1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ A G G R --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Util; use Exp_Util;
with Exp_Ch3; use Exp_Ch3;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch7; use Exp_Ch7;
with Exp_Ch9; use Exp_Ch9;
with Exp_Disp; use Exp_Disp;
with Exp_Tss; use Exp_Tss;
with Freeze; use Freeze;
with Itypes; use Itypes;
with Lib; use Lib;
with Namet; use Namet;
with Nmake; use Nmake;
with Nlists; use Nlists;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Ttypes; use Ttypes;
with Sem; use Sem;
with Sem_Aggr; use Sem_Aggr;
with Sem_Aux; use Sem_Aux;
with Sem_Case; use Sem_Case;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
use Sem_Util.Storage_Model_Support;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Urealp; use Urealp;
with Warnsw; use Warnsw;
package body Exp_Aggr is
function Build_Assignment_With_Temporary
(Target : Node_Id;
Typ : Entity_Id;
Source : Node_Id) return List_Id;
-- Returns a list of actions to assign Source to Target of type Typ using
-- an extra temporary, which can potentially be large.
type Case_Bounds is record
Choice_Lo : Node_Id;
Choice_Hi : Node_Id;
Choice_Node : Node_Id;
end record;
type Case_Table_Type is array (Nat range <>) of Case_Bounds;
-- Table type used by Check_Case_Choices procedure
procedure Expand_Delta_Array_Aggregate (N : Node_Id; Deltas : List_Id);
procedure Expand_Delta_Record_Aggregate (N : Node_Id; Deltas : List_Id);
procedure Expand_Container_Aggregate (N : Node_Id);
function Get_Base_Object (N : Node_Id) return Entity_Id;
-- Return the base object, i.e. the outermost prefix object, that N refers
-- to statically, or Empty if it cannot be determined. The assumption is
-- that all dereferences are explicit in the tree rooted at N.
function Has_Default_Init_Comps (N : Node_Id) return Boolean;
-- N is an aggregate (record or array). Checks the presence of default
-- initialization (<>) in any component (Ada 2005: AI-287).
procedure Initialize_Component
(N : Node_Id;
Comp : Node_Id;
Comp_Typ : Node_Id;
Init_Expr : Node_Id;
Stmts : List_Id);
-- Perform the initialization of component Comp with expected type
-- Comp_Typ of aggregate N. Init_Expr denotes the initialization
-- expression of the component. All generated code is added to Stmts.
function Is_CCG_Supported_Aggregate (N : Node_Id) return Boolean;
-- Return True if aggregate N is located in a context supported by the
-- CCG backend; False otherwise.
function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean;
-- Returns true if N is an aggregate used to initialize the components
-- of a statically allocated dispatch table.
function Late_Expansion
(N : Node_Id;
Typ : Entity_Id;
Target : Node_Id) return List_Id;
-- This routine implements top-down expansion of nested aggregates. In
-- doing so, it avoids the generation of temporaries at each level. N is
-- a nested record or array aggregate with the Expansion_Delayed flag.
-- Typ is the expected type of the aggregate. Target is a (duplicatable)
-- expression that will hold the result of the aggregate expansion.
function Make_OK_Assignment_Statement
(Sloc : Source_Ptr;
Name : Node_Id;
Expression : Node_Id) return Node_Id;
-- This is like Make_Assignment_Statement, except that Assignment_OK
-- is set in the left operand. All assignments built by this unit use
-- this routine. This is needed to deal with assignments to initialized
-- constants that are done in place.
function Must_Slide
(Aggr : Node_Id;
Obj_Type : Entity_Id;
Typ : Entity_Id) return Boolean;
-- A static array aggregate in an object declaration can in most cases be
-- expanded in place. The one exception is when the aggregate is given
-- with component associations that specify different bounds from those of
-- the type definition in the object declaration. In this pathological
-- case the aggregate must slide, and we must introduce an intermediate
-- temporary to hold it.
--
-- The same holds in an assignment to one-dimensional array of arrays,
-- when a component may be given with bounds that differ from those of the
-- component type.
function Number_Of_Choices (N : Node_Id) return Nat;
-- Returns the number of discrete choices (not including the others choice
-- if present) contained in (sub-)aggregate N.
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
-- Sort the Case Table using the Lower Bound of each Choice as the key.
-- A simple insertion sort is used since the number of choices in a case
-- statement of variant part will usually be small and probably in near
-- sorted order.
------------------------------------------------------
-- Local subprograms for Record Aggregate Expansion --
------------------------------------------------------
function Is_Build_In_Place_Aggregate_Return (N : Node_Id) return Boolean;
-- True if N is an aggregate (possibly qualified or a dependent expression
-- of a conditional expression, and possibly recursively so) that is being
-- returned from a build-in-place function. Such qualified and conditional
-- expressions are transparent for this purpose because an enclosing return
-- is propagated resp. distributed into these expressions by the expander.
function Build_Record_Aggr_Code
(N : Node_Id;
Typ : Entity_Id;
Lhs : Node_Id) return List_Id;
-- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
-- aggregate. Target is an expression containing the location on which the
-- component by component assignments will take place. Returns the list of
-- assignments plus all other adjustments needed for tagged and controlled
-- types.
procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id);
-- Transform a record aggregate into a sequence of assignments performed
-- component by component. N is an N_Aggregate or N_Extension_Aggregate.
-- Typ is the type of the record aggregate.
procedure Expand_Record_Aggregate
(N : Node_Id;
Orig_Tag : Node_Id := Empty;
Parent_Expr : Node_Id := Empty);
-- This is the top level procedure for record aggregate expansion.
-- Expansion for record aggregates needs expand aggregates for tagged
-- record types. Specifically Expand_Record_Aggregate adds the Tag
-- field in front of the Component_Association list that was created
-- during resolution by Resolve_Record_Aggregate.
--
-- N is the record aggregate node.
-- Orig_Tag is the value of the Tag that has to be provided for this
-- specific aggregate. It carries the tag corresponding to the type
-- of the outermost aggregate during the recursive expansion
-- Parent_Expr is the ancestor part of the original extension
-- aggregate
function Has_Mutable_Components (Typ : Entity_Id) return Boolean;
-- Return true if one of the components is of a discriminated type with
-- defaults. An aggregate for a type with mutable components must be
-- expanded into individual assignments.
function In_Place_Assign_OK
(N : Node_Id;
Target_Object : Entity_Id := Empty) return Boolean;
-- Predicate to determine whether an aggregate assignment can be done in
-- place, because none of the new values can depend on the components of
-- the target of the assignment.
procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id);
-- If the type of the aggregate is a type extension with renamed discrimi-
-- nants, we must initialize the hidden discriminants of the parent.
-- Otherwise, the target object must not be initialized. The discriminants
-- are initialized by calling the initialization procedure for the type.
-- This is incorrect if the initialization of other components has any
-- side effects. We restrict this call to the case where the parent type
-- has a variant part, because this is the only case where the hidden
-- discriminants are accessed, namely when calling discriminant checking
-- functions of the parent type, and when applying a stream attribute to
-- an object of the derived type.
-----------------------------------------------------
-- Local Subprograms for Array Aggregate Expansion --
-----------------------------------------------------
function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean;
-- Returns true if an aggregate assignment can be done by the back end
function Aggr_Size_OK (N : Node_Id) return Boolean;
-- Very large static aggregates present problems to the back-end, and are
-- transformed into assignments and loops. This function verifies that the
-- total number of components of an aggregate is acceptable for rewriting
-- into a purely positional static form. Aggr_Size_OK must be called before
-- calling Flatten.
--
-- This function also detects and warns about one-component aggregates that
-- appear in a nonstatic context. Even if the component value is static,
-- such an aggregate must be expanded into an assignment.
function Backend_Processing_Possible (N : Node_Id) return Boolean;
-- This function checks if array aggregate N can be processed directly
-- by the backend. If this is the case, True is returned.
function Build_Array_Aggr_Code
(N : Node_Id;
Ctype : Entity_Id;
Index : Node_Id;
Into : Node_Id;
Scalar_Comp : Boolean;
Indexes : List_Id := No_List) return List_Id;
-- This recursive routine returns a list of statements containing the
-- loops and assignments that are needed for the expansion of the array
-- aggregate N.
--
-- N is the (sub-)aggregate node to be expanded into code. This node has
-- been fully analyzed, and its Etype is properly set.
--
-- Index is the index node corresponding to the array subaggregate N
--
-- Into is the target expression into which we are copying the aggregate.
-- Note that this node may not have been analyzed yet, and so the Etype
-- field may not be set.
--
-- Scalar_Comp is True if the component type of the aggregate is scalar
--
-- Indexes is the current list of expressions used to index the object we
-- are writing into.
procedure Convert_Array_Aggr_In_Allocator
(Decl : Node_Id;
Aggr : Node_Id;
Target : Node_Id);
-- If the aggregate appears within an allocator and can be expanded in
-- place, this routine generates the individual assignments to components
-- of the designated object. This is an optimization over the general
-- case, where a temporary is first created on the stack and then used to
-- construct the allocated object on the heap.
procedure Convert_To_Positional
(N : Node_Id;
Handle_Bit_Packed : Boolean := False);
-- If possible, convert named notation to positional notation. This
-- conversion is possible only in some static cases. If the conversion is
-- possible, then N is rewritten with the analyzed converted aggregate.
-- The parameter Handle_Bit_Packed is usually set False (since we do
-- not expect the back end to handle bit packed arrays, so the normal case
-- of conversion is pointless), but in the special case of a call from
-- Packed_Array_Aggregate_Handled, we set this parameter to True, since
-- these are cases we handle in there.
procedure Expand_Array_Aggregate (N : Node_Id);
-- This is the top-level routine to perform array aggregate expansion.
-- N is the N_Aggregate node to be expanded.
function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean;
-- For 2D packed array aggregates with constant bounds and constant scalar
-- components, it is preferable to pack the inner aggregates because the
-- whole matrix can then be presented to the back-end as a one-dimensional
-- list of literals. This is much more efficient than expanding into single
-- component assignments. This function determines if the type Typ is for
-- an array that is suitable for this optimization: it returns True if Typ
-- is a two dimensional bit packed array with component size 1, 2, or 4.
function Max_Aggregate_Size
(N : Node_Id;
Default_Size : Nat := 5000) return Nat;
-- Return the max size for a static aggregate N. Return Default_Size if no
-- other special criteria trigger.
function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean;
-- Given an array aggregate, this function handles the case of a packed
-- array aggregate with all constant values, where the aggregate can be
-- evaluated at compile time. If this is possible, then N is rewritten
-- to be its proper compile time value with all the components properly
-- assembled. The expression is analyzed and resolved and True is returned.
-- If this transformation is not possible, N is unchanged and False is
-- returned.
function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean;
-- If the type of the aggregate is a two-dimensional bit_packed array
-- it may be transformed into an array of bytes with constant values,
-- and presented to the back-end as a static value. The function returns
-- false if this transformation cannot be performed. THis is similar to,
-- and reuses part of the machinery in Packed_Array_Aggregate_Handled.
------------------------------------
-- Aggr_Assignment_OK_For_Backend --
------------------------------------
-- Back-end processing by Gigi/gcc is possible only if all the following
-- conditions are met:
-- 1. N consists of a single OTHERS choice, possibly recursively, or
-- of a single choice, possibly recursively, if it is surrounded by
-- a qualified expression whose subtype mark is unconstrained.
-- 2. The array type has no null ranges (the purpose of this is to
-- avoid a bogus warning for an out-of-range value).
-- 3. The array type has no atomic components
-- 4. The component type is elementary
-- 5. The component size is a multiple of Storage_Unit
-- 6. The component size is Storage_Unit or the value is of the form
-- M * (1 + A**1 + A**2 + .. A**(K-1)) where A = 2**(Storage_Unit)
-- and M in 0 .. A-1. This can also be viewed as K occurrences of
-- the Storage_Unit value M, concatenated together.
-- The ultimate goal is to generate a call to a fast memset routine
-- specifically optimized for the target.
function Aggr_Assignment_OK_For_Backend (N : Node_Id) return Boolean is
function Is_OK_Aggregate (Aggr : Node_Id) return Boolean;
-- Return true if Aggr is suitable for back-end assignment
---------------------
-- Is_OK_Aggregate --
---------------------
function Is_OK_Aggregate (Aggr : Node_Id) return Boolean is
Assoc : constant List_Id := Component_Associations (Aggr);
begin
-- An "others" aggregate is most likely OK, but see below
if Is_Others_Aggregate (Aggr) then
null;
-- An aggregate with a single choice requires a qualified expression
-- whose subtype mark is an unconstrained type because we need it to
-- have the semantics of an "others" aggregate.
elsif Nkind (Parent (N)) = N_Qualified_Expression
and then not Is_Constrained (Entity (Subtype_Mark (Parent (N))))
and then Is_Single_Aggregate (Aggr)
then
null;
-- The other cases are not OK
else
return False;
end if;
-- In any case we do not support an iterated association
return Nkind (First (Assoc)) /= N_Iterated_Component_Association;
end Is_OK_Aggregate;
Bounds : Range_Nodes;
Csiz : Uint := No_Uint;
Ctyp : Entity_Id;
Expr : Node_Id;
Index : Entity_Id;
Nunits : Int;
Remainder : Uint;
Value : Uint;
-- Start of processing for Aggr_Assignment_OK_For_Backend
begin
-- Back end doesn't know about <>
if Has_Default_Init_Comps (N) then
return False;
end if;
-- Recurse as far as possible to find the innermost component type
Ctyp := Etype (N);
Expr := N;
while Is_Array_Type (Ctyp) loop
if Nkind (Expr) /= N_Aggregate
or else not Is_OK_Aggregate (Expr)
then
return False;
end if;
Index := First_Index (Ctyp);
while Present (Index) loop
Bounds := Get_Index_Bounds (Index);
if Is_Null_Range (Bounds.First, Bounds.Last) then
return False;
end if;
Next_Index (Index);
end loop;
Expr := Expression (First (Component_Associations (Expr)));
for J in 1 .. Number_Dimensions (Ctyp) - 1 loop
if Nkind (Expr) /= N_Aggregate
or else not Is_OK_Aggregate (Expr)
then
return False;
end if;
Expr := Expression (First (Component_Associations (Expr)));
end loop;
if Has_Atomic_Components (Ctyp) then
return False;
end if;
Csiz := Component_Size (Ctyp);
Ctyp := Component_Type (Ctyp);
if Is_Full_Access (Ctyp) then
return False;
end if;
end loop;
-- Access types need to be dealt with specially
if Is_Access_Type (Ctyp) then
-- Component_Size is not set by Layout_Type if the component
-- type is an access type ???
Csiz := Esize (Ctyp);
-- Fat pointers are rejected as they are not really elementary
-- for the backend.
if No (Csiz) or else Csiz /= System_Address_Size then
return False;
end if;
-- The supported expressions are NULL and constants, others are
-- rejected upfront to avoid being analyzed below, which can be
-- problematic for some of them, for example allocators.
if Nkind (Expr) /= N_Null and then not Is_Entity_Name (Expr) then
return False;
end if;
-- Scalar types are OK if their size is a multiple of Storage_Unit
elsif Is_Scalar_Type (Ctyp) and then Present (Csiz) then
if Csiz mod System_Storage_Unit /= 0 then
return False;
end if;
-- Composite types are rejected
else
return False;
end if;
-- If the expression has side effects (e.g. contains calls with
-- potential side effects) reject as well. We only preanalyze the
-- expression to prevent the removal of intended side effects.
Preanalyze_And_Resolve (Expr, Ctyp);
if not Side_Effect_Free (Expr) then
return False;
end if;
-- The expression needs to be analyzed if True is returned
Analyze_And_Resolve (Expr, Ctyp);
-- Strip away any conversions from the expression as they simply
-- qualify the real expression.
while Nkind (Expr) in N_Unchecked_Type_Conversion | N_Type_Conversion
loop
Expr := Expression (Expr);
end loop;
Nunits := UI_To_Int (Csiz) / System_Storage_Unit;
if Nunits = 1 then
return True;
end if;
if not Compile_Time_Known_Value (Expr) then
return False;
end if;
-- The only supported value for floating point is 0.0
if Is_Floating_Point_Type (Ctyp) then
return Expr_Value_R (Expr) = Ureal_0;
end if;
-- For other types, we can look into the value as an integer, which
-- means the representation value for enumeration literals.
Value := Expr_Rep_Value (Expr);
if Has_Biased_Representation (Ctyp) then
Value := Value - Expr_Value (Type_Low_Bound (Ctyp));
end if;
-- Values 0 and -1 immediately satisfy the last check
if Value = Uint_0 or else Value = Uint_Minus_1 then
return True;
end if;
-- We need to work with an unsigned value
if Value < 0 then
Value := Value + 2**(System_Storage_Unit * Nunits);
end if;
Remainder := Value rem 2**System_Storage_Unit;
for J in 1 .. Nunits - 1 loop
Value := Value / 2**System_Storage_Unit;
if Value rem 2**System_Storage_Unit /= Remainder then
return False;
end if;
end loop;
return True;
end Aggr_Assignment_OK_For_Backend;
------------------
-- Aggr_Size_OK --
------------------
function Aggr_Size_OK (N : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (N);
Lo : Node_Id;
Hi : Node_Id;
Indx : Node_Id;
Size : Uint;
Lov : Uint;
Hiv : Uint;
Max_Aggr_Size : Nat;
-- Determines the maximum size of an array aggregate produced by
-- converting named to positional notation (e.g. from others clauses).
-- This avoids running away with attempts to convert huge aggregates,
-- which hit memory limits in the backend.
function Component_Count (T : Entity_Id) return Nat;
-- The limit is applied to the total number of subcomponents that the
-- aggregate will have, which is the number of static expressions
-- that will appear in the flattened array. This requires a recursive
-- computation of the number of scalar components of the structure.
---------------------
-- Component_Count --
---------------------
function Component_Count (T : Entity_Id) return Nat is
Res : Nat := 0;
Comp : Entity_Id;
begin
if Is_Scalar_Type (T) then
return 1;
elsif Is_Record_Type (T) then
Comp := First_Component (T);
while Present (Comp) loop
Res := Res + Component_Count (Etype (Comp));
Next_Component (Comp);
end loop;
return Res;
elsif Is_Array_Type (T) then
declare
Lo : constant Node_Id :=
Type_Low_Bound (Etype (First_Index (T)));
Hi : constant Node_Id :=
Type_High_Bound (Etype (First_Index (T)));
Siz : constant Nat := Component_Count (Component_Type (T));
begin
-- Check for superflat arrays, i.e. arrays with such bounds
-- as 4 .. 2, to insure that this function never returns a
-- meaningless negative value.
if not Compile_Time_Known_Value (Lo)
or else not Compile_Time_Known_Value (Hi)
or else Expr_Value (Hi) < Expr_Value (Lo)
then
return 0;
else
-- If the number of components is greater than Int'Last,
-- then return Int'Last, so caller will return False (Aggr
-- size is not OK). Otherwise, UI_To_Int will crash.
declare
UI : constant Uint :=
(Expr_Value (Hi) - Expr_Value (Lo) + 1) * Siz;
begin
if UI_Is_In_Int_Range (UI) then
return UI_To_Int (UI);
else
return Int'Last;
end if;
end;
end if;
end;
else
-- Can only be a null for an access type
return 1;
end if;
end Component_Count;
-- Start of processing for Aggr_Size_OK
begin
-- We bump the maximum size unless the aggregate has a single component
-- association, which will be more efficient if implemented with a loop.
-- The -gnatd_g switch disables this bumping.
if (No (Expressions (N))
and then No (Next (First (Component_Associations (N)))))
or else Debug_Flag_Underscore_G
then
Max_Aggr_Size := Max_Aggregate_Size (N);
else
Max_Aggr_Size := Max_Aggregate_Size (N, 500_000);
end if;
Size := UI_From_Int (Component_Count (Component_Type (Typ)));
Indx := First_Index (Typ);
while Present (Indx) loop
Lo := Type_Low_Bound (Etype (Indx));
Hi := Type_High_Bound (Etype (Indx));
-- Bounds need to be known at compile time
if not Compile_Time_Known_Value (Lo)
or else not Compile_Time_Known_Value (Hi)
then
return False;
end if;
Lov := Expr_Value (Lo);
Hiv := Expr_Value (Hi);
-- A flat array is always safe
if Hiv < Lov then
return True;
end if;
-- One-component aggregates are suspicious, and if the context type
-- is an object declaration with nonstatic bounds it will trip gcc;
-- such an aggregate must be expanded into a single assignment.
if Hiv = Lov and then Nkind (Parent (N)) = N_Object_Declaration then
declare
Index_Type : constant Entity_Id :=
Etype
(First_Index (Etype (Defining_Identifier (Parent (N)))));
Indx : Node_Id;
begin
if not Compile_Time_Known_Value (Type_Low_Bound (Index_Type))
or else not Compile_Time_Known_Value
(Type_High_Bound (Index_Type))
then
if Present (Component_Associations (N)) then
Indx :=
First
(Choice_List (First (Component_Associations (N))));
if Is_Entity_Name (Indx)
and then not Is_Type (Entity (Indx))
then
Error_Msg_N
("single component aggregate in "
& "non-static context??", Indx);
Error_Msg_N ("\maybe subtype name was meant??", Indx);
end if;
end if;
return False;
end if;
end;
end if;
declare
Rng : constant Uint := Hiv - Lov + 1;
begin
-- Check if size is too large
if not UI_Is_In_Int_Range (Rng) then
return False;
end if;
-- Compute the size using universal arithmetic to avoid the
-- possibility of overflow on very large aggregates.
Size := Size * Rng;
if Size <= 0
or else Size > Max_Aggr_Size
then
return False;
end if;
end;
-- Bounds must be in integer range, for later array construction
if not UI_Is_In_Int_Range (Lov)
or else
not UI_Is_In_Int_Range (Hiv)
then
return False;
end if;
Next_Index (Indx);
end loop;
return True;
end Aggr_Size_OK;
---------------------------------
-- Backend_Processing_Possible --
---------------------------------
-- Backend processing by Gigi/gcc is possible only if all the following
-- conditions are met:
-- 1. N is fully positional
-- 2. N is not a bit-packed array aggregate;
-- 3. The size of N's array type must be known at compile time. Note
-- that this implies that the component size is also known
-- 4. The array type of N does not follow the Fortran layout convention
-- or if it does it must be 1 dimensional.
-- 5. The array component type may not be tagged (which could necessitate
-- reassignment of proper tags).
-- 6. The array component type must not have unaligned bit components
-- 7. None of the components of the aggregate may be bit unaligned
-- components.
-- 8. There cannot be delayed components, since we do not know enough
-- at this stage to know if back end processing is possible.
-- 9. There cannot be any discriminated record components, since the
-- back end cannot handle this complex case.
-- 10. No controlled actions need to be generated for components
-- 11. When generating C code, N must be part of a N_Object_Declaration
-- 12. When generating C code, N must not include function calls
function Backend_Processing_Possible (N : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (N);
-- Typ is the correct constrained array subtype of the aggregate
function Component_Check (N : Node_Id; Index : Node_Id) return Boolean;
-- This routine checks components of aggregate N, enforcing checks
-- 1, 7, 8, 9, 11, and 12. In the multidimensional case, these checks
-- are performed on subaggregates. The Index value is the current index
-- being checked in the multidimensional case.
---------------------
-- Component_Check --
---------------------
function Component_Check (N : Node_Id; Index : Node_Id) return Boolean is
function Ultimate_Original_Expression (N : Node_Id) return Node_Id;
-- Given a type conversion or an unchecked type conversion N, return
-- its innermost original expression.
----------------------------------
-- Ultimate_Original_Expression --
----------------------------------
function Ultimate_Original_Expression (N : Node_Id) return Node_Id is
Expr : Node_Id := Original_Node (N);
begin
while Nkind (Expr) in
N_Type_Conversion | N_Unchecked_Type_Conversion
loop
Expr := Original_Node (Expression (Expr));
end loop;
return Expr;
end Ultimate_Original_Expression;
-- Local variables
Expr : Node_Id;
-- Start of processing for Component_Check
begin
-- Checks 1: (no component associations)
if Present (Component_Associations (N)) then
return False;
end if;
-- Checks 11: The C code generator cannot handle aggregates that are
-- not part of an object declaration.
if Modify_Tree_For_C and then not Is_CCG_Supported_Aggregate (N) then
return False;
end if;
-- Checks on components
-- Recurse to check subaggregates, which may appear in qualified
-- expressions. If delayed, the front-end will have to expand.
-- If the component is a discriminated record, treat as nonstatic,
-- as the back-end cannot handle this properly.
Expr := First (Expressions (N));
while Present (Expr) loop
-- Checks 8: (no delayed components)
if Is_Delayed_Aggregate (Expr) then
return False;
end if;
-- Checks 9: (no discriminated records)
if Present (Etype (Expr))
and then Is_Record_Type (Etype (Expr))
and then Has_Discriminants (Etype (Expr))
then
return False;
end if;
-- Checks 7. Component must not be bit aligned component
if Possible_Bit_Aligned_Component (Expr) then
return False;
end if;
-- Checks 12: (no function call)
if Modify_Tree_For_C
and then
Nkind (Ultimate_Original_Expression (Expr)) = N_Function_Call
then
return False;
end if;
-- Recursion to following indexes for multiple dimension case
if Present (Next_Index (Index))
and then not Component_Check (Expr, Next_Index (Index))
then
return False;
end if;
-- All checks for that component finished, on to next
Next (Expr);
end loop;
return True;
end Component_Check;
-- Start of processing for Backend_Processing_Possible
begin
-- Checks 2 (array not bit packed) and 10 (no controlled actions)
if Is_Bit_Packed_Array (Typ) or else Needs_Finalization (Typ) then
return False;
end if;
-- If component is limited, aggregate must be expanded because each
-- component assignment must be built in place.
if Is_Inherently_Limited_Type (Component_Type (Typ)) then
return False;
end if;
-- Checks 4 (array must not be multidimensional Fortran case)
if Convention (Typ) = Convention_Fortran
and then Number_Dimensions (Typ) > 1
then
return False;
end if;
-- Checks 3 (size of array must be known at compile time)
if not Size_Known_At_Compile_Time (Typ) then
return False;
end if;
-- Checks on components
if not Component_Check (N, First_Index (Typ)) then
return False;
end if;
-- Checks 5 (if the component type is tagged, then we may need to do
-- tag adjustments. Perhaps this should be refined to check for any
-- component associations that actually need tag adjustment, similar
-- to the test in Component_OK_For_Backend for record aggregates with
-- tagged components, but not clear whether it's worthwhile ???; in the
-- case of virtual machines (no Tagged_Type_Expansion), object tags are
-- handled implicitly).
if Is_Tagged_Type (Component_Type (Typ))
and then Tagged_Type_Expansion
then
return False;
end if;
-- Checks 6 (component type must not have bit aligned components)
if Type_May_Have_Bit_Aligned_Components (Component_Type (Typ)) then
return False;
end if;
-- Backend processing is possible
return True;
end Backend_Processing_Possible;
---------------------------
-- Build_Array_Aggr_Code --
---------------------------
-- The code that we generate from a one dimensional aggregate is
-- 1. If the subaggregate contains discrete choices we
-- (a) Sort the discrete choices
-- (b) Otherwise for each discrete choice that specifies a range we
-- emit a loop. If a range specifies a maximum of three values, or
-- we are dealing with an expression we emit a sequence of
-- assignments instead of a loop.
-- (c) Generate the remaining loops to cover the others choice if any
-- 2. If the aggregate contains positional elements we
-- (a) Translate the positional elements in a series of assignments
-- (b) Generate a final loop to cover the others choice if any.
-- Note that this final loop has to be a while loop since the case
-- L : Integer := Integer'Last;
-- H : Integer := Integer'Last;
-- A : array (L .. H) := (1, others =>0);
-- cannot be handled by a for loop. Thus for the following
-- array (L .. H) := (.. positional elements.., others => E);
-- we always generate something like:
-- J : Index_Type := Index_Of_Last_Positional_Element;
-- while J < H loop
-- J := Index_Base'Succ (J)
-- Tmp (J) := E;
-- end loop;
function Build_Array_Aggr_Code
(N : Node_Id;
Ctype : Entity_Id;
Index : Node_Id;
Into : Node_Id;
Scalar_Comp : Boolean;
Indexes : List_Id := No_List) return List_Id
is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Index_Base : constant Entity_Id := Base_Type (Etype (Index));
Index_Base_L : constant Node_Id := Type_Low_Bound (Index_Base);
Index_Base_H : constant Node_Id := Type_High_Bound (Index_Base);
function Add (Val : Int; To : Node_Id) return Node_Id;
-- Returns an expression where Val is added to expression To, unless
-- To+Val is provably out of To's base type range. To must be an
-- already analyzed expression.
function Empty_Range (L, H : Node_Id) return Boolean;
-- Returns True if the range defined by L .. H is certainly empty
function Equal (L, H : Node_Id) return Boolean;
-- Returns True if L = H for sure
function Index_Base_Name return Node_Id;
-- Returns a new reference to the index type name
function Gen_Assign
(Ind : Node_Id;
Expr : Node_Id) return List_Id;
-- Ind must be a side-effect-free expression. If the input aggregate N
-- to Build_Loop contains no subaggregates, then this function returns
-- the assignment statement:
--
-- Into (Indexes, Ind) := Expr;
--
-- Otherwise we call Build_Code recursively.
--
-- Ada 2005 (AI-287): In case of default initialized component, Expr
-- is empty and we generate a call to the corresponding IP subprogram.
function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id;
-- Nodes L and H must be side-effect-free expressions. If the input
-- aggregate N to Build_Loop contains no subaggregates, this routine
-- returns the for loop statement:
--
-- for J in Index_Base'(L) .. Index_Base'(H) loop
-- Into (Indexes, J) := Expr;
-- end loop;
--
-- Otherwise we call Build_Code recursively. As an optimization if the
-- loop covers 3 or fewer scalar elements we generate a sequence of
-- assignments.
-- If the component association that generates the loop comes from an
-- Iterated_Component_Association, the loop parameter has the name of
-- the corresponding parameter in the original construct.
function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id;
-- Nodes L and H must be side-effect-free expressions. If the input
-- aggregate N to Build_Loop contains no subaggregates, this routine
-- returns the while loop statement:
--
-- J : Index_Base := L;
-- while J < H loop
-- J := Index_Base'Succ (J);
-- Into (Indexes, J) := Expr;
-- end loop;
--
-- Otherwise we call Build_Code recursively
function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id;
-- For an association with a box, use value given by aspect
-- Default_Component_Value of array type if specified, else use
-- value given by aspect Default_Value for component type itself
-- if specified, else return Empty.
function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean;
function Local_Expr_Value (E : Node_Id) return Uint;
-- These two Local routines are used to replace the corresponding ones
-- in sem_eval because while processing the bounds of an aggregate with
-- discrete choices whose index type is an enumeration, we build static
-- expressions not recognized by Compile_Time_Known_Value as such since
-- they have not yet been analyzed and resolved. All the expressions in
-- question are things like Index_Base_Name'Val (Const) which we can
-- easily recognize as being constant.
---------
-- Add --
---------
function Add (Val : Int; To : Node_Id) return Node_Id is
Expr_Pos : Node_Id;
Expr : Node_Id;
To_Pos : Node_Id;
U_To : Uint;
U_Val : constant Uint := UI_From_Int (Val);
begin
-- Note: do not try to optimize the case of Val = 0, because
-- we need to build a new node with the proper Sloc value anyway.
-- First test if we can do constant folding
if Local_Compile_Time_Known_Value (To) then
U_To := Local_Expr_Value (To) + Val;
-- Determine if our constant is outside the range of the index.
