1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- B I N D O . E L A B O R A T O R S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2019-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Butil; use Butil;
with Debug; use Debug;
with Output; use Output;
with Types; use Types;
with Bindo.Augmentors;
use Bindo.Augmentors;
use Bindo.Augmentors.Library_Graph_Augmentors;
with Bindo.Builders;
use Bindo.Builders;
use Bindo.Builders.Invocation_Graph_Builders;
use Bindo.Builders.Library_Graph_Builders;
with Bindo.Diagnostics;
use Bindo.Diagnostics;
with Bindo.Units;
use Bindo.Units;
with Bindo.Validators;
use Bindo.Validators;
use Bindo.Validators.Elaboration_Order_Validators;
with Bindo.Writers;
use Bindo.Writers;
use Bindo.Writers.ALI_Writers;
use Bindo.Writers.Dependency_Writers;
use Bindo.Writers.Elaboration_Order_Writers;
use Bindo.Writers.Invocation_Graph_Writers;
use Bindo.Writers.Library_Graph_Writers;
use Bindo.Writers.Phase_Writers;
use Bindo.Writers.Unit_Closure_Writers;
with GNAT; use GNAT;
with GNAT.Graphs; use GNAT.Graphs;
package body Bindo.Elaborators is
-- The following type defines the advancement of the elaboration order
-- algorithm in terms of steps.
type Elaboration_Order_Step is new Natural;
Initial_Step : constant Elaboration_Order_Step :=
Elaboration_Order_Step'First;
----------------------------------------------
-- Invocation_And_Library_Graph_Elaborators --
----------------------------------------------
package body Invocation_And_Library_Graph_Elaborators is
-----------------------
-- Local subprograms --
-----------------------
procedure Create_Component_Vertex_Sets
(G : Library_Graph;
Comp : Component_Id;
Elaborable_Vertices : out LGV_Sets.Membership_Set;
Waiting_Vertices : out LGV_Sets.Membership_Set;
Step : Elaboration_Order_Step);
pragma Inline (Create_Component_Vertex_Sets);
-- Split all vertices of component Comp of library graph G as follows:
--
-- * Elaborable vertices are added to set Elaborable_Vertices.
--
-- * Vertices that are still waiting on their predecessors to be
-- elaborated are added to set Waiting_Vertices.
--
-- Step is the current step in the elaboration order.
procedure Create_Vertex_Sets
(G : Library_Graph;
Elaborable_Vertices : out LGV_Sets.Membership_Set;
Waiting_Vertices : out LGV_Sets.Membership_Set;
Step : Elaboration_Order_Step);
pragma Inline (Create_Vertex_Sets);
-- Split all vertices of library graph G as follows:
--
-- * Elaborable vertices are added to set Elaborable_Vertices.
--
-- * Vertices that are still waiting on their predecessors to be
-- elaborated are added to set Waiting_Vertices.
--
-- Step is the current step in the elaboration order.
procedure Elaborate_Component
(G : Library_Graph;
Comp : Component_Id;
All_Elaborable_Vertices : LGV_Sets.Membership_Set;
All_Waiting_Vertices : LGV_Sets.Membership_Set;
Order : in out Unit_Id_Table;
Step : Elaboration_Order_Step);
pragma Inline (Elaborate_Component);
-- Elaborate as many vertices as possible that appear in component Comp
-- of library graph G. The sets contain vertices arranged as follows:
--
-- * All_Elaborable_Vertices - all elaborable vertices in the library
-- graph.
--
-- * All_Waiting_Vertices - all vertices in the library graph that are
-- waiting on predecessors to be elaborated.
--
-- Order is the elaboration order. Step denotes the current step in the
-- elaboration order.
procedure Elaborate_Library_Graph
(G : Library_Graph;
Order : out Unit_Id_Table;
Status : out Elaboration_Order_Status);
pragma Inline (Elaborate_Library_Graph);
-- Elaborate as many vertices as possible of library graph G. Order is
-- the elaboration order. Status is the condition of the elaboration
-- order.
procedure Elaborate_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
All_Elaborable_Vertices : LGV_Sets.Membership_Set;
All_Waiting_Vertices : LGV_Sets.Membership_Set;
Comp_Elaborable_Vertices : LGV_Sets.Membership_Set;
Comp_Waiting_Vertices : LGV_Sets.Membership_Set;
Order : in out Unit_Id_Table;
Step : Elaboration_Order_Step;
Indent : Indentation_Level);
pragma Inline (Elaborate_Vertex);
-- Elaborate vertex Vertex of library graph G by adding its unit to
-- elaboration order Order. The routine updates awaiting successors
-- where applicable. The sets contain vertices arranged as follows:
--
-- * All_Elaborable_Vertices - all elaborable vertices in the library
-- graph.
--
-- * All_Waiting_Vertices - all vertices in the library graph that are
-- waiting on predecessors to be elaborated.
--
-- * Comp_Elaborable_Vertices - all elaborable vertices found in the
-- component of Vertex.
--
-- * Comp_Waiting_Vertices - all vertices found in the component of
-- Vertex that are still waiting on predecessors to be elaborated.
--
-- Order denotes the elaboration order. Step is the current step in the
-- elaboration order. Indent denotes the desired indentation level for
-- tracing.
function Find_Best_Elaborable_Vertex
(G : Library_Graph;
Set : LGV_Sets.Membership_Set;
Step : Elaboration_Order_Step;
Indent : Indentation_Level) return Library_Graph_Vertex_Id;
pragma Inline (Find_Best_Elaborable_Vertex);
-- Find the best vertex of library graph G from membership set S that
-- can be elaborated. Step is the current step in the elaboration order.
