1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ C H 3 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Accessibility; use Accessibility;
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Contracts; use Contracts;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Aggr; use Exp_Aggr;
with Exp_Atag; use Exp_Atag;
with Exp_Ch4; use Exp_Ch4;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch7; use Exp_Ch7;
with Exp_Ch9; use Exp_Ch9;
with Exp_Dbug; use Exp_Dbug;
with Exp_Disp; use Exp_Disp;
with Exp_Dist; use Exp_Dist;
with Exp_Put_Image;
with Exp_Smem; use Exp_Smem;
with Exp_Strm; use Exp_Strm;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Ghost; use Ghost;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Attr; use Sem_Attr;
with Sem_Cat; use Sem_Cat;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Disp; use Sem_Disp;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Res; use Sem_Res;
with Sem_SCIL; use Sem_SCIL;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Stand; use Stand;
with Snames; use Snames;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Validsw; use Validsw;
package body Exp_Ch3 is
-----------------------
-- Local Subprograms --
-----------------------
procedure Adjust_Discriminants (Rtype : Entity_Id);
-- This is used when freezing a record type. It attempts to construct
-- more restrictive subtypes for discriminants so that the max size of
-- the record can be calculated more accurately. See the body of this
-- procedure for details.
procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
-- Build initialization procedure for given array type. Nod is a node
-- used for attachment of any actions required in its construction.
-- It also supplies the source location used for the procedure.
function Build_Discriminant_Formals
(Rec_Id : Entity_Id;
Use_Dl : Boolean) return List_Id;
-- This function uses the discriminants of a type to build a list of
-- formal parameters, used in Build_Init_Procedure among other places.
-- If the flag Use_Dl is set, the list is built using the already
-- defined discriminals of the type, as is the case for concurrent
-- types with discriminants. Otherwise new identifiers are created,
-- with the source names of the discriminants.
procedure Build_Discr_Checking_Funcs (N : Node_Id);
-- For each variant component, builds a function which checks whether
-- the component name is consistent with the current discriminants
-- and sets the component's Dcheck_Function attribute to refer to it.
-- N is the full type declaration node; the discriminant checking
-- functions are inserted after this node.
function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id;
-- This function builds a static aggregate that can serve as the initial
-- value for an array type whose bounds are static, and whose component
-- type is a composite type that has a static equivalent aggregate.
-- The equivalent array aggregate is used both for object initialization
-- and for component initialization, when used in the following function.
function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id;
-- This function builds a static aggregate that can serve as the initial
-- value for a record type whose components are scalar and initialized
-- with compile-time values, or arrays with similar initialization or
-- defaults. When possible, initialization of an object of the type can
-- be achieved by using a copy of the aggregate as an initial value, thus
-- removing the implicit call that would otherwise constitute elaboration
-- code.
procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id);
-- Build record initialization procedure. N is the type declaration
-- node, and Rec_Ent is the corresponding entity for the record type.
procedure Build_Slice_Assignment (Typ : Entity_Id);
-- Build assignment procedure for one-dimensional arrays of controlled
-- types. Other array and slice assignments are expanded in-line, but
-- the code expansion for controlled components (when control actions
-- are active) can lead to very large blocks that GCC handles poorly.
procedure Build_Untagged_Record_Equality (Typ : Entity_Id);
-- AI05-0123: Equality on untagged records composes. This procedure
-- builds the equality routine for an untagged record that has components
-- of a record type that has user-defined primitive equality operations.
-- The resulting operation is a TSS subprogram.
procedure Check_Stream_Attributes (Typ : Entity_Id);
-- Check that if a limited extension has a parent with user-defined stream
-- attributes, and does not itself have user-defined stream-attributes,
-- then any limited component of the extension also has the corresponding
-- user-defined stream attributes.
procedure Clean_Task_Names
(Typ : Entity_Id;
Proc_Id : Entity_Id);
-- If an initialization procedure includes calls to generate names
-- for task subcomponents, indicate that secondary stack cleanup is
-- needed after an initialization. Typ is the component type, and Proc_Id
-- the initialization procedure for the enclosing composite type.
procedure Copy_Discr_Checking_Funcs (N : Node_Id);
-- For a derived untagged type, copy the attributes that were set
-- for the components of the parent type onto the components of the
-- derived type. No new subprograms are constructed.
