1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ A T T R --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Accessibility; use Accessibility;
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Exp_Atag; use Exp_Atag;
with Exp_Ch3; use Exp_Ch3;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch9; use Exp_Ch9;
with Exp_Dist; use Exp_Dist;
with Exp_Imgv; use Exp_Imgv;
with Exp_Pakd; use Exp_Pakd;
with Exp_Strm; use Exp_Strm;
with Exp_Put_Image;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Expander; use Expander;
with Freeze; use Freeze;
with Gnatvsn; use Gnatvsn;
with Itypes; use Itypes;
with Lib; use Lib;
with Namet; use Namet;
with Nmake; use Nmake;
with Nlists; use Nlists;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch7; use Sem_Ch7;
with Sem_Ch8; use Sem_Ch8;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Strub; use Strub;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Uname; use Uname;
with Urealp; use Urealp;
with Validsw; use Validsw;
with GNAT.HTable;
package body Exp_Attr is
package Cached_Streaming_Ops is
Map_Size : constant := 63;
subtype Header_Num is Integer range 0 .. Map_Size - 1;
function Streaming_Op_Hash (Id : Entity_Id) return Header_Num is
(Header_Num (Id mod Map_Size));
-- Cache used to avoid building duplicate subprograms for a single
-- type/streaming-attribute pair.
package Read_Map is new GNAT.HTable.Simple_HTable
(Header_Num => Header_Num,
Key => Entity_Id,
Element => Entity_Id,
No_Element => Empty,
Hash => Streaming_Op_Hash,
Equal => "=");
package Write_Map is new GNAT.HTable.Simple_HTable
(Header_Num => Header_Num,
Key => Entity_Id,
Element => Entity_Id,
No_Element => Empty,
Hash => Streaming_Op_Hash,
Equal => "=");
package Input_Map is new GNAT.HTable.Simple_HTable
(Header_Num => Header_Num,
Key => Entity_Id,
Element => Entity_Id,
No_Element => Empty,
Hash => Streaming_Op_Hash,
Equal => "=");
package Output_Map is new GNAT.HTable.Simple_HTable
(Header_Num => Header_Num,
Key => Entity_Id,
Element => Entity_Id,
No_Element => Empty,
Hash => Streaming_Op_Hash,
Equal => "=");
end Cached_Streaming_Ops;
-----------------------
-- Local Subprograms --
-----------------------
function Build_Array_VS_Func
(Attr : Node_Id;
Formal_Typ : Entity_Id;
Array_Typ : Entity_Id) return Entity_Id;
-- Validate the components of an array type by means of a function. Return
-- the entity of the validation function. The parameters are as follows:
--
-- * Attr - the 'Valid_Scalars attribute for which the function is
-- generated.
--
-- * Formal_Typ - the type of the generated function's only formal
-- parameter.
--
-- * Array_Typ - the array type whose components are to be validated
function Build_Disp_Get_Task_Id_Call (Actual : Node_Id) return Node_Id;
-- Build a call to Disp_Get_Task_Id, passing Actual as actual parameter
function Build_Record_VS_Func
(Attr : Node_Id;
Formal_Typ : Entity_Id;
Rec_Typ : Entity_Id) return Entity_Id;
-- Validate the components, discriminants, and variants of a record type by
-- means of a function. Return the entity of the validation function. The
-- parameters are as follows:
--
-- * Attr - the 'Valid_Scalars attribute for which the function is
-- generated.
--
-- * Formal_Typ - the type of the generated function's only formal
-- parameter.
--
-- * Rec_Typ - the record type whose internals are to be validated
procedure Compile_Stream_Body_In_Scope
(N : Node_Id;
Decl : Node_Id;
Arr : Entity_Id);
-- The body for a stream subprogram may be generated outside of the scope
-- of the type. If the type is fully private, it may depend on the full
-- view of other types (e.g. indexes) that are currently private as well.
-- We install the declarations of the package in which the type is declared
-- before compiling the body in what is its proper environment. The Check
-- parameter indicates if checks are to be suppressed for the stream body.
-- We suppress checks for array/record reads, since the rule is that these
-- are like assignments, out of range values due to uninitialized storage,
-- or other invalid values do NOT cause a Constraint_Error to be raised.
-- If we are within an instance body all visibility has been established
-- already and there is no need to install the package.
-- This mechanism is now extended to the component types of the array type,
-- when the component type is not in scope and is private, to handle
-- properly the case when the full view has defaulted discriminants.
-- This special processing is ultimately caused by the fact that the
-- compiler lacks a well-defined phase when full views are visible
-- everywhere. Having such a separate pass would remove much of the
-- special-case code that shuffles partial and full views in the middle
-- of semantic analysis and expansion.
function Default_Streaming_Unavailable (Typ : Entity_Id) return Boolean;
--
-- In most cases, references to unavailable streaming attributes
-- are rejected at compile time. In some obscure cases involving
-- generics and formal derived types, the problem is dealt with at runtime.
procedure Expand_Access_To_Protected_Op
(N : Node_Id;
Pref : Node_Id;
Typ : Entity_Id);
-- An attribute reference to a protected subprogram is transformed into
-- a pair of pointers: one to the object, and one to the operations.
-- This expansion is performed for 'Access and for 'Unrestricted_Access.
procedure Expand_Fpt_Attribute
(N : Node_Id;
Pkg : RE_Id;
Nam : Name_Id;
Args : List_Id);
-- This procedure expands a call to a floating-point attribute function.
-- N is the attribute reference node, and Args is a list of arguments to
-- be passed to the function call. Pkg identifies the package containing
-- the appropriate instantiation of System.Fat_Gen. Float arguments in Args
-- have already been converted to the floating-point type for which Pkg was
-- instantiated. The Nam argument is the relevant attribute processing
-- routine to be called. This is the same as the attribute name.
procedure Expand_Fpt_Attribute_R (N : Node_Id);
-- This procedure expands a call to a floating-point attribute function
-- that takes a single floating-point argument. The function to be called
-- is always the same as the attribute name.
procedure Expand_Fpt_Attribute_RI (N : Node_Id);
-- This procedure expands a call to a floating-point attribute function
-- that takes one floating-point argument and one integer argument. The
-- function to be called is always the same as the attribute name.
procedure Expand_Fpt_Attribute_RR (N : Node_Id);
-- This procedure expands a call to a floating-point attribute function
-- that takes two floating-point arguments. The function to be called
-- is always the same as the attribute name.
procedure Expand_Loop_Entry_Attribute (N : Node_Id);
-- Handle the expansion of attribute 'Loop_Entry. As a result, the related
-- loop may be converted into a conditional block. See body for details.
procedure Expand_Min_Max_Attribute (N : Node_Id);
-- Handle the expansion of attributes 'Max and 'Min, including expanding
-- then out if we are in Modify_Tree_For_C mode.
procedure Expand_Pred_Succ_Attribute (N : Node_Id);
-- Handles expansion of Pred or Succ attributes for case of non-real
-- operand with overflow checking required.
procedure Expand_Update_Attribute (N : Node_Id);
-- Handle the expansion of attribute Update
procedure Find_Fat_Info
(T : Entity_Id;
Fat_Type : out Entity_Id;
Fat_Pkg : out RE_Id);
-- Given a floating-point type T, identifies the package containing the
-- attributes for this type (returned in Fat_Pkg), and the corresponding
-- type for which this package was instantiated from Fat_Gen. Error if T
-- is not a floating-point type.
function Find_Stream_Subprogram
(Typ : Entity_Id;
Nam : TSS_Name_Type;
Attr_Ref : Node_Id) return Entity_Id;
-- Returns the stream-oriented subprogram attribute for Typ. For tagged
-- types, the corresponding primitive operation is looked up, else the
-- appropriate TSS from the type itself, or from its closest ancestor
-- defining it, is returned. In both cases, inheritance of representation
-- aspects is thus taken into account. Attr_Ref is used to identify the
-- point from which the function result will be referenced.
function Full_Base (T : Entity_Id) return Entity_Id;
-- The stream functions need to examine the underlying representation of
-- composite types. In some cases T may be non-private but its base type
-- is, in which case the function returns the corresponding full view.
function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id;
-- Given a type, find a corresponding stream convert pragma that applies to
-- the implementation base type of this type (Typ). If found, return the
-- pragma node, otherwise return Empty if no pragma is found.
function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean;
-- Utility for array attributes, returns true on packed constrained
-- arrays, and on access to same.
function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean;
-- Returns true iff the given node refers to an attribute call that
-- can be expanded directly by the back end and does not need front end
-- expansion. Typically used for rounding and truncation attributes that
-- appear directly inside a conversion to integer.
-------------------------
-- Build_Array_VS_Func --
-------------------------
function Build_Array_VS_Func
(Attr : Node_Id;
Formal_Typ : Entity_Id;
Array_Typ : Entity_Id) return Entity_Id
is
Loc : constant Source_Ptr := Sloc (Attr);
Comp_Typ : constant Entity_Id :=
Validated_View (Component_Type (Array_Typ));
function Validate_Component
(Obj_Id : Entity_Id;
Indexes : List_Id) return Node_Id;
-- Process a single component denoted by indexes Indexes. Obj_Id denotes
-- the entity of the validation parameter. Return the check associated
-- with the component.
function Validate_Dimension
(Obj_Id : Entity_Id;
Dim : Int;
Indexes : List_Id) return Node_Id;
-- Process dimension Dim of the array type. Obj_Id denotes the entity
-- of the validation parameter. Indexes is a list where each dimension
-- deposits its loop variable, which will later identify a component.
-- Return the loop associated with the current dimension.
------------------------
-- Validate_Component --
------------------------
function Validate_Component
(Obj_Id : Entity_Id;
Indexes : List_Id) return Node_Id
is
Attr_Nam : Name_Id;
begin
if Is_Scalar_Type (Comp_Typ) then
Attr_Nam := Name_Valid;
else
Attr_Nam := Name_Valid_Scalars;
end if;
-- Generate:
-- if not Array_Typ (Obj_Id) (Indexes)'Valid[_Scalars] then
-- return False;
-- end if;
return
Make_If_Statement (Loc,
Condition =>
Make_Op_Not (Loc,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
Make_Indexed_Component (Loc,
Prefix =>
Unchecked_Convert_To (Array_Typ,
New_Occurrence_Of (Obj_Id, Loc)),
Expressions => Indexes),
Attribute_Name => Attr_Nam)),
Then_Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc))));
end Validate_Component;
------------------------
-- Validate_Dimension --
------------------------
function Validate_Dimension
(Obj_Id : Entity_Id;
Dim : Int;
Indexes : List_Id) return Node_Id
is
Index : Entity_Id;
begin
-- Validate the component once all dimensions have produced their
-- individual loops.
if Dim > Number_Dimensions (Array_Typ) then
return Validate_Component (Obj_Id, Indexes);
-- Process the current dimension
else
Index :=
Make_Defining_Identifier (Loc, New_External_Name ('J', Dim));
Append_To (Indexes, New_Occurrence_Of (Index, Loc));
-- Generate:
-- for J1 in Array_Typ (Obj_Id)'Range (1) loop
-- for JN in Array_Typ (Obj_Id)'Range (N) loop
-- if not Array_Typ (Obj_Id) (Indexes)'Valid[_Scalars]
-- then
-- return False;
-- end if;
-- end loop;
-- end loop;
return
Make_Implicit_Loop_Statement (Attr,
Identifier => Empty,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => Index,
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix =>
Unchecked_Convert_To (Array_Typ,
New_Occurrence_Of (Obj_Id, Loc)),
Attribute_Name => Name_Range,
Expressions => New_List (
Make_Integer_Literal (Loc, Dim))))),
Statements => New_List (
Validate_Dimension (Obj_Id, Dim + 1, Indexes)));
end if;
end Validate_Dimension;
-- Local variables
Func_Id : constant Entity_Id := Make_Temporary (Loc, 'V');
Indexes : constant List_Id := New_List;
Obj_Id : constant Entity_Id := Make_Temporary (Loc, 'A');
Stmts : List_Id;
-- Start of processing for Build_Array_VS_Func
begin
Stmts := New_List (Validate_Dimension (Obj_Id, 1, Indexes));
-- Generate:
-- return True;
Append_To (Stmts,
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_True, Loc)));
-- Generate:
-- function Func_Id (Obj_Id : Formal_Typ) return Boolean is
-- begin
-- Stmts
-- end Func_Id;
Mutate_Ekind (Func_Id, E_Function);
Set_Is_Internal (Func_Id);
Set_Is_Pure (Func_Id);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Func_Id);
end if;
Insert_Action (Attr,
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Func_Id,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Obj_Id,
Parameter_Type => New_Occurrence_Of (Formal_Typ, Loc))),
Result_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc)),
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts)));
return Func_Id;
end Build_Array_VS_Func;
---------------------------------
-- Build_Disp_Get_Task_Id_Call --
---------------------------------
function Build_Disp_Get_Task_Id_Call (Actual : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (Actual);
Typ : constant Entity_Id := Etype (Actual);
Subp : constant Entity_Id := Find_Prim_Op (Typ, Name_uDisp_Get_Task_Id);
begin
-- Generate:
-- _Disp_Get_Task_Id (Actual)
return
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Subp, Loc),
Parameter_Associations => New_List (Actual));
end Build_Disp_Get_Task_Id_Call;
--------------------------
-- Build_Record_VS_Func --
--------------------------
function Build_Record_VS_Func
(Attr : Node_Id;
Formal_Typ : Entity_Id;
Rec_Typ : Entity_Id) return Entity_Id
is
-- NOTE: The logic of Build_Record_VS_Func is intentionally passive.
-- It generates code only when there are components, discriminants,
-- or variant parts to validate.
-- NOTE: The routines within Build_Record_VS_Func are intentionally
-- unnested to avoid deep indentation of code.
Loc : constant Source_Ptr := Sloc (Attr);
procedure Validate_Component_List
(Obj_Id : Entity_Id;
Comp_List : Node_Id;
Stmts : in out List_Id);
-- Process all components and variant parts of component list Comp_List.
-- Obj_Id denotes the entity of the validation parameter. All new code
-- is added to list Stmts.
procedure Validate_Field
(Obj_Id : Entity_Id;
Field : Node_Id;
Cond : in out Node_Id);
-- Process component declaration or discriminant specification Field.
-- Obj_Id denotes the entity of the validation parameter. Cond denotes
-- an "or else" conditional expression which contains the new code (if
-- any).
procedure Validate_Fields
(Obj_Id : Entity_Id;
Fields : List_Id;
Stmts : in out List_Id);
-- Process component declarations or discriminant specifications in list
-- Fields. Obj_Id denotes the entity of the validation parameter. All
-- new code is added to list Stmts.
procedure Validate_Variant
(Obj_Id : Entity_Id;
Var : Node_Id;
Alts : in out List_Id);
-- Process variant Var. Obj_Id denotes the entity of the validation
-- parameter. Alts denotes a list of case statement alternatives which
-- contains the new code (if any).
procedure Validate_Variant_Part
(Obj_Id : Entity_Id;
Var_Part : Node_Id;
Stmts : in out List_Id);
-- Process variant part Var_Part. Obj_Id denotes the entity of the
-- validation parameter. All new code is added to list Stmts.
-----------------------------
-- Validate_Component_List --
-----------------------------
procedure Validate_Component_List
(Obj_Id : Entity_Id;
Comp_List : Node_Id;
Stmts : in out List_Id)
is
Var_Part : constant Node_Id := Variant_Part (Comp_List);
begin
-- Validate all components
Validate_Fields
(Obj_Id => Obj_Id,
Fields => Component_Items (Comp_List),
Stmts => Stmts);
-- Validate the variant part
if Present (Var_Part) then
Validate_Variant_Part
(Obj_Id => Obj_Id,
Var_Part => Var_Part,
Stmts => Stmts);
end if;
end Validate_Component_List;
--------------------
-- Validate_Field --
--------------------
procedure Validate_Field
(Obj_Id : Entity_Id;
Field : Node_Id;
Cond : in out Node_Id)
is
Field_Id : constant Entity_Id := Defining_Entity (Field);
Field_Nam : constant Name_Id := Chars (Field_Id);
Field_Typ : constant Entity_Id := Validated_View (Etype (Field_Id));
Attr_Nam : Name_Id;
begin
-- Do not process internally-generated fields. Note that checking for
-- Comes_From_Source is not correct because this will eliminate the
-- components within the corresponding record of a protected type.
if Field_Nam in Name_uObject | Name_uParent | Name_uTag then
null;
-- Do not process fields without any scalar components
elsif not Scalar_Part_Present (Field_Typ) then
null;
-- Otherwise the field needs to be validated. Use Make_Identifier
-- rather than New_Occurrence_Of to identify the field because the
-- wrong entity may be picked up when private types are involved.
-- Generate:
-- [or else] not Rec_Typ (Obj_Id).Item_Nam'Valid[_Scalars]
else
if Is_Scalar_Type (Field_Typ) then
Attr_Nam := Name_Valid;
else
Attr_Nam := Name_Valid_Scalars;
end if;
Evolve_Or_Else (Cond,
Make_Op_Not (Loc,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (Rec_Typ,
New_Occurrence_Of (Obj_Id, Loc)),
Selector_Name => Make_Identifier (Loc, Field_Nam)),
Attribute_Name => Attr_Nam)));
end if;
end Validate_Field;
---------------------
-- Validate_Fields --
---------------------
procedure Validate_Fields
(Obj_Id : Entity_Id;
Fields : List_Id;
Stmts : in out List_Id)
is
Cond : Node_Id;
Field : Node_Id;
begin
-- Assume that none of the fields are eligible for verification
Cond := Empty;
-- Validate all fields
Field := First_Non_Pragma (Fields);
while Present (Field) loop
Validate_Field
(Obj_Id => Obj_Id,
Field => Field,
Cond => Cond);
Next_Non_Pragma (Field);
end loop;
-- Generate:
-- if not Rec_Typ (Obj_Id).Item_Nam_1'Valid[_Scalars]
-- or else not Rec_Typ (Obj_Id).Item_Nam_N'Valid[_Scalars]
-- then
-- return False;
-- end if;
if Present (Cond) then
Append_New_To (Stmts,
Make_Implicit_If_Statement (Attr,
Condition => Cond,
Then_Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc)))));
end if;
end Validate_Fields;
----------------------
-- Validate_Variant --
----------------------
procedure Validate_Variant
(Obj_Id : Entity_Id;
Var : Node_Id;
Alts : in out List_Id)
is
Stmts : List_Id;
begin
-- Assume that none of the components and variants are eligible for
-- verification.
Stmts := No_List;
-- Validate components
Validate_Component_List
(Obj_Id => Obj_Id,
Comp_List => Component_List (Var),
Stmts => Stmts);
-- Generate a null statement in case none of the components were
-- verified because this will otherwise eliminate an alternative
-- from the variant case statement and render the generated code
-- illegal.
if No (Stmts) then
Append_New_To (Stmts, Make_Null_Statement (Loc));
end if;
-- Generate:
-- when Discrete_Choices =>
-- Stmts
Append_New_To (Alts,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices =>
New_Copy_List_Tree (Discrete_Choices (Var)),
Statements => Stmts));
end Validate_Variant;
---------------------------
-- Validate_Variant_Part --
---------------------------
procedure Validate_Variant_Part
(Obj_Id : Entity_Id;
Var_Part : Node_Id;
Stmts : in out List_Id)
is
Vars : constant List_Id := Variants (Var_Part);
Alts : List_Id;
Var : Node_Id;
begin
-- Assume that none of the variants are eligible for verification
Alts := No_List;
-- Validate variants
Var := First_Non_Pragma (Vars);
while Present (Var) loop
Validate_Variant
(Obj_Id => Obj_Id,
Var => Var,
Alts => Alts);
Next_Non_Pragma (Var);
end loop;
-- Even though individual variants may lack eligible components, the
-- alternatives must still be generated.
pragma Assert (Present (Alts));
-- Generate:
-- case Rec_Typ (Obj_Id).Discriminant is
-- when Discrete_Choices_1 =>
-- Stmts_1
-- when Discrete_Choices_N =>
-- Stmts_N
-- end case;
Append_New_To (Stmts,
Make_Case_Statement (Loc,
Expression =>
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (Rec_Typ,
New_Occurrence_Of (Obj_Id, Loc)),
Selector_Name => New_Copy_Tree (Name (Var_Part))),
Alternatives => Alts));
end Validate_Variant_Part;
-- Local variables
Func_Id : constant Entity_Id := Make_Temporary (Loc, 'V');
Obj_Id : constant Entity_Id := Make_Temporary (Loc, 'R');
Comps : Node_Id;
Stmts : List_Id;
Typ : Entity_Id;
Typ_Decl : Node_Id;
Typ_Def : Node_Id;
Typ_Ext : Node_Id;
-- Start of processing for Build_Record_VS_Func
begin
Typ := Validated_View (Rec_Typ);
-- Use the root type when dealing with a class-wide type
if Is_Class_Wide_Type (Typ) then
Typ := Validated_View (Root_Type (Typ));
end if;
Typ_Decl := Declaration_Node (Typ);
Typ_Def := Type_Definition (Typ_Decl);
-- The components of a derived type are located in the extension part
if Nkind (Typ_Def) = N_Derived_Type_Definition then
Typ_Ext := Record_Extension_Part (Typ_Def);
if Present (Typ_Ext) then
Comps := Component_List (Typ_Ext);
else
Comps := Empty;
end if;
-- Otherwise the components are available in the definition
else
Comps := Component_List (Typ_Def);
end if;
-- The code generated by this routine is as follows:
--
-- function Func_Id (Obj_Id : Formal_Typ) return Boolean is
-- begin
-- if not Rec_Typ (Obj_Id).Discriminant_1'Valid[_Scalars]
-- or else not Rec_Typ (Obj_Id).Discriminant_N'Valid[_Scalars]
-- then
-- return False;
-- end if;
--
-- if not Rec_Typ (Obj_Id).Component_1'Valid[_Scalars]
-- or else not Rec_Typ (Obj_Id).Component_N'Valid[_Scalars]
-- then
-- return False;
-- end if;
--
-- case Discriminant_1 is
-- when Choice_1 =>
-- if not Rec_Typ (Obj_Id).Component_1'Valid[_Scalars]
-- or else not Rec_Typ (Obj_Id).Component_N'Valid[_Scalars]
-- then
-- return False;
-- end if;
--
-- case Discriminant_N is
-- ...
-- when Choice_N =>
-- ...
-- end case;
--
-- return True;
-- end Func_Id;
-- Assume that the record type lacks eligible components, discriminants,
-- and variant parts.
Stmts := No_List;
-- Validate the discriminants
if not Is_Unchecked_Union (Rec_Typ) then
Validate_Fields
(Obj_Id => Obj_Id,
Fields => Discriminant_Specifications (Typ_Decl),
Stmts => Stmts);
end if;
-- Validate the components and variant parts
Validate_Component_List
(Obj_Id => Obj_Id,
Comp_List => Comps,
Stmts => Stmts);
-- Generate:
-- return True;
Append_New_To (Stmts,
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_True, Loc)));
-- Generate:
-- function Func_Id (Obj_Id : Formal_Typ) return Boolean is
-- begin
-- Stmts
-- end Func_Id;
Mutate_Ekind (Func_Id, E_Function);
Set_Is_Internal (Func_Id);
Set_Is_Pure (Func_Id);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Func_Id);
end if;
Insert_Action (Attr,
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Func_Id,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Obj_Id,
Parameter_Type => New_Occurrence_Of (Formal_Typ, Loc))),
Result_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc)),
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts)),
Suppress => Discriminant_Check);
return Func_Id;
end Build_Record_VS_Func;
----------------------------------
-- Compile_Stream_Body_In_Scope --
----------------------------------
procedure Compile_Stream_Body_In_Scope
(N : Node_Id;
Decl : Node_Id;
Arr : Entity_Id)
is
C_Type : constant Entity_Id := Base_Type (Component_Type (Arr));
Curr : constant Entity_Id := Current_Scope;
Install : Boolean := False;
Scop : Entity_Id := Scope (Arr);
begin
if Is_Hidden (Arr)
and then not In_Open_Scopes (Scop)
and then Ekind (Scop) = E_Package
then
Install := True;
else
-- The component type may be private, in which case we install its
-- full view to compile the subprogram.
-- The component type may be private, in which case we install its
-- full view to compile the subprogram. We do not do this if the
-- type has a Stream_Convert pragma, which indicates that there are
-- special stream-processing operations for that type (for example
-- Unbounded_String and its wide varieties).
-- We don't install the package either if array type and element
-- type come from the same package, and the original array type is
-- private, because in this case the underlying type Arr is
-- itself a full view, which carries the full view of the component.
Scop := Scope (C_Type);
if Is_Private_Type (C_Type)
and then Present (Full_View (C_Type))
and then not In_Open_Scopes (Scop)
and then Ekind (Scop) = E_Package
and then No (Get_Stream_Convert_Pragma (C_Type))
then
if Scope (Arr) = Scope (C_Type)
and then Is_Private_Type (Etype (Prefix (N)))
and then Full_View (Etype (Prefix (N))) = Arr
then
null;
else
Install := True;
end if;
end if;
end if;
-- If we are within an instance body, then all visibility has been
-- established already and there is no need to install the package.
if Install and then not In_Instance_Body then
Push_Scope (Scop);
Install_Visible_Declarations (Scop);
Install_Private_Declarations (Scop);
-- The entities in the package are now visible, but the generated
-- stream entity must appear in the current scope (usually an
-- enclosing stream function) so that itypes all have their proper
-- scopes.
Push_Scope (Curr);
else
Install := False;
end if;
Insert_Action (N, Decl);
if Install then
-- Remove extra copy of current scope, and package itself
Pop_Scope;
End_Package_Scope (Scop);
end if;
end Compile_Stream_Body_In_Scope;
-----------------------------------
-- Default_Streaming_Unavailable --
-----------------------------------
function Default_Streaming_Unavailable (Typ : Entity_Id) return Boolean is
Btyp : constant Entity_Id := Implementation_Base_Type (Typ);
begin
if Is_Immutably_Limited_Type (Btyp)
and then not Is_Tagged_Type (Btyp)
and then not (Ekind (Btyp) = E_Record_Type
and then Present (Corresponding_Concurrent_Type (Btyp)))
then
pragma Assert (In_Instance_Body);
return True;
end if;
return False;
end Default_Streaming_Unavailable;
-----------------------------------
-- Expand_Access_To_Protected_Op --
-----------------------------------
procedure Expand_Access_To_Protected_Op
(N : Node_Id;
Pref : Node_Id;
Typ : Entity_Id)
is
-- The value of the attribute_reference is a record containing two
-- fields: an access to the protected object, and an access to the
-- subprogram itself. The prefix is an identifier or a selected
-- component.
function Has_By_Protected_Procedure_Prefixed_View return Boolean;
-- Determine whether Pref denotes the prefixed class-wide interface
-- view of a procedure with synchronization kind By_Protected_Procedure.
----------------------------------------------
-- Has_By_Protected_Procedure_Prefixed_View --
----------------------------------------------
function Has_By_Protected_Procedure_Prefixed_View return Boolean is
begin
return Nkind (Pref) = N_Selected_Component
and then Nkind (Prefix (Pref)) in N_Has_Entity
and then Present (Entity (Prefix (Pref)))
and then Is_Class_Wide_Type (Etype (Entity (Prefix (Pref))))
and then (Is_Synchronized_Interface (Etype (Entity (Prefix (Pref))))
or else
Is_Protected_Interface (Etype (Entity (Prefix (Pref)))))
and then Is_By_Protected_Procedure (Entity (Selector_Name (Pref)));
end Has_By_Protected_Procedure_Prefixed_View;
-- Local variables
Loc : constant Source_Ptr := Sloc (N);
Agg : Node_Id;
Btyp : constant Entity_Id := Base_Type (Typ);
Sub : Entity_Id := Empty;
Sub_Ref : Node_Id;
E_T : constant Entity_Id := Equivalent_Type (Btyp);
Acc : constant Entity_Id :=
Etype (Next_Component (First_Component (E_T)));
Obj_Ref : Node_Id;
Curr : Entity_Id;
-- Start of processing for Expand_Access_To_Protected_Op
begin
-- Within the body of the protected type, the prefix designates a local
-- operation, and the object is the first parameter of the corresponding
-- protected body of the current enclosing operation.
if Is_Entity_Name (Pref) then
-- All indirect calls are external calls, so must do locking and
-- barrier reevaluation, even if the 'Access occurs within the
-- protected body. Hence the call to External_Subprogram, as opposed
-- to Protected_Body_Subprogram, below. See RM-9.5(5). This means
-- that indirect calls from within the same protected body will
-- deadlock, as allowed by RM-9.5.1(8,15,17).
Sub := New_Occurrence_Of (External_Subprogram (Entity (Pref)), Loc);
-- Don't traverse the scopes when the attribute occurs within an init
-- proc, because we directly use the _init formal of the init proc in
-- that case.
Curr := Current_Scope;
if not Is_Init_Proc (Curr) then
pragma Assert (In_Open_Scopes (Scope (Entity (Pref))));
while Scope (Curr) /= Scope (Entity (Pref)) loop
Curr := Scope (Curr);
end loop;
end if;
-- In case of protected entries the first formal of its Protected_
-- Body_Subprogram is the address of the object.
if Ekind (Curr) = E_Entry then
Obj_Ref :=
New_Occurrence_Of
(First_Formal
(Protected_Body_Subprogram (Curr)), Loc);
-- If the current scope is an init proc, then use the address of the
-- _init formal as the object reference.
elsif Is_Init_Proc (Curr) then
Obj_Ref :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (First_Formal (Curr), Loc),
Attribute_Name => Name_Address);
-- In case of protected subprograms the first formal of its
-- Protected_Body_Subprogram is the object and we get its address.
else
Obj_Ref :=
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of
(First_Formal
(Protected_Body_Subprogram (Curr)), Loc),
Attribute_Name => Name_Address);
end if;
elsif Has_By_Protected_Procedure_Prefixed_View then
Obj_Ref :=
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Prefix (Pref)),
Attribute_Name => Name_Address);
-- Analyze the object address with expansion disabled. Required
-- because its expansion would displace the pointer to the object,
-- which is not correct at this stage since the object type is a
-- class-wide interface type and we are dispatching a call to a
-- thunk (which would erroneously displace the pointer again).