-- Indent is the desired indentation level for tracing.
function Find_Best_Vertex
(G : Library_Graph;
Set : LGV_Sets.Membership_Set;
Is_Suitable_Vertex : LGV_Predicate_Ptr;
Compare_Vertices : LGV_Comparator_Ptr;
Initial_Best_Msg : String;
Subsequent_Best_Msg : String;
Step : Elaboration_Order_Step;
Indent : Indentation_Level)
return Library_Graph_Vertex_Id;
pragma Inline (Find_Best_Vertex);
-- Find the best vertex of library graph G from membership set S which
-- satisfies predicate Is_Suitable_Vertex and is preferred by comparator
-- Compare_Vertices. Initial_Best_Msg is emitted on the first candidate
-- vertex. Subsequent_Best_Msg is emitted whenever a better vertex is
-- discovered. Step is the current step in the elaboration order. Indent
-- is the desired indentation level for tracing.
function Find_Best_Weakly_Elaborable_Vertex
(G : Library_Graph;
Set : LGV_Sets.Membership_Set;
Step : Elaboration_Order_Step;
Indent : Indentation_Level) return Library_Graph_Vertex_Id;
pragma Inline (Find_Best_Weakly_Elaborable_Vertex);
-- Find the best vertex of library graph G from membership set S that
-- can be weakly elaborated. Step is the current step in the elaboration
-- order. Indent is the desired indentation level for tracing.
function Has_Elaborable_Body
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean;
pragma Inline (Has_Elaborable_Body);
-- Determine whether vertex Vertex of library graph G has a body that is
-- elaborable. It is assumed that the vertex has been elaborated.
procedure Insert_Elaborable_Successor
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Elaborable_Vertices : LGV_Sets.Membership_Set;
All_Waiting_Vertices : LGV_Sets.Membership_Set;
Comp_Waiting_Vertices : LGV_Sets.Membership_Set;
Msg : String;
Step : Elaboration_Order_Step;
Indent : Indentation_Level);
pragma Inline (Insert_Elaborable_Successor);
-- Add elaborable successor Vertex of library graph G to membership set
-- Elaborable_Vertices and remove it from both All_Waiting_Vertices and
-- Comp_Waiting_Vertices. Msg is a message emitted for tracing purposes.
-- Step is the current step in the elaboration order. Indent denotes the
-- desired indentation level for tracing.
procedure Insert_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Set : LGV_Sets.Membership_Set;
Msg : String;
Step : Elaboration_Order_Step;
Indent : Indentation_Level);
pragma Inline (Insert_Vertex);
-- Add vertex Vertex of library graph G to membership set Set. Msg is
-- a message emitted for tracing purposes. Step is the current step in
-- the elaboration order. Indent is the desired indentation level for
-- tracing.
function Is_Better_Elaborable_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Compared_To : Library_Graph_Vertex_Id) return Precedence_Kind;
pragma Inline (Is_Better_Elaborable_Vertex);
-- Determine whether vertex Vertex of library graph G is a better choice
-- for elaboration compared to vertex Compared_To.
function Is_Better_Weakly_Elaborable_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Compared_To : Library_Graph_Vertex_Id) return Precedence_Kind;
pragma Inline (Is_Better_Weakly_Elaborable_Vertex);
-- Determine whether vertex Vertex of library graph G is a better choice
-- for weak elaboration compared to vertex Compared_To.
function Is_Suitable_Elaborable_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean;
pragma Inline (Is_Suitable_Elaborable_Vertex);
-- Determine whether vertex Vertex of library graph G is suitable for
-- elaboration.
function Is_Suitable_Weakly_Elaborable_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean;
pragma Inline (Is_Suitable_Weakly_Elaborable_Vertex);
-- Determine whether vertex Vertex of library graph G is suitable for
-- weak elaboration.
procedure Set_Unit_Elaboration_Positions (Order : Unit_Id_Table);
pragma Inline (Set_Unit_Elaboration_Positions);
-- Set the ALI.Units positions of all elaboration units in order Order
procedure Trace_Component
(G : Library_Graph;
Comp : Component_Id;
Msg : String;
Step : Elaboration_Order_Step);
pragma Inline (Trace_Component);
-- Write elaboration-related information for component Comp of library
-- graph G to standard output, starting with message Msg. Step is the
-- current step in the elaboration order.
procedure Trace_Step (Step : Elaboration_Order_Step);
pragma Inline (Trace_Step);
-- Write current step Step of the elaboration order to standard output
procedure Trace_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Msg : String;
Step : Elaboration_Order_Step;
Indent : Indentation_Level);
pragma Inline (Trace_Vertex);
-- Write elaboration-related information for vertex Vertex of library
-- graph G to standard output, starting with message Msg. Step is the
-- current step in the elaboration order. Indent denotes the desired
-- indentation level for tracing.
procedure Trace_Vertices
(G : Library_Graph;
Set : LGV_Sets.Membership_Set;
Set_Msg : String;
Vertex_Msg : String;
Step : Elaboration_Order_Step;
Indent : Indentation_Level);
pragma Inline (Trace_Vertices);
-- Write the candidate vertices of library graph G present in membership
-- set Set to standard output, starting with message Set_Msg. Vertex_Msg
-- is the message emitted prior to each vertex. Step denotes the current
-- step in the elaboration order. Indent denotes the desired indentation
-- level for tracing.
procedure Update_Successor
(G : Library_Graph;
Edge : Library_Graph_Edge_Id;
All_Elaborable_Vertices : LGV_Sets.Membership_Set;
All_Waiting_Vertices : LGV_Sets.Membership_Set;
Comp_Elaborable_Vertices : LGV_Sets.Membership_Set;
Comp_Waiting_Vertices : LGV_Sets.Membership_Set;
Step : Elaboration_Order_Step;
Indent : Indentation_Level);
pragma Inline (Update_Successor);
-- Notify the successor of edge Edge of library graph G along with its
-- component that their predecessor has just been elaborated. This may
-- cause new vertices to become elaborable. The sets contain vertices
-- arranged as follows:
--
-- * All_Elaborable_Vertices - all elaborable vertices in the library
-- graph.
--
-- * All_Waiting_Vertices - all vertices in the library graph that are
-- waiting on predecessors to be elaborated.
--
-- * Comp_Elaborable_Vertices - all elaborable vertices found in the
-- component of Vertex.
--
-- * Comp_Waiting_Vertices - all vertices found in the component of
-- Vertex that are still waiting on predecessors to be elaborated.
--
-- Step is the current step in the elaboration order. Indent denotes the
-- desired indentation level for tracing.
procedure Update_Successors
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
All_Elaborable_Vertices : LGV_Sets.Membership_Set;
All_Waiting_Vertices : LGV_Sets.Membership_Set;
Comp_Elaborable_Vertices : LGV_Sets.Membership_Set;
Comp_Waiting_Vertices : LGV_Sets.Membership_Set;
Step : Elaboration_Order_Step;
Indent : Indentation_Level);
pragma Inline (Update_Successors);
-- Notify all successors of vertex Vertex of library graph G along with
-- their components that their predecessor has just been elaborated.