-- If so return an Empty node. This empty node will be caught
-- by Empty_Range below.
if Compile_Time_Known_Value (Index_Base_L)
and then U_To < Expr_Value (Index_Base_L)
then
return Empty;
elsif Compile_Time_Known_Value (Index_Base_H)
and then U_To > Expr_Value (Index_Base_H)
then
return Empty;
end if;
Expr_Pos := Make_Integer_Literal (Loc, U_To);
Set_Is_Static_Expression (Expr_Pos);
if not Is_Enumeration_Type (Index_Base) then
Expr := Expr_Pos;
-- If we are dealing with enumeration return
-- Index_Base'Val (Expr_Pos)
else
Expr :=
Make_Attribute_Reference
(Loc,
Prefix => Index_Base_Name,
Attribute_Name => Name_Val,
Expressions => New_List (Expr_Pos));
end if;
return Expr;
end if;
-- If we are here no constant folding possible
if not Is_Enumeration_Type (Index_Base) then
Expr :=
Make_Op_Add (Loc,
Left_Opnd => Duplicate_Subexpr (To),
Right_Opnd => Make_Integer_Literal (Loc, U_Val));
-- If we are dealing with enumeration return
-- Index_Base'Val (Index_Base'Pos (To) + Val)
else
To_Pos :=
Make_Attribute_Reference
(Loc,
Prefix => Index_Base_Name,
Attribute_Name => Name_Pos,
Expressions => New_List (Duplicate_Subexpr (To)));
Expr_Pos :=
Make_Op_Add (Loc,
Left_Opnd => To_Pos,
Right_Opnd => Make_Integer_Literal (Loc, U_Val));
Expr :=
Make_Attribute_Reference
(Loc,
Prefix => Index_Base_Name,
Attribute_Name => Name_Val,
Expressions => New_List (Expr_Pos));
end if;
return Expr;
end Add;
-----------------
-- Empty_Range --
-----------------
function Empty_Range (L, H : Node_Id) return Boolean is
Is_Empty : Boolean := False;
Low : Node_Id;
High : Node_Id;
begin
-- First check if L or H were already detected as overflowing the
-- index base range type by function Add above. If this is so Add
-- returns the empty node.
if No (L) or else No (H) then
return True;
end if;
for J in 1 .. 3 loop
case J is
-- L > H range is empty
when 1 =>
Low := L;
High := H;
-- B_L > H range must be empty
when 2 =>
Low := Index_Base_L;
High := H;
-- L > B_H range must be empty
when 3 =>
Low := L;
High := Index_Base_H;
end case;
if Local_Compile_Time_Known_Value (Low)
and then
Local_Compile_Time_Known_Value (High)
then
Is_Empty :=
UI_Gt (Local_Expr_Value (Low), Local_Expr_Value (High));
end if;
exit when Is_Empty;
end loop;
return Is_Empty;
end Empty_Range;
-----------
-- Equal --
-----------
function Equal (L, H : Node_Id) return Boolean is
begin
if L = H then
return True;
elsif Local_Compile_Time_Known_Value (L)
and then
Local_Compile_Time_Known_Value (H)
then
return UI_Eq (Local_Expr_Value (L), Local_Expr_Value (H));
end if;
return False;
end Equal;
----------------
-- Gen_Assign --
----------------
function Gen_Assign
(Ind : Node_Id;
Expr : Node_Id) return List_Id
is
function Add_Loop_Actions (Lis : List_Id) return List_Id;
-- Collect insert_actions generated in the construction of a loop,
-- and prepend them to the sequence of assignments to complete the
-- eventual body of the loop.
----------------------
-- Add_Loop_Actions --
----------------------
function Add_Loop_Actions (Lis : List_Id) return List_Id is
Res : List_Id;
begin
-- Ada 2005 (AI-287): Do nothing else in case of default
-- initialized component.
if No (Expr) then
return Lis;
elsif Nkind (Parent (Expr)) = N_Component_Association
and then Present (Loop_Actions (Parent (Expr)))
then
Append_List (Lis, Loop_Actions (Parent (Expr)));
Res := Loop_Actions (Parent (Expr));
Set_Loop_Actions (Parent (Expr), No_List);
return Res;
else
return Lis;
end if;
end Add_Loop_Actions;
-- Local variables
Stmts : constant List_Id := New_List;
Comp_Typ : Entity_Id := Empty;
Expr_Q : Node_Id;
Indexed_Comp : Node_Id;
Init_Call : Node_Id;
New_Indexes : List_Id;
-- Start of processing for Gen_Assign
begin
if No (Indexes) then
New_Indexes := New_List;
else
New_Indexes := New_Copy_List_Tree (Indexes);
end if;
Append_To (New_Indexes, Ind);
if Present (Next_Index (Index)) then
return
Add_Loop_Actions (
Build_Array_Aggr_Code
(N => Expr,
Ctype => Ctype,
Index => Next_Index (Index),
Into => Into,
Scalar_Comp => Scalar_Comp,
Indexes => New_Indexes));
end if;
-- If we get here then we are at a bottom-level (sub-)aggregate
Indexed_Comp :=
Checks_Off
(Make_Indexed_Component (Loc,
Prefix => New_Copy_Tree (Into),
Expressions => New_Indexes));
Set_Assignment_OK (Indexed_Comp);
-- Ada 2005 (AI-287): In case of default initialized component, Expr
-- is not present (and therefore we also initialize Expr_Q to empty).
Expr_Q := Unqualify (Expr);
if Present (Etype (N)) and then Etype (N) /= Any_Composite then
Comp_Typ := Component_Type (Etype (N));
pragma Assert (Comp_Typ = Ctype); -- AI-287
elsif Present (Next (First (New_Indexes))) then
-- Ada 2005 (AI-287): Do nothing in case of default initialized
-- component because we have received the component type in
-- the formal parameter Ctype.
-- ??? Some assert pragmas have been added to check if this new
-- formal can be used to replace this code in all cases.
if Present (Expr) then
-- This is a multidimensional array. Recover the component type
-- from the outermost aggregate, because subaggregates do not
-- have an assigned type.
declare
P : Node_Id;
begin
P := Parent (Expr);
while Present (P) loop
if Nkind (P) = N_Aggregate
and then Present (Etype (P))
then
Comp_Typ := Component_Type (Etype (P));
exit;
else
P := Parent (P);
end if;
end loop;
pragma Assert (Comp_Typ = Ctype); -- AI-287
end;
end if;
end if;
-- Ada 2005 (AI-287): We only analyze the expression in case of non-
-- default initialized components (otherwise Expr_Q is not present).
if Present (Expr_Q)
and then Nkind (Expr_Q) in N_Aggregate | N_Extension_Aggregate
then
-- At this stage the Expression may not have been analyzed yet
-- because the array aggregate code has not been updated to use
-- the Expansion_Delayed flag and avoid analysis altogether to
-- solve the same problem (see Resolve_Aggr_Expr). So let us do
-- the analysis of non-array aggregates now in order to get the
-- value of Expansion_Delayed flag for the inner aggregate ???
-- In the case of an iterated component association, the analysis
-- of the generated loop will analyze the expression in the
-- proper context, in which the loop parameter is visible.
if Present (Comp_Typ) and then not Is_Array_Type (Comp_Typ) then
if Nkind (Parent (Expr_Q)) = N_Iterated_Component_Association
or else Nkind (Parent (Parent ((Expr_Q)))) =
N_Iterated_Component_Association
then
null;
else
Analyze_And_Resolve (Expr_Q, Comp_Typ);
end if;
end if;
if Is_Delayed_Aggregate (Expr_Q) then
-- This is either a subaggregate of a multidimensional array,
-- or a component of an array type whose component type is
-- also an array. In the latter case, the expression may have
-- component associations that provide different bounds from
-- those of the component type, and sliding must occur. Instead
-- of decomposing the current aggregate assignment, force the
-- reanalysis of the assignment, so that a temporary will be
-- generated in the usual fashion, and sliding will take place.
if Nkind (Parent (N)) = N_Assignment_Statement
and then Is_Array_Type (Comp_Typ)
and then Present (Component_Associations (Expr_Q))
and then Must_Slide (N, Comp_Typ, Etype (Expr_Q))
then
Set_Expansion_Delayed (Expr_Q, False);
Set_Analyzed (Expr_Q, False);
else
return
Add_Loop_Actions (
Late_Expansion (Expr_Q, Etype (Expr_Q), Indexed_Comp));
end if;
end if;
end if;
if Present (Expr) then
Initialize_Component
(N => N,
Comp => Indexed_Comp,
Comp_Typ => Comp_Typ,
Init_Expr => Expr,
Stmts => Stmts);
-- Ada 2005 (AI-287): In case of default initialized component, call
-- the initialization subprogram associated with the component type.
-- If the component type is an access type, add an explicit null
-- assignment, because for the back-end there is an initialization
-- present for the whole aggregate, and no default initialization
-- will take place.
-- In addition, if the component type is controlled, we must call
-- its Initialize procedure explicitly, because there is no explicit
-- object creation that will invoke it otherwise.
else
if Present (Base_Init_Proc (Base_Type (Ctype)))
or else Has_Task (Base_Type (Ctype))
then
Append_List_To (Stmts,
Build_Initialization_Call (Loc,
Id_Ref => Indexed_Comp,
Typ => Ctype,
With_Default_Init => True));
-- If the component type has invariants, add an invariant
-- check after the component is default-initialized. It will
-- be analyzed and resolved before the code for initialization
-- of other components.
if Has_Invariants (Ctype) then
Set_Etype (Indexed_Comp, Ctype);
Append_To (Stmts, Make_Invariant_Call (Indexed_Comp));
end if;
end if;
if Needs_Finalization (Ctype) then
Init_Call :=
Make_Init_Call
(Obj_Ref => New_Copy_Tree (Indexed_Comp),
Typ => Ctype);
-- Guard against a missing [Deep_]Initialize when the component
-- type was not properly frozen.
if Present (Init_Call) then
Append_To (Stmts, Init_Call);
end if;
end if;
-- If Default_Initial_Condition applies to the component type,
-- add a DIC check after the component is default-initialized,
-- as well as after an Initialize procedure is called, in the
-- case of components of a controlled type. It will be analyzed
-- and resolved before the code for initialization of other
-- components.
-- Theoretically this might also be needed for cases where Expr
-- is not empty, but a default init still applies, such as for
-- Default_Value cases, in which case we won't get here. ???
if Has_DIC (Ctype) and then Present (DIC_Procedure (Ctype)) then
Append_To (Stmts,
Build_DIC_Call (Loc, New_Copy_Tree (Indexed_Comp), Ctype));
end if;
end if;
return Add_Loop_Actions (Stmts);
end Gen_Assign;
--------------
-- Gen_Loop --
--------------
function Gen_Loop (L, H : Node_Id; Expr : Node_Id) return List_Id is
Is_Iterated_Component : constant Boolean :=
Parent_Kind (Expr) = N_Iterated_Component_Association;
Ent : Entity_Id;
L_J : Node_Id;
L_L : Node_Id;
-- Index_Base'(L)
L_H : Node_Id;
-- Index_Base'(H)
L_Range : Node_Id;
-- Index_Base'(L) .. Index_Base'(H)
L_Iteration_Scheme : Node_Id;
-- L_J in Index_Base'(L) .. Index_Base'(H)
L_Body : List_Id;
-- The statements to execute in the loop
S : constant List_Id := New_List;
-- List of statements
Tcopy : Node_Id;
-- Copy of expression tree, used for checking purposes
begin
-- If loop bounds define an empty range return the null statement
if Empty_Range (L, H) then
Append_To (S, Make_Null_Statement (Loc));
-- Ada 2005 (AI-287): Nothing else need to be done in case of
-- default initialized component.
if No (Expr) then
null;
else
-- The expression must be type-checked even though no component
-- of the aggregate will have this value. This is done only for
-- actual components of the array, not for subaggregates. Do
-- the check on a copy, because the expression may be shared
-- among several choices, some of which might be non-null.
if Present (Etype (N))
and then Is_Array_Type (Etype (N))
and then No (Next_Index (Index))
then
Expander_Mode_Save_And_Set (False);
Tcopy := New_Copy_Tree (Expr);
Set_Parent (Tcopy, N);
-- For iterated_component_association analyze and resolve
-- the expression with name of the index parameter visible.
-- To manipulate scopes, we use entity of the implicit loop.
if Is_Iterated_Component then
declare
Index_Parameter : constant Entity_Id :=
Defining_Identifier (Parent (Expr));
begin
Push_Scope (Scope (Index_Parameter));
Enter_Name (Index_Parameter);
Analyze_And_Resolve
(Tcopy, Component_Type (Etype (N)));
End_Scope;
end;
-- For ordinary component association, just analyze and
-- resolve the expression.
else
Analyze_And_Resolve (Tcopy, Component_Type (Etype (N)));
end if;
Expander_Mode_Restore;
end if;
end if;
return S;
-- If loop bounds are the same then generate an assignment, unless
-- the parent construct is an Iterated_Component_Association.
elsif Equal (L, H) and then not Is_Iterated_Component then
return Gen_Assign (New_Copy_Tree (L), Expr);
-- If H - L <= 2 then generate a sequence of assignments when we are
-- processing the bottom most aggregate and it contains scalar
-- components.
elsif No (Next_Index (Index))
and then Scalar_Comp
and then Local_Compile_Time_Known_Value (L)
and then Local_Compile_Time_Known_Value (H)
and then Local_Expr_Value (H) - Local_Expr_Value (L) <= 2
and then not Is_Iterated_Component
then
Append_List_To (S, Gen_Assign (New_Copy_Tree (L), Expr));
Append_List_To (S, Gen_Assign (Add (1, To => L), Expr));
if Local_Expr_Value (H) - Local_Expr_Value (L) = 2 then
Append_List_To (S, Gen_Assign (Add (2, To => L), Expr));
end if;
return S;
end if;
-- Otherwise construct the loop, starting with the loop index L_J
if Is_Iterated_Component then
-- Create a new scope for the loop variable so that the
-- following Gen_Assign (that ends up calling
-- Preanalyze_And_Resolve) can correctly find it.
Ent := New_Internal_Entity (E_Loop,
Current_Scope, Loc, 'L');
Set_Etype (Ent, Standard_Void_Type);
Set_Parent (Ent, Parent (Parent (Expr)));
Push_Scope (Ent);
L_J :=
Make_Defining_Identifier (Loc,
Chars => (Chars (Defining_Identifier (Parent (Expr)))));
Enter_Name (L_J);
-- The Etype will be set by a later Analyze call.
Set_Etype (L_J, Any_Type);
Mutate_Ekind (L_J, E_Variable);
Set_Is_Not_Self_Hidden (L_J);
Set_Scope (L_J, Ent);
else
L_J := Make_Temporary (Loc, 'J', L);
end if;
-- Construct "L .. H" in Index_Base. We use a qualified expression
-- for the bound to convert to the index base, but we don't need
-- to do that if we already have the base type at hand.
if Etype (L) = Index_Base then
L_L := New_Copy_Tree (L);
else
L_L :=
Make_Qualified_Expression (Loc,
Subtype_Mark => Index_Base_Name,
Expression => New_Copy_Tree (L));
end if;
if Etype (H) = Index_Base then
L_H := New_Copy_Tree (H);
else
L_H :=
Make_Qualified_Expression (Loc,
Subtype_Mark => Index_Base_Name,
Expression => New_Copy_Tree (H));
end if;
L_Range :=
Make_Range (Loc,
Low_Bound => L_L,
High_Bound => L_H);
-- Construct "for L_J in Index_Base range L .. H"
L_Iteration_Scheme :=
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => L_J,
Discrete_Subtype_Definition => L_Range));
-- Construct the statements to execute in the loop body
L_Body := Gen_Assign (New_Occurrence_Of (L_J, Loc), Expr);
-- Construct the final loop
Append_To (S,
Make_Implicit_Loop_Statement
(Node => N,
Identifier => Empty,
Iteration_Scheme => L_Iteration_Scheme,
Statements => L_Body));
if Is_Iterated_Component then
End_Scope;
end if;
-- A small optimization: if the aggregate is initialized with a box
-- and the component type has no initialization procedure, remove the
-- useless empty loop.
if Nkind (First (S)) = N_Loop_Statement
and then Is_Empty_List (Statements (First (S)))
then
return New_List (Make_Null_Statement (Loc));
else
return S;
end if;
end Gen_Loop;
---------------
-- Gen_While --
---------------
-- The code built is
-- W_J : Index_Base := L;
-- while W_J < H loop
-- W_J := Index_Base'Succ (W);
-- L_Body;
-- end loop;
function Gen_While (L, H : Node_Id; Expr : Node_Id) return List_Id is
W_J : Node_Id;
W_Decl : Node_Id;
-- W_J : Base_Type := L;
W_Iteration_Scheme : Node_Id;
-- while W_J < H
W_Index_Succ : Node_Id;
-- Index_Base'Succ (J)
W_Increment : Node_Id;
-- W_J := Index_Base'Succ (W)
W_Body : constant List_Id := New_List;
-- The statements to execute in the loop
S : constant List_Id := New_List;
-- list of statement
begin
-- If loop bounds define an empty range or are equal return null
if Empty_Range (L, H) or else Equal (L, H) then
Append_To (S, Make_Null_Statement (Loc));
return S;
end if;
-- Build the decl of W_J
W_J := Make_Temporary (Loc, 'J', L);
W_Decl :=
Make_Object_Declaration
(Loc,
Defining_Identifier => W_J,
Object_Definition => Index_Base_Name,
Expression => L);
-- Theoretically we should do a New_Copy_Tree (L) here, but we know
-- that in this particular case L is a fresh Expr generated by
-- Add which we are the only ones to use.
Append_To (S, W_Decl);
-- Construct " while W_J < H"
W_Iteration_Scheme :=
Make_Iteration_Scheme
(Loc,
Condition => Make_Op_Lt
(Loc,
Left_Opnd => New_Occurrence_Of (W_J, Loc),
Right_Opnd => New_Copy_Tree (H)));
-- Construct the statements to execute in the loop body
W_Index_Succ :=
Make_Attribute_Reference
(Loc,
Prefix => Index_Base_Name,
Attribute_Name => Name_Succ,
Expressions => New_List (New_Occurrence_Of (W_J, Loc)));
W_Increment :=
Make_OK_Assignment_Statement
(Loc,
Name => New_Occurrence_Of (W_J, Loc),
Expression => W_Index_Succ);
Append_To (W_Body, W_Increment);
Append_List_To (W_Body,
Gen_Assign (New_Occurrence_Of (W_J, Loc), Expr));
-- Construct the final loop
Append_To (S,
Make_Implicit_Loop_Statement
(Node => N,
Identifier => Empty,
Iteration_Scheme => W_Iteration_Scheme,
Statements => W_Body));
return S;
end Gen_While;
--------------------
-- Get_Assoc_Expr --
--------------------
-- Duplicate the expression in case we will be generating several loops.
-- As a result the expression is no longer shared between the loops and
-- is reevaluated for each such loop.
function Get_Assoc_Expr (Assoc : Node_Id) return Node_Id is
Typ : constant Entity_Id := Base_Type (Etype (N));
begin
if Box_Present (Assoc) then
if Present (Default_Aspect_Component_Value (Typ)) then
return New_Copy_Tree (Default_Aspect_Component_Value (Typ));
elsif Needs_Simple_Initialization (Ctype) then
return New_Copy_Tree (Get_Simple_Init_Val (Ctype, N));
else
return Empty;
end if;
else
-- The expression will be passed to Gen_Loop, which immediately
-- calls Parent_Kind on it, so we set Parent when it matters.
return
Expr : constant Node_Id := New_Copy_Tree (Expression (Assoc))
do
Copy_Parent (To => Expr, From => Expression (Assoc));
end return;
end if;
end Get_Assoc_Expr;
---------------------
-- Index_Base_Name --
---------------------
function Index_Base_Name return Node_Id is
begin
return New_Occurrence_Of (Index_Base, Sloc (N));
end Index_Base_Name;
------------------------------------
-- Local_Compile_Time_Known_Value --
------------------------------------
function Local_Compile_Time_Known_Value (E : Node_Id) return Boolean is
begin
return Compile_Time_Known_Value (E)
or else
(Nkind (E) = N_Attribute_Reference
and then Attribute_Name (E) = Name_Val
and then Compile_Time_Known_Value (First (Expressions (E))));
end Local_Compile_Time_Known_Value;
----------------------
-- Local_Expr_Value --
----------------------
function Local_Expr_Value (E : Node_Id) return Uint is
begin
if Compile_Time_Known_Value (E) then
return Expr_Value (E);
else
return Expr_Value (First (Expressions (E)));
end if;
end Local_Expr_Value;
-- Local variables
New_Code : constant List_Id := New_List;
Aggr_Bounds : constant Range_Nodes :=
Get_Index_Bounds (Aggregate_Bounds (N));
Aggr_L : Node_Id renames Aggr_Bounds.First;
Aggr_H : Node_Id renames Aggr_Bounds.Last;
-- The aggregate bounds of this specific subaggregate. Note that if the
-- code generated by Build_Array_Aggr_Code is executed then these bounds
-- are OK. Otherwise a Constraint_Error would have been raised.
Aggr_Low : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_L);
Aggr_High : constant Node_Id := Duplicate_Subexpr_No_Checks (Aggr_H);
-- After Duplicate_Subexpr these are side-effect-free
Assoc : Node_Id;
Choice : Node_Id;
Expr : Node_Id;
Bounds : Range_Nodes;
Low : Node_Id renames Bounds.First;
High : Node_Id renames Bounds.Last;
Nb_Choices : Nat := 0;
Table : Case_Table_Type (1 .. Number_Of_Choices (N));
-- Used to sort all the different choice values
Nb_Elements : Int;
-- Number of elements in the positional aggregate
Others_Assoc : Node_Id := Empty;
-- Start of processing for Build_Array_Aggr_Code
begin
-- First before we start, a special case. If we have a bit packed
-- array represented as a modular type, then clear the value to
-- zero first, to ensure that unused bits are properly cleared.
if Present (Typ)
and then Is_Bit_Packed_Array (Typ)
and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ))
then
declare
Zero : constant Node_Id := Make_Integer_Literal (Loc, Uint_0);
begin
Analyze_And_Resolve (Zero, Packed_Array_Impl_Type (Typ));
Append_To (New_Code,
Make_Assignment_Statement (Loc,
Name => New_Copy_Tree (Into),
Expression => Unchecked_Convert_To (Typ, Zero)));
end;
end if;
-- If the component type contains tasks, we need to build a Master
-- entity in the current scope, because it will be needed if build-
-- in-place functions are called in the expanded code.
if Nkind (Parent (N)) = N_Object_Declaration and then Has_Task (Typ) then
Build_Master_Entity (Defining_Identifier (Parent (N)));
end if;
-- STEP 1: Process component associations
-- For those associations that may generate a loop, initialize
-- Loop_Actions to collect inserted actions that may be crated.
-- Skip this if no component associations
if Is_Null_Aggregate (N) then
null;
elsif No (Expressions (N)) then
-- STEP 1 (a): Sort the discrete choices
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Choice := First (Choice_List (Assoc));
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
Others_Assoc := Assoc;
exit;
end if;
Bounds := Get_Index_Bounds (Choice);
if Low /= High then
Set_Loop_Actions (Assoc, New_List);
end if;
Nb_Choices := Nb_Choices + 1;
Table (Nb_Choices) :=
(Choice_Lo => Low,
Choice_Hi => High,
Choice_Node => Get_Assoc_Expr (Assoc));
Next (Choice);
end loop;
Next (Assoc);
end loop;
-- If there is more than one set of choices these must be static
-- and we can therefore sort them. Remember that Nb_Choices does not
-- account for an others choice.
if Nb_Choices > 1 then
Sort_Case_Table (Table);
end if;
-- STEP 1 (b): take care of the whole set of discrete choices
for J in 1 .. Nb_Choices loop
Low := Table (J).Choice_Lo;
High := Table (J).Choice_Hi;
Expr := Table (J).Choice_Node;
Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
end loop;
-- STEP 1 (c): generate the remaining loops to cover others choice
-- We don't need to generate loops over empty gaps, but if there is
-- a single empty range we must analyze the expression for semantics
if Present (Others_Assoc) then
declare
First : Boolean := True;
begin
for J in 0 .. Nb_Choices loop
if J = 0 then
Low := Aggr_Low;
else
Low := Add (1, To => Table (J).Choice_Hi);
end if;
if J = Nb_Choices then
High := Aggr_High;
else
High := Add (-1, To => Table (J + 1).Choice_Lo);
end if;
-- If this is an expansion within an init proc, make
-- sure that discriminant references are replaced by
-- the corresponding discriminal.
if Inside_Init_Proc then
if Is_Entity_Name (Low)
and then Ekind (Entity (Low)) = E_Discriminant
then
Set_Entity (Low, Discriminal (Entity (Low)));
end if;
if Is_Entity_Name (High)
and then Ekind (Entity (High)) = E_Discriminant
then
Set_Entity (High, Discriminal (Entity (High)));
end if;
end if;
if First or else not Empty_Range (Low, High) then
First := False;
Set_Loop_Actions (Others_Assoc, New_List);
Expr := Get_Assoc_Expr (Others_Assoc);
Append_List (Gen_Loop (Low, High, Expr), To => New_Code);
end if;
end loop;
end;
end if;
-- STEP 2: Process positional components
else
-- STEP 2 (a): Generate the assignments for each positional element
-- Note that here we have to use Aggr_L rather than Aggr_Low because
-- Aggr_L is analyzed and Add wants an analyzed expression.
Expr := First (Expressions (N));
Nb_Elements := -1;
while Present (Expr) loop
Nb_Elements := Nb_Elements + 1;
Append_List (Gen_Assign (Add (Nb_Elements, To => Aggr_L), Expr),
To => New_Code);
Next (Expr);
end loop;
-- STEP 2 (b): Generate final loop if an others choice is present.
-- Here Nb_Elements gives the offset of the last positional element.
if Present (Component_Associations (N)) then
Assoc := Last (Component_Associations (N));
if Nkind (Assoc) = N_Iterated_Component_Association then
-- Ada 2022: generate a loop to have a proper scope for
-- the identifier that typically appears in the expression.
-- The lower bound of the loop is the position after all
-- previous positional components.
Append_List (Gen_Loop (Add (Nb_Elements + 1, To => Aggr_L),
Aggr_High,
Expression (Assoc)),
To => New_Code);
else
-- Ada 2005 (AI-287)
Append_List (Gen_While (Add (Nb_Elements, To => Aggr_L),
Aggr_High,
Get_Assoc_Expr (Assoc)),
To => New_Code);
end if;
end if;
end if;
return New_Code;
end Build_Array_Aggr_Code;
-------------------------------------
-- Build_Assignment_With_Temporary --
-------------------------------------
function Build_Assignment_With_Temporary
(Target : Node_Id;
Typ : Entity_Id;
Source : Node_Id) return List_Id
is
Loc : constant Source_Ptr := Sloc (Source);
Aggr_Code : List_Id;
Tmp : Entity_Id;
begin
Aggr_Code := New_List;
Tmp := Build_Temporary_On_Secondary_Stack (Loc, Typ, Aggr_Code);
Append_To (Aggr_Code,
Make_OK_Assignment_Statement (Loc,
Name =>
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Tmp, Loc)),
Expression => Source));
Append_To (Aggr_Code,
Make_OK_Assignment_Statement (Loc,
Name => Target,
Expression =>
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Tmp, Loc))));
return Aggr_Code;
end Build_Assignment_With_Temporary;
----------------------------
-- Build_Record_Aggr_Code --
----------------------------
function Build_Record_Aggr_Code
(N : Node_Id;
Typ : Entity_Id;
Lhs : Node_Id) return List_Id
is
Loc : constant Source_Ptr := Sloc (N);
L : constant List_Id := New_List;
N_Typ : constant Entity_Id := Etype (N);
Comp : Node_Id;
Instr : Node_Id;
Ref : Node_Id;
Target : Entity_Id;
Comp_Type : Entity_Id;
Selector : Entity_Id;
Comp_Expr : Node_Id;
Expr_Q : Node_Id;
Ancestor_Is_Subtype_Mark : Boolean := False;
Init_Typ : Entity_Id := Empty;
Finalization_Done : Boolean := False;
-- True if Generate_Finalization_Actions has already been called; calls
-- after the first do nothing.
function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id;
-- Returns the value that the given discriminant of an ancestor type
-- should receive (in the absence of a conflict with the value provided
-- by an ancestor part of an extension aggregate).
procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id);
-- Check that each of the discriminant values defined by the ancestor
-- part of an extension aggregate match the corresponding values
-- provided by either an association of the aggregate or by the
-- constraint imposed by a parent type (RM95-4.3.2(8)).
function Compatible_Int_Bounds
(Agg_Bounds : Node_Id;
Typ_Bounds : Node_Id) return Boolean;
-- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
-- assumed that both bounds are integer ranges.
procedure Generate_Finalization_Actions;
-- Deal with the various controlled type data structure initializations
-- (but only if it hasn't been done already).
function Get_Constraint_Association (T : Entity_Id) return Node_Id;
-- Returns the first discriminant association in the constraint
-- associated with T, if any, otherwise returns Empty.
function Get_Explicit_Discriminant_Value (D : Entity_Id) return Node_Id;
-- If the ancestor part is an unconstrained type and further ancestors
-- do not provide discriminants for it, check aggregate components for
-- values of the discriminants.
procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id);
-- If Typ is derived, and constrains discriminants of the parent type,
-- these discriminants are not components of the aggregate, and must be
-- initialized. The assignments are appended to List. The same is done
-- if Typ derives from an already constrained subtype of a discriminated
-- parent type.
procedure Init_Stored_Discriminants;
-- If the type is derived and has inherited discriminants, generate
-- explicit assignments for each, using the store constraint of the
-- type. Note that both visible and stored discriminants must be
-- initialized in case the derived type has some renamed and some
-- constrained discriminants.
procedure Init_Visible_Discriminants;
-- If type has discriminants, retrieve their values from aggregate,
-- and generate explicit assignments for each. This does not include
-- discriminants inherited from ancestor, which are handled above.
-- The type of the aggregate is a subtype created ealier using the
-- given values of the discriminant components of the aggregate.
function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean;
-- Check whether Bounds is a range node and its lower and higher bounds
-- are integers literals.
function Replace_Type (Expr : Node_Id) return Traverse_Result;
-- If the aggregate contains a self-reference, traverse each expression
-- to replace a possible self-reference with a reference to the proper
-- component of the target of the assignment.
function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result;
-- If default expression of a component mentions a discriminant of the
-- type, it must be rewritten as the discriminant of the target object.
---------------------------------
-- Ancestor_Discriminant_Value --
---------------------------------
function Ancestor_Discriminant_Value (Disc : Entity_Id) return Node_Id is
Assoc : Node_Id;
Assoc_Elmt : Elmt_Id;
Aggr_Comp : Entity_Id;
Corresp_Disc : Entity_Id;
Current_Typ : Entity_Id := Base_Type (Typ);
Parent_Typ : Entity_Id;
Parent_Disc : Entity_Id;
Save_Assoc : Node_Id := Empty;
begin
-- First check any discriminant associations to see if any of them
-- provide a value for the discriminant.
if Present (Discriminant_Specifications (Parent (Current_Typ))) then
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Aggr_Comp := Entity (First (Choices (Assoc)));
if Ekind (Aggr_Comp) = E_Discriminant then
Save_Assoc := Expression (Assoc);
Corresp_Disc := Corresponding_Discriminant (Aggr_Comp);
while Present (Corresp_Disc) loop
-- If found a corresponding discriminant then return the
-- value given in the aggregate. (Note: this is not
-- correct in the presence of side effects. ???)
if Disc = Corresp_Disc then
return Duplicate_Subexpr (Expression (Assoc));
end if;
Corresp_Disc := Corresponding_Discriminant (Corresp_Disc);
end loop;
end if;
Next (Assoc);
end loop;
end if;
-- No match found in aggregate, so chain up parent types to find
-- a constraint that defines the value of the discriminant.