-- N is the full type declaration node, as for Build_Discr_Checking_Funcs.
procedure Expand_Freeze_Array_Type (N : Node_Id);
-- Freeze an array type. Deals with building the initialization procedure,
-- creating the packed array type for a packed array and also with the
-- creation of the controlling procedures for the controlled case. The
-- argument N is the N_Freeze_Entity node for the type.
procedure Expand_Freeze_Class_Wide_Type (N : Node_Id);
-- Freeze a class-wide type. Build routine Finalize_Address for the purpose
-- of finalizing controlled derivations from the class-wide's root type.
procedure Expand_Freeze_Enumeration_Type (N : Node_Id);
-- Freeze enumeration type with non-standard representation. Builds the
-- array and function needed to convert between enumeration pos and
-- enumeration representation values. N is the N_Freeze_Entity node
-- for the type.
procedure Expand_Freeze_Record_Type (N : Node_Id);
-- Freeze record type. Builds all necessary discriminant checking
-- and other ancillary functions, and builds dispatch tables where
-- needed. The argument N is the N_Freeze_Entity node. This processing
-- applies only to E_Record_Type entities, not to class wide types,
-- record subtypes, or private types.
procedure Expand_Tagged_Root (T : Entity_Id);
-- Add a field _Tag at the beginning of the record. This field carries
-- the value of the access to the Dispatch table. This procedure is only
-- called on root type, the _Tag field being inherited by the descendants.
procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
-- Treat user-defined stream operations as renaming_as_body if the
-- subprogram they rename is not frozen when the type is frozen.
package Initialization_Control is
function Requires_Late_Init
(Decl : Node_Id; Rec_Type : Entity_Id) return Boolean;
-- Return True iff the given component declaration requires late
-- initialization, as defined by 3.3.1 (8.1/5).
function Has_Late_Init_Component
(Tagged_Rec_Type : Entity_Id) return Boolean;
-- Return True iff the given tagged record type has at least one
-- component that requires late initialization; this includes
-- components of ancestor types.
type Initialization_Mode is
(Full_Init, Full_Init_Except_Tag, Early_Init_Only, Late_Init_Only);
-- The initialization routine for a tagged type is passed in a
-- formal parameter of this type, indicating what initialization
-- is to be performed. This parameter defaults to Full_Init in all
-- cases except when the init proc of a type extension (let's call
-- that type T2) calls the init proc of its parent (let's call that
-- type T1). In that case, one of the other 3 values will
-- be passed in. In all three of those cases, the Tag component has
-- already been initialized before the call and is therefore not to be
-- modified. T2's init proc will either call T1's init proc
-- once (with Full_Init_Except_Tag as the parameter value) or twice
-- (first with Early_Init_Only, then later with Late_Init_Only),
-- depending on the result returned by Has_Late_Init_Component (T1).
-- In the latter case, the first call does not initialize any
-- components that require late initialization and the second call
-- then performs that deferred initialization.
-- Strictly speaking, the formal parameter subtype is actually Natural
-- but calls will only pass in values corresponding to literals
-- of this enumeration type.
function Make_Mode_Literal
(Loc : Source_Ptr; Mode : Initialization_Mode) return Node_Id
is (Make_Integer_Literal (Loc, Initialization_Mode'Pos (Mode)));
-- Generate an integer literal for a given mode value.
function Tag_Init_Condition
(Loc : Source_Ptr;
Init_Control_Formal : Entity_Id) return Node_Id;
function Early_Init_Condition
(Loc : Source_Ptr;
Init_Control_Formal : Entity_Id) return Node_Id;
function Late_Init_Condition
(Loc : Source_Ptr;
Init_Control_Formal : Entity_Id) return Node_Id;
-- These three functions each return a Boolean expression that
-- can be used to determine whether a given call to the initialization
-- expression for a tagged type should initialize (respectively)
-- the Tag component, the non-Tag components that do not require late
-- initialization, and the components that do require late
-- initialization.
end Initialization_Control;
procedure Initialization_Warning (E : Entity_Id);
-- If static elaboration of the package is requested, indicate
-- when a type does meet the conditions for static initialization. If
-- E is a type, it has components that have no static initialization.