-- This may cause new vertices to become elaborable. The sets contain
-- vertices arranged as follows:
--
-- * All_Elaborable_Vertices - all elaborable vertices in the library
-- graph.
--
-- * All_Waiting_Vertices - all vertices in the library graph that are
-- waiting on predecessors to be elaborated.
--
-- * Comp_Elaborable_Vertices - all elaborable vertices found in the
-- component of Vertex.
--
-- * Comp_Waiting_Vertices - all vertices found in the component of
-- Vertex that are still waiting on predecessors to be elaborated.
--
-- Step is the current step in the elaboration order. Indent denotes the
-- desired indentation level for tracing.
----------------------------------
-- Create_Component_Vertex_Sets --
----------------------------------
procedure Create_Component_Vertex_Sets
(G : Library_Graph;
Comp : Component_Id;
Elaborable_Vertices : out LGV_Sets.Membership_Set;
Waiting_Vertices : out LGV_Sets.Membership_Set;
Step : Elaboration_Order_Step)
is
pragma Assert (Present (G));
pragma Assert (Present (Comp));
Num_Of_Vertices : constant Natural :=
Number_Of_Component_Vertices (G, Comp);
Iter : Component_Vertex_Iterator;
Vertex : Library_Graph_Vertex_Id;
begin
Elaborable_Vertices := LGV_Sets.Create (Num_Of_Vertices);
Waiting_Vertices := LGV_Sets.Create (Num_Of_Vertices);
Iter := Iterate_Component_Vertices (G, Comp);
while Has_Next (Iter) loop
Next (Iter, Vertex);
-- Add the vertex to the proper set depending on whether it can be
-- elaborated.
if Is_Elaborable_Vertex (G, Vertex) then
Insert_Vertex
(G => G,
Vertex => Vertex,
Set => Elaborable_Vertices,
Msg => "add elaborable component vertex",
Step => Step,
Indent => No_Indentation);
else
Insert_Vertex
(G => G,
Vertex => Vertex,
Set => Waiting_Vertices,
Msg => "add waiting component vertex",
Step => Step,
Indent => No_Indentation);
end if;
end loop;
end Create_Component_Vertex_Sets;
------------------------
-- Create_Vertex_Sets --
------------------------
procedure Create_Vertex_Sets
(G : Library_Graph;
Elaborable_Vertices : out LGV_Sets.Membership_Set;
Waiting_Vertices : out LGV_Sets.Membership_Set;
Step : Elaboration_Order_Step)
is
pragma Assert (Present (G));
Num_Of_Vertices : constant Natural := Number_Of_Vertices (G);
Iter : Library_Graphs.All_Vertex_Iterator;
Vertex : Library_Graph_Vertex_Id;
begin
Elaborable_Vertices := LGV_Sets.Create (Num_Of_Vertices);
Waiting_Vertices := LGV_Sets.Create (Num_Of_Vertices);
Iter := Iterate_All_Vertices (G);
while Has_Next (Iter) loop
Next (Iter, Vertex);
-- Add the vertex to the proper set depending on whether it can be
-- elaborated.
if Is_Elaborable_Vertex (G, Vertex) then
Insert_Vertex
(G => G,
Vertex => Vertex,
Set => Elaborable_Vertices,
Msg => "add elaborable vertex",
Step => Step,
Indent => No_Indentation);
else
Insert_Vertex
(G => G,
Vertex => Vertex,
Set => Waiting_Vertices,
Msg => "add waiting vertex",
Step => Step,
Indent => No_Indentation);
end if;
end loop;
end Create_Vertex_Sets;
-------------------------
-- Elaborate_Component --
-------------------------
procedure Elaborate_Component
(G : Library_Graph;
Comp : Component_Id;
All_Elaborable_Vertices : LGV_Sets.Membership_Set;
All_Waiting_Vertices : LGV_Sets.Membership_Set;
Order : in out Unit_Id_Table;
Step : Elaboration_Order_Step)
is
Comp_Elaborable_Vertices : LGV_Sets.Membership_Set;
Comp_Waiting_Vertices : LGV_Sets.Membership_Set;
Vertex : Library_Graph_Vertex_Id;
begin
pragma Assert (Present (G));
pragma Assert (Present (Comp));
pragma Assert (LGV_Sets.Present (All_Elaborable_Vertices));
pragma Assert (LGV_Sets.Present (All_Waiting_Vertices));
Trace_Component
(G => G,
Comp => Comp,
Msg => "elaborating component",
Step => Step);
-- Divide all vertices of the component into an elaborable and
-- waiting vertex set.
Create_Component_Vertex_Sets
(G => G,
Comp => Comp,
Elaborable_Vertices => Comp_Elaborable_Vertices,
Waiting_Vertices => Comp_Waiting_Vertices,
Step => Step);
loop
Trace_Vertices
(G => G,
Set => Comp_Elaborable_Vertices,
Set_Msg => "elaborable component vertices",
Vertex_Msg => "elaborable component vertex",
Step => Step,
Indent => Nested_Indentation);
Trace_Vertices
(G => G,
Set => Comp_Waiting_Vertices,
Set_Msg => "waiting component vertices",
Vertex_Msg => "waiting component vertex",
Step => Step,
Indent => Nested_Indentation);
Vertex :=
Find_Best_Elaborable_Vertex
(G => G,
Set => Comp_Elaborable_Vertices,
Step => Step,
Indent => Nested_Indentation);
-- The component lacks an elaborable vertex. This indicates that
-- either all vertices of the component have been elaborated or
-- the graph has a circularity. Locate the best weak vertex that
-- was compiled with the dynamic model to elaborate from the set
-- waiting vertices. This action assumes that certain invocations
-- will not take place at elaboration time. An order produced in
-- this fashion may fail an ABE check at run time.
if not Present (Vertex) then
Vertex :=
Find_Best_Weakly_Elaborable_Vertex
(G => G,
Set => Comp_Waiting_Vertices,
Step => Step,
Indent => Nested_Indentation);
end if;
-- Stop the elaboration when either all vertices of the component
-- have been elaborated, or the graph contains a circularity.
exit when not Present (Vertex);
-- Try to elaborate as many vertices within the component as
-- possible. Each successful elaboration signals the appropriate
-- successors and components that they have one less predecessor
-- to wait on.