Expander_Mode_Save_And_Set (False);
Analyze (Obj_Ref);
Set_Analyzed (Obj_Ref);
Expander_Mode_Restore;
-- Case where the prefix is not an entity name. Find the
-- version of the protected operation to be called from
-- outside the protected object.
else
Sub :=
New_Occurrence_Of
(External_Subprogram
(Entity (Selector_Name (Pref))), Loc);
Obj_Ref :=
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Prefix (Pref)),
Attribute_Name => Name_Address);
end if;
if Has_By_Protected_Procedure_Prefixed_View then
declare
Ctrl_Tag : Node_Id := Duplicate_Subexpr (Prefix (Pref));
Prim_Addr : Node_Id;
Subp : constant Entity_Id := Entity (Selector_Name (Pref));
Typ : constant Entity_Id :=
Etype (Etype (Entity (Prefix (Pref))));
begin
-- The target subprogram is a thunk; retrieve its address from
-- its secondary dispatch table slot.
Build_Get_Prim_Op_Address (Loc,
Typ => Typ,
Tag_Node => Ctrl_Tag,
Position => DT_Position (Subp),
New_Node => Prim_Addr);
-- Mark the access to the target subprogram as an access to the
-- dispatch table and perform an unchecked type conversion to such
-- access type. This is required to allow the backend to properly
-- identify and handle the access to the dispatch table slot on
-- targets where the dispatch table contains descriptors (instead
-- of pointers).
Set_Is_Dispatch_Table_Entity (Acc);
Sub_Ref := Unchecked_Convert_To (Acc, Prim_Addr);
Analyze (Sub_Ref);
Agg :=
Make_Aggregate (Loc,
Expressions => New_List (Obj_Ref, Sub_Ref));
end;
-- Common case
else
Sub_Ref :=
Make_Attribute_Reference (Loc,
Prefix => Sub,
Attribute_Name => Name_Access);
-- We set the type of the access reference to the already generated
-- access_to_subprogram type, and declare the reference analyzed,
-- to prevent further expansion when the enclosing aggregate is
-- analyzed.
Set_Etype (Sub_Ref, Acc);
Set_Analyzed (Sub_Ref);
Agg :=
Make_Aggregate (Loc,
Expressions => New_List (Obj_Ref, Sub_Ref));
-- Sub_Ref has been marked as analyzed, but we still need to make
-- sure Sub is correctly frozen.
Freeze_Before (N, Entity (Sub));
end if;
Rewrite (N, Agg);
Analyze_And_Resolve (N, E_T);
-- For subsequent analysis, the node must retain its type. The backend
-- will replace it with the equivalent type where needed.
Set_Etype (N, Typ);
end Expand_Access_To_Protected_Op;
--------------------------
-- Expand_Fpt_Attribute --
--------------------------
procedure Expand_Fpt_Attribute
(N : Node_Id;
Pkg : RE_Id;
Nam : Name_Id;
Args : List_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Fnm : Node_Id;
begin
-- The function name is the selected component Attr_xxx.yyy where
-- Attr_xxx is the package name, and yyy is the argument Nam.
-- Note: it would be more usual to have separate RE entries for each
-- of the entities in the Fat packages, but first they have identical
-- names (so we would have to have lots of renaming declarations to
-- meet the normal RE rule of separate names for all runtime entities),
-- and second there would be an awful lot of them.
Fnm :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (RTE (Pkg), Loc),
Selector_Name => Make_Identifier (Loc, Nam));
-- The generated call is given the provided set of parameters, and then
-- wrapped in a conversion which converts the result to the target type.
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name => Fnm,
Parameter_Associations => Args)));
Analyze_And_Resolve (N, Typ);
end Expand_Fpt_Attribute;
----------------------------
-- Expand_Fpt_Attribute_R --
----------------------------
-- The single argument is converted to its root type to call the
-- appropriate runtime function, with the actual call being built
-- by Expand_Fpt_Attribute
procedure Expand_Fpt_Attribute_R (N : Node_Id) is
E1 : constant Node_Id := First (Expressions (N));
Ftp : Entity_Id;
Pkg : RE_Id;
begin
Find_Fat_Info (Etype (E1), Ftp, Pkg);
Expand_Fpt_Attribute
(N, Pkg, Attribute_Name (N),
New_List (Unchecked_Convert_To (Ftp, Relocate_Node (E1))));
end Expand_Fpt_Attribute_R;
-----------------------------
-- Expand_Fpt_Attribute_RI --
-----------------------------
-- The first argument is converted to its root type and the second
-- argument is converted to standard long long integer to call the
-- appropriate runtime function, with the actual call being built
-- by Expand_Fpt_Attribute
procedure Expand_Fpt_Attribute_RI (N : Node_Id) is
E1 : constant Node_Id := First (Expressions (N));
E2 : constant Node_Id := Next (E1);
Ftp : Entity_Id;
Pkg : RE_Id;
begin
Find_Fat_Info (Etype (E1), Ftp, Pkg);
Expand_Fpt_Attribute
(N, Pkg, Attribute_Name (N),
New_List (
Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
Unchecked_Convert_To (Standard_Integer, Relocate_Node (E2))));
end Expand_Fpt_Attribute_RI;
-----------------------------
-- Expand_Fpt_Attribute_RR --
-----------------------------
-- The two arguments are converted to their root types to call the
-- appropriate runtime function, with the actual call being built
-- by Expand_Fpt_Attribute
procedure Expand_Fpt_Attribute_RR (N : Node_Id) is
E1 : constant Node_Id := First (Expressions (N));
E2 : constant Node_Id := Next (E1);
Ftp : Entity_Id;
Pkg : RE_Id;
begin
Find_Fat_Info (Etype (E1), Ftp, Pkg);
Expand_Fpt_Attribute
(N, Pkg, Attribute_Name (N),
New_List (
Unchecked_Convert_To (Ftp, Relocate_Node (E1)),
Unchecked_Convert_To (Ftp, Relocate_Node (E2))));
end Expand_Fpt_Attribute_RR;
---------------------------------
-- Expand_Loop_Entry_Attribute --
---------------------------------
procedure Expand_Loop_Entry_Attribute (N : Node_Id) is
procedure Build_Conditional_Block
(Loc : Source_Ptr;
Cond : Node_Id;
Loop_Stmt : Node_Id;
If_Stmt : out Node_Id;
Blk_Stmt : out Node_Id);
-- Create a block Blk_Stmt with an empty declarative list and a single
-- loop Loop_Stmt. The block is encased in an if statement If_Stmt with
-- condition Cond. If_Stmt is Empty when there is no condition provided.
function Is_Array_Iteration (N : Node_Id) return Boolean;
-- Determine whether loop statement N denotes an Ada 2012 iteration over
-- an array object.
-----------------------------
-- Build_Conditional_Block --
-----------------------------
procedure Build_Conditional_Block
(Loc : Source_Ptr;
Cond : Node_Id;
Loop_Stmt : Node_Id;
If_Stmt : out Node_Id;
Blk_Stmt : out Node_Id)
is
begin
-- Do not reanalyze the original loop statement because it is simply
-- being relocated.
Set_Analyzed (Loop_Stmt);
Blk_Stmt :=
Make_Block_Statement (Loc,
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Loop_Stmt)));
if Present (Cond) then
If_Stmt :=
Make_If_Statement (Loc,
Condition => Cond,
Then_Statements => New_List (Blk_Stmt));
else
If_Stmt := Empty;
end if;
end Build_Conditional_Block;
------------------------
-- Is_Array_Iteration --
------------------------
function Is_Array_Iteration (N : Node_Id) return Boolean is
Stmt : constant Node_Id := Original_Node (N);
Iter : Node_Id;
begin
if Nkind (Stmt) = N_Loop_Statement
and then Present (Iteration_Scheme (Stmt))
and then Present (Iterator_Specification (Iteration_Scheme (Stmt)))
then
Iter := Iterator_Specification (Iteration_Scheme (Stmt));
return
Of_Present (Iter) and then Is_Array_Type (Etype (Name (Iter)));
end if;
return False;
end Is_Array_Iteration;
-- Local variables
Pref : constant Node_Id := Prefix (N);
Base_Typ : constant Entity_Id := Base_Type (Etype (Pref));
Exprs : constant List_Id := Expressions (N);
Loc : constant Source_Ptr := Sloc (N);
Aux_Decl : Node_Id;
Blk : Node_Id := Empty;
Decls : List_Id;
Installed : Boolean;
Loop_Id : Entity_Id;
Loop_Stmt : Node_Id;
Result : Node_Id := Empty;
Scheme : Node_Id;
Temp_Decl : Node_Id;
Temp_Id : Entity_Id;
-- Start of processing for Expand_Loop_Entry_Attribute
begin
-- Step 1: Find the related loop
-- The loop label variant of attribute 'Loop_Entry already has all the
-- information in its expression.
if Present (Exprs) then
Loop_Id := Entity (First (Exprs));
Loop_Stmt := Label_Construct (Parent (Loop_Id));
-- Climb the parent chain to find the nearest enclosing loop. Skip
-- all internally generated loops for quantified expressions and for
-- element iterators over multidimensional arrays because the pragma
-- applies to source loop.
else
Loop_Stmt := N;
while Present (Loop_Stmt) loop
if Nkind (Loop_Stmt) = N_Loop_Statement
and then Nkind (Original_Node (Loop_Stmt)) = N_Loop_Statement
and then Comes_From_Source (Original_Node (Loop_Stmt))
then
exit;
end if;
Loop_Stmt := Parent (Loop_Stmt);
end loop;
Loop_Id := Entity (Identifier (Loop_Stmt));
end if;
-- Step 2: Transform the loop
-- The loop has already been transformed during the expansion of a prior
-- 'Loop_Entry attribute. Retrieve the declarative list of the block.
if Has_Loop_Entry_Attributes (Loop_Id) then
-- When the related loop name appears as the argument of attribute
-- Loop_Entry, the corresponding label construct is the generated
-- block statement. This is because the expander reuses the label.
if Nkind (Loop_Stmt) = N_Block_Statement then
Decls := Declarations (Loop_Stmt);
-- In all other cases, the loop must appear in the handled sequence
-- of statements of the generated block.
else
pragma Assert
(Nkind (Parent (Loop_Stmt)) = N_Handled_Sequence_Of_Statements
and then
Nkind (Parent (Parent (Loop_Stmt))) = N_Block_Statement);
Decls := Declarations (Parent (Parent (Loop_Stmt)));
end if;
-- Transform the loop into a conditional block
else
Set_Has_Loop_Entry_Attributes (Loop_Id);
Scheme := Iteration_Scheme (Loop_Stmt);
-- Infinite loops are transformed into:
-- declare
-- Temp1 : constant <type of Pref1> := <Pref1>;
-- . . .
-- TempN : constant <type of PrefN> := <PrefN>;
-- begin
-- loop
-- <original source statements with attribute rewrites>
-- end loop;
-- end;
if No (Scheme) then
Build_Conditional_Block (Loc,
Cond => Empty,
Loop_Stmt => Relocate_Node (Loop_Stmt),
If_Stmt => Result,
Blk_Stmt => Blk);
Result := Blk;
-- While loops are transformed into:
-- function Fnn return Boolean is
-- begin
-- <condition actions>
-- return <condition>;
-- end Fnn;
-- if Fnn then
-- declare
-- Temp1 : constant <type of Pref1> := <Pref1>;
-- . . .
-- TempN : constant <type of PrefN> := <PrefN>;
-- begin
-- loop
-- <original source statements with attribute rewrites>
-- exit when not Fnn;
-- end loop;
-- end;
-- end if;
-- Note that loops over iterators and containers are already
-- converted into while loops.
elsif Present (Condition (Scheme)) then
declare
Func_Decl : Node_Id;
Func_Id : Entity_Id;
Stmts : List_Id;
begin
Func_Id := Make_Temporary (Loc, 'F');
-- Wrap the condition of the while loop in a Boolean function.
-- This avoids the duplication of the same code which may lead
-- to gigi issues with respect to multiple declaration of the
-- same entity in the presence of side effects or checks. Note
-- that the condition actions must also be relocated into the
-- wrapping function because they may contain itypes, e.g. in
-- the case of a comparison involving slices.
-- Generate:
-- <condition actions>
-- return <condition>;
if Present (Condition_Actions (Scheme)) then
Stmts := Condition_Actions (Scheme);
else
Stmts := New_List;
end if;
Append_To (Stmts,
Make_Simple_Return_Statement (Loc,
Expression =>
New_Copy_Tree (Condition (Scheme),
New_Scope => Func_Id)));
-- Generate:
-- function Fnn return Boolean is
-- begin
-- <Stmts>
-- end Fnn;
Func_Decl :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Func_Id,
Result_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc)),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts));
-- The function is inserted before the related loop. Make sure
-- to analyze it in the context of the loop's enclosing scope.
Push_Scope (Scope (Loop_Id));
Insert_Action (Loop_Stmt, Func_Decl);
Pop_Scope;
-- The analysis of the condition may have generated entities
-- (such as itypes) that are now used within the function.
-- Adjust their scopes accordingly so that their use appears
-- in their scope of definition.
declare
Ent : Entity_Id;
begin
Ent := First_Entity (Loop_Id);
while Present (Ent) loop
-- Various entities that now occur within the function
-- need to have their scope reset, but not all entities
-- associated with Loop_Id are now inside the function.
-- The function entity itself and loop parameters can
-- be outside the function, and there may be others.
-- It's not clear how the determination of what entity
-- scopes need to be adjusted can be made accurately.
-- Perhaps it will be necessary to traverse the function
-- body to find the exact entities whose scopes need to
-- be reset to the function's Entity_Id. ???
if Ekind (Ent) /= E_Loop_Parameter
and then Ent /= Func_Id
then
Set_Scope (Ent, Func_Id);
end if;
Next_Entity (Ent);
end loop;
end;
-- Transform the original while loop into an infinite loop
-- where the last statement checks the negated condition. This
-- placement ensures that the condition will not be evaluated
-- twice on the first iteration.
Set_Iteration_Scheme (Loop_Stmt, Empty);
Scheme := Empty;
-- Generate:
-- exit when not Fnn;
Append_To (Statements (Loop_Stmt),
Make_Exit_Statement (Loc,
Condition =>
Make_Op_Not (Loc,
Right_Opnd =>
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Id, Loc)))));
Build_Conditional_Block (Loc,
Cond =>
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Id, Loc)),
Loop_Stmt => Relocate_Node (Loop_Stmt),
If_Stmt => Result,
Blk_Stmt => Blk);
end;
-- Ada 2012 iteration over an array is transformed into:
-- if <Array_Nam>'Length (1) > 0
-- and then <Array_Nam>'Length (N) > 0
-- then
-- declare
-- Temp1 : constant <type of Pref1> := <Pref1>;
-- . . .
-- TempN : constant <type of PrefN> := <PrefN>;
-- begin
-- for X in ... loop -- multiple loops depending on dims
-- <original source statements with attribute rewrites>
-- end loop;
-- end;
-- end if;
elsif Is_Array_Iteration (Loop_Stmt) then
declare
Array_Nam : constant Entity_Id :=
Entity (Name (Iterator_Specification
(Iteration_Scheme (Original_Node (Loop_Stmt)))));
Num_Dims : constant Pos :=
Number_Dimensions (Etype (Array_Nam));
Cond : Node_Id := Empty;
Check : Node_Id;
begin
-- Generate a check which determines whether all dimensions of
-- the array are non-null.
for Dim in 1 .. Num_Dims loop
Check :=
Make_Op_Gt (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Array_Nam, Loc),
Attribute_Name => Name_Length,
Expressions => New_List (
Make_Integer_Literal (Loc, Dim))),
Right_Opnd =>
Make_Integer_Literal (Loc, 0));
if No (Cond) then
Cond := Check;
else
Cond :=
Make_And_Then (Loc,
Left_Opnd => Cond,
Right_Opnd => Check);
end if;
end loop;
Build_Conditional_Block (Loc,
Cond => Cond,
Loop_Stmt => Relocate_Node (Loop_Stmt),
If_Stmt => Result,
Blk_Stmt => Blk);
end;
-- For loops are transformed into:
-- if <Low> <= <High> then
-- declare
-- Temp1 : constant <type of Pref1> := <Pref1>;
-- . . .
-- TempN : constant <type of PrefN> := <PrefN>;
-- begin
-- for <Def_Id> in <Low> .. <High> loop
-- <original source statements with attribute rewrites>
-- end loop;
-- end;
-- end if;
elsif Present (Loop_Parameter_Specification (Scheme)) then
declare
Loop_Spec : constant Node_Id :=
Loop_Parameter_Specification (Scheme);
Cond : Node_Id;
Subt_Def : Node_Id;
begin
Subt_Def := Discrete_Subtype_Definition (Loop_Spec);
-- When the loop iterates over a subtype indication with a
-- range, use the low and high bounds of the subtype itself.
if Nkind (Subt_Def) = N_Subtype_Indication then
Subt_Def := Scalar_Range (Etype (Subt_Def));
end if;
pragma Assert (Nkind (Subt_Def) = N_Range);
-- Generate
-- Low <= High
Cond :=
Make_Op_Le (Loc,
Left_Opnd => New_Copy_Tree (Low_Bound (Subt_Def)),
Right_Opnd => New_Copy_Tree (High_Bound (Subt_Def)));
Build_Conditional_Block (Loc,
Cond => Cond,
Loop_Stmt => Relocate_Node (Loop_Stmt),
If_Stmt => Result,
Blk_Stmt => Blk);
end;
end if;
Decls := Declarations (Blk);
end if;
-- Step 3: Create a constant to capture the value of the prefix at the
-- entry point into the loop.
Temp_Id := Make_Temporary (Loc, 'P');
-- Preserve the tag of the prefix by offering a specific view of the
-- class-wide version of the prefix.
if Is_Tagged_Type (Base_Typ) then
Tagged_Case : declare
CW_Temp : Entity_Id;
CW_Typ : Entity_Id;
begin
-- Generate:
-- CW_Temp : constant Base_Typ'Class := Base_Typ'Class (Pref);
CW_Temp := Make_Temporary (Loc, 'T');
CW_Typ := Class_Wide_Type (Base_Typ);
Aux_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => CW_Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (CW_Typ, Loc),
Expression =>
Convert_To (CW_Typ, Relocate_Node (Pref)));
Append_To (Decls, Aux_Decl);
-- Generate:
-- Temp : Base_Typ renames Base_Typ (CW_Temp);
Temp_Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Temp_Id,
Subtype_Mark => New_Occurrence_Of (Base_Typ, Loc),
Name =>
Convert_To (Base_Typ, New_Occurrence_Of (CW_Temp, Loc)));
Append_To (Decls, Temp_Decl);
end Tagged_Case;
-- Untagged case
else
Untagged_Case : declare
Temp_Expr : Node_Id;
begin
Aux_Decl := Empty;
-- Generate a nominal type for the constant when the prefix is of
-- a constrained type. This is achieved by setting the Etype of
-- the relocated prefix to its base type. Since the prefix is now
-- the initialization expression of the constant, its freezing
-- will produce a proper nominal type.
Temp_Expr := Relocate_Node (Pref);
Set_Etype (Temp_Expr, Base_Typ);
-- Generate:
-- Temp : constant Base_Typ := Pref;
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp_Id,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Base_Typ, Loc),
Expression => Temp_Expr);
Append_To (Decls, Temp_Decl);
end Untagged_Case;
end if;
-- Step 4: Analyze all bits
Installed := Current_Scope = Scope (Loop_Id);
-- Depending on the pracement of attribute 'Loop_Entry relative to the
-- associated loop, ensure the proper visibility for analysis.
if not Installed then
Push_Scope (Scope (Loop_Id));
end if;
-- Analyze constant declaration with simple value propagation disabled,
-- because the values at the loop entry might be different than the
-- values at the occurrence of Loop_Entry attribute.
declare
Save_Debug_Flag_MM : constant Boolean := Debug_Flag_MM;
begin
Debug_Flag_MM := True;
if Present (Aux_Decl) then
Analyze (Aux_Decl);
end if;
Analyze (Temp_Decl);
Debug_Flag_MM := Save_Debug_Flag_MM;
end;
-- If the conditional block has just been created, then analyze it;
-- otherwise it was analyzed when a previous 'Loop_Entry was expanded.
if Present (Result) then
Rewrite (Loop_Stmt, Result);
Analyze (Loop_Stmt);
end if;
Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
Analyze (N);
if not Installed then
Pop_Scope;
end if;
end Expand_Loop_Entry_Attribute;
------------------------------
-- Expand_Min_Max_Attribute --
------------------------------
procedure Expand_Min_Max_Attribute (N : Node_Id) is
begin
-- Min and Max are handled by the back end (except that static cases
-- have already been evaluated during semantic processing, although the
-- back end should not count on this). The one bit of special processing
-- required in the normal case is that these two attributes typically
-- generate conditionals in the code, so check the relevant restriction.
Check_Restriction (No_Implicit_Conditionals, N);
end Expand_Min_Max_Attribute;
----------------------------------
-- Expand_N_Attribute_Reference --
----------------------------------
procedure Expand_N_Attribute_Reference (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Pref : constant Node_Id := Prefix (N);
Exprs : constant List_Id := Expressions (N);
function Get_Integer_Type (Typ : Entity_Id) return Entity_Id;
-- Return a small integer type appropriate for the enumeration type
procedure Rewrite_Attribute_Proc_Call (Pname : Entity_Id);
-- Rewrites an attribute for Read, Write, Output, or Put_Image with a
-- call to the appropriate TSS procedure. Pname is the entity for the
-- procedure to call.
----------------------
-- Get_Integer_Type --
----------------------
function Get_Integer_Type (Typ : Entity_Id) return Entity_Id is
Siz : constant Uint := Esize (Base_Type (Typ));
begin
-- We need to accommodate invalid values of the base type since we
-- accept them for Enum_Rep and Pos, so we reason on the Esize.
return Small_Integer_Type_For (Siz, Uns => Is_Unsigned_Type (Typ));
end Get_Integer_Type;
---------------------------------
-- Rewrite_Attribute_Proc_Call --
---------------------------------
procedure Rewrite_Attribute_Proc_Call (Pname : Entity_Id) is
Item : constant Node_Id := Next (First (Exprs));
Item_Typ : constant Entity_Id := Etype (Item);
Formal : constant Entity_Id := Next_Formal (First_Formal (Pname));
Formal_Typ : constant Entity_Id := Etype (Formal);
Is_Written : constant Boolean := Ekind (Formal) /= E_In_Parameter;
begin
-- The expansion depends on Item, the second actual, which is
-- the object being streamed in or out.
-- If the item is a component of a packed array type, and
-- a conversion is needed on exit, we introduce a temporary to
-- hold the value, because otherwise the packed reference will
-- not be properly expanded.
if Nkind (Item) = N_Indexed_Component
and then Is_Packed (Base_Type (Etype (Prefix (Item))))
and then Base_Type (Item_Typ) /= Base_Type (Formal_Typ)
and then Is_Written
then
declare
Temp : constant Entity_Id := Make_Temporary (Loc, 'V');
Decl : Node_Id;
Assn : Node_Id;
begin
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Formal_Typ, Loc));
Set_Etype (Temp, Formal_Typ);
Assn :=
Make_Assignment_Statement (Loc,
Name => New_Copy_Tree (Item),
Expression =>
Unchecked_Convert_To
(Item_Typ, New_Occurrence_Of (Temp, Loc)));
Rewrite (Item, New_Occurrence_Of (Temp, Loc));
Insert_Actions (N,
New_List (
Decl,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Pname, Loc),
Parameter_Associations => Exprs),
Assn));
Rewrite (N, Make_Null_Statement (Loc));
return;
end;
end if;
-- For the class-wide dispatching cases, and for cases in which
-- the base type of the second argument matches the base type of
-- the corresponding formal parameter (that is to say the stream
-- operation is not inherited), we are all set, and can use the
-- argument unchanged.
if not Is_Class_Wide_Type (Entity (Pref))
and then not Is_Class_Wide_Type (Etype (Item))
and then Base_Type (Item_Typ) /= Base_Type (Formal_Typ)
then
-- Perform a view conversion when either the argument or the
-- formal parameter are of a private type.
if Is_Private_Type (Base_Type (Formal_Typ))
or else Is_Private_Type (Base_Type (Item_Typ))
then
Rewrite (Item,
Unchecked_Convert_To (Formal_Typ, Relocate_Node (Item)));
-- Otherwise perform a regular type conversion to ensure that all
-- relevant checks are installed.
else
Rewrite (Item, Convert_To (Formal_Typ, Relocate_Node (Item)));
end if;
-- For untagged derived types set Assignment_OK, to prevent
-- copies from being created when the unchecked conversion
-- is expanded (which would happen in Remove_Side_Effects
-- if Expand_N_Unchecked_Conversion were allowed to call
-- Force_Evaluation). The copy could violate Ada semantics in
-- cases such as an actual that is an out parameter. Note that
-- this approach is also used in exp_ch7 for calls to controlled
-- type operations to prevent problems with actuals wrapped in
-- unchecked conversions.
if Is_Untagged_Derivation (Etype (Expression (Item))) then
Set_Assignment_OK (Item);
end if;
end if;
-- The stream operation to call might be a renaming created by an
-- attribute definition clause, and might not be frozen yet. Ensure
-- that it has the necessary extra formals.
if not Is_Frozen (Pname) then
Create_Extra_Formals (Pname);
end if;
-- And now rewrite the call
Rewrite (N,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Pname, Loc),
Parameter_Associations => Exprs));
Analyze (N);
end Rewrite_Attribute_Proc_Call;
Typ : constant Entity_Id := Etype (N);
Btyp : constant Entity_Id := Base_Type (Typ);
Ptyp : constant Entity_Id := Etype (Pref);
Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
-- Start of processing for Expand_N_Attribute_Reference
begin
-- Do required validity checking, if enabled.
--
-- Skip check for output parameters of an Asm instruction (since their
-- valuesare not set till after the attribute has been elaborated),
-- for the arguments of a 'Read attribute reference (since the
-- scalar argument is an OUT scalar) and for the arguments of a
-- 'Has_Same_Storage or 'Overlaps_Storage attribute reference (which not
-- considered to be reads of their prefixes and expressions, see Ada RM
-- 13.3(73.10/3)).
if Validity_Checks_On and then Validity_Check_Operands
and then Id /= Attribute_Asm_Output
and then Id /= Attribute_Read
and then Id /= Attribute_Has_Same_Storage
and then Id /= Attribute_Overlaps_Storage
then
declare
Expr : Node_Id;
begin
Expr := First (Expressions (N));
while Present (Expr) loop
Ensure_Valid (Expr);
Next (Expr);
end loop;
end;
end if;
-- Ada 2005 (AI-318-02): If attribute prefix is a call to a build-in-
-- place function, then a temporary return object needs to be created
-- and access to it must be passed to the function.
if Is_Build_In_Place_Function_Call (Pref) then
-- If attribute is 'Old, the context is a postcondition, and
-- the temporary must go in the corresponding subprogram, not
-- the postcondition function or any created blocks, as when
-- the attribute appears in a quantified expression. This is
-- handled below in the expansion of the attribute.
if Attribute_Name (Parent (Pref)) = Name_Old then
null;
else
Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
end if;
-- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
-- containing build-in-place function calls whose returned object covers
-- interface types.
elsif Present (Unqual_BIP_Iface_Function_Call (Pref)) then
Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Pref);
end if;
-- If prefix is a protected type name, this is a reference to the
-- current instance of the type. For a component definition, nothing
-- to do (expansion will occur in the init proc). In other contexts,
-- rewrite into reference to current instance.
if Is_Protected_Self_Reference (Pref)
and then not
(Nkind (Parent (N)) in N_Index_Or_Discriminant_Constraint
| N_Discriminant_Association
and then Nkind (Parent (Parent (Parent (Parent (N))))) =
N_Component_Definition)
-- No action needed for these attributes since the current instance
-- will be rewritten to be the name of the _object parameter
-- associated with the enclosing protected subprogram (see below).
and then Id /= Attribute_Access
and then Id /= Attribute_Unchecked_Access
and then Id /= Attribute_Unrestricted_Access
then
Rewrite (Pref, Concurrent_Ref (Pref));
Analyze (Pref);
end if;
-- Remaining processing depends on specific attribute
-- Note: individual sections of the following case statement are
-- allowed to assume there is no code after the case statement, and
-- are legitimately allowed to execute return statements if they have
-- nothing more to do.
case Id is
-- Attributes related to Ada 2012 iterators. They are only allowed in
-- attribute definition clauses and should never be expanded.
when Attribute_Constant_Indexing
| Attribute_Default_Iterator
| Attribute_Implicit_Dereference
| Attribute_Iterable
| Attribute_Iterator_Element
| Attribute_Variable_Indexing
=>
raise Program_Error;
-- Internal attributes used to deal with Ada 2012 delayed aspects. These
-- were already rejected by the parser. Thus they shouldn't appear here.
when Internal_Attribute_Id =>
raise Program_Error;
------------
-- Access --
------------
when Attribute_Access
| Attribute_Unchecked_Access
| Attribute_Unrestricted_Access
=>
Access_Cases : declare
Ref_Object : constant Node_Id := Get_Referenced_Object (Pref);
Btyp_DDT : Entity_Id;
procedure Add_Implicit_Interface_Type_Conversion;
-- Ada 2005 (AI-251): The designated type is an interface type;
-- add an implicit type conversion to force the displacement of
-- the pointer to reference the secondary dispatch table.
function Enclosing_Object (N : Node_Id) return Node_Id;
-- If N denotes a compound name (selected component, indexed
-- component, or slice), returns the name of the outermost such
-- enclosing object. Otherwise returns N. If the object is a
-- renaming, then the renamed object is returned.
--------------------------------------------
-- Add_Implicit_Interface_Type_Conversion --
--------------------------------------------
procedure Add_Implicit_Interface_Type_Conversion is
begin
pragma Assert (Is_Interface (Btyp_DDT));
-- Handle cases were no action is required.
if not Comes_From_Source (N)
and then not Comes_From_Source (Ref_Object)
and then (Nkind (Ref_Object) not in N_Has_Chars
or else Chars (Ref_Object) /= Name_uInit)
then
return;
end if;
-- Common case
if Nkind (Ref_Object) /= N_Explicit_Dereference then
-- No implicit conversion required if types match, or if
-- the prefix is the class_wide_type of the interface. In
-- either case passing an object of the interface type has
-- already set the pointer correctly.
if Btyp_DDT = Etype (Ref_Object)
or else
(Is_Class_Wide_Type (Etype (Ref_Object))
and then
Class_Wide_Type (Btyp_DDT) = Etype (Ref_Object))
then
null;
else
Rewrite (Prefix (N),
Convert_To (Btyp_DDT,
New_Copy_Tree (Prefix (N))));
Analyze_And_Resolve (Prefix (N), Btyp_DDT);
end if;
-- When the object is an explicit dereference, convert the
-- dereference's prefix.
else
declare
Obj_DDT : constant Entity_Id :=
Base_Type
(Directly_Designated_Type
(Etype (Prefix (Ref_Object))));
begin
-- No implicit conversion required if designated types
-- match.
if Obj_DDT /= Btyp_DDT
and then not (Is_Class_Wide_Type (Obj_DDT)
and then Etype (Obj_DDT) = Btyp_DDT)
then
Rewrite (N,
Convert_To (Typ,
New_Copy_Tree (Prefix (Ref_Object))));
Analyze_And_Resolve (N, Typ);
end if;
end;
end if;
end Add_Implicit_Interface_Type_Conversion;
----------------------
-- Enclosing_Object --
----------------------
function Enclosing_Object (N : Node_Id) return Node_Id is
Obj_Name : Node_Id;
begin
Obj_Name := N;
while Nkind (Obj_Name) in N_Selected_Component
| N_Indexed_Component
| N_Slice
loop
Obj_Name := Prefix (Obj_Name);
end loop;
return Get_Referenced_Object (Obj_Name);
end Enclosing_Object;
-- Local declarations
Enc_Object : Node_Id := Enclosing_Object (Ref_Object);
-- Start of processing for Access_Cases
begin
Btyp_DDT := Designated_Type (Btyp);
-- When Enc_Object is a view conversion then RM 3.10.2 (9)
-- applies and we obtain the expression being converted.
