| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 
 | .. _Implementation_Defined_Aspects:
******************************
Implementation Defined Aspects
******************************
Ada defines (throughout the Ada 2012 reference manual, summarized
in Annex K) a set of aspects that can be specified for certain entities.
These language defined aspects are implemented in GNAT in Ada 2012 mode
and work as described in the Ada 2012 Reference Manual.
In addition, Ada 2012 allows implementations to define additional aspects
whose meaning is defined by the implementation.  GNAT provides
a number of these implementation-defined aspects which can be used
to extend and enhance the functionality of the compiler.  This section of
the GNAT reference manual describes these additional aspects.
Note that any program using these aspects may not be portable to
other compilers (although GNAT implements this set of aspects on all
platforms).  Therefore if portability to other compilers is an important
consideration, you should minimize the use of these aspects.
Note that for many of these aspects, the effect is essentially similar
to the use of a pragma or attribute specification with the same name
applied to the entity. For example, if we write:
.. code-block:: ada
  type R is range 1 .. 100
    with Value_Size => 10;
then the effect is the same as:
.. code-block:: ada
  type R is range 1 .. 100;
  for R'Value_Size use 10;
and if we write:
.. code-block:: ada
  type R is new Integer
    with Shared => True;
then the effect is the same as:
.. code-block:: ada
  type R is new Integer;
  pragma Shared (R);
In the documentation below, such cases are simply marked
as being boolean aspects equivalent to the corresponding pragma
or attribute definition clause.
Aspect Abstract_State
=====================
.. index:: Abstract_State
This aspect is equivalent to :ref:`pragma Abstract_State<Pragma-Abstract_State>`.
Aspect Always_Terminates
========================
.. index:: Always_Terminates
This boolean aspect is equivalent to :ref:`pragma Always_Terminates<Pragma-Always_Terminates>`.
Aspect Annotate
===============
.. index:: Annotate
There are three forms of this aspect (where ID is an identifier,
and ARG is a general expression),
corresponding to :ref:`pragma Annotate<Pragma-Annotate>`.
*Annotate => ID*
  Equivalent to ``pragma Annotate (ID, Entity => Name);``
*Annotate => (ID)*
  Equivalent to ``pragma Annotate (ID, Entity => Name);``
*Annotate => (ID ,ID {, ARG})*
  Equivalent to ``pragma Annotate (ID, ID {, ARG}, Entity => Name);``
Aspect Async_Readers
====================
.. index:: Async_Readers
This boolean aspect is equivalent to :ref:`pragma Async_Readers<Pragma-Async_Readers>`.
Aspect Async_Writers
====================
.. index:: Async_Writers
This boolean aspect is equivalent to :ref:`pragma Async_Writers<Pragma-Async_Writers>`.
Aspect Constant_After_Elaboration
=================================
.. index:: Constant_After_Elaboration
This aspect is equivalent to :ref:`pragma Constant_After_Elaboration<Pragma-Constant_After_Elaboration>`.
Aspect Contract_Cases
=====================
.. index:: Contract_Cases
This aspect is equivalent to :ref:`pragma Contract_Cases<Pragma-Contract_Cases>`, the sequence
of clauses being enclosed in parentheses so that syntactically it is an
aggregate.
Aspect Depends
==============
.. index:: Depends
This aspect is equivalent to :ref:`pragma Depends<Pragma-Depends>`.
Aspect Default_Initial_Condition
================================
.. index:: Default_Initial_Condition
This aspect is equivalent to :ref:`pragma Default_Initial_Condition<Pragma-Default_Initial_Condition>`.