-- if E is an entity, its initial expression is not compile-time known.
function Init_Formals (Typ : Entity_Id; Proc_Id : Entity_Id) return List_Id;
-- This function builds the list of formals for an initialization routine.
-- The first formal is always _Init with the given type. For task value
-- record types and types containing tasks, three additional formals are
-- added and Proc_Id is decorated with attribute Has_Master_Entity:
--
-- _Master : Master_Id
-- _Chain : in out Activation_Chain
-- _Task_Name : String
--
-- The caller must append additional entries for discriminants if required.
function Inline_Init_Proc (Typ : Entity_Id) return Boolean;
-- Returns true if the initialization procedure of Typ should be inlined
function In_Runtime (E : Entity_Id) return Boolean;
-- Check if E is defined in the RTL (in a child of Ada or System). Used
-- to avoid to bring in the overhead of _Input, _Output for tagged types.
function Is_Null_Statement_List (Stmts : List_Id) return Boolean;
-- Returns true if Stmts is made of null statements only, possibly wrapped
-- in a case statement, recursively. This latter pattern may occur for the
-- initialization procedure of an unchecked union.
function Make_Eq_Body
(Typ : Entity_Id;
Eq_Name : Name_Id) return Node_Id;
-- Build the body of a primitive equality operation for a tagged record
-- type, or in Ada 2012 for any record type that has components with a
-- user-defined equality. Factored out of Predefined_Primitive_Bodies.
function Make_Eq_Case
(E : Entity_Id;
CL : Node_Id;
Discrs : Elist_Id := New_Elmt_List) return List_Id;
-- Building block for variant record equality. Defined to share the code
-- between the tagged and untagged case. Given a Component_List node CL,
-- it generates an 'if' followed by a 'case' statement that compares all
-- components of local temporaries named X and Y (that are declared as
-- formals at some upper level). E provides the Sloc to be used for the
-- generated code.
--
-- IF E is an unchecked_union, Discrs is the list of formals created for
-- the inferred discriminants of one operand. These formals are used in
-- the generated case statements for each variant of the unchecked union.
function Make_Eq_If
(E : Entity_Id;
L : List_Id) return Node_Id;
-- Building block for variant record equality. Defined to share the code
-- between the tagged and untagged case. Given the list of components
-- (or discriminants) L, it generates a return statement that compares all
-- components of local temporaries named X and Y (that are declared as
-- formals at some upper level). E provides the Sloc to be used for the
-- generated code.
function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id;
-- Search for a renaming of the inequality dispatching primitive of
-- this tagged type. If found then build and return the corresponding
-- rename-as-body inequality subprogram; otherwise return Empty.
procedure Make_Predefined_Primitive_Specs
(Tag_Typ : Entity_Id;
Predef_List : out List_Id;
Renamed_Eq : out Entity_Id);
-- Create a list with the specs of the predefined primitive operations.
-- For tagged types that are interfaces all these primitives are defined
-- abstract.
--
-- The following entries are present for all tagged types, and provide
-- the results of the corresponding attribute applied to the object.
-- Dispatching is required in general, since the result of the attribute
-- will vary with the actual object subtype.
--
-- _size provides result of 'Size attribute
-- typSR provides result of 'Read attribute
-- typSW provides result of 'Write attribute
-- typSI provides result of 'Input attribute
-- typSO provides result of 'Output attribute
-- typPI provides result of 'Put_Image attribute
--
-- The following entries are additionally present for non-limited tagged
-- types, and implement additional dispatching operations for predefined
-- operations:
--
-- _equality implements "=" operator
-- _assign implements assignment operation
-- typDF implements deep finalization
-- typDA implements deep adjust
--
-- The latter two are empty procedures unless the type contains some
-- controlled components that require finalization actions (the deep
-- in the name refers to the fact that the action applies to components).