Elaborate_Vertex
(G => G,
Vertex => Vertex,
All_Elaborable_Vertices => All_Elaborable_Vertices,
All_Waiting_Vertices => All_Waiting_Vertices,
Comp_Elaborable_Vertices => Comp_Elaborable_Vertices,
Comp_Waiting_Vertices => Comp_Waiting_Vertices,
Order => Order,
Step => Step,
Indent => Nested_Indentation);
end loop;
LGV_Sets.Destroy (Comp_Elaborable_Vertices);
LGV_Sets.Destroy (Comp_Waiting_Vertices);
end Elaborate_Component;
-----------------------------
-- Elaborate_Library_Graph --
-----------------------------
procedure Elaborate_Library_Graph
(G : Library_Graph;
Order : out Unit_Id_Table;
Status : out Elaboration_Order_Status)
is
Elaborable_Vertices : LGV_Sets.Membership_Set;
Step : Elaboration_Order_Step;
Vertex : Library_Graph_Vertex_Id;
Waiting_Vertices : LGV_Sets.Membership_Set;
begin
pragma Assert (Present (G));
Step := Initial_Step;
-- Divide all vertices of the library graph into an elaborable and
-- waiting vertex set.
Create_Vertex_Sets
(G => G,
Elaborable_Vertices => Elaborable_Vertices,
Waiting_Vertices => Waiting_Vertices,
Step => Step);
loop
Step := Step + 1;
Trace_Vertices
(G => G,
Set => Elaborable_Vertices,
Set_Msg => "elaborable vertices",
Vertex_Msg => "elaborable vertex",
Step => Step,
Indent => No_Indentation);
Trace_Vertices
(G => G,
Set => Waiting_Vertices,
Set_Msg => "waiting vertices",
Vertex_Msg => "waiting vertex",
Step => Step,
Indent => No_Indentation);
Vertex :=
Find_Best_Elaborable_Vertex
(G => G,
Set => Elaborable_Vertices,
Step => Step,
Indent => No_Indentation);
-- The graph lacks an elaborable vertex. This indicates that
-- either all vertices have been elaborated or the graph has a
-- circularity. Find the best weak vertex that was compiled with
-- the dynamic model to elaborate from set of waiting vertices.
-- This action assumes that certain invocations will not take
-- place at elaboration time. An order produced in this fashion
-- may fail an ABE check at run time.
if not Present (Vertex) then
Vertex :=
Find_Best_Weakly_Elaborable_Vertex
(G => G,
Set => Waiting_Vertices,
Step => Step,
Indent => No_Indentation);
end if;
-- Stop the elaboration when either all vertices of the graph have
-- been elaborated, or the graph contains a circularity.
exit when not Present (Vertex);
-- Elaborate the component of the vertex by trying to elaborate as
-- many vertices within the component as possible. Each successful
-- elaboration signals the appropriate successors and components
-- that they have one less predecessor to wait on.
Elaborate_Component
(G => G,
Comp => Component (G, Vertex),
All_Elaborable_Vertices => Elaborable_Vertices,
All_Waiting_Vertices => Waiting_Vertices,
Order => Order,
Step => Step);
end loop;
-- The graph contains an Elaborate_All circularity when at least one
-- edge subject to the related pragma appears in a component.
if Has_Elaborate_All_Cycle (G) then
Status := Order_Has_Elaborate_All_Circularity;
-- The graph contains a circularity when at least one vertex failed
-- to elaborate.
elsif LGV_Sets.Size (Waiting_Vertices) /= 0 then
Status := Order_Has_Circularity;
-- Otherwise the elaboration order is satisfactory
else
Status := Order_OK;
end if;
LGV_Sets.Destroy (Elaborable_Vertices);
LGV_Sets.Destroy (Waiting_Vertices);
end Elaborate_Library_Graph;
---------------------
-- Elaborate_Units --
---------------------
procedure Elaborate_Units
(Order : out Unit_Id_Table;
Main_Lib_File : File_Name_Type)
is
pragma Unreferenced (Main_Lib_File);
Inv_Graph : Invocation_Graph;
Lib_Graph : Library_Graph;
Status : Elaboration_Order_Status;
begin
Start_Phase (Unit_Elaboration);
-- Initialize all unit-related data structures and gather all units
-- that need elaboration.
Initialize_Units;
Collect_Elaborable_Units;
-- Create the library graph that captures the dependencies between
-- library items.
Lib_Graph := Build_Library_Graph;
-- Create the invocation graph that represents the flow of execution
Inv_Graph := Build_Invocation_Graph (Lib_Graph);
-- Traverse the invocation graph starting from elaboration code in
-- order to discover transitions of the execution flow from a unit
-- to a unit that result in extra edges within the library graph.
Augment_Library_Graph (Inv_Graph);
-- Create the component graph by collapsing all library items into
-- library units and traversing the library graph.
Find_Components (Lib_Graph);
-- Output the contents of the ALI tables and both graphs to standard
-- output now that they have been fully decorated.
Write_ALI_Tables;
Write_Invocation_Graph (Inv_Graph);
Write_Library_Graph (Lib_Graph);
-- Traverse the library graph to determine the elaboration order of
-- units.
Elaborate_Library_Graph (Lib_Graph, Order, Status);
-- The elaboration order is satisfactory
if Status = Order_OK then
Validate_Elaboration_Order (Order);
-- Set attribute Elab_Position of table ALI.Units for all units in
-- the elaboration order.
Set_Unit_Elaboration_Positions (Order);
-- Output the dependencies among units when switch -e (output
-- complete list of elaboration order dependencies) is active.
Write_Dependencies (Lib_Graph);
-- Output the elaboration order when switch -l (output chosen
-- elaboration order) is in effect.
Write_Elaboration_Order (Order);
-- Output the sources referenced in the closure of the order when
-- switch -R (list sources referenced in closure) is in effect.