Aspect Dimension
================
.. index:: Dimension
The ``Dimension`` aspect is used to specify the dimensions of a given
subtype of a dimensioned numeric type. The aspect also specifies a symbol
used when doing formatted output of dimensioned quantities. The syntax is::
  with Dimension =>
    ([Symbol =>] SYMBOL, DIMENSION_VALUE {, DIMENSION_Value})
  SYMBOL ::= STRING_LITERAL | CHARACTER_LITERAL
  DIMENSION_VALUE ::=
    RATIONAL
  | others               => RATIONAL
  | DISCRETE_CHOICE_LIST => RATIONAL
  RATIONAL ::= [-] NUMERIC_LITERAL [/ NUMERIC_LITERAL]
This aspect can only be applied to a subtype whose parent type has
a ``Dimension_System`` aspect. The aspect must specify values for
all dimensions of the system. The rational values are the powers of the
corresponding dimensions that are used by the compiler to verify that
physical (numeric) computations are dimensionally consistent. For example,
the computation of a force must result in dimensions (L => 1, M => 1, T => -2).
For further examples of the usage
of this aspect, see package ``System.Dim.Mks``.
Note that when the dimensioned type is an integer type, then any
dimension value must be an integer literal.
Aspect Dimension_System
=======================
.. index:: Dimension_System
The ``Dimension_System`` aspect is used to define a system of
dimensions that will be used in subsequent subtype declarations with
``Dimension`` aspects that reference this system. The syntax is::
  with Dimension_System => (DIMENSION {, DIMENSION});
  DIMENSION ::= ([Unit_Name   =>] IDENTIFIER,
                 [Unit_Symbol =>] SYMBOL,
                 [Dim_Symbol  =>] SYMBOL)
  SYMBOL ::= CHARACTER_LITERAL | STRING_LITERAL
This aspect is applied to a type, which must be a numeric derived type
(typically a floating-point type), that
will represent values within the dimension system. Each ``DIMENSION``
corresponds to one particular dimension. A maximum of 7 dimensions may
be specified. ``Unit_Name`` is the name of the dimension (for example
``Meter``). ``Unit_Symbol`` is the shorthand used for quantities
of this dimension (for example ``m`` for ``Meter``).
``Dim_Symbol`` gives
the identification within the dimension system (typically this is a
single letter, e.g. ``L`` standing for length for unit name ``Meter``).
The ``Unit_Symbol`` is used in formatted output of dimensioned quantities.
The ``Dim_Symbol`` is used in error messages when numeric operations have
inconsistent dimensions.
GNAT provides the standard definition of the International MKS system in
the run-time package ``System.Dim.Mks``. You can easily define
similar packages for cgs units or British units, and define conversion factors
between values in different systems. The MKS system is characterized by the
following aspect:
.. code-block:: ada
     type Mks_Type is new Long_Long_Float with
       Dimension_System => (
         (Unit_Name => Meter,    Unit_Symbol => 'm',   Dim_Symbol => 'L'),
         (Unit_Name => Kilogram, Unit_Symbol => "kg",  Dim_Symbol => 'M'),
         (Unit_Name => Second,   Unit_Symbol => 's',   Dim_Symbol => 'T'),
         (Unit_Name => Ampere,   Unit_Symbol => 'A',   Dim_Symbol => 'I'),
         (Unit_Name => Kelvin,   Unit_Symbol => 'K',   Dim_Symbol => '@'),
         (Unit_Name => Mole,     Unit_Symbol => "mol", Dim_Symbol => 'N'),
         (Unit_Name => Candela,  Unit_Symbol => "cd",  Dim_Symbol => 'J'));
Note that in the above type definition, we use the ``at`` symbol (``@``) to
represent a theta character (avoiding the use of extended Latin-1
characters in this context).
See section 'Performing Dimensionality Analysis in GNAT' in the GNAT Users
Guide for detailed examples of use of the dimension system.
Aspect Disable_Controlled
=========================
.. index:: Disable_Controlled
The aspect  ``Disable_Controlled`` is defined for controlled record types. If
active, this aspect causes suppression of all related calls to ``Initialize``,
``Adjust``, and ``Finalize``. The intended use is for conditional compilation,
where for example you might want a record to be controlled or not depending on
whether some run-time check is enabled or suppressed.