--
-- The list of specs is returned in Predef_List
function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
-- Returns True if there are representation clauses for type T that are not
-- inherited. If the result is false, the init_proc and the discriminant
-- checking functions of the parent can be reused by a derived type.
function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id;
-- Ada 2005 (AI-251): Makes specs for null procedures associated with any
-- null procedures inherited from an interface type that have not been
-- overridden. Only one null procedure will be created for a given set of
-- inherited null procedures with homographic profiles.
function Predef_Spec_Or_Body
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : Name_Id;
Profile : List_Id;
Ret_Type : Entity_Id := Empty;
For_Body : Boolean := False) return Node_Id;
-- This function generates the appropriate expansion for a predefined
-- primitive operation specified by its name, parameter profile and
-- return type (Empty means this is a procedure). If For_Body is false,
-- then the returned node is a subprogram declaration. If For_Body is
-- true, then the returned node is a empty subprogram body containing
-- no declarations and no statements.
function Predef_Stream_Attr_Spec
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : TSS_Name_Type) return Node_Id;
-- Specialized version of Predef_Spec_Or_Body that apply to read, write,
-- input and output attribute whose specs are constructed in Exp_Strm.
function Predef_Deep_Spec
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : TSS_Name_Type;
For_Body : Boolean := False) return Node_Id;
-- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
-- and _deep_finalize
function Predefined_Primitive_Bodies
(Tag_Typ : Entity_Id;
Renamed_Eq : Entity_Id) return List_Id;
-- Create the bodies of the predefined primitives that are described in
-- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
-- the defining unit name of the type's predefined equality as returned
-- by Make_Predefined_Primitive_Specs.
function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
-- Freeze entities of all predefined primitive operations. This is needed
-- because the bodies of these operations do not normally do any freezing.
--------------------------
-- Adjust_Discriminants --
--------------------------
-- This procedure attempts to define subtypes for discriminants that are
-- more restrictive than those declared. Such a replacement is possible if
-- we can demonstrate that values outside the restricted range would cause
-- constraint errors in any case. The advantage of restricting the
-- discriminant types in this way is that the maximum size of the variant
-- record can be calculated more conservatively.
-- An example of a situation in which we can perform this type of
-- restriction is the following:
-- subtype B is range 1 .. 10;
-- type Q is array (B range <>) of Integer;
-- type V (N : Natural) is record
-- C : Q (1 .. N);
-- end record;
-- In this situation, we can restrict the upper bound of N to 10, since
-- any larger value would cause a constraint error in any case.
-- There are many situations in which such restriction is possible, but
-- for now, we just look for cases like the above, where the component
-- in question is a one dimensional array whose upper bound is one of
-- the record discriminants. Also the component must not be part of
-- any variant part, since then the component does not always exist.
procedure Adjust_Discriminants (Rtype : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Rtype);
Comp : Entity_Id;
Ctyp : Entity_Id;
Ityp : Entity_Id;
Lo : Node_Id;
Hi : Node_Id;
P : Node_Id;
Loval : Uint;
Discr : Entity_Id;
Dtyp : Entity_Id;
Dhi : Node_Id;
Dhiv : Uint;
Ahi : Node_Id;
Ahiv : Uint;
Tnn : Entity_Id;
begin
Comp := First_Component (Rtype);
while Present (Comp) loop
-- If our parent is a variant, quit, we do not look at components
-- that are in variant parts, because they may not always exist.
P := Parent (Comp); -- component declaration
P := Parent (P); -- component list
exit when Nkind (Parent (P)) = N_Variant;
-- We are looking for a one dimensional array type
Ctyp := Etype (Comp);
if not Is_Array_Type (Ctyp) or else Number_Dimensions (Ctyp) > 1 then
goto Continue;
end if;
-- The lower bound must be constant, and the upper bound is a
-- discriminant (which is a discriminant of the current record).
Ityp := Etype (First_Index (Ctyp));
Lo := Type_Low_Bound (Ityp);
Hi := Type_High_Bound (Ityp);
if not Compile_Time_Known_Value (Lo)
or else Nkind (Hi) /= N_Identifier
or else No (Entity (Hi))
or else Ekind (Entity (Hi)) /= E_Discriminant
then
goto Continue;
end if;
-- We have an array with appropriate bounds
Loval := Expr_Value (Lo);
Discr := Entity (Hi);
Dtyp := Etype (Discr);
-- See if the discriminant has a known upper bound
Dhi := Type_High_Bound (Dtyp);
if not Compile_Time_Known_Value (Dhi) then
goto Continue;
end if;
Dhiv := Expr_Value (Dhi);
-- See if base type of component array has known upper bound
Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));
if not Compile_Time_Known_Value (Ahi) then
goto Continue;
end if;
Ahiv := Expr_Value (Ahi);
-- The condition for doing the restriction is that the high bound
-- of the discriminant is greater than the low bound of the array,
-- and is also greater than the high bound of the base type index.
if Dhiv > Loval and then Dhiv > Ahiv then
-- We can reset the upper bound of the discriminant type to
-- whichever is larger, the low bound of the component, or
-- the high bound of the base type array index.
