1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E V A L _ F A T --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Einfo; use Einfo;
with Einfo.Utils; use Einfo.Utils;
with Errout; use Errout;
with Opt; use Opt;
with Sem_Util; use Sem_Util;
package body Eval_Fat is
Radix : constant Int := 2;
-- This code is currently only correct for the radix 2 case. We use the
-- symbolic value Radix where possible to help in the unlikely case of
-- anyone ever having to adjust this code for another value, and for
-- documentation purposes.
-- Another assumption is that the range of the floating-point type is
-- symmetric around zero.
type Radix_Power_Table is array (Int range 1 .. 4) of Int;
Radix_Powers : constant Radix_Power_Table :=
(Radix ** 1, Radix ** 2, Radix ** 3, Radix ** 4);
-----------------------
-- Local Subprograms --
-----------------------
procedure Decompose
(RT : R;
X : T;
Fraction : out T;
Exponent : out UI;
Mode : Rounding_Mode := Round);
-- Decomposes a non-zero floating-point number into fraction and exponent
-- parts. The fraction is in the interval 1.0 / Radix .. T'Pred (1.0) and
-- uses Rbase = Radix. The result is rounded to a nearest machine number.
--------------
-- Adjacent --
--------------
function Adjacent (RT : R; X, Towards : T) return T is
begin
if Towards = X then
return X;
elsif Towards > X then
return Succ (RT, X);
else
return Pred (RT, X);
end if;
end Adjacent;
-------------
-- Ceiling --
-------------
function Ceiling (RT : R; X : T) return T is
XT : constant T := Truncation (RT, X);
begin
if UR_Is_Negative (X) then
return XT;
elsif X = XT then
return X;
else
return XT + Ureal_1;
end if;
end Ceiling;
-------------
-- Compose --
-------------
function Compose (RT : R; Fraction : T; Exponent : UI) return T is
Arg_Frac : T;
Arg_Exp : UI;
pragma Warnings (Off, Arg_Exp);
begin
Decompose (RT, Fraction, Arg_Frac, Arg_Exp);
return Scaling (RT, Arg_Frac, Exponent);
end Compose;
---------------
-- Copy_Sign --
---------------
function Copy_Sign (RT : R; Value, Sign : T) return T is
pragma Warnings (Off, RT);
Result : T;
begin
Result := abs Value;
if UR_Is_Negative (Sign) then
return -Result;
else
return Result;
end if;
end Copy_Sign;
---------------
-- Decompose --
---------------
procedure Decompose
(RT : R;
X : T;
Fraction : out T;
Exponent : out UI;
Mode : Rounding_Mode := Round)
is
Int_F : UI;
begin
Decompose_Int (RT, abs X, Int_F, Exponent, Mode);
Fraction := UR_From_Components
(Num => Int_F,
Den => Machine_Mantissa_Value (RT),
Rbase => Radix,
Negative => False);
if UR_Is_Negative (X) then
Fraction := -Fraction;
end if;
return;
end Decompose;
-------------------
-- Decompose_Int --
-------------------
-- This procedure should be modified with care, as there are many non-
-- obvious details that may cause problems that are hard to detect. For
-- zero arguments, Fraction and Exponent are set to zero. Note that sign
-- of zero cannot be preserved.
procedure Decompose_Int
(RT : R;
X : T;
Fraction : out UI;
Exponent : out UI;
Mode : Rounding_Mode)
is
Base : Int := Rbase (X);
N : UI := abs Numerator (X);
D : UI := Denominator (X);
N_Times_Radix : UI;
Even : Boolean;
-- True iff Fraction is even
Most_Significant_Digit : constant UI :=
Radix ** (Machine_Mantissa_Value (RT) - 1);
Uintp_Mark : Uintp.Save_Mark;
-- The code is divided into blocks that systematically release
-- intermediate values (this routine generates lots of junk).
begin
if N = Uint_0 then
Fraction := Uint_0;
Exponent := Uint_0;
return;
end if;
Calculate_D_And_Exponent_1 : begin
Uintp_Mark := Mark;
Exponent := Uint_0;
-- In cases where Base > 1, the actual denominator is Base**D. For
-- cases where Base is a power of Radix, use the value 1 for the
-- Denominator and adjust the exponent.