Aspect Effective_Reads
======================
.. index:: Effective_Reads
This aspect is equivalent to :ref:`pragma Effective_Reads<Pragma-Effective_Reads>`.
Aspect Effective_Writes
=======================
.. index:: Effective_Writes
This aspect is equivalent to :ref:`pragma Effective_Writes<Pragma-Effective_Writes>`.
Aspect Exceptional_Cases
========================
.. index:: Exceptional_Cases
This aspect may be specified for procedures and functions with side effects;
it can be used to list exceptions that might be propagated by the subprogram
with side effects in the context of its precondition, and associate them
with a specific postcondition.
For the syntax and semantics of this aspect, see the SPARK 2014 Reference
Manual, section 6.1.9.
Aspect Extensions_Visible
=========================
.. index:: Extensions_Visible
This aspect is equivalent to :ref:`pragma Extensions_Visible<Pragma-Extensions_Visible>`.
Aspect Favor_Top_Level
======================
.. index:: Favor_Top_Level
This boolean aspect is equivalent to :ref:`pragma Favor_Top_Level<Pragma-Favor_Top_Level>`.
Aspect Ghost
=============
.. index:: Ghost
This aspect is equivalent to :ref:`pragma Ghost<Pragma-Ghost>`.
Aspect Ghost_Predicate
======================
.. index:: Ghost_Predicate
This aspect introduces a subtype predicate that can reference ghost
entities. The subtype cannot appear as a subtype_mark in a membership test.
For the detailed semantics of this aspect, see the entry for subtype predicates
in the SPARK Reference Manual, section 3.2.4.
Aspect Global
=============
.. index:: Global
This aspect is equivalent to :ref:`pragma Global<Pragma-Global>`.
Aspect Initial_Condition
========================
.. index:: Initial_Condition
This aspect is equivalent to :ref:`pragma Initial_Condition<Pragma-Initial_Condition>`.
Aspect Initializes
==================
.. index:: Initializes
This aspect is equivalent to :ref:`pragma Initializes<Pragma-Initializes>`.
Aspect Inline_Always
====================
.. index:: Inline_Always
This boolean aspect is equivalent to :ref:`pragma Inline_Always<Pragma-Inline_Always>`.
Aspect Invariant
================
.. index:: Invariant
This aspect is equivalent to :ref:`pragma Invariant<Pragma-Invariant>`. It is a
synonym for the language defined aspect ``Type_Invariant`` except
that it is separately controllable using pragma ``Assertion_Policy``.
Aspect Invariant'Class
======================
.. index:: Invariant'Class
This aspect is equivalent to :ref:`pragma Type_Invariant_Class<Pragma-Type_Invariant_Class>`. It is a
synonym for the language defined aspect ``Type_Invariant'Class`` except
that it is separately controllable using pragma ``Assertion_Policy``.
Aspect Iterable
===============
.. index:: Iterable
This aspect provides a light-weight mechanism for loops and quantified
expressions over container types, without the overhead imposed by the tampering
checks of standard Ada 2012 iterators. The value of the aspect is an aggregate
with six named components, of which the last three are optional: ``First``,
``Next``, ``Has_Element``, ``Element``, ``Last``, and ``Previous``.
When only the first three components are specified, only the
``for .. in`` form of iteration over cursors is available. When ``Element``
is specified, both this form and the ``for .. of`` form of iteration over
elements are available. If the last two components are specified, reverse
iterations over the container can be specified (analogous to what can be done
over predefined containers that support the ``Reverse_Iterator`` interface).
