1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- B I N D E --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Binderr; use Binderr;
with Butil; use Butil;
with Debug; use Debug;
with Fname; use Fname;
with Opt; use Opt;
with Osint;
with Output; use Output;
with Table;
with Types; use Types;
with System.Case_Util; use System.Case_Util;
with System.HTable;
package body Binde is
use Unit_Id_Tables;
-- We now have Elab_New, a new elaboration-order algorithm.
--
-- However, any change to elaboration order can break some programs.
-- Therefore, we are keeping the old algorithm in place, to be selected
-- by switches.
--
-- The new algorithm has the following interesting properties:
--
-- * The static and dynamic models use the same elaboration order. The
-- static model might get an error, but if it does not, it will use
-- the same order as the dynamic model.
--
-- * Each SCC (see below) is elaborated together; that is, units from
-- different SCCs are not interspersed.
--
-- * In particular, this implies that if an SCC contains just a spec and
-- the corresponding body, and nothing else, the body will be
-- elaborated immediately after the spec. This is expected to result
-- in a better elaboration order for most programs, because in this
-- case, a call from outside the library unit cannot get ABE.
--
-- * Pragmas Elaborate_All (explicit and implicit) are ignored. Instead,
-- we behave as if every legal pragma Elaborate_All were present. That
-- is, if it would be legal to have "pragma Elaborate_All(Y);" on X,
-- then we behave as if such a pragma exists, even if it does not.
Do_Old : constant Boolean := False;
Do_New : constant Boolean := True;
-- True to enable the old and new algorithms, respectively. Used for
-- debugging/experimentation.
Doing_New : Boolean := False;
-- True if we are currently doing the new algorithm. Print certain
-- messages only when doing the "new" elab order algorithm, so we don't get
-- duplicates. And use different heuristics in Better_Choice_Optimistic.
-- The following data structures are used to represent the graph that is
-- used to determine the elaboration order (using a topological sort).
-- The following structures are used to record successors. If B is a
-- successor of A in this table, it means that A must be elaborated before
-- B is elaborated. For example, if Y (body) says "with X;", then Y (body)
-- will be a successor of X (spec), and X (spec) will be a predecessor of
-- Y (body).
--
-- Note that we store the successors of each unit explicitly. We don't
-- store the predecessors, but we store a count of them.
--
-- The basic algorithm is to first compute a directed graph of units (type
-- Unit_Node_Record, below), with successors as edges. A unit is "ready"
-- (to be chosen as the next to be elaborated) if it has no predecessors
-- that have not yet been chosen. We use heuristics to decide which of the
-- ready units should be elaborated next, and "choose" that one (which
-- means we append it to the elaboration-order table).
type Successor_Id is new Nat;
-- Identification of single successor entry
No_Successor : constant Successor_Id := 0;
-- Used to indicate end of list of successors
type Elab_All_Id is new Nat;
-- Identification of Elab_All entry link
No_Elab_All_Link : constant Elab_All_Id := 0;
-- Used to indicate end of list
-- Succ_Reason indicates the reason for a particular elaboration link
type Succ_Reason is
(Withed,
-- After directly with's Before, so the spec of Before must be
-- elaborated before After is elaborated.
Forced,
-- Before and After come from a pair of lines in the forced-elaboration-
-- order file.
Elab,
-- After directly mentions Before in a pragma Elaborate, so the body of
-- Before must be elaborated before After is elaborated.
Elab_All,
-- After either mentions Before directly in a pragma Elaborate_All, or
-- mentions a third unit, X, which itself requires that Before be
-- elaborated before unit X is elaborated. The Elab_All_Link list traces
-- the dependencies in the latter case.
Elab_All_Desirable,
-- This is just like Elab_All, except that the Elaborate_All was not
-- explicitly present in the source, but rather was created by the front
-- end, which decided that it was "desirable".
Elab_Desirable,
-- This is just like Elab, except that the Elaborate was not explicitly
-- present in the source, but rather was created by the front end, which
-- decided that it was "desirable".
Spec_First);
-- After is a body, and Before is the corresponding spec
-- Successor_Link contains the information for one link
type Successor_Link is record
Before : Unit_Id;
-- Predecessor unit
After : Unit_Id;
-- Successor unit
Next : Successor_Id;
-- Next successor on this list
Reason : Succ_Reason;
-- Reason for this link
Elab_Body : Boolean;
-- Set True if this link is needed for the special Elaborate_Body
-- processing described below.
Reason_Unit : Unit_Id;
-- For Reason = Elab, or Elab_All or Elab_Desirable, records the unit
-- containing the pragma leading to the link.
Elab_All_Link : Elab_All_Id;
-- If Reason = Elab_All or Elab_Desirable, then this points to the
-- first element in a list of Elab_All entries that record the with
-- chain resulting in this particular dependency.
end record;
-- Note on handling of Elaborate_Body. Basically, if we have a pragma
-- Elaborate_Body in a unit, it means that the spec and body have to be
-- handled as a single entity from the point of view of determining an
-- elaboration order. What we do is to essentially remove the body from
-- consideration completely, and transfer all its links (other than the
-- spec link) to the spec. Then when the spec gets chosen, we choose the
-- body right afterwards. We mark the links that get moved from the body to
-- the spec by setting their Elab_Body flag True, so that we can understand
-- what is going on.
Succ_First : constant := 1;
package Succ is new Table.Table
(Table_Component_Type => Successor_Link,
Table_Index_Type => Successor_Id,
Table_Low_Bound => Succ_First,
Table_Initial => 500,
Table_Increment => 200,
Table_Name => "Succ");
-- For the case of Elaborate_All, the following table is used to record
-- chains of with relationships that lead to the Elab_All link. These are
-- used solely for diagnostic purposes
type Elab_All_Entry is record
Needed_By : Unit_Name_Type;
-- Name of unit from which referencing unit was with'ed or otherwise
-- needed as a result of Elaborate_All or Elaborate_Desirable.
Next_Elab : Elab_All_Id;
-- Link to next entry on chain (No_Elab_All_Link marks end of list)
end record;
package Elab_All_Entries is new Table.Table
(Table_Component_Type => Elab_All_Entry,
Table_Index_Type => Elab_All_Id,
Table_Low_Bound => 1,
Table_Initial => 2000,
Table_Increment => 200,
Table_Name => "Elab_All_Entries");
type Unit_Id_Array_Ptr is access Unit_Id_Array;
-- A Unit_Node_Record is built for each active unit
type Unit_Node_Record is record
Successors : Successor_Id;
-- Pointer to list of links for successor nodes
Num_Pred : Int;
-- Number of predecessors for this unit that have not yet been chosen.
-- Normally non-negative, but can go negative in the case of units
-- chosen by the diagnose error procedure (when cycles are being removed
-- from the graph).
Nextnp : Unit_Id;
-- Forward pointer for list of units with no predecessors
Visited : Boolean;
-- Used in computing transitive closure for Elaborate_All and also in
-- locating cycles and paths in the diagnose routines.
Elab_Position : Nat;
-- Initialized to zero. Set non-zero when a unit is chosen and placed in
-- the elaboration order. The value represents the ordinal position in
-- the elaboration order.
-- The following are for Elab_New. We compute the strongly connected
-- components (SCCs) of the directed graph of units. The edges are the
-- Successors, which do not include pragmas Elaborate_All (explicit or
-- implicit) in Elab_New. In addition, we assume there is a edge
-- pointing from a body to its corresponding spec; this edge is not
-- included in Successors, because of course a spec is elaborated BEFORE
-- its body, not after.
SCC_Root : Unit_Id;
-- Each unit points to the root of its SCC, which is just an arbitrary
-- member of the SCC. Two units are in the same SCC if and only if their
-- SCC_Roots are equal. U is the root of its SCC if and only if
-- SCC(U)=U.
Nodes : Unit_Id_Array_Ptr;
-- Present only in the root of an SCC. This is the set of units in the
-- SCC, in no particular order.
SCC_Num_Pred : Int;
-- Present only in the root of an SCC. This is the number of predecessor
-- units of the SCC that are in other SCCs, and that have not yet been
-- chosen.
Validate_Seen : Boolean := False;
-- See procedure Validate below
end record;
package UNR is new Table.Table
(Table_Component_Type => Unit_Node_Record,
Table_Index_Type => Unit_Id,
Table_Low_Bound => First_Unit_Entry,
Table_Initial => 500,
Table_Increment => 200,
Table_Name => "UNR");
No_Pred : Unit_Id;
-- Head of list of items with no predecessors
Num_Left : Int;
-- Number of entries not yet dealt with
Cur_Unit : Unit_Id;
-- Current unit, set by Gather_Dependencies, and picked up in Build_Link to
-- set the Reason_Unit field of the created dependency link.
Num_Chosen : Nat;
-- Number of units chosen in the elaboration order so far
Diagnose_Elaboration_Problem_Called : Boolean := False;
-- True if Diagnose_Elaboration_Problem was called. Used in an assertion.
-----------------------
-- Local Subprograms --
-----------------------
function Debug_Flag_Older return Boolean;
function Debug_Flag_Old return Boolean;
-- True if debug flags select the old or older algorithms. Pretty much any
-- change to elaboration order can break some programs. For example,
-- programs can depend on elaboration order even without failing
-- access-before-elaboration checks. A trivial example is a program that
-- prints text during elaboration. Therefore, we have flags to revert to
-- the old(er) algorithms.
procedure Validate (Order : Unit_Id_Array; Doing_New : Boolean);
-- Assert that certain properties are true
function Better_Choice_Optimistic
(U1 : Unit_Id;
U2 : Unit_Id) return Boolean;
-- U1 and U2 are both permitted candidates for selection as the next unit
-- to be elaborated. This function determines whether U1 is a better choice
-- than U2, i.e. should be elaborated in preference to U2, based on a set
-- of heuristics that establish a friendly and predictable order (see body
-- for details). The result is True if U1 is a better choice than U2, and
-- False if it is a worse choice, or there is no preference between them.
function Better_Choice_Pessimistic
(U1 : Unit_Id;
U2 : Unit_Id) return Boolean;
-- This is like Better_Choice_Optimistic, and has the same interface, but
-- returns true if U1 is a worse choice than U2 in the sense of the -p
-- (pessimistic elaboration order) switch. We still have to obey Ada rules,
-- so it is not quite the direct inverse of Better_Choice_Optimistic.
function Better_Choice (U1 : Unit_Id; U2 : Unit_Id) return Boolean;
-- Calls Better_Choice_Optimistic or Better_Choice_Pessimistic as
-- appropriate. Also takes care of the U2 = No_Unit_Id case.
procedure Build_Link
(Before : Unit_Id;
After : Unit_Id;
R : Succ_Reason;
Ea_Id : Elab_All_Id := No_Elab_All_Link);
-- Establish a successor link, Before must be elaborated before After, and
-- the reason for the link is R. Ea_Id is the contents to be placed in the
-- Elab_All_Link of the entry.
procedure Choose
(Elab_Order : in out Unit_Id_Table;
Chosen : Unit_Id;
Msg : String);
-- Chosen is the next entry chosen in the elaboration order. This procedure
-- updates all data structures appropriately.