Parent_Typ := Etype (Current_Typ);
while Current_Typ /= Parent_Typ loop
if Has_Discriminants (Parent_Typ)
and then not Has_Unknown_Discriminants (Parent_Typ)
then
Parent_Disc := First_Discriminant (Parent_Typ);
-- We either get the association from the subtype indication
-- of the type definition itself, or from the discriminant
-- constraint associated with the type entity (which is
-- preferable, but it's not always present ???)
if Is_Empty_Elmt_List (Discriminant_Constraint (Current_Typ))
then
Assoc := Get_Constraint_Association (Current_Typ);
Assoc_Elmt := No_Elmt;
else
Assoc_Elmt :=
First_Elmt (Discriminant_Constraint (Current_Typ));
Assoc := Node (Assoc_Elmt);
end if;
-- Traverse the discriminants of the parent type looking
-- for one that corresponds.
while Present (Parent_Disc) and then Present (Assoc) loop
Corresp_Disc := Parent_Disc;
while Present (Corresp_Disc)
and then Disc /= Corresp_Disc
loop
Corresp_Disc := Corresponding_Discriminant (Corresp_Disc);
end loop;
if Disc = Corresp_Disc then
if Nkind (Assoc) = N_Discriminant_Association then
Assoc := Expression (Assoc);
end if;
-- If the located association directly denotes
-- a discriminant, then use the value of a saved
-- association of the aggregate. This is an approach
-- used to handle certain cases involving multiple
-- discriminants mapped to a single discriminant of
-- a descendant. It's not clear how to locate the
-- appropriate discriminant value for such cases. ???
if Is_Entity_Name (Assoc)
and then Ekind (Entity (Assoc)) = E_Discriminant
then
Assoc := Save_Assoc;
end if;
return Duplicate_Subexpr (Assoc);
end if;
Next_Discriminant (Parent_Disc);
if No (Assoc_Elmt) then
Next (Assoc);
else
Next_Elmt (Assoc_Elmt);
if Present (Assoc_Elmt) then
Assoc := Node (Assoc_Elmt);
else
Assoc := Empty;
end if;
end if;
end loop;
end if;
Current_Typ := Parent_Typ;
Parent_Typ := Etype (Current_Typ);
end loop;
-- In some cases there's no ancestor value to locate (such as
-- when an ancestor part given by an expression defines the
-- discriminant value).
return Empty;
end Ancestor_Discriminant_Value;
----------------------------------
-- Check_Ancestor_Discriminants --
----------------------------------
procedure Check_Ancestor_Discriminants (Anc_Typ : Entity_Id) is
Discr : Entity_Id;
Disc_Value : Node_Id;
Cond : Node_Id;
begin
Discr := First_Discriminant (Base_Type (Anc_Typ));
while Present (Discr) loop
Disc_Value := Ancestor_Discriminant_Value (Discr);
if Present (Disc_Value) then
Cond := Make_Op_Ne (Loc,
Left_Opnd =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Occurrence_Of (Discr, Loc)),
Right_Opnd => Disc_Value);
Append_To (L,
Make_Raise_Constraint_Error (Loc,
Condition => Cond,
Reason => CE_Discriminant_Check_Failed));
end if;
Next_Discriminant (Discr);
end loop;
end Check_Ancestor_Discriminants;
---------------------------
-- Compatible_Int_Bounds --
---------------------------
function Compatible_Int_Bounds
(Agg_Bounds : Node_Id;
Typ_Bounds : Node_Id) return Boolean
is
Agg_Lo : constant Uint := Intval (Low_Bound (Agg_Bounds));
Agg_Hi : constant Uint := Intval (High_Bound (Agg_Bounds));
Typ_Lo : constant Uint := Intval (Low_Bound (Typ_Bounds));
Typ_Hi : constant Uint := Intval (High_Bound (Typ_Bounds));
begin
return Typ_Lo <= Agg_Lo and then Agg_Hi <= Typ_Hi;
end Compatible_Int_Bounds;
-----------------------------------
-- Generate_Finalization_Actions --
-----------------------------------
procedure Generate_Finalization_Actions is
begin
-- Do the work only the first time this is called
if Finalization_Done then
return;
end if;
Finalization_Done := True;
-- Determine the external finalization list. It is either the
-- finalization list of the outer scope or the one coming from an
-- outer aggregate. When the target is not a temporary, the proper
-- scope is the scope of the target rather than the potentially
-- transient current scope.
if Is_Controlled (Typ) and then Ancestor_Is_Subtype_Mark then
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
Set_Assignment_OK (Ref);
Append_To (L,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of
(Find_Prim_Op (Init_Typ, Name_Initialize), Loc),
Parameter_Associations => New_List (New_Copy_Tree (Ref))));
end if;
end Generate_Finalization_Actions;
--------------------------------
-- Get_Constraint_Association --
--------------------------------
function Get_Constraint_Association (T : Entity_Id) return Node_Id is
Indic : Node_Id;
Typ : Entity_Id;
begin
Typ := T;
-- If type is private, get constraint from full view. This was
-- previously done in an instance context, but is needed whenever
-- the ancestor part has a discriminant, possibly inherited through
-- multiple derivations.
if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
Typ := Full_View (Typ);
end if;
Indic := Subtype_Indication (Type_Definition (Parent (Typ)));
-- Verify that the subtype indication carries a constraint
if Nkind (Indic) = N_Subtype_Indication
and then Present (Constraint (Indic))
then
return First (Constraints (Constraint (Indic)));
end if;
return Empty;
end Get_Constraint_Association;
-------------------------------------
-- Get_Explicit_Discriminant_Value --
-------------------------------------
function Get_Explicit_Discriminant_Value
(D : Entity_Id) return Node_Id
is
Assoc : Node_Id;
Choice : Node_Id;
Val : Node_Id;
begin
-- The aggregate has been normalized and all associations have a
-- single choice.
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
if Chars (Choice) = Chars (D) then
Val := Expression (Assoc);
Remove (Assoc);
return Val;
end if;
Next (Assoc);
end loop;
return Empty;
end Get_Explicit_Discriminant_Value;
-------------------------------
-- Init_Hidden_Discriminants --
-------------------------------
procedure Init_Hidden_Discriminants (Typ : Entity_Id; List : List_Id) is
function Is_Completely_Hidden_Discriminant
(Discr : Entity_Id) return Boolean;
-- Determine whether Discr is a completely hidden discriminant of
-- type Typ.
---------------------------------------
-- Is_Completely_Hidden_Discriminant --
---------------------------------------
function Is_Completely_Hidden_Discriminant
(Discr : Entity_Id) return Boolean
is
Item : Entity_Id;
begin
-- Use First/Next_Entity as First/Next_Discriminant do not yield
-- completely hidden discriminants.
Item := First_Entity (Typ);
while Present (Item) loop
if Ekind (Item) = E_Discriminant
and then Is_Completely_Hidden (Item)
and then Chars (Original_Record_Component (Item)) =
Chars (Discr)
then
return True;
end if;
Next_Entity (Item);
end loop;
return False;
end Is_Completely_Hidden_Discriminant;
-- Local variables
Base_Typ : Entity_Id;
Discr : Entity_Id;
Discr_Constr : Elmt_Id;
Discr_Init : Node_Id;
Discr_Val : Node_Id;
In_Aggr_Type : Boolean;
Par_Typ : Entity_Id;
-- Start of processing for Init_Hidden_Discriminants
begin
-- The constraints on the hidden discriminants, if present, are kept
-- in the Stored_Constraint list of the type itself, or in that of
-- the base type. If not in the constraints of the aggregate itself,
-- we examine ancestors to find discriminants that are not renamed
-- by other discriminants but constrained explicitly.
In_Aggr_Type := True;
Base_Typ := Base_Type (Typ);
while Is_Derived_Type (Base_Typ)
and then
(Present (Stored_Constraint (Base_Typ))
or else
(In_Aggr_Type and then Present (Stored_Constraint (Typ))))
loop
Par_Typ := Etype (Base_Typ);
if not Has_Discriminants (Par_Typ) then
return;
end if;
Discr := First_Discriminant (Par_Typ);
-- We know that one of the stored-constraint lists is present
if Present (Stored_Constraint (Base_Typ)) then
Discr_Constr := First_Elmt (Stored_Constraint (Base_Typ));
-- For private extension, stored constraint may be on full view
elsif Is_Private_Type (Base_Typ)
and then Present (Full_View (Base_Typ))
and then Present (Stored_Constraint (Full_View (Base_Typ)))
then
Discr_Constr :=
First_Elmt (Stored_Constraint (Full_View (Base_Typ)));
-- Otherwise, no discriminant to process
else
Discr_Constr := No_Elmt;
end if;
while Present (Discr) and then Present (Discr_Constr) loop
Discr_Val := Node (Discr_Constr);
-- The parent discriminant is renamed in the derived type,
-- nothing to initialize.
-- type Deriv_Typ (Discr : ...)
-- is new Parent_Typ (Discr => Discr);
if Is_Entity_Name (Discr_Val)
and then Ekind (Entity (Discr_Val)) = E_Discriminant
then
null;
-- When the parent discriminant is constrained at the type
-- extension level, it does not appear in the derived type.
-- type Deriv_Typ (Discr : ...)
-- is new Parent_Typ (Discr => Discr,
-- Hidden_Discr => Expression);
elsif Is_Completely_Hidden_Discriminant (Discr) then
null;
-- Otherwise initialize the discriminant
else
Discr_Init :=
Make_OK_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Occurrence_Of (Discr, Loc)),
Expression => New_Copy_Tree (Discr_Val));
Append_To (List, Discr_Init);
end if;
Next_Elmt (Discr_Constr);
Next_Discriminant (Discr);
end loop;
In_Aggr_Type := False;
Base_Typ := Base_Type (Par_Typ);
end loop;
end Init_Hidden_Discriminants;
--------------------------------
-- Init_Visible_Discriminants --
--------------------------------
procedure Init_Visible_Discriminants is
Discriminant : Entity_Id;
Discriminant_Value : Node_Id;
begin
Discriminant := First_Discriminant (Typ);
while Present (Discriminant) loop
Comp_Expr :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Occurrence_Of (Discriminant, Loc));
Discriminant_Value :=
Get_Discriminant_Value
(Discriminant, Typ, Discriminant_Constraint (N_Typ));
Instr :=
Make_OK_Assignment_Statement (Loc,
Name => Comp_Expr,
Expression => New_Copy_Tree (Discriminant_Value));
Append_To (L, Instr);
Next_Discriminant (Discriminant);
end loop;
end Init_Visible_Discriminants;
-------------------------------
-- Init_Stored_Discriminants --
-------------------------------
procedure Init_Stored_Discriminants is
Discriminant : Entity_Id;
Discriminant_Value : Node_Id;
begin
Discriminant := First_Stored_Discriminant (Typ);
while Present (Discriminant) loop
Comp_Expr :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Occurrence_Of (Discriminant, Loc));
Discriminant_Value :=
Get_Discriminant_Value
(Discriminant, N_Typ, Discriminant_Constraint (N_Typ));
Instr :=
Make_OK_Assignment_Statement (Loc,
Name => Comp_Expr,
Expression => New_Copy_Tree (Discriminant_Value));
Append_To (L, Instr);
Next_Stored_Discriminant (Discriminant);
end loop;
end Init_Stored_Discriminants;
-------------------------
-- Is_Int_Range_Bounds --
-------------------------
function Is_Int_Range_Bounds (Bounds : Node_Id) return Boolean is
begin
return Nkind (Bounds) = N_Range
and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
and then Nkind (High_Bound (Bounds)) = N_Integer_Literal;
end Is_Int_Range_Bounds;
------------------
-- Replace_Type --
------------------
function Replace_Type (Expr : Node_Id) return Traverse_Result is
begin
-- Note about the Is_Ancestor test below: aggregate components for
-- self-referential types include attribute references to the current
-- instance, of the form: Typ'access, etc. These references are
-- rewritten as references to the target of the aggregate: the
-- left-hand side of an assignment, the entity in a declaration,
-- or a temporary. Without this test, we would improperly extend
-- this rewriting to attribute references whose prefix is not the
-- type of the aggregate.
if Nkind (Expr) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (Expr))
and then Is_Type (Entity (Prefix (Expr)))
and then
Is_Ancestor
(Entity (Prefix (Expr)), Etype (N), Use_Full_View => True)
then
if Is_Entity_Name (Lhs) then
Rewrite (Prefix (Expr), New_Occurrence_Of (Entity (Lhs), Loc));
else
Rewrite (Expr,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Unrestricted_Access,
Prefix => New_Copy_Tree (Lhs)));
Set_Analyzed (Parent (Expr), False);
end if;
end if;
return OK;
end Replace_Type;
--------------------------
-- Rewrite_Discriminant --
--------------------------
function Rewrite_Discriminant (Expr : Node_Id) return Traverse_Result is
begin
if Is_Entity_Name (Expr)
and then Present (Entity (Expr))
and then Ekind (Entity (Expr)) = E_In_Parameter
and then Present (Discriminal_Link (Entity (Expr)))
and then Scope (Discriminal_Link (Entity (Expr))) =
Base_Type (Etype (N))
then
Rewrite (Expr,
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Lhs),
Selector_Name => Make_Identifier (Loc, Chars (Expr))));
-- The generated code will be reanalyzed, but if the reference
-- to the discriminant appears within an already analyzed
-- expression (e.g. a conditional) we must set its proper entity
-- now. Context is an initialization procedure.
Analyze (Expr);
end if;
return OK;
end Rewrite_Discriminant;
procedure Replace_Discriminants is
new Traverse_Proc (Rewrite_Discriminant);
procedure Replace_Self_Reference is
new Traverse_Proc (Replace_Type);
-- Start of processing for Build_Record_Aggr_Code
begin
if Has_Self_Reference (N) then
Replace_Self_Reference (N);
end if;
-- If the target of the aggregate is class-wide, we must convert it
-- to the actual type of the aggregate, so that the proper components
-- are visible. We know already that the types are compatible.
if Present (Etype (Lhs)) and then Is_Class_Wide_Type (Etype (Lhs)) then
Target := Unchecked_Convert_To (Typ, Lhs);
else
Target := Lhs;
end if;
-- Deal with the ancestor part of extension aggregates or with the
-- discriminants of the root type.
if Nkind (N) = N_Extension_Aggregate then
declare
Ancestor : constant Node_Id := Ancestor_Part (N);
Ancestor_Q : constant Node_Id := Unqualify (Ancestor);
Assign : List_Id;
begin
-- If the ancestor part is a subtype mark T, we generate
-- init-proc (T (tmp)); if T is constrained and
-- init-proc (S (tmp)); where S applies an appropriate
-- constraint if T is unconstrained
if Is_Entity_Name (Ancestor)
and then Is_Type (Entity (Ancestor))
then
Ancestor_Is_Subtype_Mark := True;
if Is_Constrained (Entity (Ancestor)) then
Init_Typ := Entity (Ancestor);
-- For an ancestor part given by an unconstrained type mark,
-- create a subtype constrained by appropriate corresponding
-- discriminant values coming from either associations of the
-- aggregate or a constraint on a parent type. The subtype will
-- be used to generate the correct default value for the
-- ancestor part.
elsif Has_Discriminants (Entity (Ancestor)) then
declare
Anc_Typ : constant Entity_Id := Entity (Ancestor);
Anc_Constr : constant List_Id := New_List;
Discrim : Entity_Id;
Disc_Value : Node_Id;
New_Indic : Node_Id;
Subt_Decl : Node_Id;
begin
Discrim := First_Discriminant (Anc_Typ);
while Present (Discrim) loop
Disc_Value := Ancestor_Discriminant_Value (Discrim);
-- If no usable discriminant in ancestors, check
-- whether aggregate has an explicit value for it.
if No (Disc_Value) then
Disc_Value :=
Get_Explicit_Discriminant_Value (Discrim);
end if;
Append_To (Anc_Constr, Disc_Value);
Next_Discriminant (Discrim);
end loop;
New_Indic :=
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Anc_Typ, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Anc_Constr));
Init_Typ := Create_Itype (Ekind (Anc_Typ), N);
Subt_Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Init_Typ,
Subtype_Indication => New_Indic);
-- Itypes must be analyzed with checks off Declaration
-- must have a parent for proper handling of subsidiary
-- actions.
Set_Parent (Subt_Decl, N);
Analyze (Subt_Decl, Suppress => All_Checks);
end;
end if;
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
Set_Assignment_OK (Ref);
if not Is_Interface (Init_Typ) then
Append_List_To (L,
Build_Initialization_Call (Loc,
Id_Ref => Ref,
Typ => Init_Typ,
In_Init_Proc => Within_Init_Proc,
With_Default_Init => Has_Default_Init_Comps (N)
or else
Has_Task (Base_Type (Init_Typ))));
if Is_Constrained (Entity (Ancestor))
and then Has_Discriminants (Entity (Ancestor))
then
Check_Ancestor_Discriminants (Entity (Ancestor));
end if;
-- If ancestor type has Default_Initialization_Condition,
-- add a DIC check after the ancestor object is initialized
-- by default.
if Has_DIC (Entity (Ancestor))
and then Present (DIC_Procedure (Entity (Ancestor)))
then
Append_To (L,
Build_DIC_Call
(Loc, New_Copy_Tree (Ref), Entity (Ancestor)));
end if;
end if;
-- Handle calls to C++ constructors
elsif Is_CPP_Constructor_Call (Ancestor) then
Init_Typ := Etype (Ancestor);
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
Set_Assignment_OK (Ref);
Append_List_To (L,
Build_Initialization_Call (Loc,
Id_Ref => Ref,
Typ => Init_Typ,
In_Init_Proc => Within_Init_Proc,
With_Default_Init => Has_Default_Init_Comps (N),
Constructor_Ref => Ancestor));
-- Ada 2005 (AI-287): If the ancestor part is an aggregate of
-- limited type, a recursive call expands the ancestor. Note that
-- in the limited case, the ancestor part must be either a
-- function call (possibly qualified) or aggregate (definitely
-- qualified).
elsif Is_Limited_Type (Etype (Ancestor))
and then Nkind (Ancestor_Q) in N_Aggregate
| N_Extension_Aggregate
then
Append_List_To (L,
Build_Record_Aggr_Code
(N => Ancestor_Q,
Typ => Etype (Ancestor_Q),
Lhs => Target));
-- If the ancestor part is an expression E of type T, we generate
-- T (tmp) := E;
-- In Ada 2005, this includes the case of a (possibly qualified)
-- limited function call. The assignment will later be turned into
-- a build-in-place function call (for further details, see
-- Make_Build_In_Place_Call_In_Assignment).
else
Init_Typ := Etype (Ancestor);
-- If the ancestor part is an aggregate, force its full
-- expansion, which was delayed.
if Nkind (Ancestor_Q) in N_Aggregate | N_Extension_Aggregate
then
Set_Analyzed (Ancestor, False);
Set_Analyzed (Expression (Ancestor), False);
end if;
Ref := Convert_To (Init_Typ, New_Copy_Tree (Target));
Assign := New_List (
Make_OK_Assignment_Statement (Loc,
Name => Ref,
Expression => Ancestor));
-- Arrange for the component to be adjusted if need be (the
-- call will be generated by Make_Tag_Ctrl_Assignment).
if Needs_Finalization (Init_Typ)
and then not Is_Inherently_Limited_Type (Init_Typ)
then
Set_No_Finalize_Actions (First (Assign));
else
Set_No_Ctrl_Actions (First (Assign));
end if;
Append_To (L,
Make_Suppress_Block (Loc, Name_Discriminant_Check, Assign));
if Has_Discriminants (Init_Typ) then
Check_Ancestor_Discriminants (Init_Typ);
end if;
end if;
end;
-- Generate assignments of hidden discriminants. If the base type is
-- an unchecked union, the discriminants are unknown to the back-end
-- and absent from a value of the type, so assignments for them are
-- not emitted.
if Has_Discriminants (Typ)
and then not Is_Unchecked_Union (Base_Type (Typ))
then
Init_Hidden_Discriminants (Typ, L);
end if;
-- Normal case (not an extension aggregate)
else
-- Generate the discriminant expressions, component by component.
-- If the base type is an unchecked union, the discriminants are
-- unknown to the back-end and absent from a value of the type, so
-- assignments for them are not emitted.
if Has_Discriminants (Typ)
and then not Is_Unchecked_Union (Base_Type (Typ))
then
Init_Hidden_Discriminants (Typ, L);
-- Generate discriminant init values for the visible discriminants
Init_Visible_Discriminants;
if Is_Derived_Type (N_Typ) then
Init_Stored_Discriminants;
end if;
end if;
end if;
-- For CPP types we generate an implicit call to the C++ default
-- constructor to ensure the proper initialization of the _Tag
-- component.
if Is_CPP_Class (Root_Type (Typ)) and then CPP_Num_Prims (Typ) > 0 then
Invoke_Constructor : declare
CPP_Parent : constant Entity_Id := Enclosing_CPP_Parent (Typ);
procedure Invoke_IC_Proc (T : Entity_Id);
-- Recursive routine used to climb to parents. Required because
-- parents must be initialized before descendants to ensure
-- propagation of inherited C++ slots.
--------------------
-- Invoke_IC_Proc --
--------------------
procedure Invoke_IC_Proc (T : Entity_Id) is
begin
-- Avoid generating extra calls. Initialization required
-- only for types defined from the level of derivation of
-- type of the constructor and the type of the aggregate.
if T = CPP_Parent then
return;
end if;
Invoke_IC_Proc (Etype (T));
-- Generate call to the IC routine
if Present (CPP_Init_Proc (T)) then
Append_To (L,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (CPP_Init_Proc (T), Loc)));
end if;
end Invoke_IC_Proc;
-- Start of processing for Invoke_Constructor
begin
-- Implicit invocation of the C++ constructor
if Nkind (N) = N_Aggregate then
Append_To (L,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (Base_Init_Proc (CPP_Parent), Loc),
Parameter_Associations => New_List (
Unchecked_Convert_To (CPP_Parent,
New_Copy_Tree (Lhs)))));
end if;
Invoke_IC_Proc (Typ);
end Invoke_Constructor;
end if;
-- Generate the assignments, component by component
-- tmp.comp1 := Expr1_From_Aggr;
-- tmp.comp2 := Expr2_From_Aggr;
-- ....
Comp := First (Component_Associations (N));
while Present (Comp) loop
Selector := Entity (First (Choices (Comp)));
pragma Assert (Present (Selector));
-- C++ constructors
if Is_CPP_Constructor_Call (Expression (Comp)) then
Append_List_To (L,
Build_Initialization_Call (Loc,
Id_Ref =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Occurrence_Of (Selector, Loc)),
Typ => Etype (Selector),
Enclos_Type => Typ,
With_Default_Init => True,
Constructor_Ref => Expression (Comp)));
elsif Box_Present (Comp)
and then Needs_Simple_Initialization (Etype (Selector))
then
Comp_Expr :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Occurrence_Of (Selector, Loc));
Initialize_Component
(N => N,
Comp => Comp_Expr,
Comp_Typ => Etype (Selector),
Init_Expr => Get_Simple_Init_Val
(Typ => Etype (Selector),
N => Comp,
Size =>
(if Known_Esize (Selector)
then Esize (Selector)
else Uint_0)),
Stmts => L);
-- Ada 2005 (AI-287): For each default-initialized component generate
-- a call to the corresponding IP subprogram if available.
elsif Box_Present (Comp)
and then Has_Non_Null_Base_Init_Proc (Etype (Selector))
then
if Ekind (Selector) /= E_Discriminant then
Generate_Finalization_Actions;
end if;
-- Ada 2005 (AI-287): If the component type has tasks then
-- generate the activation chain and master entities (except
-- in case of an allocator because in that case these entities
-- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
declare
Ctype : constant Entity_Id := Etype (Selector);
Inside_Allocator : Boolean := False;
P : Node_Id := Parent (N);
begin
if Is_Task_Type (Ctype) or else Has_Task (Ctype) then
while Present (P) loop
if Nkind (P) = N_Allocator then
Inside_Allocator := True;
exit;
end if;
P := Parent (P);
end loop;
if not Inside_Init_Proc and not Inside_Allocator then
Build_Activation_Chain_Entity (N);
end if;
end if;
end;
Append_List_To (L,
Build_Initialization_Call (Loc,
Id_Ref => Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name =>
New_Occurrence_Of (Selector, Loc)),
Typ => Etype (Selector),
Enclos_Type => Typ,
With_Default_Init => True));
-- Prepare for component assignment
elsif Ekind (Selector) /= E_Discriminant
or else Nkind (N) = N_Extension_Aggregate
then
-- All the discriminants have now been assigned
-- This is now a good moment to initialize and attach all the
-- controllers. Their position may depend on the discriminants.
if Ekind (Selector) /= E_Discriminant then
Generate_Finalization_Actions;
end if;
Comp_Type := Underlying_Type (Etype (Selector));
Comp_Expr :=
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Occurrence_Of (Selector, Loc));
Expr_Q := Unqualify (Expression (Comp));
-- Now either create the assignment or generate the code for the
-- inner aggregate top-down.
if Is_Delayed_Aggregate (Expr_Q) then
-- We have the following case of aggregate nesting inside
-- an object declaration:
-- type Arr_Typ is array (Integer range <>) of ...;
-- type Rec_Typ (...) is record
-- Obj_Arr_Typ : Arr_Typ (A .. B);
-- end record;
-- Obj_Rec_Typ : Rec_Typ := (...,
-- Obj_Arr_Typ => (X => (...), Y => (...)));
-- The length of the ranges of the aggregate and Obj_Add_Typ
-- are equal (B - A = Y - X), but they do not coincide (X /=
-- A and B /= Y). This case requires array sliding which is
-- performed in the following manner:
-- subtype Arr_Sub is Arr_Typ (X .. Y);
-- Temp : Arr_Sub;
-- Temp (X) := (...);
-- ...
-- Temp (Y) := (...);
-- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
if Ekind (Comp_Type) = E_Array_Subtype
and then Is_Int_Range_Bounds (Aggregate_Bounds (Expr_Q))
and then Is_Int_Range_Bounds (First_Index (Comp_Type))
and then not
Compatible_Int_Bounds
(Agg_Bounds => Aggregate_Bounds (Expr_Q),
Typ_Bounds => First_Index (Comp_Type))
then
-- Create the array subtype with bounds equal to those of
-- the corresponding aggregate.
declare
SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
SubD : constant Node_Id :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => SubE,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Occurrence_Of (Etype (Comp_Type), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint
(Loc,
Constraints => New_List (
New_Copy_Tree
(Aggregate_Bounds (Expr_Q))))));
-- Create a temporary array of the above subtype which
-- will be used to capture the aggregate assignments.
TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
TmpD : constant Node_Id :=
Make_Object_Declaration (Loc,
Defining_Identifier => TmpE,
Object_Definition => New_Occurrence_Of (SubE, Loc));
begin
Set_No_Initialization (TmpD);
Append_To (L, SubD);
Append_To (L, TmpD);
-- Expand aggregate into assignments to the temp array
Append_List_To (L,
Late_Expansion (Expr_Q, Comp_Type,
New_Occurrence_Of (TmpE, Loc)));
-- Slide
Append_To (L,
Make_Assignment_Statement (Loc,
Name => New_Copy_Tree (Comp_Expr),
Expression => New_Occurrence_Of (TmpE, Loc)));
end;
-- Normal case (sliding not required)
else
Append_List_To (L,
Late_Expansion (Expr_Q, Comp_Type, Comp_Expr));
end if;
-- Expr_Q is not delayed aggregate
else
if Has_Discriminants (Typ) then
Replace_Discriminants (Expr_Q);
-- If the component is an array type that depends on
-- discriminants, and the expression is a single Others
-- clause, create an explicit subtype for it because the
-- backend has troubles recovering the actual bounds.
if Nkind (Expr_Q) = N_Aggregate
and then Is_Array_Type (Comp_Type)
and then Present (Component_Associations (Expr_Q))
then
declare
Assoc : constant Node_Id :=
First (Component_Associations (Expr_Q));
Decl : Node_Id;
begin
if Present (Assoc)
and then
Nkind (First (Choices (Assoc))) = N_Others_Choice
then
Decl :=
Build_Actual_Subtype_Of_Component
(Comp_Type, Comp_Expr);
-- If the component type does not in fact depend on
-- discriminants, the subtype declaration is empty.
if Present (Decl) then
Append_To (L, Decl);
Set_Etype (Comp_Expr, Defining_Entity (Decl));
end if;
end if;
end;
end if;
end if;
if Modify_Tree_For_C
and then Nkind (Expr_Q) = N_Aggregate
and then Is_Array_Type (Etype (Expr_Q))
and then Present (First_Index (Etype (Expr_Q)))
then
declare
Expr_Q_Type : constant Entity_Id := Etype (Expr_Q);
begin
Append_List_To (L,
Build_Array_Aggr_Code
(N => Expr_Q,
Ctype => Component_Type (Expr_Q_Type),
Index => First_Index (Expr_Q_Type),
Into => Comp_Expr,
Scalar_Comp =>
Is_Scalar_Type (Component_Type (Expr_Q_Type))));
end;
else
Initialize_Component
(N => N,
Comp => Comp_Expr,
Comp_Typ => Etype (Selector),
Init_Expr => Expr_Q,
Stmts => L);
end if;
end if;
-- comment would be good here ???
elsif Ekind (Selector) = E_Discriminant
and then Nkind (N) /= N_Extension_Aggregate
and then Nkind (Parent (N)) = N_Component_Association
and then Is_Constrained (Typ)
then
-- We must check that the discriminant value imposed by the
-- context is the same as the value given in the subaggregate,
-- because after the expansion into assignments there is no
-- record on which to perform a regular discriminant check.
declare
D_Val : Elmt_Id;
Disc : Entity_Id;
begin
D_Val := First_Elmt (Discriminant_Constraint (Typ));
Disc := First_Discriminant (Typ);
while Chars (Disc) /= Chars (Selector) loop
Next_Discriminant (Disc);
Next_Elmt (D_Val);
end loop;
pragma Assert (Present (D_Val));
-- This check cannot performed for components that are
-- constrained by a current instance, because this is not a
-- value that can be compared with the actual constraint.
if Nkind (Node (D_Val)) /= N_Attribute_Reference
or else not Is_Entity_Name (Prefix (Node (D_Val)))
or else not Is_Type (Entity (Prefix (Node (D_Val))))
then
Append_To (L,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => New_Copy_Tree (Node (D_Val)),
Right_Opnd => Expression (Comp)),
Reason => CE_Discriminant_Check_Failed));
else
-- Find self-reference in previous discriminant assignment,
-- and replace with proper expression.
declare
Ass : Node_Id;
begin
Ass := First (L);
while Present (Ass) loop
if Nkind (Ass) = N_Assignment_Statement
and then Nkind (Name (Ass)) = N_Selected_Component
and then Chars (Selector_Name (Name (Ass))) =
Chars (Disc)
then
Set_Expression
(Ass, New_Copy_Tree (Expression (Comp)));
exit;
end if;
Next (Ass);
end loop;
end;
end if;
end;
end if;
-- If the component association was specified with a box and the
-- component type has a Default_Initial_Condition, then generate
-- a call to the DIC procedure.
if Has_DIC (Etype (Selector))
and then Was_Default_Init_Box_Association (Comp)
and then Present (DIC_Procedure (Etype (Selector)))
then
Append_To (L,
Build_DIC_Call (Loc,
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Occurrence_Of (Selector, Loc)),
Etype (Selector)));
end if;
Next (Comp);
end loop;
-- For CPP types we generated a call to the C++ default constructor
-- before the components have been initialized to ensure the proper
-- initialization of the _Tag component (see above).
if Is_CPP_Class (Typ) then
null;
-- If the type is tagged, the tag needs to be initialized (unless we
-- are in VM-mode where tags are implicit). It is done late in the
-- initialization process because in some cases, we call the init
-- proc of an ancestor which will not leave out the right tag.
elsif Is_Tagged_Type (Typ) and then Tagged_Type_Expansion then
Instr :=
Make_Tag_Assignment_From_Type
(Loc, New_Copy_Tree (Target), Base_Type (Typ));
Append_To (L, Instr);
-- Ada 2005 (AI-251): If the tagged type has been derived from an
-- abstract interfaces we must also initialize the tags of the
-- secondary dispatch tables.
if Has_Interfaces (Base_Type (Typ)) then
Init_Secondary_Tags
(Typ => Base_Type (Typ),
Target => Target,
Stmts_List => L,
Init_Tags_List => L);
end if;
end if;
-- If the controllers have not been initialized yet (by lack of non-
-- discriminant components), let's do it now.
Generate_Finalization_Actions;
return L;
end Build_Record_Aggr_Code;
-------------------------------
-- Convert_Aggr_In_Allocator --
-------------------------------
procedure Convert_Aggr_In_Allocator
(Alloc : Node_Id;
Decl : Node_Id;
Aggr : Node_Id)
is
Loc : constant Source_Ptr := Sloc (Aggr);
Typ : constant Entity_Id := Etype (Aggr);
Temp : constant Entity_Id := Defining_Identifier (Decl);
Occ : constant Node_Id :=
Unchecked_Convert_To (Typ,
Make_Explicit_Dereference (Loc, New_Occurrence_Of (Temp, Loc)));
begin
if Is_Array_Type (Typ) then
Convert_Array_Aggr_In_Allocator (Decl, Aggr, Occ);
elsif Has_Default_Init_Comps (Aggr) then
declare
L : constant List_Id := New_List;
Init_Stmts : List_Id;
begin
Init_Stmts := Late_Expansion (Aggr, Typ, Occ);
if Has_Task (Typ) then
Build_Task_Allocate_Block_With_Init_Stmts (L, Aggr, Init_Stmts);
Insert_Actions (Alloc, L);
else
Insert_Actions (Alloc, Init_Stmts);
end if;
end;
else
Insert_Actions (Alloc, Late_Expansion (Aggr, Typ, Occ));
end if;
end Convert_Aggr_In_Allocator;
--------------------------------
-- Convert_Aggr_In_Assignment --
--------------------------------
procedure Convert_Aggr_In_Assignment (N : Node_Id) is
Aggr : constant Node_Id := Unqualify (Expression (N));
Typ : constant Entity_Id := Etype (Aggr);
Occ : constant Node_Id := New_Copy_Tree (Name (N));
begin
Insert_Actions_After (N, Late_Expansion (Aggr, Typ, Occ));
end Convert_Aggr_In_Assignment;
---------------------------------
-- Convert_Aggr_In_Object_Decl --
---------------------------------
procedure Convert_Aggr_In_Object_Decl (N : Node_Id) is
Obj : constant Entity_Id := Defining_Identifier (N);
Aggr : constant Node_Id := Unqualify (Expression (N));
Loc : constant Source_Ptr := Sloc (Aggr);
Typ : constant Entity_Id := Etype (Aggr);
Occ : constant Node_Id := New_Occurrence_Of (Obj, Loc);
Has_Transient_Scope : Boolean := False;
function Discriminants_Ok return Boolean;
-- If the object type is constrained, the discriminants in the
-- aggregate must be checked against the discriminants of the subtype.