The following is a typical example of use:
.. code-block:: ada
  type List is private with
      Iterable => (First       => First_Cursor,
                   Next        => Advance,
                   Has_Element => Cursor_Has_Element
                 [,Element     => Get_Element]
                 [,Last        => Last_Cursor]
                 [,Previous    => Retreat]);
* The values of ``First`` and ``Last`` are primitive operations of the
  container type that return a ``Cursor``, which must be a type declared in
  the container package or visible from it. For example:
.. code-block:: ada
  function First_Cursor (Cont : Container) return Cursor;
  function Last_Cursor  (Cont : Container) return Cursor;
* The values of ``Next`` and ``Previous`` are primitive operations of the container type that take
  both a container and a cursor and yield a cursor. For example:
.. code-block:: ada
  function Advance (Cont : Container; Position : Cursor) return Cursor;
  function Retreat (Cont : Container; Position : Cursor) return Cursor;
* The value of ``Has_Element`` is a primitive operation of the container type
  that takes both a container and a cursor and yields a boolean. For example:
.. code-block:: ada
  function Cursor_Has_Element (Cont : Container; Position : Cursor) return Boolean;
* The value of ``Element`` is a primitive operation of the container type that
  takes both a container and a cursor and yields an ``Element_Type``, which must
  be a type declared in the container package or visible from it. For example:
.. code-block:: ada
  function Get_Element (Cont : Container; Position : Cursor) return Element_Type;
This aspect is used in the GNAT-defined formal container packages.
Aspect Linker_Section
=====================
.. index:: Linker_Section
This aspect is equivalent to :ref:`pragma Linker_Section<Pragma-Linker_Section>`.
Aspect Local_Restrictions
=========================
.. index:: Local_Restrictions
This aspect may be specified for a subprogram (and for other declarations
as described below). It is used to specify that a particular subprogram does
not violate one or more local restrictions, nor can it call a subprogram
that is not subject to the same requirement. Positional aggregate syntax
(with parentheses, not square brackets) may be used to specify more than one
local restriction, as in
.. code-block:: ada
  procedure Do_Something
    with Local_Restrictions => (Some_Restriction, Another_Restriction);
Parentheses are currently required even in the case of specifying a single
local restriction (this requirement may be relaxed in the future).
Supported local restrictions currently include (only) No_Heap_Allocations and
No_Secondary_Stack.
No_Secondary_Stack corresponds to the GNAT-defined (global) restriction
of the same name. No_Heap_Allocations corresponds to the conjunction of the
Ada-defined restrictions No_Allocators and No_Implicit_Heap_Allocations.
Additional requirements are imposed in order to ensure that restriction
violations cannot be achieved via overriding dispatching operations,
calling through an access-to-subprogram value, calling a generic formal
subprogram, or calling through a subprogram renaming.
For a dispatching operation, an overrider must be subject to (at least) the
same restrictions as the overridden inherited subprogram; similarly, the
actual subprogram corresponding to a generic formal subprogram
in an instantiation must be subject to (at least) the same restrictions
as the formal subprogram. A call through an access-to-subprogram value
is conservatively assumed to violate all local restrictions; tasking-related
constructs (notably entry calls) are treated similarly. A renaming-as-body is
treated like a subprogram body containing a call to the renamed subprogram.
The Local_Restrictions aspect can be specified for a package specification,
in which case the aspect specification also applies to all eligible entities
declared with the package. This includes types. Default initialization of an
object of a given type is treated like a call to an implicitly-declared
initialization subprogram. Such a "call" is subject to the same local
restriction checks as any other call. If a type is subject to a local
restriction, then any violations of that restriction within the default
initialization expressions (if any) of the type are rejected. This may
include "calls" to the default initialization subprograms of other types.
Local_Restrictions aspect specifications are additive (for example, in the
case of a declaration that occurs within nested packages that each have
a Local_Restrictions specification).
Aspect Lock_Free
================
.. index:: Lock_Free
This boolean aspect is equivalent to :ref:`pragma Lock_Free<Pragma-Lock_Free>`.
Aspect Max_Queue_Length
=======================
.. index:: Max_Queue_Length
This aspect is equivalent to :ref:`pragma Max_Queue_Length<Pragma-Max_Queue_Length>`.
Aspect No_Caching
=================
.. index:: No_Caching
This boolean aspect is equivalent to :ref:`pragma No_Caching<Pragma-No_Caching>`.