function Corresponding_Body (U : Unit_Id) return Unit_Id;
pragma Inline (Corresponding_Body);
-- Given a unit that is a spec for which there is a separate body, return
-- the unit id of the body. It is an error to call this routine with a unit
-- that is not a spec, or that does not have a separate body.
function Corresponding_Spec (U : Unit_Id) return Unit_Id;
pragma Inline (Corresponding_Spec);
-- Given a unit that is a body for which there is a separate spec, return
-- the unit id of the spec. It is an error to call this routine with a unit
-- that is not a body, or that does not have a separate spec.
procedure Diagnose_Elaboration_Problem
(Elab_Order : in out Unit_Id_Table);
pragma No_Return (Diagnose_Elaboration_Problem);
-- Called when no elaboration order can be found. Outputs an appropriate
-- diagnosis of the problem, and then abandons the bind.
procedure Elab_All_Links
(Before : Unit_Id;
After : Unit_Id;
Reason : Succ_Reason;
Link : Elab_All_Id);
-- Used to compute the transitive closure of elaboration links for an
-- Elaborate_All pragma (Reason = Elab_All) or for an indication of
-- Elaborate_All_Desirable (Reason = Elab_All_Desirable). Unit After has a
-- pragma Elaborate_All or the front end has determined that a reference
-- probably requires Elaborate_All, and unit Before must be previously
-- elaborated. First a link is built making sure that unit Before is
-- elaborated before After, then a recursive call ensures that we also
-- build links for any units needed by Before (i.e. these units must/should
-- also be elaborated before After). Link is used to build a chain of
-- Elab_All_Entries to explain the reason for a link. The value passed is
-- the chain so far.
procedure Elab_Error_Msg (S : Successor_Id);
-- Given a successor link, outputs an error message of the form
-- "$ must be elaborated before $ ..." where ... is the reason.
procedure Force_Elab_Order;
-- Gather dependencies from the forced-elaboration-order file (-f switch)
procedure Gather_Dependencies;
-- Compute dependencies, building the Succ and UNR tables
procedure Init;
-- Initialize global data structures in this package body
function Is_Body_Unit (U : Unit_Id) return Boolean;
pragma Inline (Is_Body_Unit);
-- Determines if given unit is a body
function Is_Pure_Or_Preelab_Unit (U : Unit_Id) return Boolean;
-- Returns True if corresponding unit is Pure or Preelaborate. Includes
-- dealing with testing flags on spec if it is given a body.
function Is_Waiting_Body (U : Unit_Id) return Boolean;
pragma Inline (Is_Waiting_Body);
-- Determines if U is a waiting body, defined as a body that has
-- not been elaborated, but whose spec has been elaborated.
function Make_Elab_All_Entry
(Unam : Unit_Name_Type;
Link : Elab_All_Id) return Elab_All_Id;
-- Make an Elab_All_Entries table entry with the given Unam and Link
function Unit_Id_Of (Uname : Unit_Name_Type) return Unit_Id;
-- This function uses the Info field set in the names table to obtain
-- the unit Id of a unit, given its name id value.
procedure Write_Closure (Order : Unit_Id_Array);
-- Write the closure. This is for the -R and -Ra switches, "list closure
-- display".
procedure Write_Dependencies;
-- Write out dependencies (called only if appropriate option is set)
procedure Write_Elab_All_Chain (S : Successor_Id);
-- If the reason for the link S is Elaborate_All or Elaborate_Desirable,
-- then this routine will output the "needed by" explanation chain.
procedure Write_Elab_Order (Order : Unit_Id_Array; Title : String);
-- Display elaboration order. This is for the -l switch. Title is a heading
-- to print; an empty string is passed to indicate Zero_Formatting.
package Elab_New is
-- Implementation of the new algorithm
procedure Write_SCC (U : Unit_Id);
-- Write the unit names of the units in the SCC in which U lives
procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table);
Elab_Cycle_Found : Boolean := False;
-- Set True if Find_Elab_Order found a cycle (usually an illegal pragma
-- Elaborate_All, explicit or implicit).
function SCC (U : Unit_Id) return Unit_Id;
-- The root of the strongly connected component containing U
function SCC_Num_Pred (U : Unit_Id) return Int;
-- The SCC_Num_Pred of the SCC in which U lives
function Nodes (U : Unit_Id) return Unit_Id_Array_Ptr;
-- The nodes of the strongly connected component containing U
end Elab_New;
use Elab_New;
package Elab_Old is
-- Implementation of the old algorithm
procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table);
end Elab_Old;
-- Most of the code is shared between old and new; such code is outside
-- packages Elab_Old and Elab_New.
-------------------
-- Better_Choice --
-------------------
function Better_Choice (U1 : Unit_Id; U2 : Unit_Id) return Boolean is
pragma Assert (U1 /= No_Unit_Id);
begin
if U2 = No_Unit_Id then
return True;
end if;
if Pessimistic_Elab_Order then
return Better_Choice_Pessimistic (U1, U2);
else
return Better_Choice_Optimistic (U1, U2);
end if;
end Better_Choice;
------------------------------
-- Better_Choice_Optimistic --
------------------------------
function Better_Choice_Optimistic
(U1 : Unit_Id;
U2 : Unit_Id) return Boolean
is
UT1 : Unit_Record renames Units.Table (U1);
UT2 : Unit_Record renames Units.Table (U2);
begin
if Debug_Flag_B then
Write_Str ("Better_Choice_Optimistic (");
Write_Unit_Name (UT1.Uname);
Write_Str (", ");
Write_Unit_Name (UT2.Uname);
Write_Line (")");
end if;
-- Note: the checks here are applied in sequence, and the ordering is
-- significant (i.e. the more important criteria are applied first).
-- Prefer a waiting body to one that is not a waiting body
if Is_Waiting_Body (U1) and then not Is_Waiting_Body (U2) then
if Debug_Flag_B then
Write_Line (" True: u1 is waiting body, u2 is not");
end if;
return True;
elsif Is_Waiting_Body (U2) and then not Is_Waiting_Body (U1) then
if Debug_Flag_B then
Write_Line (" False: u2 is waiting body, u1 is not");
end if;
return False;
-- Prefer a predefined unit to a non-predefined unit
elsif UT1.Predefined and then not UT2.Predefined then
if Debug_Flag_B then
Write_Line (" True: u1 is predefined, u2 is not");
end if;
return True;
elsif UT2.Predefined and then not UT1.Predefined then
if Debug_Flag_B then
Write_Line (" False: u2 is predefined, u1 is not");
end if;
return False;
-- Prefer an internal unit to a non-internal unit
elsif UT1.Internal and then not UT2.Internal then
if Debug_Flag_B then
Write_Line (" True: u1 is internal, u2 is not");
end if;
return True;
elsif UT2.Internal and then not UT1.Internal then
if Debug_Flag_B then
Write_Line (" False: u2 is internal, u1 is not");
end if;
return False;
-- Prefer a pure or preelaborated unit to one that is not. Pure should
-- come before preelaborated.
elsif Is_Pure_Or_Preelab_Unit (U1)
and then not
Is_Pure_Or_Preelab_Unit (U2)
then
if Debug_Flag_B then
Write_Line (" True: u1 is pure/preelab, u2 is not");
end if;
return True;
elsif Is_Pure_Or_Preelab_Unit (U2)
and then not
Is_Pure_Or_Preelab_Unit (U1)
then
if Debug_Flag_B then
Write_Line (" False: u2 is pure/preelab, u1 is not");
end if;
return False;
-- Prefer a body to a spec
elsif Is_Body_Unit (U1) and then not Is_Body_Unit (U2) then
if Debug_Flag_B then
Write_Line (" True: u1 is body, u2 is not");
end if;
return True;
elsif Is_Body_Unit (U2) and then not Is_Body_Unit (U1) then
if Debug_Flag_B then
Write_Line (" False: u2 is body, u1 is not");
end if;
return False;
-- If both are waiting bodies, then prefer the one whose spec is more
-- recently elaborated. Consider the following:
-- spec of A
-- spec of B
-- body of A or B?
-- The normal waiting body preference would have placed the body of A
-- before the spec of B if it could. Since it could not, then it must be
-- the case that A depends on B. It is therefore a good idea to put the
-- body of B first.
elsif Is_Waiting_Body (U1) and then Is_Waiting_Body (U2) then
declare
Result : constant Boolean :=
UNR.Table (Corresponding_Spec (U1)).Elab_Position >
UNR.Table (Corresponding_Spec (U2)).Elab_Position;
begin
if Debug_Flag_B then
if Result then
Write_Line (" True: based on waiting body elab positions");
else
Write_Line (" False: based on waiting body elab positions");
end if;
end if;
return Result;
end;
end if;
-- Remaining choice rules are disabled by Debug flag -do
if not Debug_Flag_Older then
-- The following deal with the case of specs that have been marked
-- as Elaborate_Body_Desirable. We generally want to delay these
-- specs as long as possible, so that the bodies have a better chance
-- of being elaborated closer to the specs.
-- If we have two units, one of which is a spec for which this flag
-- is set, and the other is not, we prefer to delay the spec for
-- which the flag is set.
if not UT1.Elaborate_Body_Desirable
and then UT2.Elaborate_Body_Desirable
then
if Debug_Flag_B then
Write_Line (" True: u1 is elab body desirable, u2 is not");
end if;
return True;
elsif not UT2.Elaborate_Body_Desirable
and then UT1.Elaborate_Body_Desirable
then
if Debug_Flag_B then
Write_Line (" False: u1 is elab body desirable, u2 is not");
end if;
return False;
-- If we have two specs that are both marked as Elaborate_Body
-- desirable, we prefer the one whose body is nearer to being able
-- to be elaborated, based on the Num_Pred count. This helps to
-- ensure bodies are as close to specs as possible.
elsif UT1.Elaborate_Body_Desirable
and then UT2.Elaborate_Body_Desirable
then
declare
Result : constant Boolean :=
UNR.Table (Corresponding_Body (U1)).Num_Pred <
UNR.Table (Corresponding_Body (U2)).Num_Pred;
begin
if Debug_Flag_B then
if Result then
Write_Line (" True based on Num_Pred compare");
else
Write_Line (" False based on Num_Pred compare");
end if;
end if;
return Result;
end;
end if;
end if;
-- If we have two specs in the same SCC, choose the one whose body is
-- closer to being ready.
if Doing_New
and then SCC (U1) = SCC (U2)
and then Units.Table (U1).Utype = Is_Spec
and then Units.Table (U2).Utype = Is_Spec
and then UNR.Table (Corresponding_Body (U1)).Num_Pred /=
UNR.Table (Corresponding_Body (U2)).Num_Pred
then
if UNR.Table (Corresponding_Body (U1)).Num_Pred <
UNR.Table (Corresponding_Body (U2)).Num_Pred
then
if Debug_Flag_B then
Write_Str (" True: same SCC; ");
Write_Int (UNR.Table (Corresponding_Body (U1)).Num_Pred);
Write_Str (" < ");
Write_Int (UNR.Table (Corresponding_Body (U2)).Num_Pred);
Write_Eol;
end if;
return True;
else
if Debug_Flag_B then
Write_Str (" False: same SCC; ");
Write_Int (UNR.Table (Corresponding_Body (U1)).Num_Pred);
Write_Str (" > ");
Write_Int (UNR.Table (Corresponding_Body (U2)).Num_Pred);
Write_Eol;
end if;
return False;
end if;
end if;
-- If we fall through, it means that no preference rule applies, so we
-- use alphabetical order to at least give a deterministic result.
if Debug_Flag_B then
Write_Line (" choose on alpha order");
end if;
return Uname_Less (UT1.Uname, UT2.Uname);
end Better_Choice_Optimistic;
-------------------------------
-- Better_Choice_Pessimistic --
-------------------------------
function Better_Choice_Pessimistic
(U1 : Unit_Id;
U2 : Unit_Id) return Boolean
is
UT1 : Unit_Record renames Units.Table (U1);
UT2 : Unit_Record renames Units.Table (U2);
begin
if Debug_Flag_B then
Write_Str ("Better_Choice_Pessimistic (");
Write_Unit_Name (UT1.Uname);
Write_Str (", ");
Write_Unit_Name (UT2.Uname);
Write_Line (")");
end if;
-- Note: the checks here are applied in sequence, and the ordering is
-- significant (i.e. the more important criteria are applied first).