-- Otherwise we do not dig any deeper since a conversion
-- might generate a copy and we can't assume it will be as
-- long-lived as the original.
while Nkind (Enc_Object) = N_Type_Conversion
and then Is_View_Conversion (Enc_Object)
loop
Enc_Object := Expression (Enc_Object);
end loop;
-- Handle designated types that come from the limited view
if From_Limited_With (Btyp_DDT)
and then Has_Non_Limited_View (Btyp_DDT)
then
Btyp_DDT := Non_Limited_View (Btyp_DDT);
end if;
-- In order to improve the text of error messages, the designated
-- type of access-to-subprogram itypes is set by the semantics as
-- the associated subprogram entity (see sem_attr). Now we replace
-- such node with the proper E_Subprogram_Type itype.
if Id = Attribute_Unrestricted_Access
and then Is_Subprogram (Directly_Designated_Type (Typ))
then
-- The following conditions ensure that this special management
-- is done only for "Address!(Prim'Unrestricted_Access)" nodes.
-- At this stage other cases in which the designated type is
-- still a subprogram (instead of an E_Subprogram_Type) are
-- wrong because the semantics must have overridden the type of
-- the node with the type imposed by the context.
if Nkind (Parent (N)) = N_Unchecked_Type_Conversion
and then Is_RTE (Etype (Parent (N)), RE_Prim_Ptr)
then
Set_Etype (N, RTE (RE_Prim_Ptr));
else
declare
Subp : constant Entity_Id :=
Directly_Designated_Type (Typ);
Etyp : Entity_Id;
Extra : Entity_Id := Empty;
New_Formal : Entity_Id;
Old_Formal : Entity_Id := First_Formal (Subp);
Subp_Typ : Entity_Id;
begin
Subp_Typ := Create_Itype (E_Subprogram_Type, N);
Copy_Strub_Mode (Subp_Typ, Subp);
Set_Etype (Subp_Typ, Etype (Subp));
Set_Returns_By_Ref (Subp_Typ, Returns_By_Ref (Subp));
if Present (Old_Formal) then
New_Formal := New_Copy (Old_Formal);
Set_First_Entity (Subp_Typ, New_Formal);
loop
Set_Scope (New_Formal, Subp_Typ);
Etyp := Etype (New_Formal);
-- Handle itypes. There is no need to duplicate
-- here the itypes associated with record types
-- (i.e the implicit full view of private types).
if Is_Itype (Etyp)
and then Ekind (Base_Type (Etyp)) /= E_Record_Type
then
Extra := New_Copy (Etyp);
Set_Parent (Extra, New_Formal);
Set_Etype (New_Formal, Extra);
Set_Scope (Extra, Subp_Typ);
end if;
Extra := New_Formal;
Next_Formal (Old_Formal);
exit when No (Old_Formal);
Link_Entities (New_Formal, New_Copy (Old_Formal));
Next_Entity (New_Formal);
end loop;
Unlink_Next_Entity (New_Formal);
Set_Last_Entity (Subp_Typ, Extra);
end if;
-- Now that the explicit formals have been duplicated,
-- any extra formals needed by the subprogram must be
-- created.
if Present (Extra) then
Set_Extra_Formal (Extra, Empty);
end if;
Create_Extra_Formals (Subp_Typ);
Set_Directly_Designated_Type (Typ, Subp_Typ);
end;
end if;
end if;
if Is_Access_Protected_Subprogram_Type (Btyp) then
Expand_Access_To_Protected_Op (N, Pref, Typ);
elsif Is_Access_Subprogram_Type (Btyp)
and then Is_Entity_Name (Pref)
then
-- If prefix is a subprogram that has class-wide preconditions
-- and an indirect-call wrapper (ICW) of the subprogram is
-- available then replace the prefix by the ICW.
if Present (Class_Preconditions (Entity (Pref)))
and then Present (Indirect_Call_Wrapper (Entity (Pref)))
then
Rewrite (Pref,
New_Occurrence_Of
(Indirect_Call_Wrapper (Entity (Pref)), Loc));
Analyze_And_Resolve (N, Typ);
end if;
-- Ensure the availability of the extra formals to check that
-- they match.
if not Is_Frozen (Entity (Pref))
or else From_Limited_With (Etype (Entity (Pref)))
then
Create_Extra_Formals (Entity (Pref));
end if;
if not Is_Frozen (Btyp_DDT)
or else From_Limited_With (Etype (Btyp_DDT))
then
Create_Extra_Formals (Btyp_DDT);
end if;
pragma Assert
(Extra_Formals_Match_OK
(E => Entity (Pref), Ref_E => Btyp_DDT));
-- If prefix is a type name, this is a reference to the current
-- instance of the type, within its initialization procedure.
elsif Is_Entity_Name (Pref)
and then Is_Type (Entity (Pref))
then
declare
Par : Node_Id;
Formal : Entity_Id;
begin
-- If the current instance name denotes a task type, then
-- the access attribute is rewritten to be the name of the
-- "_task" parameter associated with the task type's task
-- procedure. An unchecked conversion is applied to ensure
-- a type match in cases of expander-generated calls (e.g.
-- init procs).
if Is_Task_Type (Entity (Pref)) then
Formal :=
First_Entity (Get_Task_Body_Procedure (Entity (Pref)));
while Present (Formal) loop
exit when Chars (Formal) = Name_uTask;
Next_Entity (Formal);
end loop;
pragma Assert (Present (Formal));
Rewrite (N,
Unchecked_Convert_To (Typ,
New_Occurrence_Of (Formal, Loc)));
Set_Etype (N, Typ);
elsif Is_Protected_Type (Entity (Pref)) then
-- No action needed for current instance located in a
-- component definition (expansion will occur in the
-- init proc)
if Is_Protected_Type (Current_Scope) then
null;
-- If the current instance reference is located in a
-- protected subprogram or entry then rewrite the access
-- attribute to be the name of the "_object" parameter.
-- An unchecked conversion is applied to ensure a type
-- match in cases of expander-generated calls (e.g. init
-- procs).
-- The code may be nested in a block, so find enclosing
-- scope that is a protected operation.
else
declare
Subp : Entity_Id;
begin
Subp := Current_Scope;
while Ekind (Subp) in E_Loop | E_Block loop
Subp := Scope (Subp);
end loop;
Formal :=
First_Entity
(Protected_Body_Subprogram (Subp));
-- For a protected subprogram the _Object parameter
-- is the protected record, so we create an access
-- to it. The _Object parameter of an entry is an
-- address.
if Ekind (Subp) = E_Entry then
Rewrite (N,
Unchecked_Convert_To (Typ,
New_Occurrence_Of (Formal, Loc)));
Set_Etype (N, Typ);
else
Rewrite (N,
Unchecked_Convert_To (Typ,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Unrestricted_Access,
Prefix =>
New_Occurrence_Of (Formal, Loc))));
Analyze_And_Resolve (N);
end if;
end;
end if;
-- The expression must appear in a default expression,
-- (which in the initialization procedure is the right-hand
-- side of an assignment), and not in a discriminant
-- constraint.
else
Par := Parent (N);
while Present (Par) loop
exit when Nkind (Par) = N_Assignment_Statement;
if Nkind (Par) = N_Component_Declaration then
return;
end if;
Par := Parent (Par);
end loop;
if Present (Par) then
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Attribute_Name => Attribute_Name (N)));
Analyze_And_Resolve (N, Typ);
end if;
end if;
end;
-- If the prefix of an Access attribute is a dereference of an
-- access parameter (or a renaming of such a dereference, or a
-- subcomponent of such a dereference) and the context is a
-- general access type (including the type of an object or
-- component with an access_definition, but not the anonymous
-- type of an access parameter or access discriminant), then
-- apply an accessibility check to the access parameter. We used
-- to rewrite the access parameter as a type conversion, but that
-- could only be done if the immediate prefix of the Access
-- attribute was the dereference, and didn't handle cases where
-- the attribute is applied to a subcomponent of the dereference,
-- since there's generally no available, appropriate access type
-- to convert to in that case. The attribute is passed as the
-- point to insert the check, because the access parameter may
-- come from a renaming, possibly in a different scope, and the
-- check must be associated with the attribute itself.
elsif Id = Attribute_Access
and then Nkind (Enc_Object) = N_Explicit_Dereference
and then Is_Entity_Name (Prefix (Enc_Object))
and then (Ekind (Btyp) = E_General_Access_Type
or else Is_Local_Anonymous_Access (Btyp))
and then Is_Formal (Entity (Prefix (Enc_Object)))
and then Ekind (Etype (Entity (Prefix (Enc_Object))))
= E_Anonymous_Access_Type
and then Present (Extra_Accessibility
(Entity (Prefix (Enc_Object))))
and then not No_Dynamic_Accessibility_Checks_Enabled (Enc_Object)
then
Apply_Accessibility_Check (Prefix (Enc_Object), Typ, N);
-- Ada 2005 (AI-251): If the designated type is an interface we
-- add an implicit conversion to force the displacement of the
-- pointer to reference the secondary dispatch table.
if Is_Interface (Btyp_DDT) then
Add_Implicit_Interface_Type_Conversion;
end if;
-- Ada 2005 (AI-251): If the designated type is an interface we
-- add an implicit conversion to force the displacement of the
-- pointer to reference the secondary dispatch table.
elsif Is_Interface (Btyp_DDT) then
Add_Implicit_Interface_Type_Conversion;
end if;
end Access_Cases;
--------------
-- Adjacent --
--------------
-- Transforms 'Adjacent into a call to the floating-point attribute
-- function Adjacent in Fat_xxx (where xxx is the root type)
when Attribute_Adjacent =>
Expand_Fpt_Attribute_RR (N);
-------------
-- Address --
-------------
when Attribute_Address => Address : declare
Task_Proc : Entity_Id;
function Is_Unnested_Component_Init (N : Node_Id) return Boolean;
-- Returns True if N is being used to initialize a component of
-- an activation record object where the component corresponds to
-- the object denoted by the prefix of the attribute N.
function Is_Unnested_Component_Init (N : Node_Id) return Boolean is
begin
return Present (Parent (N))
and then Nkind (Parent (N)) = N_Assignment_Statement
and then Is_Entity_Name (Pref)
and then Present (Activation_Record_Component (Entity (Pref)))
and then Nkind (Name (Parent (N))) = N_Selected_Component
and then Entity (Selector_Name (Name (Parent (N)))) =
Activation_Record_Component (Entity (Pref));
end Is_Unnested_Component_Init;
-- Start of processing for Address
begin
-- If the prefix is a task or a task type, the useful address is that
-- of the procedure for the task body, i.e. the actual program unit.
-- We replace the original entity with that of the procedure.
if Is_Entity_Name (Pref)
and then Is_Task_Type (Entity (Pref))
then
Task_Proc := Next_Entity (Root_Type (Ptyp));
while Present (Task_Proc) loop
exit when Ekind (Task_Proc) = E_Procedure
and then Etype (First_Formal (Task_Proc)) =
Corresponding_Record_Type (Ptyp);
Next_Entity (Task_Proc);
end loop;
if Present (Task_Proc) then
Set_Entity (Pref, Task_Proc);
Set_Etype (Pref, Etype (Task_Proc));
end if;
-- Similarly, the address of a protected operation is the address
-- of the corresponding protected body, regardless of the protected
-- object from which it is selected.
elsif Nkind (Pref) = N_Selected_Component
and then Is_Subprogram (Entity (Selector_Name (Pref)))
and then Is_Protected_Type (Scope (Entity (Selector_Name (Pref))))
then
Rewrite (Pref,
New_Occurrence_Of (
External_Subprogram (Entity (Selector_Name (Pref))), Loc));
elsif Nkind (Pref) = N_Explicit_Dereference
and then Ekind (Ptyp) = E_Subprogram_Type
and then Convention (Ptyp) = Convention_Protected
then
-- The prefix is be a dereference of an access_to_protected_
-- subprogram. The desired address is the second component of
-- the record that represents the access.
declare
Addr : constant Entity_Id := Etype (N);
Ptr : constant Node_Id := Prefix (Pref);
T : constant Entity_Id :=
Equivalent_Type (Base_Type (Etype (Ptr)));
begin
Rewrite (N,
Unchecked_Convert_To (Addr,
Make_Selected_Component (Loc,
Prefix => Unchecked_Convert_To (T, Ptr),
Selector_Name => New_Occurrence_Of (
Next_Entity (First_Entity (T)), Loc))));
Analyze_And_Resolve (N, Addr);
end;
-- 'Address is an actual parameter of the call to the implicit
-- subprogram To_Pointer instantiated with a class-wide interface
-- type; its expansion requires adding an implicit type conversion
-- to force displacement of the "this" pointer.
elsif Tagged_Type_Expansion
and then Nkind (Parent (N)) = N_Function_Call
and then Nkind (Name (Parent (N))) in N_Has_Entity
and then Is_Intrinsic_Subprogram (Entity (Name (Parent (N))))
and then Chars (Entity (Name (Parent (N)))) = Name_To_Pointer
and then Is_Interface (Designated_Type (Etype (Parent (N))))
and then Is_Class_Wide_Type (Designated_Type (Etype (Parent (N))))
then
declare
Iface_Typ : constant Entity_Id :=
Designated_Type (Etype (Parent (N)));
begin
Rewrite (Pref, Convert_To (Iface_Typ, Relocate_Node (Pref)));
Analyze_And_Resolve (Pref, Iface_Typ);
return;
end;
-- Ada 2005 (AI-251): Class-wide interface objects are always
-- "displaced" to reference the tag associated with the interface
-- type. In order to obtain the real address of such objects we
-- generate a call to a run-time subprogram that returns the base
-- address of the object. This call is not generated in cases where
-- the attribute is being used to initialize a component of an
-- activation record object where the component corresponds to
-- prefix of the attribute (for back ends that require "unnesting"
-- of nested subprograms), since the address needs to be assigned
-- as-is to such components.
elsif Tagged_Type_Expansion
and then Is_Class_Wide_Type (Ptyp)
and then Is_Interface (Underlying_Type (Ptyp))
and then not (Nkind (Pref) in N_Has_Entity
and then Is_Subprogram (Entity (Pref)))
and then not Is_Unnested_Component_Init (N)
then
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Base_Address), Loc),
Parameter_Associations => New_List (Relocate_Node (N))));
Analyze (N);
return;
end if;
-- Deal with packed array reference, other cases are handled by
-- the back end.
if Involves_Packed_Array_Reference (Pref) then
Expand_Packed_Address_Reference (N);
end if;
end Address;
---------------
-- Alignment --
---------------
when Attribute_Alignment => Alignment : declare
New_Node : Node_Id;
begin
-- For class-wide types, X'Class'Alignment is transformed into a
-- direct reference to the Alignment of the class type, so that the
-- back end does not have to deal with the X'Class'Alignment
-- reference.
if Is_Entity_Name (Pref)
and then Is_Class_Wide_Type (Entity (Pref))
then
Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
return;
-- For x'Alignment applied to an object of a class wide type,
-- transform X'Alignment into a call to the predefined primitive
-- operation _Alignment applied to X.
elsif Is_Class_Wide_Type (Ptyp) then
New_Node :=
Make_Attribute_Reference (Loc,
Prefix => Pref,
Attribute_Name => Name_Tag);
New_Node := Build_Get_Alignment (Loc, New_Node);
-- Case where the context is an unchecked conversion to a specific
-- integer type. We directly convert from the alignment's type.
if Nkind (Parent (N)) = N_Unchecked_Type_Conversion then
Rewrite (N, New_Node);
Analyze_And_Resolve (N);
return;
-- Case where the context is a specific integer type with which
-- the original attribute was compatible. But the alignment has a
-- specific type in a-tags.ads (Standard.Natural) so, in order to
-- preserve type compatibility, we must convert explicitly.
elsif Typ /= Standard_Natural then
New_Node := Convert_To (Typ, New_Node);
end if;
Rewrite (N, New_Node);
Analyze_And_Resolve (N, Typ);
return;
-- For all other cases, we just have to deal with the case of
-- the fact that the result can be universal.
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end Alignment;
---------------------------
-- Asm_Input, Asm_Output --
---------------------------
-- The Asm_Input and Asm_Output attributes are not expanded at this
-- stage, but will be eliminated in the expansion of the Asm call,
-- see Exp_Intr for details. So the back end will never see them.
when Attribute_Asm_Input
| Attribute_Asm_Output
=>
null;
---------
-- Bit --
---------
-- We compute this if a packed array reference was present, otherwise we
-- leave the computation up to the back end.
when Attribute_Bit =>
if Involves_Packed_Array_Reference (Pref) then
Expand_Packed_Bit_Reference (N);
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
------------------
-- Bit_Position --
------------------
-- We leave the computation up to the back end, since we don't know what
-- layout will be chosen if no component clause was specified.
when Attribute_Bit_Position =>
Apply_Universal_Integer_Attribute_Checks (N);
------------------
-- Body_Version --
------------------
-- A reference to P'Body_Version or P'Version is expanded to
-- Vnn : Unsigned;
-- pragma Import (C, Vnn, "uuuuT");
-- ...
-- Get_Version_String (Vnn)
-- where uuuu is the unit name (dots replaced by double underscore)
-- and T is B for the cases of Body_Version, or Version applied to a
-- subprogram acting as its own spec, and S for Version applied to a
-- subprogram spec or package. This sequence of code references the
-- unsigned constant created in the main program by the binder.
-- A special exception occurs for Standard, where the string returned
-- is a copy of the library string in gnatvsn.ads.
when Attribute_Body_Version
| Attribute_Version
=>
Version : declare
E : constant Entity_Id := Make_Temporary (Loc, 'V');
Pent : Entity_Id;
S : String_Id;
begin
-- If not library unit, get to containing library unit
Pent := Entity (Pref);
while Pent /= Standard_Standard
and then Scope (Pent) /= Standard_Standard
and then not Is_Child_Unit (Pent)
loop
Pent := Scope (Pent);
end loop;
-- Special case Standard and Standard.ASCII
if Pent = Standard_Standard or else Pent = Standard_ASCII then
Rewrite (N,
Make_String_Literal (Loc,
Strval => Verbose_Library_Version));
-- All other cases
else
-- Build required string constant
Get_Name_String (Get_Unit_Name (Pent));
Start_String;
for J in 1 .. Name_Len - 2 loop
if Name_Buffer (J) = '.' then
Store_String_Chars ("__");
else
Store_String_Char (Get_Char_Code (Name_Buffer (J)));
end if;
end loop;
-- Case of subprogram acting as its own spec, always use body
if Nkind (Declaration_Node (Pent)) in N_Subprogram_Specification
and then Nkind (Parent (Declaration_Node (Pent))) =
N_Subprogram_Body
and then Acts_As_Spec (Parent (Declaration_Node (Pent)))
then
Store_String_Chars ("B");
-- Case of no body present, always use spec
elsif not Unit_Requires_Body (Pent) then
Store_String_Chars ("S");
-- Otherwise use B for Body_Version, S for spec
elsif Id = Attribute_Body_Version then
Store_String_Chars ("B");
else
Store_String_Chars ("S");
end if;
S := End_String;
Lib.Version_Referenced (S);
-- Insert the object declaration
Insert_Actions (N, New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => E,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Unsigned), Loc))));
-- Set entity as imported with correct external name
Set_Is_Imported (E);
Set_Interface_Name (E, Make_String_Literal (Loc, S));
-- Set entity as internal to ensure proper Sprint output of its
-- implicit importation.
Set_Is_Internal (E);
-- And now rewrite original reference
Rewrite (N,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Get_Version_String), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (E, Loc))));
end if;
Analyze_And_Resolve (N, RTE (RE_Version_String));
end Version;
-------------
-- Ceiling --
-------------
-- Transforms 'Ceiling into a call to the floating-point attribute
-- function Ceiling in Fat_xxx (where xxx is the root type)
when Attribute_Ceiling =>
Expand_Fpt_Attribute_R (N);
--------------
-- Callable --
--------------
-- Transforms 'Callable attribute into a call to the Callable function
when Attribute_Callable =>
-- We have an object of a task interface class-wide type as a prefix
-- to Callable. Generate:
-- callable (Task_Id (Pref._disp_get_task_id));
if Ada_Version >= Ada_2005
and then Ekind (Ptyp) = E_Class_Wide_Type
and then Is_Interface (Ptyp)
and then Is_Task_Interface (Ptyp)
then
Rewrite (N,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Callable), Loc),
Parameter_Associations => New_List (
Unchecked_Convert_To
(RTE (RO_ST_Task_Id),
Build_Disp_Get_Task_Id_Call (Pref)))));
else
Rewrite (N, Build_Call_With_Task (Pref, RTE (RE_Callable)));
end if;
Analyze_And_Resolve (N, Standard_Boolean);
------------
-- Caller --
------------
-- Transforms 'Caller attribute into a call to either the
-- Task_Entry_Caller or the Protected_Entry_Caller function.
when Attribute_Caller => Caller : declare
Id_Kind : constant Entity_Id := RTE (RO_AT_Task_Id);
Ent : constant Entity_Id := Entity (Pref);
Conctype : constant Entity_Id := Scope (Ent);
Nest_Depth : Nat := 0;
Name : Node_Id;
S : Entity_Id;
begin
-- Protected case
if Is_Protected_Type (Conctype) then
case Corresponding_Runtime_Package (Conctype) is
when System_Tasking_Protected_Objects_Entries =>
Name :=
New_Occurrence_Of
(RTE (RE_Protected_Entry_Caller), Loc);
when System_Tasking_Protected_Objects_Single_Entry =>
Name :=
New_Occurrence_Of
(RTE (RE_Protected_Single_Entry_Caller), Loc);
when others =>
raise Program_Error;
end case;
Rewrite (N,
Unchecked_Convert_To (Id_Kind,
Make_Function_Call (Loc,
Name => Name,
Parameter_Associations => New_List (
New_Occurrence_Of
(Find_Protection_Object (Current_Scope), Loc)))));
-- Task case
else
-- Determine the nesting depth of the E'Caller attribute, that
-- is, how many accept statements are nested within the accept
-- statement for E at the point of E'Caller. The runtime uses
-- this depth to find the specified entry call.
for J in reverse 0 .. Scope_Stack.Last loop
S := Scope_Stack.Table (J).Entity;
-- We should not reach the scope of the entry, as it should
-- already have been checked in Sem_Attr that this attribute
-- reference is within a matching accept statement.
pragma Assert (S /= Conctype);
if S = Ent then
exit;
elsif Is_Entry (S) then
Nest_Depth := Nest_Depth + 1;
end if;
end loop;
Rewrite (N,
Unchecked_Convert_To (Id_Kind,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Task_Entry_Caller), Loc),
Parameter_Associations => New_List (
Make_Integer_Literal (Loc,
Intval => Nest_Depth)))));
end if;
Analyze_And_Resolve (N, Id_Kind);
end Caller;
--------------------
-- Component_Size --
--------------------
-- Component_Size is handled by the back end
when Attribute_Component_Size =>
Apply_Universal_Integer_Attribute_Checks (N);
-------------
-- Compose --
-------------
-- Transforms 'Compose into a call to the floating-point attribute
-- function Compose in Fat_xxx (where xxx is the root type)
-- Note: we strictly should have special code here to deal with the
-- case of absurdly negative arguments (less than Integer'First)
-- which will return a (signed) zero value, but it hardly seems
-- worth the effort. Absurdly large positive arguments will raise
-- constraint error which is fine.
when Attribute_Compose =>
Expand_Fpt_Attribute_RI (N);
-----------------
-- Constrained --
-----------------
when Attribute_Constrained => Constrained : declare
Formal_Ent : constant Entity_Id := Param_Entity (Pref);
begin
-- Reference to a parameter where the value is passed as an extra
-- actual, corresponding to the extra formal referenced by the
-- Extra_Constrained field of the corresponding formal. If this
-- is an entry in-parameter, it is replaced by a constant renaming
-- for which Extra_Constrained is never created.
if Present (Formal_Ent)
and then Ekind (Formal_Ent) /= E_Constant
and then Present (Extra_Constrained (Formal_Ent))
then
Rewrite (N,
New_Occurrence_Of
(Extra_Constrained (Formal_Ent), Loc));
-- If the prefix is an access to object, the attribute applies to
-- the designated object, so rewrite with an explicit dereference.
elsif Is_Access_Type (Ptyp)
and then
(not Is_Entity_Name (Pref) or else Is_Object (Entity (Pref)))
then
Rewrite (Pref,
Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
-- For variables with a Extra_Constrained field, we use the
-- corresponding entity.
elsif Nkind (Pref) = N_Identifier
and then Ekind (Entity (Pref)) = E_Variable
and then Present (Extra_Constrained (Entity (Pref)))
then
Rewrite (N,
New_Occurrence_Of
(Extra_Constrained (Entity (Pref)), Loc));
-- For all other cases, we can tell at compile time
else
-- For access type, apply access check as needed
if Is_Entity_Name (Pref)
and then not Is_Type (Entity (Pref))
and then Is_Access_Type (Ptyp)
then
Apply_Access_Check (N);
end if;
Rewrite (N,
New_Occurrence_Of
(Boolean_Literals
(Exp_Util.Attribute_Constrained_Static_Value (Pref)), Loc));
end if;
Analyze_And_Resolve (N, Standard_Boolean);
end Constrained;
---------------
-- Copy_Sign --
---------------
-- Transforms 'Copy_Sign into a call to the floating-point attribute
-- function Copy_Sign in Fat_xxx (where xxx is the root type).
when Attribute_Copy_Sign =>
Expand_Fpt_Attribute_RR (N);
-----------
-- Count --
-----------
-- Transforms 'Count attribute into a call to the Count function
when Attribute_Count => Count : declare
Call : Node_Id;
Conctyp : Entity_Id;
Entnam : Node_Id;
Entry_Id : Entity_Id;
Index : Node_Id;
Name : Node_Id;
begin
-- If the prefix is a member of an entry family, retrieve both
-- entry name and index. For a simple entry there is no index.
if Nkind (Pref) = N_Indexed_Component then
Entnam := Prefix (Pref);
Index := First (Expressions (Pref));
else
Entnam := Pref;
Index := Empty;
end if;
Entry_Id := Entity (Entnam);
-- Find the concurrent type in which this attribute is referenced
-- (there had better be one).
Conctyp := Current_Scope;
while not Is_Concurrent_Type (Conctyp) loop
Conctyp := Scope (Conctyp);
end loop;
-- Protected case
if Is_Protected_Type (Conctyp) then
-- No need to transform 'Count into a function call if the current
-- scope has been eliminated. In this case such transformation is
-- also not viable because the enclosing protected object is not
-- available.
if Is_Eliminated (Current_Scope) then
return;
end if;
case Corresponding_Runtime_Package (Conctyp) is
when System_Tasking_Protected_Objects_Entries =>
Name := New_Occurrence_Of (RTE (RE_Protected_Count), Loc);
Call :=
Make_Function_Call (Loc,
Name => Name,
Parameter_Associations => New_List (
New_Occurrence_Of
(Find_Protection_Object (Current_Scope), Loc),
Entry_Index_Expression
(Loc, Entry_Id, Index, Scope (Entry_Id))));
when System_Tasking_Protected_Objects_Single_Entry =>
Name :=
New_Occurrence_Of (RTE (RE_Protected_Count_Entry), Loc);
Call :=
Make_Function_Call (Loc,
Name => Name,
Parameter_Associations => New_List (
New_Occurrence_Of
(Find_Protection_Object (Current_Scope), Loc)));
when others =>
raise Program_Error;
end case;
-- Task case
else
Call :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Task_Count), Loc),
Parameter_Associations => New_List (
Entry_Index_Expression (Loc,
Entry_Id, Index, Scope (Entry_Id))));
end if;
-- The call returns type Natural but the context is universal integer
-- so any integer type is allowed. The attribute was already resolved
-- so its Etype is the required result type. If the base type of the
-- context type is other than Standard.Integer we put in a conversion
-- to the required type. This can be a normal typed conversion since
-- both input and output types of the conversion are integer types
if Base_Type (Typ) /= Base_Type (Standard_Integer) then
Rewrite (N, Convert_To (Typ, Call));
else
Rewrite (N, Call);
end if;
Analyze_And_Resolve (N, Typ);
end Count;
---------------------
-- Descriptor_Size --
---------------------
-- Descriptor_Size is handled by the back end
when Attribute_Descriptor_Size =>
Apply_Universal_Integer_Attribute_Checks (N);
---------------
-- Elab_Body --
---------------
-- This processing is shared by Elab_Spec
-- What we do is to insert the following declarations
-- procedure tnn;
-- pragma Import (C, enn, "name___elabb/s");
-- and then the Elab_Body/Spec attribute is replaced by a reference
-- to this defining identifier.
when Attribute_Elab_Body
| Attribute_Elab_Spec
=>
-- Leave attribute unexpanded in CodePeer mode: the gnat2scil
-- back-end knows how to handle these attributes directly.
if CodePeer_Mode then
return;
end if;
Elab_Body : declare
Ent : constant Entity_Id := Make_Temporary (Loc, 'E');
Str : String_Id;
Lang : Node_Id;
procedure Make_Elab_String (Nod : Node_Id);
-- Given Nod, an identifier, or a selected component, put the
-- image into the current string literal, with double underline
-- between components.
----------------------
-- Make_Elab_String --
----------------------
procedure Make_Elab_String (Nod : Node_Id) is
begin
if Nkind (Nod) = N_Selected_Component then
Make_Elab_String (Prefix (Nod));
Store_String_Char ('_');
Store_String_Char ('_');
Get_Name_String (Chars (Selector_Name (Nod)));
else
pragma Assert (Nkind (Nod) = N_Identifier);
Get_Name_String (Chars (Nod));
end if;
Store_String_Chars (Name_Buffer (1 .. Name_Len));
end Make_Elab_String;
-- Start of processing for Elab_Body/Elab_Spec
begin
-- First we need to prepare the string literal for the name of
-- the elaboration routine to be referenced.