-- Note: Exponent has different sign from D, because D is a divisor
for Power in 1 .. Radix_Powers'Last loop
if Base = Radix_Powers (Power) then
Exponent := -D * Power;
Base := 0;
D := Uint_1;
exit;
end if;
end loop;
Release_And_Save (Uintp_Mark, D, Exponent);
end Calculate_D_And_Exponent_1;
if Base > 0 then
Calculate_Exponent : begin
Uintp_Mark := Mark;
-- For bases that are a multiple of the Radix, divide the base by
-- Radix and adjust the Exponent. This will help because D will be
-- much smaller and faster to process.
-- This occurs for decimal bases on machines with binary floating-
-- point for example. When calculating 1E40, with Radix = 2, N
-- will be 93 bits instead of 133.
-- N E
-- ------ * Radix
-- D
-- Base
-- N E
-- = -------------------------- * Radix
-- D D
-- (Base/Radix) * Radix
-- N E-D
-- = --------------- * Radix
-- D
-- (Base/Radix)
-- This code is commented out, because it causes numerous
-- failures in the regression suite. To be studied ???
while False and then Base > 0 and then Base mod Radix = 0 loop
Base := Base / Radix;
Exponent := Exponent + D;
end loop;
Release_And_Save (Uintp_Mark, Exponent);
end Calculate_Exponent;
-- For remaining bases we must actually compute the exponentiation
-- Because the exponentiation can be negative, and D must be integer,
-- the numerator is corrected instead.
Calculate_N_And_D : begin
Uintp_Mark := Mark;
if D < 0 then
N := N * Base ** (-D);
D := Uint_1;
else
D := Base ** D;
end if;
Release_And_Save (Uintp_Mark, N, D);
end Calculate_N_And_D;
Base := 0;
end if;
-- Now scale N and D so that N / D is a value in the interval [1.0 /
-- Radix, 1.0) and adjust Exponent accordingly, so the value N / D *
-- Radix ** Exponent remains unchanged.
-- Step 1 - Adjust N so N / D >= 1 / Radix, or N = 0
-- N and D are positive, so N / D >= 1 / Radix implies N * Radix >= D.
-- As this scaling is not possible for N is Uint_0, zero is handled
-- explicitly at the start of this subprogram.
Calculate_N_And_Exponent : begin
Uintp_Mark := Mark;
N_Times_Radix := N * Radix;
while not (N_Times_Radix >= D) loop
N := N_Times_Radix;
Exponent := Exponent - 1;
N_Times_Radix := N * Radix;
end loop;
Release_And_Save (Uintp_Mark, N, Exponent);
end Calculate_N_And_Exponent;
-- Step 2 - Adjust D so N / D < 1
-- Scale up D so N / D < 1, so N < D
Calculate_D_And_Exponent_2 : begin
Uintp_Mark := Mark;
while not (N < D) loop
-- As N / D >= 1, N / (D * Radix) will be at least 1 / Radix, so
-- the result of Step 1 stays valid
D := D * Radix;
Exponent := Exponent + 1;
end loop;
Release_And_Save (Uintp_Mark, D, Exponent);
end Calculate_D_And_Exponent_2;
-- Here the value N / D is in the range [1.0 / Radix .. 1.0)
-- Now find the fraction by doing a very simple-minded division until
-- enough digits have been computed.
-- This division works for all radices, but is only efficient for a
-- binary radix. It is just like a manual division algorithm, but
-- instead of moving the denominator one digit right, we move the
-- numerator one digit left so the numerator and denominator remain
-- integral.