-- If either unit is predefined or internal, then we use the normal
-- Better_Choice_Optimistic rule, since we don't want to disturb the
-- elaboration rules of the language with -p; same treatment for
-- Pure/Preelab.
-- Prefer a predefined unit to a non-predefined unit
if UT1.Predefined and then not UT2.Predefined then
if Debug_Flag_B then
Write_Line (" True: u1 is predefined, u2 is not");
end if;
return True;
elsif UT2.Predefined and then not UT1.Predefined then
if Debug_Flag_B then
Write_Line (" False: u2 is predefined, u1 is not");
end if;
return False;
-- Prefer an internal unit to a non-internal unit
elsif UT1.Internal and then not UT2.Internal then
if Debug_Flag_B then
Write_Line (" True: u1 is internal, u2 is not");
end if;
return True;
elsif UT2.Internal and then not UT1.Internal then
if Debug_Flag_B then
Write_Line (" False: u2 is internal, u1 is not");
end if;
return False;
-- Prefer a pure or preelaborated unit to one that is not
elsif Is_Pure_Or_Preelab_Unit (U1)
and then not
Is_Pure_Or_Preelab_Unit (U2)
then
if Debug_Flag_B then
Write_Line (" True: u1 is pure/preelab, u2 is not");
end if;
return True;
elsif Is_Pure_Or_Preelab_Unit (U2)
and then not
Is_Pure_Or_Preelab_Unit (U1)
then
if Debug_Flag_B then
Write_Line (" False: u2 is pure/preelab, u1 is not");
end if;
return False;
-- Prefer anything else to a waiting body. We want to make bodies wait
-- as long as possible, till we are forced to choose them.
elsif Is_Waiting_Body (U1) and then not Is_Waiting_Body (U2) then
if Debug_Flag_B then
Write_Line (" False: u1 is waiting body, u2 is not");
end if;
return False;
elsif Is_Waiting_Body (U2) and then not Is_Waiting_Body (U1) then
if Debug_Flag_B then
Write_Line (" True: u2 is waiting body, u1 is not");
end if;
return True;
-- Prefer a spec to a body (this is mandatory)
elsif Is_Body_Unit (U1) and then not Is_Body_Unit (U2) then
if Debug_Flag_B then
Write_Line (" False: u1 is body, u2 is not");
end if;
return False;
elsif Is_Body_Unit (U2) and then not Is_Body_Unit (U1) then
if Debug_Flag_B then
Write_Line (" True: u2 is body, u1 is not");
end if;
return True;
-- If both are waiting bodies, then prefer the one whose spec is less
-- recently elaborated. Consider the following:
-- spec of A
-- spec of B
-- body of A or B?
-- The normal waiting body preference would have placed the body of A
-- before the spec of B if it could. Since it could not, then it must be
-- the case that A depends on B. It is therefore a good idea to put the
-- body of B last so that if there is an elaboration order problem, we
-- will find it (that's what pessimistic order is about).
elsif Is_Waiting_Body (U1) and then Is_Waiting_Body (U2) then
declare
Result : constant Boolean :=
UNR.Table (Corresponding_Spec (U1)).Elab_Position <
UNR.Table (Corresponding_Spec (U2)).Elab_Position;
begin
if Debug_Flag_B then
if Result then
Write_Line (" True: based on waiting body elab positions");
else
Write_Line (" False: based on waiting body elab positions");
end if;
end if;
return Result;
end;
end if;
-- Remaining choice rules are disabled by Debug flag -do
if not Debug_Flag_Older then
-- The following deal with the case of specs that have been marked as
-- Elaborate_Body_Desirable. In the normal case, we generally want to
-- delay the elaboration of these specs as long as possible, so that
-- bodies have better chance of being elaborated closer to the specs.
-- Better_Choice_Pessimistic as usual wants to do the opposite and
-- elaborate such specs as early as possible.
-- If we have two units, one of which is a spec for which this flag
-- is set, and the other is not, we normally prefer to delay the spec
-- for which the flag is set, so again Better_Choice_Pessimistic does
-- the opposite.
if not UT1.Elaborate_Body_Desirable
and then UT2.Elaborate_Body_Desirable
then
if Debug_Flag_B then
Write_Line (" False: u1 is elab body desirable, u2 is not");
end if;
return False;
elsif not UT2.Elaborate_Body_Desirable
and then UT1.Elaborate_Body_Desirable
then
if Debug_Flag_B then
Write_Line (" True: u1 is elab body desirable, u2 is not");
end if;
return True;
-- If we have two specs that are both marked as Elaborate_Body
-- desirable, we normally prefer the one whose body is nearer to
-- being able to be elaborated, based on the Num_Pred count. This
-- helps to ensure bodies are as close to specs as possible. As
-- usual, Better_Choice_Pessimistic does the opposite.
elsif UT1.Elaborate_Body_Desirable
and then UT2.Elaborate_Body_Desirable
then
declare
Result : constant Boolean :=
UNR.Table (Corresponding_Body (U1)).Num_Pred >=
UNR.Table (Corresponding_Body (U2)).Num_Pred;
begin
if Debug_Flag_B then
if Result then
Write_Line (" True based on Num_Pred compare");
else
Write_Line (" False based on Num_Pred compare");
end if;
end if;
return Result;
end;
end if;
end if;
-- If we fall through, it means that no preference rule applies, so we
-- use alphabetical order to at least give a deterministic result. Since
-- Better_Choice_Pessimistic is in the business of stirring up the
-- order, we will use reverse alphabetical ordering.
if Debug_Flag_B then
Write_Line (" choose on reverse alpha order");
end if;
return Uname_Less (UT2.Uname, UT1.Uname);
end Better_Choice_Pessimistic;
----------------
-- Build_Link --
----------------
procedure Build_Link
(Before : Unit_Id;
After : Unit_Id;
R : Succ_Reason;
Ea_Id : Elab_All_Id := No_Elab_All_Link)
is
Cspec : Unit_Id;
begin
Succ.Append
((Before => Before,
After => No_Unit_Id, -- filled in below
Next => UNR.Table (Before).Successors,
Reason => R,
Elab_Body => False, -- set correctly below
Reason_Unit => Cur_Unit,
Elab_All_Link => Ea_Id));
UNR.Table (Before).Successors := Succ.Last;
-- Deal with special Elab_Body case. If the After of this link is
-- a body whose spec has Elaborate_All set, and this is not the link
-- directly from the body to the spec, then we make the After of the
-- link reference its spec instead, marking the link appropriately.
if Units.Table (After).Utype = Is_Body then
Cspec := Corresponding_Spec (After);
if Units.Table (Cspec).Elaborate_Body
and then Cspec /= Before
then
Succ.Table (Succ.Last).After := Cspec;
Succ.Table (Succ.Last).Elab_Body := True;
UNR.Table (Cspec).Num_Pred := UNR.Table (Cspec).Num_Pred + 1;
return;
end if;
end if;
-- Fall through on normal case
Succ.Table (Succ.Last).After := After;
Succ.Table (Succ.Last).Elab_Body := False;
UNR.Table (After).Num_Pred := UNR.Table (After).Num_Pred + 1;
end Build_Link;
------------
-- Choose --
------------
procedure Choose
(Elab_Order : in out Unit_Id_Table;
Chosen : Unit_Id;
Msg : String)
is
pragma Assert (Chosen /= No_Unit_Id);
S : Successor_Id;
U : Unit_Id;
begin
if Debug_Flag_C then
Write_Str ("Choosing Unit ");
Write_Unit_Name (Units.Table (Chosen).Uname);
Write_Str (Msg);
end if;
-- We shouldn't be choosing something with unelaborated predecessors,
-- and we shouldn't call this twice on the same unit. But that's not
-- true when this is called from Diagnose_Elaboration_Problem.
if Errors_Detected = 0 then
pragma Assert (UNR.Table (Chosen).Num_Pred = 0);
pragma Assert (UNR.Table (Chosen).Elab_Position = 0);
pragma Assert (not Doing_New or else SCC_Num_Pred (Chosen) = 0);
null;
end if;
-- Add to elaboration order. Note that units having no elaboration code
-- are not treated specially yet. The special casing of this is in
-- Bindgen, where Gen_Elab_Calls skips over them. Meanwhile we need them
-- here, because the object file list is also driven by the contents of
-- the Elab_Order table.
Append (Elab_Order, Chosen);
-- Remove from No_Pred list. This is a little inefficient and may be we
-- should doubly link the list, but it will do for now.
if No_Pred = Chosen then
No_Pred := UNR.Table (Chosen).Nextnp;
else
U := No_Pred;
while U /= No_Unit_Id loop
if UNR.Table (U).Nextnp = Chosen then
UNR.Table (U).Nextnp := UNR.Table (Chosen).Nextnp;
goto Done_Removal;
end if;
U := UNR.Table (U).Nextnp;
end loop;
-- Here if we didn't find it on the No_Pred list. This can happen
-- only in calls from the Diagnose_Elaboration_Problem routine,
-- where cycles are being removed arbitrarily from the graph.
pragma Assert (Errors_Detected > 0);
<<Done_Removal>> null;
end if;
-- For all successors, decrement the number of predecessors, and if it
-- becomes zero, then add to no-predecessor list.