-- We build a subtype that is declared as
-- subtype Tnn is discr_type range discr_type'First .. max;
-- And insert this declaration into the tree. The type of the
-- discriminant is then reset to this more restricted subtype.
Tnn := Make_Temporary (Loc, 'T');
Insert_Action (Declaration_Node (Rtype),
Make_Subtype_Declaration (Loc,
Defining_Identifier => Tnn,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
Constraint =>
Make_Range_Constraint (Loc,
Range_Expression =>
Make_Range (Loc,
Low_Bound =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix => New_Occurrence_Of (Dtyp, Loc)),
High_Bound =>
Make_Integer_Literal (Loc,
Intval => UI_Max (Loval, Ahiv)))))));
Set_Etype (Discr, Tnn);
end if;
<<Continue>>
Next_Component (Comp);
end loop;
end Adjust_Discriminants;
------------------------------------------
-- Build_Access_Subprogram_Wrapper_Body --
------------------------------------------
procedure Build_Access_Subprogram_Wrapper_Body
(Decl : Node_Id;
New_Decl : Node_Id)
is
Loc : constant Source_Ptr := Sloc (Decl);
Actuals : constant List_Id := New_List;
Type_Def : constant Node_Id := Type_Definition (Decl);
Type_Id : constant Entity_Id := Defining_Identifier (Decl);
Spec_Node : constant Node_Id :=
Copy_Subprogram_Spec (Specification (New_Decl));
-- This copy creates new identifiers for formals and subprogram.
Act : Node_Id;
Body_Node : Node_Id;
Call_Stmt : Node_Id;
Ptr : Entity_Id;
begin
-- Create List of actuals for indirect call. The last parameter of the
-- subprogram declaration is the access value for the indirect call.
Act := First (Parameter_Specifications (Spec_Node));
while Present (Act) loop
exit when Act = Last (Parameter_Specifications (Spec_Node));
Append_To (Actuals,
Make_Identifier (Loc, Chars (Defining_Identifier (Act))));
Next (Act);
end loop;
Ptr :=
Defining_Identifier
(Last (Parameter_Specifications (Specification (New_Decl))));
if Nkind (Type_Def) = N_Access_Procedure_Definition then
Call_Stmt := Make_Procedure_Call_Statement (Loc,
Name =>
Make_Explicit_Dereference
(Loc, New_Occurrence_Of (Ptr, Loc)),
Parameter_Associations => Actuals);
else
Call_Stmt := Make_Simple_Return_Statement (Loc,
Expression =>
Make_Function_Call (Loc,
Name => Make_Explicit_Dereference
(Loc, New_Occurrence_Of (Ptr, Loc)),
Parameter_Associations => Actuals));
end if;
Body_Node := Make_Subprogram_Body (Loc,
Specification => Spec_Node,
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Call_Stmt)));
-- Place body in list of freeze actions for the type.
Append_Freeze_Action (Type_Id, Body_Node);
end Build_Access_Subprogram_Wrapper_Body;
---------------------------
-- Build_Array_Init_Proc --
---------------------------
procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
Comp_Type : constant Entity_Id := Component_Type (A_Type);
Comp_Simple_Init : constant Boolean :=
Needs_Simple_Initialization
(Typ => Comp_Type,
Consider_IS =>
not (Validity_Check_Copies and Is_Bit_Packed_Array (A_Type)));
-- True if the component needs simple initialization, based on its type,
-- plus the fact that we do not do simple initialization for components
-- of bit-packed arrays when validity checks are enabled, because the
-- initialization with deliberately out-of-range values would raise
-- Constraint_Error.