Start_String;
Make_Elab_String (Pref);
Store_String_Chars ("___elab");
Lang := Make_Identifier (Loc, Name_C);
if Id = Attribute_Elab_Body then
Store_String_Char ('b');
else
Store_String_Char ('s');
end if;
Str := End_String;
Insert_Actions (N, New_List (
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Ent)),
Make_Pragma (Loc,
Chars => Name_Import,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc, Expression => Lang),
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Chars (Ent))),
Make_Pragma_Argument_Association (Loc,
Expression => Make_String_Literal (Loc, Str))))));
Set_Entity (N, Ent);
Rewrite (N, New_Occurrence_Of (Ent, Loc));
end Elab_Body;
--------------------
-- Elab_Subp_Body --
--------------------
-- Always ignored. In CodePeer mode, gnat2scil knows how to handle
-- this attribute directly, and if we are not in CodePeer mode it is
-- entirely ignored ???
when Attribute_Elab_Subp_Body =>
return;
----------------
-- Elaborated --
----------------
-- Elaborated is always True for preelaborated units, predefined units,
-- pure units and units which have Elaborate_Body pragmas. These units
-- have no elaboration entity.
-- Note: The Elaborated attribute is never passed to the back end
when Attribute_Elaborated => Elaborated : declare
Elab_Id : constant Entity_Id := Elaboration_Entity (Entity (Pref));
begin
if Present (Elab_Id) then
Rewrite (N,
Make_Op_Ne (Loc,
Left_Opnd => New_Occurrence_Of (Elab_Id, Loc),
Right_Opnd => Make_Integer_Literal (Loc, Uint_0)));
Analyze_And_Resolve (N, Typ);
else
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
end if;
end Elaborated;
--------------
-- Enum_Rep --
--------------
when Attribute_Enum_Rep => Enum_Rep : declare
Expr : Node_Id;
begin
-- Get the expression, which is X for Enum_Type'Enum_Rep (X) or
-- X'Enum_Rep.
if Is_Non_Empty_List (Exprs) then
Expr := First (Exprs);
else
Expr := Pref;
end if;
-- If not constant-folded, Enum_Type'Enum_Rep (X) or X'Enum_Rep
-- expands to
-- target-type!(X)
-- This is an unchecked conversion from the enumeration type to the
-- target integer type, which is treated by the back end as a normal
-- integer conversion, treating the enumeration type as an integer,
-- which is exactly what we want. Unlike for the Pos attribute, we
-- cannot use a regular conversion since the associated check would
-- involve comparing the converted bounds, i.e. would involve the use
-- of 'Pos instead 'Enum_Rep for these bounds.
-- However the target type is universal integer in most cases, which
-- is a very large type, so in the case of an enumeration type, we
-- first convert to a small signed integer type in order not to lose
-- the size information.
if Is_Enumeration_Type (Ptyp) then
Rewrite (N, Unchecked_Convert_To (Get_Integer_Type (Ptyp), Expr));
Convert_To_And_Rewrite (Typ, N);
-- Deal with integer types (replace by conversion)
else
Rewrite (N, Convert_To (Typ, Expr));
end if;
Analyze_And_Resolve (N, Typ);
end Enum_Rep;
--------------
-- Enum_Val --
--------------
when Attribute_Enum_Val => Enum_Val : declare
Expr : Node_Id;
Btyp : constant Entity_Id := Base_Type (Ptyp);
begin
-- X'Enum_Val (Y) expands to
-- [constraint_error when _rep_to_pos (Y, False) = -1, msg]
-- X!(Y);
Expr := Unchecked_Convert_To (Ptyp, First (Exprs));
-- Ensure that the expression is not truncated since the "bad" bits
-- are desired.
if Nkind (Expr) = N_Unchecked_Type_Conversion then
Set_No_Truncation (Expr);
end if;
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (TSS (Btyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => New_List (
Relocate_Node (Duplicate_Subexpr (Expr)),
New_Occurrence_Of (Standard_False, Loc))),
Right_Opnd => Make_Integer_Literal (Loc, -1)),
Reason => CE_Range_Check_Failed));
Rewrite (N, Expr);
Analyze_And_Resolve (N, Ptyp);
end Enum_Val;
--------------
-- Exponent --
--------------
-- Transforms 'Exponent into a call to the floating-point attribute
-- function Exponent in Fat_xxx (where xxx is the root type)
when Attribute_Exponent =>
Expand_Fpt_Attribute_R (N);
------------------
-- External_Tag --
------------------
-- transforme X'External_Tag into Ada.Tags.External_Tag (X'tag)
when Attribute_External_Tag =>
Rewrite (N,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_External_Tag), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Tag,
Prefix => Prefix (N)))));
Analyze_And_Resolve (N, Standard_String);
-----------------------
-- Finalization_Size --
-----------------------
when Attribute_Finalization_Size => Finalization_Size : declare
function Calculate_Header_Size return Node_Id;
-- Generate a runtime call to calculate the size of the hidden header
-- along with any added padding which would precede a heap-allocated
-- object of the prefix type.
---------------------------
-- Calculate_Header_Size --
---------------------------
function Calculate_Header_Size return Node_Id is
begin
-- Generate:
-- Typ (Header_Size_With_Padding (Pref'Alignment))
return
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Header_Size_With_Padding), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Copy_Tree (Pref),
Attribute_Name => Name_Alignment))));
end Calculate_Header_Size;
-- Local variables
Size : Entity_Id;
-- Start of processing for Finalization_Size
begin
-- An object of a class-wide type first requires a runtime check to
-- determine whether it is actually controlled or not. Depending on
-- the outcome of this check, the Finalization_Size of the object
-- may be zero or some positive value.
--
-- In this scenario, Pref'Finalization_Size is expanded into
--
-- Size : Integer := 0;
--
-- if Needs_Finalization (Pref'Tag) then
-- Size := Integer (Header_Size_With_Padding (Pref'Alignment));
-- end if;
--
-- and the attribute reference is replaced with a reference to Size.
if Is_Class_Wide_Type (Ptyp) then
Size := Make_Temporary (Loc, 'S');
Insert_Actions (N, New_List (
-- Generate:
-- Size : Integer := 0;
Make_Object_Declaration (Loc,
Defining_Identifier => Size,
Object_Definition =>
New_Occurrence_Of (Standard_Integer, Loc),
Expression => Make_Integer_Literal (Loc, 0)),
-- Generate:
-- if Needs_Finalization (Pref'Tag) then
-- Size :=
-- Integer (Header_Size_With_Padding (Pref'Alignment));
-- end if;
Make_If_Statement (Loc,
Condition =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Copy_Tree (Pref),
Attribute_Name => Name_Tag))),
Then_Statements => New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Size, Loc),
Expression =>
Convert_To
(Standard_Integer, Calculate_Header_Size))))));
Rewrite (N, New_Occurrence_Of (Size, Loc));
-- The prefix is known to be controlled at compile time. Calculate
-- Finalization_Size by calling function Header_Size_With_Padding.
elsif Needs_Finalization (Ptyp) then
Rewrite (N, Calculate_Header_Size);
-- The prefix is not an object with controlled parts, so its
-- Finalization_Size is zero.
else
Rewrite (N, Make_Integer_Literal (Loc, 0));
end if;
-- Due to cases where the entity type of the attribute is already
-- resolved the rewritten N must get re-resolved to its appropriate
-- type.
Analyze_And_Resolve (N, Typ);
end Finalization_Size;
-----------------
-- First, Last --
-----------------
when Attribute_First
| Attribute_Last
=>
-- If the prefix type is a constrained packed array type which
-- already has a Packed_Array_Impl_Type representation defined, then
-- replace this attribute with a direct reference to the attribute of
-- the appropriate index subtype (since otherwise the back end will
-- try to give us the value of 'First for this implementation type).
-- Do not do this if Ptyp depends on a discriminant as its bounds
-- are only available through N.
if Is_Constrained_Packed_Array (Ptyp)
and then not Size_Depends_On_Discriminant (Ptyp)
then
Rewrite (N,
Make_Attribute_Reference (Loc,
Attribute_Name => Attribute_Name (N),
Prefix =>
New_Occurrence_Of (Get_Index_Subtype (N), Loc)));
Analyze_And_Resolve (N, Typ);
-- For a constrained array type, if the bound is a reference to an
-- entity which is not a discriminant, just replace with a direct
-- reference. Note that this must be in keeping with what is done
-- for scalar types in order for range checks to be elided in loops.
-- However, avoid doing it if the array type is public because, in
-- this case, we effectively rely on the back end to create public
-- symbols with consistent names across units for the array bounds.
elsif Is_Array_Type (Ptyp)
and then Is_Constrained (Ptyp)
and then not Is_Public (Ptyp)
then
declare
Bnd : Node_Id;
begin
if Id = Attribute_First then
Bnd := Type_Low_Bound (Get_Index_Subtype (N));
else
Bnd := Type_High_Bound (Get_Index_Subtype (N));
end if;
if Is_Entity_Name (Bnd)
and then Ekind (Entity (Bnd)) /= E_Discriminant
then
Rewrite (N, New_Occurrence_Of (Entity (Bnd), Loc));
end if;
end;
-- For access type, apply access check as needed
elsif Is_Access_Type (Ptyp) then
Apply_Access_Check (N);
-- For scalar type, if the bound is a reference to an entity, just
-- replace with a direct reference. Note that we can only have a
-- reference to a constant entity at this stage, anything else would
-- have already been rewritten.
elsif Is_Scalar_Type (Ptyp) then
declare
Bnd : Node_Id;
begin
if Id = Attribute_First then
Bnd := Type_Low_Bound (Ptyp);
else
Bnd := Type_High_Bound (Ptyp);
end if;
if Is_Entity_Name (Bnd) then
Rewrite (N, New_Occurrence_Of (Entity (Bnd), Loc));
end if;
end;
end if;
---------------
-- First_Bit --
---------------
-- We leave the computation up to the back end, since we don't know what
-- layout will be chosen if no component clause was specified.
when Attribute_First_Bit =>
Apply_Universal_Integer_Attribute_Checks (N);
--------------------------------
-- Fixed_Value, Integer_Value --
--------------------------------
-- We transform
-- fixtype'Fixed_Value (integer-value)
-- inttype'Integer_Value (fixed-value)
-- into
-- fixtype (integer-value)
-- inttype (fixed-value)
-- respectively.
-- We set Conversion_OK on the conversion because we do not want it
-- to go through the fixed-point conversion circuits.
when Attribute_Fixed_Value
| Attribute_Integer_Value
=>
Rewrite (N, OK_Convert_To (Entity (Pref), First (Exprs)));
-- Note that it might appear that a properly analyzed unchecked
-- conversion would be just fine here, but that's not the case,
-- since the full range checks performed by the following calls
-- are critical.
Apply_Type_Conversion_Checks (N);
-- Note that Apply_Type_Conversion_Checks only deals with the
-- overflow checks on conversions involving fixed-point types
-- so we must apply range checks manually on them and expand.
Apply_Scalar_Range_Check
(Expression (N), Etype (N), Fixed_Int => True);
Set_Analyzed (N);
Expand (N);
-----------
-- Floor --
-----------
-- Transforms 'Floor into a call to the floating-point attribute
-- function Floor in Fat_xxx (where xxx is the root type)
when Attribute_Floor =>
Expand_Fpt_Attribute_R (N);
----------
-- Fore --
----------
-- For the fixed-point type Typ:
-- Typ'Fore
-- expands into
-- System.Fore_xx (ftyp (Typ'First), ftyp (Typ'Last) [,pm])
-- For decimal fixed-point types
-- xx = Decimal{32,64,128}
-- ftyp = Integer_{32,64,128}
-- pm = Typ'Scale
-- For the most common ordinary fixed-point types
-- xx = Fixed{32,64,128}
-- ftyp = Integer_{32,64,128}
-- pm = numerator of Typ'Small
-- denominator of Typ'Small
-- min (scale of Typ'Small, 0)
-- For other ordinary fixed-point types
-- xx = Fixed
-- ftyp = Long_Float
-- pm = none
-- Note that we know that the type is a nonstatic subtype, or Fore would
-- have been computed statically in Eval_Attribute.
when Attribute_Fore =>
declare
Arg_List : List_Id;
Fid : RE_Id;
Ftyp : Entity_Id;
begin
if Is_Decimal_Fixed_Point_Type (Ptyp) then
if Esize (Ptyp) <= 32 then
Fid := RE_Fore_Decimal32;
Ftyp := RTE (RE_Integer_32);
elsif Esize (Ptyp) <= 64 then
Fid := RE_Fore_Decimal64;
Ftyp := RTE (RE_Integer_64);
else
Fid := RE_Fore_Decimal128;
Ftyp := RTE (RE_Integer_128);
end if;
else
declare
Num : constant Uint := Norm_Num (Small_Value (Ptyp));
Den : constant Uint := Norm_Den (Small_Value (Ptyp));
Max : constant Uint := UI_Max (Num, Den);
Min : constant Uint := UI_Min (Num, Den);
Siz : constant Uint := Esize (Ptyp);
begin
if Siz <= 32
and then Max <= Uint_2 ** 31
and then (Min = Uint_1
or else Num < Den
or else Num < Uint_10 ** 8)
then
Fid := RE_Fore_Fixed32;
Ftyp := RTE (RE_Integer_32);
elsif Siz <= 64
and then Max <= Uint_2 ** 63
and then (Min = Uint_1
or else Num < Den
or else Num < Uint_10 ** 17)
then
Fid := RE_Fore_Fixed64;
Ftyp := RTE (RE_Integer_64);
elsif System_Max_Integer_Size = 128
and then Max <= Uint_2 ** 127
and then (Min = Uint_1
or else Num < Den
or else Num < Uint_10 ** 37)
then
Fid := RE_Fore_Fixed128;
Ftyp := RTE (RE_Integer_128);
else
Fid := RE_Fore_Fixed;
Ftyp := Standard_Long_Float;
end if;
end;
end if;
Arg_List := New_List (
Convert_To (Ftyp,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_First)));
Append_To (Arg_List,
Convert_To (Ftyp,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_Last)));
-- For decimal, append Scale and also set to do literal conversion
if Is_Decimal_Fixed_Point_Type (Ptyp) then
Set_Conversion_OK (First (Arg_List));
Set_Conversion_OK (Next (First (Arg_List)));
Append_To (Arg_List,
Make_Integer_Literal (Loc, Scale_Value (Ptyp)));
-- For ordinary fixed-point types, append Num, Den and Scale
-- parameters and also set to do literal conversion
elsif Fid /= RE_Fore_Fixed then
Set_Conversion_OK (First (Arg_List));
Set_Conversion_OK (Next (First (Arg_List)));
Append_To (Arg_List,
Make_Integer_Literal (Loc, -Norm_Num (Small_Value (Ptyp))));
Append_To (Arg_List,
Make_Integer_Literal (Loc, -Norm_Den (Small_Value (Ptyp))));
declare
Val : Ureal := Small_Value (Ptyp);
Scale : Int := 0;
begin
while Val >= Ureal_10 loop
Val := Val / Ureal_10;
Scale := Scale - 1;
end loop;
Append_To (Arg_List,
Make_Integer_Literal (Loc, UI_From_Int (Scale)));
end;
end if;
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (Fid), Loc),
Parameter_Associations => Arg_List)));
Analyze_And_Resolve (N, Typ);
end;
--------------
-- Fraction --
--------------
-- Transforms 'Fraction into a call to the floating-point attribute
-- function Fraction in Fat_xxx (where xxx is the root type)
when Attribute_Fraction =>
Expand_Fpt_Attribute_R (N);
--------------
-- From_Any --
--------------
when Attribute_From_Any => From_Any : declare
Decls : constant List_Id := New_List;
begin
Rewrite (N,
Build_From_Any_Call (Ptyp,
Relocate_Node (First (Exprs)),
Decls));
Insert_Actions (N, Decls);
Analyze_And_Resolve (N, Ptyp);
end From_Any;
----------------------
-- Has_Same_Storage --
----------------------
when Attribute_Has_Same_Storage => Has_Same_Storage : declare
Loc : constant Source_Ptr := Sloc (N);
X : constant Node_Id := Prefix (N);
Y : constant Node_Id := First (Expressions (N));
-- The arguments
X_Addr : Node_Id;
Y_Addr : Node_Id;
-- Rhe expressions for their addresses
X_Size : Node_Id;
Y_Size : Node_Id;
-- Rhe expressions for their sizes
begin
-- The attribute is expanded as:
-- (X'address = Y'address)
-- and then (X'Size = Y'Size)
-- and then (X'Size /= 0) (AI12-0077)
-- If both arguments have the same Etype the second conjunct can be
-- omitted.
X_Addr :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Address,
Prefix => New_Copy_Tree (X));
Y_Addr :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Address,
Prefix => New_Copy_Tree (Y));
X_Size :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Size,
Prefix => New_Copy_Tree (X));
if Etype (X) = Etype (Y) then
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => X_Addr,
Right_Opnd => Y_Addr),
Right_Opnd =>
Make_Op_Ne (Loc,
Left_Opnd => X_Size,
Right_Opnd => Make_Integer_Literal (Loc, 0))));
else
Y_Size :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Size,
Prefix => New_Copy_Tree (Y));
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => X_Addr,
Right_Opnd => Y_Addr),
Right_Opnd =>
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => X_Size,
Right_Opnd => Y_Size),
Right_Opnd =>
Make_Op_Ne (Loc,
Left_Opnd => New_Copy_Tree (X_Size),
Right_Opnd => Make_Integer_Literal (Loc, 0)))));
end if;
Analyze_And_Resolve (N, Standard_Boolean);
end Has_Same_Storage;
--------------
-- Identity --
--------------
-- For an exception returns a reference to the exception data:
-- Exception_Id!(Prefix'Reference)
-- For a task it returns a reference to the _task_id component of
-- corresponding record:
-- taskV!(Prefix)._Task_Id, converted to the type Task_Id defined
-- in Ada.Task_Identification
when Attribute_Identity => Identity : declare
Id_Kind : Entity_Id;
begin
if Ptyp = Standard_Exception_Type then
Id_Kind := RTE (RE_Exception_Id);
if Present (Renamed_Entity (Entity (Pref))) then
Set_Entity (Pref, Renamed_Entity (Entity (Pref)));
end if;
Rewrite (N,
Unchecked_Convert_To (Id_Kind, Make_Reference (Loc, Pref)));
else
Id_Kind := RTE (RO_AT_Task_Id);
-- If the prefix is a task interface, the Task_Id is obtained
-- dynamically through a dispatching call, as for other task
-- attributes applied to interfaces.
if Ada_Version >= Ada_2005
and then Ekind (Ptyp) = E_Class_Wide_Type
and then Is_Interface (Ptyp)
and then Is_Task_Interface (Ptyp)
then
Rewrite (N,
Unchecked_Convert_To
(Id_Kind, Build_Disp_Get_Task_Id_Call (Pref)));
else
Rewrite (N,
Unchecked_Convert_To (Id_Kind, Concurrent_Ref (Pref)));
end if;
end if;
Analyze_And_Resolve (N, Id_Kind);
end Identity;
-----------
-- Image --
-----------
when Attribute_Image =>
-- Leave attribute unexpanded in CodePeer mode: the gnat2scil
-- back-end knows how to handle this attribute directly.
if CodePeer_Mode then
return;
end if;
Exp_Imgv.Expand_Image_Attribute (N);
---------
-- Img --
---------
-- X'Img is expanded to typ'Image (X), where typ is the type of X
when Attribute_Img =>
Exp_Imgv.Expand_Image_Attribute (N);
-----------
-- Index --
-----------
-- Transforms 'Index attribute into a reference to the second formal of
-- the wrapper built for an entry family that has contract cases (see
-- Exp_Ch9.Build_Contract_Wrapper).
when Attribute_Index => Index : declare
Entry_Id : constant Entity_Id := Entity (Pref);
Entry_Idx : constant Entity_Id :=
Next_Entity
(First_Entity (Contract_Wrapper (Entry_Id)));
begin
Rewrite (N, New_Occurrence_Of (Entry_Idx, Loc));
Analyze_And_Resolve (N, Typ);
end Index;
-----------------
-- Initialized --
-----------------
-- For execution, we could either implement an approximation of this
-- aspect, or use Valid_Scalars as a first approximation. For now we do
-- the latter.
when Attribute_Initialized =>
-- Do not expand 'Initialized in CodePeer mode, it will be handled
-- by the back-end directly.
if CodePeer_Mode then
return;
end if;
Rewrite
(N,
Make_Attribute_Reference
(Sloc => Loc,
Prefix => Pref,
Attribute_Name => Name_Valid_Scalars,
Expressions => Exprs));
Analyze_And_Resolve (N);
-----------
-- Input --
-----------
when Attribute_Input => Input : declare
P_Type : constant Entity_Id := Entity (Pref);
B_Type : constant Entity_Id := Base_Type (P_Type);
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Strm : constant Node_Id := First (Exprs);
Has_TSS : Boolean := False;
Fname : Entity_Id;
Decl : Node_Id;
Call : Node_Id;
Prag : Node_Id;
Arg2 : Node_Id;
Rfunc : Node_Id;
Cntrl : Node_Id := Empty;
-- Value for controlling argument in call. Always Empty except in
-- the dispatching (class-wide type) case, where it is a reference
-- to the dummy object initialized to the right internal tag.
procedure Freeze_Stream_Subprogram (F : Entity_Id);
-- The expansion of the attribute reference may generate a call to
-- a user-defined stream subprogram that is frozen by the call. This
-- can lead to access-before-elaboration problem if the reference
-- appears in an object declaration and the subprogram body has not
-- been seen. The freezing of the subprogram requires special code
-- because it appears in an expanded context where expressions do
-- not freeze their constituents.
------------------------------
-- Freeze_Stream_Subprogram --
------------------------------
procedure Freeze_Stream_Subprogram (F : Entity_Id) is
Decl : constant Node_Id := Unit_Declaration_Node (F);
Bod : Node_Id;
begin
-- If this is user-defined subprogram, the corresponding
-- stream function appears as a renaming-as-body, and the
-- user subprogram must be retrieved by tree traversal.
if Present (Decl)
and then Nkind (Decl) = N_Subprogram_Declaration
and then Present (Corresponding_Body (Decl))
then
Bod := Corresponding_Body (Decl);
if Nkind (Unit_Declaration_Node (Bod)) =
N_Subprogram_Renaming_Declaration
then
Set_Is_Frozen (Entity (Name (Unit_Declaration_Node (Bod))));
end if;
end if;
end Freeze_Stream_Subprogram;
-- Start of processing for Input
begin
-- If no underlying type, we have an error that will be diagnosed
-- elsewhere, so here we just completely ignore the expansion.
if No (U_Type) then
return;
end if;
-- Stream operations can appear in user code even if the restriction
-- No_Streams is active (for example, when instantiating a predefined
-- container). In that case rewrite the attribute as a Raise to
-- prevent any run-time use.
if Restriction_Active (No_Streams) then
Rewrite (N,
Make_Raise_Program_Error (Sloc (N),
Reason => PE_Stream_Operation_Not_Allowed));
Set_Etype (N, B_Type);
return;
end if;
-- If there is a TSS for Input, just call it
Fname := Find_Stream_Subprogram (P_Type, TSS_Stream_Input, N);
if Present (Fname) then
Has_TSS := True;
else
-- If there is a Stream_Convert pragma, use it, we rewrite
-- sourcetyp'Input (stream)
-- as
-- sourcetyp (streamread (strmtyp'Input (stream)));
-- where streamread is the given Read function that converts an
-- argument of type strmtyp to type sourcetyp or a type from which
-- it is derived (extra conversion required for the derived case).
Prag := Get_Stream_Convert_Pragma (P_Type);
if Present (Prag) then
Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
Rfunc := Entity (Expression (Arg2));
Rewrite (N,
Convert_To (B_Type,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Rfunc, Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of
(Etype (First_Formal (Rfunc)), Loc),
Attribute_Name => Name_Input,
Expressions => Exprs)))));
Analyze_And_Resolve (N, B_Type);
return;
-- Limited types
elsif Default_Streaming_Unavailable (U_Type) then
-- Do the same thing here as is done above in the
-- case where a No_Streams restriction is active.
Rewrite (N,
Make_Raise_Program_Error (Sloc (N),
Reason => PE_Stream_Operation_Not_Allowed));
Set_Etype (N, B_Type);
return;
-- Elementary types
elsif Is_Elementary_Type (U_Type) then
-- A special case arises if we have a defined _Read routine,
-- since in this case we are required to call this routine.
if Present (Find_Inherited_TSS (P_Type, TSS_Stream_Read)) then
Build_Record_Or_Elementary_Input_Function
(P_Type, Decl, Fname);
Insert_Action (N, Decl);
-- For normal cases, we call the I_xxx routine directly
else
Rewrite (N, Build_Elementary_Input_Call (N));
Analyze_And_Resolve (N, P_Type);
return;
end if;
-- Array type case
elsif Is_Array_Type (U_Type) then
Build_Array_Input_Function (U_Type, Decl, Fname);
Compile_Stream_Body_In_Scope (N, Decl, U_Type);
-- Dispatching case with class-wide type
elsif Is_Class_Wide_Type (P_Type) then
-- No need to do anything else compiling under restriction
-- No_Dispatching_Calls. During the semantic analysis we
-- already notified such violation.
if Restriction_Active (No_Dispatching_Calls) then
return;
end if;
declare
Rtyp : constant Entity_Id := Root_Type (P_Type);
Expr : Node_Id; -- call to Descendant_Tag
Get_Tag : Node_Id; -- expression to read the 'Tag
begin
-- Read the internal tag (RM 13.13.2(34)) and use it to
-- initialize a dummy tag value. We used to unconditionally
-- generate:
--
-- Descendant_Tag (String'Input (Strm), P_Type);
--
-- which turns into a call to String_Input_Blk_IO. However,
-- if the input is malformed, that could try to read an
-- enormous String, causing chaos. So instead we call
-- String_Input_Tag, which does the same thing as
-- String_Input_Blk_IO, except that if the String is
-- absurdly long, it raises an exception.
--
-- However, if the No_Stream_Optimizations restriction
-- is active, we disable this unnecessary attempt at
-- robustness; we really need to read the string
-- character-by-character.
--
-- This value is used only to provide a controlling
-- argument for the eventual _Input call. Descendant_Tag is
-- called rather than Internal_Tag to ensure that we have a
-- tag for a type that is descended from the prefix type and
-- declared at the same accessibility level (the exception
-- Tag_Error will be raised otherwise). The level check is
-- required for Ada 2005 because tagged types can be
-- extended in nested scopes (AI-344).
-- Note: we used to generate an explicit declaration of a
-- constant Ada.Tags.Tag object, and use an occurrence of
-- this constant in Cntrl, but this caused a secondary stack
-- leak.
if Restriction_Active (No_Stream_Optimizations) then
Get_Tag :=
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Standard_String, Loc),
Attribute_Name => Name_Input,
Expressions => New_List (
Relocate_Node (Duplicate_Subexpr (Strm))));
else
Get_Tag :=
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(RTE (RE_String_Input_Tag), Loc),
Parameter_Associations => New_List (
Relocate_Node (Duplicate_Subexpr (Strm))));
end if;
Expr :=
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Descendant_Tag), Loc),
Parameter_Associations => New_List (
Get_Tag,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (P_Type, Loc),
Attribute_Name => Name_Tag)));
Set_Etype (Expr, RTE (RE_Tag));
-- Now we need to get the entity for the call, and construct
-- a function call node, where we preset a reference to Dnn
-- as the controlling argument (doing an unchecked convert
-- to the class-wide tagged type to make it look like a real
-- tagged object).
Fname := Find_Prim_Op (Rtyp, TSS_Stream_Input);
Cntrl := Unchecked_Convert_To (P_Type, Expr);
Set_Etype (Cntrl, P_Type);
Set_Parent (Cntrl, N);
end;
-- For tagged types, use the primitive Input function
elsif Is_Tagged_Type (U_Type) then
Fname := Find_Prim_Op (U_Type, TSS_Stream_Input);
-- All other record type cases, including protected records. The
-- latter only arise for expander generated code for handling
-- shared passive partition access.
else
pragma Assert
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
-- Ada 2005 (AI-216): Program_Error is raised executing default
-- implementation of the Input attribute of an unchecked union
-- type if the type lacks default discriminant values.
if Is_Unchecked_Union (Base_Type (U_Type))
and then
No (Discriminant_Default_Value (First_Discriminant (U_Type)))
then
Rewrite (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
Set_Etype (N, B_Type);
return;
end if;
-- Build the type's Input function, passing the subtype rather
-- than its base type, because checks are needed in the case of
-- constrained discriminants (see Ada 2012 AI05-0192).
Build_Record_Or_Elementary_Input_Function
(U_Type, Decl, Fname);
Insert_Action (N, Decl);
if Nkind (Parent (N)) = N_Object_Declaration
and then Is_Record_Type (U_Type)
then
-- The stream function may contain calls to user-defined
-- Read procedures for individual components.
declare
Comp : Entity_Id;
Func : Entity_Id;
begin
Comp := First_Component (U_Type);
while Present (Comp) loop
Func :=
Find_Stream_Subprogram
(Etype (Comp), TSS_Stream_Read, N);
if Present (Func) then
Freeze_Stream_Subprogram (Func);
end if;
Next_Component (Comp);
end loop;
end;
end if;
end if;
end if;
-- If we fall through, Fname is the function to be called. The result
-- is obtained by calling the appropriate function, then converting
-- the result. The conversion does a subtype check.
Call :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Fname, Loc),
Parameter_Associations => New_List (
Relocate_Node (Strm)));
Set_Controlling_Argument (Call, Cntrl);
Rewrite (N, Unchecked_Convert_To (P_Type, Call));
Analyze_And_Resolve (N, P_Type);
if Nkind (Parent (N)) = N_Object_Declaration then
Freeze_Stream_Subprogram (Fname);
end if;
if not Has_TSS then
Cached_Streaming_Ops.Input_Map.Set (P_Type, Fname);
end if;
end Input;
-------------------
-- Invalid_Value --
-------------------
when Attribute_Invalid_Value =>
Rewrite (N, Get_Simple_Init_Val (Ptyp, N));
-- The value produced may be a conversion of a literal, which must be
-- resolved to establish its proper type.