S := UNR.Table (Chosen).Successors;
pragma Annotate (CodePeer, Modified, S);
while S /= No_Successor loop
U := Succ.Table (S).After;
UNR.Table (U).Num_Pred := UNR.Table (U).Num_Pred - 1;
if Debug_Flag_N then
Write_Str (" decrementing Num_Pred for unit ");
Write_Unit_Name (Units.Table (U).Uname);
Write_Str (" new value = ");
Write_Int (UNR.Table (U).Num_Pred);
Write_Eol;
end if;
if UNR.Table (U).Num_Pred = 0 then
UNR.Table (U).Nextnp := No_Pred;
No_Pred := U;
end if;
if Doing_New and then SCC (U) /= SCC (Chosen) then
UNR.Table (SCC (U)).SCC_Num_Pred :=
UNR.Table (SCC (U)).SCC_Num_Pred - 1;
if Debug_Flag_N then
Write_Str (" decrementing SCC_Num_Pred for unit ");
Write_Unit_Name (Units.Table (U).Uname);
Write_Str (" new value = ");
Write_Int (SCC_Num_Pred (U));
Write_Eol;
end if;
end if;
S := Succ.Table (S).Next;
end loop;
-- All done, adjust number of units left count and set elaboration pos
Num_Left := Num_Left - 1;
Num_Chosen := Num_Chosen + 1;
pragma Assert
(Errors_Detected > 0 or else Num_Chosen = Last (Elab_Order));
pragma Assert (Units.Last = UNR.Last);
pragma Assert (Num_Chosen + Num_Left = Int (UNR.Last));
if Debug_Flag_C then
Write_Str (" ");
Write_Int (Int (Num_Chosen));
Write_Str ("+");
Write_Int (Num_Left);
Write_Str ("=");
Write_Int (Int (UNR.Last));
Write_Eol;
end if;
UNR.Table (Chosen).Elab_Position := Num_Chosen;
-- If we just chose a spec with Elaborate_Body set, then we must
-- immediately elaborate the body, before any other units.
if Units.Table (Chosen).Elaborate_Body then
-- If the unit is a spec only, then there is no body. This is a bit
-- odd given that Elaborate_Body is here, but it is valid in an RCI
-- unit, where we only have the interface in the stub bind.
if Units.Table (Chosen).Utype = Is_Spec_Only
and then Units.Table (Chosen).RCI
then
null;
-- If this unit is an interface to a stand-alone library, then we
-- don't want to elaborate the body -- that will happen as part of
-- the library.
elsif Units.Table (Chosen).SAL_Interface then
null;
else
Choose
(Elab_Order => Elab_Order,
Chosen => Corresponding_Body (Chosen),
Msg => " [Elaborate_Body]");
end if;
end if;
end Choose;
------------------------
-- Corresponding_Body --
------------------------
-- Currently if the body and spec are separate, then they appear as two
-- separate units in the same ALI file, with the body appearing first and
-- the spec appearing second.
function Corresponding_Body (U : Unit_Id) return Unit_Id is
begin
pragma Assert (Units.Table (U).Utype = Is_Spec);
return U - 1;
end Corresponding_Body;
------------------------
-- Corresponding_Spec --
------------------------
-- Currently if the body and spec are separate, then they appear as two
-- separate units in the same ALI file, with the body appearing first and
-- the spec appearing second.
function Corresponding_Spec (U : Unit_Id) return Unit_Id is
begin
pragma Assert (Units.Table (U).Utype = Is_Body);
return U + 1;
end Corresponding_Spec;
--------------------
-- Debug_Flag_Old --
--------------------
function Debug_Flag_Old return Boolean is
begin
-- If the user specified both flags, we want to use the older algorithm,
-- rather than some confusing mix of the two.
return Debug_Flag_P and not Debug_Flag_O;
end Debug_Flag_Old;
----------------------
-- Debug_Flag_Older --
----------------------
function Debug_Flag_Older return Boolean is
begin
return Debug_Flag_O;
end Debug_Flag_Older;
----------------------------------
-- Diagnose_Elaboration_Problem --
----------------------------------
procedure Diagnose_Elaboration_Problem
(Elab_Order : in out Unit_Id_Table)
is
function Find_Path
(Ufrom : Unit_Id;
Uto : Unit_Id;
ML : Nat) return Boolean;
-- Recursive routine used to find a path from node Ufrom to node Uto.
-- If a path exists, returns True and outputs an appropriate set of
-- error messages giving the path. Also calls Choose for each of the
-- nodes so that they get removed from the remaining set. There are
-- two cases of calls, either Ufrom = Uto for an attempt to find a
-- cycle, or Ufrom is a spec and Uto the corresponding body for the
-- case of an unsatisfiable Elaborate_Body pragma. ML is the minimum
-- acceptable length for a path.
---------------
-- Find_Path --
---------------
function Find_Path
(Ufrom : Unit_Id;
Uto : Unit_Id;
ML : Nat) return Boolean
is
function Find_Link (U : Unit_Id; PL : Nat) return Boolean;
-- This is the inner recursive routine, it determines if a path
-- exists from U to Uto, and if so returns True and outputs the
-- appropriate set of error messages. PL is the path length
---------------
-- Find_Link --
---------------
function Find_Link (U : Unit_Id; PL : Nat) return Boolean is
S : Successor_Id;
begin
-- Recursion ends if we are at terminating node and the path is
-- sufficiently long, generate error message and return True.
if U = Uto and then PL >= ML then
Choose (Elab_Order, U, " [Find_Link: base]");
return True;
-- All done if already visited
elsif UNR.Table (U).Visited then
return False;
-- Otherwise mark as visited and look at all successors
else
UNR.Table (U).Visited := True;
S := UNR.Table (U).Successors;
while S /= No_Successor loop
if Find_Link (Succ.Table (S).After, PL + 1) then
Elab_Error_Msg (S);
Choose (Elab_Order, U, " [Find_Link: recursive]");
return True;
end if;
S := Succ.Table (S).Next;
end loop;
-- Falling through means this does not lead to a path
return False;
end if;
end Find_Link;
-- Start of processing for Find_Path
begin
-- Initialize all non-chosen nodes to not visited yet
for U in Units.First .. Units.Last loop
UNR.Table (U).Visited := UNR.Table (U).Elab_Position /= 0;
end loop;
-- Now try to find the path
return Find_Link (Ufrom, 0);
end Find_Path;
-- Start of processing for Diagnose_Elaboration_Problem
begin
Diagnose_Elaboration_Problem_Called := True;
Set_Standard_Error;
-- Output state of things if debug flag N set
if Debug_Flag_N then
declare
NP : Int;
begin
Write_Eol;
Write_Eol;
Write_Line ("Diagnose_Elaboration_Problem called");
Write_Line ("List of remaining unchosen units and predecessors");
for U in Units.First .. Units.Last loop
if UNR.Table (U).Elab_Position = 0 then
NP := UNR.Table (U).Num_Pred;
Write_Eol;
Write_Str (" Unchosen unit: #");
Write_Int (Int (U));
Write_Str (" ");
Write_Unit_Name (Units.Table (U).Uname);
Write_Str (" (Num_Pred = ");
Write_Int (NP);
Write_Line (")");
if NP = 0 then
if Units.Table (U).Elaborate_Body then
Write_Line
(" (not chosen because of Elaborate_Body)");
else
Write_Line (" ****************** why not chosen?");
end if;
end if;
-- Search links list to find unchosen predecessors
for S in Succ.First .. Succ.Last loop
declare
SL : Successor_Link renames Succ.Table (S);
begin
if SL.After = U
and then UNR.Table (SL.Before).Elab_Position = 0
then
Write_Str (" unchosen predecessor: #");
Write_Int (Int (SL.Before));
Write_Str (" ");
Write_Unit_Name (Units.Table (SL.Before).Uname);
Write_Eol;
NP := NP - 1;
end if;
end;
end loop;
if NP /= 0 then
Write_Line (" **************** Num_Pred value wrong!");
end if;
end if;
end loop;
end;
end if;
-- Output the header for the error, and manually increment the error
-- count. We are using Error_Msg_Output rather than Error_Msg here for
-- two reasons:
-- This is really only one error, not one for each line
-- We want this output on standard output since it is voluminous
-- But we do need to deal with the error count manually in this case
Errors_Detected := Errors_Detected + 1;
Error_Msg_Output ("elaboration circularity detected", Info => False);
-- Try to find cycles starting with any of the remaining nodes that have
-- not yet been chosen. There must be at least one (there is some reason
-- we are being called).
for U in Units.First .. Units.Last loop
if UNR.Table (U).Elab_Position = 0 then
if Find_Path (U, U, 1) then
raise Unrecoverable_Error;
end if;
end if;
end loop;
-- We should never get here, since we were called for some reason, and
-- we should have found and eliminated at least one bad path.
raise Program_Error;
end Diagnose_Elaboration_Problem;
--------------------
-- Elab_All_Links --
--------------------
procedure Elab_All_Links
(Before : Unit_Id;
After : Unit_Id;
Reason : Succ_Reason;
Link : Elab_All_Id)
is
begin
if UNR.Table (Before).Visited then
return;
end if;
-- Build the direct link for Before
UNR.Table (Before).Visited := True;
Build_Link (Before, After, Reason, Link);
-- Process all units with'ed by Before recursively
for W in Units.Table (Before).First_With ..
Units.Table (Before).Last_With
loop
-- Skip if this with is an interface to a stand-alone library. Skip
-- also if no ALI file for this WITH, happens for language defined
-- generics while bootstrapping the compiler (see body of routine
-- Lib.Writ.Write_With_Lines). Finally, skip if it is a limited with
-- clause, which does not impose an elaboration link.
if not Withs.Table (W).SAL_Interface
and then Withs.Table (W).Afile /= No_File
and then not Withs.Table (W).Limited_With
then
declare
Info : constant Int :=
Get_Name_Table_Int (Withs.Table (W).Uname);
begin
-- If the unit is unknown, for some unknown reason, fail
-- graciously explaining that the unit is unknown. Without
-- this check, gnatbind will crash in Unit_Id_Of.