Aspect No_Elaboration_Code_All
==============================
.. index:: No_Elaboration_Code_All
This aspect is equivalent to :ref:`pragma No_Elaboration_Code_All<Pragma-No_Elaboration_Code_All>`
for a program unit.
Aspect No_Inline
================
.. index:: No_Inline
This boolean aspect is equivalent to :ref:`pragma No_Inline<Pragma-No_Inline>`.
Aspect No_Tagged_Streams
========================
.. index:: No_Tagged_Streams
This aspect is equivalent to :ref:`pragma No_Tagged_Streams<Pragma-No_Tagged_Streams>` with an
argument specifying a root tagged type (thus this aspect can only be
applied to such a type).
Aspect No_Task_Parts
========================
.. index:: No_Task_Parts
Applies to a type. If True, requires that the type and any descendants
do not have any task parts. The rules for this aspect are the same as
for the language-defined No_Controlled_Parts aspect (see RM-H.4.1),
replacing "controlled" with "task".
If No_Task_Parts is True for a type T, then the compiler can optimize
away certain tasking-related code that would otherwise be needed
for T'Class, because descendants of T might contain tasks.
Aspect Object_Size
==================
.. index:: Object_Size
This aspect is equivalent to :ref:`attribute Object_Size<Attribute-Object_Size>`.
Aspect Obsolescent
==================
.. index:: Obsolescent
This aspect is equivalent to :ref:`pragma Obsolescent<Pragma_Obsolescent>`. Note that the
evaluation of this aspect happens at the point of occurrence, it is not
delayed until the freeze point.
Aspect Part_Of
==============
.. index:: Part_Of
This aspect is equivalent to :ref:`pragma Part_Of<Pragma-Part_Of>`.
Aspect Persistent_BSS
=====================
.. index:: Persistent_BSS
This boolean aspect is equivalent to :ref:`pragma Persistent_BSS<Pragma-Persistent_BSS>`.
Aspect Predicate
================
.. index:: Predicate
This aspect is equivalent to :ref:`pragma Predicate<Pragma-Predicate>`. It is thus
similar to the language defined aspects ``Dynamic_Predicate``
and ``Static_Predicate`` except that whether the resulting
predicate is static or dynamic is controlled by the form of the
expression. It is also separately controllable using pragma
``Assertion_Policy``.
Aspect Pure_Function
====================
.. index:: Pure_Function
This boolean aspect is equivalent to :ref:`pragma Pure_Function<Pragma-Pure_Function>`.
Aspect Refined_Depends
======================
.. index:: Refined_Depends
This aspect is equivalent to :ref:`pragma Refined_Depends<Pragma-Refined_Depends>`.
Aspect Refined_Global
=====================
.. index:: Refined_Global
This aspect is equivalent to :ref:`pragma Refined_Global<Pragma-Refined_Global>`.
Aspect Refined_Post
===================
.. index:: Refined_Post
This aspect is equivalent to :ref:`pragma Refined_Post<Pragma-Refined_Post>`.
Aspect Refined_State
====================
.. index:: Refined_State
This aspect is equivalent to :ref:`pragma Refined_State<Pragma-Refined_State>`.
Aspect Relaxed_Initialization
=============================
.. index:: Refined_Initialization
For the syntax and semantics of this aspect, see the SPARK 2014 Reference
Manual, section 6.10.
Aspect Remote_Access_Type
=========================
.. index:: Remote_Access_Type
This aspect is equivalent to :ref:`pragma Remote_Access_Type<Pragma-Remote_Access_Type>`.
Aspect Secondary_Stack_Size
===========================
.. index:: Secondary_Stack_Size
This aspect is equivalent to :ref:`pragma Secondary_Stack_Size<Pragma-Secondary_Stack_Size>`.
Aspect Scalar_Storage_Order
===========================
.. index:: Scalar_Storage_Order
This aspect is equivalent to a :ref:`attribute Scalar_Storage_Order<Attribute-Scalar_Storage_Order>`.