Analyze_And_Resolve (N);
--------------
-- Last_Bit --
--------------
-- We leave the computation up to the back end, since we don't know what
-- layout will be chosen if no component clause was specified.
when Attribute_Last_Bit =>
Apply_Universal_Integer_Attribute_Checks (N);
------------------
-- Leading_Part --
------------------
-- Transforms 'Leading_Part into a call to the floating-point attribute
-- function Leading_Part in Fat_xxx (where xxx is the root type)
-- Note: strictly, we should generate special case code to deal with
-- absurdly large positive arguments (greater than Integer'Last), which
-- result in returning the first argument unchanged, but it hardly seems
-- worth the effort. We raise constraint error for absurdly negative
-- arguments which is fine.
when Attribute_Leading_Part =>
Expand_Fpt_Attribute_RI (N);
------------
-- Length --
------------
when Attribute_Length => Length : declare
Ityp : Entity_Id;
Xnum : Uint;
begin
-- Processing for packed array types
if Is_Packed_Array (Ptyp) then
Ityp := Get_Index_Subtype (N);
-- If the index type, Ityp, is an enumeration type with holes,
-- then we calculate X'Length explicitly using
-- Typ'Max
-- (0, Ityp'Pos (X'Last (N)) -
-- Ityp'Pos (X'First (N)) + 1);
-- Since the bounds in the template are the representation values
-- and the back end would get the wrong value.
if Is_Enumeration_Type (Ityp)
and then Present (Enum_Pos_To_Rep (Base_Type (Ityp)))
then
if No (Exprs) then
Xnum := Uint_1;
else
Xnum := Expr_Value (First (Expressions (N)));
end if;
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Max,
Expressions => New_List
(Make_Integer_Literal (Loc, 0),
Make_Op_Add (Loc,
Left_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr (Pref),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, Xnum))))),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Pref),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, Xnum)))))),
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
return;
-- If the prefix type is a constrained packed array type which
-- already has a Packed_Array_Impl_Type representation defined,
-- then replace this attribute with a reference to 'Range_Length
-- of the appropriate index subtype (since otherwise the
-- back end will try to give us the value of 'Length for
-- this implementation type).s
elsif Is_Constrained (Ptyp) then
Rewrite (N,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Range_Length,
Prefix => New_Occurrence_Of (Ityp, Loc)));
Analyze_And_Resolve (N, Typ);
end if;
-- Access type case
elsif Is_Access_Type (Ptyp) then
Apply_Access_Check (N);
-- If the designated type is a packed array type, then we convert
-- the reference to:
-- typ'Max (0, 1 +
-- xtyp'Pos (Pref'Last (Expr)) -
-- xtyp'Pos (Pref'First (Expr)));
-- This is a bit complex, but it is the easiest thing to do that
-- works in all cases including enum types with holes xtyp here
-- is the appropriate index type.
declare
Dtyp : constant Entity_Id := Designated_Type (Ptyp);
Xtyp : Entity_Id;
begin
if Is_Packed_Array (Dtyp) then
Xtyp := Get_Index_Subtype (N);
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Max,
Expressions => New_List (
Make_Integer_Literal (Loc, 0),
Make_Op_Add (Loc,
Make_Integer_Literal (Loc, 1),
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Xtyp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr (Pref),
Attribute_Name => Name_Last,
Expressions =>
New_Copy_List (Exprs)))),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Xtyp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks (Pref),
Attribute_Name => Name_First,
Expressions =>
New_Copy_List (Exprs)))))))));
Analyze_And_Resolve (N, Typ);
end if;
end;
-- Otherwise leave it to the back end
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
end Length;
-- Attribute Loop_Entry is replaced with a reference to a constant value
-- which captures the prefix at the entry point of the related loop. The
-- loop itself may be transformed into a conditional block.
when Attribute_Loop_Entry =>
Expand_Loop_Entry_Attribute (N);
-------------
-- Machine --
-------------
-- Transforms 'Machine into a call to the floating-point attribute
-- function Machine in Fat_xxx (where xxx is the root type).
-- Expansion is avoided for cases the back end can handle directly.
when Attribute_Machine =>
if not Is_Inline_Floating_Point_Attribute (N) then
Expand_Fpt_Attribute_R (N);
end if;
----------------------
-- Machine_Rounding --
----------------------
-- Transforms 'Machine_Rounding into a call to the floating-point
-- attribute function Machine_Rounding in Fat_xxx (where xxx is the root
-- type). Expansion is avoided for cases the back end can handle
-- directly.
when Attribute_Machine_Rounding =>
if not Is_Inline_Floating_Point_Attribute (N) then
Expand_Fpt_Attribute_R (N);
end if;
------------------
-- Machine_Size --
------------------
-- Machine_Size is equivalent to Object_Size, so transform it into
-- Object_Size and that way the back end never sees Machine_Size.
when Attribute_Machine_Size =>
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Prefix (N),
Attribute_Name => Name_Object_Size));
Analyze_And_Resolve (N, Typ);
--------------
-- Mantissa --
--------------
-- The only case that can get this far is the dynamic case of the old
-- Ada 83 Mantissa attribute for the fixed-point case. For this case,
-- we expand:
-- typ'Mantissa
-- into
-- ityp (System.Mantissa.Mantissa_Value
-- (Integer'Integer_Value (typ'First),
-- Integer'Integer_Value (typ'Last)));
when Attribute_Mantissa =>
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Mantissa_Value), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Standard_Integer, Loc),
Attribute_Name => Name_Integer_Value,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_First))),
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Standard_Integer, Loc),
Attribute_Name => Name_Integer_Value,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_Last)))))));
Analyze_And_Resolve (N, Typ);
---------
-- Max --
---------
when Attribute_Max =>
Expand_Min_Max_Attribute (N);
----------------------------------
-- Max_Size_In_Storage_Elements --
----------------------------------
when Attribute_Max_Size_In_Storage_Elements => declare
Typ : constant Entity_Id := Etype (N);
begin
-- If the prefix is X'Class, we transform it into a direct reference
-- to the class-wide type, because the back end must not see a 'Class
-- reference. See also 'Size.
if Is_Entity_Name (Pref)
and then Is_Class_Wide_Type (Entity (Pref))
then
Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
return;
end if;
-- Heap-allocated controlled objects contain two extra pointers which
-- are not part of the actual type. Transform the attribute reference
-- into a runtime expression to add the size of the hidden header.
if Needs_Finalization (Ptyp) and then not Header_Size_Added (N) then
Set_Header_Size_Added (N);
-- Generate:
-- P'Max_Size_In_Storage_Elements +
-- Typ (Header_Size_With_Padding (Ptyp'Alignment))
Rewrite (N,
Make_Op_Add (Loc,
Left_Opnd => Relocate_Node (N),
Right_Opnd =>
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(RTE (RE_Header_Size_With_Padding), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_Alignment))))));
Analyze_And_Resolve (N, Typ);
return;
end if;
-- In the other cases apply the required checks
Apply_Universal_Integer_Attribute_Checks (N);
end;
--------------------
-- Mechanism_Code --
--------------------
when Attribute_Mechanism_Code =>
-- We must replace the prefix in the renamed case
if Is_Entity_Name (Pref)
and then Present (Alias (Entity (Pref)))
then
Set_Renamed_Subprogram (Pref, Alias (Entity (Pref)));
end if;
---------
-- Min --
---------
when Attribute_Min =>
Expand_Min_Max_Attribute (N);
---------
-- Mod --
---------
when Attribute_Mod => Mod_Case : declare
Arg : constant Node_Id := Relocate_Node (First (Exprs));
Hi : constant Node_Id := Type_High_Bound (Base_Type (Etype (Arg)));
Modv : constant Uint := Modulus (Btyp);
begin
-- This is not so simple. The issue is what type to use for the
-- computation of the modular value. In addition we need to use
-- the base type as above to retrieve a static bound for the
-- comparisons that follow.
-- The easy case is when the modulus value is within the bounds
-- of the signed integer type of the argument. In this case we can
-- just do the computation in that signed integer type, and then
-- do an ordinary conversion to the target type.
if Modv <= Expr_Value (Hi) then
Rewrite (N,
Convert_To (Btyp,
Make_Op_Mod (Loc,
Left_Opnd => Arg,
Right_Opnd => Make_Integer_Literal (Loc, Modv))));
-- Here we know that the modulus is larger than type'Last of the
-- integer type. There are two cases to consider:
-- a) The integer value is non-negative. In this case, it is
-- returned as the result (since it is less than the modulus).
-- b) The integer value is negative. In this case, we know that the
-- result is modulus + value, where the value might be as small as
-- -modulus. The trouble is what type do we use to do the subtract.
-- No type will do, since modulus can be as big as 2**128, and no
-- integer type accommodates this value. Let's do bit of algebra
-- modulus + value
-- = modulus - (-value)
-- = (modulus - 1) - (-value - 1)
-- Now modulus - 1 is certainly in range of the modular type.
-- -value is in the range 1 .. modulus, so -value -1 is in the
-- range 0 .. modulus-1 which is in range of the modular type.
-- Furthermore, (-value - 1) can be expressed as -(value + 1)
-- which we can compute using the integer base type.
-- Once this is done we analyze the if expression without range
-- checks, because we know everything is in range, and we want
-- to prevent spurious warnings on either branch.
else
Rewrite (N,
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Ge (Loc,
Left_Opnd => Duplicate_Subexpr (Arg),
Right_Opnd => Make_Integer_Literal (Loc, 0)),
Convert_To (Btyp,
Duplicate_Subexpr_No_Checks (Arg)),
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Intval => Modv - 1),
Right_Opnd =>
Convert_To (Btyp,
Make_Op_Minus (Loc,
Right_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Arg),
Right_Opnd =>
Make_Integer_Literal (Loc,
Intval => 1))))))));
end if;
Analyze_And_Resolve (N, Btyp, Suppress => All_Checks);
end Mod_Case;
-----------
-- Model --
-----------
-- Transforms 'Model into a call to the floating-point attribute
-- function Model in Fat_xxx (where xxx is the root type).
-- Expansion is avoided for cases the back end can handle directly.
when Attribute_Model =>
if not Is_Inline_Floating_Point_Attribute (N) then
Expand_Fpt_Attribute_R (N);
end if;
-----------------
-- Object_Size --
-----------------
-- The processing for Object_Size shares the processing for Size
---------
-- Old --
---------
when Attribute_Old => Old : declare
CW_Temp : Entity_Id;
CW_Typ : Entity_Id;
Decl : Node_Id;
Ins_Nod : Node_Id;
Subp : Node_Id;
Temp : Entity_Id;
use Old_Attr_Util.Conditional_Evaluation;
use Old_Attr_Util.Indirect_Temps;
begin
-- Generating C code we don't need to expand this attribute when
-- we are analyzing the internally built nested _Wrapped_Statements
-- procedure since it will be expanded inline (and later it will
-- be removed by Expand_N_Subprogram_Body). It this expansion is
-- performed in such case then the compiler generates unreferenced
-- extra temporaries.
if Modify_Tree_For_C
and then Chars (Current_Scope) = Name_uWrapped_Statements
then
return;
end if;
-- Climb the parent chain looking for subprogram _Wrapped_Statements
Subp := N;
while Present (Subp) loop
exit when Nkind (Subp) = N_Subprogram_Body
and then Chars (Defining_Entity (Subp))
= Name_uWrapped_Statements;
-- If assertions are disabled, no need to create the declaration
-- that preserves the value. The postcondition pragma in which
-- 'Old appears will be checked or disabled according to the
-- current policy in effect.
if Nkind (Subp) = N_Pragma and then not Is_Checked (Subp) then
return;
end if;
Subp := Parent (Subp);
end loop;
Subp := Empty;
-- 'Old can only appear in the case where local contract-related
-- wrapper has been generated with the purpose of wrapping the
-- original declarations and statements.
Temp := Make_Temporary (Loc, 'T', Pref);
-- Set the entity kind now in order to mark the temporary as a
-- handler of attribute 'Old's prefix.
Mutate_Ekind (Temp, E_Constant);
Set_Stores_Attribute_Old_Prefix (Temp);
-- Push the scope of the related subprogram where _Postcondition
-- resides as this ensures that the object will be analyzed in the
-- proper context.
if Present (Subp) then
Push_Scope (Scope (Defining_Entity (Subp)));
-- No need to push the scope when generating C code since the
-- _Postcondition procedure has been inlined.
else
null;
end if;
-- Locate the insertion place of the internal temporary that saves
-- the 'Old value.
if Present (Subp) then
Ins_Nod := Subp;
-- General case where the postcondition checks occur after the call
-- to _Wrapped_Statements.
else
Ins_Nod := N;
while Nkind (Ins_Nod) /= N_Subprogram_Body loop
Ins_Nod := Parent (Ins_Nod);
end loop;
if Present (Corresponding_Spec (Ins_Nod))
and then Present
(Wrapped_Statements (Corresponding_Spec (Ins_Nod)))
then
Ins_Nod := Last (Declarations (Ins_Nod));
else
Ins_Nod := First (Declarations (Ins_Nod));
end if;
end if;
if Eligible_For_Conditional_Evaluation (N) then
declare
Eval_Stmts : constant List_Id := New_List;
procedure Append_For_Indirect_Temp
(N : Node_Id; Is_Eval_Stmt : Boolean);
-- Append either a declaration (which is to be elaborated
-- unconditionally) or an evaluation statement (which is
-- to be executed conditionally).
------------------------------
-- Append_For_Indirect_Temp --
------------------------------
procedure Append_For_Indirect_Temp
(N : Node_Id; Is_Eval_Stmt : Boolean)
is
begin
if Is_Eval_Stmt then
Append_To (Eval_Stmts, N);
else
Insert_Before_And_Analyze (Ins_Nod, N);
end if;
end Append_For_Indirect_Temp;
procedure Declare_Indirect_Temporary is new
Declare_Indirect_Temp
(Append_Item => Append_For_Indirect_Temp);
begin
Declare_Indirect_Temporary
(Attr_Prefix => Pref, Indirect_Temp => Temp);
Insert_After_And_Analyze (
Ins_Nod,
Make_If_Statement
(Sloc => Loc,
Condition => Conditional_Evaluation_Condition (N),
Then_Statements => Eval_Stmts));
Rewrite (N, Indirect_Temp_Value
(Temp => Temp,
Typ => Etype (Pref),
Loc => Loc));
if Present (Subp) then
Pop_Scope;
end if;
return;
end;
-- Preserve the tag of the prefix by offering a specific view of the
-- class-wide version of the prefix.
elsif Is_Tagged_Type (Typ) then
-- Generate:
-- CW_Temp : constant Typ'Class := Typ'Class (Pref);
CW_Temp := Make_Temporary (Loc, 'T');
CW_Typ := Class_Wide_Type (Typ);
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => CW_Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (CW_Typ, Loc),
Expression =>
Convert_To (CW_Typ, Relocate_Node (Pref)));
Insert_Before_And_Analyze (Ins_Nod, Decl);
-- Generate:
-- Temp : Typ renames Typ (CW_Temp);
Insert_Before_And_Analyze (Ins_Nod,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Temp,
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
Name =>
Convert_To (Typ, New_Occurrence_Of (CW_Temp, Loc))));
Set_Stores_Attribute_Old_Prefix (CW_Temp);
-- Non-tagged case
else
-- Generate:
-- Temp : constant Typ := Pref;
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (Pref));
Insert_Before_And_Analyze (Ins_Nod, Decl);
end if;
if Present (Subp) then
Pop_Scope;
end if;
-- Ensure that the prefix of attribute 'Old is valid. The check must
-- be inserted after the expansion of the attribute has taken place
-- to reflect the new placement of the prefix.
if Validity_Checks_On and then Validity_Check_Operands then
-- Object declaration that captures the attribute prefix might
-- be rewritten into object renaming declaration.
if Nkind (Decl) = N_Object_Declaration then
Ensure_Valid (Expression (Decl));
else
pragma Assert (Nkind (Decl) = N_Object_Renaming_Declaration
and then Is_Rewrite_Substitution (Decl));
Ensure_Valid (Name (Decl));
end if;
end if;
Rewrite (N, New_Occurrence_Of (Temp, Loc));
end Old;
----------------------
-- Overlaps_Storage --
----------------------
when Attribute_Overlaps_Storage => Overlaps_Storage : declare
Loc : constant Source_Ptr := Sloc (N);
X : constant Node_Id := Prefix (N);
Y : constant Node_Id := First (Expressions (N));
-- The arguments
X_Addr, Y_Addr : Node_Id;
-- The expressions for their integer addresses
X_Size, Y_Size : Node_Id;
-- The expressions for their sizes
Cond : Node_Id;
begin
-- Attribute expands into:
-- (if X'Size = 0 or else Y'Size = 0 then
-- False
-- else
-- (if X'Address <= Y'Address then
-- (X'Address + X'Size - 1) >= Y'Address
-- else
-- (Y'Address + Y'Size - 1) >= X'Address))
-- with the proper address operations. We convert addresses to
-- integer addresses to use predefined arithmetic. The size is
-- expressed in storage units. We add copies of X_Addr and Y_Addr
-- to prevent the appearance of the same node in two places in
-- the tree.
X_Addr :=
Unchecked_Convert_To (RTE (RE_Integer_Address),
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Address,
Prefix => New_Copy_Tree (X)));
Y_Addr :=
Unchecked_Convert_To (RTE (RE_Integer_Address),
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Address,
Prefix => New_Copy_Tree (Y)));
X_Size :=
Make_Op_Divide (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Size,
Prefix => New_Copy_Tree (X)),
Right_Opnd =>
Make_Integer_Literal (Loc, System_Storage_Unit));
Y_Size :=
Make_Op_Divide (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Size,
Prefix => New_Copy_Tree (Y)),
Right_Opnd =>
Make_Integer_Literal (Loc, System_Storage_Unit));
Cond :=
Make_Op_Le (Loc,
Left_Opnd => X_Addr,
Right_Opnd => Y_Addr);
-- Perform the rewriting
Rewrite (N,
Make_If_Expression (Loc, New_List (
-- Generate a check for zero-sized things like a null record with
-- size zero or an array with zero length since they have no
-- opportunity of overlapping.
-- Without this check, a zero-sized object can trigger a false
-- runtime result if it's compared against another object in
-- its declarative region, due to the zero-sized object having
-- the same address.
Make_Or_Else (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Size,
Prefix => New_Copy_Tree (X)),
Right_Opnd => Make_Integer_Literal (Loc, 0)),
Right_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Size,
Prefix => New_Copy_Tree (Y)),
Right_Opnd => Make_Integer_Literal (Loc, 0))),
New_Occurrence_Of (Standard_False, Loc),
-- Non-zero-size overlap check
Make_If_Expression (Loc, New_List (
Cond,
Make_Op_Ge (Loc,
Left_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => New_Copy_Tree (X_Addr),
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => X_Size,
Right_Opnd => Make_Integer_Literal (Loc, 1))),
Right_Opnd => Y_Addr),
Make_Op_Ge (Loc,
Left_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => New_Copy_Tree (Y_Addr),
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => Y_Size,
Right_Opnd => Make_Integer_Literal (Loc, 1))),
Right_Opnd => X_Addr))))));
Analyze_And_Resolve (N, Standard_Boolean);
end Overlaps_Storage;
------------
-- Output --
------------
when Attribute_Output => Output : declare
P_Type : constant Entity_Id := Entity (Pref);
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Has_TSS : Boolean := False;
Pname : Entity_Id;
Decl : Node_Id;
Prag : Node_Id;
Arg3 : Node_Id;
Wfunc : Node_Id;
begin
-- If no underlying type, we have an error that will be diagnosed
-- elsewhere, so here we just completely ignore the expansion.
if No (U_Type) then
return;
end if;
-- Stream operations can appear in user code even if the restriction
-- No_Streams is active (for example, when instantiating a predefined
-- container). In that case rewrite the attribute as a Raise to
-- prevent any run-time use.
if Restriction_Active (No_Streams) then
Rewrite (N,
Make_Raise_Program_Error (Sloc (N),
Reason => PE_Stream_Operation_Not_Allowed));
Set_Etype (N, Standard_Void_Type);
return;
end if;
-- If TSS for Output is present, just call it
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Output, N);
if Present (Pname) then
Has_TSS := True;
else
-- If there is a Stream_Convert pragma, use it, we rewrite
-- sourcetyp'Output (stream, Item)
-- as
-- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
-- where strmwrite is the given Write function that converts an
-- argument of type sourcetyp or a type acctyp, from which it is
-- derived to type strmtyp. The conversion to acttyp is required
-- for the derived case.
Prag := Get_Stream_Convert_Pragma (P_Type);
if Present (Prag) then
Arg3 :=
Next (Next (First (Pragma_Argument_Associations (Prag))));
Wfunc := Entity (Expression (Arg3));
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
Attribute_Name => Name_Output,
Expressions => New_List (
Relocate_Node (First (Exprs)),
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Wfunc, Loc),
Parameter_Associations => New_List (
OK_Convert_To (Etype (First_Formal (Wfunc)),
Relocate_Node (Next (First (Exprs)))))))));
Analyze (N);
return;
-- Limited types
elsif Default_Streaming_Unavailable (U_Type) then
-- Do the same thing here as is done above in the
-- case where a No_Streams restriction is active.
Rewrite (N,
Make_Raise_Program_Error (Sloc (N),
Reason => PE_Stream_Operation_Not_Allowed));
Set_Etype (N, Standard_Void_Type);
return;
-- For elementary types, we call the W_xxx routine directly. Note
-- that the effect of Write and Output is identical for the case
-- of an elementary type (there are no discriminants or bounds).
elsif Is_Elementary_Type (U_Type) then
-- A special case arises if we have a defined _Write routine,
-- since in this case we are required to call this routine.
if Present (Find_Inherited_TSS (P_Type, TSS_Stream_Write)) then
Build_Record_Or_Elementary_Output_Procedure
(P_Type, Decl, Pname);
Insert_Action (N, Decl);
-- For normal cases, we call the W_xxx routine directly
else
Rewrite (N, Build_Elementary_Write_Call (N));
Analyze (N);
return;
end if;
-- Array type case
elsif Is_Array_Type (U_Type) then
Build_Array_Output_Procedure (U_Type, Decl, Pname);
Compile_Stream_Body_In_Scope (N, Decl, U_Type);
-- Class-wide case, first output external tag, then dispatch
-- to the appropriate primitive Output function (RM 13.13.2(31)).
elsif Is_Class_Wide_Type (P_Type) then
-- No need to do anything else compiling under restriction
-- No_Dispatching_Calls. During the semantic analysis we
-- already notified such violation.
if Restriction_Active (No_Dispatching_Calls) then
return;
end if;
Tag_Write : declare
Strm : constant Node_Id := First (Exprs);
Item : constant Node_Id := Next (Strm);
begin
-- Ada 2005 (AI-344): Check that the accessibility level
-- of the type of the output object is not deeper than
-- that of the attribute's prefix type.
-- if Get_Access_Level (Item'Tag)
-- /= Get_Access_Level (P_Type'Tag)
-- then
-- raise Tag_Error;
-- end if;
-- String'Output (Strm, External_Tag (Item'Tag));
-- We cannot figure out a practical way to implement this
-- accessibility check on virtual machines, so we omit it.
if Ada_Version >= Ada_2005
and then Tagged_Type_Expansion
then
Insert_Action (N,
Make_Implicit_If_Statement (N,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd =>
Build_Get_Access_Level (Loc,
Make_Attribute_Reference (Loc,
Prefix =>
Relocate_Node (
Duplicate_Subexpr (Item,
Name_Req => True)),
Attribute_Name => Name_Tag)),
Right_Opnd =>
Make_Integer_Literal (Loc,
Type_Access_Level (P_Type))),
Then_Statements =>
New_List (Make_Raise_Statement (Loc,
New_Occurrence_Of (
RTE (RE_Tag_Error), Loc)))));
end if;
Insert_Action (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Standard_String, Loc),
Attribute_Name => Name_Output,
Expressions => New_List (
Relocate_Node (Duplicate_Subexpr (Strm)),
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_External_Tag), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
Relocate_Node
(Duplicate_Subexpr (Item, Name_Req => True)),
Attribute_Name => Name_Tag))))));
end Tag_Write;
Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
-- Tagged type case, use the primitive Output function
elsif Is_Tagged_Type (U_Type) then
Pname := Find_Prim_Op (U_Type, TSS_Stream_Output);
-- All other record type cases, including protected records.
-- The latter only arise for expander generated code for
-- handling shared passive partition access.
else
pragma Assert
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
-- Ada 2005 (AI-216): Program_Error is raised when executing
-- the default implementation of the Output attribute of an
-- unchecked union type if the type lacks default discriminant
-- values.
if Is_Unchecked_Union (Base_Type (U_Type))
and then
No (Discriminant_Default_Value (First_Discriminant (U_Type)))
then
Rewrite (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
Set_Etype (N, Standard_Void_Type);
return;
end if;
Build_Record_Or_Elementary_Output_Procedure
(Base_Type (U_Type), Decl, Pname);
Insert_Action (N, Decl);
end if;
end if;
-- If we fall through, Pname is the name of the procedure to call
Rewrite_Attribute_Proc_Call (Pname);
if not Has_TSS then
Cached_Streaming_Ops.Output_Map.Set (P_Type, Pname);
end if;
end Output;
---------
-- Pos --
---------
-- For enumeration types, with a non-standard representation we generate
-- a call to the _Rep_To_Pos function created when the type was frozen.
-- The call has the form:
-- _rep_to_pos (expr, flag)
-- The parameter flag is True if range checks are enabled, causing
-- Program_Error to be raised if the expression has an invalid
-- representation, and False if range checks are suppressed.
-- For enumeration types with a standard representation, Pos can be
-- rewritten as a simple conversion with Conversion_OK set.
-- For integer types, Pos is equivalent to a simple integer conversion
-- and we rewrite it as such.
when Attribute_Pos => Pos : declare
Expr : constant Node_Id := First (Exprs);
Etyp : Entity_Id := Base_Type (Ptyp);
begin
-- Deal with zero/non-zero boolean values
if Is_Boolean_Type (Etyp) then
Adjust_Condition (Expr);
Etyp := Standard_Boolean;
Set_Prefix (N, New_Occurrence_Of (Standard_Boolean, Loc));
end if;
-- Case of enumeration type
if Is_Enumeration_Type (Etyp) then
-- Non-standard enumeration type (generate call)
if Present (Enum_Pos_To_Rep (Etyp)) then
Append_To (Exprs, Rep_To_Pos_Flag (Etyp, Loc));
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (TSS (Etyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => Exprs)));
-- Standard enumeration type (replace by conversion)
-- This is simply a direct conversion from the enumeration type to
-- the target integer type, which is treated by the back end as a
-- normal integer conversion, treating the enumeration type as an
-- integer, which is exactly what we want. We set Conversion_OK to
-- make sure that the analyzer does not complain about what might
-- be an illegal conversion.
-- However the target type is universal integer in most cases,
-- which is a very large type, so we first convert to a small
-- signed integer type in order not to lose the size information.
else
Rewrite (N, OK_Convert_To (Get_Integer_Type (Ptyp), Expr));
Convert_To_And_Rewrite (Typ, N);
end if;
-- Deal with integer types (replace by conversion)
else
Rewrite (N, Convert_To (Typ, Expr));
end if;
Analyze_And_Resolve (N, Typ);
end Pos;
--------------
-- Position --
--------------
-- We leave the computation up to the back end, since we don't know what
-- layout will be chosen if no component clause was specified.
when Attribute_Position =>
Apply_Universal_Integer_Attribute_Checks (N);
----------
-- Pred --
----------
-- 1. Deal with enumeration types with holes.
-- 2. For floating-point, generate call to attribute function.
-- 3. For other cases, deal with constraint checking.
when Attribute_Pred => Pred : declare
Etyp : constant Entity_Id := Base_Type (Ptyp);
begin
-- For enumeration types with non-standard representations, we
-- expand typ'Pred (x) into:
-- Pos_To_Rep (Rep_To_Pos (x) - 1)
-- if the representation is non-contiguous, and just x - 1 if it is
-- after having dealt with constraint checking.
if Is_Enumeration_Type (Etyp)
and then Present (Enum_Pos_To_Rep (Etyp))
then
if Has_Contiguous_Rep (Etyp) then
if not Range_Checks_Suppressed (Ptyp) then
Set_Do_Range_Check (First (Exprs), False);
Expand_Pred_Succ_Attribute (N);
end if;
Rewrite (N,
Unchecked_Convert_To (Etyp,
Make_Op_Subtract (Loc,
Left_Opnd =>
Unchecked_Convert_To (
Integer_Type_For
(Esize (Etyp), Is_Unsigned_Type (Etyp)),
First (Exprs)),
Right_Opnd =>
Make_Integer_Literal (Loc, 1))));
else
-- Add Boolean parameter depending on check suppression
Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
Rewrite (N,
Make_Indexed_Component (Loc,
Prefix =>
New_Occurrence_Of
(Enum_Pos_To_Rep (Etyp), Loc),
Expressions => New_List (
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => Exprs),
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
end if;
-- Suppress checks since they have all been done above
Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
-- For floating-point, we transform 'Pred into a call to the Pred
-- floating-point attribute function in Fat_xxx (xxx is root type).
-- Note that this function takes care of the overflow case.
elsif Is_Floating_Point_Type (Ptyp) then
Expand_Fpt_Attribute_R (N);
Analyze_And_Resolve (N, Typ);
-- For modular types, nothing to do (no overflow, since wraps)
elsif Is_Modular_Integer_Type (Ptyp) then
null;
-- For other types, if argument is marked as needing a range check or
-- overflow checking is enabled, we must generate a check.
elsif not Overflow_Checks_Suppressed (Ptyp)
or else Do_Range_Check (First (Exprs))
then
Set_Do_Range_Check (First (Exprs), False);
Expand_Pred_Succ_Attribute (N);
end if;
end Pred;
----------------------------------
-- Preelaborable_Initialization --
----------------------------------
when Attribute_Preelaborable_Initialization =>
-- This attribute should already be folded during analysis, but if
-- for some reason it hasn't been, we fold it now.