if Info = 0 or else Unit_Id (Info) = No_Unit_Id then
declare
Withed : String :=
Get_Name_String (Withs.Table (W).Uname);
Last_Withed : Natural := Withed'Last;
Withing : String :=
Get_Name_String
(Units.Table (Before).Uname);
Last_Withing : Natural := Withing'Last;
Spec_Body : String := " (Spec)";
begin
To_Mixed (Withed);
To_Mixed (Withing);
if Last_Withed > 2
and then Withed (Last_Withed - 1) = '%'
then
Last_Withed := Last_Withed - 2;
end if;
if Last_Withing > 2
and then Withing (Last_Withing - 1) = '%'
then
Last_Withing := Last_Withing - 2;
end if;
if Units.Table (Before).Utype = Is_Body
or else Units.Table (Before).Utype = Is_Body_Only
then
Spec_Body := " (Body)";
end if;
Osint.Fail
("could not find unit "
& Withed (Withed'First .. Last_Withed) & " needed by "
& Withing (Withing'First .. Last_Withing) & Spec_Body);
end;
end if;
Elab_All_Links
(Unit_Id_Of (Withs.Table (W).Uname),
After,
Reason,
Make_Elab_All_Entry (Withs.Table (W).Uname, Link));
end;
end if;
end loop;
-- Process corresponding body, if there is one
if Units.Table (Before).Utype = Is_Spec then
Elab_All_Links
(Corresponding_Body (Before),
After, Reason,
Make_Elab_All_Entry
(Units.Table (Corresponding_Body (Before)).Uname, Link));
end if;
end Elab_All_Links;
--------------------
-- Elab_Error_Msg --
--------------------
procedure Elab_Error_Msg (S : Successor_Id) is
SL : Successor_Link renames Succ.Table (S);
begin
-- Nothing to do if internal unit involved and no -da flag
if not Debug_Flag_A
and then
(Is_Internal_File_Name (Units.Table (SL.Before).Sfile)
or else
Is_Internal_File_Name (Units.Table (SL.After).Sfile))
then
return;
end if;
-- Here we want to generate output
Error_Msg_Unit_1 := Units.Table (SL.Before).Uname;
if SL.Elab_Body then
Error_Msg_Unit_2 := Units.Table (Corresponding_Body (SL.After)).Uname;
else
Error_Msg_Unit_2 := Units.Table (SL.After).Uname;
end if;
Error_Msg_Output (" $ must be elaborated before $", Info => True);
Error_Msg_Unit_1 := Units.Table (SL.Reason_Unit).Uname;
case SL.Reason is
when Withed =>
Error_Msg_Output
(" reason: with clause",
Info => True);
when Forced =>
Error_Msg_Output
(" reason: forced by -f switch",
Info => True);
when Elab =>
Error_Msg_Output
(" reason: pragma Elaborate in unit $",
Info => True);
when Elab_All =>
Error_Msg_Output
(" reason: pragma Elaborate_All in unit $",
Info => True);
when Elab_All_Desirable =>
Error_Msg_Output
(" reason: implicit Elaborate_All in unit $",
Info => True);
Error_Msg_Output
(" recompile $ with -gnatel for full details",
Info => True);
when Elab_Desirable =>
Error_Msg_Output
(" reason: implicit Elaborate in unit $",
Info => True);
Error_Msg_Output
(" recompile $ with -gnatel for full details",
Info => True);
when Spec_First =>
Error_Msg_Output
(" reason: spec always elaborated before body",
Info => True);
end case;
Write_Elab_All_Chain (S);
if SL.Elab_Body then
Error_Msg_Unit_1 := Units.Table (SL.Before).Uname;
Error_Msg_Unit_2 := Units.Table (SL.After).Uname;
Error_Msg_Output
(" $ must therefore be elaborated before $", True);
Error_Msg_Unit_1 := Units.Table (SL.After).Uname;
Error_Msg_Output
(" (because $ has a pragma Elaborate_Body)", True);
end if;
if not Zero_Formatting then
Write_Eol;
end if;
end Elab_Error_Msg;
---------------------
-- Find_Elab_Order --
---------------------
procedure Find_Elab_Order
(Elab_Order : out Unit_Id_Table;
First_Main_Lib_File : File_Name_Type)
is
function Num_Spec_Body_Pairs (Order : Unit_Id_Array) return Nat;
-- Number of cases where the body of a unit immediately follows the
-- corresponding spec. Such cases are good, because calls to that unit
-- from outside can't get ABE.
-------------------------
-- Num_Spec_Body_Pairs --
-------------------------
function Num_Spec_Body_Pairs (Order : Unit_Id_Array) return Nat is
Result : Nat := 0;
begin
for J in Order'First + 1 .. Order'Last loop
if Units.Table (Order (J - 1)).Utype = Is_Spec
and then Units.Table (Order (J)).Utype = Is_Body
and then Corresponding_Spec (Order (J)) = Order (J - 1)
then
Result := Result + 1;
end if;
end loop;
return Result;
end Num_Spec_Body_Pairs;
-- Local variables
Old_Elab_Order : Unit_Id_Table;
-- Start of processing for Find_Elab_Order
begin
-- Output warning if -p used with no -gnatE units
if Pessimistic_Elab_Order
and not Dynamic_Elaboration_Checks_Specified
then
Error_Msg ("?use of -p switch questionable");
Error_Msg ("?since all units compiled with static elaboration model");
end if;
if Do_New and not Debug_Flag_Old and not Debug_Flag_Older then
if Debug_Flag_V then
Write_Line ("Doing new...");
end if;
Doing_New := True;
Init;
Elab_New.Find_Elab_Order (Elab_Order);
end if;
-- Elab_New does not support the pessimistic order, so if that was
-- requested, use the old results. Use Elab_Old if -dp or -do was
-- selected. Elab_New does not yet give proper error messages for
-- illegal Elaborate_Alls, so if there is one, run Elab_Old.
if Do_Old
or Pessimistic_Elab_Order
or Debug_Flag_Old
or Debug_Flag_Older
or Elab_Cycle_Found
then
if Debug_Flag_V then
Write_Line ("Doing old...");
end if;
Doing_New := False;
Init;
Elab_Old.Find_Elab_Order (Old_Elab_Order);
end if;
pragma Assert (Elab_Cycle_Found <= -- implies
Diagnose_Elaboration_Problem_Called);
declare
Old_Order : Unit_Id_Array renames
Old_Elab_Order.Table (1 .. Last (Old_Elab_Order));
begin
if Do_Old and Do_New then
declare
New_Order : Unit_Id_Array renames
Elab_Order.Table (1 .. Last (Elab_Order));
Old_Pairs : constant Nat := Num_Spec_Body_Pairs (Old_Order);
New_Pairs : constant Nat := Num_Spec_Body_Pairs (New_Order);
begin
Write_Line (Get_Name_String (First_Main_Lib_File));
pragma Assert (Old_Order'Length = New_Order'Length);
pragma Debug (Validate (Old_Order, Doing_New => False));
pragma Debug (Validate (New_Order, Doing_New => True));
-- Misc debug printouts that can be used for experimentation by
-- changing the 'if's below.
if True then
if New_Order = Old_Order then
Write_Line ("Elab_New: same order.");
else
Write_Line ("Elab_New: diff order.");
end if;
end if;
if New_Order /= Old_Order and then False then
Write_Line ("Elaboration orders differ:");
Write_Elab_Order
(Old_Order, Title => "OLD ELABORATION ORDER");
Write_Elab_Order
(New_Order, Title => "NEW ELABORATION ORDER");
end if;
if True then
Write_Str ("Pairs: ");
Write_Int (Old_Pairs);
if Old_Pairs = New_Pairs then
Write_Str (" = ");
elsif Old_Pairs < New_Pairs then
Write_Str (" < ");
else
Write_Str (" > ");
end if;
Write_Int (New_Pairs);
Write_Eol;
end if;
if Old_Pairs /= New_Pairs and then False then
Write_Str ("Pairs: ");
Write_Int (Old_Pairs);
if Old_Pairs < New_Pairs then
Write_Str (" < ");
else
Write_Str (" > ");
end if;
Write_Int (New_Pairs);
Write_Eol;
if Old_Pairs /= New_Pairs and then Debug_Flag_V then
Write_Elab_Order
(Old_Order, Title => "OLD ELABORATION ORDER");
Write_Elab_Order
(New_Order, Title => "NEW ELABORATION ORDER");
pragma Assert (New_Pairs >= Old_Pairs);
end if;
end if;
end;
end if;
-- The Elab_New algorithm doesn't implement the -p switch, so if that
-- was used, use the results from the old algorithm. Likewise if the
-- user has requested the old algorithm.
if Pessimistic_Elab_Order or Debug_Flag_Old or Debug_Flag_Older then
pragma Assert
(Last (Elab_Order) = 0
or else Last (Elab_Order) = Old_Order'Last);
Init (Elab_Order);
Append_All (Elab_Order, Old_Order);
end if;
-- Now set the Elab_Positions in the Units table. It is important to
-- do this late, in case we're running both Elab_New and Elab_Old.
declare
New_Order : Unit_Id_Array renames
Elab_Order.Table (1 .. Last (Elab_Order));
Units_Array : Units.Table_Type renames
Units.Table (Units.First .. Units.Last);
begin
for J in New_Order'Range loop
pragma Assert
(UNR.Table (New_Order (J)).Elab_Position = J);
Units_Array (New_Order (J)).Elab_Position := J;
end loop;
if Errors_Detected = 0 then
-- Display elaboration order if -l was specified
if Elab_Order_Output then
if Zero_Formatting then
Write_Elab_Order (New_Order, Title => "");
else
Write_Elab_Order
(New_Order, Title => "ELABORATION ORDER");
end if;
end if;
-- Display list of sources in the closure (except predefined
-- sources) if -R was used. Include predefined sources if -Ra
-- was used.
if List_Closure then
Write_Closure (New_Order);
end if;
end if;
end;
end;
end Find_Elab_Order;
----------------------
-- Force_Elab_Order --
----------------------
procedure Force_Elab_Order is
subtype Header_Num is Unit_Name_Type'Base range 0 .. 2**16 - 1;
function Hash (N : Unit_Name_Type) return Header_Num;
package Name_Map is new System.HTable.Simple_HTable
(Header_Num => Header_Num,
Element => Logical_Line_Number,
No_Element => No_Line_Number,
Key => Unit_Name_Type,
Hash => Hash,
Equal => "=");
-- Name_Map contains an entry for each file name seen, mapped to the
-- line number where we saw it first. This is used to give an error for
-- duplicates.
----------
-- Hash --
----------
function Hash (N : Unit_Name_Type) return Header_Num is
-- Name_Ids are already widely dispersed; no need for any actual
-- hashing. Just subtract to make it zero based, and "mod" to
-- bring it in range.
begin
return (N - Unit_Name_Type'First) mod (Header_Num'Last + 1);
end Hash;
-- Local variables
Cur_Line_Number : Logical_Line_Number;
Error : Boolean := False;
Iter : Forced_Units_Iterator;
Prev_Unit : Unit_Id := No_Unit_Id;
Uname : Unit_Name_Type;
-- Start of processing for Force_Elab_Order
begin
Iter := Iterate_Forced_Units;
while Has_Next (Iter) loop
Next (Iter, Uname, Cur_Line_Number);
declare
Dup : constant Logical_Line_Number := Name_Map.Get (Uname);
begin
if Dup = No_Line_Number then
Name_Map.Set (Uname, Cur_Line_Number);
-- We don't need to give the "not present" message in the case
-- of "duplicate unit", because we would have already given the
-- "not present" message on the first occurrence.
if Get_Name_Table_Int (Uname) = 0
or else Unit_Id (Get_Name_Table_Int (Uname)) = No_Unit_Id
then
Error := True;
if Doing_New then
Write_Line
("""" & Get_Name_String (Uname)
& """: not present; ignored");
end if;
end if;
else
Error := True;
if Doing_New then
Error_Msg_Nat_1 := Nat (Cur_Line_Number);
Error_Msg_Unit_1 := Uname;
Error_Msg_Nat_2 := Nat (Dup);
Error_Msg
(Force_Elab_Order_File.all
& ":#: duplicate unit name $ from line #");
end if;
end if;
end;
if not Error then
declare
Cur_Unit : constant Unit_Id := Unit_Id_Of (Uname);
begin
if Is_Internal_File_Name (Units.Table (Cur_Unit).Sfile) then
if Doing_New then
Write_Line
("""" & Get_Name_String (Uname)
& """: predefined unit ignored");
end if;
else
if Prev_Unit /= No_Unit_Id then
if Doing_New then
Write_Unit_Name (Units.Table (Prev_Unit).Uname);
Write_Str (" <-- ");
Write_Unit_Name (Units.Table (Cur_Unit).Uname);
Write_Eol;
end if;
Build_Link
(Before => Prev_Unit,
After => Cur_Unit,
R => Forced);
end if;
Prev_Unit := Cur_Unit;
end if;
end;
end if;
end loop;
end Force_Elab_Order;
-------------------------
-- Gather_Dependencies --
-------------------------
procedure Gather_Dependencies is
Withed_Unit : Unit_Id;
begin
-- Loop through all units
for U in Units.First .. Units.Last loop
Cur_Unit := U;
-- If this is not an interface to a stand-alone library and there is
-- a body and a spec, then spec must be elaborated first. Note that
-- the corresponding spec immediately follows the body.
if not Units.Table (U).SAL_Interface
and then Units.Table (U).Utype = Is_Body
then
Build_Link (Corresponding_Spec (U), U, Spec_First);
end if;
-- If this unit is not an interface to a stand-alone library, process
-- WITH references for this unit ignoring interfaces to stand-alone
-- libraries.
if not Units.Table (U).SAL_Interface then
for W in Units.Table (U).First_With ..