Fraction := Uint_0;
Even := True;
Calculate_Fraction_And_N : begin
Uintp_Mark := Mark;
loop
while N >= D loop
N := N - D;
Fraction := Fraction + 1;
Even := not Even;
end loop;
-- Stop when the result is in [1.0 / Radix, 1.0)
exit when Fraction >= Most_Significant_Digit;
N := N * Radix;
Fraction := Fraction * Radix;
Even := True;
end loop;
Release_And_Save (Uintp_Mark, Fraction, N);
end Calculate_Fraction_And_N;
Calculate_Fraction_And_Exponent : begin
Uintp_Mark := Mark;
-- Determine correct rounding based on the remainder which is in
-- N and the divisor D. The rounding is performed on the absolute
-- value of X, so Ceiling and Floor need to check for the sign of
-- X explicitly.
case Mode is
when Round_Even =>
-- This rounding mode corresponds to the unbiased rounding
-- method that is used at run time. When the real value is
-- exactly between two machine numbers, choose the machine
-- number with its least significant bit equal to zero.
-- The recommendation advice in RM 4.9(38) is that static
-- expressions are rounded to machine numbers in the same
-- way as the target machine does.
if (Even and then N * 2 > D)
or else
(not Even and then N * 2 >= D)
then
Fraction := Fraction + 1;
end if;
when Round =>
-- Do not round to even as is done with IEEE arithmetic, but
-- instead round away from zero when the result is exactly
-- between two machine numbers. This biased rounding method
-- should not be used to convert static expressions to
-- machine numbers, see AI95-268.
if N * 2 >= D then
Fraction := Fraction + 1;
end if;
when Ceiling =>
if N > Uint_0 and then not UR_Is_Negative (X) then
Fraction := Fraction + 1;
end if;
when Floor =>
if N > Uint_0 and then UR_Is_Negative (X) then
Fraction := Fraction + 1;
end if;
end case;
-- The result must be normalized to [1.0/Radix, 1.0), so adjust if
-- the result is 1.0 because of rounding.
if Fraction = Most_Significant_Digit * Radix then
Fraction := Most_Significant_Digit;
Exponent := Exponent + 1;
end if;
-- Put back sign after applying the rounding
if UR_Is_Negative (X) then
Fraction := -Fraction;
end if;
Release_And_Save (Uintp_Mark, Fraction, Exponent);
end Calculate_Fraction_And_Exponent;
end Decompose_Int;
--------------
-- Exponent --
--------------
function Exponent (RT : R; X : T) return UI is
X_Frac : UI;
X_Exp : UI;
pragma Warnings (Off, X_Frac);
begin
Decompose_Int (RT, X, X_Frac, X_Exp, Round_Even);
return X_Exp;
end Exponent;
-----------
-- Floor --
-----------
function Floor (RT : R; X : T) return T is
XT : constant T := Truncation (RT, X);
begin
if UR_Is_Positive (X) then
return XT;
elsif XT = X then
return X;
else
return XT - Ureal_1;
end if;
end Floor;
--------------
-- Fraction --
--------------
function Fraction (RT : R; X : T) return T is
X_Frac : T;
X_Exp : UI;
pragma Warnings (Off, X_Exp);
begin
Decompose (RT, X, X_Frac, X_Exp);
return X_Frac;
end Fraction;
------------------
-- Leading_Part --
------------------
function Leading_Part (RT : R; X : T; Radix_Digits : UI) return T is
RD : constant UI := UI_Min (Radix_Digits, Machine_Mantissa_Value (RT));
L : UI;
Y : T;
begin
L := Exponent (RT, X) - RD;
Y := UR_From_Uint (UR_Trunc (Scaling (RT, X, -L)));
return Scaling (RT, Y, L);
end Leading_Part;
-------------
-- Machine --
-------------
function Machine
(RT : R;
X : T;
Mode : Rounding_Mode;
Enode : Node_Id) return T
is
X_Frac : T;
X_Exp : UI;
Emin : constant UI := Machine_Emin_Value (RT);
begin
Decompose (RT, X, X_Frac, X_Exp, Mode);
-- Case of denormalized number or (gradual) underflow
-- A denormalized number is one with the minimum exponent Emin, but that
-- breaks the assumption that the first digit of the mantissa is a one.