Fold_Uint
(N,
UI_From_Int
(Boolean'Pos (Has_Preelaborable_Initialization (Ptyp))),
Static => False);
--------------
-- Priority --
--------------
-- Ada 2005 (AI-327): Dynamic ceiling priorities
-- We rewrite X'Priority as the following run-time call:
-- Get_Ceiling (X._Object)
-- Note that although X'Priority is notionally an object, it is quite
-- deliberately not defined as an aliased object in the RM. This means
-- that it works fine to rewrite it as a call, without having to worry
-- about complications that would other arise from X'Priority'Access,
-- which is illegal, because of the lack of aliasing.
when Attribute_Priority => Priority : declare
Call : Node_Id;
New_Itype : Entity_Id;
Object_Parm : Node_Id;
Prottyp : Entity_Id;
RT_Subprg : RE_Id;
Subprg : Entity_Id;
begin
-- Look for the enclosing protected type
Prottyp := Current_Scope;
while not Is_Protected_Type (Prottyp) loop
Prottyp := Scope (Prottyp);
end loop;
pragma Assert (Is_Protected_Type (Prottyp));
-- Generate the actual of the call
Subprg := Current_Scope;
while not (Is_Subprogram_Or_Entry (Subprg)
and then Present (Protected_Body_Subprogram (Subprg)))
loop
Subprg := Scope (Subprg);
end loop;
-- Use of 'Priority inside protected entries and barriers (in both
-- cases the type of the first formal of their expanded subprogram
-- is Address).
if Etype (First_Entity (Protected_Body_Subprogram (Subprg))) =
RTE (RE_Address)
then
-- In the expansion of protected entries the type of the first
-- formal of the Protected_Body_Subprogram is an Address. In order
-- to reference the _object component we generate:
-- type T is access p__ptTV;
-- freeze T []
New_Itype := Create_Itype (E_Access_Type, N);
Set_Etype (New_Itype, New_Itype);
Set_Directly_Designated_Type (New_Itype,
Corresponding_Record_Type (Prottyp));
Freeze_Itype (New_Itype, N);
-- Generate:
-- T!(O)._object'unchecked_access
Object_Parm :=
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (New_Itype,
New_Occurrence_Of
(First_Entity (Protected_Body_Subprogram (Subprg)),
Loc)),
Selector_Name => Make_Identifier (Loc, Name_uObject)),
Attribute_Name => Name_Unchecked_Access);
-- Use of 'Priority inside a protected subprogram
else
Object_Parm :=
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix =>
New_Occurrence_Of
(First_Entity (Protected_Body_Subprogram (Subprg)),
Loc),
Selector_Name => Make_Identifier (Loc, Name_uObject)),
Attribute_Name => Name_Unchecked_Access);
end if;
-- Select the appropriate run-time subprogram
if Has_Entries (Prottyp) then
RT_Subprg := RO_PE_Get_Ceiling;
else
RT_Subprg := RE_Get_Ceiling;
end if;
Call :=
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RT_Subprg), Loc),
Parameter_Associations => New_List (Object_Parm));
Rewrite (N, Call);
-- Avoid the generation of extra checks on the pointer to the
-- protected object.
Analyze_And_Resolve (N, Typ, Suppress => Access_Check);
end Priority;
---------------
-- Put_Image --
---------------
when Attribute_Put_Image => Put_Image : declare
use Exp_Put_Image;
U_Type : constant Entity_Id := Underlying_Type (Entity (Pref));
Pname : Entity_Id;
Decl : Node_Id;
begin
-- If no underlying type, we have an error that will be diagnosed
-- elsewhere, so here we just completely ignore the expansion.
if No (U_Type) then
return;
end if;
-- If there is a TSS for Put_Image, just call it. This is true for
-- tagged types (if enabled) and if there is a user-specified
-- Put_Image.
Pname := TSS (U_Type, TSS_Put_Image);
if No (Pname) then
if Is_Tagged_Type (U_Type) and then Is_Derived_Type (U_Type) then
Pname := Find_Optional_Prim_Op (U_Type, TSS_Put_Image);
else
Pname := Find_Inherited_TSS (U_Type, TSS_Put_Image);
end if;
end if;
if No (Pname) then
-- If Put_Image is disabled, call the "unknown" version
if not Put_Image_Enabled (U_Type) then
Rewrite (N, Build_Unknown_Put_Image_Call (N));
Analyze (N);
return;
-- For elementary types, we call the routine in System.Put_Images
-- directly.
elsif Is_Elementary_Type (U_Type) then
Rewrite (N, Build_Elementary_Put_Image_Call (N));
Analyze (N);
return;
elsif Is_Standard_String_Type (U_Type) then
Rewrite (N, Build_String_Put_Image_Call (N));
Analyze (N);
return;
elsif Is_Array_Type (U_Type) then
Build_Array_Put_Image_Procedure (N, U_Type, Decl, Pname);
Insert_Action (N, Decl);
-- Tagged type case, use the primitive Put_Image function. Note
-- that this will dispatch in the class-wide case which is what we
-- want.
elsif Is_Tagged_Type (U_Type) then
Pname := Find_Optional_Prim_Op (U_Type, TSS_Put_Image);
-- ????Need Find_Optional_Prim_Op instead of Find_Prim_Op,
-- because we might be deriving from a predefined type, which
-- currently has Put_Image_Enabled False.
if No (Pname) then
Rewrite (N, Build_Unknown_Put_Image_Call (N));
Analyze (N);
return;
end if;
elsif Is_Protected_Type (U_Type) then
Rewrite (N, Build_Protected_Put_Image_Call (N));
Analyze (N);
return;
elsif Is_Task_Type (U_Type) then
Rewrite (N, Build_Task_Put_Image_Call (N));
Analyze (N);
return;
-- All other record type cases
else
pragma Assert (Is_Record_Type (U_Type));
Build_Record_Put_Image_Procedure
(Loc, Full_Base (U_Type), Decl, Pname);
Insert_Action (N, Decl);
end if;
end if;
-- If we fall through, Pname is the procedure to be called
Rewrite_Attribute_Proc_Call (Pname);
end Put_Image;
------------------
-- Range_Length --
------------------
when Attribute_Range_Length =>
-- The only special processing required is for the case where
-- Range_Length is applied to an enumeration type with holes.
-- In this case we transform
-- X'Range_Length
-- to
-- X'Pos (X'Last) - X'Pos (X'First) + 1
-- So that the result reflects the proper Pos values instead
-- of the underlying representations.
if Is_Enumeration_Type (Ptyp)
and then Has_Non_Standard_Rep (Ptyp)
then
Rewrite (N,
Make_Op_Add (Loc,
Left_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Pos,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Expressions => New_List (
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix =>
New_Occurrence_Of (Ptyp, Loc)))),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Pos,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Expressions => New_List (
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix =>
New_Occurrence_Of (Ptyp, Loc))))),
Right_Opnd => Make_Integer_Literal (Loc, 1)));
Analyze_And_Resolve (N, Typ);
-- For all other cases, the attribute is handled by the back end, but
-- we need to deal with the case of the range check on a universal
-- integer.
else
Apply_Universal_Integer_Attribute_Checks (N);
end if;
------------
-- Reduce --
------------
when Attribute_Reduce =>
declare
Loc : constant Source_Ptr := Sloc (N);
E1 : constant Node_Id := First (Expressions (N));
E2 : constant Node_Id := Next (E1);
Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
Accum_Typ : Entity_Id := Empty;
New_Loop : Node_Id;
function Build_Stat (Comp : Node_Id) return Node_Id;
-- The reducer can be a function, a procedure whose first
-- parameter is in-out, or an attribute that is a function,
-- which (for now) can only be Min/Max. This subprogram
-- builds the corresponding computation for the generated loop
-- and retrieves the accumulator type as per RM 4.5.10(19/5).
----------------
-- Build_Stat --
----------------
function Build_Stat (Comp : Node_Id) return Node_Id is
Stat : Node_Id;
begin
if Nkind (E1) = N_Attribute_Reference then
Stat := Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Bnn, Loc),
Expression => Make_Attribute_Reference (Loc,
Attribute_Name => Attribute_Name (E1),
Prefix => New_Copy (Prefix (E1)),
Expressions => New_List (
New_Occurrence_Of (Bnn, Loc),
Comp)));
elsif Ekind (Entity (E1)) = E_Procedure then
Stat := Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Entity (E1), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Bnn, Loc),
Comp));
else
Stat := Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Bnn, Loc),
Expression => Make_Function_Call (Loc,
Name => New_Occurrence_Of (Entity (E1), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Bnn, Loc),
Comp)));
end if;
return Stat;
end Build_Stat;
-- If the prefix is an aggregate, its unique component is an
-- Iterated_Element, and we create a loop out of its iterator.
-- The iterated_component_association is parsed as a loop parameter
-- specification with "in" or as a container iterator with "of".
begin
if Nkind (Prefix (N)) = N_Aggregate then
declare
Stream : constant Node_Id :=
First (Component_Associations (Prefix (N)));
Expr : constant Node_Id := Expression (Stream);
Id : constant Node_Id := Defining_Identifier (Stream);
It_Spec : constant Node_Id :=
Iterator_Specification (Stream);
Ch : Node_Id;
Iter : Node_Id;
begin
-- Iteration may be given by an element iterator:
if Nkind (Stream) = N_Iterated_Component_Association
and then Present (It_Spec)
and then Of_Present (It_Spec)
then
Iter :=
Make_Iteration_Scheme (Loc,
Iterator_Specification =>
Relocate_Node (It_Spec),
Loop_Parameter_Specification => Empty);
else
Ch := First (Discrete_Choices (Stream));
Iter :=
Make_Iteration_Scheme (Loc,
Iterator_Specification => Empty,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => New_Copy (Id),
Discrete_Subtype_Definition =>
Relocate_Node (Ch)));
end if;
New_Loop := Make_Loop_Statement (Loc,
Iteration_Scheme => Iter,
End_Label => Empty,
Statements =>
New_List (Build_Stat (Relocate_Node (Expr))));
-- Look at the context to find the type.
Accum_Typ := Etype (N);
end;
else
-- If the prefix is a name, we construct an element iterator
-- over it. Its expansion will verify that it is an array or
-- a container with the proper aspects.
declare
Elem : constant Entity_Id := Make_Temporary (Loc, 'E', N);
Iter : Node_Id;
begin
Iter :=
Make_Iterator_Specification (Loc,
Defining_Identifier => Elem,
Name => Relocate_Node (Prefix (N)),
Subtype_Indication => Empty);
Set_Of_Present (Iter);
New_Loop := Make_Loop_Statement (Loc,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Iterator_Specification => Iter,
Loop_Parameter_Specification => Empty),
End_Label => Empty,
Statements => New_List (
Build_Stat (New_Occurrence_Of (Elem, Loc))));
-- Look at the prefix to find the type. This is
-- modeled on Analyze_Iterator_Specification in Sem_Ch5.
declare
Ptyp : constant Entity_Id :=
Base_Type (Etype (Prefix (N)));
begin
if Is_Array_Type (Ptyp) then
Accum_Typ := Component_Type (Ptyp);
elsif Has_Aspect (Ptyp, Aspect_Iterable) then
declare
Element : constant Entity_Id :=
Get_Iterable_Type_Primitive
(Ptyp, Name_Element);
begin
if Present (Element) then
Accum_Typ := Etype (Element);
end if;
end;
else
declare
Element : constant Node_Id :=
Find_Value_Of_Aspect
(Ptyp, Aspect_Iterator_Element);
begin
if Present (Element) then
Accum_Typ := Entity (Element);
end if;
end;
end if;
end;
end;
end if;
Rewrite (N,
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Bnn,
Object_Definition =>
New_Occurrence_Of (Accum_Typ, Loc),
Expression => Relocate_Node (E2)), New_Loop),
Expression => New_Occurrence_Of (Bnn, Loc)));
Analyze_And_Resolve (N, Accum_Typ);
end;
----------
-- Read --
----------
when Attribute_Read => Read : declare
P_Type : constant Entity_Id := Entity (Pref);
B_Type : constant Entity_Id := Base_Type (P_Type);
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Has_TSS : Boolean := False;
Pname : Entity_Id;
Decl : Node_Id;
Prag : Node_Id;
Arg2 : Node_Id;
Rfunc : Node_Id;
Lhs : Node_Id;
Rhs : Node_Id;
begin
-- If no underlying type, we have an error that will be diagnosed
-- elsewhere, so here we just completely ignore the expansion.
if No (U_Type) then
return;
end if;
-- Stream operations can appear in user code even if the restriction
-- No_Streams is active (for example, when instantiating a predefined
-- container). In that case rewrite the attribute as a Raise to
-- prevent any run-time use.
if Restriction_Active (No_Streams) then
Rewrite (N,
Make_Raise_Program_Error (Sloc (N),
Reason => PE_Stream_Operation_Not_Allowed));
Set_Etype (N, B_Type);
return;
end if;
-- The simple case, if there is a TSS for Read, just call it
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Read, N);
if Present (Pname) then
Has_TSS := True;
else
-- If there is a Stream_Convert pragma, use it, we rewrite
-- sourcetyp'Read (stream, Item)
-- as
-- Item := sourcetyp (strmread (strmtyp'Input (Stream)));
-- where strmread is the given Read function that converts an
-- argument of type strmtyp to type sourcetyp or a type from which
-- it is derived. The conversion to sourcetyp is required in the
-- latter case.
-- A special case arises if Item is a type conversion in which
-- case, we have to expand to:
-- Itemx := typex (strmread (strmtyp'Input (Stream)));
-- where Itemx is the expression of the type conversion (i.e.
-- the actual object), and typex is the type of Itemx.
Prag := Get_Stream_Convert_Pragma (P_Type);
if Present (Prag) then
Arg2 := Next (First (Pragma_Argument_Associations (Prag)));
Rfunc := Entity (Expression (Arg2));
Lhs := Relocate_Node (Next (First (Exprs)));
Rhs :=
OK_Convert_To (B_Type,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Rfunc, Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of
(Etype (First_Formal (Rfunc)), Loc),
Attribute_Name => Name_Input,
Expressions => New_List (
Relocate_Node (First (Exprs)))))));
if Nkind (Lhs) = N_Type_Conversion then
Lhs := Expression (Lhs);
Rhs := Convert_To (Etype (Lhs), Rhs);
end if;
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Rhs));
Set_Assignment_OK (Lhs);
Analyze (N);
return;
-- Limited types
elsif Default_Streaming_Unavailable (U_Type) then
-- Do the same thing here as is done above in the
-- case where a No_Streams restriction is active.
Rewrite (N,
Make_Raise_Program_Error (Sloc (N),
Reason => PE_Stream_Operation_Not_Allowed));
Set_Etype (N, B_Type);
return;
-- For elementary types, we call the I_xxx routine using the first
-- parameter and then assign the result into the second parameter.
-- We set Assignment_OK to deal with the conversion case.
elsif Is_Elementary_Type (U_Type) then
declare
Lhs : Node_Id;
Rhs : Node_Id;
begin
Lhs := Relocate_Node (Next (First (Exprs)));
Rhs := Build_Elementary_Input_Call (N);
if Nkind (Lhs) = N_Type_Conversion then
Lhs := Expression (Lhs);
Rhs := Convert_To (Etype (Lhs), Rhs);
end if;
Set_Assignment_OK (Lhs);
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Rhs));
Analyze (N);
return;
end;
-- Array type case
elsif Is_Array_Type (U_Type) then
Build_Array_Read_Procedure (U_Type, Decl, Pname);
Compile_Stream_Body_In_Scope (N, Decl, U_Type);
-- Tagged type case, use the primitive Read function. Note that
-- this will dispatch in the class-wide case which is what we want
elsif Is_Tagged_Type (U_Type) then
Pname := Find_Prim_Op (U_Type, TSS_Stream_Read);
-- All other record type cases, including protected records. The
-- latter only arise for expander generated code for handling
-- shared passive partition access.
else
pragma Assert
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
-- Ada 2005 (AI-216): Program_Error is raised when executing
-- the default implementation of the Read attribute of an
-- Unchecked_Union type. We replace the attribute with a
-- raise statement (rather than inserting it before) to handle
-- properly the case of an unchecked union that is a record
-- component.
if Is_Unchecked_Union (Base_Type (U_Type)) then
Rewrite (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
Set_Etype (N, B_Type);
return;
end if;
if Has_Defaulted_Discriminants (U_Type) then
Build_Mutable_Record_Read_Procedure
(Full_Base (U_Type), Decl, Pname);
else
Build_Record_Read_Procedure
(Full_Base (U_Type), Decl, Pname);
end if;
Insert_Action (N, Decl);
end if;
end if;
Rewrite_Attribute_Proc_Call (Pname);
if not Has_TSS then
Cached_Streaming_Ops.Read_Map.Set (P_Type, Pname);
end if;
end Read;
---------
-- Ref --
---------
-- Ref is identical to To_Address, see To_Address for processing
---------------
-- Remainder --
---------------
-- Transforms 'Remainder into a call to the floating-point attribute
-- function Remainder in Fat_xxx (where xxx is the root type)
when Attribute_Remainder =>
Expand_Fpt_Attribute_RR (N);
------------
-- Result --
------------
-- Transform 'Result into reference to _Result formal. At the point
-- where a legal 'Result attribute is expanded, we know that we are in
-- the context of a _Postcondition function with a _Result parameter.
when Attribute_Result =>
Rewrite (N, Make_Identifier (Loc, Chars => Name_uResult));
Analyze_And_Resolve (N, Typ);
-----------
-- Round --
-----------
-- The handling of the Round attribute is delicate when the operand is
-- universal fixed. In this case, the processing in Sem_Attr introduced
-- a conversion to universal real, reflecting the semantics of Round,
-- but we do not want anything to do with universal real at run time,
-- since this corresponds to using floating-point arithmetic.
-- What we have now is that the Etype of the Round attribute correctly
-- indicates the final result type. The operand of the Round is the
-- conversion to universal real, described above, and the operand of
-- this conversion is the actual operand of Round, which may be the
-- special case of a fixed point multiplication or division.
-- The expander will expand first the operand of the conversion, then
-- the conversion, and finally the round attribute itself, since we
-- always work inside out. But we cannot simply process naively in this
-- order. In the semantic world where universal fixed and real really
-- exist and have infinite precision, there is no problem, but in the
-- implementation world, where universal real is a floating-point type,
-- we would get the wrong result.
-- So the approach is as follows. When expanding a multiply or divide
-- whose type is universal fixed, Fixup_Universal_Fixed_Operation will
-- look up and skip the conversion to universal real if its parent is
-- a Round attribute, taking information from this attribute node. In
-- the other cases, Expand_N_Type_Conversion does the same by looking
-- at its parent to see if it is a Round attribute, before calling the
-- fixed-point expansion routine.
-- This means that by the time we get to expanding the Round attribute
-- itself, the Round is nothing more than a type conversion (and will
-- often be a null type conversion), so we just replace it with the
-- appropriate conversion operation.
when Attribute_Round =>
if Etype (First (Exprs)) = Etype (N) then
Rewrite (N, Relocate_Node (First (Exprs)));
else
Rewrite (N, Convert_To (Etype (N), First (Exprs)));
Set_Rounded_Result (N);
end if;
Analyze_And_Resolve (N);
--------------
-- Rounding --
--------------
-- Transforms 'Rounding into a call to the floating-point attribute
-- function Rounding in Fat_xxx (where xxx is the root type)
-- Expansion is avoided for cases the back end can handle directly.
when Attribute_Rounding =>
if not Is_Inline_Floating_Point_Attribute (N) then
Expand_Fpt_Attribute_R (N);
end if;
-------------
-- Scaling --
-------------
-- Transforms 'Scaling into a call to the floating-point attribute
-- function Scaling in Fat_xxx (where xxx is the root type)
when Attribute_Scaling =>
Expand_Fpt_Attribute_RI (N);
----------------------------------------
-- Simple_Storage_Pool & Storage_Pool --
----------------------------------------
when Attribute_Simple_Storage_Pool | Attribute_Storage_Pool =>
Rewrite (N,
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
Expression => New_Occurrence_Of (Entity (N), Loc)));
Analyze_And_Resolve (N, Typ);
----------
-- Size --
----------
when Attribute_Object_Size
| Attribute_Size
| Attribute_Value_Size
| Attribute_VADS_Size
=>
Size : declare
New_Node : Node_Id;
begin
-- Processing for VADS_Size case. Note that this processing
-- removes all traces of VADS_Size from the tree, and completes
-- all required processing for VADS_Size by translating the
-- attribute reference to an appropriate Size or Object_Size
-- reference.
if Id = Attribute_VADS_Size
or else (Use_VADS_Size and then Id = Attribute_Size)
then
-- If the size is specified, then we simply use the specified
-- size. This applies to both types and objects. The size of an
-- object can be specified in the following ways:
-- An explicit size clause is given for an object
-- A component size is specified for an indexed component
-- A component clause is specified for a selected component
-- The object is a component of a packed composite object
-- If the size is specified, then VADS_Size of an object
if (Is_Entity_Name (Pref)
and then Present (Size_Clause (Entity (Pref))))
or else
(Nkind (Pref) = N_Component_Clause
and then (Present (Component_Clause
(Entity (Selector_Name (Pref))))
or else Is_Packed (Etype (Prefix (Pref)))))
or else
(Nkind (Pref) = N_Indexed_Component
and then (Known_Component_Size (Etype (Prefix (Pref)))
or else Is_Packed (Etype (Prefix (Pref)))))
then
Set_Attribute_Name (N, Name_Size);
-- Otherwise if we have an object rather than a type, then
-- the VADS_Size attribute applies to the type of the object,
-- rather than the object itself. This is one of the respects
-- in which VADS_Size differs from Size.
else
if (not Is_Entity_Name (Pref)
or else not Is_Type (Entity (Pref)))
and then (Is_Scalar_Type (Ptyp)
or else Is_Constrained (Ptyp))
then
Rewrite (Pref, New_Occurrence_Of (Ptyp, Loc));
end if;
-- For a scalar type for which no size was explicitly given,
-- VADS_Size means Object_Size. This is the other respect in
-- which VADS_Size differs from Size.
if Is_Scalar_Type (Ptyp)
and then No (Size_Clause (Ptyp))
then
Set_Attribute_Name (N, Name_Object_Size);
-- In all other cases, Size and VADS_Size are the same
else
Set_Attribute_Name (N, Name_Size);
end if;
end if;
end if;
-- If the prefix is X'Class, transform it into a direct reference
-- to the class-wide type, because the back end must not see a
-- 'Class reference.
if Is_Entity_Name (Pref)
and then Is_Class_Wide_Type (Entity (Pref))
then
Rewrite (Prefix (N), New_Occurrence_Of (Entity (Pref), Loc));
return;
-- For X'Size applied to an object of a class-wide type, transform
-- X'Size into a call to the primitive operation _Size applied to
-- X.
elsif Is_Class_Wide_Type (Ptyp) then
-- No need to do anything else compiling under restriction
-- No_Dispatching_Calls. During the semantic analysis we
-- already noted this restriction violation.
if Restriction_Active (No_Dispatching_Calls) then
return;
end if;
New_Node :=
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Find_Prim_Op (Ptyp, Name_uSize), Loc),
Parameter_Associations => New_List (Pref));
if Typ /= Standard_Long_Long_Integer then
-- The context is a specific integer type with which the
-- original attribute was compatible. The function has a
-- specific type as well, so to preserve the compatibility
-- we must convert explicitly.
New_Node := Convert_To (Typ, New_Node);
end if;
Rewrite (N, New_Node);
Analyze_And_Resolve (N, Typ);
return;
end if;
-- Call Expand_Size_Attribute to do the final part of the
-- expansion which is shared with GNATprove expansion.
Expand_Size_Attribute (N);
end Size;
------------------
-- Storage_Size --
------------------
when Attribute_Storage_Size => Storage_Size : declare
Alloc_Op : Entity_Id := Empty;
begin
-- Access type case, always go to the root type
-- The case of access types results in a value of zero for the case
-- where no storage size attribute clause has been given. If a
-- storage size has been given, then the attribute is converted
-- to a reference to the variable used to hold this value.
if Is_Access_Type (Ptyp) then
if Present (Storage_Size_Variable (Root_Type (Ptyp))) then
Rewrite (N,
Convert_To (Typ,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of
(Etype (Storage_Size_Variable (Root_Type (Ptyp))), Loc),
Attribute_Name => Name_Max,
Expressions => New_List (
Make_Integer_Literal (Loc, 0),
New_Occurrence_Of
(Storage_Size_Variable (Root_Type (Ptyp)), Loc)))));
elsif Present (Associated_Storage_Pool (Root_Type (Ptyp))) then
-- If the access type is associated with a simple storage pool
-- object, then attempt to locate the optional Storage_Size
-- function of the simple storage pool type. If not found,
-- then the result will default to zero.
if Present (Get_Rep_Pragma (Root_Type (Ptyp),
Name_Simple_Storage_Pool_Type))
then
declare
Pool_Type : constant Entity_Id :=
Base_Type (Etype (Entity (N)));
begin
Alloc_Op := Get_Name_Entity_Id (Name_Storage_Size);
while Present (Alloc_Op) loop
if Scope (Alloc_Op) = Scope (Pool_Type)
and then Present (First_Formal (Alloc_Op))
and then Etype (First_Formal (Alloc_Op)) = Pool_Type
then
exit;
end if;
Alloc_Op := Homonym (Alloc_Op);
end loop;
end;
-- In the normal Storage_Pool case, retrieve the primitive
-- function associated with the pool type.
else
Alloc_Op :=
Find_Prim_Op
(Etype (Associated_Storage_Pool (Root_Type (Ptyp))),
Attribute_Name (N));
end if;
-- If Storage_Size wasn't found (can only occur in the simple
-- storage pool case), then simply use zero for the result.
if No (Alloc_Op) then
Rewrite (N, Make_Integer_Literal (Loc, 0));
-- Otherwise, rewrite the allocator as a call to pool type's
-- Storage_Size function.
else
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Alloc_Op, Loc),
Parameter_Associations => New_List (
New_Occurrence_Of
(Associated_Storage_Pool
(Root_Type (Ptyp)), Loc)))));
end if;
else
Rewrite (N, Make_Integer_Literal (Loc, 0));
end if;
Analyze_And_Resolve (N, Typ);
-- For tasks, we retrieve the size directly from the TCB. The
-- size may depend on a discriminant of the type, and therefore
-- can be a per-object expression, so type-level information is
-- not sufficient in general. There are four cases to consider:
-- a) If the attribute appears within a task body, the designated
-- TCB is obtained by a call to Self.
-- b) If the prefix of the attribute is the name of a task object,
-- the designated TCB is the one stored in the corresponding record.
-- c) If the prefix is a task type, the size is obtained from the
-- size variable created for each task type
-- d) If no Storage_Size was specified for the type, there is no
-- size variable, and the value is a system-specific default.
else
if In_Open_Scopes (Ptyp) then
-- Storage_Size (Self)
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
Parameter_Associations =>
New_List (
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Self), Loc))))));
elsif not Is_Entity_Name (Pref)
or else not Is_Type (Entity (Pref))
then
-- Storage_Size (Rec (Obj).Size)
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Storage_Size), Loc),
Parameter_Associations =>
New_List (
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (
Corresponding_Record_Type (Ptyp),
New_Copy_Tree (Pref)),
Selector_Name =>
Make_Identifier (Loc, Name_uTask_Id))))));
elsif Present (Storage_Size_Variable (Ptyp)) then
-- Static Storage_Size pragma given for type: retrieve value
-- from its allocated storage variable.
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (
RTE (RE_Adjust_Storage_Size), Loc),
Parameter_Associations =>
New_List (
New_Occurrence_Of (
Storage_Size_Variable (Ptyp), Loc)))));
else
-- Get system default
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (
RTE (RE_Default_Stack_Size), Loc))));
end if;
Analyze_And_Resolve (N, Typ);
end if;
end Storage_Size;
-----------------
-- Stream_Size --
-----------------
when Attribute_Stream_Size =>
Rewrite (N,
Make_Integer_Literal (Loc, Intval => Get_Stream_Size (Ptyp)));
Analyze_And_Resolve (N, Typ);
----------
-- Succ --
----------
-- 1. Deal with enumeration types with holes.
-- 2. For floating-point, generate call to attribute function.
-- 3. For other cases, deal with constraint checking.
when Attribute_Succ => Succ : declare
Etyp : constant Entity_Id := Base_Type (Ptyp);
begin
-- For enumeration types with non-standard representations, we
-- expand typ'Pred (x) into:
-- Pos_To_Rep (Rep_To_Pos (x) + 1)
-- if the representation is non-contiguous, and just x + 1 if it is
-- after having dealt with constraint checking.
if Is_Enumeration_Type (Etyp)
and then Present (Enum_Pos_To_Rep (Etyp))
then
if Has_Contiguous_Rep (Etyp) then
if not Range_Checks_Suppressed (Ptyp) then
Set_Do_Range_Check (First (Exprs), False);
Expand_Pred_Succ_Attribute (N);
end if;
Rewrite (N,
Unchecked_Convert_To (Etyp,
Make_Op_Add (Loc,
Left_Opnd =>
Unchecked_Convert_To (
Integer_Type_For
(Esize (Etyp), Is_Unsigned_Type (Etyp)),
First (Exprs)),
Right_Opnd =>
Make_Integer_Literal (Loc, 1))));
else
-- Add Boolean parameter depending on check suppression
Append_To (Exprs, Rep_To_Pos_Flag (Ptyp, Loc));
Rewrite (N,
Make_Indexed_Component (Loc,
Prefix =>
New_Occurrence_Of
(Enum_Pos_To_Rep (Etyp), Loc),
Expressions => New_List (
Make_Op_Add (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(TSS (Etyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => Exprs),
Right_Opnd => Make_Integer_Literal (Loc, 1)))));
end if;
-- Suppress checks since they have all been done above
Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
-- For floating-point, we transform 'Succ into a call to the Succ
-- floating-point attribute function in Fat_xxx (xxx is root type).