-- This cannot be done using Apply_Discriminant_Checks because after
-- expansion there is no aggregate left to check.
----------------------
-- Discriminants_Ok --
----------------------
function Discriminants_Ok return Boolean is
Cond : Node_Id := Empty;
Check : Node_Id;
D : Entity_Id;
Disc1 : Elmt_Id;
Disc2 : Elmt_Id;
Val1 : Node_Id;
Val2 : Node_Id;
begin
D := First_Discriminant (Typ);
Disc1 := First_Elmt (Discriminant_Constraint (Typ));
Disc2 := First_Elmt (Discriminant_Constraint (Etype (Obj)));
while Present (Disc1) and then Present (Disc2) loop
Val1 := Node (Disc1);
Val2 := Node (Disc2);
if not Is_OK_Static_Expression (Val1)
or else not Is_OK_Static_Expression (Val2)
then
Check := Make_Op_Ne (Loc,
Left_Opnd => Duplicate_Subexpr (Val1),
Right_Opnd => Duplicate_Subexpr (Val2));
if No (Cond) then
Cond := Check;
else
Cond := Make_Or_Else (Loc,
Left_Opnd => Cond,
Right_Opnd => Check);
end if;
elsif Expr_Value (Val1) /= Expr_Value (Val2) then
Apply_Compile_Time_Constraint_Error (Aggr,
Msg => "incorrect value for discriminant&??",
Reason => CE_Discriminant_Check_Failed,
Ent => D);
return False;
end if;
Next_Discriminant (D);
Next_Elmt (Disc1);
Next_Elmt (Disc2);
end loop;
-- If any discriminant constraint is nonstatic, emit a check
if Present (Cond) then
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition => Cond,
Reason => CE_Discriminant_Check_Failed));
end if;
return True;
end Discriminants_Ok;
-- Start of processing for Convert_Aggr_In_Object_Decl
begin
Set_Assignment_OK (Occ);
if Has_Discriminants (Typ)
and then Typ /= Etype (Obj)
and then Is_Constrained (Etype (Obj))
and then not Discriminants_Ok
then
return;
end if;
-- If the context is an extended return statement, it has its own
-- finalization machinery (i.e. works like a transient scope) and
-- we do not want to create an additional one, because objects on
-- the finalization list of the return must be moved to the caller's
-- finalization list to complete the return.
-- Similarly if the aggregate is limited, it is built in place, and the
-- controlled components are not assigned to intermediate temporaries
-- so there is no need for a transient scope in this case either.
if Requires_Transient_Scope (Typ)
and then Ekind (Current_Scope) /= E_Return_Statement
and then not Is_Limited_Type (Typ)
then
Establish_Transient_Scope (Aggr, Manage_Sec_Stack => False);
Has_Transient_Scope := True;
end if;
declare
Stmts : constant List_Id := Late_Expansion (Aggr, Typ, Occ);
Stmt : Node_Id;
Param : Node_Id;
begin
-- If Obj is already frozen or if N is wrapped in a transient scope,
-- Stmts do not need to be saved in Initialization_Statements since
-- there is no freezing issue.
if Is_Frozen (Obj) or else Has_Transient_Scope then
Insert_Actions_After (N, Stmts);
else
Stmt := Make_Compound_Statement (Sloc (N), Actions => Stmts);
Insert_Action_After (N, Stmt);
-- Insert_Action_After may freeze Obj in which case we should
-- remove the compound statement just created and simply insert
-- Stmts after N.
if Is_Frozen (Obj) then
Remove (Stmt);
Insert_Actions_After (N, Stmts);
else
Set_Initialization_Statements (Obj, Stmt);
end if;
end if;
-- If Typ has controlled components and a call to a Slice_Assign
-- procedure is part of the initialization statements, then we
-- need to initialize the array component since Slice_Assign will
-- need to adjust it.
if Has_Controlled_Component (Typ) then
Stmt := First (Stmts);
while Present (Stmt) loop
if Nkind (Stmt) = N_Procedure_Call_Statement
and then Is_TSS (Entity (Name (Stmt)), TSS_Slice_Assign)
then
Param := First (Parameter_Associations (Stmt));
Insert_Actions
(Stmt,
Build_Initialization_Call
(Sloc (N), New_Copy_Tree (Param), Etype (Param)));
end if;
Next (Stmt);
end loop;
end if;
end;
Set_No_Initialization (N);
-- After expansion the expression can be removed from the declaration
-- except if the object is class-wide, in which case the aggregate
-- provides the actual type.
if not Is_Class_Wide_Type (Etype (Obj)) then
Set_Expression (N, Empty);
end if;
Initialize_Discriminants (N, Typ);
end Convert_Aggr_In_Object_Decl;
-------------------------------------
-- Convert_Array_Aggr_In_Allocator --
-------------------------------------
procedure Convert_Array_Aggr_In_Allocator
(Decl : Node_Id;
Aggr : Node_Id;
Target : Node_Id)
is
Typ : constant Entity_Id := Etype (Aggr);
Ctyp : constant Entity_Id := Component_Type (Typ);
Aggr_Code : List_Id;
New_Aggr : Node_Id;
begin
-- The target is an explicit dereference of the allocated object
-- If the assignment can be done directly by the back end, then
-- reset Set_Expansion_Delayed and do not expand further.
if not CodePeer_Mode
and then not Modify_Tree_For_C
and then Aggr_Assignment_OK_For_Backend (Aggr)
then
New_Aggr := New_Copy_Tree (Aggr);
Set_Expansion_Delayed (New_Aggr, False);
-- In the case of Target's type using the Designated_Storage_Model
-- aspect with a Copy_To procedure, insert a temporary and have the
-- back end handle the assignment to it. Copy the result to the
-- original target.
if Has_Designated_Storage_Model_Aspect
(Etype (Prefix (Expression (Target))))
and then Present (Storage_Model_Copy_To
(Storage_Model_Object
(Etype (Prefix (Expression (Target))))))
then
Aggr_Code :=
Build_Assignment_With_Temporary (Target, Typ, New_Aggr);
else
Aggr_Code :=
New_List (
Make_OK_Assignment_Statement (Sloc (New_Aggr),
Name => Target,
Expression => New_Aggr));
end if;
-- Or else, generate component assignments to it, as for an aggregate
-- that appears on the right-hand side of an assignment statement.
else
Aggr_Code :=
Build_Array_Aggr_Code (Aggr,
Ctype => Ctyp,
Index => First_Index (Typ),
Into => Target,
Scalar_Comp => Is_Scalar_Type (Ctyp));
end if;
Insert_Actions_After (Decl, Aggr_Code);
end Convert_Array_Aggr_In_Allocator;
------------------------
-- In_Place_Assign_OK --
------------------------
function In_Place_Assign_OK
(N : Node_Id;
Target_Object : Entity_Id := Empty) return Boolean
is
Is_Array : constant Boolean := Is_Array_Type (Etype (N));
Aggr_In : Node_Id;
Aggr_Bounds : Range_Nodes;
Obj_In : Node_Id;
Obj_Bounds : Range_Nodes;
Parent_Kind : Node_Kind;
Parent_Node : Node_Id;
function Safe_Aggregate (Aggr : Node_Id) return Boolean;
-- Check recursively that each component of a (sub)aggregate does not
-- depend on the variable being assigned to.
function Safe_Component (Expr : Node_Id) return Boolean;
-- Verify that an expression cannot depend on the target being assigned
-- to. Return true for compile-time known values, stand-alone objects,
-- parameters passed by copy, calls to functions that return by copy,
-- selected components thereof only if the aggregate's type is an array,
-- indexed components and slices thereof only if the aggregate's type is
-- a record, and simple expressions involving only these as operands.
-- This is OK whatever the target because, for a component to overlap
-- with the target, it must be either a direct reference to a component
-- of the target, in which case there must be a matching selection or
-- indexation or slicing, or an indirect reference to such a component,
-- which is excluded by the above condition. Additionally, if the target
-- is statically known, return true for arbitrarily nested selections,
-- indexations or slicings, provided that their ultimate prefix is not
-- the target itself.
--------------------
-- Safe_Aggregate --
--------------------
function Safe_Aggregate (Aggr : Node_Id) return Boolean is
Expr : Node_Id;
begin
if Nkind (Parent (Aggr)) = N_Iterated_Component_Association then
return False;
end if;
if Present (Expressions (Aggr)) then
Expr := First (Expressions (Aggr));
while Present (Expr) loop
if Nkind (Expr) = N_Aggregate then
if not Safe_Aggregate (Expr) then
return False;
end if;
elsif not Safe_Component (Expr) then
return False;
end if;
Next (Expr);
end loop;
end if;
if Present (Component_Associations (Aggr)) then
Expr := First (Component_Associations (Aggr));
while Present (Expr) loop
if Nkind (Expression (Expr)) = N_Aggregate then
if not Safe_Aggregate (Expression (Expr)) then
return False;
end if;
-- If association has a box, no way to determine yet whether
-- default can be assigned in place.
elsif Box_Present (Expr) then
return False;
elsif not Safe_Component (Expression (Expr)) then
return False;
end if;
Next (Expr);
end loop;
end if;
return True;
end Safe_Aggregate;
--------------------
-- Safe_Component --
--------------------
function Safe_Component (Expr : Node_Id) return Boolean is
Comp : Node_Id := Expr;
function Check_Component (C : Node_Id; T_OK : Boolean) return Boolean;
-- Do the recursive traversal, after copy. If T_OK is True, return
-- True for a stand-alone object only if the target is statically
-- known and distinct from the object. At the top level, we start
-- with T_OK set to False and set it to True at a deeper level only
-- if we cannot disambiguate the component here without statically
-- knowing the target. Note that this is not optimal, we should do
-- something along the lines of Denotes_Same_Prefix for that.
---------------------
-- Check_Component --
---------------------
function Check_Component (C : Node_Id; T_OK : Boolean) return Boolean
is
function SDO (E : Entity_Id) return Uint;
-- Return the Scope Depth Of the enclosing dynamic scope of E
---------
-- SDO --
---------
function SDO (E : Entity_Id) return Uint is
begin
return Scope_Depth (Enclosing_Dynamic_Scope (E));
end SDO;
-- Start of processing for Check_Component
begin
if Is_Overloaded (C) then
return False;
elsif Compile_Time_Known_Value (C) then
return True;
end if;
case Nkind (C) is
when N_Attribute_Reference =>
return Check_Component (Prefix (C), T_OK);
when N_Function_Call =>
if Nkind (Name (C)) = N_Explicit_Dereference then
return not Returns_By_Ref (Etype (Name (C)));
else
return not Returns_By_Ref (Entity (Name (C)));
end if;
when N_Indexed_Component | N_Slice =>
-- In a target record, these operations cannot determine
-- alone a component so we can recurse whatever the target.
return Check_Component (Prefix (C), T_OK or else Is_Array);
when N_Selected_Component =>
-- In a target array, this operation cannot determine alone
-- a component so we can recurse whatever the target.
return
Check_Component (Prefix (C), T_OK or else not Is_Array);
when N_Type_Conversion | N_Unchecked_Type_Conversion =>
return Check_Component (Expression (C), T_OK);
when N_Binary_Op =>
return Check_Component (Left_Opnd (C), T_OK)
and then Check_Component (Right_Opnd (C), T_OK);
when N_Unary_Op =>
return Check_Component (Right_Opnd (C), T_OK);
when others =>
if Is_Entity_Name (C) and then Is_Object (Entity (C)) then
-- Case of a formal parameter component. It's either
-- trivial if passed by copy or very annoying if not,
-- because in the latter case it's almost equivalent
-- to a dereference, so the path-based disambiguation
-- logic is totally off and we always need the target.
if Is_Formal (Entity (C)) then
-- If it is passed by copy, then this is safe
if Mechanism (Entity (C)) = By_Copy then
return True;
-- Otherwise, this is safe if the target is present
-- and is at least as deeply nested as the component.
else
return Present (Target_Object)
and then not Is_Formal (Target_Object)
and then SDO (Target_Object) >= SDO (Entity (C));
end if;
-- For a renamed object, recurse
elsif Present (Renamed_Object (Entity (C))) then
return
Check_Component (Renamed_Object (Entity (C)), T_OK);
-- If this is safe whatever the target, we are done
elsif not T_OK then
return True;
-- If there is no target or the component is the target,
-- this is not safe.
elsif No (Target_Object)
or else Entity (C) = Target_Object
then
return False;
-- Case of a formal parameter target. This is safe if it
-- is at most as deeply nested as the component.
elsif Is_Formal (Target_Object) then
return SDO (Target_Object) <= SDO (Entity (C));
-- For distinct stand-alone objects, this is safe
else
return True;
end if;
-- For anything else than an object, this is not safe
else
return False;
end if;
end case;
end Check_Component;
-- Start of processing for Safe_Component
begin
-- If the component appears in an association that may correspond
-- to more than one element, it is not analyzed before expansion
-- into assignments, to avoid side effects. We analyze, but do not
-- resolve the copy, to obtain sufficient entity information for
-- the checks that follow. If component is overloaded we assume
-- an unsafe function call.
if not Analyzed (Comp) then
if Is_Overloaded (Expr) then
return False;
elsif Nkind (Expr) = N_Allocator then
-- For now, too complex to analyze
return False;
elsif Nkind (Parent (Expr)) = N_Iterated_Component_Association then
-- Ditto for iterated component associations, which in general
-- require an enclosing loop and involve nonstatic expressions.
return False;
end if;
Comp := New_Copy_Tree (Expr);
Set_Parent (Comp, Parent (Expr));
Analyze (Comp);
end if;
if Nkind (Comp) = N_Aggregate then
return Safe_Aggregate (Comp);
else
return Check_Component (Comp, False);
end if;
end Safe_Component;
-- Start of processing for In_Place_Assign_OK
begin
-- By-copy semantic cannot be guaranteed for controlled objects
if Needs_Finalization (Etype (N)) then
return False;
end if;
Parent_Node := Parent (N);
Parent_Kind := Nkind (Parent_Node);
if Parent_Kind = N_Qualified_Expression then
Parent_Node := Parent (Parent_Node);
Parent_Kind := Nkind (Parent_Node);
end if;
-- On assignment, sliding can take place, so we cannot do the
-- assignment in place unless the bounds of the aggregate are
-- statically equal to those of the target.
-- If the aggregate is given by an others choice, the bounds are
-- derived from the left-hand side, and the assignment is safe if
-- the expression is.
if Is_Array
and then Present (Component_Associations (N))
and then not Is_Others_Aggregate (N)
then
Aggr_In := First_Index (Etype (N));
-- Context is an assignment
if Parent_Kind = N_Assignment_Statement then
Obj_In := First_Index (Etype (Name (Parent_Node)));
-- Context is an allocator. Check the bounds of the aggregate against
-- those of the designated type, except in the case where the type is
-- unconstrained (and then we can directly return true, see below).
else pragma Assert (Parent_Kind = N_Allocator);
declare
Desig_Typ : constant Entity_Id :=
Designated_Type (Etype (Parent_Node));
begin
if not Is_Constrained (Desig_Typ) then
return True;
end if;
Obj_In := First_Index (Desig_Typ);
end;
end if;
while Present (Aggr_In) loop
Aggr_Bounds := Get_Index_Bounds (Aggr_In);
Obj_Bounds := Get_Index_Bounds (Obj_In);
-- We require static bounds for the target and a static matching
-- of low bound for the aggregate.
if not Compile_Time_Known_Value (Obj_Bounds.First)
or else not Compile_Time_Known_Value (Obj_Bounds.Last)
or else not Compile_Time_Known_Value (Aggr_Bounds.First)
or else Expr_Value (Aggr_Bounds.First) /=
Expr_Value (Obj_Bounds.First)
then
return False;
-- For an assignment statement we require static matching of
-- bounds. Ditto for an allocator whose qualified expression
-- is a constrained type. If the expression in the allocator
-- is an unconstrained array, we accept an upper bound that
-- is not static, to allow for nonstatic expressions of the
-- base type. Clearly there are further possibilities (with
-- diminishing returns) for safely building arrays in place
-- here.
elsif Parent_Kind = N_Assignment_Statement
or else Is_Constrained (Etype (Parent_Node))
then
if not Compile_Time_Known_Value (Aggr_Bounds.Last)
or else Expr_Value (Aggr_Bounds.Last) /=
Expr_Value (Obj_Bounds.Last)
then
return False;
end if;
end if;
Next_Index (Aggr_In);
Next_Index (Obj_In);
end loop;
end if;
-- Now check the component values themselves, except for an allocator
-- for which the target is newly allocated memory.
if Parent_Kind = N_Allocator then
return True;
else
return Safe_Aggregate (N);
end if;
end In_Place_Assign_OK;
----------------------------
-- Convert_To_Assignments --
----------------------------
procedure Convert_To_Assignments (N : Node_Id; Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
T : Entity_Id;
Temp : Entity_Id;
Aggr_Code : List_Id;
Instr : Node_Id;
Target_Expr : Node_Id;
Parent_Kind : Node_Kind;
Unc_Decl : Boolean := False;
Parent_Node : Node_Id;
begin
pragma Assert (Nkind (N) in N_Aggregate | N_Extension_Aggregate);
pragma Assert (not Is_Static_Dispatch_Table_Aggregate (N));
pragma Assert (Is_Record_Type (Typ));
Parent_Node := Parent (N);
Parent_Kind := Nkind (Parent_Node);
if Parent_Kind = N_Qualified_Expression then
-- Check if we are in an unconstrained declaration because in this
-- case the current delayed expansion mechanism doesn't work when
-- the declared object size depends on the initializing expr.
Parent_Node := Parent (Parent_Node);
Parent_Kind := Nkind (Parent_Node);
if Parent_Kind = N_Object_Declaration then
Unc_Decl :=
not Is_Entity_Name (Object_Definition (Parent_Node))
or else (Nkind (N) = N_Aggregate
and then
Has_Discriminants
(Entity (Object_Definition (Parent_Node))))
or else Is_Class_Wide_Type
(Entity (Object_Definition (Parent_Node)));
end if;
end if;
-- Just set the Delay flag in the cases where the transformation will be
-- done top down from above.
if
-- Internal aggregates (transformed when expanding the parent),
-- excluding container aggregates as these are transformed into
-- subprogram calls later.
(Parent_Kind = N_Component_Association
and then not Is_Container_Aggregate (Parent (Parent_Node)))
or else (Parent_Kind in N_Aggregate | N_Extension_Aggregate
and then not Is_Container_Aggregate (Parent_Node))
-- Allocator (see Convert_Aggr_In_Allocator)
or else Parent_Kind = N_Allocator
-- Object declaration (see Convert_Aggr_In_Object_Decl)
or else (Parent_Kind = N_Object_Declaration and then not Unc_Decl)
-- Safe assignment (see Convert_Aggr_Assignments). So far only the
-- assignments in init procs are taken into account.
or else (Parent_Kind = N_Assignment_Statement
and then Inside_Init_Proc)
-- (Ada 2005) An inherently limited type in a return statement, which
-- will be handled in a build-in-place fashion, and may be rewritten
-- as an extended return and have its own finalization machinery.
-- In the case of a simple return, the aggregate needs to be delayed
-- until the scope for the return statement has been created, so
-- that any finalization chain will be associated with that scope.
-- For extended returns, we delay expansion to avoid the creation
-- of an unwanted transient scope that could result in premature
-- finalization of the return object (which is built in place
-- within the caller's scope).
or else Is_Build_In_Place_Aggregate_Return (N)
then
Set_Expansion_Delayed (N);
return;
end if;
-- Otherwise, if a transient scope is required, create it now
if Requires_Transient_Scope (Typ) then
Establish_Transient_Scope (N, Manage_Sec_Stack => False);
end if;
-- If the aggregate is nonlimited, create a temporary, since aggregates
-- have "by copy" semantics. If it is limited and context is an
-- assignment, this is a subaggregate for an enclosing aggregate being
-- expanded. It must be built in place, so use target of the current
-- assignment.
if Is_Limited_Type (Typ)
and then Parent_Kind = N_Assignment_Statement
then
Target_Expr := New_Copy_Tree (Name (Parent_Node));
Insert_Actions (Parent_Node,
Build_Record_Aggr_Code (N, Typ, Target_Expr));
Rewrite (Parent_Node, Make_Null_Statement (Loc));
-- Do not declare a temporary to initialize an aggregate assigned to
-- a target when in-place assignment is possible, i.e. preserving the
-- by-copy semantic of aggregates. This avoids large stack usage and
-- generates more efficient code.
elsif Parent_Kind = N_Assignment_Statement
and then In_Place_Assign_OK (N, Get_Base_Object (Name (Parent_Node)))
then
declare
Lhs : constant Node_Id := Name (Parent_Node);
begin
-- Apply discriminant check if required
if Has_Discriminants (Etype (N)) then
Apply_Discriminant_Check (N, Etype (Lhs), Lhs);
end if;
-- The check just above may have replaced the aggregate with a CE
if Nkind (N) in N_Aggregate | N_Extension_Aggregate then
Target_Expr := New_Copy_Tree (Lhs);
Insert_Actions (Parent_Node,
Build_Record_Aggr_Code (N, Typ, Target_Expr));
Rewrite (Parent_Node, Make_Null_Statement (Loc));
end if;
end;
else
Temp := Make_Temporary (Loc, 'A', N);
-- If the type inherits unknown discriminants, use the view with
-- known discriminants if available.
if Has_Unknown_Discriminants (Typ)
and then Present (Underlying_Record_View (Typ))
then
T := Underlying_Record_View (Typ);
else
T := Typ;
end if;
Instr :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (T, Loc));
Set_No_Initialization (Instr);
Insert_Action (N, Instr);
Initialize_Discriminants (Instr, T);
Target_Expr := New_Occurrence_Of (Temp, Loc);
Aggr_Code := Build_Record_Aggr_Code (N, T, Target_Expr);
-- Save the last assignment statement associated with the aggregate
-- when building a controlled object. This reference is utilized by
-- the finalization machinery when marking an object as successfully
-- initialized.
if Needs_Finalization (T) then
Set_Last_Aggregate_Assignment (Temp, Last (Aggr_Code));
end if;
Insert_Actions (N, Aggr_Code);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze_And_Resolve (N, T);
end if;
end Convert_To_Assignments;
---------------------------
-- Convert_To_Positional --
---------------------------
procedure Convert_To_Positional
(N : Node_Id;
Handle_Bit_Packed : Boolean := False)
is
Typ : constant Entity_Id := Etype (N);
Dims : constant Nat := Number_Dimensions (Typ);
Max_Others_Replicate : constant Nat := Max_Aggregate_Size (N);
Static_Components : Boolean := True;
procedure Check_Static_Components;
-- Check whether all components of the aggregate are compile-time known
-- values, and can be passed as is to the back-end without further
-- expansion.
function Flatten
(N : Node_Id;
Dims : Nat;
Ix : Node_Id;
Ixb : Node_Id) return Boolean;
-- Convert the aggregate into a purely positional form if possible after
-- checking that the bounds of all dimensions are known to be static.
function Is_Flat (N : Node_Id; Dims : Nat) return Boolean;
-- Return True if the aggregate N is flat (which is not trivial in the
-- case of multidimensional aggregates).
function Is_Static_Element (N : Node_Id; Dims : Nat) return Boolean;
-- Return True if N, an element of a component association list, i.e.
-- N_Component_Association or N_Iterated_Component_Association, has a
-- compile-time known value and can be passed as is to the back-end
-- without further expansion.
-- An Iterated_Component_Association is treated as nonstatic in most
-- cases for now, so there are possibilities for optimization.
-----------------------------
-- Check_Static_Components --
-----------------------------
-- Could use some comments in this body ???
procedure Check_Static_Components is
Assoc : Node_Id;
Expr : Node_Id;
begin
Static_Components := True;
if Nkind (N) = N_String_Literal then
null;
elsif Present (Expressions (N)) then
Expr := First (Expressions (N));
while Present (Expr) loop
if Nkind (Expr) /= N_Aggregate
or else not Compile_Time_Known_Aggregate (Expr)
or else Expansion_Delayed (Expr)
then
Static_Components := False;
exit;
end if;
Next (Expr);
end loop;
end if;
if Nkind (N) = N_Aggregate
and then Present (Component_Associations (N))
then
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
if not Is_Static_Element (Assoc, Dims) then
Static_Components := False;
exit;
end if;
Next (Assoc);
end loop;
end if;
end Check_Static_Components;
-------------
-- Flatten --
-------------
function Flatten
(N : Node_Id;
Dims : Nat;
Ix : Node_Id;
Ixb : Node_Id) return Boolean
is
Loc : constant Source_Ptr := Sloc (N);
Blo : constant Node_Id := Type_Low_Bound (Etype (Ixb));
Lo : constant Node_Id := Type_Low_Bound (Etype (Ix));
Hi : constant Node_Id := Type_High_Bound (Etype (Ix));
function Cannot_Flatten_Next_Aggr (Expr : Node_Id) return Boolean;
-- Return true if Expr is an aggregate for the next dimension that
-- cannot be recursively flattened.
------------------------------
-- Cannot_Flatten_Next_Aggr --
------------------------------
function Cannot_Flatten_Next_Aggr (Expr : Node_Id) return Boolean is
begin
return Nkind (Expr) = N_Aggregate
and then Present (Next_Index (Ix))
and then not
Flatten (Expr, Dims - 1, Next_Index (Ix), Next_Index (Ixb));
end Cannot_Flatten_Next_Aggr;
-- Local variables
Lov : Uint;
Hiv : Uint;
Others_Present : Boolean;
-- Start of processing for Flatten
begin
if Nkind (Original_Node (N)) = N_String_Literal then
return True;
end if;
if not Compile_Time_Known_Value (Lo)
or else not Compile_Time_Known_Value (Hi)
then
return False;
end if;
Lov := Expr_Value (Lo);
Hiv := Expr_Value (Hi);
-- Check if there is an others choice
Others_Present := False;
if Present (Component_Associations (N)) then
if Is_Empty_List (Component_Associations (N)) then
-- an expanded null array aggregate
return False;
end if;
declare
Assoc : Node_Id;
Choice : Node_Id;
begin
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
-- If this is a box association, flattening is in general
-- not possible because at this point we cannot tell if the
-- default is static or even exists.
if Box_Present (Assoc) then
return False;
elsif Nkind (Assoc) = N_Iterated_Component_Association then
return False;
end if;
Choice := First (Choice_List (Assoc));
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
Others_Present := True;
end if;
Next (Choice);
end loop;
Next (Assoc);
end loop;
end;
end if;
-- If the low bound is not known at compile time and others is not
-- present we can proceed since the bounds can be obtained from the
-- aggregate.
if Hiv < Lov
or else (not Compile_Time_Known_Value (Blo) and then Others_Present)
then
return False;
end if;
-- Determine if set of alternatives is suitable for conversion and
-- build an array containing the values in sequence.
declare
Vals : array (UI_To_Int (Lov) .. UI_To_Int (Hiv))
of Node_Id := (others => Empty);
-- The values in the aggregate sorted appropriately
Vlist : List_Id;
-- Same data as Vals in list form
Rep_Count : Nat;
-- Used to validate Max_Others_Replicate limit
Elmt : Node_Id;
Expr : Node_Id;
Num : Int := UI_To_Int (Lov);
Choice_Index : Int;
Choice : Node_Id;
Lo, Hi : Node_Id;
begin
if Present (Expressions (N)) then
Elmt := First (Expressions (N));
while Present (Elmt) loop
-- In the case of a multidimensional array, check that the
-- aggregate can be recursively flattened.
if Cannot_Flatten_Next_Aggr (Elmt) then
return False;
end if;
-- Duplicate expression for each index it covers
Vals (Num) := New_Copy_Tree (Elmt);
Num := Num + 1;
Next (Elmt);
end loop;
end if;
if No (Component_Associations (N)) then
return True;
end if;
Elmt := First (Component_Associations (N));
Component_Loop : while Present (Elmt) loop
Expr := Expression (Elmt);
-- In the case of a multidimensional array, check that the
-- aggregate can be recursively flattened.
if Cannot_Flatten_Next_Aggr (Expr) then
return False;
end if;
Choice := First (Choice_List (Elmt));
Choice_Loop : while Present (Choice) loop
-- If we have an others choice, fill in the missing elements
-- subject to the limit established by Max_Others_Replicate.
if Nkind (Choice) = N_Others_Choice then
Rep_Count := 0;
-- If the expression involves a construct that generates
-- a loop, we must generate individual assignments and
-- no flattening is possible.
if Nkind (Expr) = N_Quantified_Expression then
return False;
end if;
for J in Vals'Range loop
if No (Vals (J)) then
Vals (J) := New_Copy_Tree (Expr);
Rep_Count := Rep_Count + 1;
-- Check for maximum others replication. Note that
-- we skip this test if either of the restrictions
-- No_Implicit_Loops or No_Elaboration_Code is
-- active, if this is a preelaborable unit or
-- a predefined unit, or if the unit must be
-- placed in data memory. This also ensures that
-- predefined units get the same level of constant
-- folding in Ada 95 and Ada 2005, where their
-- categorization has changed.
declare
P : constant Entity_Id :=
Cunit_Entity (Current_Sem_Unit);
begin
-- Check if duplication is always OK and, if so,
-- continue processing.
if Restriction_Active (No_Implicit_Loops) then
null;
-- If duplication is not always OK, continue
-- only if either the element is static or is
-- an aggregate (we already know it is OK).
elsif not Is_Static_Element (Elmt, Dims)
and then Nkind (Expr) /= N_Aggregate
then
return False;
-- Check if duplication is OK for elaboration
-- purposes and, if so, continue processing.
elsif Restriction_Active (No_Elaboration_Code)
or else
(Ekind (Current_Scope) = E_Package
and then
Static_Elaboration_Desired (Current_Scope))
or else Is_Preelaborated (P)
or else (Ekind (P) = E_Package_Body
and then
Is_Preelaborated (Spec_Entity (P)))
or else
Is_Predefined_Unit (Get_Source_Unit (P))
then
null;
-- Otherwise, check that the replication count
-- is not too high.
elsif Rep_Count > Max_Others_Replicate then
return False;
end if;
end;
end if;
end loop;
if Rep_Count = 0
and then Warn_On_Redundant_Constructs
then
Error_Msg_N ("there are no others?r?", Elmt);
end if;
exit Component_Loop;
-- Case of a subtype mark, identifier or expanded name
elsif Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
then
Lo := Type_Low_Bound (Etype (Choice));
Hi := Type_High_Bound (Etype (Choice));
-- Case of subtype indication
elsif Nkind (Choice) = N_Subtype_Indication then
Lo := Low_Bound (Range_Expression (Constraint (Choice)));
Hi := High_Bound (Range_Expression (Constraint (Choice)));
-- Case of a range
elsif Nkind (Choice) = N_Range then
Lo := Low_Bound (Choice);
Hi := High_Bound (Choice);
-- Normal subexpression case
else pragma Assert (Nkind (Choice) in N_Subexpr);
if not Compile_Time_Known_Value (Choice) then
return False;
else
Choice_Index := UI_To_Int (Expr_Value (Choice));
if Choice_Index in Vals'Range then
Vals (Choice_Index) := New_Copy_Tree (Expr);
goto Continue;
-- Choice is statically out-of-range, will be
-- rewritten to raise Constraint_Error.
else
return False;
end if;
end if;
end if;
-- Range cases merge with Lo,Hi set
if not Compile_Time_Known_Value (Lo)
or else
not Compile_Time_Known_Value (Hi)
then
return False;
else
for J in UI_To_Int (Expr_Value (Lo)) ..