-- This allows the first non-zero digit to be in any of the remaining
-- Mant - 1 spots. The gap between subsequent denormalized numbers is
-- the same as for the smallest normalized numbers. However, the number
-- of significant digits left decreases as a result of the mantissa now
-- having leading seros.
if X_Exp < Emin then
declare
Emin_Den : constant UI := Machine_Emin_Value (RT) -
Machine_Mantissa_Value (RT) + Uint_1;
begin
-- Do not issue warnings about underflows in GNATprove mode,
-- as calling Machine as part of interval checking may lead
-- to spurious warnings.
if X_Exp < Emin_Den or not Has_Denormals (RT) then
if Has_Signed_Zeros (RT) and then UR_Is_Negative (X) then
if not GNATprove_Mode then
Error_Msg_N
("floating-point value underflows to -0.0??", Enode);
end if;
return Ureal_M_0;
else
if not GNATprove_Mode then
Error_Msg_N
("floating-point value underflows to 0.0??", Enode);
end if;
return Ureal_0;
end if;
elsif Has_Denormals (RT) then
-- Emin - Mant <= X_Exp < Emin, so result is denormal. Handle
-- gradual underflow by first computing the number of
-- significant bits still available for the mantissa and
-- then truncating the fraction to this number of bits.
-- If this value is different from the original fraction,
-- precision is lost due to gradual underflow.
-- We probably should round here and prevent double rounding as
-- a result of first rounding to a model number and then to a
-- machine number. However, this is an extremely rare case that
-- is not worth the extra complexity. In any case, a warning is
-- issued in cases where gradual underflow occurs.
declare
Denorm_Sig_Bits : constant UI := X_Exp - Emin_Den + 1;
X_Frac_Denorm : constant T := UR_From_Components
(UR_Trunc (Scaling (RT, abs X_Frac, Denorm_Sig_Bits)),
Denorm_Sig_Bits,
Radix,
UR_Is_Negative (X));
begin
-- Do not issue warnings about loss of precision in
-- GNATprove mode, as calling Machine as part of interval
-- checking may lead to spurious warnings.
if X_Frac_Denorm /= X_Frac then
if not GNATprove_Mode then
Error_Msg_N
("gradual underflow causes loss of precision??",
Enode);
end if;
X_Frac := X_Frac_Denorm;
end if;
end;
end if;
end;
end if;
return Scaling (RT, X_Frac, X_Exp);
end Machine;
-----------
-- Model --
-----------
function Model (RT : R; X : T) return T is
X_Frac : T;
X_Exp : UI;
begin
Decompose (RT, X, X_Frac, X_Exp);
return Compose (RT, X_Frac, X_Exp);
end Model;
----------
-- Pred --
----------
function Pred (RT : R; X : T) return T is
begin
return -Succ (RT, -X);
end Pred;
---------------
-- Remainder --
---------------
function Remainder (RT : R; X, Y : T) return T is
A : T;
B : T;
Arg : T;
P : T;
Arg_Frac : T;
P_Frac : T;
Sign_X : T;
IEEE_Rem : T;
Arg_Exp : UI;
P_Exp : UI;
K : UI;
P_Even : Boolean;
pragma Warnings (Off, Arg_Frac);
begin
if UR_Is_Positive (X) then
Sign_X := Ureal_1;
else
Sign_X := -Ureal_1;
end if;
Arg := abs X;
P := abs Y;
if Arg < P then
P_Even := True;
IEEE_Rem := Arg;
P_Exp := Exponent (RT, P);
else
-- ??? what about zero cases?