Write_Unit_Closure (Order);
-- Otherwise the library graph contains at least one circularity
else
Diagnose_Circularities (Inv_Graph);
end if;
Destroy (Inv_Graph);
Destroy (Lib_Graph);
-- Destroy all unit-related data structures
Finalize_Units;
End_Phase (Unit_Elaboration);
-- Halt the bind when there is no satisfactory elaboration order
if Status /= Order_OK then
raise Unrecoverable_Error;
end if;
end Elaborate_Units;
----------------------
-- Elaborate_Vertex --
----------------------
procedure Elaborate_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
All_Elaborable_Vertices : LGV_Sets.Membership_Set;
All_Waiting_Vertices : LGV_Sets.Membership_Set;
Comp_Elaborable_Vertices : LGV_Sets.Membership_Set;
Comp_Waiting_Vertices : LGV_Sets.Membership_Set;
Order : in out Unit_Id_Table;
Step : Elaboration_Order_Step;
Indent : Indentation_Level)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
pragma Assert (Needs_Elaboration (G, Vertex));
pragma Assert (LGV_Sets.Present (All_Elaborable_Vertices));
pragma Assert (LGV_Sets.Present (All_Waiting_Vertices));
pragma Assert (LGV_Sets.Present (Comp_Elaborable_Vertices));
pragma Assert (LGV_Sets.Present (Comp_Waiting_Vertices));
Trace_Vertex
(G => G,
Vertex => Vertex,
Msg => "elaborating vertex",
Step => Step,
Indent => Indent);
-- Remove the vertex from both elaborable sets. This is needed when
-- the vertex is both an overall best candidate among all vertices,
-- and the best candidate within the component.
LGV_Sets.Delete (All_Elaborable_Vertices, Vertex);
LGV_Sets.Delete (Comp_Elaborable_Vertices, Vertex);
-- Remove the vertex from both waiting sets. This is needed when a
-- weakly elaborable vertex is both an overall best candidate among
-- all waiting vertices and the best waiting candidate within the
-- component.
LGV_Sets.Delete (All_Waiting_Vertices, Vertex);
LGV_Sets.Delete (Comp_Waiting_Vertices, Vertex);
-- Mark the vertex as elaborated in order to prevent further attempts
-- to re-elaborate it.
Set_In_Elaboration_Order (G, Vertex);
-- Add the unit represented by the vertex to the elaboration order
Unit_Id_Tables.Append (Order, Unit (G, Vertex));
-- Notify all successors and their components that they have one
-- fewer predecessor to wait on. This may cause some successors to
-- be included in one of the sets.
Update_Successors
(G => G,
Vertex => Vertex,
All_Elaborable_Vertices => All_Elaborable_Vertices,
All_Waiting_Vertices => All_Waiting_Vertices,
Comp_Elaborable_Vertices => Comp_Elaborable_Vertices,
Comp_Waiting_Vertices => Comp_Waiting_Vertices,
Step => Step,
Indent => Indent + Nested_Indentation);
-- Elaborate an eligible completing body immediately after its spec.
-- This action satisfies the semantics of pragma Elaborate_Body. In
-- addition, it ensures that a body will not "drift" too far from its
-- spec in case invocation edges are removed from the library graph.
if Has_Elaborable_Body (G, Vertex) then
Elaborate_Vertex
(G => G,
Vertex => Proper_Body (G, Vertex),
All_Elaborable_Vertices => All_Elaborable_Vertices,
All_Waiting_Vertices => All_Waiting_Vertices,
Comp_Elaborable_Vertices => Comp_Elaborable_Vertices,
Comp_Waiting_Vertices => Comp_Waiting_Vertices,
Order => Order,
Step => Step,
Indent => Indent);
end if;
end Elaborate_Vertex;
---------------------------------
-- Find_Best_Elaborable_Vertex --
---------------------------------
function Find_Best_Elaborable_Vertex
(G : Library_Graph;
Set : LGV_Sets.Membership_Set;
Step : Elaboration_Order_Step;
Indent : Indentation_Level) return Library_Graph_Vertex_Id
is
begin
pragma Assert (Present (G));
pragma Assert (LGV_Sets.Present (Set));
return
Find_Best_Vertex
(G => G,
Set => Set,
Is_Suitable_Vertex =>
Is_Suitable_Elaborable_Vertex'Access,
Compare_Vertices =>
Is_Better_Elaborable_Vertex'Access,
Initial_Best_Msg => "initial best elaborable vertex",
Subsequent_Best_Msg => "better elaborable vertex",
Step => Step,
Indent => Indent);
end Find_Best_Elaborable_Vertex;
----------------------
-- Find_Best_Vertex --
----------------------
function Find_Best_Vertex
(G : Library_Graph;
Set : LGV_Sets.Membership_Set;
Is_Suitable_Vertex : LGV_Predicate_Ptr;
Compare_Vertices : LGV_Comparator_Ptr;
Initial_Best_Msg : String;
Subsequent_Best_Msg : String;
Step : Elaboration_Order_Step;
Indent : Indentation_Level)
return Library_Graph_Vertex_Id
is
Best_Vertex : Library_Graph_Vertex_Id;
Current_Vertex : Library_Graph_Vertex_Id;
Iter : LGV_Sets.Iterator;
begin
pragma Assert (Present (G));
pragma Assert (LGV_Sets.Present (Set));
pragma Assert (Is_Suitable_Vertex /= null);
pragma Assert (Compare_Vertices /= null);
-- Assume that there is no candidate
Best_Vertex := No_Library_Graph_Vertex;
-- Inspect all vertices in the set, looking for the best candidate
-- according to the comparator.
Iter := LGV_Sets.Iterate (Set);
while LGV_Sets.Has_Next (Iter) loop
LGV_Sets.Next (Iter, Current_Vertex);
pragma Assert (Needs_Elaboration (G, Current_Vertex));
if Is_Suitable_Vertex.all (G, Current_Vertex) then
-- A previous iteration already picked the best candidate.
-- Update the best candidate when the current vertex is a
-- better choice.
if Present (Best_Vertex) then
if Compare_Vertices.all
(G => G,
Vertex => Current_Vertex,
Compared_To => Best_Vertex) = Higher_Precedence
then
Best_Vertex := Current_Vertex;
Trace_Vertex
(G => G,
Vertex => Best_Vertex,
Msg => Subsequent_Best_Msg,
Step => Step,
Indent => Indent);
end if;
-- Otherwise this is the first candidate
else
Best_Vertex := Current_Vertex;
Trace_Vertex
(G => G,
Vertex => Best_Vertex,
Msg => Initial_Best_Msg,
Step => Step,
Indent => Indent);
end if;
end if;
end loop;
return Best_Vertex;
end Find_Best_Vertex;
----------------------------------------
-- Find_Best_Weakly_Elaborable_Vertex --
----------------------------------------
function Find_Best_Weakly_Elaborable_Vertex
(G : Library_Graph;
Set : LGV_Sets.Membership_Set;
Step : Elaboration_Order_Step;
Indent : Indentation_Level) return Library_Graph_Vertex_Id
is
begin
pragma Assert (Present (G));
pragma Assert (LGV_Sets.Present (Set));
return
Find_Best_Vertex
(G => G,
Set => Set,
Is_Suitable_Vertex =>
Is_Suitable_Weakly_Elaborable_Vertex'Access,
Compare_Vertices =>
Is_Better_Weakly_Elaborable_Vertex'Access,
Initial_Best_Msg => "initial best weakly elaborable vertex",
Subsequent_Best_Msg => "better weakly elaborable vertex",
Step => Step,
Indent => Indent);
end Find_Best_Weakly_Elaborable_Vertex;
-------------------------
-- Has_Elaborable_Body --
-------------------------
function Has_Elaborable_Body
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
-- The body of an already-elaborated spec subject to Elaborate_Body
-- is always elaborable.
