { };
auto it = sample(pop.begin(), pop.end(), samp, sample_size, rng);
VERIFY( it == samp + sample_size );
// verify no duplicates
std::sort(samp, it);
auto it2 = std::unique(samp, it);
VERIFY( it2 == it );
}
void
test03()
{
const int in[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
test_container<const int, input_iterator_wrapper> pop(in);
const int sample_size = 5;
int samp[sample_size] = { };
// input iterator for population
auto it = sample(pop.begin(), pop.end(), samp, sample_size, rng);
VERIFY( it == samp + sample_size );
// verify no duplicates
std::sort(samp, it);
auto it2 = std::unique(samp, it);
VERIFY( it2 == it );
}
void
test04()
{
const int in[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
test_container<const int, forward_iterator_wrapper> pop(in);
const int sample_size = 5;
int out[sample_size];
test_container<int, output_iterator_wrapper> samp(out);
// forward iterator for population and output iterator for result
auto res = sample(pop.begin(), pop.end(), samp.begin(), sample_size, rng);
VERIFY( res.ptr == (out + sample_size) );
// verify no duplicates
std::sort(std::begin(out), std::end(out));
auto it = std::unique(std::begin(out), std::end(out));
VERIFY( it == std::end(out) );
}
int
main()
{
test01();
test02();
test03();
test04();
}
|