Body_Stmts : List_Id;
Has_Default_Init : Boolean;
Index_List : List_Id;
Loc : Source_Ptr;
Parameters : List_Id;
Proc_Id : Entity_Id;
function Init_Component return List_Id;
-- Create one statement to initialize one array component, designated
-- by a full set of indexes.
function Init_One_Dimension (N : Int) return List_Id;
-- Create loop to initialize one dimension of the array. The single
-- statement in the loop body initializes the inner dimensions if any,
-- or else the single component. Note that this procedure is called
-- recursively, with N being the dimension to be initialized. A call
-- with N greater than the number of dimensions simply generates the
-- component initialization, terminating the recursion.
--------------------
-- Init_Component --
--------------------
function Init_Component return List_Id is
Comp : Node_Id;
begin
Comp :=
Make_Indexed_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Expressions => Index_List);
if Has_Default_Aspect (A_Type) then
Set_Assignment_OK (Comp);
return New_List (
Make_Assignment_Statement (Loc,
Name => Comp,
Expression =>
Convert_To (Comp_Type,
Default_Aspect_Component_Value (First_Subtype (A_Type)))));
elsif Comp_Simple_Init then
Set_Assignment_OK (Comp);
return New_List (
Make_Assignment_Statement (Loc,
Name => Comp,
Expression =>
Get_Simple_Init_Val
(Typ => Comp_Type,
N => Nod,
Size => Component_Size (A_Type))));
else
Clean_Task_Names (Comp_Type, Proc_Id);
return
Build_Initialization_Call
(Loc => Loc,
Id_Ref => Comp,
Typ => Comp_Type,
In_Init_Proc => True,
Enclos_Type => A_Type);
end if;
end Init_Component;
------------------------
-- Init_One_Dimension --
------------------------
function Init_One_Dimension (N : Int) return List_Id is
Index : Entity_Id;
DIC_Call : Node_Id;
Result_List : List_Id;
function Possible_DIC_Call return Node_Id;
-- If the component type has Default_Initial_Conditions and a DIC
-- procedure that is not an empty body, then builds a call to the
-- DIC procedure and returns it.
-----------------------
-- Possible_DIC_Call --
-----------------------
function Possible_DIC_Call return Node_Id is
begin
-- When the component's type has a Default_Initial_Condition, then
-- create a call for the DIC check.
if Has_DIC (Comp_Type)
-- In GNATprove mode, the component DICs are checked by other
-- means. They should not be added to the record type DIC
-- procedure, so that the procedure can be used to check the
-- record type invariants or DICs if any.
and then not GNATprove_Mode
-- DIC checks for components of controlled types are done later
-- (see Exp_Ch7.Make_Deep_Array_Body).
and then not Is_Controlled (Comp_Type)
and then Present (DIC_Procedure (Comp_Type))
and then not Has_Null_Body (DIC_Procedure (Comp_Type))
then
return
Build_DIC_Call (Loc,
Make_Indexed_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Expressions => Index_List),
Comp_Type);
else
return Empty;
end if;
end Possible_DIC_Call;
-- Start of processing for Init_One_Dimension
begin
-- If the component does not need initializing, then there is nothing
-- to do here, so we return a null body. This occurs when generating
-- the dummy Init_Proc needed for Initialize_Scalars processing.
-- An exception is if component type has a Default_Initial_Condition,
-- in which case we generate a call to the type's DIC procedure.
if not Has_Non_Null_Base_Init_Proc (Comp_Type)
and then not Comp_Simple_Init
and then not Has_Task (Comp_Type)
and then not Has_Default_Aspect (A_Type)
and then (not Has_DIC (Comp_Type)
or else N > Number_Dimensions (A_Type))
then
DIC_Call := Possible_DIC_Call;
if Present (DIC_Call) then
return New_List (DIC_Call);
else
return New_List (Make_Null_Statement (Loc));
end if;
-- If all dimensions dealt with, we simply initialize the component
-- and append a call to component type's DIC procedure when needed.