if Is_Spec_With_Elaborate_Body (G, Vertex) then
return True;
elsif Is_Spec_With_Body (G, Vertex) then
return Is_Elaborable_Vertex (G, Proper_Body (G, Vertex));
end if;
return False;
end Has_Elaborable_Body;
---------------------------------
-- Insert_Elaborable_Successor --
---------------------------------
procedure Insert_Elaborable_Successor
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Elaborable_Vertices : LGV_Sets.Membership_Set;
All_Waiting_Vertices : LGV_Sets.Membership_Set;
Comp_Waiting_Vertices : LGV_Sets.Membership_Set;
Msg : String;
Step : Elaboration_Order_Step;
Indent : Indentation_Level)
is
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
pragma Assert (LGV_Sets.Present (Elaborable_Vertices));
pragma Assert (LGV_Sets.Present (All_Waiting_Vertices));
pragma Assert (LGV_Sets.Present (Comp_Waiting_Vertices));
Complement : constant Library_Graph_Vertex_Id :=
Complementary_Vertex
(G => G,
Vertex => Vertex,
Force_Complement => False);
begin
-- Remove the successor from both waiting vertex sets because it may
-- be the best vertex to elaborate across the whole graph and within
-- its component.
LGV_Sets.Delete (All_Waiting_Vertices, Vertex);
LGV_Sets.Delete (Comp_Waiting_Vertices, Vertex);
Insert_Vertex
(G => G,
Vertex => Vertex,
Set => Elaborable_Vertices,
Msg => Msg,
Step => Step,
Indent => Indent);
if Present (Complement) then
-- Remove the complement of the successor from both waiting vertex
-- sets because it may be the best vertex to elaborate across the
-- whole graph and within its component.
LGV_Sets.Delete (All_Waiting_Vertices, Complement);
LGV_Sets.Delete (Comp_Waiting_Vertices, Complement);
Insert_Vertex
(G => G,
Vertex => Complement,
Set => Elaborable_Vertices,
Msg => Msg,
Step => Step,
Indent => Indent);
end if;
end Insert_Elaborable_Successor;
-------------------
-- Insert_Vertex --
-------------------
procedure Insert_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Set : LGV_Sets.Membership_Set;
Msg : String;
Step : Elaboration_Order_Step;
Indent : Indentation_Level)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
pragma Assert (Needs_Elaboration (G, Vertex));
pragma Assert (LGV_Sets.Present (Set));
-- Nothing to do when the vertex is already present in the set
if LGV_Sets.Contains (Set, Vertex) then
return;
end if;
Trace_Vertex
(G => G,
Vertex => Vertex,
Msg => Msg,
Step => Step,
Indent => Indent);
-- Add the vertex to the set
LGV_Sets.Insert (Set, Vertex);
end Insert_Vertex;
---------------------------------
-- Is_Better_Elaborable_Vertex --
---------------------------------
function Is_Better_Elaborable_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Compared_To : Library_Graph_Vertex_Id) return Precedence_Kind
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
pragma Assert (Present (Compared_To));
-- Prefer a spec with Elaborate_Body over its corresponding body
if Is_Elaborate_Body_Pair
(G => G,
Spec_Vertex => Vertex,
Body_Vertex => Compared_To)
then
return Higher_Precedence;
elsif Is_Elaborate_Body_Pair
(G => G,
Spec_Vertex => Compared_To,
Body_Vertex => Vertex)
then
return Lower_Precedence;
-- Prefer a predefined unit over a non-predefined unit
elsif Is_Predefined_Unit (G, Vertex)
and then not Is_Predefined_Unit (G, Compared_To)
then
return Higher_Precedence;
elsif not Is_Predefined_Unit (G, Vertex)
and then Is_Predefined_Unit (G, Compared_To)
then
return Lower_Precedence;
-- Prefer an internal unit over a non-internal unit
elsif Is_Internal_Unit (G, Vertex)
and then not Is_Internal_Unit (G, Compared_To)
then
return Higher_Precedence;
elsif not Is_Internal_Unit (G, Vertex)
and then Is_Internal_Unit (G, Compared_To)
then
return Lower_Precedence;
-- Prefer a preelaborated unit over a non-preelaborated unit
elsif Is_Preelaborated_Unit (G, Vertex)
and then not Is_Preelaborated_Unit (G, Compared_To)
then
return Higher_Precedence;
elsif not Is_Preelaborated_Unit (G, Vertex)
and then Is_Preelaborated_Unit (G, Compared_To)
then
return Lower_Precedence;
-- Otherwise default to lexicographical order to ensure deterministic
-- behavior.
elsif Uname_Less (Name (G, Vertex), Name (G, Compared_To)) then
return Higher_Precedence;
else
return Lower_Precedence;
end if;
end Is_Better_Elaborable_Vertex;
----------------------------------------
-- Is_Better_Weakly_Elaborable_Vertex --
----------------------------------------
function Is_Better_Weakly_Elaborable_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Compared_To : Library_Graph_Vertex_Id) return Precedence_Kind
is
Comp_Strong_Preds : Natural;
Comp_Weak_Preds : Natural;
Vertex_Strong_Preds : Natural;
Vertex_Weak_Preds : Natural;
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
pragma Assert (Present (Compared_To));
-- Obtain the number of pending predecessors for both candidates,
-- taking into account Elaborate_Body pairs.