Units.Table (U).Last_With
loop
if Withs.Table (W).Sfile /= No_File
and then not Withs.Table (W).SAL_Interface
then
-- Check for special case of withing a unit that does not
-- exist any more. If the unit was completely missing we
-- would already have detected this, but a nasty case arises
-- when we have a subprogram body with no spec, and some
-- obsolete unit with's a previous (now disappeared) spec.
if Get_Name_Table_Int (Withs.Table (W).Uname) = 0 then
if Doing_New then
Error_Msg_File_1 := Units.Table (U).Sfile;
Error_Msg_Unit_1 := Withs.Table (W).Uname;
Error_Msg ("{ depends on $ which no longer exists");
end if;
goto Next_With;
end if;
Withed_Unit := Unit_Id_Of (Withs.Table (W).Uname);
-- Pragma Elaborate_All case, for this we use the recursive
-- Elab_All_Links procedure to establish the links.
-- Elab_New ignores Elaborate_All and Elab_All_Desirable,
-- except for error messages.
if Withs.Table (W).Elaborate_All and then not Doing_New then
-- Reset flags used to stop multiple visits to a given
-- node.
for Uref in UNR.First .. UNR.Last loop
UNR.Table (Uref).Visited := False;
end loop;
-- Now establish all the links we need
Elab_All_Links
(Withed_Unit, U, Elab_All,
Make_Elab_All_Entry
(Withs.Table (W).Uname, No_Elab_All_Link));
-- Elaborate_All_Desirable case, for this we establish the
-- same links as above, but with a different reason.
elsif Withs.Table (W).Elab_All_Desirable
and then not Doing_New
then
-- Reset flags used to stop multiple visits to a given
-- node.
for Uref in UNR.First .. UNR.Last loop
UNR.Table (Uref).Visited := False;
end loop;
-- Now establish all the links we need
Elab_All_Links
(Withed_Unit, U, Elab_All_Desirable,
Make_Elab_All_Entry
(Withs.Table (W).Uname, No_Elab_All_Link));
-- Pragma Elaborate case. We must build a link for the
-- withed unit itself, and also the corresponding body if
-- there is one.
-- However, skip this processing if there is no ALI file for
-- the WITH entry, because this means it is a generic (even
-- when we fix the generics so that an ALI file is present,
-- we probably still will have no ALI file for unchecked and
-- other special cases).
elsif Withs.Table (W).Elaborate
and then Withs.Table (W).Afile /= No_File
then
Build_Link (Withed_Unit, U, Withed);
if Units.Table (Withed_Unit).Utype = Is_Spec then
Build_Link
(Corresponding_Body (Withed_Unit), U, Elab);
end if;
-- Elaborate_Desirable case, for this we establish the same
-- links as above, but with a different reason.
elsif Withs.Table (W).Elab_Desirable then
Build_Link (Withed_Unit, U, Withed);
if Units.Table (Withed_Unit).Utype = Is_Spec then
Build_Link
(Corresponding_Body (Withed_Unit),
U, Elab_Desirable);
end if;
-- A limited_with does not establish an elaboration
-- dependence (that's the whole point).
elsif Withs.Table (W).Limited_With then
null;
-- Case of normal WITH with no elaboration pragmas, just
-- build the single link to the directly referenced unit
else
Build_Link (Withed_Unit, U, Withed);
end if;
end if;
<<Next_With>>
null;
end loop;
end if;
end loop;
-- If -f<elab_order> switch was given, take into account dependences
-- specified in the file <elab_order>.
if Force_Elab_Order_File /= null then
Force_Elab_Order;
end if;
-- Output elaboration dependencies if option is set
if Elab_Dependency_Output or Debug_Flag_E then
if Doing_New then
Write_Dependencies;
end if;
end if;
end Gather_Dependencies;
----------
-- Init --
----------
procedure Init is
begin
Num_Chosen := 0;
Num_Left := Int (Units.Last - Units.First + 1);
Succ.Init;
Elab_All_Entries.Init;
UNR.Init;
-- Initialize unit table for elaboration control
for U in Units.First .. Units.Last loop
UNR.Append
((Successors => No_Successor,
Num_Pred => 0,
Nextnp => No_Unit_Id,
Visited => False,
Elab_Position => 0,
SCC_Root => No_Unit_Id,
Nodes => null,
SCC_Num_Pred => 0,
Validate_Seen => False));
end loop;
end Init;
------------------
-- Is_Body_Unit --
------------------
function Is_Body_Unit (U : Unit_Id) return Boolean is
begin
return
Units.Table (U).Utype = Is_Body
or else Units.Table (U).Utype = Is_Body_Only;
end Is_Body_Unit;
-----------------------------
-- Is_Pure_Or_Preelab_Unit --
-----------------------------
function Is_Pure_Or_Preelab_Unit (U : Unit_Id) return Boolean is
begin
-- If we have a body with separate spec, test flags on the spec
if Units.Table (U).Utype = Is_Body then
return
Units.Table (Corresponding_Spec (U)).Preelab
or else Units.Table (Corresponding_Spec (U)).Pure;
-- Otherwise we have a spec or body acting as spec, test flags on unit
else
return Units.Table (U).Preelab or else Units.Table (U).Pure;
end if;
end Is_Pure_Or_Preelab_Unit;
---------------------
-- Is_Waiting_Body --
---------------------
function Is_Waiting_Body (U : Unit_Id) return Boolean is
begin
return
Units.Table (U).Utype = Is_Body
and then UNR.Table (Corresponding_Spec (U)).Elab_Position /= 0;
end Is_Waiting_Body;
-------------------------
-- Make_Elab_All_Entry --
-------------------------
function Make_Elab_All_Entry
(Unam : Unit_Name_Type;
Link : Elab_All_Id) return Elab_All_Id
is
begin
Elab_All_Entries.Append ((Needed_By => Unam, Next_Elab => Link));
return Elab_All_Entries.Last;
end Make_Elab_All_Entry;
----------------
-- Unit_Id_Of --
----------------
function Unit_Id_Of (Uname : Unit_Name_Type) return Unit_Id is
Info : constant Int := Get_Name_Table_Int (Uname);
begin
pragma Assert (Info /= 0 and then Unit_Id (Info) /= No_Unit_Id);
return Unit_Id (Info);
end Unit_Id_Of;
--------------
-- Validate --
--------------
procedure Validate (Order : Unit_Id_Array; Doing_New : Boolean) is
Cur_SCC : Unit_Id := No_Unit_Id;
OK : Boolean := True;
Msg : String := "Old: ";
begin
if Doing_New then
Msg := "New: ";
end if;
-- For each unit, assert that its successors are elaborated after it
for J in Order'Range loop
declare
U : constant Unit_Id := Order (J);
S : Successor_Id := UNR.Table (U).Successors;
begin
while S /= No_Successor loop
if UNR.Table (Succ.Table (S).After).Elab_Position <=
UNR.Table (U).Elab_Position
then
OK := False;
Write_Line (Msg & " elab order failed");
end if;
S := Succ.Table (S).Next;
end loop;
end;
end loop;
-- An SCC of size 2 units necessarily consists of a spec and the
-- corresponding body. Assert that the body is elaborated immediately
-- after the spec, with nothing in between. (We only have SCCs in the
-- new algorithm.)
if Doing_New then
for J in Order'Range loop
declare
U : constant Unit_Id := Order (J);
begin
if Nodes (U)'Length = 2 then
if Units.Table (U).Utype = Is_Spec then
if Order (J + 1) /= Corresponding_Body (U) then
OK := False;
Write_Line (Msg & "Bad spec with SCC of size 2:");
Write_SCC (SCC (U));
end if;
end if;
if Units.Table (U).Utype = Is_Body then
if Order (J - 1) /= Corresponding_Spec (U) then
OK := False;
Write_Line (Msg & "Bad body with SCC of size 2:");
Write_SCC (SCC (U));
end if;
end if;
end if;
end;
end loop;
-- Assert that all units of an SCC are elaborated together, with no
-- units from other SCCs in between. The above spec/body case is a
-- special case of this general rule.
for J in Order'Range loop
declare
U : constant Unit_Id := Order (J);
begin
if SCC (U) /= Cur_SCC then
Cur_SCC := SCC (U);
if UNR.Table (Cur_SCC).Validate_Seen then
OK := False;
Write_Line (Msg & "SCC not elaborated together:");
Write_SCC (Cur_SCC);
end if;
UNR.Table (Cur_SCC).Validate_Seen := True;
end if;
end;
end loop;
end if;
pragma Assert (OK);
end Validate;
-------------------
-- Write_Closure --
-------------------
procedure Write_Closure (Order : Unit_Id_Array) is
package Closure_Sources is new Table.Table
(Table_Component_Type => File_Name_Type,
Table_Index_Type => Natural,
Table_Low_Bound => 1,
Table_Initial => 10,
Table_Increment => 100,
Table_Name => "Gnatbind.Closure_Sources");
-- Table to record the sources in the closure, to avoid duplications
function Put_In_Sources (S : File_Name_Type) return Boolean;
-- Check if S is already in table Sources and put in Sources if it is
-- not. Return False if the source is already in Sources, and True if
-- it is added.