UI_To_Int (Expr_Value (Hi))
loop
Vals (J) := New_Copy_Tree (Expr);
end loop;
end if;
<<Continue>>
Next (Choice);
end loop Choice_Loop;
Next (Elmt);
end loop Component_Loop;
-- If we get here the conversion is possible
Vlist := New_List;
for J in Vals'Range loop
Append (Vals (J), Vlist);
end loop;
Rewrite (N, Make_Aggregate (Loc, Expressions => Vlist));
Set_Aggregate_Bounds (N, Aggregate_Bounds (Original_Node (N)));
return True;
end;
end Flatten;
-------------
-- Is_Flat --
-------------
function Is_Flat (N : Node_Id; Dims : Nat) return Boolean is
Elmt : Node_Id;
begin
if Dims = 0 then
return True;
elsif Nkind (N) = N_Aggregate then
if Present (Component_Associations (N)) then
return False;
else
Elmt := First (Expressions (N));
while Present (Elmt) loop
if not Is_Flat (Elmt, Dims - 1) then
return False;
end if;
Next (Elmt);
end loop;
return True;
end if;
else
return True;
end if;
end Is_Flat;
-------------------------
-- Is_Static_Element --
-------------------------
function Is_Static_Element (N : Node_Id; Dims : Nat) return Boolean is
Expr : constant Node_Id := Expression (N);
begin
-- In most cases the interesting expressions are unambiguously static
if Compile_Time_Known_Value (Expr) then
return True;
elsif Nkind (N) = N_Iterated_Component_Association then
return False;
elsif Nkind (Expr) = N_Aggregate
and then Compile_Time_Known_Aggregate (Expr)
and then not Expansion_Delayed (Expr)
then
return True;
-- However, one may write static expressions that are syntactically
-- ambiguous, so preanalyze the expression before checking it again,
-- but only at the innermost level for a multidimensional array.
elsif Dims = 1 then
Preanalyze_And_Resolve (Expr, Component_Type (Typ));
return Compile_Time_Known_Value (Expr);
else
return False;
end if;
end Is_Static_Element;
-- Start of processing for Convert_To_Positional
begin
-- Only convert to positional when generating C in case of an
-- object declaration, this is the only case where aggregates are
-- supported in C.
if Modify_Tree_For_C and then not Is_CCG_Supported_Aggregate (N) then
return;
end if;
-- Ada 2005 (AI-287): Do not convert in case of default initialized
-- components because in this case will need to call the corresponding
-- IP procedure.
if Has_Default_Init_Comps (N) then
return;
end if;
-- A subaggregate may have been flattened but is not known to be
-- Compile_Time_Known. Set that flag in cases that cannot require
-- elaboration code, so that the aggregate can be used as the
-- initial value of a thread-local variable.
if Is_Flat (N, Dims) then
if Static_Array_Aggregate (N) then
Set_Compile_Time_Known_Aggregate (N);
end if;
return;
end if;
if Is_Bit_Packed_Array (Typ) and then not Handle_Bit_Packed then
return;
end if;
-- Do not convert to positional if controlled components are involved
-- since these require special processing
if Has_Controlled_Component (Typ) then
return;
end if;
Check_Static_Components;
-- If the size is known, or all the components are static, try to
-- build a fully positional aggregate.
-- The size of the type may not be known for an aggregate with
-- discriminated array components, but if the components are static
-- it is still possible to verify statically that the length is
-- compatible with the upper bound of the type, and therefore it is
-- worth flattening such aggregates as well.
if Aggr_Size_OK (N)
and then
Flatten (N, Dims, First_Index (Typ), First_Index (Base_Type (Typ)))
then
if Static_Components then
Set_Compile_Time_Known_Aggregate (N);
Set_Expansion_Delayed (N, False);
end if;
Analyze_And_Resolve (N, Typ);
end if;
-- If Static_Elaboration_Desired has been specified, diagnose aggregates
-- that will still require initialization code.
if (Ekind (Current_Scope) = E_Package
and then Static_Elaboration_Desired (Current_Scope))
and then Nkind (Parent (N)) = N_Object_Declaration
then
declare
Expr : Node_Id;
begin
if Nkind (N) = N_Aggregate and then Present (Expressions (N)) then
Expr := First (Expressions (N));
while Present (Expr) loop
if not Compile_Time_Known_Value (Expr) then
Error_Msg_N
("non-static object requires elaboration code??", N);
exit;
end if;
Next (Expr);
end loop;
if Present (Component_Associations (N)) then
Error_Msg_N ("object requires elaboration code??", N);
end if;
end if;
end;
end if;
end Convert_To_Positional;
----------------------------
-- Expand_Array_Aggregate --
----------------------------
-- Array aggregate expansion proceeds as follows:
-- 1. If requested we generate code to perform all the array aggregate
-- bound checks, specifically
-- (a) Check that the index range defined by aggregate bounds is
-- compatible with corresponding index subtype.
-- (b) If an others choice is present check that no aggregate
-- index is outside the bounds of the index constraint.
-- (c) For multidimensional arrays make sure that all subaggregates
-- corresponding to the same dimension have the same bounds.
-- 2. Check for packed array aggregate which can be converted to a
-- constant so that the aggregate disappears completely.
-- 3. Check case of nested aggregate. Generally nested aggregates are
-- handled during the processing of the parent aggregate.
-- 4. Check if the aggregate can be statically processed. If this is the
-- case pass it as is to Gigi. Note that a necessary condition for
-- static processing is that the aggregate be fully positional.
-- 5. If in-place aggregate expansion is possible (i.e. no need to create
-- a temporary) then mark the aggregate as such and return. Otherwise
-- create a new temporary and generate the appropriate initialization
-- code.
procedure Expand_Array_Aggregate (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Ctyp : constant Entity_Id := Component_Type (Typ);
-- Typ is the correct constrained array subtype of the aggregate
-- Ctyp is the corresponding component type.
Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
-- Number of aggregate index dimensions
Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id;
Aggr_High : array (1 .. Aggr_Dimension) of Node_Id;
-- Low and High bounds of the constraint for each aggregate index
Aggr_Index_Typ : array (1 .. Aggr_Dimension) of Entity_Id;
-- The type of each index
In_Place_Assign_OK_For_Declaration : Boolean := False;
-- True if we are to generate an in-place assignment for a declaration
Maybe_In_Place_OK : Boolean;
-- If the type is neither controlled nor packed and the aggregate
-- is the expression in an assignment, assignment in place may be
-- possible, provided other conditions are met on the LHS.
Others_Present : array (1 .. Aggr_Dimension) of Boolean :=
(others => False);
-- If Others_Present (J) is True, then there is an others choice in one
-- of the subaggregates of N at dimension J.
procedure Build_Constrained_Type (Positional : Boolean);
-- If the subtype is not static or unconstrained, build a constrained
-- type using the computable sizes of the aggregate and its sub-
-- aggregates.
procedure Check_Bounds (Aggr_Bounds_Node, Index_Bounds_Node : Node_Id);
-- Checks that the bounds of Aggr_Bounds are within the bounds defined
-- by Index_Bounds. For null array aggregate (Ada 2022) check that the
-- aggregate bounds define a null range.
procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos);
-- Checks that in a multidimensional array aggregate all subaggregates
-- corresponding to the same dimension have the same bounds. Sub_Aggr is
-- an array subaggregate. Dim is the dimension corresponding to the
-- subaggregate.
procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos);
-- Computes the values of array Others_Present. Sub_Aggr is the array
-- subaggregate we start the computation from. Dim is the dimension
-- corresponding to the subaggregate.
procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos);
-- Checks that if an others choice is present in any subaggregate, no
-- aggregate index is outside the bounds of the index constraint.
-- Sub_Aggr is an array subaggregate. Dim is the dimension corresponding
-- to the subaggregate.
function Safe_Left_Hand_Side (N : Node_Id) return Boolean;
-- In addition to Maybe_In_Place_OK, in order for an aggregate to be
-- built directly into the target of the assignment it must be free
-- of side effects. N is the LHS of an assignment.
procedure Two_Pass_Aggregate_Expansion (N : Node_Id);
-- If the aggregate consists only of iterated associations then the
-- aggregate is constructed in two steps:
-- a) Build an expression to compute the number of elements
-- generated by each iterator, and use the expression to allocate
-- the destination aggregate.
-- b) Generate the loops corresponding to each iterator to insert
-- the elements in their proper positions.
----------------------------
-- Build_Constrained_Type --
----------------------------
procedure Build_Constrained_Type (Positional : Boolean) is
Agg_Type : constant Entity_Id := Make_Temporary (Loc, 'A');
Decl : Node_Id;
Indexes : constant List_Id := New_List;
Num : Nat;
Sub_Agg : Node_Id;
begin
-- If the aggregate is purely positional, all its subaggregates
-- have the same size. We collect the dimensions from the first
-- subaggregate at each level.
if Positional then
Sub_Agg := N;
for D in 1 .. Aggr_Dimension loop
Num := List_Length (Expressions (Sub_Agg));
Append_To (Indexes,
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, Uint_1),
High_Bound => Make_Integer_Literal (Loc, Num)));
Sub_Agg := First (Expressions (Sub_Agg));
end loop;
else
-- We know the aggregate type is unconstrained and the aggregate
-- is not processable by the back end, therefore not necessarily
-- positional. Retrieve each dimension bounds (computed earlier).
for D in 1 .. Aggr_Dimension loop
Append_To (Indexes,
Make_Range (Loc,
Low_Bound => Aggr_Low (D),
High_Bound => Aggr_High (D)));
end loop;
end if;
Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Agg_Type,
Type_Definition =>
Make_Constrained_Array_Definition (Loc,
Discrete_Subtype_Definitions => Indexes,
Component_Definition =>
Make_Component_Definition (Loc,
Subtype_Indication =>
New_Occurrence_Of (Component_Type (Typ), Loc))));
Insert_Action (N, Decl);
Analyze (Decl);
Set_Etype (N, Agg_Type);
Set_Is_Itype (Agg_Type);
Freeze_Itype (Agg_Type, N);
end Build_Constrained_Type;
------------------
-- Check_Bounds --
------------------
procedure Check_Bounds (Aggr_Bounds_Node, Index_Bounds_Node : Node_Id) is
Aggr_Bounds : constant Range_Nodes :=
Get_Index_Bounds (Aggr_Bounds_Node);
Ind_Bounds : constant Range_Nodes :=
Get_Index_Bounds (Index_Bounds_Node);
Cond : Node_Id;
begin
-- For a null array aggregate check that high bound (i.e., low
-- bound predecessor) exists. Fail if low bound is low bound of
-- base subtype (in all cases, including modular).
if Is_Null_Aggregate (N) then
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
New_Copy_Tree (Aggr_Bounds.First),
New_Copy_Tree
(Type_Low_Bound (Base_Type (Etype (Ind_Bounds.First))))),
Reason => CE_Range_Check_Failed));
return;
end if;
-- Generate the following test:
-- [constraint_error when
-- Aggr_Bounds.First <= Aggr_Bounds.Last and then
-- (Aggr_Bounds.First < Ind_Bounds.First
-- or else Aggr_Bounds.Last > Ind_Bounds.Last)]
-- As an optimization try to see if some tests are trivially vacuous
-- because we are comparing an expression against itself.
if Aggr_Bounds.First = Ind_Bounds.First
and then Aggr_Bounds.Last = Ind_Bounds.Last
then
Cond := Empty;
elsif Aggr_Bounds.Last = Ind_Bounds.Last then
Cond :=
Make_Op_Lt (Loc,
Left_Opnd =>
Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First),
Right_Opnd =>
Duplicate_Subexpr_Move_Checks (Ind_Bounds.First));
elsif Aggr_Bounds.First = Ind_Bounds.First then
Cond :=
Make_Op_Gt (Loc,
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Bounds.Last),
Right_Opnd => Duplicate_Subexpr_Move_Checks (Ind_Bounds.Last));
else
Cond :=
Make_Or_Else (Loc,
Left_Opnd =>
Make_Op_Lt (Loc,
Left_Opnd =>
Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First),
Right_Opnd =>
Duplicate_Subexpr_Move_Checks (Ind_Bounds.First)),
Right_Opnd =>
Make_Op_Gt (Loc,
Left_Opnd => Duplicate_Subexpr (Aggr_Bounds.Last),
Right_Opnd => Duplicate_Subexpr (Ind_Bounds.Last)));
end if;
if Present (Cond) then
Cond :=
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Le (Loc,
Left_Opnd =>
Duplicate_Subexpr_Move_Checks (Aggr_Bounds.First),
Right_Opnd =>
Duplicate_Subexpr_Move_Checks (Aggr_Bounds.Last)),
Right_Opnd => Cond);
Set_Analyzed (Left_Opnd (Left_Opnd (Cond)), False);
Set_Analyzed (Right_Opnd (Left_Opnd (Cond)), False);
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition => Cond,
Reason => CE_Range_Check_Failed));
end if;
end Check_Bounds;
----------------------------
-- Check_Same_Aggr_Bounds --
----------------------------
procedure Check_Same_Aggr_Bounds (Sub_Aggr : Node_Id; Dim : Pos) is
Sub_Bounds : constant Range_Nodes :=
Get_Index_Bounds (Aggregate_Bounds (Sub_Aggr));
Sub_Lo : Node_Id renames Sub_Bounds.First;
Sub_Hi : Node_Id renames Sub_Bounds.Last;
-- The bounds of this specific subaggregate
Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
Aggr_Hi : constant Node_Id := Aggr_High (Dim);
-- The bounds of the aggregate for this dimension
Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
-- The index type for this dimension.
Cond : Node_Id;
Assoc : Node_Id;
Expr : Node_Id;
begin
-- If index checks are on generate the test
-- [constraint_error when
-- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
-- As an optimization try to see if some tests are trivially vacuos
-- because we are comparing an expression against itself. Also for
-- the first dimension the test is trivially vacuous because there
-- is just one aggregate for dimension 1.
if Index_Checks_Suppressed (Ind_Typ) then
Cond := Empty;
elsif Dim = 1 or else (Aggr_Lo = Sub_Lo and then Aggr_Hi = Sub_Hi)
then
Cond := Empty;
elsif Aggr_Hi = Sub_Hi then
Cond :=
Make_Op_Ne (Loc,
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo));
elsif Aggr_Lo = Sub_Lo then
Cond :=
Make_Op_Ne (Loc,
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi),
Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Hi));
else
Cond :=
Make_Or_Else (Loc,
Left_Opnd =>
Make_Op_Ne (Loc,
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
Right_Opnd => Duplicate_Subexpr_Move_Checks (Sub_Lo)),
Right_Opnd =>
Make_Op_Ne (Loc,
Left_Opnd => Duplicate_Subexpr (Aggr_Hi),
Right_Opnd => Duplicate_Subexpr (Sub_Hi)));
end if;
if Present (Cond) then
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition => Cond,
Reason => CE_Length_Check_Failed));
end if;
-- Now look inside the subaggregate to see if there is more work
if Dim < Aggr_Dimension then
-- Process positional components
if Present (Expressions (Sub_Aggr)) then
Expr := First (Expressions (Sub_Aggr));
while Present (Expr) loop
Check_Same_Aggr_Bounds (Expr, Dim + 1);
Next (Expr);
end loop;
end if;
-- Process component associations
if Present (Component_Associations (Sub_Aggr)) then
Assoc := First (Component_Associations (Sub_Aggr));
while Present (Assoc) loop
Expr := Expression (Assoc);
Check_Same_Aggr_Bounds (Expr, Dim + 1);
Next (Assoc);
end loop;
end if;
end if;
end Check_Same_Aggr_Bounds;
----------------------------
-- Compute_Others_Present --
----------------------------
procedure Compute_Others_Present (Sub_Aggr : Node_Id; Dim : Pos) is
Assoc : Node_Id;
Expr : Node_Id;
begin
if Present (Component_Associations (Sub_Aggr)) then
Assoc := Last (Component_Associations (Sub_Aggr));
if Present (Assoc)
and then Nkind (First (Choice_List (Assoc))) = N_Others_Choice
then
Others_Present (Dim) := True;
-- An others_clause may be superfluous if previous components
-- cover the full given range of a constrained array. In such
-- a case an others_clause does not contribute any additional
-- components and has not been analyzed. We analyze it now to
-- detect type errors in the expression, even though no code
-- will be generated for it.
if Dim = Aggr_Dimension
and then Nkind (Assoc) /= N_Iterated_Component_Association
and then not Analyzed (Expression (Assoc))
and then not Box_Present (Assoc)
then
Preanalyze_And_Resolve (Expression (Assoc), Ctyp);
end if;
end if;
end if;
-- Now look inside the subaggregate to see if there is more work
if Dim < Aggr_Dimension then
-- Process positional components
if Present (Expressions (Sub_Aggr)) then
Expr := First (Expressions (Sub_Aggr));
while Present (Expr) loop
Compute_Others_Present (Expr, Dim + 1);
Next (Expr);
end loop;
end if;
-- Process component associations
if Present (Component_Associations (Sub_Aggr)) then
Assoc := First (Component_Associations (Sub_Aggr));
while Present (Assoc) loop
Expr := Expression (Assoc);
Compute_Others_Present (Expr, Dim + 1);
Next (Assoc);
end loop;
end if;
end if;
end Compute_Others_Present;
------------------
-- Others_Check --
------------------
procedure Others_Check (Sub_Aggr : Node_Id; Dim : Pos) is
Aggr_Lo : constant Node_Id := Aggr_Low (Dim);
Aggr_Hi : constant Node_Id := Aggr_High (Dim);
-- The bounds of the aggregate for this dimension
Ind_Typ : constant Entity_Id := Aggr_Index_Typ (Dim);
-- The index type for this dimension
Need_To_Check : Boolean := False;
Choices_Lo : Node_Id := Empty;
Choices_Hi : Node_Id := Empty;
-- The lowest and highest discrete choices for a named subaggregate
Nb_Choices : Int := -1;
-- The number of discrete non-others choices in this subaggregate
Nb_Elements : Uint := Uint_0;
-- The number of elements in a positional aggregate
Cond : Node_Id := Empty;
Assoc : Node_Id;
Choice : Node_Id;
Expr : Node_Id;
begin
-- Check if we have an others choice. If we do make sure that this
-- subaggregate contains at least one element in addition to the
-- others choice.
if Range_Checks_Suppressed (Ind_Typ) then
Need_To_Check := False;
elsif Present (Expressions (Sub_Aggr))
and then Present (Component_Associations (Sub_Aggr))
then
Need_To_Check :=
not (Is_Empty_List (Expressions (Sub_Aggr))
and then Is_Empty_List
(Component_Associations (Sub_Aggr)));
elsif Present (Component_Associations (Sub_Aggr)) then
Assoc := Last (Component_Associations (Sub_Aggr));
if Nkind (First (Choice_List (Assoc))) /= N_Others_Choice then
Need_To_Check := False;
else
-- Count the number of discrete choices. Start with -1 because
-- the others choice does not count.
-- Is there some reason we do not use List_Length here ???
Nb_Choices := -1;
Assoc := First (Component_Associations (Sub_Aggr));
while Present (Assoc) loop
Choice := First (Choice_List (Assoc));
while Present (Choice) loop
Nb_Choices := Nb_Choices + 1;
Next (Choice);
end loop;
Next (Assoc);
end loop;
-- If there is only an others choice nothing to do
Need_To_Check := (Nb_Choices > 0);
end if;
else
Need_To_Check := False;
end if;
-- If we are dealing with a positional subaggregate with an others
-- choice then compute the number or positional elements.
if Need_To_Check and then Present (Expressions (Sub_Aggr)) then
Expr := First (Expressions (Sub_Aggr));
Nb_Elements := Uint_0;
while Present (Expr) loop
Nb_Elements := Nb_Elements + 1;
Next (Expr);
end loop;
-- If the aggregate contains discrete choices and an others choice
-- compute the smallest and largest discrete choice values.
elsif Need_To_Check then
Compute_Choices_Lo_And_Choices_Hi : declare
Table : Case_Table_Type (1 .. Nb_Choices);
-- Used to sort all the different choice values
J : Pos := 1;
begin
Assoc := First (Component_Associations (Sub_Aggr));
while Present (Assoc) loop
Choice := First (Choice_List (Assoc));
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
exit;
end if;
declare
Bounds : constant Range_Nodes :=
Get_Index_Bounds (Choice);
begin
Table (J).Choice_Lo := Bounds.First;
Table (J).Choice_Hi := Bounds.Last;
end;
J := J + 1;
Next (Choice);
end loop;
Next (Assoc);
end loop;
-- Sort the discrete choices
Sort_Case_Table (Table);
Choices_Lo := Table (1).Choice_Lo;
Choices_Hi := Table (Nb_Choices).Choice_Hi;
end Compute_Choices_Lo_And_Choices_Hi;
end if;
-- If no others choice in this subaggregate, or the aggregate
-- comprises only an others choice, nothing to do.
if not Need_To_Check then
Cond := Empty;
-- If we are dealing with an aggregate containing an others choice
-- and positional components, we generate the following test:
-- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
-- Ind_Typ'Pos (Aggr_Hi)
-- then
-- raise Constraint_Error;
-- end if;
-- in the general case, but the following simpler test:
-- [constraint_error when
-- Aggr_Lo + (Nb_Elements - 1) > Aggr_Hi];
-- instead if the index type is a signed integer.
elsif Nb_Elements > Uint_0 then
if Nb_Elements = Uint_1 then
Cond :=
Make_Op_Gt (Loc,
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi));
elsif Is_Signed_Integer_Type (Ind_Typ) then
Cond :=
Make_Op_Gt (Loc,
Left_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo),
Right_Opnd =>
Make_Integer_Literal (Loc, Nb_Elements - 1)),
Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Hi));
else
Cond :=
Make_Op_Gt (Loc,
Left_Opnd =>
Make_Op_Add (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ind_Typ, Loc),
Attribute_Name => Name_Pos,
Expressions =>
New_List
(Duplicate_Subexpr_Move_Checks (Aggr_Lo))),
Right_Opnd => Make_Integer_Literal (Loc, Nb_Elements - 1)),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ind_Typ, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Duplicate_Subexpr_Move_Checks (Aggr_Hi))));
end if;
-- If we are dealing with an aggregate containing an others choice
-- and discrete choices we generate the following test:
-- [constraint_error when
-- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
else
Cond :=
Make_Or_Else (Loc,
Left_Opnd =>
Make_Op_Lt (Loc,
Left_Opnd => Duplicate_Subexpr_Move_Checks (Choices_Lo),
Right_Opnd => Duplicate_Subexpr_Move_Checks (Aggr_Lo)),
Right_Opnd =>
Make_Op_Gt (Loc,
Left_Opnd => Duplicate_Subexpr (Choices_Hi),
Right_Opnd => Duplicate_Subexpr (Aggr_Hi)));
end if;
if Present (Cond) then
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition => Cond,
Reason => CE_Length_Check_Failed));
-- Questionable reason code, shouldn't that be a
-- CE_Range_Check_Failed ???
end if;
-- Now look inside the subaggregate to see if there is more work
if Dim < Aggr_Dimension then
-- Process positional components
if Present (Expressions (Sub_Aggr)) then
Expr := First (Expressions (Sub_Aggr));
while Present (Expr) loop
Others_Check (Expr, Dim + 1);
Next (Expr);
end loop;
end if;
-- Process component associations
if Present (Component_Associations (Sub_Aggr)) then
Assoc := First (Component_Associations (Sub_Aggr));
while Present (Assoc) loop
Expr := Expression (Assoc);
Others_Check (Expr, Dim + 1);
Next (Assoc);
end loop;
end if;
end if;
end Others_Check;
-------------------------
-- Safe_Left_Hand_Side --
-------------------------
function Safe_Left_Hand_Side (N : Node_Id) return Boolean is
function Is_Safe_Index (Indx : Node_Id) return Boolean;
-- If the left-hand side includes an indexed component, check that
-- the indexes are free of side effects.
-------------------
-- Is_Safe_Index --
-------------------
function Is_Safe_Index (Indx : Node_Id) return Boolean is
begin
if Is_Entity_Name (Indx) then
return True;
elsif Nkind (Indx) = N_Integer_Literal then
return True;
elsif Nkind (Indx) = N_Function_Call
and then Is_Entity_Name (Name (Indx))
and then Has_Pragma_Pure_Function (Entity (Name (Indx)))
then
return True;
elsif Nkind (Indx) = N_Type_Conversion
and then Is_Safe_Index (Expression (Indx))
then
return True;
else
return False;
end if;
end Is_Safe_Index;
-- Start of processing for Safe_Left_Hand_Side
begin
if Is_Entity_Name (N) then
return True;
elsif Nkind (N) in N_Explicit_Dereference | N_Selected_Component
and then Safe_Left_Hand_Side (Prefix (N))
then
return True;
elsif Nkind (N) = N_Indexed_Component
and then Safe_Left_Hand_Side (Prefix (N))
and then Is_Safe_Index (First (Expressions (N)))
then
return True;
elsif Nkind (N) = N_Unchecked_Type_Conversion then
return Safe_Left_Hand_Side (Expression (N));
else
return False;
end if;
end Safe_Left_Hand_Side;
----------------------------------
-- Two_Pass_Aggregate_Expansion --
----------------------------------
procedure Two_Pass_Aggregate_Expansion (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Comp_Type : constant Entity_Id := Etype (N);
Index_Id : constant Entity_Id := Make_Temporary (Loc, 'I', N);
Index_Type : constant Entity_Id := Etype (First_Index (Etype (N)));
Size_Id : constant Entity_Id := Make_Temporary (Loc, 'I', N);
Size_Type : constant Entity_Id :=
Integer_Type_For
(Esize (Index_Type), Is_Unsigned_Type (Index_Type));
TmpE : constant Entity_Id := Make_Temporary (Loc, 'A', N);
Assoc : Node_Id := First (Component_Associations (N));
Incr : Node_Id;
Iter : Node_Id;
New_Comp : Node_Id;
One_Loop : Node_Id;
Size_Expr_Code : List_Id;
Insertion_Code : List_Id := New_List;
begin
Size_Expr_Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Size_Id,
Object_Definition => New_Occurrence_Of (Size_Type, Loc),
Expression => Make_Integer_Literal (Loc, 0)));
-- First pass: execute the iterators to count the number of elements
-- that will be generated.
while Present (Assoc) loop
Iter := Iterator_Specification (Assoc);
Incr := Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Size_Id, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Size_Id, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1)));
One_Loop := Make_Implicit_Loop_Statement (N,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Iterator_Specification => New_Copy_Tree (Iter)),
Statements => New_List (Incr));
Append (One_Loop, Size_Expr_Code);
Next (Assoc);
end loop;
Insert_Actions (N, Size_Expr_Code);
-- Build a constrained subtype with the bounds deduced from
-- the size computed above and declare the aggregate object.
-- The index type is some discrete type, so the bounds of the
-- constrained subtype are computed as T'Val (integer bounds).
declare
-- Pos_Lo := Index_Type'Pos (Index_Type'First)
Pos_Lo : constant Node_Id :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Index_Type, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Index_Type, Loc),
Attribute_Name => Name_First)));
-- Corresponding index value, i.e. Index_Type'First
Aggr_Lo : constant Node_Id :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Index_Type, Loc),
Attribute_Name => Name_First);
-- Pos_Hi := Pos_Lo + Size - 1
Pos_Hi : constant Node_Id :=
Make_Op_Add (Loc,
Left_Opnd => Pos_Lo,
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => New_Occurrence_Of (Size_Id, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1)));
-- Corresponding index value
Aggr_Hi : constant Node_Id :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Index_Type, Loc),
Attribute_Name => Name_Val,
Expressions => New_List (Pos_Hi));
SubE : constant Entity_Id := Make_Temporary (Loc, 'T');
SubD : constant Node_Id :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => SubE,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Occurrence_Of (Etype (Comp_Type), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint
(Loc,
Constraints =>
New_List (Make_Range (Loc, Aggr_Lo, Aggr_Hi)))));
-- Create a temporary array of the above subtype which
-- will be used to capture the aggregate assignments.
TmpD : constant Node_Id :=
Make_Object_Declaration (Loc,
Defining_Identifier => TmpE,
Object_Definition => New_Occurrence_Of (SubE, Loc));
begin
Insert_Actions (N, New_List (SubD, TmpD));
end;
-- Second pass: use the iterators to generate the elements of the
-- aggregate. Insertion index starts at Index_Type'First. We
-- assume that the second evaluation of each iterator generates
-- the same number of elements as the first pass, and consider
-- that the execution is erroneous (even if the RM does not state
-- this explicitly) if the number of elements generated differs
-- between first and second pass.
Assoc := First (Component_Associations (N));
-- Initialize insertion position to first array component.
Insertion_Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Index_Id,
Object_Definition =>
New_Occurrence_Of (Index_Type, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Index_Type, Loc),
Attribute_Name => Name_First)));
while Present (Assoc) loop
Iter := Iterator_Specification (Assoc);
New_Comp := Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (TmpE, Loc),
Expressions =>
New_List (New_Occurrence_Of (Index_Id, Loc))),
Expression => Copy_Separate_Tree (Expression (Assoc)));
-- Advance index position for insertion.
Incr := Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Index_Id, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Index_Type, Loc),
Attribute_Name => Name_Succ,
Expressions =>
New_List (New_Occurrence_Of (Index_Id, Loc))));
-- Add guard to skip last increment when upper bound is reached.
Incr := Make_If_Statement (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => New_Occurrence_Of (Index_Id, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Index_Type, Loc),
Attribute_Name => Name_Last)),
Then_Statements => New_List (Incr));
One_Loop := Make_Implicit_Loop_Statement (N,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Iterator_Specification => Copy_Separate_Tree (Iter)),
Statements => New_List (New_Comp, Incr));
Append (One_Loop, Insertion_Code);
Next (Assoc);
end loop;
Insert_Actions (N, Insertion_Code);
-- Depending on context this may not work for build-in-place
-- arrays ???
Rewrite (N, New_Occurrence_Of (TmpE, Loc));
end Two_Pass_Aggregate_Expansion;
-- Local variables
Tmp : Entity_Id;
-- Holds the temporary aggregate value
Tmp_Decl : Node_Id;
-- Holds the declaration of Tmp
Aggr_Code : List_Id;
Parent_Node : Node_Id;
Parent_Kind : Node_Kind;
-- Start of processing for Expand_Array_Aggregate
begin
-- Do not touch the special aggregates of attributes used for Asm calls
if Is_RTE (Ctyp, RE_Asm_Input_Operand)
or else Is_RTE (Ctyp, RE_Asm_Output_Operand)
then
return;
elsif Is_Two_Pass_Aggregate (N) then
Two_Pass_Aggregate_Expansion (N);
return;
-- Do not attempt expansion if error already detected. We may reach this
-- point in spite of previous errors when compiling with -gnatq, to
-- force all possible errors (this is the usual ACATS mode).
elsif Error_Posted (N) then
return;
end if;
-- If the semantic analyzer has determined that aggregate N will raise
-- Constraint_Error at run time, then the aggregate node has been
-- replaced with an N_Raise_Constraint_Error node and we should
-- never get here.
pragma Assert (not Raises_Constraint_Error (N));
-- STEP 1a
-- Check that the index range defined by aggregate bounds is
-- compatible with corresponding index subtype.
Index_Compatibility_Check : declare
Aggr_Index_Range : Node_Id := First_Index (Typ);
-- The current aggregate index range
Index_Constraint : Node_Id := First_Index (Etype (Typ));
-- The corresponding index constraint against which we have to
-- check the above aggregate index range.
begin
Compute_Others_Present (N, 1);
for J in 1 .. Aggr_Dimension loop
-- There is no need to emit a check if an others choice is present
-- for this array aggregate dimension since in this case one of
-- N's subaggregates has taken its bounds from the context and
-- these bounds must have been checked already. In addition all
-- subaggregates corresponding to the same dimension must all have
-- the same bounds (checked in (c) below).
if not Range_Checks_Suppressed (Etype (Index_Constraint))
and then not Others_Present (J)
then
-- We don't use Checks.Apply_Range_Check here because it emits
-- a spurious check. Namely it checks that the range defined by
-- the aggregate bounds is nonempty. But we know this already
-- if we get here.
Check_Bounds (Aggr_Index_Range, Index_Constraint);
end if;
-- Save the low and high bounds of the aggregate index as well as
-- the index type for later use in checks (b) and (c) below.
Get_Index_Bounds
(Aggr_Index_Range, L => Aggr_Low (J), H => Aggr_High (J));
Aggr_Index_Typ (J) := Etype (Index_Constraint);
Next_Index (Aggr_Index_Range);
Next_Index (Index_Constraint);
end loop;
end Index_Compatibility_Check;
-- STEP 1b
-- If an others choice is present check that no aggregate index is
-- outside the bounds of the index constraint.