Pending_Predecessors_For_Elaboration
(G => G,
Vertex => Vertex,
Strong_Preds => Vertex_Strong_Preds,
Weak_Preds => Vertex_Weak_Preds);
Pending_Predecessors_For_Elaboration
(G => G,
Vertex => Compared_To,
Strong_Preds => Comp_Strong_Preds,
Weak_Preds => Comp_Weak_Preds);
-- Neither candidate should be waiting on strong predecessors,
-- otherwise the candidate cannot be weakly elaborated.
pragma Assert (Vertex_Strong_Preds = 0);
pragma Assert (Comp_Strong_Preds = 0);
-- Prefer a unit with fewer weak predecessors over a unit with more
-- weak predecessors.
if Vertex_Weak_Preds < Comp_Weak_Preds then
return Higher_Precedence;
elsif Vertex_Weak_Preds > Comp_Weak_Preds then
return Lower_Precedence;
-- Otherwise default to lexicographical order to ensure deterministic
-- behavior.
elsif Uname_Less (Name (G, Vertex), Name (G, Compared_To)) then
return Higher_Precedence;
else
return Lower_Precedence;
end if;
end Is_Better_Weakly_Elaborable_Vertex;
-----------------------------------
-- Is_Suitable_Elaborable_Vertex --
-----------------------------------
function Is_Suitable_Elaborable_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
-- A vertex is suitable for elaboration as long it is not waiting on
-- any predecessors, ignoring the static or dynamic model.
return Is_Elaborable_Vertex (G, Vertex);
end Is_Suitable_Elaborable_Vertex;
------------------------------------------
-- Is_Suitable_Weakly_Elaborable_Vertex --
------------------------------------------
function Is_Suitable_Weakly_Elaborable_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id) return Boolean
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
-- A vertex is suitable for weak elaboration when it is waiting on
-- weak predecessors only, and the unit it represents was compiled
-- using the dynamic model.
return
Is_Dynamically_Elaborated (G, Vertex)
and then Is_Weakly_Elaborable_Vertex (G, Vertex);
end Is_Suitable_Weakly_Elaborable_Vertex;
------------------------------------
-- Set_Unit_Elaboration_Positions --
------------------------------------
procedure Set_Unit_Elaboration_Positions (Order : Unit_Id_Table) is
U_Id : Unit_Id;
begin
for Position in Unit_Id_Tables.First ..
Unit_Id_Tables.Last (Order)
loop
U_Id := Order.Table (Position);
ALI.Units.Table (U_Id).Elab_Position := Position;
end loop;
end Set_Unit_Elaboration_Positions;
---------------------
-- Trace_Component --
---------------------
procedure Trace_Component
(G : Library_Graph;
Comp : Component_Id;
Msg : String;
Step : Elaboration_Order_Step)
is
begin
pragma Assert (Present (G));
pragma Assert (Present (Comp));
-- Nothing to do when switch -d_T (output elaboration order and cycle
-- detection trace information) is not in effect.
if not Debug_Flag_Underscore_TT then
return;
end if;
Trace_Step (Step);
Write_Str (Msg);
Write_Str (" (Comp_Id_");
Write_Int (Int (Comp));
Write_Str (")");
Write_Eol;
Trace_Step (Step);
Indent_By (Nested_Indentation);
Write_Str ("pending strong predecessors: ");
Write_Num (Int (Pending_Strong_Predecessors (G, Comp)));
Write_Eol;
Trace_Step (Step);
Indent_By (Nested_Indentation);
Write_Str ("pending weak predecessors : ");
Write_Num (Int (Pending_Weak_Predecessors (G, Comp)));
Write_Eol;
end Trace_Component;
----------------
-- Trace_Step --
----------------
procedure Trace_Step (Step : Elaboration_Order_Step) is
begin
-- Nothing to do when switch -d_T (output elaboration order and cycle
-- detection trace information) is not in effect.
if not Debug_Flag_Underscore_TT then
return;
end if;
Write_Num
(Val => Int (Step),
Val_Indent => Step_Column);
Write_Str (": ");
end Trace_Step;
------------------
-- Trace_Vertex --
------------------
procedure Trace_Vertex
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
Msg : String;
Step : Elaboration_Order_Step;
Indent : Indentation_Level)
is
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
Attr_Indent : constant Indentation_Level :=
Indent + Nested_Indentation;
Comp : constant Component_Id := Component (G, Vertex);
begin
-- Nothing to do when switch -d_T (output elaboration order and cycle
-- detection trace information) is not in effect.
if not Debug_Flag_Underscore_TT then
return;
end if;
Trace_Step (Step);
Indent_By (Indent);
Write_Str (Msg);
Write_Str (" (LGV_Id_");
Write_Int (Int (Vertex));
Write_Str (")");
Write_Eol;
Trace_Step (Step);
Indent_By (Attr_Indent);
Write_Str ("name = ");
Write_Name (Name (G, Vertex));
Write_Eol;
Trace_Step (Step);
Indent_By (Attr_Indent);
Write_Str ("Component (Comp_Id_");
Write_Int (Int (Comp));
Write_Str (")");
Write_Eol;
Trace_Step (Step);
Indent_By (Attr_Indent);
Write_Str ("pending strong predecessors: ");
Write_Num (Int (Pending_Strong_Predecessors (G, Vertex)));
Write_Eol;
Trace_Step (Step);
Indent_By (Attr_Indent);
Write_Str ("pending weak predecessors : ");
Write_Num (Int (Pending_Weak_Predecessors (G, Vertex)));
Write_Eol;
Trace_Step (Step);
Indent_By (Attr_Indent);
Write_Str ("pending strong components : ");
Write_Num (Int (Pending_Strong_Predecessors (G, Comp)));
Write_Eol;
Trace_Step (Step);
Indent_By (Attr_Indent);
Write_Str ("pending weak components : ");
Write_Num (Int (Pending_Weak_Predecessors (G, Comp)));
Write_Eol;
end Trace_Vertex;
--------------------
-- Trace_Vertices --
--------------------
procedure Trace_Vertices
(G : Library_Graph;
Set : LGV_Sets.Membership_Set;
Set_Msg : String;
Vertex_Msg : String;
Step : Elaboration_Order_Step;
Indent : Indentation_Level)
is
Vertex_Indent : constant Indentation_Level :=
Indent + Nested_Indentation;
Iter : LGV_Sets.Iterator;
Vertex : Library_Graph_Vertex_Id;
begin
pragma Assert (Present (G));
pragma Assert (LGV_Sets.Present (Set));
-- Nothing to do when switch -d_T (output elaboration order and cycle
-- detection trace information) is not in effect.