-- Note that this function takes care of the overflow case.
elsif Is_Floating_Point_Type (Ptyp) then
Expand_Fpt_Attribute_R (N);
Analyze_And_Resolve (N, Typ);
-- For modular types, nothing to do (no overflow, since wraps)
elsif Is_Modular_Integer_Type (Ptyp) then
null;
-- For other types, if argument is marked as needing a range check or
-- overflow checking is enabled, we must generate a check.
elsif not Overflow_Checks_Suppressed (Ptyp)
or else Do_Range_Check (First (Exprs))
then
Set_Do_Range_Check (First (Exprs), False);
Expand_Pred_Succ_Attribute (N);
end if;
end Succ;
---------
-- Tag --
---------
-- Transforms X'Tag into a direct reference to the tag of X
when Attribute_Tag => Tag : declare
Ttyp : Entity_Id;
Prefix_Is_Type : Boolean;
begin
if Is_Entity_Name (Pref) and then Is_Type (Entity (Pref)) then
Ttyp := Entity (Pref);
Prefix_Is_Type := True;
else
Ttyp := Ptyp;
Prefix_Is_Type := False;
end if;
-- In the case of a class-wide equivalent type without a parent,
-- the _Tag component has been built in Make_CW_Equivalent_Type
-- manually and must be referenced directly.
if Ekind (Ttyp) = E_Class_Wide_Subtype
and then Present (Equivalent_Type (Ttyp))
and then No (Parent_Subtype (Equivalent_Type (Ttyp)))
then
Ttyp := Equivalent_Type (Ttyp);
-- In all the other cases of class-wide type, including an equivalent
-- type with a parent, the _Tag component ultimately present is that
-- of the root type.
elsif Is_Class_Wide_Type (Ttyp) then
Ttyp := Root_Type (Ttyp);
end if;
Ttyp := Underlying_Type (Ttyp);
-- Ada 2005: The type may be a synchronized tagged type, in which
-- case the tag information is stored in the corresponding record.
if Is_Concurrent_Type (Ttyp) then
Ttyp := Corresponding_Record_Type (Ttyp);
end if;
if Prefix_Is_Type then
-- For VMs we leave the type attribute unexpanded because
-- there's not a dispatching table to reference.
if Tagged_Type_Expansion then
Rewrite (N,
Unchecked_Convert_To (RTE (RE_Tag),
New_Occurrence_Of
(Node (First_Elmt (Access_Disp_Table (Ttyp))), Loc)));
Analyze_And_Resolve (N, RTE (RE_Tag));
end if;
-- Ada 2005 (AI-251): The use of 'Tag in the sources always
-- references the primary tag of the actual object. If 'Tag is
-- applied to class-wide interface objects we generate code that
-- displaces "this" to reference the base of the object.
elsif Comes_From_Source (N)
and then Is_Class_Wide_Type (Etype (Prefix (N)))
and then Is_Interface (Underlying_Type (Etype (Prefix (N))))
then
-- Generate:
-- (To_Tag_Ptr (Prefix'Address)).all
-- Note that Prefix'Address is recursively expanded into a call
-- to Base_Address (Obj.Tag)
-- Not needed for VM targets, since all handled by the VM
if Tagged_Type_Expansion then
Rewrite (N,
Make_Explicit_Dereference (Loc,
Unchecked_Convert_To (RTE (RE_Tag_Ptr),
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Pref),
Attribute_Name => Name_Address))));
Analyze_And_Resolve (N, RTE (RE_Tag));
end if;
else
Rewrite (N,
Make_Selected_Component (Loc,
Prefix => Relocate_Node (Pref),
Selector_Name =>
New_Occurrence_Of (First_Tag_Component (Ttyp), Loc)));
Analyze_And_Resolve (N, RTE (RE_Tag));
end if;
end Tag;
----------------
-- Terminated --
----------------
-- Transforms 'Terminated attribute into a call to Terminated function
when Attribute_Terminated => Terminated : begin
-- The prefix of Terminated is of a task interface class-wide type.
-- Generate:
-- terminated (Task_Id (_disp_get_task_id (Pref)));
if Ada_Version >= Ada_2005
and then Ekind (Ptyp) = E_Class_Wide_Type
and then Is_Interface (Ptyp)
and then Is_Task_Interface (Ptyp)
then
Rewrite (N,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Terminated), Loc),
Parameter_Associations => New_List (
Unchecked_Convert_To
(RTE (RO_ST_Task_Id),
Build_Disp_Get_Task_Id_Call (Pref)))));
elsif Restricted_Profile then
Rewrite (N,
Build_Call_With_Task (Pref, RTE (RE_Restricted_Terminated)));
else
Rewrite (N,
Build_Call_With_Task (Pref, RTE (RE_Terminated)));
end if;
Analyze_And_Resolve (N, Standard_Boolean);
end Terminated;
----------------
-- To_Address --
----------------
-- Transforms System'To_Address (X) and System.Address'Ref (X) into
-- unchecked conversion from (integral) type of X to type address. If
-- the To_Address is a static expression, the transformed expression
-- also needs to be static, because we do some legality checks (e.g.
-- for Thread_Local_Storage) after this transformation.
when Attribute_Ref
| Attribute_To_Address
=>
To_Address : declare
Is_Static : constant Boolean := Is_Static_Expression (N);
begin
Rewrite (N,
Unchecked_Convert_To (RTE (RE_Address),
Relocate_Node (First (Exprs))));
Set_Is_Static_Expression (N, Is_Static);
Analyze_And_Resolve (N, RTE (RE_Address));
end To_Address;
------------
-- To_Any --
------------
when Attribute_To_Any => To_Any : declare
Decls : constant List_Id := New_List;
begin
Rewrite (N,
Build_To_Any_Call
(Loc,
Convert_To (Ptyp,
Relocate_Node (First (Exprs))), Decls));
Insert_Actions (N, Decls);
Analyze_And_Resolve (N, RTE (RE_Any));
end To_Any;
----------------
-- Truncation --
----------------
-- Transforms 'Truncation into a call to the floating-point attribute
-- function Truncation in Fat_xxx (where xxx is the root type).
-- Expansion is avoided for cases the back end can handle directly.
when Attribute_Truncation =>
if not Is_Inline_Floating_Point_Attribute (N) then
Expand_Fpt_Attribute_R (N);
end if;
--------------
-- TypeCode --
--------------
when Attribute_TypeCode => TypeCode : declare
Decls : constant List_Id := New_List;
begin
Rewrite (N, Build_TypeCode_Call (Loc, Ptyp, Decls));
Insert_Actions (N, Decls);
Analyze_And_Resolve (N, RTE (RE_TypeCode));
end TypeCode;
-----------------------
-- Unbiased_Rounding --
-----------------------
-- Transforms 'Unbiased_Rounding into a call to the floating-point
-- attribute function Unbiased_Rounding in Fat_xxx (where xxx is the
-- root type). Expansion is avoided for cases the back end can handle
-- directly.
when Attribute_Unbiased_Rounding =>
if not Is_Inline_Floating_Point_Attribute (N) then
Expand_Fpt_Attribute_R (N);
end if;
------------
-- Update --
------------
when Attribute_Update =>
Expand_Update_Attribute (N);
---------------
-- VADS_Size --
---------------
-- The processing for VADS_Size is shared with Size
---------
-- Val --
---------
-- For enumeration types with a non-standard representation we use the
-- _Pos_To_Rep array that was created when the type was frozen, unless
-- the representation is contiguous in which case we use an addition.
-- For enumeration types with a standard representation, Val can be
-- rewritten as a simple conversion with Conversion_OK set.
-- For integer types, Val is equivalent to a simple integer conversion
-- and we rewrite it as such.
when Attribute_Val => Val : declare
Etyp : constant Entity_Id := Base_Type (Ptyp);
Expr : constant Node_Id := First (Exprs);
Rtyp : Entity_Id;
begin
-- Case of enumeration type
if Is_Enumeration_Type (Etyp) then
-- Non-contiguous non-standard enumeration type
if Present (Enum_Pos_To_Rep (Etyp))
and then not Has_Contiguous_Rep (Etyp)
then
Rewrite (N,
Make_Indexed_Component (Loc,
Prefix =>
New_Occurrence_Of (Enum_Pos_To_Rep (Etyp), Loc),
Expressions => New_List (
Convert_To (Standard_Integer, Expr))));
Analyze_And_Resolve (N, Typ);
-- Standard or contiguous non-standard enumeration type
else
-- If the argument is marked as requiring a range check then
-- generate it here, after looking through a conversion to
-- universal integer, if any.
if Do_Range_Check (Expr) then
if Present (Enum_Pos_To_Rep (Etyp)) then
Rtyp := Enum_Pos_To_Rep (Etyp);
else
Rtyp := Etyp;
end if;
if Nkind (Expr) = N_Type_Conversion
and then Entity (Subtype_Mark (Expr)) = Universal_Integer
then
Generate_Range_Check
(Expression (Expr), Rtyp, CE_Range_Check_Failed);
else
Generate_Range_Check (Expr, Rtyp, CE_Range_Check_Failed);
end if;
Set_Do_Range_Check (Expr, False);
end if;
-- Contiguous non-standard enumeration type
if Present (Enum_Pos_To_Rep (Etyp)) then
Rewrite (N,
Unchecked_Convert_To (Etyp,
Make_Op_Add (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Enumeration_Rep (First_Literal (Etyp))),
Right_Opnd =>
Unchecked_Convert_To (
Integer_Type_For
(Esize (Etyp), Is_Unsigned_Type (Etyp)),
Expr))));
-- Standard enumeration type
else
Rewrite (N, OK_Convert_To (Typ, Expr));
end if;
-- Suppress checks since the range check was done above
-- and it guarantees that the addition cannot overflow.
Analyze_And_Resolve (N, Typ, Suppress => All_Checks);
end if;
-- Deal with integer types
elsif Is_Integer_Type (Etyp) then
Rewrite (N, Convert_To (Typ, Expr));
Analyze_And_Resolve (N, Typ);
end if;
end Val;
-----------
-- Valid --
-----------
-- The code for valid is dependent on the particular types involved.
-- See separate sections below for the generated code in each case.
when Attribute_Valid => Valid : declare
PBtyp : Entity_Id := Implementation_Base_Type (Validated_View (Ptyp));
pragma Assert (Is_Scalar_Type (PBtyp)
or else Serious_Errors_Detected > 0);
-- The scalar base type, looking through private types
Save_Validity_Checks_On : constant Boolean := Validity_Checks_On;
-- Save the validity checking mode. We always turn off validity
-- checking during process of 'Valid since this is one place
-- where we do not want the implicit validity checks to interfere
-- with the explicit validity check that the programmer is doing.
function Make_Range_Test return Node_Id;
-- Build the code for a range test of the form
-- PBtyp!(Pref) in PBtyp!(Ptyp'First) .. PBtyp!(Ptyp'Last)
---------------------
-- Make_Range_Test --
---------------------
function Make_Range_Test return Node_Id is
Temp : Node_Id;
begin
-- The prefix of attribute 'Valid should always denote an object
-- reference. The reference is either coming directly from source
-- or is produced by validity check expansion. The object may be
-- wrapped in a conversion in which case the call to Unqual_Conv
-- will yield it.
-- If the prefix denotes a variable which captures the value of
-- an object for validation purposes, use the variable in the
-- range test. This ensures that no extra copies or extra reads
-- are produced as part of the test. Generate:
-- Temp : ... := Object;
-- if not Temp in ... then
if Is_Validation_Variable_Reference (Pref) then
Temp := New_Occurrence_Of (Entity (Unqual_Conv (Pref)), Loc);
-- Otherwise the prefix is either a source object or a constant
-- produced by validity check expansion. Generate:
-- Temp : constant ... := Pref;
-- if not Temp in ... then
else
Temp := Duplicate_Subexpr (Pref);
end if;
declare
Val_Typ : constant Entity_Id := Validated_View (Ptyp);
begin
return
Make_In (Loc,
Left_Opnd => Unchecked_Convert_To (PBtyp, Temp),
Right_Opnd =>
Make_Range (Loc,
Low_Bound =>
Unchecked_Convert_To (PBtyp,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Val_Typ, Loc),
Attribute_Name => Name_First)),
High_Bound =>
Unchecked_Convert_To (PBtyp,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Val_Typ, Loc),
Attribute_Name => Name_Last))));
end;
end Make_Range_Test;
-- Local variables
Tst : Node_Id;
-- Start of processing for Attribute_Valid
begin
-- Do not expand sourced code 'Valid reference in CodePeer mode,
-- will be handled by the back-end directly.
if CodePeer_Mode and then Comes_From_Source (N) then
return;
end if;
-- Turn off validity checks. We do not want any implicit validity
-- checks to intefere with the explicit check from the attribute
Validity_Checks_On := False;
-- Floating-point case. This case is handled by the Valid attribute
-- code in the floating-point attribute run-time library.
if Is_Floating_Point_Type (Ptyp) then
Float_Valid : declare
Pkg : RE_Id;
Ftp : Entity_Id;
function Get_Fat_Entity (Nam : Name_Id) return Entity_Id;
-- Return entity for Pkg.Nam
--------------------
-- Get_Fat_Entity --
--------------------
function Get_Fat_Entity (Nam : Name_Id) return Entity_Id is
Exp_Name : constant Node_Id :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (RTE (Pkg), Loc),
Selector_Name => Make_Identifier (Loc, Nam));
begin
Find_Selected_Component (Exp_Name);
return Entity (Exp_Name);
end Get_Fat_Entity;
-- Start of processing for Float_Valid
begin
-- The C back end handles Valid for floating-point types
if Modify_Tree_For_C then
Analyze_And_Resolve (Pref, Ptyp);
Set_Etype (N, Standard_Boolean);
Set_Analyzed (N);
else
Find_Fat_Info (Ptyp, Ftp, Pkg);
-- If the prefix is a reverse SSO component, or is possibly
-- unaligned, first create a temporary copy that is in
-- native SSO, and properly aligned. Make it Volatile to
-- prevent folding in the back-end. Note that we use an
-- intermediate constrained string type to initialize the
-- temporary, as the value at hand might be invalid, and in
-- that case it cannot be copied using a floating point
-- register.
if In_Reverse_Storage_Order_Object (Pref)
or else Is_Possibly_Unaligned_Object (Pref)
then
declare
Temp : constant Entity_Id :=
Make_Temporary (Loc, 'F');
Fat_S : constant Entity_Id :=
Get_Fat_Entity (Name_S);
-- Constrained string subtype of appropriate size
Fat_P : constant Entity_Id :=
Get_Fat_Entity (Name_P);
-- Access to Fat_S
Decl : constant Node_Id :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Aliased_Present => True,
Object_Definition =>
New_Occurrence_Of (Ptyp, Loc));
begin
Set_Aspect_Specifications (Decl, New_List (
Make_Aspect_Specification (Loc,
Identifier =>
Make_Identifier (Loc, Name_Volatile))));
Insert_Actions (N,
New_List (
Decl,
Make_Assignment_Statement (Loc,
Name =>
Make_Explicit_Dereference (Loc,
Prefix =>
Unchecked_Convert_To (Fat_P,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Temp, Loc),
Attribute_Name =>
Name_Unrestricted_Access))),
Expression =>
Unchecked_Convert_To (Fat_S,
Relocate_Node (Pref)))),
Suppress => All_Checks);
Rewrite (Pref, New_Occurrence_Of (Temp, Loc));
end;
end if;
-- We now have an object of the proper endianness and
-- alignment, and can construct a Valid attribute.
-- We make sure the prefix of this valid attribute is
-- marked as not coming from source, to avoid losing
-- warnings from 'Valid looking like a possible update.
Set_Comes_From_Source (Pref, False);
Expand_Fpt_Attribute
(N, Pkg, Name_Valid,
New_List (
Make_Attribute_Reference (Loc,
Prefix => Unchecked_Convert_To (Ftp, Pref),
Attribute_Name => Name_Unrestricted_Access)));
end if;
-- One more task, we still need a range check. Required
-- only if we have a constraint, since the Valid routine
-- catches infinities properly (infinities are never valid).
-- The way we do the range check is simply to create the
-- expression: Valid (N) and then Base_Type(Pref) in Typ.
if not Subtypes_Statically_Match (Ptyp, PBtyp) then
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (N),
Right_Opnd =>
Make_In (Loc,
Left_Opnd => Convert_To (PBtyp, Pref),
Right_Opnd => New_Occurrence_Of (Ptyp, Loc))));
end if;
end Float_Valid;
-- Enumeration type with holes
-- For enumeration types with holes, the Pos value constructed by
-- the Enum_Rep_To_Pos function built in Exp_Ch3 called with a
-- second argument of False returns minus one for an invalid value,
-- and the non-negative pos value for a valid value, so the
-- expansion of X'Valid is simply:
-- type(X)'Pos (X) >= 0
-- We can't quite generate it that way because of the requirement
-- for the non-standard second argument of False in the resulting
-- rep_to_pos call, so we have to explicitly create:
-- _rep_to_pos (X, False) >= 0
-- If we have an enumeration subtype, we also check that the
-- value is in range:
-- _rep_to_pos (X, False) >= 0
-- and then
-- (X >= type(X)'First and then type(X)'Last <= X)
elsif Is_Enumeration_Type (Ptyp)
and then Present (Enum_Pos_To_Rep (PBtyp))
then
Tst :=
Make_Op_Ge (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (TSS (PBtyp, TSS_Rep_To_Pos), Loc),
Parameter_Associations => New_List (
Pref,
New_Occurrence_Of (Standard_False, Loc))),
Right_Opnd => Make_Integer_Literal (Loc, 0));
-- Skip the range test for boolean types, as it buys us
-- nothing. The function called above already fails for
-- values different from both True and False.
if Ptyp /= PBtyp and then not Is_Boolean_Type (PBtyp)
and then
(Type_Low_Bound (Ptyp) /= Type_Low_Bound (PBtyp)
or else
Type_High_Bound (Ptyp) /= Type_High_Bound (PBtyp))
then
-- The call to Make_Range_Test will create declarations
-- that need a proper insertion point, but Pref is now
-- attached to a node with no ancestor. Attach to tree
-- even if it is to be rewritten below.
Set_Parent (Tst, Parent (N));
Tst :=
Make_And_Then (Loc,
Left_Opnd => Make_Range_Test,
Right_Opnd => Tst);
end if;
Rewrite (N, Tst);
-- Fortran convention booleans
-- For the very special case of Fortran convention booleans, the
-- value is always valid, since it is an integer with the semantics
-- that non-zero is true, and any value is permissible.
elsif Is_Boolean_Type (Ptyp)
and then Convention (Ptyp) = Convention_Fortran
then
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
-- For biased representations, we will be doing an unchecked
-- conversion without unbiasing the result. That means that the range
-- test has to take this into account, and the proper form of the
-- test is:
-- PBtyp!(Pref) < PBtyp!(Ptyp'Range_Length)
elsif Has_Biased_Representation (Ptyp) then
PBtyp := RTE (RE_Unsigned_32);
Rewrite (N,
Make_Op_Lt (Loc,
Left_Opnd =>
Unchecked_Convert_To (PBtyp, Duplicate_Subexpr (Pref)),
Right_Opnd =>
Unchecked_Convert_To (PBtyp,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ptyp, Loc),
Attribute_Name => Name_Range_Length))));
-- For all other scalar types, what we want logically is a
-- range test:
-- X in type(X)'First .. type(X)'Last
-- But that's precisely what won't work because of possible
-- unwanted optimization (and indeed the basic motivation for
-- the Valid attribute is exactly that this test does not work).
-- What will work is:
-- PBtyp!(X) >= PBtyp!(type(X)'First)
-- and then
-- PBtyp!(X) <= PBtyp!(type(X)'Last)
-- where PBtyp is an integer type large enough to cover the full
-- range of possible stored values (i.e. it is chosen on the basis
-- of the size of the type, not the range of the values). We write
-- this as two tests, rather than a range check, so that static
-- evaluation will easily remove either or both of the checks if
-- they can be statically determined to be true (this happens
-- when the type of X is static and the range extends to the full
-- range of stored values).
-- Unsigned types. Note: it is safe to consider only whether the
-- subtype is unsigned, since we will in that case be doing all
-- unsigned comparisons based on the subtype range. Since we use the
-- actual subtype object size, this is appropriate.
-- For example, if we have
-- subtype x is integer range 1 .. 200;
-- for x'Object_Size use 8;
-- Now the base type is signed, but objects of this type are bits
-- unsigned, and doing an unsigned test of the range 1 to 200 is
-- correct, even though a value greater than 127 looks signed to a
-- signed comparison.
else
declare
Uns : constant Boolean :=
Is_Unsigned_Type (Ptyp)
or else (Is_Private_Type (Ptyp)
and then Is_Unsigned_Type (PBtyp));
Size : Uint;
P : Node_Id := Pref;
begin
-- If the prefix is an object, use the Esize from this object
-- to handle in a more user friendly way the case of objects
-- or components with a large Size aspect: if a Size aspect is
-- specified, we want to read a scalar value as large as the
-- Size, unless the Size is larger than
-- System_Max_Integer_Size.
if Nkind (P) = N_Selected_Component then
P := Selector_Name (P);
end if;
if Nkind (P) in N_Has_Entity
and then Present (Entity (P))
and then Is_Object (Entity (P))
and then Known_Esize (Entity (P))
then
if Esize (Entity (P)) <= System_Max_Integer_Size then
Size := Esize (Entity (P));
else
Size := UI_From_Int (System_Max_Integer_Size);
end if;
else
Size := Esize (Ptyp);
end if;
PBtyp := Small_Integer_Type_For (Size, Uns);
Rewrite (N, Make_Range_Test);
end;
end if;
-- If a predicate is present, then we do the predicate test, even if
-- within the predicate function (infinite recursion is warned about
-- in Sem_Attr in that case).
declare
Pred_Func : constant Entity_Id := Predicate_Function (Ptyp);
begin
if Present (Pred_Func) then
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (N),
Right_Opnd => Make_Predicate_Call (Ptyp, Pref)));
end if;
end;
Analyze_And_Resolve (N, Standard_Boolean);
Validity_Checks_On := Save_Validity_Checks_On;
end Valid;
-----------------
-- Valid_Value --
-----------------
when Attribute_Valid_Value =>
Exp_Imgv.Expand_Valid_Value_Attribute (N);
-------------------
-- Valid_Scalars --
-------------------
when Attribute_Valid_Scalars => Valid_Scalars : declare
Val_Typ : constant Entity_Id := Validated_View (Ptyp);
Expr : Node_Id;
begin
-- Assume that the prefix does not need validation
Expr := Empty;
-- Attribute 'Valid_Scalars is not supported on private tagged types;
-- see a detailed explanation where this attribute is analyzed.
if Is_Private_Type (Ptyp) and then Is_Tagged_Type (Ptyp) then
null;
-- Attribute 'Valid_Scalars evaluates to True when the type lacks
-- scalars.
elsif not Scalar_Part_Present (Val_Typ) then
null;
-- Attribute 'Valid_Scalars is the same as attribute 'Valid when the
-- validated type is a scalar type. Generate:
-- Val_Typ (Pref)'Valid
elsif Is_Scalar_Type (Val_Typ) then
Expr :=
Make_Attribute_Reference (Loc,
Prefix =>
Unchecked_Convert_To (Val_Typ, New_Copy_Tree (Pref)),
Attribute_Name => Name_Valid);
-- Required by LLVM although the sizes are the same???
if Nkind (Prefix (Expr)) = N_Unchecked_Type_Conversion then
Set_No_Truncation (Prefix (Expr));
end if;
-- Validate the scalar components of an array by iterating over all
-- dimensions of the array while checking individual components.
elsif Is_Array_Type (Val_Typ) then
Expr :=
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(Build_Array_VS_Func
(Attr => N,
Formal_Typ => Ptyp,
Array_Typ => Val_Typ),
Loc),
Parameter_Associations => New_List (Pref));
-- Validate the scalar components, discriminants of a record type by
-- examining the structure of a record type.
elsif Is_Record_Type (Val_Typ) then
Expr :=
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(Build_Record_VS_Func
(Attr => N,
Formal_Typ => Ptyp,
Rec_Typ => Val_Typ),
Loc),
Parameter_Associations => New_List (Pref));
end if;
-- Default the attribute to True when the type of the prefix does not
-- need validation.
if No (Expr) then
Expr := New_Occurrence_Of (Standard_True, Loc);
end if;
Rewrite (N, Expr);
Analyze_And_Resolve (N, Standard_Boolean);
Set_Is_Static_Expression (N, False);
end Valid_Scalars;
-----------
-- Value --
-----------
when Attribute_Value =>
Exp_Imgv.Expand_Value_Attribute (N);
-----------------
-- Value_Size --
-----------------
-- The processing for Value_Size shares the processing for Size
-------------
-- Version --
-------------
-- The processing for Version shares the processing for Body_Version
----------------
-- Wide_Image --
----------------
when Attribute_Wide_Image =>
-- Leave attribute unexpanded in CodePeer mode: the gnat2scil
-- back-end knows how to handle this attribute directly.
if CodePeer_Mode then
return;
end if;
Exp_Imgv.Expand_Wide_Image_Attribute (N);
---------------------
-- Wide_Wide_Image --
---------------------
when Attribute_Wide_Wide_Image =>
-- Leave attribute unexpanded in CodePeer mode: the gnat2scil
-- back-end knows how to handle this attribute directly.
if CodePeer_Mode then
return;
end if;
Exp_Imgv.Expand_Wide_Wide_Image_Attribute (N);
----------------
-- Wide_Value --
----------------
-- We expand typ'Wide_Value (X) into
-- typ'Value
-- (Wide_String_To_String (X, Wide_Character_Encoding_Method))
-- Wide_String_To_String is a runtime function that converts its wide
-- string argument to String, converting any non-translatable characters
-- into appropriate escape sequences. This preserves the required
-- semantics of Wide_Value in all cases, and results in a very simple
-- implementation approach.
-- Note: for this approach to be fully standard compliant for the cases
-- where typ is Wide_Character and Wide_Wide_Character, the encoding
-- method must cover the entire character range (e.g. UTF-8). But that
-- is a reasonable requirement when dealing with encoded character
-- sequences. Presumably if one of the restrictive encoding mechanisms
-- is in use such as Shift-JIS, then characters that cannot be
-- represented using this encoding will not appear in any case.
when Attribute_Wide_Value =>
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Pref,
Attribute_Name => Name_Value,
Expressions => New_List (
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Wide_String_To_String), Loc),
Parameter_Associations => New_List (
Relocate_Node (First (Exprs)),
Make_Integer_Literal (Loc,
Intval => Int (Wide_Character_Encoding_Method)))))));
Analyze_And_Resolve (N, Typ);
---------------------
-- Wide_Wide_Value --
---------------------
-- We expand typ'Wide_Value_Value (X) into
-- typ'Value
-- (Wide_Wide_String_To_String (X, Wide_Character_Encoding_Method))
-- See Wide_Value for more information. This is not quite right where
-- typ = Wide_Wide_Character, because the encoding method may not cover
-- the whole character type.
when Attribute_Wide_Wide_Value =>
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Pref,
Attribute_Name => Name_Value,
Expressions => New_List (
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(RTE (RE_Wide_Wide_String_To_String), Loc),
Parameter_Associations => New_List (
Relocate_Node (First (Exprs)),
Make_Integer_Literal (Loc,
Intval => Int (Wide_Character_Encoding_Method)))))));
Analyze_And_Resolve (N, Typ);
---------------------
-- Wide_Wide_Width --
---------------------
when Attribute_Wide_Wide_Width =>
Exp_Imgv.Expand_Width_Attribute (N, Wide_Wide);
----------------
-- Wide_Width --
----------------
when Attribute_Wide_Width =>
Exp_Imgv.Expand_Width_Attribute (N, Wide);
-----------
-- Width --
-----------
when Attribute_Width =>
Exp_Imgv.Expand_Width_Attribute (N, Normal);
-----------
-- Write --
-----------
when Attribute_Write => Write : declare
P_Type : constant Entity_Id := Entity (Pref);
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Has_TSS : Boolean := False;
Pname : Entity_Id;
Decl : Node_Id;
Prag : Node_Id;
Arg3 : Node_Id;
Wfunc : Node_Id;
begin
-- If no underlying type, we have an error that will be diagnosed
-- elsewhere, so here we just completely ignore the expansion.
if No (U_Type) then
return;
end if;
-- Stream operations can appear in user code even if the restriction
-- No_Streams is active (for example, when instantiating a predefined
-- container). In that case rewrite the attribute as a Raise to
-- prevent any run-time use.
if Restriction_Active (No_Streams) then
Rewrite (N,
Make_Raise_Program_Error (Sloc (N),
Reason => PE_Stream_Operation_Not_Allowed));
Set_Etype (N, U_Type);
return;
end if;
-- The simple case, if there is a TSS for Write, just call it
Pname := Find_Stream_Subprogram (P_Type, TSS_Stream_Write, N);
if Present (Pname) then
Has_TSS := True;
else
-- If there is a Stream_Convert pragma, use it, we rewrite
-- sourcetyp'Output (stream, Item)
-- as
-- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
-- where strmwrite is the given Write function that converts an
-- argument of type sourcetyp or a type acctyp, from which it is
-- derived to type strmtyp. The conversion to acttyp is required
-- for the derived case.
Prag := Get_Stream_Convert_Pragma (P_Type);
if Present (Prag) then
Arg3 :=
Next (Next (First (Pragma_Argument_Associations (Prag))));
Wfunc := Entity (Expression (Arg3));
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Etype (Wfunc), Loc),
Attribute_Name => Name_Output,
Expressions => New_List (
Relocate_Node (First (Exprs)),
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Wfunc, Loc),
Parameter_Associations => New_List (
OK_Convert_To (Etype (First_Formal (Wfunc)),
Relocate_Node (Next (First (Exprs)))))))));
Analyze (N);
return;
-- Limited types
elsif Default_Streaming_Unavailable (U_Type) then
-- Do the same thing here as is done above in the
-- case where a No_Streams restriction is active.
Rewrite (N,
Make_Raise_Program_Error (Sloc (N),
Reason => PE_Stream_Operation_Not_Allowed));
Set_Etype (N, U_Type);
return;
-- For elementary types, we call the W_xxx routine directly
elsif Is_Elementary_Type (U_Type) then
Rewrite (N, Build_Elementary_Write_Call (N));
Analyze (N);
return;
-- Array type case
elsif Is_Array_Type (U_Type) then
Build_Array_Write_Procedure (U_Type, Decl, Pname);
Compile_Stream_Body_In_Scope (N, Decl, U_Type);
-- Tagged type case, use the primitive Write function. Note that
-- this will dispatch in the class-wide case which is what we want
elsif Is_Tagged_Type (U_Type) then
Pname := Find_Prim_Op (U_Type, TSS_Stream_Write);
-- All other record type cases, including protected records.