Others_Check (N, 1);
-- STEP 1c
-- For multidimensional arrays make sure that all subaggregates
-- corresponding to the same dimension have the same bounds.
if Aggr_Dimension > 1 then
Check_Same_Aggr_Bounds (N, 1);
end if;
-- STEP 1d
-- If we have a default component value, or simple initialization is
-- required for the component type, then we replace <> in component
-- associations by the required default value.
declare
Default_Val : Node_Id;
Assoc : Node_Id;
begin
if (Present (Default_Aspect_Component_Value (Typ))
or else Needs_Simple_Initialization (Ctyp))
and then Present (Component_Associations (N))
then
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
if Nkind (Assoc) = N_Component_Association
and then Box_Present (Assoc)
then
Set_Box_Present (Assoc, False);
if Present (Default_Aspect_Component_Value (Typ)) then
Default_Val := Default_Aspect_Component_Value (Typ);
else
Default_Val := Get_Simple_Init_Val (Ctyp, N);
end if;
Set_Expression (Assoc, New_Copy_Tree (Default_Val));
Analyze_And_Resolve (Expression (Assoc), Ctyp);
end if;
Next (Assoc);
end loop;
end if;
end;
-- STEP 2
-- Here we test for is packed array aggregate that we can handle at
-- compile time. If so, return with transformation done. Note that we do
-- this even if the aggregate is nested, because once we have done this
-- processing, there is no more nested aggregate.
if Packed_Array_Aggregate_Handled (N) then
return;
end if;
-- At this point we try to convert to positional form
Convert_To_Positional (N);
-- If the result is no longer an aggregate (e.g. it may be a string
-- literal, or a temporary which has the needed value), then we are
-- done, since there is no longer a nested aggregate.
if Nkind (N) /= N_Aggregate then
return;
-- We are also done if the result is an analyzed aggregate, indicating
-- that Convert_To_Positional succeeded and reanalyzed the rewritten
-- aggregate.
elsif Analyzed (N) and then Is_Rewrite_Substitution (N) then
return;
end if;
-- If all aggregate components are compile-time known and the aggregate
-- has been flattened, nothing left to do. The same occurs if the
-- aggregate is used to initialize the components of a statically
-- allocated dispatch table.
if Compile_Time_Known_Aggregate (N)
or else Is_Static_Dispatch_Table_Aggregate (N)
then
Set_Expansion_Delayed (N, False);
return;
end if;
-- Now see if back end processing is possible
if Backend_Processing_Possible (N) then
-- If the aggregate is static but the constraints are not, build
-- a static subtype for the aggregate, so that Gigi can place it
-- in static memory. Perform an unchecked_conversion to the non-
-- static type imposed by the context.
declare
Itype : constant Entity_Id := Etype (N);
Index : Node_Id;
Needs_Type : Boolean := False;
begin
Index := First_Index (Itype);
while Present (Index) loop
if not Is_OK_Static_Subtype (Etype (Index)) then
Needs_Type := True;
exit;
else
Next_Index (Index);
end if;
end loop;
if Needs_Type then
Build_Constrained_Type (Positional => True);
Rewrite (N, Unchecked_Convert_To (Itype, N));
Analyze (N);
end if;
end;
return;
end if;
-- STEP 3
-- Delay expansion for nested aggregates: it will be taken care of when
-- the parent aggregate is expanded, excluding container aggregates as
-- these are transformed into subprogram calls later.
Parent_Node := Parent (N);
Parent_Kind := Nkind (Parent_Node);
if Parent_Kind = N_Qualified_Expression then
Parent_Node := Parent (Parent_Node);
Parent_Kind := Nkind (Parent_Node);
end if;
if (Parent_Kind = N_Component_Association
and then not Is_Container_Aggregate (Parent (Parent_Node)))
or else (Parent_Kind in N_Aggregate | N_Extension_Aggregate
and then not Is_Container_Aggregate (Parent_Node))
or else (Parent_Kind = N_Object_Declaration
and then (Needs_Finalization (Typ)
or else Is_Special_Return_Object
(Defining_Identifier (Parent_Node))))
or else (Parent_Kind = N_Assignment_Statement
and then Inside_Init_Proc)
then
Set_Expansion_Delayed (N, not Static_Array_Aggregate (N));
return;
end if;
-- STEP 4
-- Check whether in-place aggregate expansion is possible
-- For object declarations we build the aggregate in place, unless
-- the array is bit-packed.
-- For assignments we do the assignment in place if all the component
-- associations have compile-time known values, or are default-
-- initialized limited components, e.g. tasks. For other cases we
-- create a temporary. A full analysis for safety of in-place assignment
-- is delicate.
-- For allocators we assign to the designated object in place if the
-- aggregate meets the same conditions as other in-place assignments.
-- In this case the aggregate may not come from source but was created
-- for default initialization, e.g. with Initialize_Scalars.
if Requires_Transient_Scope (Typ) then
Establish_Transient_Scope (N, Manage_Sec_Stack => False);
end if;
-- An array of limited components is built in place
if Is_Limited_Type (Typ) then
Maybe_In_Place_OK := True;
elsif Has_Default_Init_Comps (N) then
Maybe_In_Place_OK := False;
elsif Is_Bit_Packed_Array (Typ)
or else Has_Controlled_Component (Typ)
then
Maybe_In_Place_OK := False;
elsif Parent_Kind = N_Assignment_Statement then
Maybe_In_Place_OK :=
In_Place_Assign_OK (N, Get_Base_Object (Name (Parent_Node)));
elsif Parent_Kind = N_Allocator then
Maybe_In_Place_OK := In_Place_Assign_OK (N);
else
Maybe_In_Place_OK := False;
end if;
-- If this is an array of tasks, it will be expanded into build-in-place
-- assignments. Build an activation chain for the tasks now.
if Has_Task (Typ) then
Build_Activation_Chain_Entity (N);
end if;
-- Perform in-place expansion of aggregate in an object declaration.
-- Note: actions generated for the aggregate will be captured in an
-- expression-with-actions statement so that they can be transferred
-- to freeze actions later if there is an address clause for the
-- object. (Note: we don't use a block statement because this would
-- cause generated freeze nodes to be elaborated in the wrong scope).
-- Arrays of limited components must be built in place. The code
-- previously excluded controlled components but this is an old
-- oversight: the rules in 7.6 (17) are clear.
if Comes_From_Source (Parent_Node)
and then Parent_Kind = N_Object_Declaration
and then Present (Expression (Parent_Node))
and then not
Must_Slide (N, Etype (Defining_Identifier (Parent_Node)), Typ)
and then not Is_Bit_Packed_Array (Typ)
then
In_Place_Assign_OK_For_Declaration := True;
Tmp := Defining_Identifier (Parent_Node);
Set_No_Initialization (Parent_Node);
Set_Expression (Parent_Node, Empty);
-- Set kind and type of the entity, for use in the analysis
-- of the subsequent assignments. If the nominal type is not
-- constrained, build a subtype from the known bounds of the
-- aggregate. If the declaration has a subtype mark, use it,
-- otherwise use the itype of the aggregate.
Mutate_Ekind (Tmp, E_Variable);
if not Is_Constrained (Typ) then
Build_Constrained_Type (Positional => False);
elsif Is_Entity_Name (Object_Definition (Parent_Node))
and then Is_Constrained (Entity (Object_Definition (Parent_Node)))
then
Set_Etype (Tmp, Entity (Object_Definition (Parent_Node)));
else
Set_Size_Known_At_Compile_Time (Typ, False);
Set_Etype (Tmp, Typ);
end if;
elsif Maybe_In_Place_OK and then Parent_Kind = N_Allocator then
Set_Expansion_Delayed (N);
return;
-- Limited arrays in return statements are expanded when
-- enclosing construct is expanded.
elsif Maybe_In_Place_OK
and then Parent_Kind = N_Simple_Return_Statement
then
Set_Expansion_Delayed (N);
return;
-- In the remaining cases the aggregate appears in the RHS of an
-- assignment, which may be part of the expansion of an object
-- declaration. If the aggregate is an actual in a call, itself
-- possibly in a RHS, building it in the target is not possible.
elsif Maybe_In_Place_OK
and then Nkind (Parent_Node) not in N_Subprogram_Call
and then Safe_Left_Hand_Side (Name (Parent_Node))
then
Tmp := Name (Parent_Node);
if Etype (Tmp) /= Etype (N) then
Apply_Length_Check (N, Etype (Tmp));
if Nkind (N) = N_Raise_Constraint_Error then
-- Static error, nothing further to expand
return;
end if;
end if;
-- If a slice assignment has an aggregate with a single others_choice,
-- the assignment can be done in place even if bounds are not static,
-- by converting it into a loop over the discrete range of the slice.
elsif Maybe_In_Place_OK
and then Nkind (Name (Parent_Node)) = N_Slice
and then Is_Others_Aggregate (N)
then
Tmp := Name (Parent_Node);
-- Set type of aggregate to be type of lhs in assignment, in order
-- to suppress redundant length checks.
Set_Etype (N, Etype (Tmp));
-- Step 5
-- In-place aggregate expansion is not possible
else
Maybe_In_Place_OK := False;
Tmp := Make_Temporary (Loc, 'A', N);
Tmp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Tmp,
Object_Definition => New_Occurrence_Of (Typ, Loc));
Set_No_Initialization (Tmp_Decl, True);
-- If we are within a loop, the temporary will be pushed on the
-- stack at each iteration. If the aggregate is the expression
-- for an allocator, it will be immediately copied to the heap
-- and can be reclaimed at once. We create a transient scope
-- around the aggregate for this purpose.
if Ekind (Current_Scope) = E_Loop
and then Parent_Kind = N_Allocator
then
Establish_Transient_Scope (N, Manage_Sec_Stack => False);
-- If the parent is an assignment for which no controlled actions
-- should take place, prevent the temporary from being finalized.
elsif Parent_Kind = N_Assignment_Statement
and then No_Ctrl_Actions (Parent_Node)
then
Mutate_Ekind (Tmp, E_Variable);
Set_Is_Ignored_For_Finalization (Tmp);
end if;
Insert_Action (N, Tmp_Decl);
end if;
-- Construct and insert the aggregate code. We can safely suppress index
-- checks because this code is guaranteed not to raise CE on index
-- checks. However we should *not* suppress all checks.
declare
Target : Node_Id;
begin
if Nkind (Tmp) = N_Defining_Identifier then
Target := New_Occurrence_Of (Tmp, Loc);
else
if Has_Default_Init_Comps (N)
and then not Maybe_In_Place_OK
then
-- Ada 2005 (AI-287): This case has not been analyzed???
raise Program_Error;
end if;
-- Name in assignment is explicit dereference
Target := New_Copy (Tmp);
end if;
-- If we are to generate an in-place assignment for a declaration or
-- an assignment statement, and the assignment can be done directly
-- by the back end, then do not expand further.
-- ??? We can also do that if in-place expansion is not possible but
-- then we could go into an infinite recursion.
if (In_Place_Assign_OK_For_Declaration or else Maybe_In_Place_OK)
and then not CodePeer_Mode
and then not Modify_Tree_For_C
and then not Possible_Bit_Aligned_Component (Target)
and then not Is_Possibly_Unaligned_Slice (Target)
and then Aggr_Assignment_OK_For_Backend (N)
then
-- In the case of an assignment using an access with the
-- Designated_Storage_Model aspect with a Copy_To procedure,
-- insert a temporary and have the back end handle the assignment
-- to it. Copy the result to the original target.
if Parent_Kind = N_Assignment_Statement
and then Nkind (Name (Parent_Node)) = N_Explicit_Dereference
and then Has_Designated_Storage_Model_Aspect
(Etype (Prefix (Name (Parent_Node))))
and then Present (Storage_Model_Copy_To
(Storage_Model_Object
(Etype (Prefix (Name (Parent_Node))))))
then
Aggr_Code := Build_Assignment_With_Temporary
(Target, Typ, New_Copy_Tree (N));
else
if Maybe_In_Place_OK then
return;
end if;
Aggr_Code := New_List (
Make_Assignment_Statement (Loc,
Name => Target,
Expression => New_Copy_Tree (N)));
end if;
else
Aggr_Code :=
Build_Array_Aggr_Code (N,
Ctype => Ctyp,
Index => First_Index (Typ),
Into => Target,
Scalar_Comp => Is_Scalar_Type (Ctyp));
end if;
-- Save the last assignment statement associated with the aggregate
-- when building a controlled object. This reference is utilized by
-- the finalization machinery when marking an object as successfully
-- initialized.
if Needs_Finalization (Typ)
and then Is_Entity_Name (Target)
and then Present (Entity (Target))
and then Ekind (Entity (Target)) in E_Constant | E_Variable
then
Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
end if;
end;
-- If the aggregate is the expression in a declaration, the expanded
-- code must be inserted after it. The defining entity might not come
-- from source if this is part of an inlined body, but the declaration
-- itself will.
-- The test below looks very specialized and kludgy???
if Comes_From_Source (Tmp)
or else
(Nkind (Parent (N)) = N_Object_Declaration
and then Comes_From_Source (Parent (N))
and then Tmp = Defining_Entity (Parent (N)))
then
if Parent_Kind /= N_Object_Declaration or else Is_Frozen (Tmp) then
Insert_Actions_After (Parent_Node, Aggr_Code);
else
declare
Comp_Stmt : constant Node_Id :=
Make_Compound_Statement
(Sloc (Parent_Node), Actions => Aggr_Code);
begin
Insert_Action_After (Parent_Node, Comp_Stmt);
Set_Initialization_Statements (Tmp, Comp_Stmt);
end;
end if;
else
Insert_Actions (N, Aggr_Code);
end if;
-- If the aggregate has been assigned in place, remove the original
-- assignment.
if Parent_Kind = N_Assignment_Statement and then Maybe_In_Place_OK then
Rewrite (Parent_Node, Make_Null_Statement (Loc));
-- Or else, if a temporary was created, replace the aggregate with it
elsif Parent_Kind /= N_Object_Declaration
or else Tmp /= Defining_Identifier (Parent_Node)
then
Rewrite (N, New_Occurrence_Of (Tmp, Loc));
Analyze_And_Resolve (N, Typ);
end if;
end Expand_Array_Aggregate;
------------------------
-- Expand_N_Aggregate --
------------------------
procedure Expand_N_Aggregate (N : Node_Id) is
T : constant Entity_Id := Etype (N);
begin
-- Record aggregate case
if Is_Record_Type (T)
and then not Is_Private_Type (T)
and then not Is_Homogeneous_Aggregate (N)
then
Expand_Record_Aggregate (N);
elsif Has_Aspect (T, Aspect_Aggregate) then
Expand_Container_Aggregate (N);
-- Array aggregate case
else
-- A special case, if we have a string subtype with bounds 1 .. N,
-- where N is known at compile time, and the aggregate is of the
-- form (others => 'x'), with a single choice and no expressions,
-- and N is less than 80 (an arbitrary limit for now), then replace
-- the aggregate by the equivalent string literal (but do not mark
-- it as static since it is not).
-- Note: this entire circuit is redundant with respect to code in
-- Expand_Array_Aggregate that collapses others choices to positional
-- form, but there are two problems with that circuit:
-- a) It is limited to very small cases due to ill-understood
-- interactions with bootstrapping. That limit is removed by
-- use of the No_Implicit_Loops restriction.
-- b) It incorrectly ends up with the resulting expressions being
-- considered static when they are not. For example, the
-- following test should fail:
-- pragma Restrictions (No_Implicit_Loops);
-- package NonSOthers4 is
-- B : constant String (1 .. 6) := (others => 'A');
-- DH : constant String (1 .. 8) := B & "BB";
-- X : Integer;
-- pragma Export (C, X, Link_Name => DH);
-- end;
-- But it succeeds (DH looks static to pragma Export)
-- To be sorted out ???
if Present (Component_Associations (N)) then
declare
CA : constant Node_Id := First (Component_Associations (N));
MX : constant := 80;
begin
if Present (CA)
and then Nkind (First (Choice_List (CA))) = N_Others_Choice
and then Nkind (Expression (CA)) = N_Character_Literal
and then No (Expressions (N))
then
declare
X : constant Node_Id := First_Index (T);
EC : constant Node_Id := Expression (CA);
CV : constant Uint := Char_Literal_Value (EC);
CC : constant Char_Code := UI_To_CC (CV);
begin
if Nkind (X) = N_Range
and then Compile_Time_Known_Value (Low_Bound (X))
and then Expr_Value (Low_Bound (X)) = 1
and then Compile_Time_Known_Value (High_Bound (X))
then
declare
Hi : constant Uint := Expr_Value (High_Bound (X));
begin
if Hi <= MX then
Start_String;
for J in 1 .. UI_To_Int (Hi) loop
Store_String_Char (CC);
end loop;
Rewrite (N,
Make_String_Literal (Sloc (N),
Strval => End_String));
if In_Character_Range (CC) then
null;
elsif In_Wide_Character_Range (CC) then
Set_Has_Wide_Character (N);
else
Set_Has_Wide_Wide_Character (N);
end if;
Analyze_And_Resolve (N, T);
Set_Is_Static_Expression (N, False);
return;
end if;
end;
end if;
end;
end if;
end;
end if;
-- Not that special case, so normal expansion of array aggregate
Expand_Array_Aggregate (N);
end if;
exception
when RE_Not_Available =>
return;
end Expand_N_Aggregate;
--------------------------------
-- Expand_Container_Aggregate --
--------------------------------
procedure Expand_Container_Aggregate (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Asp : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Aggregate);
Empty_Subp : Node_Id := Empty;
Add_Named_Subp : Node_Id := Empty;
Add_Unnamed_Subp : Node_Id := Empty;
New_Indexed_Subp : Node_Id := Empty;
Assign_Indexed_Subp : Node_Id := Empty;
Aggr_Code : constant List_Id := New_List;
Temp : constant Entity_Id := Make_Temporary (Loc, 'C', N);
Comp : Node_Id;
Decl : Node_Id;
Default : Node_Id;
Init_Stat : Node_Id;
Siz : Int;
-- The following are used when the size of the aggregate is not
-- static and requires a dynamic evaluation.
Siz_Decl : Node_Id;
Siz_Exp : Node_Id := Empty;
Count_Type : Entity_Id;
Is_Indexed_Aggregate : Boolean := False;
function Aggregate_Size return Int;
-- Compute number of entries in aggregate, including choices
-- that cover a range or subtype, as well as iterated constructs.
-- Return -1 if the size is not known statically, in which case
-- allocate a default size for the aggregate, or build an expression
-- to estimate the size dynamically.
function Build_Siz_Exp (Comp : Node_Id) return Int;
-- When the aggregate contains a single Iterated_Component_Association
-- or Element_Association with non-static bounds, build an expression
-- to be used as the allocated size of the container. This may be an
-- overestimate if a filter is present, but is a safe approximation.
-- If bounds are dynamic the aggregate is created in two passes, and
-- the first generates a loop for the sole purpose of computing the
-- number of elements that will be generated on the second pass.
procedure Expand_Iterated_Component (Comp : Node_Id);
-- Handle iterated_component_association and iterated_Element
-- association by generating a loop over the specified range,
-- given either by a loop parameter specification or an iterator
-- specification.
--------------------
-- Aggregate_Size --
--------------------
function Aggregate_Size return Int is
Comp : Node_Id;
Choice : Node_Id;
Lo, Hi : Node_Id;
Siz : Int;
procedure Add_Range_Size;
-- Compute number of components specified by a component association
-- given by a range or subtype name.
--------------------
-- Add_Range_Size --
--------------------
procedure Add_Range_Size is
begin
-- The bounds of the discrete range are integers or enumeration
-- literals
if Nkind (Lo) = N_Integer_Literal then
Siz := Siz + UI_To_Int (Intval (Hi))
- UI_To_Int (Intval (Lo)) + 1;
else
Siz := Siz + UI_To_Int (Enumeration_Pos (Hi))
- UI_To_Int (Enumeration_Pos (Lo)) + 1;
end if;
end Add_Range_Size;
begin
-- Aggregate is either all positional or all named
Siz := List_Length (Expressions (N));
if Present (Component_Associations (N)) then
Comp := First (Component_Associations (N));
-- If there is a single component association it can be
-- an iterated component with dynamic bounds or an element
-- iterator over an iterable object. If it is an array
-- we can use the attribute Length to get its size;
-- for a predefined container the function Length plays
-- the same role. There is no available mechanism for
-- user-defined containers. For now we treat all of these
-- as dynamic.
if List_Length (Component_Associations (N)) = 1
and then Nkind (Comp) in N_Iterated_Component_Association |
N_Iterated_Element_Association
then
return Build_Siz_Exp (Comp);
end if;
-- Otherwise all associations must specify static sizes.
while Present (Comp) loop
Choice := First (Choice_List (Comp));
while Present (Choice) loop
Analyze (Choice);
if Nkind (Choice) = N_Range then
Lo := Low_Bound (Choice);
Hi := High_Bound (Choice);
Add_Range_Size;
elsif Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
then
Lo := Type_Low_Bound (Entity (Choice));
Hi := Type_High_Bound (Entity (Choice));
Add_Range_Size;
Rewrite (Choice,
Make_Range (Loc,
New_Copy_Tree (Lo),
New_Copy_Tree (Hi)));
else
-- Single choice (syntax excludes a subtype
-- indication).
Siz := Siz + 1;
end if;
Next (Choice);
end loop;
Next (Comp);
end loop;
end if;
return Siz;
end Aggregate_Size;
-------------------
-- Build_Siz_Exp --
-------------------
function Build_Siz_Exp (Comp : Node_Id) return Int is
Lo, Hi : Node_Id;
begin
if Nkind (Comp) = N_Range then
Lo := Low_Bound (Comp);
Hi := High_Bound (Comp);
Analyze (Lo);
Analyze (Hi);
-- Compute static size when possible.
if Is_Static_Expression (Lo)
and then Is_Static_Expression (Hi)
then
if Nkind (Lo) = N_Integer_Literal then
Siz := UI_To_Int (Intval (Hi)) - UI_To_Int (Intval (Lo)) + 1;
else
Siz := UI_To_Int (Enumeration_Pos (Hi))
- UI_To_Int (Enumeration_Pos (Lo)) + 1;
end if;
return Siz;
else
Siz_Exp :=
Make_Op_Add (Sloc (Comp),
Left_Opnd =>
Make_Op_Subtract (Sloc (Comp),
Left_Opnd => New_Copy_Tree (Hi),
Right_Opnd => New_Copy_Tree (Lo)),
Right_Opnd =>
Make_Integer_Literal (Loc, 1));
return -1;
end if;
elsif Nkind (Comp) = N_Iterated_Component_Association then
return Build_Siz_Exp (First (Discrete_Choices (Comp)));
elsif Nkind (Comp) = N_Iterated_Element_Association then
return -1;
-- ??? Need to create code for a loop and add to generated code,
-- as is done for array aggregates with iterated element
-- associations, instead of using Append operations.
else
return -1;
end if;
end Build_Siz_Exp;
-------------------------------
-- Expand_Iterated_Component --
-------------------------------
procedure Expand_Iterated_Component (Comp : Node_Id) is
Expr : constant Node_Id := Expression (Comp);
Key_Expr : Node_Id := Empty;
Loop_Id : Entity_Id;
L_Range : Node_Id;
L_Iteration_Scheme : Node_Id;
Loop_Stat : Node_Id;
Params : List_Id;
Stats : List_Id;
begin
if Nkind (Comp) = N_Iterated_Element_Association then
Key_Expr := Key_Expression (Comp);
-- We create a new entity as loop identifier in all cases,
-- as is done for generated loops elsewhere, as the loop
-- structure has been previously analyzed.
if Present (Iterator_Specification (Comp)) then
-- Either an Iterator_Specification or a Loop_Parameter_
-- Specification is present.
L_Iteration_Scheme :=
Make_Iteration_Scheme (Loc,
Iterator_Specification => Iterator_Specification (Comp));
Loop_Id :=
Make_Defining_Identifier (Loc,
Chars => Chars (Defining_Identifier
(Iterator_Specification (Comp))));
Set_Defining_Identifier
(Iterator_Specification (L_Iteration_Scheme), Loop_Id);
else
L_Iteration_Scheme :=
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Loop_Parameter_Specification (Comp));
Loop_Id :=
Make_Defining_Identifier (Loc,
Chars => Chars (Defining_Identifier
(Loop_Parameter_Specification (Comp))));
Set_Defining_Identifier
(Loop_Parameter_Specification
(L_Iteration_Scheme), Loop_Id);
end if;
else
-- Iterated_Component_Association.
if Present (Iterator_Specification (Comp)) then
Loop_Id :=
Make_Defining_Identifier (Loc,
Chars => Chars (Defining_Identifier
(Iterator_Specification (Comp))));
L_Iteration_Scheme :=
Make_Iteration_Scheme (Loc,
Iterator_Specification => Iterator_Specification (Comp));
else
-- Loop_Parameter_Specification is parsed with a choice list.
-- where the range is the first (and only) choice.
Loop_Id :=
Make_Defining_Identifier (Loc,
Chars => Chars (Defining_Identifier (Comp)));
L_Range := Relocate_Node (First (Discrete_Choices (Comp)));
L_Iteration_Scheme :=
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => Loop_Id,
Discrete_Subtype_Definition => L_Range));
end if;
end if;
-- Build insertion statement. For a positional aggregate, only the
-- expression is needed. For a named aggregate, the loop variable,
-- whose type is that of the key, is an additional parameter for
-- the insertion operation.
-- If a Key_Expression is present, it serves as the additional
-- parameter. Otherwise the key is given by the loop parameter
-- itself.
if Present (Add_Unnamed_Subp)
and then No (Add_Named_Subp)
then
Stats := New_List
(Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Entity (Add_Unnamed_Subp), Loc),
Parameter_Associations =>
New_List (New_Occurrence_Of (Temp, Loc),
New_Copy_Tree (Expr))));
else
-- Named or indexed aggregate, for which a key is present,
-- possibly with a specified key_expression.
if Present (Key_Expr) then
Params := New_List (New_Occurrence_Of (Temp, Loc),
New_Copy_Tree (Key_Expr),
New_Copy_Tree (Expr));
else
Params := New_List (New_Occurrence_Of (Temp, Loc),
New_Occurrence_Of (Loop_Id, Loc),
New_Copy_Tree (Expr));
end if;
Stats := New_List
(Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Entity (Add_Named_Subp), Loc),
Parameter_Associations => Params));
end if;
Loop_Stat := Make_Implicit_Loop_Statement
(Node => N,
Identifier => Empty,
Iteration_Scheme => L_Iteration_Scheme,
Statements => Stats);
Append (Loop_Stat, Aggr_Code);
end Expand_Iterated_Component;
-- Start of processing for Expand_Container_Aggregate
begin
Parse_Aspect_Aggregate (Asp,
Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp,
New_Indexed_Subp, Assign_Indexed_Subp);
-- The constructor for bounded containers is a function with
-- a parameter that sets the size of the container. If the
-- size cannot be determined statically we use a default value
-- or a dynamic expression.
Siz := Aggregate_Size;
---------------------
-- Empty function --
---------------------
if Ekind (Entity (Empty_Subp)) = E_Function
and then Present (First_Formal (Entity (Empty_Subp)))
then
Default := Default_Value (First_Formal (Entity (Empty_Subp)));
-- If aggregate size is not static, we can use default value
-- of formal parameter for allocation. We assume that this
-- (implementation-dependent) value is static, even though
-- the AI does not require it.
-- Create declaration for size: a constant literal in the simple
-- case, an expression if iterated component associations may be
-- involved, the default otherwise.
Count_Type := Etype (First_Formal (Entity (Empty_Subp)));
if Siz = -1 then
if No (Siz_Exp) then
Siz := UI_To_Int (Intval (Default));
Siz_Exp := Make_Integer_Literal (Loc, Siz);
else
Siz_Exp := Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Count_Type, Loc),
Expression => Siz_Exp);
end if;
else
Siz_Exp := Make_Integer_Literal (Loc, Siz);
end if;
Siz_Decl := Make_Object_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'S', N),
Object_Definition =>
New_Occurrence_Of (Count_Type, Loc),
Expression => Siz_Exp);
Append (Siz_Decl, Aggr_Code);
if Nkind (Siz_Exp) = N_Integer_Literal then
Init_Stat :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Make_Function_Call (Loc,
Name => New_Occurrence_Of (Entity (Empty_Subp), Loc),
Parameter_Associations =>
New_List
(New_Occurrence_Of
(Defining_Identifier (Siz_Decl), Loc))));
else
Init_Stat :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Entity (New_Indexed_Subp), Loc),
Parameter_Associations =>
New_List (
Make_Integer_Literal (Loc, 1),
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of
(Etype (First_Formal (Entity (New_Indexed_Subp))),
Loc),
Expression => New_Occurrence_Of
(Defining_Identifier (Siz_Decl),
Loc)))));
end if;
Append (Init_Stat, Aggr_Code);
-- Size is dynamic: Create declaration for object, and initialize
-- with a call to the null container, or an assignment to it.
else
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Typ, Loc));
Insert_Action (N, Decl);
-- The Empty entity is either a parameterless function, or
-- a constant.
if Ekind (Entity (Empty_Subp)) = E_Function then
Init_Stat := Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Temp, Loc),
Expression => Make_Function_Call (Loc,
Name => New_Occurrence_Of (Entity (Empty_Subp), Loc)));
else
Init_Stat := Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Temp, Loc),
Expression => New_Occurrence_Of (Entity (Empty_Subp), Loc));
end if;
Append (Init_Stat, Aggr_Code);
end if;
-- Report warning on infinite recursion if an empty container aggregate
-- appears in the return statement of its Empty function.
if Ekind (Entity (Empty_Subp)) = E_Function
and then Nkind (Parent (N)) = N_Simple_Return_Statement
and then Is_Empty_List (Expressions (N))
and then Is_Empty_List (Component_Associations (N))
and then Entity (Empty_Subp) = Current_Scope
then
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N
("!empty aggregate returned by the empty function of a container"
& " aggregate<<<", Parent (N));
Error_Msg_N
("\this will result in infinite recursion??", Parent (N));
end if;
-- Determine whether this is an indexed aggregate (see RM 4.3.5(25/5)).
if Present (New_Indexed_Subp) then
if No (Add_Unnamed_Subp) then
Is_Indexed_Aggregate := True;
else
declare
Comp_Assns : constant List_Id := Component_Associations (N);
Comp_Assn : Node_Id;
begin
if Present (Comp_Assns)
and then not Is_Empty_List (Comp_Assns)
then
Comp_Assn := First (Comp_Assns);
if Nkind (Comp_Assn) = N_Component_Association
or else
(Nkind (Comp_Assn) = N_Iterated_Component_Association
and then Present (Defining_Identifier (Comp_Assn)))
then
Is_Indexed_Aggregate := True;
end if;
end if;
end;
end if;
end if;
---------------------------
-- Positional aggregate --
---------------------------
-- If the aggregate is positional the aspect must include
-- an Add_Unnamed subprogram.
if Present (Add_Unnamed_Subp) then
if Present (Expressions (N)) then
declare
Insert : constant Entity_Id := Entity (Add_Unnamed_Subp);
Comp : Node_Id;
Stat : Node_Id;
begin
Comp := First (Expressions (N));
while Present (Comp) loop
Stat := Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Insert, Loc),
Parameter_Associations =>
New_List (New_Occurrence_Of (Temp, Loc),
New_Copy_Tree (Comp)));
Append (Stat, Aggr_Code);
Next (Comp);
end loop;
end;
-- Indexed aggregates are handled below. Unnamed aggregates
-- such as sets may include iterated component associations.
elsif not Is_Indexed_Aggregate then
Comp := First (Component_Associations (N));
while Present (Comp) loop
if Nkind (Comp) = N_Iterated_Component_Association then
Expand_Iterated_Component (Comp);
end if;
Next (Comp);
end loop;
end if;
---------------------
-- Named_Aggregate --
---------------------
elsif Present (Add_Named_Subp) then
declare
Insert : constant Entity_Id := Entity (Add_Named_Subp);
Stat : Node_Id;
Key : Node_Id;
begin
Comp := First (Component_Associations (N));
-- Each component association may contain several choices;
-- generate an insertion statement for each.
while Present (Comp) loop
if Nkind (Comp) in N_Iterated_Component_Association
| N_Iterated_Element_Association
then
Expand_Iterated_Component (Comp);
else
Key := First (Choices (Comp));
while Present (Key) loop
Stat := Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Insert, Loc),
Parameter_Associations =>
New_List (New_Occurrence_Of (Temp, Loc),
New_Copy_Tree (Key),
New_Copy_Tree (Expression (Comp))));
Append (Stat, Aggr_Code);
Next (Key);
end loop;
end if;
Next (Comp);
end loop;
end;
end if;
-----------------------
-- Indexed_Aggregate --
-----------------------
-- For an indexed aggregate there must be an Assigned_Indexed
-- subprogram. Note that unlike array aggregates, a container
-- aggregate must be fully positional or fully indexed. In the
-- first case the expansion has already taken place.