--------------------
-- Put_In_Sources --
--------------------
function Put_In_Sources (S : File_Name_Type) return Boolean is
begin
for J in 1 .. Closure_Sources.Last loop
if Closure_Sources.Table (J) = S then
return False;
end if;
end loop;
Closure_Sources.Append (S);
return True;
end Put_In_Sources;
-- Local variables
Source : File_Name_Type;
-- Start of processing for Write_Closure
begin
Closure_Sources.Init;
if not Zero_Formatting then
Write_Eol;
Write_Line ("REFERENCED SOURCES");
end if;
for J in reverse Order'Range loop
Source := Units.Table (Order (J)).Sfile;
-- Do not include same source more than once
if Put_In_Sources (Source)
-- Do not include run-time units unless -Ra switch set
and then (List_Closure_All
or else not Is_Internal_File_Name (Source))
then
if not Zero_Formatting then
Write_Str (" ");
end if;
Write_Line (Get_Name_String (Source));
end if;
end loop;
-- Subunits do not appear in the elaboration table because they are
-- subsumed by their parent units, but we need to list them for other
-- tools. For now they are listed after other files, rather than right
-- after their parent, since there is no easy link between the
-- elaboration table and the ALIs table. As subunits may appear
-- repeatedly in the list, if the parent unit appears in the context of
-- several units in the closure, duplicates are suppressed.
for J in Sdep.First .. Sdep.Last loop
Source := Sdep.Table (J).Sfile;
if Sdep.Table (J).Subunit_Name /= No_Name
and then Put_In_Sources (Source)
and then not Is_Internal_File_Name (Source)
then
if not Zero_Formatting then
Write_Str (" ");
end if;
Write_Line (Get_Name_String (Source));
end if;
end loop;
if not Zero_Formatting then
Write_Eol;
end if;
end Write_Closure;
------------------------
-- Write_Dependencies --
------------------------
procedure Write_Dependencies is
begin
if not Zero_Formatting then
Write_Eol;
Write_Line (" ELABORATION ORDER DEPENDENCIES");
Write_Eol;
end if;
Info_Prefix_Suppress := True;
for S in Succ_First .. Succ.Last loop
Elab_Error_Msg (S);
end loop;
Info_Prefix_Suppress := False;
if not Zero_Formatting then
Write_Eol;
end if;
end Write_Dependencies;
--------------------------
-- Write_Elab_All_Chain --
--------------------------
procedure Write_Elab_All_Chain (S : Successor_Id) is
ST : constant Successor_Link := Succ.Table (S);
After : constant Unit_Name_Type := Units.Table (ST.After).Uname;
L : Elab_All_Id;
Nam : Unit_Name_Type;
First_Name : Boolean := True;
begin
if ST.Reason in Elab_All .. Elab_All_Desirable then
L := ST.Elab_All_Link;
pragma Annotate (CodePeer, Modified, L);
while L /= No_Elab_All_Link loop
Nam := Elab_All_Entries.Table (L).Needed_By;
Error_Msg_Unit_1 := Nam;
Error_Msg_Output (" $", Info => True);
Get_Name_String (Nam);
if Name_Buffer (Name_Len) = 'b' then
if First_Name then
Error_Msg_Output
(" must be elaborated along with its spec:",
Info => True);
else
Error_Msg_Output
(" which must be elaborated along with its "
& "spec:",
Info => True);
end if;
else
if First_Name then
Error_Msg_Output
(" is withed by:",
Info => True);
else
Error_Msg_Output
(" which is withed by:",
Info => True);
end if;
end if;
First_Name := False;
L := Elab_All_Entries.Table (L).Next_Elab;
end loop;
Error_Msg_Unit_1 := After;
Error_Msg_Output (" $", Info => True);
end if;
end Write_Elab_All_Chain;
----------------------
-- Write_Elab_Order --
----------------------
procedure Write_Elab_Order
(Order : Unit_Id_Array; Title : String)
is
begin
if Title /= "" then
Write_Eol;
Write_Line (Title);
end if;
for J in Order'Range loop
if not Units.Table (Order (J)).SAL_Interface then
if not Zero_Formatting then
Write_Str (" ");
end if;
Write_Unit_Name (Units.Table (Order (J)).Uname);
Write_Eol;
end if;
end loop;
if Title /= "" then
Write_Eol;
end if;
end Write_Elab_Order;
--------------
-- Elab_New --
--------------
package body Elab_New is
generic
type Node is (<>);
First_Node : Node;
Last_Node : Node;
type Node_Array is array (Pos range <>) of Node;
with function Successors (N : Node) return Node_Array;
with procedure Create_SCC (Root : Node; Nodes : Node_Array);
procedure Compute_Strongly_Connected_Components;
-- Compute SCCs for a directed graph. The nodes in the graph are all
-- values of type Node in the range First_Node .. Last_Node.
-- Successors(N) returns the nodes pointed to by the edges emanating
-- from N. Create_SCC is a callback that is called once for each SCC,
-- passing in the Root node for that SCC (which is an arbitrary node in
-- the SCC used as a representative of that SCC), and the set of Nodes
-- in that SCC.
--
-- This is generic, in case we want to use it elsewhere; then we could
-- move this into a separate library unit. Unfortunately, it's not as
-- generic as one might like. Ideally, we would have "type Node is
-- private;", and pass in iterators to iterate over all nodes, and over
-- the successors of a given node. However, that leads to using advanced
-- features of Ada that are not allowed in the compiler and binder for
-- bootstrapping reasons. It also leads to trampolines, which are not
-- allowed in the compiler and binder. Restricting Node to be discrete
-- allows us to iterate over all nodes with a 'for' loop, and allows us
-- to attach temporary information to nodes by having an array indexed
-- by Node.
procedure Compute_Unit_SCCs;
-- Use the above generic procedure to compute the SCCs for the graph of
-- units. Store in each Unit_Node_Record the SCC_Root and Nodes
-- components. Also initialize the SCC_Num_Pred components.
procedure Find_Elab_All_Errors;
-- Generate an error for illegal Elaborate_All pragmas (explicit or
-- implicit). A pragma Elaborate_All (Y) on unit X is legal if and only
-- if X and Y are in different SCCs.
-------------------------------------------
-- Compute_Strongly_Connected_Components --
-------------------------------------------
procedure Compute_Strongly_Connected_Components is
-- This uses Tarjan's algorithm for finding SCCs. Comments here are
-- intended to tell what it does, but if you want to know how it
-- works, you have to look it up. Please do not modify this code
-- without reading up on Tarjan's algorithm.
subtype Node_Index is Nat;
No_Index : constant Node_Index := 0;
Num_Nodes : constant Nat :=
Node'Pos (Last_Node) - Node'Pos (First_Node) + 1;
Stack : Node_Array (1 .. Num_Nodes);
Top : Node_Index := 0;
-- Stack of nodes, pushed when first visited. All nodes of an SCC are
-- popped at once when the SCC is found.
subtype Valid_Node is Node range First_Node .. Last_Node;
Node_Indices : array (Valid_Node) of Node_Index :=
(others => No_Index);
-- Each node has an "index", which is the sequential number in the
-- order in which they are visited in the recursive walk. No_Index
-- means "not yet visited"; we want to avoid walking any node more
-- than once.
Index : Node_Index := 1;
-- Next value to be assigned to a node index
Low_Links : array (Valid_Node) of Node_Index;
-- Low_Links (N) is the smallest index of nodes reachable from N
On_Stack : array (Valid_Node) of Boolean := (others => False);
-- True if the node is currently on the stack
procedure Walk (N : Valid_Node);
-- Recursive depth-first graph walk, with the node index used to
-- avoid visiting a node more than once.
----------
-- Walk --
----------
procedure Walk (N : Valid_Node) is
Stack_Position_Of_N : constant Pos := Top + 1;
S : constant Node_Array := Successors (N);
begin
-- Assign the index and low link, increment Index for next call to
-- Walk.
Node_Indices (N) := Index;
Low_Links (N) := Index;
Index := Index + 1;
-- Push it on the stack:
Top := Stack_Position_Of_N;
Stack (Top) := N;
On_Stack (N) := True;
-- Walk not-yet-visited subnodes, and update low link for visited
-- ones as appropriate.
for J in S'Range loop
if Node_Indices (S (J)) = No_Index then
Walk (S (J));
Low_Links (N) :=
Node_Index'Min (Low_Links (N), Low_Links (S (J)));
elsif On_Stack (S (J)) then
Low_Links (N) :=
Node_Index'Min (Low_Links (N), Node_Indices (S (J)));
end if;
end loop;
-- If the index is (still) equal to the low link, we've found an
-- SCC. Pop the whole SCC off the stack, and call Create_SCC.
if Low_Links (N) = Node_Indices (N) then
declare
SCC : Node_Array renames
Stack (Stack_Position_Of_N .. Top);
pragma Assert (SCC'Length >= 1);
pragma Assert (SCC (SCC'First) = N);
begin
for J in SCC'Range loop
On_Stack (SCC (J)) := False;
end loop;
Create_SCC (Root => N, Nodes => SCC);
pragma Assert (Top - SCC'Length = Stack_Position_Of_N - 1);
Top := Stack_Position_Of_N - 1; -- pop all
end;
end if;
end Walk;
-- Start of processing for Compute_Strongly_Connected_Components
begin
-- Walk all the nodes that have not yet been walked
for N in Valid_Node loop
if Node_Indices (N) = No_Index then
Walk (N);
end if;
end loop;
end Compute_Strongly_Connected_Components;
-----------------------
-- Compute_Unit_SCCs --
-----------------------
procedure Compute_Unit_SCCs is
function Successors (U : Unit_Id) return Unit_Id_Array;
-- Return all the units that must be elaborated after U. In addition,
-- if U is a body, include the corresponding spec; this ensures that
-- a spec/body pair are always in the same SCC.
procedure Create_SCC (Root : Unit_Id; Nodes : Unit_Id_Array);
-- Set Nodes of the Root, and set SCC_Root of all the Nodes
procedure Init_SCC_Num_Pred (U : Unit_Id);
-- Initialize the SCC_Num_Pred fields, so that the root of each SCC
-- has a count of the number of successors of all the units in the
-- SCC, but only for successors outside the SCC.
procedure Compute_SCCs is new Compute_Strongly_Connected_Components
(Node => Unit_Id,
First_Node => Units.First,
Last_Node => Units.Last,
Node_Array => Unit_Id_Array,
Successors => Successors,
Create_SCC => Create_SCC);
----------------
-- Create_SCC --
----------------
procedure Create_SCC (Root : Unit_Id; Nodes : Unit_Id_Array) is
begin
if Debug_Flag_V then
Write_Str ("Root = ");
Write_Int (Int (Root));
Write_Str (" ");
Write_Unit_Name (Units.Table (Root).Uname);
Write_Str (" -- ");
Write_Int (Nodes'Length);
Write_Line (" units:");
for J in Nodes'Range loop
Write_Str (" ");
Write_Int (Int (Nodes (J)));
Write_Str (" ");
Write_Unit_Name (Units.Table (Nodes (J)).Uname);
Write_Eol;
end loop;
end if;
pragma Assert (Nodes (Nodes'First) = Root);
pragma Assert (UNR.Table (Root).Nodes = null);
UNR.Table (Root).Nodes := new Unit_Id_Array'(Nodes);
for J in Nodes'Range loop
pragma Assert (SCC (Nodes (J)) = No_Unit_Id);
UNR.Table (Nodes (J)).SCC_Root := Root;
end loop;
end Create_SCC;
----------------
-- Successors --
----------------
function Successors (U : Unit_Id) return Unit_Id_Array is
S : Successor_Id := UNR.Table (U).Successors;
Tab : Unit_Id_Table;
begin
-- Pretend that a spec is a successor of its body (even though it
-- isn't), just so both get included.