if not Debug_Flag_Underscore_TT then
return;
end if;
Trace_Step (Step);
Indent_By (Indent);
Write_Str (Set_Msg);
Write_Str (": ");
Write_Int (Int (LGV_Sets.Size (Set)));
Write_Eol;
Iter := LGV_Sets.Iterate (Set);
while LGV_Sets.Has_Next (Iter) loop
LGV_Sets.Next (Iter, Vertex);
Trace_Vertex
(G => G,
Vertex => Vertex,
Msg => Vertex_Msg,
Step => Step,
Indent => Vertex_Indent);
end loop;
end Trace_Vertices;
----------------------
-- Update_Successor --
----------------------
procedure Update_Successor
(G : Library_Graph;
Edge : Library_Graph_Edge_Id;
All_Elaborable_Vertices : LGV_Sets.Membership_Set;
All_Waiting_Vertices : LGV_Sets.Membership_Set;
Comp_Elaborable_Vertices : LGV_Sets.Membership_Set;
Comp_Waiting_Vertices : LGV_Sets.Membership_Set;
Step : Elaboration_Order_Step;
Indent : Indentation_Level)
is
pragma Assert (Present (G));
pragma Assert (Present (Edge));
pragma Assert (LGV_Sets.Present (All_Elaborable_Vertices));
pragma Assert (LGV_Sets.Present (All_Waiting_Vertices));
pragma Assert (LGV_Sets.Present (Comp_Elaborable_Vertices));
pragma Assert (LGV_Sets.Present (Comp_Waiting_Vertices));
Pred : constant Library_Graph_Vertex_Id := Predecessor (G, Edge);
Succ : constant Library_Graph_Vertex_Id := Successor (G, Edge);
pragma Assert (Needs_Elaboration (G, Pred));
pragma Assert (Needs_Elaboration (G, Succ));
In_Different_Components : constant Boolean :=
not In_Same_Component
(G => G,
Left => Pred,
Right => Succ);
Succ_Comp : constant Component_Id := Component (G, Succ);
Vertex_Indent : constant Indentation_Level :=
Indent + Nested_Indentation;
Iter : Component_Vertex_Iterator;
Vertex : Library_Graph_Vertex_Id;
begin
Trace_Vertex
(G => G,
Vertex => Succ,
Msg => "updating successor",
Step => Step,
Indent => Indent);
-- Notify the successor that it has one less predecessor to wait on.
-- This effectively eliminates the edge that links the two.
Decrement_Pending_Predecessors
(G => G,
Vertex => Succ,
Edge => Edge);
-- The predecessor and successor reside in different components.
-- Notify the successor component it has one fewer components to
-- wait on.
if In_Different_Components then
Decrement_Pending_Predecessors
(G => G,
Comp => Succ_Comp,
Edge => Edge);
end if;
-- At this point the successor may become elaborable when its final
-- predecessor or final predecessor component has been elaborated.
if Is_Elaborable_Vertex (G, Succ) then
-- The predecessor and successor reside in different components.
-- The successor must not be added to the candidates of Pred's
-- component because this will mix units from the two components.
-- Instead, the successor is added to the set of all elaborable
-- vertices.
if In_Different_Components then
Insert_Elaborable_Successor
(G => G,
Vertex => Succ,
Elaborable_Vertices => All_Elaborable_Vertices,
All_Waiting_Vertices => All_Waiting_Vertices,
Comp_Waiting_Vertices => Comp_Waiting_Vertices,
Msg => "add elaborable successor",
Step => Step,
Indent => Vertex_Indent);
-- Otherwise the predecessor and successor reside within the same
-- component. Pred's component gains another elaborable vertex.
else
Insert_Elaborable_Successor
(G => G,
Vertex => Succ,
Elaborable_Vertices => Comp_Elaborable_Vertices,
All_Waiting_Vertices => All_Waiting_Vertices,
Comp_Waiting_Vertices => Comp_Waiting_Vertices,
Msg =>
"add elaborable component successor",
Step => Step,
Indent => Vertex_Indent);
end if;
end if;
-- At this point the successor component may become elaborable when
-- its final predecessor component is elaborated. This in turn may
-- allow vertices of the successor component to be elaborated.
if In_Different_Components
and then Is_Elaborable_Component (G, Succ_Comp)
then
Iter := Iterate_Component_Vertices (G, Succ_Comp);
while Has_Next (Iter) loop
Next (Iter, Vertex);
if Is_Elaborable_Vertex (G, Vertex) then
Insert_Elaborable_Successor
(G => G,
Vertex => Vertex,
Elaborable_Vertices => All_Elaborable_Vertices,
All_Waiting_Vertices => All_Waiting_Vertices,
Comp_Waiting_Vertices => Comp_Waiting_Vertices,
Msg => "add elaborable vertex",
Step => Step,
Indent => Vertex_Indent);
end if;
end loop;
end if;
end Update_Successor;
-----------------------
-- Update_Successors --
-----------------------
procedure Update_Successors
(G : Library_Graph;
Vertex : Library_Graph_Vertex_Id;
All_Elaborable_Vertices : LGV_Sets.Membership_Set;
All_Waiting_Vertices : LGV_Sets.Membership_Set;
Comp_Elaborable_Vertices : LGV_Sets.Membership_Set;
Comp_Waiting_Vertices : LGV_Sets.Membership_Set;
Step : Elaboration_Order_Step;
Indent : Indentation_Level)
is
Edge : Library_Graph_Edge_Id;
Iter : Edges_To_Successors_Iterator;
begin
pragma Assert (Present (G));
pragma Assert (Present (Vertex));
pragma Assert (Needs_Elaboration (G, Vertex));
pragma Assert (LGV_Sets.Present (All_Elaborable_Vertices));
pragma Assert (LGV_Sets.Present (All_Waiting_Vertices));
pragma Assert (LGV_Sets.Present (Comp_Elaborable_Vertices));
pragma Assert (LGV_Sets.Present (Comp_Waiting_Vertices));
Iter := Iterate_Edges_To_Successors (G, Vertex);
while Has_Next (Iter) loop
Next (Iter, Edge);
pragma Assert (Predecessor (G, Edge) = Vertex);
Update_Successor
(G => G,
Edge => Edge,
All_Elaborable_Vertices => All_Elaborable_Vertices,
All_Waiting_Vertices => All_Waiting_Vertices,
Comp_Elaborable_Vertices => Comp_Elaborable_Vertices,
Comp_Waiting_Vertices => Comp_Waiting_Vertices,
Step => Step,
Indent => Indent);
end loop;
end Update_Successors;
end Invocation_And_Library_Graph_Elaborators;
end Bindo.Elaborators;
|