-- TBA: the keys for an indexed aggregate must provide a dense
-- range with no repetitions.
if Is_Indexed_Aggregate
and then Present (Component_Associations (N))
and then not Is_Empty_List (Component_Associations (N))
then
declare
Insert : constant Entity_Id := Entity (Assign_Indexed_Subp);
Index_Type : constant Entity_Id :=
Etype (Next_Formal (First_Formal (Insert)));
function Expand_Range_Component
(Rng : Node_Id;
Expr : Node_Id) return Node_Id;
-- Transform a component assoication with a range into an
-- explicit loop. If the choice is a subtype name, it is
-- rewritten as a range with the corresponding bounds, which
-- are known to be static.
Comp : Node_Id;
Index : Node_Id;
Stat : Node_Id;
Key : Node_Id;
-----------------------------
-- Expand_Raange_Component --
-----------------------------
function Expand_Range_Component
(Rng : Node_Id;
Expr : Node_Id) return Node_Id
is
Loop_Id : constant Entity_Id :=
Make_Temporary (Loc, 'T');
L_Iteration_Scheme : Node_Id;
Stats : List_Id;
begin
L_Iteration_Scheme :=
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => Loop_Id,
Discrete_Subtype_Definition => New_Copy_Tree (Rng)));
Stats := New_List
(Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (Entity (Assign_Indexed_Subp), Loc),
Parameter_Associations =>
New_List (New_Occurrence_Of (Temp, Loc),
New_Occurrence_Of (Loop_Id, Loc),
New_Copy_Tree (Expr))));
return Make_Implicit_Loop_Statement
(Node => N,
Identifier => Empty,
Iteration_Scheme => L_Iteration_Scheme,
Statements => Stats);
end Expand_Range_Component;
begin
pragma Assert (No (Expressions (N)));
if Siz > 0 then
-- Modify the call to the constructor to allocate the
-- required size for the aggregwte : call the provided
-- constructor rather than the Empty aggregate.
Index := Make_Op_Add (Loc,
Left_Opnd => New_Copy_Tree (Type_Low_Bound (Index_Type)),
Right_Opnd => Make_Integer_Literal (Loc, Siz - 1));
Set_Expression (Init_Stat,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Entity (New_Indexed_Subp), Loc),
Parameter_Associations =>
New_List (
New_Copy_Tree (Type_Low_Bound (Index_Type)),
Index)));
end if;
Comp := First (Component_Associations (N));
-- The choice may be a static value, or a range with
-- static bounds.
while Present (Comp) loop
if Nkind (Comp) = N_Component_Association then
Key := First (Choices (Comp));
while Present (Key) loop
-- If the expression is a box, the corresponding
-- component (s) is left uninitialized.
if Box_Present (Comp) then
goto Next_Key;
elsif Nkind (Key) = N_Range then
-- Create loop for tne specified range,
-- with copies of the expression.
Stat :=
Expand_Range_Component (Key, Expression (Comp));
else
Stat := Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of
(Entity (Assign_Indexed_Subp), Loc),
Parameter_Associations =>
New_List (New_Occurrence_Of (Temp, Loc),
New_Copy_Tree (Key),
New_Copy_Tree (Expression (Comp))));
end if;
Append (Stat, Aggr_Code);
<<Next_Key>>
Next (Key);
end loop;
else
-- Iterated component association. Discard
-- positional insertion procedure.
if No (Iterator_Specification (Comp)) then
Add_Named_Subp := Assign_Indexed_Subp;
Add_Unnamed_Subp := Empty;
end if;
Expand_Iterated_Component (Comp);
end if;
Next (Comp);
end loop;
end;
end if;
Insert_Actions (N, Aggr_Code);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze_And_Resolve (N, Typ);
end Expand_Container_Aggregate;
------------------------------
-- Expand_N_Delta_Aggregate --
------------------------------
procedure Expand_N_Delta_Aggregate (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (Expression (N));
Decl : Node_Id;
begin
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'T'),
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => New_Copy_Tree (Expression (N)));
if Is_Array_Type (Etype (N)) then
Expand_Delta_Array_Aggregate (N, New_List (Decl));
else
Expand_Delta_Record_Aggregate (N, New_List (Decl));
end if;
end Expand_N_Delta_Aggregate;
----------------------------------
-- Expand_Delta_Array_Aggregate --
----------------------------------
procedure Expand_Delta_Array_Aggregate (N : Node_Id; Deltas : List_Id) is
Loc : constant Source_Ptr := Sloc (N);
Temp : constant Entity_Id := Defining_Identifier (First (Deltas));
Assoc : Node_Id;
function Generate_Loop (C : Node_Id) return Node_Id;
-- Generate a loop containing individual component assignments for
-- choices that are ranges, subtype indications, subtype names, and
-- iterated component associations.
function Make_Array_Delta_Assignment_LHS
(Choice : Node_Id; Temp : Entity_Id) return Node_Id;
-- Generate the LHS for the assignment associated with one
-- component association. This can be more complex than just an
-- indexed component in the case of a deep delta aggregate.
-------------------
-- Generate_Loop --
-------------------
function Generate_Loop (C : Node_Id) return Node_Id is
Sl : constant Source_Ptr := Sloc (C);
Ix : Entity_Id;
begin
if Nkind (Parent (C)) = N_Iterated_Component_Association then
Ix :=
Make_Defining_Identifier (Loc,
Chars => (Chars (Defining_Identifier (Parent (C)))));
else
Ix := Make_Temporary (Sl, 'I');
end if;
return
Make_Implicit_Loop_Statement (C,
Iteration_Scheme =>
Make_Iteration_Scheme (Sl,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Sl,
Defining_Identifier => Ix,
Discrete_Subtype_Definition => New_Copy_Tree (C))),
Statements => New_List (
Make_Assignment_Statement (Sl,
Name =>
Make_Indexed_Component (Sl,
Prefix => New_Occurrence_Of (Temp, Sl),
Expressions => New_List (New_Occurrence_Of (Ix, Sl))),
Expression => New_Copy_Tree (Expression (Assoc)))),
End_Label => Empty);
end Generate_Loop;
function Make_Array_Delta_Assignment_LHS
(Choice : Node_Id; Temp : Entity_Id) return Node_Id
is
function Make_Delta_Choice_LHS
(Choice : Node_Id;
Deep_Choice : Boolean) return Node_Id;
-- Recursively (but recursion only in deep delta aggregate case)
-- build up the LHS by successively applying selectors.
---------------------------
-- Make_Delta_Choice_LHS --
---------------------------
function Make_Delta_Choice_LHS
(Choice : Node_Id;
Deep_Choice : Boolean) return Node_Id
is
begin
if not Deep_Choice
or else Is_Root_Prefix_Of_Deep_Choice (Choice)
then
return Make_Indexed_Component (Sloc (Choice),
Prefix => New_Occurrence_Of (Temp, Loc),
Expressions => New_List (New_Copy_Tree (Choice)));
else
-- a deep delta aggregate choice
pragma Assert (All_Extensions_Allowed);
declare
-- recursively get name for prefix
LHS_Prefix : constant Node_Id
:= Make_Delta_Choice_LHS (Prefix (Choice), Deep_Choice);
begin
if Nkind (Choice) = N_Indexed_Component then
return Make_Indexed_Component (Sloc (Choice),
Prefix => LHS_Prefix,
Expressions => New_Copy_List (Expressions (Choice)));
else
return Make_Selected_Component (Sloc (Choice),
Prefix => LHS_Prefix,
Selector_Name =>
Make_Identifier
(Sloc (Choice),
Chars (Selector_Name (Choice))));
end if;
end;
end if;
end Make_Delta_Choice_LHS;
begin
return Make_Delta_Choice_LHS
(Choice, Is_Deep_Choice (Choice, Etype (N)));
end Make_Array_Delta_Assignment_LHS;
-- Local variables
Choice : Node_Id;
-- Start of processing for Expand_Delta_Array_Aggregate
begin
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Choice := First (Choice_List (Assoc));
if Nkind (Assoc) = N_Iterated_Component_Association then
while Present (Choice) loop
Append_To (Deltas, Generate_Loop (Choice));
Next (Choice);
end loop;
else
while Present (Choice) loop
-- Choice can be given by a range, a subtype indication, a
-- subtype name, a scalar value, or an entity.
if Nkind (Choice) = N_Range
or else (Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice)))
then
Append_To (Deltas, Generate_Loop (Choice));
elsif Nkind (Choice) = N_Subtype_Indication then
Append_To (Deltas,
Generate_Loop (Range_Expression (Constraint (Choice))));
else
Append_To (Deltas,
Make_Assignment_Statement (Sloc (Choice),
Name =>
Make_Array_Delta_Assignment_LHS (Choice, Temp),
Expression => New_Copy_Tree (Expression (Assoc))));
end if;
Next (Choice);
end loop;
end if;
Next (Assoc);
end loop;
Insert_Actions (N, Deltas);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
end Expand_Delta_Array_Aggregate;
-----------------------------------
-- Expand_Delta_Record_Aggregate --
-----------------------------------
procedure Expand_Delta_Record_Aggregate (N : Node_Id; Deltas : List_Id) is
Loc : constant Source_Ptr := Sloc (N);
Temp : constant Entity_Id := Defining_Identifier (First (Deltas));
Assoc : Node_Id;
Choice : Node_Id;
function Make_Record_Delta_Assignment_LHS
(Selector : Node_Id) return Node_Id;
-- Generate the LHS for an assignment to a component (or subcomponent
-- if -gnatX specified) of the result object.
--------------------------------------
-- Make_Record_Delta_Assignment_LHS --
--------------------------------------
function Make_Record_Delta_Assignment_LHS
(Selector : Node_Id) return Node_Id
is
begin
if Nkind (Selector) = N_Selected_Component then
-- a deep delta aggregate, requires -gnatX0
return
Make_Selected_Component
(Sloc (Choice),
Prefix => Make_Record_Delta_Assignment_LHS
(Prefix (Selector)),
Selector_Name =>
Make_Identifier (Loc, Chars (Selector_Name (Selector))));
elsif Nkind (Selector) = N_Indexed_Component then
-- a deep delta aggregate, requires -gnatX0
return
Make_Indexed_Component
(Sloc (Choice),
Prefix => Make_Record_Delta_Assignment_LHS
(Prefix (Selector)),
Expressions => Expressions (Selector));
else
return Make_Selected_Component
(Sloc (Choice),
Prefix => New_Occurrence_Of (Temp, Loc),
Selector_Name => Make_Identifier (Loc, Chars (Selector)));
end if;
end Make_Record_Delta_Assignment_LHS;
begin
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Choice := First (Choice_List (Assoc));
while Present (Choice) loop
Append_To (Deltas,
Make_Assignment_Statement (Sloc (Choice),
Name => Make_Record_Delta_Assignment_LHS (Choice),
Expression => New_Copy_Tree (Expression (Assoc))));
Next (Choice);
end loop;
Next (Assoc);
end loop;
Insert_Actions (N, Deltas);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
end Expand_Delta_Record_Aggregate;
----------------------------------
-- Expand_N_Extension_Aggregate --
----------------------------------
-- If the ancestor part is an expression, add a component association for
-- the parent field. If the type of the ancestor part is not the direct
-- parent of the expected type, build recursively the needed ancestors.
-- If the ancestor part is a subtype_mark, replace aggregate with a
-- declaration for a temporary of the expected type, followed by
-- individual assignments to the given components.
procedure Expand_N_Extension_Aggregate (N : Node_Id) is
A : constant Node_Id := Ancestor_Part (N);
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
begin
-- If the ancestor is a subtype mark, an init proc must be called
-- on the resulting object which thus has to be materialized in
-- the front-end
if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
Convert_To_Assignments (N, Typ);
-- The extension aggregate is transformed into a record aggregate
-- of the following form (c1 and c2 are inherited components)
-- (Exp with c3 => a, c4 => b)
-- ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
else
Set_Etype (N, Typ);
if Tagged_Type_Expansion then
Expand_Record_Aggregate (N,
Orig_Tag =>
New_Occurrence_Of
(Node (First_Elmt (Access_Disp_Table (Typ))), Loc),
Parent_Expr => A);
-- No tag is needed in the case of a VM
else
Expand_Record_Aggregate (N, Parent_Expr => A);
end if;
end if;
exception
when RE_Not_Available =>
return;
end Expand_N_Extension_Aggregate;
-----------------------------
-- Expand_Record_Aggregate --
-----------------------------
procedure Expand_Record_Aggregate
(N : Node_Id;
Orig_Tag : Node_Id := Empty;
Parent_Expr : Node_Id := Empty)
is
Loc : constant Source_Ptr := Sloc (N);
Comps : constant List_Id := Component_Associations (N);
Typ : constant Entity_Id := Etype (N);
Base_Typ : constant Entity_Id := Base_Type (Typ);
Static_Components : Boolean := True;
-- Flag to indicate whether all components are compile-time known,
-- and the aggregate can be constructed statically and handled by
-- the back-end. Set to False by Component_OK_For_Backend.
procedure Build_Back_End_Aggregate;
-- Build a proper aggregate to be handled by the back-end
function Compile_Time_Known_Composite_Value (N : Node_Id) return Boolean;
-- Returns true if N is an expression of composite type which can be
-- fully evaluated at compile time without raising constraint error.
-- Such expressions can be passed as is to Gigi without any expansion.
--
-- This returns true for N_Aggregate with Compile_Time_Known_Aggregate
-- set and constants whose expression is such an aggregate, recursively.
function Component_OK_For_Backend return Boolean;
-- Check for presence of a component which makes it impossible for the
-- backend to process the aggregate, thus requiring the use of a series
-- of assignment statements. Cases checked for are a nested aggregate
-- needing Late_Expansion, the presence of a tagged component which may
-- need tag adjustment, and a bit unaligned component reference.
--
-- We also force expansion into assignments if a component is of a
-- mutable type (including a private type with discriminants) because
-- in that case the size of the component to be copied may be smaller
-- than the side of the target, and there is no simple way for gigi
-- to compute the size of the object to be copied.
--
-- NOTE: This is part of the ongoing work to define precisely the
-- interface between front-end and back-end handling of aggregates.
-- In general it is desirable to pass aggregates as they are to gigi,
-- in order to minimize elaboration code. This is one case where the
-- semantics of Ada complicate the analysis and lead to anomalies in
-- the gcc back-end if the aggregate is not expanded into assignments.
--
-- NOTE: This sets the global Static_Components to False in most, but
-- not all, cases when it returns False.
function Has_Per_Object_Constraint (L : List_Id) return Boolean;
-- Return True if any element of L has Has_Per_Object_Constraint set.
-- L should be the Choices component of an N_Component_Association.
function Has_Visible_Private_Ancestor (Id : E) return Boolean;
-- If any ancestor of the current type is private, the aggregate
-- cannot be built in place. We cannot rely on Has_Private_Ancestor,
-- because it will not be set when type and its parent are in the
-- same scope, and the parent component needs expansion.
function Top_Level_Aggregate (N : Node_Id) return Node_Id;
-- For nested aggregates return the ultimate enclosing aggregate; for
-- non-nested aggregates return N.
------------------------------
-- Build_Back_End_Aggregate --
------------------------------
procedure Build_Back_End_Aggregate is
Comp : Entity_Id;
New_Comp : Node_Id;
Tag_Value : Node_Id;
begin
if Nkind (N) = N_Aggregate then
-- If the aggregate is static and can be handled by the back-end,
-- nothing left to do.
if Static_Components then
Set_Compile_Time_Known_Aggregate (N);
Set_Expansion_Delayed (N, False);
end if;
end if;
-- If no discriminants, nothing special to do
if not Has_Discriminants (Typ) then
null;
-- Case of discriminants present
elsif Is_Derived_Type (Typ) then
-- For untagged types, non-stored discriminants are replaced with
-- stored discriminants, which are the ones that gigi uses to
-- describe the type and its components.
Generate_Aggregate_For_Derived_Type : declare
procedure Prepend_Stored_Values (T : Entity_Id);
-- Scan the list of stored discriminants of the type, and add
-- their values to the aggregate being built.
---------------------------
-- Prepend_Stored_Values --
---------------------------
procedure Prepend_Stored_Values (T : Entity_Id) is
Discr : Entity_Id;
First_Comp : Node_Id := Empty;
begin
Discr := First_Stored_Discriminant (T);
while Present (Discr) loop
New_Comp :=
Make_Component_Association (Loc,
Choices => New_List (
New_Occurrence_Of (Discr, Loc)),
Expression =>
New_Copy_Tree
(Get_Discriminant_Value
(Discr,
Typ,
Discriminant_Constraint (Typ))));
if No (First_Comp) then
Prepend_To (Component_Associations (N), New_Comp);
else
Insert_After (First_Comp, New_Comp);
end if;
First_Comp := New_Comp;
Next_Stored_Discriminant (Discr);
end loop;
end Prepend_Stored_Values;
-- Local variables
Constraints : constant List_Id := New_List;
Discr : Entity_Id;
Decl : Node_Id;
Num_Disc : Nat := 0;
Num_Stor : Nat := 0;
-- Start of processing for Generate_Aggregate_For_Derived_Type
begin
-- Remove the associations for the discriminant of derived type
declare
First_Comp : Node_Id;
begin
First_Comp := First (Component_Associations (N));
while Present (First_Comp) loop
Comp := First_Comp;
Next (First_Comp);
if Ekind (Entity (First (Choices (Comp)))) =
E_Discriminant
then
Remove (Comp);
Num_Disc := Num_Disc + 1;
end if;
end loop;
end;
-- Insert stored discriminant associations in the correct
-- order. If there are more stored discriminants than new
-- discriminants, there is at least one new discriminant that
-- constrains more than one of the stored discriminants. In
-- this case we need to construct a proper subtype of the
-- parent type, in order to supply values to all the
-- components. Otherwise there is one-one correspondence
-- between the constraints and the stored discriminants.
Discr := First_Stored_Discriminant (Base_Type (Typ));
while Present (Discr) loop
Num_Stor := Num_Stor + 1;
Next_Stored_Discriminant (Discr);
end loop;
-- Case of more stored discriminants than new discriminants
if Num_Stor > Num_Disc then
-- Create a proper subtype of the parent type, which is the
-- proper implementation type for the aggregate, and convert
-- it to the intended target type.
Discr := First_Stored_Discriminant (Base_Type (Typ));
while Present (Discr) loop
New_Comp :=
New_Copy_Tree
(Get_Discriminant_Value
(Discr,
Typ,
Discriminant_Constraint (Typ)));
Append (New_Comp, Constraints);
Next_Stored_Discriminant (Discr);
end loop;
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'T'),
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Occurrence_Of (Etype (Base_Type (Typ)), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint
(Loc, Constraints)));
Insert_Action (N, Decl);
Prepend_Stored_Values (Base_Type (Typ));
Set_Etype (N, Defining_Identifier (Decl));
Set_Analyzed (N);
Rewrite (N, Unchecked_Convert_To (Typ, N));
Analyze (N);
-- Case where we do not have fewer new discriminants than
-- stored discriminants, so in this case we can simply use the
-- stored discriminants of the subtype.
else
Prepend_Stored_Values (Typ);
end if;
end Generate_Aggregate_For_Derived_Type;
end if;
if Is_Tagged_Type (Typ) then
-- In the tagged case, _parent and _tag component must be created
-- Reset Null_Present unconditionally. Tagged records always have
-- at least one field (the tag or the parent).
Set_Null_Record_Present (N, False);
-- When the current aggregate comes from the expansion of an
-- extension aggregate, the parent expr is replaced by an
-- aggregate formed by selected components of this expr.
if Present (Parent_Expr) and then Is_Empty_List (Comps) then
Comp := First_Component_Or_Discriminant (Typ);
while Present (Comp) loop
-- Skip all expander-generated components
if not Comes_From_Source (Original_Record_Component (Comp))
then
null;
else
New_Comp :=
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (Typ,
Duplicate_Subexpr (Parent_Expr, True)),
Selector_Name => New_Occurrence_Of (Comp, Loc));
Append_To (Comps,
Make_Component_Association (Loc,
Choices => New_List (
New_Occurrence_Of (Comp, Loc)),
Expression => New_Comp));
Analyze_And_Resolve (New_Comp, Etype (Comp));
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end if;
-- Compute the value for the Tag now, if the type is a root it
-- will be included in the aggregate right away, otherwise it will
-- be propagated to the parent aggregate.
if Present (Orig_Tag) then
Tag_Value := Orig_Tag;
elsif not Tagged_Type_Expansion then
Tag_Value := Empty;
else
Tag_Value :=
New_Occurrence_Of
(Node (First_Elmt (Access_Disp_Table (Typ))), Loc);
end if;
-- For a derived type, an aggregate for the parent is formed with
-- all the inherited components.
if Is_Derived_Type (Typ) then
declare
First_Comp : Node_Id;
Parent_Comps : List_Id;
Parent_Aggr : Node_Id;
Parent_Name : Node_Id;
begin
First_Comp := First (Component_Associations (N));
Parent_Comps := New_List;
-- First skip the discriminants
while Present (First_Comp)
and then Ekind (Entity (First (Choices (First_Comp))))
= E_Discriminant
loop
Next (First_Comp);
end loop;
-- Then remove the inherited component association from the
-- aggregate and store them in the parent aggregate
while Present (First_Comp)
and then
Scope (Original_Record_Component
(Entity (First (Choices (First_Comp))))) /=
Base_Typ
loop
Comp := First_Comp;
Next (First_Comp);
Remove (Comp);
Append (Comp, Parent_Comps);
end loop;
Parent_Aggr :=
Make_Aggregate (Loc,
Component_Associations => Parent_Comps);
Set_Etype (Parent_Aggr, Etype (Base_Type (Typ)));
-- Find the _parent component
Comp := First_Component (Typ);
while Chars (Comp) /= Name_uParent loop
Next_Component (Comp);
end loop;
Parent_Name := New_Occurrence_Of (Comp, Loc);
-- Insert the parent aggregate
Prepend_To (Component_Associations (N),
Make_Component_Association (Loc,
Choices => New_List (Parent_Name),
Expression => Parent_Aggr));
-- Expand recursively the parent propagating the right Tag
Expand_Record_Aggregate
(Parent_Aggr, Tag_Value, Parent_Expr);
-- The ancestor part may be a nested aggregate that has
-- delayed expansion: recheck now.
if not Component_OK_For_Backend then
Convert_To_Assignments (N, Typ);
end if;
end;
-- For a root type, the tag component is added (unless compiling
-- for the VMs, where tags are implicit).
elsif Tagged_Type_Expansion then
declare
Tag_Name : constant Node_Id :=
New_Occurrence_Of
(First_Tag_Component (Typ), Loc);
Typ_Tag : constant Entity_Id := RTE (RE_Tag);
Conv_Node : constant Node_Id :=
Unchecked_Convert_To (Typ_Tag, Tag_Value);
begin
Set_Etype (Conv_Node, Typ_Tag);
Prepend_To (Component_Associations (N),
Make_Component_Association (Loc,
Choices => New_List (Tag_Name),
Expression => Conv_Node));
end;
end if;
end if;
end Build_Back_End_Aggregate;
----------------------------------------
-- Compile_Time_Known_Composite_Value --
----------------------------------------
function Compile_Time_Known_Composite_Value
(N : Node_Id) return Boolean
is
begin
-- If we have an entity name, then see if it is the name of a
-- constant and if so, test the corresponding constant value.
if Is_Entity_Name (N) then
declare
E : constant Entity_Id := Entity (N);
V : Node_Id;
begin
if Ekind (E) /= E_Constant then
return False;
else
V := Constant_Value (E);
return Present (V)
and then Compile_Time_Known_Composite_Value (V);
end if;
end;
-- We have a value, see if it is compile time known
else
if Nkind (N) = N_Aggregate then
return Compile_Time_Known_Aggregate (N);
end if;
-- All other types of values are not known at compile time
return False;
end if;
end Compile_Time_Known_Composite_Value;
------------------------------
-- Component_OK_For_Backend --
------------------------------
function Component_OK_For_Backend return Boolean is
C : Node_Id;
Expr_Q : Node_Id;
begin
C := First (Comps);
while Present (C) loop
-- If the component has box initialization, expansion is needed
-- and component is not ready for backend.
if Box_Present (C) then
return False;
end if;
Expr_Q := Unqualify (Expression (C));
-- Return False for array components whose bounds raise
-- constraint error.
declare
Comp : constant Entity_Id := First (Choices (C));
Indx : Node_Id;
begin
if Present (Etype (Comp))
and then Is_Array_Type (Etype (Comp))
then
Indx := First_Index (Etype (Comp));
while Present (Indx) loop
if Nkind (Type_Low_Bound (Etype (Indx))) =
N_Raise_Constraint_Error
or else Nkind (Type_High_Bound (Etype (Indx))) =
N_Raise_Constraint_Error
then
return False;
end if;
Next_Index (Indx);
end loop;
end if;
end;
-- Return False if the aggregate has any associations for tagged
-- components that may require tag adjustment.
-- These are cases where the source expression may have a tag that
-- could differ from the component tag (e.g., can occur for type
-- conversions and formal parameters). (Tag adjustment not needed
-- if Tagged_Type_Expansion because object tags are implicit in
-- the machine.)
if Is_Tagged_Type (Etype (Expr_Q))
and then
(Nkind (Expr_Q) = N_Type_Conversion
or else
(Is_Entity_Name (Expr_Q)
and then Is_Formal (Entity (Expr_Q))))
and then Tagged_Type_Expansion
then
Static_Components := False;
return False;
elsif Is_Delayed_Aggregate (Expr_Q) then
Static_Components := False;
return False;
elsif Nkind (Expr_Q) = N_Quantified_Expression then
Static_Components := False;
return False;
elsif Possible_Bit_Aligned_Component (Expr_Q) then
Static_Components := False;
return False;
elsif Modify_Tree_For_C
and then Nkind (C) = N_Component_Association
and then Has_Per_Object_Constraint (Choices (C))
then
Static_Components := False;
return False;
elsif Modify_Tree_For_C
and then Nkind (Expr_Q) = N_Identifier
and then Is_Array_Type (Etype (Expr_Q))
then
Static_Components := False;
return False;
elsif Modify_Tree_For_C
and then Nkind (Expr_Q) = N_Type_Conversion
and then Is_Array_Type (Etype (Expr_Q))
then
Static_Components := False;
return False;
end if;
if Is_Elementary_Type (Etype (Expr_Q)) then
if not Compile_Time_Known_Value (Expr_Q) then
Static_Components := False;
end if;
elsif not Compile_Time_Known_Composite_Value (Expr_Q) then
Static_Components := False;
if Is_Private_Type (Etype (Expr_Q))
and then Has_Discriminants (Etype (Expr_Q))
then
return False;
end if;
end if;
Next (C);
end loop;
return True;
end Component_OK_For_Backend;
-------------------------------
-- Has_Per_Object_Constraint --
-------------------------------
function Has_Per_Object_Constraint (L : List_Id) return Boolean is
N : Node_Id := First (L);
begin
while Present (N) loop
if Is_Entity_Name (N)
and then Present (Entity (N))
and then Has_Per_Object_Constraint (Entity (N))
then
return True;
end if;
Next (N);
end loop;
return False;
end Has_Per_Object_Constraint;
-----------------------------------
-- Has_Visible_Private_Ancestor --
-----------------------------------
function Has_Visible_Private_Ancestor (Id : E) return Boolean is
R : constant Entity_Id := Root_Type (Id);
T1 : Entity_Id := Id;
begin
loop
if Is_Private_Type (T1) then
return True;
elsif T1 = R then
return False;
else
T1 := Etype (T1);
end if;
end loop;
end Has_Visible_Private_Ancestor;
-------------------------
-- Top_Level_Aggregate --
-------------------------
function Top_Level_Aggregate (N : Node_Id) return Node_Id is
Aggr : Node_Id;
begin
Aggr := N;
while Present (Parent (Aggr))
and then Nkind (Parent (Aggr)) in
N_Aggregate | N_Component_Association
loop
Aggr := Parent (Aggr);
end loop;
return Aggr;
end Top_Level_Aggregate;
-- Local variables
Top_Level_Aggr : constant Node_Id := Top_Level_Aggregate (N);
-- Start of processing for Expand_Record_Aggregate
begin
-- No special management required for aggregates used to initialize
-- statically allocated dispatch tables
if Is_Static_Dispatch_Table_Aggregate (N) then
return;
-- Case pattern aggregates need to remain as aggregates
elsif Is_Case_Choice_Pattern (N) then
return;
end if;
-- If the pragma Aggregate_Individually_Assign is set, always convert to
-- assignments.
if Aggregate_Individually_Assign then
Convert_To_Assignments (N, Typ);
-- Ada 2005 (AI-318-2): We need to convert to assignments if components
-- are build-in-place function calls. The assignments will each turn
-- into a build-in-place function call. If components are all static,
-- we can pass the aggregate to the back end regardless of limitedness.
-- Extension aggregates, aggregates in extended return statements, and
-- aggregates for C++ imported types must be expanded.
elsif Ada_Version >= Ada_2005
and then Is_Inherently_Limited_Type (Typ)
then
if Nkind (Parent (N)) not in
N_Component_Association | N_Object_Declaration
then
Convert_To_Assignments (N, Typ);
elsif Nkind (N) = N_Extension_Aggregate
or else Convention (Typ) = Convention_CPP
then
Convert_To_Assignments (N, Typ);
elsif not Size_Known_At_Compile_Time (Typ)
or else not Component_OK_For_Backend
or else not Static_Components
then
Convert_To_Assignments (N, Typ);
-- In all other cases, build a proper aggregate to be handled by
-- the back-end.
else
Build_Back_End_Aggregate;
end if;
-- Gigi doesn't properly handle temporaries of variable size so we
-- generate it in the front-end
elsif not Size_Known_At_Compile_Time (Typ)
and then Tagged_Type_Expansion
then
Convert_To_Assignments (N, Typ);
-- An aggregate used to initialize a controlled object must be turned
-- into component assignments as the components themselves may require
-- finalization actions such as adjustment.
elsif Needs_Finalization (Typ) then
Convert_To_Assignments (N, Typ);
-- Ada 2005 (AI-287): In case of default initialized components we
-- convert the aggregate into assignments.
elsif Has_Default_Init_Comps (N) then
Convert_To_Assignments (N, Typ);
-- Check components
elsif not Component_OK_For_Backend then
Convert_To_Assignments (N, Typ);
-- If an ancestor is private, some components are not inherited and we
-- cannot expand into a record aggregate.
elsif Has_Visible_Private_Ancestor (Typ) then
Convert_To_Assignments (N, Typ);
-- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
-- is not able to handle the aggregate for Late_Request.
elsif Is_Tagged_Type (Typ) and then Has_Discriminants (Typ) then
Convert_To_Assignments (N, Typ);
-- If the tagged types covers interface types we need to initialize all
-- hidden components containing pointers to secondary dispatch tables.
elsif Is_Tagged_Type (Typ) and then Has_Interfaces (Typ) then
Convert_To_Assignments (N, Typ);
-- If some components are mutable, the size of the aggregate component
-- may be distinct from the default size of the type component, so
-- we need to expand to insure that the back-end copies the proper
-- size of the data. However, if the aggregate is the initial value of
-- a constant, the target is immutable and might be built statically
-- if components are appropriate.
elsif Has_Mutable_Components (Typ)
and then
(Nkind (Parent (Top_Level_Aggr)) /= N_Object_Declaration
or else not Constant_Present (Parent (Top_Level_Aggr))
or else not Static_Components)
then
Convert_To_Assignments (N, Typ);
-- If the type involved has bit aligned components, then we are not sure
-- that the back end can handle this case correctly.
elsif Type_May_Have_Bit_Aligned_Components (Typ) then
Convert_To_Assignments (N, Typ);
-- When generating C, only generate an aggregate when declaring objects
-- since C does not support aggregates in e.g. assignment statements.
elsif Modify_Tree_For_C and then not Is_CCG_Supported_Aggregate (N) then
Convert_To_Assignments (N, Typ);
-- In all other cases, build a proper aggregate to be handled by gigi
else
Build_Back_End_Aggregate;
end if;
end Expand_Record_Aggregate;
---------------------
-- Get_Base_Object --
---------------------
function Get_Base_Object (N : Node_Id) return Entity_Id is
R : Node_Id;
begin
R := Get_Referenced_Object (N);
while Nkind (R) in N_Indexed_Component | N_Selected_Component | N_Slice
loop
R := Get_Referenced_Object (Prefix (R));
end loop;
if Is_Entity_Name (R) and then Is_Object (Entity (R)) then
return Entity (R);
else
return Empty;
end if;
end Get_Base_Object;
----------------------------
-- Has_Default_Init_Comps --
----------------------------
function Has_Default_Init_Comps (N : Node_Id) return Boolean is
Assoc : Node_Id;
Expr : Node_Id;
-- Component association and expression, respectively
begin
pragma Assert (Nkind (N) in N_Aggregate | N_Extension_Aggregate);
if Has_Self_Reference (N) then
return True;
end if;
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
-- Each component association has either a box or an expression
pragma Assert (Box_Present (Assoc) xor Present (Expression (Assoc)));
-- Check if any direct component has default initialized components
if Box_Present (Assoc) then
return True;
-- Recursive call in case of aggregate expression
else
Expr := Expression (Assoc);
if Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
and then Has_Default_Init_Comps (Expr)
then
return True;
end if;
end if;
Next (Assoc);
end loop;
return False;
end Has_Default_Init_Comps;
--------------------------
-- Initialize_Component --
--------------------------
procedure Initialize_Component
(N : Node_Id;
Comp : Node_Id;
Comp_Typ : Node_Id;
Init_Expr : Node_Id;
Stmts : List_Id)
is
Exceptions_OK : constant Boolean :=
not Restriction_Active (No_Exception_Propagation);
Finalization_OK : constant Boolean :=
Present (Comp_Typ)
and then Needs_Finalization (Comp_Typ);
Loc : constant Source_Ptr := Sloc (N);
Blk_Stmts : List_Id;
Init_Stmt : Node_Id;
begin
pragma Assert (Nkind (Init_Expr) in N_Subexpr);
-- Protect the initialization statements from aborts. Generate:
-- Abort_Defer;
if Finalization_OK and Abort_Allowed then
if Exceptions_OK then
Blk_Stmts := New_List;
else
Blk_Stmts := Stmts;
end if;
Append_To (Blk_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
-- Otherwise aborts are not allowed. All generated code is added
-- directly to the input list.
else
Blk_Stmts := Stmts;
end if;
-- Initialize the component. Generate:
-- Comp := Init_Expr;
-- Note that the initialization expression is not duplicated because
-- either only a single component may be initialized by it (record)
-- or it has already been duplicated if need be (array).