Aspect Shared
=============
.. index:: Shared
This boolean aspect is equivalent to :ref:`pragma Shared<Pragma-Shared>`
and is thus a synonym for aspect ``Atomic``.
Aspect Side_Effects
===================
.. index:: Side_Effects
This aspect is equivalent to :ref:`pragma Side_Effects<Pragma-Side_Effects>`.
Aspect Simple_Storage_Pool
==========================
.. index:: Simple_Storage_Pool
This aspect is equivalent to :ref:`attribute Simple_Storage_Pool<Attribute_Simple_Storage_Pool>`.
Aspect Simple_Storage_Pool_Type
===============================
.. index:: Simple_Storage_Pool_Type
This boolean aspect is equivalent to :ref:`pragma Simple_Storage_Pool_Type<Pragma-Simple_Storage_Pool_Type>`.
Aspect SPARK_Mode
=================
.. index:: SPARK_Mode
This aspect is equivalent to :ref:`pragma SPARK_Mode<Pragma-SPARK_Mode>` and
may be specified for either or both of the specification and body
of a subprogram or package.
Aspect Suppress_Debug_Info
==========================
.. index:: Suppress_Debug_Info
This boolean aspect is equivalent to :ref:`pragma Suppress_Debug_Info<Pragma-Suppress_Debug_Info>`.
Aspect Suppress_Initialization
==============================
.. index:: Suppress_Initialization
This boolean aspect is equivalent to :ref:`pragma Suppress_Initialization<Pragma-Suppress_Initialization>`.
Aspect Test_Case
================
.. index:: Test_Case
This aspect is equivalent to :ref:`pragma Test_Case<Pragma-Test_Case>`.
Aspect Thread_Local_Storage
===========================
.. index:: Thread_Local_Storage
This boolean aspect is equivalent to :ref:`pragma Thread_Local_Storage<Pragma-Thread_Local_Storage>`.
Aspect Universal_Aliasing
=========================
.. index:: Universal_Aliasing
This boolean aspect is equivalent to :ref:`pragma Universal_Aliasing<Pragma-Universal_Aliasing>`.
Aspect Unmodified
=================
.. index:: Unmodified
This boolean aspect is equivalent to :ref:`pragma Unmodified<Pragma-Unmodified>`.
Aspect Unreferenced
===================
.. index:: Unreferenced
This boolean aspect is equivalent to :ref:`pragma Unreferenced<Pragma-Unreferenced>`.
When using the ``-gnat2022`` switch, this aspect is also supported on formal
parameters, which is in particular the only form possible for expression
functions.
Aspect Unreferenced_Objects
===========================
.. index:: Unreferenced_Objects
This boolean aspect is equivalent to :ref:`pragma Unreferenced_Objects<Pragma-Unreferenced_Objects>`.
Aspect User_Aspect
==================
.. index:: User_Aspect
This aspect takes an argument that is the name of an aspect defined by a
User_Aspect_Definition configuration pragma.
A User_Aspect aspect specification is semantically equivalent to
replicating the set of aspect specifications associated with the named
pragma-defined aspect.
Aspect Value_Size
=================
.. index:: Value_Size
This aspect is equivalent to :ref:`attribute Value_Size<Attribute-Value_Size>`.
Aspect Volatile_Full_Access
===========================
.. index:: Volatile_Full_Access
This boolean aspect is equivalent to :ref:`pragma Volatile_Full_Access<Pragma-Volatile_Full_Access>`.
Aspect Volatile_Function
===========================
.. index:: Volatile_Function
This boolean aspect is equivalent to :ref:`pragma Volatile_Function<Pragma-Volatile_Function>`.
Aspect Warnings
===============
.. index:: Warnings
This aspect is equivalent to the two argument form of :ref:`pragma Warnings<Pragma_Warnings>`,
where the first argument is ``ON`` or ``OFF`` and the second argument
is the entity.
 |