Decompose (RT, Arg, Arg_Frac, Arg_Exp);
Decompose (RT, P, P_Frac, P_Exp);
P := Compose (RT, P_Frac, Arg_Exp);
K := Arg_Exp - P_Exp;
P_Even := True;
IEEE_Rem := Arg;
for Cnt in reverse 0 .. UI_To_Int (K) loop
if IEEE_Rem >= P then
P_Even := False;
IEEE_Rem := IEEE_Rem - P;
else
P_Even := True;
end if;
P := P * Ureal_Half;
end loop;
end if;
-- That completes the calculation of modulus remainder. The final step
-- is get the IEEE remainder. Here we compare Rem with (abs Y) / 2.
if P_Exp >= 0 then
A := IEEE_Rem;
B := abs Y * Ureal_Half;
else
A := IEEE_Rem * Ureal_2;
B := abs Y;
end if;
if A > B or else (A = B and then not P_Even) then
IEEE_Rem := IEEE_Rem - abs Y;
end if;
return Sign_X * IEEE_Rem;
end Remainder;
--------------
-- Rounding --
--------------
function Rounding (RT : R; X : T) return T is
Result : T;
Tail : T;
begin
Result := Truncation (RT, abs X);
Tail := abs X - Result;
if Tail >= Ureal_Half then
Result := Result + Ureal_1;
end if;
if UR_Is_Negative (X) then
return -Result;
else
return Result;
end if;
end Rounding;
-------------
-- Scaling --
-------------
function Scaling (RT : R; X : T; Adjustment : UI) return T is
pragma Warnings (Off, RT);
begin
if Rbase (X) = Radix then
return UR_From_Components
(Num => Numerator (X),
Den => Denominator (X) - Adjustment,
Rbase => Radix,
Negative => UR_Is_Negative (X));
elsif Adjustment >= 0 then
return X * Radix ** Adjustment;
else
return X / Radix ** (-Adjustment);
end if;
end Scaling;
----------
-- Succ --
----------
function Succ (RT : R; X : T) return T is
Emin : constant UI := Machine_Emin_Value (RT);
Mantissa : constant UI := Machine_Mantissa_Value (RT);
Exp : UI := UI_Max (Emin, Exponent (RT, X));
Frac : T;
New_Frac : T;
begin
-- Treat zero as a regular denormalized number if they are supported,
-- otherwise return the smallest normalized number.
if UR_Is_Zero (X) then
if Has_Denormals (RT) then
Exp := Emin;
else
return Scaling (RT, Ureal_Half, Emin);
end if;
end if;
-- Multiply the number by 2.0**(Mantissa-Exp) so that the radix point
-- will be directly following the mantissa after scaling.
Exp := Exp - Mantissa;
Frac := Scaling (RT, X, -Exp);
-- Round to the neareast integer towards +Inf
New_Frac := Ceiling (RT, Frac);
-- If the rounding was a NOP, add one, except for -2.0**(Mantissa-1)
-- because the exponent is going to be reduced.
if New_Frac = Frac then
if New_Frac = Scaling (RT, -Ureal_1, Mantissa - 1) then
New_Frac := New_Frac + Ureal_Half;
else
New_Frac := New_Frac + Ureal_1;
end if;
end if;
-- Divide back by 2.0**(Mantissa-Exp) to get the final result
return Scaling (RT, New_Frac, Exp);
end Succ;
----------------
-- Truncation --
----------------
function Truncation (RT : R; X : T) return T is
pragma Warnings (Off, RT);
begin
return UR_From_Uint (UR_Trunc (X));
end Truncation;
-----------------------
-- Unbiased_Rounding --
-----------------------
function Unbiased_Rounding (RT : R; X : T) return T is
Abs_X : constant T := abs X;
Result : T;
Tail : T;
begin
Result := Truncation (RT, Abs_X);
Tail := Abs_X - Result;
if Tail > Ureal_Half then
Result := Result + Ureal_1;
elsif Tail = Ureal_Half then
Result := Ureal_2 *
Truncation (RT, (Result / Ureal_2) + Ureal_Half);
end if;
if UR_Is_Negative (X) then
return -Result;
elsif UR_Is_Positive (X) then
return Result;
-- For zero case, make sure sign of zero is preserved
else
return X;
end if;
end Unbiased_Rounding;
end Eval_Fat;
|