Init_Stmt :=
Make_OK_Assignment_Statement (Loc,
Name => New_Copy_Tree (Comp),
Expression => Relocate_Node (Init_Expr));
Append_To (Blk_Stmts, Init_Stmt);
-- Arrange for the component to be adjusted if need be (the call will be
-- generated by Make_Tag_Ctrl_Assignment). But, in the case of an array
-- aggregate, controlled subaggregates are not considered because each
-- of their individual elements will receive an adjustment of its own.
if Finalization_OK
and then not Is_Inherently_Limited_Type (Comp_Typ)
and then not
(Is_Array_Type (Etype (N))
and then Is_Array_Type (Comp_Typ)
and then Needs_Finalization (Component_Type (Comp_Typ))
and then Nkind (Unqualify (Init_Expr)) = N_Aggregate)
then
Set_No_Finalize_Actions (Init_Stmt);
-- Or else, only adjust the tag due to a possible view conversion
else
Set_No_Ctrl_Actions (Init_Stmt);
if Tagged_Type_Expansion and then Is_Tagged_Type (Comp_Typ) then
declare
Typ : Entity_Id := Underlying_Type (Comp_Typ);
begin
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
Append_To (Blk_Stmts,
Make_Tag_Assignment_From_Type
(Loc, New_Copy_Tree (Comp), Typ));
end;
end if;
end if;
-- Complete the protection of the initialization statements
if Finalization_OK and Abort_Allowed then
-- Wrap the initialization statements in a block to catch a
-- potential exception. Generate:
-- begin
-- Abort_Defer;
-- Comp := Init_Expr;
-- Comp._tag := Full_TypP;
-- [Deep_]Adjust (Comp);
-- at end
-- Abort_Undefer_Direct;
-- end;
if Exceptions_OK then
Append_To (Stmts,
Build_Abort_Undefer_Block (Loc,
Stmts => Blk_Stmts,
Context => N));
-- Otherwise exceptions are not propagated. Generate:
-- Abort_Defer;
-- Comp := Init_Expr;
-- Comp._tag := Full_TypP;
-- [Deep_]Adjust (Comp);
-- Abort_Undefer;
else
Append_To (Blk_Stmts,
Build_Runtime_Call (Loc, RE_Abort_Undefer));
end if;
end if;
end Initialize_Component;
----------------------------------------
-- Is_Build_In_Place_Aggregate_Return --
----------------------------------------
function Is_Build_In_Place_Aggregate_Return (N : Node_Id) return Boolean is
P : Node_Id := Parent (N);
begin
while Nkind (P) in N_Case_Expression
| N_Case_Expression_Alternative
| N_If_Expression
| N_Qualified_Expression
loop
P := Parent (P);
end loop;
if Nkind (P) = N_Simple_Return_Statement then
null;
elsif Nkind (Parent (P)) = N_Extended_Return_Statement then
P := Parent (P);
else
return False;
end if;
return
Is_Build_In_Place_Function
(Return_Applies_To (Return_Statement_Entity (P)));
end Is_Build_In_Place_Aggregate_Return;
--------------------------
-- Is_Delayed_Aggregate --
--------------------------
function Is_Delayed_Aggregate (N : Node_Id) return Boolean is
Unqual_N : constant Node_Id := Unqualify (N);
begin
return Nkind (Unqual_N) in N_Aggregate | N_Extension_Aggregate
and then Expansion_Delayed (Unqual_N);
end Is_Delayed_Aggregate;
--------------------------------
-- Is_CCG_Supported_Aggregate --
--------------------------------
function Is_CCG_Supported_Aggregate
(N : Node_Id) return Boolean
is
P : Node_Id := Parent (N);
begin
-- Aggregates are not supported for nonstandard rep clauses, since they
-- may lead to extra padding fields in CCG.
if Is_Record_Type (Etype (N))
and then Has_Non_Standard_Rep (Etype (N))
then
return False;
end if;
while Present (P) and then Nkind (P) = N_Aggregate loop
P := Parent (P);
end loop;
-- Check cases where aggregates are supported by the CCG backend
if Nkind (P) = N_Object_Declaration then
declare
P_Typ : constant Entity_Id := Etype (Defining_Identifier (P));
begin
if Is_Record_Type (P_Typ) then
return True;
else
return Compile_Time_Known_Bounds (P_Typ);
end if;
end;
elsif Nkind (P) = N_Qualified_Expression then
if Nkind (Parent (P)) = N_Object_Declaration then
declare
P_Typ : constant Entity_Id :=
Etype (Defining_Identifier (Parent (P)));
begin
if Is_Record_Type (P_Typ) then
return True;
else
return Compile_Time_Known_Bounds (P_Typ);
end if;
end;
elsif Nkind (Parent (P)) = N_Allocator then
return True;
end if;
end if;
return False;
end Is_CCG_Supported_Aggregate;
----------------------------------------
-- Is_Static_Dispatch_Table_Aggregate --
----------------------------------------
function Is_Static_Dispatch_Table_Aggregate (N : Node_Id) return Boolean is
Typ : constant Entity_Id := Base_Type (Etype (N));
begin
return Building_Static_Dispatch_Tables
and then Tagged_Type_Expansion
-- Avoid circularity when rebuilding the compiler
and then not Is_RTU (Cunit_Entity (Get_Source_Unit (N)), Ada_Tags)
and then (Is_RTE (Typ, RE_Dispatch_Table_Wrapper)
or else
Is_RTE (Typ, RE_Address_Array)
or else
Is_RTE (Typ, RE_Type_Specific_Data)
or else
Is_RTE (Typ, RE_Tag_Table)
or else
Is_RTE (Typ, RE_Object_Specific_Data)
or else
Is_RTE (Typ, RE_Interface_Data)
or else
Is_RTE (Typ, RE_Interfaces_Array)
or else
Is_RTE (Typ, RE_Interface_Data_Element));
end Is_Static_Dispatch_Table_Aggregate;
-----------------------------
-- Is_Two_Dim_Packed_Array --
-----------------------------
function Is_Two_Dim_Packed_Array (Typ : Entity_Id) return Boolean is
C : constant Uint := Component_Size (Typ);
begin
return Number_Dimensions (Typ) = 2
and then Is_Bit_Packed_Array (Typ)
and then Is_Scalar_Type (Component_Type (Typ))
and then C in Uint_1 | Uint_2 | Uint_4; -- False if No_Uint
end Is_Two_Dim_Packed_Array;
---------------------------
-- Is_Two_Pass_Aggregate --
---------------------------
function Is_Two_Pass_Aggregate (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Aggregate
and then Present (Component_Associations (N))
and then Nkind (First (Component_Associations (N))) =
N_Iterated_Component_Association
and then
Present
(Iterator_Specification (First (Component_Associations (N))));
end Is_Two_Pass_Aggregate;
--------------------
-- Late_Expansion --
--------------------
function Late_Expansion
(N : Node_Id;
Typ : Entity_Id;
Target : Node_Id) return List_Id
is
Aggr_Code : List_Id;
New_Aggr : Node_Id;
begin
if Is_Array_Type (Typ) then
-- If the assignment can be done directly by the back end, then
-- reset Set_Expansion_Delayed and do not expand further.
if not CodePeer_Mode
and then not Modify_Tree_For_C
and then not Possible_Bit_Aligned_Component (Target)
and then not Is_Possibly_Unaligned_Slice (Target)
and then Aggr_Assignment_OK_For_Backend (N)
then
New_Aggr := New_Copy_Tree (N);
Set_Expansion_Delayed (New_Aggr, False);
Aggr_Code :=
New_List (
Make_OK_Assignment_Statement (Sloc (New_Aggr),
Name => Target,
Expression => New_Aggr));
-- Or else, generate component assignments to it
else
Aggr_Code :=
Build_Array_Aggr_Code
(N => N,
Ctype => Component_Type (Typ),
Index => First_Index (Typ),
Into => Target,
Scalar_Comp => Is_Scalar_Type (Component_Type (Typ)),
Indexes => No_List);
end if;
-- Directly or indirectly (e.g. access protected procedure) a record
else
Aggr_Code := Build_Record_Aggr_Code (N, Typ, Target);
end if;
-- Save the last assignment statement associated with the aggregate
-- when building a controlled object. This reference is utilized by
-- the finalization machinery when marking an object as successfully
-- initialized.
if Needs_Finalization (Typ)
and then Is_Entity_Name (Target)
and then Present (Entity (Target))
and then Ekind (Entity (Target)) in E_Constant | E_Variable
then
Set_Last_Aggregate_Assignment (Entity (Target), Last (Aggr_Code));
end if;
return Aggr_Code;
end Late_Expansion;
----------------------------------
-- Make_OK_Assignment_Statement --
----------------------------------
function Make_OK_Assignment_Statement
(Sloc : Source_Ptr;
Name : Node_Id;
Expression : Node_Id) return Node_Id
is
begin
Set_Assignment_OK (Name);
return Make_Assignment_Statement (Sloc, Name, Expression);
end Make_OK_Assignment_Statement;
------------------------
-- Max_Aggregate_Size --
------------------------
function Max_Aggregate_Size
(N : Node_Id;
Default_Size : Nat := 5000) return Nat
is
function Use_Small_Size (N : Node_Id) return Boolean;
-- True if we should return a very small size, which means large
-- aggregates will be implemented as a loop when possible (potentially
-- transformed to memset calls).
function Aggr_Context (N : Node_Id) return Node_Id;
-- Return the context in which the aggregate appears, not counting
-- qualified expressions and similar.
------------------
-- Aggr_Context --
------------------
function Aggr_Context (N : Node_Id) return Node_Id is
Result : Node_Id := Parent (N);
begin
if Nkind (Result) in N_Qualified_Expression
| N_Type_Conversion
| N_Unchecked_Type_Conversion
| N_If_Expression
| N_Case_Expression
| N_Component_Association
| N_Aggregate
then
Result := Aggr_Context (Result);
end if;
return Result;
end Aggr_Context;
--------------------
-- Use_Small_Size --
--------------------
function Use_Small_Size (N : Node_Id) return Boolean is
C : constant Node_Id := Aggr_Context (N);
-- The decision depends on the context in which the aggregate occurs,
-- and for variable declarations, whether we are nested inside a
-- subprogram.
begin
case Nkind (C) is
-- True for assignment statements and similar
when N_Assignment_Statement
| N_Simple_Return_Statement
| N_Allocator
| N_Attribute_Reference
=>
return True;
-- True for nested variable declarations. False for library level
-- variables, and for constants (whether or not nested).
when N_Object_Declaration =>
return not Constant_Present (C)
and then Is_Subprogram (Current_Scope);
-- False for all other contexts
when others =>
return False;
end case;
end Use_Small_Size;
-- Local variables
Typ : constant Entity_Id := Etype (N);
-- Start of processing for Max_Aggregate_Size
begin
-- We use a small limit in CodePeer mode where we favor loops instead of
-- thousands of single assignments (from large aggregates).
-- We also increase the limit to 2**24 (about 16 million) if
-- Restrictions (No_Elaboration_Code) or Restrictions
-- (No_Implicit_Loops) is specified, since in either case we are at risk
-- of declaring the program illegal because of this limit. We also
-- increase the limit when Static_Elaboration_Desired, given that this
-- means that objects are intended to be placed in data memory.
-- Same if the aggregate is for a packed two-dimensional array, because
-- if components are static it is much more efficient to construct a
-- one-dimensional equivalent array with static components.
if CodePeer_Mode then
return 100;
elsif Restriction_Active (No_Elaboration_Code)
or else Restriction_Active (No_Implicit_Loops)
or else Is_Two_Dim_Packed_Array (Typ)
or else (Ekind (Current_Scope) = E_Package
and then Static_Elaboration_Desired (Current_Scope))
then
return 2 ** 24;
elsif Use_Small_Size (N) then
return 64;
end if;
return Default_Size;
end Max_Aggregate_Size;
-----------------------
-- Number_Of_Choices --
-----------------------
function Number_Of_Choices (N : Node_Id) return Nat is
Assoc : Node_Id;
Choice : Node_Id;
Nb_Choices : Nat := 0;
begin
if Present (Expressions (N)) then
return 0;
end if;
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Choice := First (Choice_List (Assoc));
while Present (Choice) loop
if Nkind (Choice) /= N_Others_Choice then
Nb_Choices := Nb_Choices + 1;
end if;
Next (Choice);
end loop;
Next (Assoc);
end loop;
return Nb_Choices;
end Number_Of_Choices;
------------------------------------
-- Packed_Array_Aggregate_Handled --
------------------------------------
-- The current version of this procedure will handle at compile time
-- any array aggregate that meets these conditions:
-- One and two dimensional, bit packed
-- Underlying packed type is modular type
-- Bounds are within 32-bit Int range
-- All bounds and values are static
-- Note: for now, in the 2-D case, we only handle component sizes of
-- 1, 2, 4 (cases where an integral number of elements occupies a byte).
function Packed_Array_Aggregate_Handled (N : Node_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Ctyp : constant Entity_Id := Component_Type (Typ);
Not_Handled : exception;
-- Exception raised if this aggregate cannot be handled
begin
-- Handle one- or two dimensional bit packed array
if not Is_Bit_Packed_Array (Typ)
or else Number_Dimensions (Typ) > 2
then
return False;
end if;
-- If two-dimensional, check whether it can be folded, and transformed
-- into a one-dimensional aggregate for the Packed_Array_Impl_Type of
-- the original type.
if Number_Dimensions (Typ) = 2 then
return Two_Dim_Packed_Array_Handled (N);
end if;
if not Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)) then
return False;
end if;
if not Is_Scalar_Type (Ctyp) then
return False;
end if;
declare
Csiz : constant Nat := UI_To_Int (Component_Size (Typ));
function Get_Component_Val (N : Node_Id) return Uint;
-- Given a expression value N of the component type Ctyp, returns a
-- value of Csiz (component size) bits representing this value. If
-- the value is nonstatic or any other reason exists why the value
-- cannot be returned, then Not_Handled is raised.
-----------------------
-- Get_Component_Val --
-----------------------
function Get_Component_Val (N : Node_Id) return Uint is
Val : Uint;
begin
-- We have to analyze the expression here before doing any further
-- processing here. The analysis of such expressions is deferred
-- till expansion to prevent some problems of premature analysis.
Analyze_And_Resolve (N, Ctyp);
-- Must have a compile time value. String literals have to be
-- converted into temporaries as well, because they cannot easily
-- be converted into their bit representation.
if not Compile_Time_Known_Value (N)
or else Nkind (N) = N_String_Literal
then
raise Not_Handled;
end if;
Val := Expr_Rep_Value (N);
-- Adjust for bias, and strip proper number of bits
if Has_Biased_Representation (Ctyp) then
Val := Val - Expr_Value (Type_Low_Bound (Ctyp));
end if;
return Val mod Uint_2 ** Csiz;
end Get_Component_Val;
Bounds : constant Range_Nodes := Get_Index_Bounds (First_Index (Typ));
-- Here we know we have a one dimensional bit packed array
begin
-- Cannot do anything if bounds are dynamic
if not (Compile_Time_Known_Value (Bounds.First)
and then
Compile_Time_Known_Value (Bounds.Last))
then
return False;
end if;
declare
Bounds_Vals : Range_Values;
-- Compile-time known values of bounds
begin
-- Or are silly out of range of int bounds
Bounds_Vals.First := Expr_Value (Bounds.First);
Bounds_Vals.Last := Expr_Value (Bounds.Last);
if not UI_Is_In_Int_Range (Bounds_Vals.First)
or else
not UI_Is_In_Int_Range (Bounds_Vals.Last)
then
return False;
end if;
-- At this stage we have a suitable aggregate for handling at
-- compile time. The only remaining checks are that the values of
-- expressions in the aggregate are compile-time known (checks are
-- performed by Get_Component_Val), and that any subtypes or
-- ranges are statically known.
-- If the aggregate is not fully positional at this stage, then
-- convert it to positional form. Either this will fail, in which
-- case we can do nothing, or it will succeed, in which case we
-- have succeeded in handling the aggregate and transforming it
-- into a modular value, or it will stay an aggregate, in which
-- case we have failed to create a packed value for it.
if Present (Component_Associations (N)) then
Convert_To_Positional (N, Handle_Bit_Packed => True);
return Nkind (N) /= N_Aggregate;
end if;
-- Otherwise we are all positional, so convert to proper value
declare
Len : constant Nat :=
Int'Max (0, UI_To_Int (Bounds_Vals.Last) -
UI_To_Int (Bounds_Vals.First) + 1);
-- The length of the array (number of elements)
Aggregate_Val : Uint;
-- Value of aggregate. The value is set in the low order bits
-- of this value. For the little-endian case, the values are
-- stored from low-order to high-order and for the big-endian
-- case the values are stored from high order to low order.
-- Note that gigi will take care of the conversions to left
-- justify the value in the big endian case (because of left
-- justified modular type processing), so we do not have to
-- worry about that here.
Lit : Node_Id;
-- Integer literal for resulting constructed value
Shift : Nat;
-- Shift count from low order for next value
Incr : Int;
-- Shift increment for loop
Expr : Node_Id;
-- Next expression from positional parameters of aggregate
Left_Justified : Boolean;
-- Set True if we are filling the high order bits of the target
-- value (i.e. the value is left justified).
begin
-- For little endian, we fill up the low order bits of the
-- target value. For big endian we fill up the high order bits
-- of the target value (which is a left justified modular
-- value).
Left_Justified := Bytes_Big_Endian;
-- Switch justification if using -gnatd8
if Debug_Flag_8 then
Left_Justified := not Left_Justified;
end if;
-- Switch justfification if reverse storage order
if Reverse_Storage_Order (Base_Type (Typ)) then
Left_Justified := not Left_Justified;
end if;
if Left_Justified then
Shift := Csiz * (Len - 1);
Incr := -Csiz;
else
Shift := 0;
Incr := +Csiz;
end if;
-- Loop to set the values
if Len = 0 then
Aggregate_Val := Uint_0;
else
Expr := First (Expressions (N));
Aggregate_Val := Get_Component_Val (Expr) * Uint_2 ** Shift;
for J in 2 .. Len loop
Shift := Shift + Incr;
Next (Expr);
Aggregate_Val :=
Aggregate_Val +
Get_Component_Val (Expr) * Uint_2 ** Shift;
end loop;
end if;
-- Now we can rewrite with the proper value
Lit := Make_Integer_Literal (Loc, Intval => Aggregate_Val);
Set_Print_In_Hex (Lit);
-- Construct the expression using this literal. Note that it
-- is important to qualify the literal with its proper modular
-- type since universal integer does not have the required
-- range and also this is a left justified modular type,
-- which is important in the big-endian case.
Rewrite (N,
Unchecked_Convert_To (Typ,
Make_Qualified_Expression (Loc,
Subtype_Mark =>
New_Occurrence_Of (Packed_Array_Impl_Type (Typ), Loc),
Expression => Lit)));
Analyze_And_Resolve (N, Typ);
return True;
end;
end;
end;
exception
when Not_Handled =>
return False;
end Packed_Array_Aggregate_Handled;
----------------------------
-- Has_Mutable_Components --
----------------------------
function Has_Mutable_Components (Typ : Entity_Id) return Boolean is
Comp : Entity_Id;
Ctyp : Entity_Id;
begin
Comp := First_Component (Typ);
while Present (Comp) loop
Ctyp := Underlying_Type (Etype (Comp));
if Is_Record_Type (Ctyp)
and then Has_Discriminants (Ctyp)
and then not Is_Constrained (Ctyp)
then
return True;
end if;
Next_Component (Comp);
end loop;
return False;
end Has_Mutable_Components;
------------------------------
-- Initialize_Discriminants --
------------------------------
procedure Initialize_Discriminants (N : Node_Id; Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Bas : constant Entity_Id := Base_Type (Typ);
Par : constant Entity_Id := Etype (Bas);
Decl : constant Node_Id := Parent (Par);
Ref : Node_Id;
begin
if Is_Tagged_Type (Bas)
and then Is_Derived_Type (Bas)
and then Has_Discriminants (Par)
and then Has_Discriminants (Bas)
and then Number_Discriminants (Bas) /= Number_Discriminants (Par)
and then Nkind (Decl) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Decl)) = N_Record_Definition
and then
Present (Variant_Part (Component_List (Type_Definition (Decl))))
and then Nkind (N) /= N_Extension_Aggregate
then
-- Call init proc to set discriminants.
-- There should eventually be a special procedure for this ???
Ref := New_Occurrence_Of (Defining_Identifier (N), Loc);
Insert_Actions_After (N,
Build_Initialization_Call (Sloc (N), Ref, Typ));
end if;
end Initialize_Discriminants;
----------------
-- Must_Slide --
----------------
function Must_Slide
(Aggr : Node_Id;
Obj_Type : Entity_Id;
Typ : Entity_Id) return Boolean
is
begin
-- No sliding if the type of the object is not established yet, if it is
-- an unconstrained type whose actual subtype comes from the aggregate,
-- or if the two types are identical. If the aggregate contains only
-- an Others_Clause it gets its type from the context and no sliding
-- is involved either.
if not Is_Array_Type (Obj_Type) then
return False;
elsif not Is_Constrained (Obj_Type) then
return False;
elsif Typ = Obj_Type then
return False;
elsif Is_Others_Aggregate (Aggr) then
return False;
else
-- Sliding can only occur along the first dimension
-- If any the bounds of non-static sliding is required
-- to force potential range checks.
declare
Bounds1 : constant Range_Nodes :=
Get_Index_Bounds (First_Index (Typ));
Bounds2 : constant Range_Nodes :=
Get_Index_Bounds (First_Index (Obj_Type));
begin
if not Is_OK_Static_Expression (Bounds1.First) or else
not Is_OK_Static_Expression (Bounds2.First) or else
not Is_OK_Static_Expression (Bounds1.Last) or else
not Is_OK_Static_Expression (Bounds2.Last)
then
return True;
else
return Expr_Value (Bounds1.First) /= Expr_Value (Bounds2.First)
or else
Expr_Value (Bounds1.Last) /= Expr_Value (Bounds2.Last);
end if;
end;
end if;
end Must_Slide;
---------------------
-- Sort_Case_Table --
---------------------
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
L : constant Int := Case_Table'First;
U : constant Int := Case_Table'Last;
K : Int;
J : Int;
T : Case_Bounds;
begin
K := L;
while K /= U loop
T := Case_Table (K + 1);
J := K + 1;
while J /= L
and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
Expr_Value (T.Choice_Lo)
loop
Case_Table (J) := Case_Table (J - 1);
J := J - 1;
end loop;
Case_Table (J) := T;
K := K + 1;
end loop;
end Sort_Case_Table;
----------------------------
-- Static_Array_Aggregate --
----------------------------
function Static_Array_Aggregate (N : Node_Id) return Boolean is
function Is_Static_Component (Nod : Node_Id) return Boolean;
-- Return True if Nod has a compile-time known value and can be passed
-- as is to the back-end without further expansion.
---------------------------
-- Is_Static_Component --
---------------------------
function Is_Static_Component (Nod : Node_Id) return Boolean is
begin
if Nkind (Nod) in N_Integer_Literal | N_Real_Literal then
return True;
elsif Is_Entity_Name (Nod)
and then Present (Entity (Nod))
and then Ekind (Entity (Nod)) = E_Enumeration_Literal
then
return True;
elsif Nkind (Nod) = N_Aggregate
and then Compile_Time_Known_Aggregate (Nod)
then
return True;
else
return False;
end if;
end Is_Static_Component;
-- Local variables
Bounds : constant Node_Id := Aggregate_Bounds (N);
Typ : constant Entity_Id := Etype (N);
Agg : Node_Id;
Expr : Node_Id;
Lo : Node_Id;
Hi : Node_Id;
-- Start of processing for Static_Array_Aggregate
begin
if Is_Packed (Typ) or else Has_Discriminants (Component_Type (Typ)) then
return False;
end if;
if Present (Bounds)
and then Nkind (Bounds) = N_Range
and then Nkind (Low_Bound (Bounds)) = N_Integer_Literal
and then Nkind (High_Bound (Bounds)) = N_Integer_Literal
then
Lo := Low_Bound (Bounds);
Hi := High_Bound (Bounds);
if No (Component_Associations (N)) then
-- Verify that all components are static
Expr := First (Expressions (N));
while Present (Expr) loop
if not Is_Static_Component (Expr) then
return False;
end if;
Next (Expr);
end loop;
return True;
else
-- We allow only a single named association, either a static
-- range or an others_clause, with a static expression.
Expr := First (Component_Associations (N));
if Present (Expressions (N)) then
return False;
elsif Present (Next (Expr)) then
return False;
elsif Present (Next (First (Choice_List (Expr)))) then
return False;
else
-- The aggregate is static if all components are literals,
-- or else all its components are static aggregates for the
-- component type. We also limit the size of a static aggregate
-- to prevent runaway static expressions.
if not Is_Static_Component (Expression (Expr)) then
return False;
end if;
if not Aggr_Size_OK (N) then
return False;
end if;
-- Create a positional aggregate with the right number of
-- copies of the expression.
Agg := Make_Aggregate (Sloc (N), New_List, No_List);
for I in UI_To_Int (Intval (Lo)) .. UI_To_Int (Intval (Hi))
loop
Append_To (Expressions (Agg), New_Copy (Expression (Expr)));
-- The copied expression must be analyzed and resolved.
-- Besides setting the type, this ensures that static
-- expressions are appropriately marked as such.
Analyze_And_Resolve
(Last (Expressions (Agg)), Component_Type (Typ));
end loop;
Set_Aggregate_Bounds (Agg, Bounds);
Set_Etype (Agg, Typ);
Set_Analyzed (Agg);
Rewrite (N, Agg);
Set_Compile_Time_Known_Aggregate (N);
return True;
end if;
end if;
else
return False;
end if;
end Static_Array_Aggregate;
----------------------------------
-- Two_Dim_Packed_Array_Handled --
----------------------------------
function Two_Dim_Packed_Array_Handled (N : Node_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Ctyp : constant Entity_Id := Component_Type (Typ);
Comp_Size : constant Int := UI_To_Int (Component_Size (Typ));
Packed_Array : constant Entity_Id :=
Packed_Array_Impl_Type (Base_Type (Typ));
One_Comp : Node_Id;
-- Expression in original aggregate
One_Dim : Node_Id;
-- One-dimensional subaggregate
begin
-- For now, only deal with cases where an integral number of elements
-- fit in a single byte. This includes the most common boolean case.
if not (Comp_Size = 1 or else
Comp_Size = 2 or else
Comp_Size = 4)
then
return False;
end if;
Convert_To_Positional (N, Handle_Bit_Packed => True);
-- Verify that all components are static
if Nkind (N) = N_Aggregate
and then Compile_Time_Known_Aggregate (N)
then
null;
-- The aggregate may have been reanalyzed and converted already
elsif Nkind (N) /= N_Aggregate then
return True;
-- If component associations remain, the aggregate is not static
elsif Present (Component_Associations (N)) then
return False;
else
One_Dim := First (Expressions (N));
while Present (One_Dim) loop
if Present (Component_Associations (One_Dim)) then
return False;
end if;
One_Comp := First (Expressions (One_Dim));
while Present (One_Comp) loop
if not Is_OK_Static_Expression (One_Comp) then
return False;
end if;
Next (One_Comp);
end loop;
Next (One_Dim);
end loop;
end if;
-- Two-dimensional aggregate is now fully positional so pack one
-- dimension to create a static one-dimensional array, and rewrite
-- as an unchecked conversion to the original type.
declare
Byte_Size : constant Int := UI_To_Int (Component_Size (Packed_Array));
-- The packed array type is a byte array
Packed_Num : Nat;
-- Number of components accumulated in current byte
Comps : List_Id;
-- Assembled list of packed values for equivalent aggregate
Comp_Val : Uint;
-- Integer value of component
Incr : Int;
-- Step size for packing
Init_Shift : Int;
-- Endian-dependent start position for packing
Shift : Int;
-- Current insertion position
Val : Int;
-- Component of packed array being assembled
begin
Comps := New_List;
Val := 0;
Packed_Num := 0;
-- Account for endianness. See corresponding comment in
-- Packed_Array_Aggregate_Handled concerning the following.
if Bytes_Big_Endian
xor Debug_Flag_8
xor Reverse_Storage_Order (Base_Type (Typ))
then
Init_Shift := Byte_Size - Comp_Size;
Incr := -Comp_Size;
else
Init_Shift := 0;
Incr := +Comp_Size;
end if;
-- Iterate over each subaggregate
Shift := Init_Shift;
One_Dim := First (Expressions (N));
while Present (One_Dim) loop
One_Comp := First (Expressions (One_Dim));
while Present (One_Comp) loop
if Packed_Num = Byte_Size / Comp_Size then
-- Byte is complete, add to list of expressions
Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
Val := 0;
Shift := Init_Shift;
Packed_Num := 0;
else
Comp_Val := Expr_Rep_Value (One_Comp);
-- Adjust for bias, and strip proper number of bits
if Has_Biased_Representation (Ctyp) then
Comp_Val := Comp_Val - Expr_Value (Type_Low_Bound (Ctyp));
end if;
Comp_Val := Comp_Val mod Uint_2 ** Comp_Size;
Val := UI_To_Int (Val + Comp_Val * Uint_2 ** Shift);
Shift := Shift + Incr;
Next (One_Comp);
Packed_Num := Packed_Num + 1;
end if;
end loop;
Next (One_Dim);
end loop;
if Packed_Num > 0 then
-- Add final incomplete byte if present
Append (Make_Integer_Literal (Sloc (One_Dim), Val), Comps);
end if;
Rewrite (N,
Unchecked_Convert_To (Typ,
Make_Qualified_Expression (Loc,
Subtype_Mark => New_Occurrence_Of (Packed_Array, Loc),
Expression => Make_Aggregate (Loc, Expressions => Comps))));
Analyze_And_Resolve (N);
return True;
end;
end Two_Dim_Packed_Array_Handled;
end Exp_Aggr;
|