if Units.Table (U).Utype = Is_Body then
Append (Tab, Corresponding_Spec (U));
end if;
-- Now include the real successors
while S /= No_Successor loop
pragma Assert (Succ.Table (S).Before = U);
Append (Tab, Succ.Table (S).After);
S := Succ.Table (S).Next;
end loop;
declare
Result : constant Unit_Id_Array := Tab.Table (1 .. Last (Tab));
begin
Free (Tab);
return Result;
end;
end Successors;
-----------------------
-- Init_SCC_Num_Pred --
-----------------------
procedure Init_SCC_Num_Pred (U : Unit_Id) is
begin
if UNR.Table (U).Visited then
return;
end if;
UNR.Table (U).Visited := True;
declare
S : Successor_Id := UNR.Table (U).Successors;
begin
while S /= No_Successor loop
pragma Assert (Succ.Table (S).Before = U);
Init_SCC_Num_Pred (Succ.Table (S).After);
if SCC (U) /= SCC (Succ.Table (S).After) then
UNR.Table (SCC (Succ.Table (S).After)).SCC_Num_Pred :=
UNR.Table (SCC (Succ.Table (S).After)).SCC_Num_Pred + 1;
end if;
S := Succ.Table (S).Next;
end loop;
end;
end Init_SCC_Num_Pred;
-- Start of processing for Compute_Unit_SCCs
begin
Compute_SCCs;
for Uref in UNR.First .. UNR.Last loop
pragma Assert (not UNR.Table (Uref).Visited);
null;
end loop;
for Uref in UNR.First .. UNR.Last loop
Init_SCC_Num_Pred (Uref);
end loop;
-- Assert that SCC_Root of all units has been set to a valid unit,
-- and that SCC_Num_Pred has not been modified in non-root units.
for Uref in UNR.First .. UNR.Last loop
pragma Assert (UNR.Table (Uref).SCC_Root /= No_Unit_Id);
pragma Assert (UNR.Table (Uref).SCC_Root in UNR.First .. UNR.Last);
if SCC (Uref) /= Uref then
pragma Assert (UNR.Table (Uref).SCC_Num_Pred = 0);
null;
end if;
end loop;
end Compute_Unit_SCCs;
--------------------------
-- Find_Elab_All_Errors --
--------------------------
procedure Find_Elab_All_Errors is
Withed_Unit : Unit_Id;
begin
for U in Units.First .. Units.Last loop
-- If this unit is not an interface to a stand-alone library,
-- process WITH references for this unit ignoring interfaces to
-- stand-alone libraries.
if not Units.Table (U).SAL_Interface then
for W in Units.Table (U).First_With ..
Units.Table (U).Last_With
loop
if Withs.Table (W).Sfile /= No_File
and then not Withs.Table (W).SAL_Interface
then
-- Check for special case of withing a unit that does not
-- exist any more.
if Get_Name_Table_Int (Withs.Table (W).Uname) = 0 then
goto Next_With;
end if;
Withed_Unit := Unit_Id_Of (Withs.Table (W).Uname);
-- If it's Elaborate_All or Elab_All_Desirable, check
-- that the withER and withEE are not in the same SCC.
if Withs.Table (W).Elaborate_All
or else Withs.Table (W).Elab_All_Desirable
then
if SCC (U) = SCC (Withed_Unit) then
Elab_Cycle_Found := True;
-- We could probably give better error messages
-- than Elab_Old here, but for now, to avoid
-- disruption, we don't give any error here.
-- Instead, we set the Elab_Cycle_Found flag above,
-- and then run the Elab_Old algorithm to issue the
-- error message. Ideally, we would like to print
-- multiple errors rather than stopping after the
-- first cycle.
if False then
Error_Msg_Output
("illegal pragma Elaborate_All",
Info => False);
end if;
end if;
end if;
end if;
<<Next_With>>
null;
end loop;
end if;
end loop;
end Find_Elab_All_Errors;
---------------------
-- Find_Elab_Order --
---------------------
procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table) is
Best_So_Far : Unit_Id;
U : Unit_Id;
begin
-- Gather dependencies and output them if option set
Gather_Dependencies;
Compute_Unit_SCCs;
-- Initialize the no-predecessor list
No_Pred := No_Unit_Id;
for U in UNR.First .. UNR.Last loop
if UNR.Table (U).Num_Pred = 0 then
UNR.Table (U).Nextnp := No_Pred;
No_Pred := U;
end if;
end loop;
-- OK, now we determine the elaboration order proper. All we do is to
-- select the best choice from the no-predecessor list until all the
-- nodes have been chosen.
Outer : loop
if Debug_Flag_N then
Write_Line ("Outer loop");
end if;
-- If there are no nodes with predecessors, then either we are
-- done, as indicated by Num_Left being set to zero, or we have a
-- circularity. In the latter case, diagnose the circularity,
-- removing it from the graph and
-- continue. Diagnose_Elaboration_Problem always raises an
-- exception, so the loop never goes around more than once.
Get_No_Pred : while No_Pred = No_Unit_Id loop
exit Outer when Num_Left < 1;
Diagnose_Elaboration_Problem (Elab_Order);
end loop Get_No_Pred;
U := No_Pred;
Best_So_Far := No_Unit_Id;
-- Loop to choose best entry in No_Pred list
No_Pred_Search : loop
if Debug_Flag_N then
Write_Str (" considering choice of ");
Write_Unit_Name (Units.Table (U).Uname);
Write_Eol;
if Units.Table (U).Elaborate_Body then
Write_Str
(" Elaborate_Body = True, Num_Pred for body = ");
Write_Int
(UNR.Table (Corresponding_Body (U)).Num_Pred);
else
Write_Str
(" Elaborate_Body = False");
end if;
Write_Eol;
end if;
-- Don't even consider units whose SCC is not ready. This
-- ensures that all units of an SCC will be elaborated
-- together, with no other units in between.
if SCC_Num_Pred (U) = 0
and then Better_Choice (U, Best_So_Far)
then
if Debug_Flag_N then
Write_Line (" tentatively chosen (best so far)");
end if;
Best_So_Far := U;
else
if Debug_Flag_N then
Write_Line (" SCC not ready");
end if;
end if;
U := UNR.Table (U).Nextnp;
exit No_Pred_Search when U = No_Unit_Id;
end loop No_Pred_Search;
-- If there are no units on the No_Pred list whose SCC is ready,
-- there must be a cycle. Defer to Elab_Old to print an error
-- message.
if Best_So_Far = No_Unit_Id then
Elab_Cycle_Found := True;
return;
end if;
-- Choose the best candidate found
Choose (Elab_Order, Best_So_Far, " [Best_So_Far]");
-- If it's a spec with a body, and the body is not yet chosen,
-- choose the body if possible. The case where the body is
-- already chosen is Elaborate_Body; the above call to Choose
-- the spec will also Choose the body.
if Units.Table (Best_So_Far).Utype = Is_Spec
and then UNR.Table
(Corresponding_Body (Best_So_Far)).Elab_Position = 0
then
declare
Choose_The_Body : constant Boolean :=
UNR.Table (Corresponding_Body
(Best_So_Far)).Num_Pred = 0;
begin
if Debug_Flag_B then
Write_Str ("Can we choose the body?... ");
if Choose_The_Body then
Write_Line ("Yes!");
else
Write_Line ("No.");
end if;
end if;
if Choose_The_Body then
Choose
(Elab_Order => Elab_Order,
Chosen => Corresponding_Body (Best_So_Far),
Msg => " [body]");
end if;
end;
end if;
-- Finally, choose all the rest of the units in the same SCC as
-- Best_So_Far. If it hasn't been chosen (Elab_Position = 0), and
-- it's ready to be chosen (Num_Pred = 0), then we can choose it.
loop
declare
Chose_One_Or_More : Boolean := False;
SCC : Unit_Id_Array renames Nodes (Best_So_Far).all;
begin
for J in SCC'Range loop
if UNR.Table (SCC (J)).Elab_Position = 0
and then UNR.Table (SCC (J)).Num_Pred = 0
then
Chose_One_Or_More := True;
Choose (Elab_Order, SCC (J), " [same SCC]");
end if;
end loop;
exit when not Chose_One_Or_More;
end;
end loop;
end loop Outer;
Find_Elab_All_Errors;
end Find_Elab_Order;
-----------
-- Nodes --
-----------
function Nodes (U : Unit_Id) return Unit_Id_Array_Ptr is
begin
return UNR.Table (SCC (U)).Nodes;
end Nodes;
---------
-- SCC --
---------
function SCC (U : Unit_Id) return Unit_Id is
begin
return UNR.Table (U).SCC_Root;
end SCC;
------------------
-- SCC_Num_Pred --
------------------
function SCC_Num_Pred (U : Unit_Id) return Int is
begin
return UNR.Table (SCC (U)).SCC_Num_Pred;
end SCC_Num_Pred;
---------------
-- Write_SCC --
---------------
procedure Write_SCC (U : Unit_Id) is
pragma Assert (SCC (U) = U);
begin
for J in Nodes (U)'Range loop
Write_Int (UNR.Table (Nodes (U) (J)).Elab_Position);
Write_Str (". ");
Write_Unit_Name (Units.Table (Nodes (U) (J)).Uname);
Write_Eol;
end loop;
Write_Eol;
end Write_SCC;
end Elab_New;
--------------
-- Elab_Old --
--------------
package body Elab_Old is
---------------------
-- Find_Elab_Order --
---------------------
procedure Find_Elab_Order (Elab_Order : out Unit_Id_Table) is
Best_So_Far : Unit_Id;
U : Unit_Id;
begin
-- Gather dependencies and output them if option set
Gather_Dependencies;
-- Initialize the no-predecessor list
No_Pred := No_Unit_Id;
for U in UNR.First .. UNR.Last loop
if UNR.Table (U).Num_Pred = 0 then
UNR.Table (U).Nextnp := No_Pred;
No_Pred := U;
end if;
end loop;
-- OK, now we determine the elaboration order proper. All we do is to
-- select the best choice from the no-predecessor list until all the
-- nodes have been chosen.
Outer : loop
-- If there are no nodes with predecessors, then either we are
-- done, as indicated by Num_Left being set to zero, or we have a
-- circularity. In the latter case, diagnose the circularity,
-- removing it from the graph and continue.
-- Diagnose_Elaboration_Problem always raises an exception, so the
-- loop never goes around more than once.
Get_No_Pred : while No_Pred = No_Unit_Id loop
exit Outer when Num_Left < 1;
Diagnose_Elaboration_Problem (Elab_Order);
end loop Get_No_Pred;
U := No_Pred;
Best_So_Far := No_Unit_Id;
-- Loop to choose best entry in No_Pred list
No_Pred_Search : loop
if Debug_Flag_N then
Write_Str (" considering choice of ");
Write_Unit_Name (Units.Table (U).Uname);
Write_Eol;
if Units.Table (U).Elaborate_Body then
Write_Str
(" Elaborate_Body = True, Num_Pred for body = ");
Write_Int
(UNR.Table (Corresponding_Body (U)).Num_Pred);
else
Write_Str
(" Elaborate_Body = False");
end if;
Write_Eol;
end if;
-- This is a candididate to be considered for choice
if Better_Choice (U, Best_So_Far) then
if Debug_Flag_N then
Write_Line (" tentatively chosen (best so far)");
end if;
Best_So_Far := U;
end if;
U := UNR.Table (U).Nextnp;
exit No_Pred_Search when U = No_Unit_Id;
end loop No_Pred_Search;
-- Choose the best candidate found
Choose (Elab_Order, Best_So_Far, " [Elab_Old Best_So_Far]");
end loop Outer;
end Find_Elab_Order;
end Elab_Old;
end Binde;
|