-- The latter only arise for expander generated code for
-- handling shared passive partition access.
else
pragma Assert
(Is_Record_Type (U_Type) or else Is_Protected_Type (U_Type));
-- Ada 2005 (AI-216): Program_Error is raised when executing
-- the default implementation of the Write attribute of an
-- Unchecked_Union type. However, if the 'Write reference is
-- within the generated Output stream procedure, Write outputs
-- the components, and the default values of the discriminant
-- are streamed by the Output procedure itself. If there are
-- no default values this is also erroneous.
if Is_Unchecked_Union (Base_Type (U_Type)) then
if (not Is_TSS (Current_Scope, TSS_Stream_Output)
and not Is_TSS (Current_Scope, TSS_Stream_Write))
or else No (Discriminant_Default_Value
(First_Discriminant (U_Type)))
then
Rewrite (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
Set_Etype (N, U_Type);
return;
end if;
end if;
if Has_Defaulted_Discriminants (U_Type) then
Build_Mutable_Record_Write_Procedure
(Full_Base (U_Type), Decl, Pname);
else
Build_Record_Write_Procedure
(Full_Base (U_Type), Decl, Pname);
end if;
Insert_Action (N, Decl);
end if;
end if;
-- If we fall through, Pname is the procedure to be called
Rewrite_Attribute_Proc_Call (Pname);
if not Has_TSS then
Cached_Streaming_Ops.Write_Map.Set (P_Type, Pname);
end if;
end Write;
-- The following attributes are handled by the back end (except that
-- static cases have already been evaluated during semantic processing,
-- but in any case the back end should not count on this).
when Attribute_Code_Address
| Attribute_Deref
| Attribute_Null_Parameter
| Attribute_Passed_By_Reference
| Attribute_Pool_Address
=>
null;
-- The following attributes should not appear at this stage, since they
-- have already been handled by the analyzer (and properly rewritten
-- with corresponding values or entities to represent the right values).
when Attribute_Abort_Signal
| Attribute_Address_Size
| Attribute_Aft
| Attribute_Atomic_Always_Lock_Free
| Attribute_Base
| Attribute_Bit_Order
| Attribute_Class
| Attribute_Compiler_Version
| Attribute_Default_Bit_Order
| Attribute_Default_Scalar_Storage_Order
| Attribute_Definite
| Attribute_Delta
| Attribute_Denorm
| Attribute_Digits
| Attribute_Emax
| Attribute_Enabled
| Attribute_Epsilon
| Attribute_Fast_Math
| Attribute_First_Valid
| Attribute_Has_Access_Values
| Attribute_Has_Discriminants
| Attribute_Has_Tagged_Values
| Attribute_Large
| Attribute_Last_Valid
| Attribute_Library_Level
| Attribute_Machine_Emax
| Attribute_Machine_Emin
| Attribute_Machine_Mantissa
| Attribute_Machine_Overflows
| Attribute_Machine_Radix
| Attribute_Machine_Rounds
| Attribute_Max_Alignment_For_Allocation
| Attribute_Max_Integer_Size
| Attribute_Maximum_Alignment
| Attribute_Model_Emin
| Attribute_Model_Epsilon
| Attribute_Model_Mantissa
| Attribute_Model_Small
| Attribute_Modulus
| Attribute_Partition_ID
| Attribute_Range
| Attribute_Restriction_Set
| Attribute_Safe_Emax
| Attribute_Safe_First
| Attribute_Safe_Large
| Attribute_Safe_Last
| Attribute_Safe_Small
| Attribute_Scalar_Storage_Order
| Attribute_Scale
| Attribute_Signed_Zeros
| Attribute_Small
| Attribute_Small_Denominator
| Attribute_Small_Numerator
| Attribute_Storage_Unit
| Attribute_Stub_Type
| Attribute_System_Allocator_Alignment
| Attribute_Target_Name
| Attribute_Type_Class
| Attribute_Type_Key
| Attribute_Unconstrained_Array
| Attribute_Universal_Literal_String
| Attribute_Wchar_T_Size
| Attribute_Word_Size
=>
raise Program_Error;
end case;
-- Note: as mentioned earlier, individual sections of the above case
-- statement assume there is no code after the case statement, and are
-- legitimately allowed to execute return statements if they have nothing
-- more to do, so DO NOT add code at this point.
exception
when RE_Not_Available =>
return;
end Expand_N_Attribute_Reference;
--------------------------------
-- Expand_Pred_Succ_Attribute --
--------------------------------
-- For typ'Pred (exp), we generate the check
-- [constraint_error when exp = typ'Base'First]
-- Similarly, for typ'Succ (exp), we generate the check
-- [constraint_error when exp = typ'Base'Last]
-- These checks are not generated for modular types, since the proper
-- semantics for Succ and Pred on modular types is to wrap, not raise CE.
-- We also suppress these checks if we are the right side of an assignment
-- statement or the expression of an object declaration, where the flag
-- Suppress_Assignment_Checks is set for the assignment/declaration.
procedure Expand_Pred_Succ_Attribute (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
P : constant Node_Id := Parent (N);
Cnam : Name_Id;
begin
if Attribute_Name (N) = Name_Pred then
Cnam := Name_First;
else
Cnam := Name_Last;
end if;
if Nkind (P) not in N_Assignment_Statement | N_Object_Declaration
or else not Suppress_Assignment_Checks (P)
then
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
Duplicate_Subexpr_Move_Checks (First (Expressions (N))),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Base_Type (Etype (Prefix (N))), Loc),
Attribute_Name => Cnam)),
Reason => CE_Overflow_Check_Failed));
end if;
end Expand_Pred_Succ_Attribute;
---------------------------
-- Expand_Size_Attribute --
---------------------------
procedure Expand_Size_Attribute (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Pref : constant Node_Id := Prefix (N);
Ptyp : constant Entity_Id := Etype (Pref);
Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
Siz : Uint;
begin
-- Case of known RM_Size of a type
if Id in Attribute_Size | Attribute_Value_Size
and then Is_Entity_Name (Pref)
and then Is_Type (Entity (Pref))
and then Known_Static_RM_Size (Entity (Pref))
then
Siz := RM_Size (Entity (Pref));
-- Case of known Esize of a type
elsif Id = Attribute_Object_Size
and then Is_Entity_Name (Pref)
and then Is_Type (Entity (Pref))
and then Known_Static_Esize (Entity (Pref))
then
Siz := Esize (Entity (Pref));
-- Case of known size of object
elsif Id = Attribute_Size
and then Is_Entity_Name (Pref)
and then Is_Object (Entity (Pref))
and then Known_Static_Esize (Entity (Pref))
then
Siz := Esize (Entity (Pref));
-- For an array component, we can do Size in the front end if the
-- component_size of the array is set.
elsif Nkind (Pref) = N_Indexed_Component then
Siz := Component_Size (Etype (Prefix (Pref)));
-- For a record component, we can do Size in the front end if there is a
-- component clause, or if the record is packed and the component's size
-- is known at compile time.
elsif Nkind (Pref) = N_Selected_Component then
declare
Rec : constant Entity_Id := Etype (Prefix (Pref));
Comp : constant Entity_Id := Entity (Selector_Name (Pref));
begin
if Present (Component_Clause (Comp)) then
Siz := Esize (Comp);
elsif Is_Packed (Rec) then
Siz := RM_Size (Ptyp);
else
Apply_Universal_Integer_Attribute_Checks (N);
return;
end if;
end;
-- All other cases are handled by the back end
else
-- If Size is applied to a formal parameter that is of a packed
-- array subtype, then apply Size to the actual subtype.
if Is_Entity_Name (Pref)
and then Is_Formal (Entity (Pref))
and then Is_Packed_Array (Ptyp)
then
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Get_Actual_Subtype (Pref), Loc),
Attribute_Name => Name_Size));
Analyze_And_Resolve (N, Typ);
-- If Size is applied to a dereference of an access to unconstrained
-- packed array, the back end needs to see its unconstrained nominal
-- type, but also a hint to the actual constrained type.
elsif Nkind (Pref) = N_Explicit_Dereference
and then Is_Packed_Array (Ptyp)
and then not Is_Constrained (Ptyp)
then
Set_Actual_Designated_Subtype (Pref, Get_Actual_Subtype (Pref));
-- If Size was applied to a slice of a bit-packed array, we rewrite
-- it into the product of Length and Component_Size. We need to do so
-- because bit-packed arrays are represented internally as arrays of
-- System.Unsigned_Types.Packed_Byte for code generation purposes so
-- the size is always rounded up in the back end.
elsif Nkind (Pref) = N_Slice and then Is_Bit_Packed_Array (Ptyp) then
Rewrite (N,
Make_Op_Multiply (Loc,
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr (Pref, True),
Attribute_Name => Name_Length),
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr (Pref, True),
Attribute_Name => Name_Component_Size)));
Analyze_And_Resolve (N, Typ);
end if;
-- Apply the required checks last, after rewriting has taken place
Apply_Universal_Integer_Attribute_Checks (N);
return;
end if;
-- Common processing for record and array component case
if Present (Siz) and then Siz /= 0 then
declare
CS : constant Boolean := Comes_From_Source (N);
begin
Rewrite (N, Make_Integer_Literal (Loc, Siz));
-- This integer literal is not a static expression. We do not
-- call Analyze_And_Resolve here, because this would activate
-- the circuit for deciding that a static value was out of range,
-- and we don't want that.
-- So just manually set the type, mark the expression as
-- nonstatic, and then ensure that the result is checked
-- properly if the attribute comes from source (if it was
-- internally generated, we never need a constraint check).
Set_Etype (N, Typ);
Set_Is_Static_Expression (N, False);
if CS then
Apply_Constraint_Check (N, Typ);
end if;
end;
end if;
end Expand_Size_Attribute;
-----------------------------
-- Expand_Update_Attribute --
-----------------------------
procedure Expand_Update_Attribute (N : Node_Id) is
procedure Process_Component_Or_Element_Update
(Temp : Entity_Id;
Comp : Node_Id;
Expr : Node_Id;
Typ : Entity_Id);
-- Generate the statements necessary to update a single component or an
-- element of the prefix. The code is inserted before the attribute N.
-- Temp denotes the entity of the anonymous object created to reflect
-- the changes in values. Comp is the component/index expression to be
-- updated. Expr is an expression yielding the new value of Comp. Typ
-- is the type of the prefix of attribute Update.
procedure Process_Range_Update
(Temp : Entity_Id;
Comp : Node_Id;
Expr : Node_Id;
Typ : Entity_Id);
-- Generate the statements necessary to update a slice of the prefix.
-- The code is inserted before the attribute N. Temp denotes the entity
-- of the anonymous object created to reflect the changes in values.
-- Comp is range of the slice to be updated. Expr is an expression
-- yielding the new value of Comp. Typ is the type of the prefix of
-- attribute Update.
-----------------------------------------
-- Process_Component_Or_Element_Update --
-----------------------------------------
procedure Process_Component_Or_Element_Update
(Temp : Entity_Id;
Comp : Node_Id;
Expr : Node_Id;
Typ : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Comp);
Exprs : List_Id;
LHS : Node_Id;
begin
-- An array element may be modified by the following relations
-- depending on the number of dimensions:
-- 1 => Expr -- one dimensional update
-- (1, ..., N) => Expr -- multi dimensional update
-- The above forms are converted in assignment statements where the
-- left hand side is an indexed component:
-- Temp (1) := Expr; -- one dimensional update
-- Temp (1, ..., N) := Expr; -- multi dimensional update
if Is_Array_Type (Typ) then
-- The index expressions of a multi dimensional array update
-- appear as an aggregate.
if Nkind (Comp) = N_Aggregate then
Exprs := New_Copy_List_Tree (Expressions (Comp));
else
Exprs := New_List (Relocate_Node (Comp));
end if;
LHS :=
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Temp, Loc),
Expressions => Exprs);
-- A record component update appears in the following form:
-- Comp => Expr
-- The above relation is transformed into an assignment statement
-- where the left hand side is a selected component:
-- Temp.Comp := Expr;
else pragma Assert (Is_Record_Type (Typ));
LHS :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Temp, Loc),
Selector_Name => Relocate_Node (Comp));
end if;
Insert_Action (N,
Make_Assignment_Statement (Loc,
Name => LHS,
Expression => Relocate_Node (Expr)));
end Process_Component_Or_Element_Update;
--------------------------
-- Process_Range_Update --
--------------------------
procedure Process_Range_Update
(Temp : Entity_Id;
Comp : Node_Id;
Expr : Node_Id;
Typ : Entity_Id)
is
Index_Typ : constant Entity_Id := Etype (First_Index (Typ));
Loc : constant Source_Ptr := Sloc (Comp);
Index : Entity_Id;
begin
-- A range update appears as
-- (Low .. High => Expr)
-- The above construct is transformed into a loop that iterates over
-- the given range and modifies the corresponding array values to the
-- value of Expr:
-- for Index in Low .. High loop
-- Temp (<Index_Typ> (Index)) := Expr;
-- end loop;
Index := Make_Temporary (Loc, 'I');
Insert_Action (N,
Make_Loop_Statement (Loc,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => Index,
Discrete_Subtype_Definition => Relocate_Node (Comp))),
Statements => New_List (
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Temp, Loc),
Expressions => New_List (
Convert_To (Index_Typ,
New_Occurrence_Of (Index, Loc)))),
Expression => Relocate_Node (Expr))),
End_Label => Empty));
end Process_Range_Update;
-- Local variables
Aggr : constant Node_Id := First (Expressions (N));
Loc : constant Source_Ptr := Sloc (N);
Pref : constant Node_Id := Prefix (N);
Typ : constant Entity_Id := Etype (Pref);
Assoc : Node_Id;
Comp : Node_Id;
CW_Temp : Entity_Id;
CW_Typ : Entity_Id;
Expr : Node_Id;
Temp : Entity_Id;
-- Start of processing for Expand_Update_Attribute
begin
-- Create the anonymous object to store the value of the prefix and
-- capture subsequent changes in value.
Temp := Make_Temporary (Loc, 'T', Pref);
-- Preserve the tag of the prefix by offering a specific view of the
-- class-wide version of the prefix.
if Is_Tagged_Type (Typ) then
-- Generate:
-- CW_Temp : Typ'Class := Typ'Class (Pref);
CW_Temp := Make_Temporary (Loc, 'T');
CW_Typ := Class_Wide_Type (Typ);
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => CW_Temp,
Object_Definition => New_Occurrence_Of (CW_Typ, Loc),
Expression =>
Convert_To (CW_Typ, Relocate_Node (Pref))));
-- Generate:
-- Temp : Typ renames Typ (CW_Temp);
Insert_Action (N,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Temp,
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
Name =>
Convert_To (Typ, New_Occurrence_Of (CW_Temp, Loc))));
-- Non-tagged case
else
-- Generate:
-- Temp : Typ := Pref;
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (Pref)));
end if;
-- Process the update aggregate
Assoc := First (Component_Associations (Aggr));
while Present (Assoc) loop
Comp := First (Choices (Assoc));
Expr := Expression (Assoc);
while Present (Comp) loop
if Nkind (Comp) = N_Range then
Process_Range_Update (Temp, Comp, Expr, Typ);
elsif Nkind (Comp) = N_Subtype_Indication then
Process_Range_Update
(Temp, Range_Expression (Constraint (Comp)), Expr, Typ);
else
Process_Component_Or_Element_Update (Temp, Comp, Expr, Typ);
end if;
Next (Comp);
end loop;
Next (Assoc);
end loop;
-- The attribute is replaced by a reference to the anonymous object
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze (N);
end Expand_Update_Attribute;
-------------------
-- Find_Fat_Info --
-------------------
procedure Find_Fat_Info
(T : Entity_Id;
Fat_Type : out Entity_Id;
Fat_Pkg : out RE_Id)
is
Rtyp : constant Entity_Id := Root_Type (T);
begin
-- All we do is use the root type (historically this dealt with
-- VAX-float .. to be cleaned up further later ???)
if Rtyp = Standard_Short_Float or else Rtyp = Standard_Float then
Fat_Type := Standard_Float;
Fat_Pkg := RE_Attr_Float;
elsif Rtyp = Standard_Long_Float then
Fat_Type := Standard_Long_Float;
Fat_Pkg := RE_Attr_Long_Float;
elsif Rtyp = Standard_Long_Long_Float then
Fat_Type := Standard_Long_Long_Float;
Fat_Pkg := RE_Attr_Long_Long_Float;
-- Universal real (which is its own root type) is treated as being
-- equivalent to Standard.Long_Long_Float, since it is defined to
-- have the same precision as the longest Float type.
elsif Rtyp = Universal_Real then
Fat_Type := Standard_Long_Long_Float;
Fat_Pkg := RE_Attr_Long_Long_Float;
else
raise Program_Error;
end if;
end Find_Fat_Info;
----------------------------
-- Find_Stream_Subprogram --
----------------------------
function Find_Stream_Subprogram
(Typ : Entity_Id;
Nam : TSS_Name_Type;
Attr_Ref : Node_Id) return Entity_Id
is
function In_Available_Context (Ent : Entity_Id) return Boolean;
-- Ent is a candidate result for Find_Stream_Subprogram.
-- If, for example, a subprogram is declared within a case
-- alternative then Gigi does not want to see a call to it from
-- outside of the case alternative. Compare placement of Ent and
-- Attr_Ref to prevent this situation (by returning False).
--------------------------
-- In_Available_Context --
--------------------------
function In_Available_Context (Ent : Entity_Id) return Boolean is
Decl : constant Node_Id := Enclosing_Declaration (Ent);
begin
if Has_Declarations (Parent (Decl)) then
return In_Subtree (Attr_Ref, Root => Parent (Decl));
elsif Is_List_Member (Decl) then
declare
List_Elem : Node_Id := Next (Decl);
begin
while Present (List_Elem) loop
if In_Subtree (Attr_Ref, Root => List_Elem) then
return True;
end if;
Next (List_Elem);
end loop;
return False;
end;
else
return False; -- Can this occur ???
end if;
end In_Available_Context;
-- Local declarations
Base_Typ : constant Entity_Id := Base_Type (Typ);
Ent : Entity_Id := TSS (Typ, Nam);
-- Start of processing for Find_Stream_Subprogram
begin
if Present (Ent) then
return Ent;
end if;
-- Everything after this point is an optimization. In other words,
-- there should be no *correctness* problems if we were to
-- unconditionally return Empty here.
if Is_Unchecked_Union (Base_Typ) then
-- Conservatively avoid possible problems (e.g., Write behaves
-- differently for a U_U type when called by Output vs. when
-- called from elsewhere).
return Empty;
end if;
if Nam = TSS_Stream_Read then
Ent := Cached_Streaming_Ops.Read_Map.Get (Typ);
elsif Nam = TSS_Stream_Write then
Ent := Cached_Streaming_Ops.Write_Map.Get (Typ);
elsif Nam = TSS_Stream_Input then
Ent := Cached_Streaming_Ops.Input_Map.Get (Typ);
elsif Nam = TSS_Stream_Output then
Ent := Cached_Streaming_Ops.Output_Map.Get (Typ);
end if;
if Present (Ent) then
-- Can't reuse Ent if it is no longer in scope
if In_Open_Scopes (Scope (Ent))
-- The preceding In_Open_Scopes test may not suffice if
-- case alternatives are involved.
and then In_Available_Context (Ent)
then
return Ent;
else
Ent := Empty;
end if;
end if;
-- Stream attributes for strings are expanded into library calls. The
-- following checks are disabled when the run-time is not available or
-- when compiling predefined types due to bootstrap issues. As a result,
-- the compiler will generate in-place stream routines for string types
-- that appear in GNAT's library, but will generate calls via rtsfind
-- to library routines for user code.
-- Note: In the case of using a configurable run time, it is very likely
-- that stream routines for string types are not present (they require
-- file system support). In this case, the specific stream routines for
-- strings are not used, relying on the regular stream mechanism
-- instead. That is why we include the test RTE_Available when dealing
-- with these cases.
if not Is_Predefined_Unit (Current_Sem_Unit) then
-- Storage_Array as defined in package System.Storage_Elements
if Is_RTE (Base_Typ, RE_Storage_Array) then
-- Case of No_Stream_Optimizations restriction active
if Restriction_Active (No_Stream_Optimizations) then
if Nam = TSS_Stream_Input
and then RTE_Available (RE_Storage_Array_Input)
then
return RTE (RE_Storage_Array_Input);
elsif Nam = TSS_Stream_Output
and then RTE_Available (RE_Storage_Array_Output)
then
return RTE (RE_Storage_Array_Output);
elsif Nam = TSS_Stream_Read
and then RTE_Available (RE_Storage_Array_Read)
then
return RTE (RE_Storage_Array_Read);
elsif Nam = TSS_Stream_Write
and then RTE_Available (RE_Storage_Array_Write)
then
return RTE (RE_Storage_Array_Write);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
-- Restriction No_Stream_Optimizations is not set, so we can go
-- ahead and optimize using the block IO forms of the routines.
else
if Nam = TSS_Stream_Input
and then RTE_Available (RE_Storage_Array_Input_Blk_IO)
then
return RTE (RE_Storage_Array_Input_Blk_IO);
elsif Nam = TSS_Stream_Output
and then RTE_Available (RE_Storage_Array_Output_Blk_IO)
then
return RTE (RE_Storage_Array_Output_Blk_IO);
elsif Nam = TSS_Stream_Read
and then RTE_Available (RE_Storage_Array_Read_Blk_IO)
then
return RTE (RE_Storage_Array_Read_Blk_IO);
elsif Nam = TSS_Stream_Write
and then RTE_Available (RE_Storage_Array_Write_Blk_IO)
then
return RTE (RE_Storage_Array_Write_Blk_IO);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
end if;
-- Stream_Element_Array as defined in package Ada.Streams
elsif Is_RTE (Base_Typ, RE_Stream_Element_Array) then
-- Case of No_Stream_Optimizations restriction active
if Restriction_Active (No_Stream_Optimizations) then
if Nam = TSS_Stream_Input
and then RTE_Available (RE_Stream_Element_Array_Input)
then
return RTE (RE_Stream_Element_Array_Input);
elsif Nam = TSS_Stream_Output
and then RTE_Available (RE_Stream_Element_Array_Output)
then
return RTE (RE_Stream_Element_Array_Output);
elsif Nam = TSS_Stream_Read
and then RTE_Available (RE_Stream_Element_Array_Read)
then
return RTE (RE_Stream_Element_Array_Read);
elsif Nam = TSS_Stream_Write
and then RTE_Available (RE_Stream_Element_Array_Write)
then
return RTE (RE_Stream_Element_Array_Write);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
-- Restriction No_Stream_Optimizations is not set, so we can go
-- ahead and optimize using the block IO forms of the routines.
else
if Nam = TSS_Stream_Input
and then RTE_Available (RE_Stream_Element_Array_Input_Blk_IO)
then
return RTE (RE_Stream_Element_Array_Input_Blk_IO);
elsif Nam = TSS_Stream_Output
and then RTE_Available (RE_Stream_Element_Array_Output_Blk_IO)
then
return RTE (RE_Stream_Element_Array_Output_Blk_IO);
elsif Nam = TSS_Stream_Read
and then RTE_Available (RE_Stream_Element_Array_Read_Blk_IO)
then
return RTE (RE_Stream_Element_Array_Read_Blk_IO);
elsif Nam = TSS_Stream_Write
and then RTE_Available (RE_Stream_Element_Array_Write_Blk_IO)
then
return RTE (RE_Stream_Element_Array_Write_Blk_IO);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
end if;
-- String as defined in package Ada
elsif Base_Typ = Standard_String then
-- Case of No_Stream_Optimizations restriction active
if Restriction_Active (No_Stream_Optimizations) then
if Nam = TSS_Stream_Input
and then RTE_Available (RE_String_Input)
then
return RTE (RE_String_Input);
elsif Nam = TSS_Stream_Output
and then RTE_Available (RE_String_Output)
then
return RTE (RE_String_Output);
elsif Nam = TSS_Stream_Read
and then RTE_Available (RE_String_Read)
then
return RTE (RE_String_Read);
elsif Nam = TSS_Stream_Write
and then RTE_Available (RE_String_Write)
then
return RTE (RE_String_Write);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
-- Restriction No_Stream_Optimizations is not set, so we can go
-- ahead and optimize using the block IO forms of the routines.
else
if Nam = TSS_Stream_Input
and then RTE_Available (RE_String_Input_Blk_IO)
then
return RTE (RE_String_Input_Blk_IO);
elsif Nam = TSS_Stream_Output
and then RTE_Available (RE_String_Output_Blk_IO)
then
return RTE (RE_String_Output_Blk_IO);
elsif Nam = TSS_Stream_Read
and then RTE_Available (RE_String_Read_Blk_IO)
then
return RTE (RE_String_Read_Blk_IO);
elsif Nam = TSS_Stream_Write
and then RTE_Available (RE_String_Write_Blk_IO)
then
return RTE (RE_String_Write_Blk_IO);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
end if;
-- Wide_String as defined in package Ada
elsif Base_Typ = Standard_Wide_String then
-- Case of No_Stream_Optimizations restriction active
if Restriction_Active (No_Stream_Optimizations) then
if Nam = TSS_Stream_Input
and then RTE_Available (RE_Wide_String_Input)
then
return RTE (RE_Wide_String_Input);
elsif Nam = TSS_Stream_Output
and then RTE_Available (RE_Wide_String_Output)
then
return RTE (RE_Wide_String_Output);
elsif Nam = TSS_Stream_Read
and then RTE_Available (RE_Wide_String_Read)
then
return RTE (RE_Wide_String_Read);
elsif Nam = TSS_Stream_Write
and then RTE_Available (RE_Wide_String_Write)
then
return RTE (RE_Wide_String_Write);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
-- Restriction No_Stream_Optimizations is not set, so we can go
-- ahead and optimize using the block IO forms of the routines.
else
if Nam = TSS_Stream_Input
and then RTE_Available (RE_Wide_String_Input_Blk_IO)
then
return RTE (RE_Wide_String_Input_Blk_IO);
elsif Nam = TSS_Stream_Output
and then RTE_Available (RE_Wide_String_Output_Blk_IO)
then
return RTE (RE_Wide_String_Output_Blk_IO);
elsif Nam = TSS_Stream_Read
and then RTE_Available (RE_Wide_String_Read_Blk_IO)
then
return RTE (RE_Wide_String_Read_Blk_IO);
elsif Nam = TSS_Stream_Write
and then RTE_Available (RE_Wide_String_Write_Blk_IO)
then
return RTE (RE_Wide_String_Write_Blk_IO);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
end if;
-- Wide_Wide_String as defined in package Ada
elsif Base_Typ = Standard_Wide_Wide_String then
-- Case of No_Stream_Optimizations restriction active
if Restriction_Active (No_Stream_Optimizations) then
if Nam = TSS_Stream_Input
and then RTE_Available (RE_Wide_Wide_String_Input)
then
return RTE (RE_Wide_Wide_String_Input);
elsif Nam = TSS_Stream_Output
and then RTE_Available (RE_Wide_Wide_String_Output)
then
return RTE (RE_Wide_Wide_String_Output);
elsif Nam = TSS_Stream_Read
and then RTE_Available (RE_Wide_Wide_String_Read)
then
return RTE (RE_Wide_Wide_String_Read);
elsif Nam = TSS_Stream_Write
and then RTE_Available (RE_Wide_Wide_String_Write)
then
return RTE (RE_Wide_Wide_String_Write);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
-- Restriction No_Stream_Optimizations is not set, so we can go
-- ahead and optimize using the block IO forms of the routines.
else
if Nam = TSS_Stream_Input
and then RTE_Available (RE_Wide_Wide_String_Input_Blk_IO)
then
return RTE (RE_Wide_Wide_String_Input_Blk_IO);
elsif Nam = TSS_Stream_Output
and then RTE_Available (RE_Wide_Wide_String_Output_Blk_IO)
then
return RTE (RE_Wide_Wide_String_Output_Blk_IO);
elsif Nam = TSS_Stream_Read
and then RTE_Available (RE_Wide_Wide_String_Read_Blk_IO)
then
return RTE (RE_Wide_Wide_String_Read_Blk_IO);
elsif Nam = TSS_Stream_Write
and then RTE_Available (RE_Wide_Wide_String_Write_Blk_IO)
then
return RTE (RE_Wide_Wide_String_Write_Blk_IO);
elsif Nam /= TSS_Stream_Input and then
Nam /= TSS_Stream_Output and then
Nam /= TSS_Stream_Read and then
Nam /= TSS_Stream_Write
then
raise Program_Error;
end if;
end if;
end if;
end if;
if Is_Tagged_Type (Typ) and then Is_Derived_Type (Typ) then
return Find_Prim_Op (Typ, Nam);
else
return Find_Inherited_TSS (Typ, Nam);
end if;
end Find_Stream_Subprogram;
---------------
-- Full_Base --
---------------
function Full_Base (T : Entity_Id) return Entity_Id is
BT : Entity_Id;
begin
BT := Base_Type (T);
if Is_Private_Type (BT)
and then Present (Full_View (BT))
then
BT := Full_View (BT);
end if;
return BT;
end Full_Base;
-------------------------------
-- Get_Stream_Convert_Pragma --
-------------------------------
function Get_Stream_Convert_Pragma (T : Entity_Id) return Node_Id is
Typ : Entity_Id;
N : Node_Id;
begin
-- Note: we cannot use Get_Rep_Pragma here because of the peculiarity
-- that a stream convert pragma for a tagged type is not inherited from
-- its parent. Probably what is wrong here is that it is basically
-- incorrect to consider a stream convert pragma to be a representation
-- pragma at all ???
N := First_Rep_Item (Implementation_Base_Type (T));
while Present (N) loop
if Nkind (N) = N_Pragma
and then Pragma_Name (N) = Name_Stream_Convert
then
-- For tagged types this pragma is not inherited, so we
-- must verify that it is defined for the given type and
-- not an ancestor.
Typ :=
Entity (Expression (First (Pragma_Argument_Associations (N))));
if not Is_Tagged_Type (T)
or else T = Typ
or else (Is_Private_Type (Typ) and then T = Full_View (Typ))
then
return N;
end if;
end if;
Next_Rep_Item (N);
end loop;
return Empty;
end Get_Stream_Convert_Pragma;
---------------------------------
-- Is_Constrained_Packed_Array --
---------------------------------
function Is_Constrained_Packed_Array (Typ : Entity_Id) return Boolean is
Arr : Entity_Id := Typ;
begin
if Is_Access_Type (Arr) then
Arr := Designated_Type (Arr);
end if;
return Is_Array_Type (Arr)
and then Is_Constrained (Arr)
and then Present (Packed_Array_Impl_Type (Arr));
end Is_Constrained_Packed_Array;
----------------------------------------
-- Is_Inline_Floating_Point_Attribute --
----------------------------------------
function Is_Inline_Floating_Point_Attribute (N : Node_Id) return Boolean is
Id : constant Attribute_Id := Get_Attribute_Id (Attribute_Name (N));
function Is_GCC_Target return Boolean;
-- Return True if we are using a GCC target/back-end
-- ??? Note: the implementation is kludgy/fragile
-------------------
-- Is_GCC_Target --
-------------------
function Is_GCC_Target return Boolean is
begin
return not CodePeer_Mode
and then not Modify_Tree_For_C;
end Is_GCC_Target;
-- Start of processing for Is_Inline_Floating_Point_Attribute
begin
-- Machine and Model can be expanded by the GCC back end only
if Id = Attribute_Machine or else Id = Attribute_Model then
return Is_GCC_Target;
-- Remaining cases handled by all back ends are Rounding and Truncation
-- when appearing as the operand of a conversion to some integer type.
elsif Nkind (Parent (N)) /= N_Type_Conversion
or else not Is_Integer_Type (Etype (Parent (N)))
then
return False;
end if;
-- Here we are in the integer conversion context. We reuse Rounding for
-- Machine_Rounding as System.Fat_Gen, which is a permissible behavior.
return
Id = Attribute_Rounding
or else Id = Attribute_Machine_Rounding
or else Id = Attribute_Truncation;
end Is_Inline_Floating_Point_Attribute;
end Exp_Attr;
|