elsif N > Number_Dimensions (A_Type) then
DIC_Call := Possible_DIC_Call;
if Present (DIC_Call) then
Result_List := Init_Component;
Append (DIC_Call, Result_List);
return Result_List;
else
return Init_Component;
end if;
-- Here we generate the required loop
else
Index :=
Make_Defining_Identifier (Loc, New_External_Name ('J', N));
Append (New_Occurrence_Of (Index, Loc), Index_List);
return New_List (
Make_Implicit_Loop_Statement (Nod,
Identifier => Empty,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => Index,
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix =>
Make_Identifier (Loc, Name_uInit),
Attribute_Name => Name_Range,
Expressions => New_List (
Make_Integer_Literal (Loc, N))))),
Statements => Init_One_Dimension (N + 1)));
end if;
end Init_One_Dimension;
-- Start of processing for Build_Array_Init_Proc
begin
-- The init proc is created when analyzing the freeze node for the type,
-- but it properly belongs with the array type declaration. However, if
-- the freeze node is for a subtype of a type declared in another unit
-- it seems preferable to use the freeze node as the source location of
-- the init proc. In any case this is preferable for gcov usage, and
-- the Sloc is not otherwise used by the compiler.
if In_Open_Scopes (Scope (A_Type)) then
Loc := Sloc (A_Type);
else
Loc := Sloc (Nod);
end if;
-- Nothing to generate in the following cases:
-- 1. Initialization is suppressed for the type
-- 2. An initialization already exists for the base type
if Initialization_Suppressed (A_Type)
or else Present (Base_Init_Proc (A_Type))
then
return;
end if;
Index_List := New_List;
-- We need an initialization procedure if any of the following is true:
-- 1. The component type has an initialization procedure
-- 2. The component type needs simple initialization
-- 3. Tasks are present
-- 4. The type is marked as a public entity
-- 5. The array type has a Default_Component_Value aspect
-- 6. The array component type has a Default_Initialization_Condition
-- The reason for the public entity test is to deal properly with the
-- Initialize_Scalars pragma. This pragma can be set in the client and
-- not in the declaring package, this means the client will make a call
-- to the initialization procedure (because one of conditions 1-3 must
-- apply in this case), and we must generate a procedure (even if it is
-- null) to satisfy the call in this case.
-- Exception: do not build an array init_proc for a type whose root
-- type is Standard.String or Standard.Wide_[Wide_]String, since there
-- is no place to put the code, and in any case we handle initialization
-- of such types (in the Initialize_Scalars case, that's the only time
-- the issue arises) in a special manner anyway which does not need an
-- init_proc.
Has_Default_Init := Has_Non_Null_Base_Init_Proc (Comp_Type)
or else Comp_Simple_Init
or else Has_Task (Comp_Type)
or else Has_Default_Aspect (A_Type)
or else Has_DIC (Comp_Type);
if Has_Default_Init
or else (not Restriction_Active (No_Initialize_Scalars)
and then Is_Public (A_Type)
and then not Is_Standard_String_Type (A_Type))
then
Proc_Id :=
Make_Defining_Identifier (Loc,
Chars => Make_Init_Proc_Name (A_Type));
-- If No_Default_Initialization restriction is active, then we don't
-- want to build an init_proc, but we need to mark that an init_proc
-- would be needed if this restriction was not active (so that we can
-- detect attempts to call it), so set a dummy init_proc in place.
-- This is only done though when actual default initialization is
-- needed (and not done when only Is_Public is True), since otherwise
-- objects such as arrays of scalars could be wrongly flagged as
-- violating the restriction.
if Restriction_Active (No_Default_Initialization) then
if Has_Default_Init then
Set_Init_Proc (A_Type, Proc_Id);
end if;
return;
end if;
Body_Stmts := Init_One_Dimension (1);
Parameters := Init_Formals (A_Type, Proc_Id);
Discard_Node (
Make_Subprogram_Body (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => Parameters),
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Body_Stmts)));
Mutate_Ekind (Proc_Id, E_Procedure);
Set_Is_Public (Proc_Id, Is_Public (A_Type));
Set_Is_Internal (Proc_Id);
Set_Has_Completion (Proc_Id);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Proc_Id);
end if;
-- Set Inlined on Init_Proc if it is set on the Init_Proc of the
-- component type itself (see also Build_Record_Init_Proc).
Set_Is_Inlined (Proc_Id, Inline_Init_Proc (Comp_Type));
-- Associate Init_Proc with type, and determine if the procedure
-- is null (happens because of the Initialize_Scalars pragma case,
-- where we have to generate a null procedure in case it is called
-- by a client with Initialize_Scalars set). Such procedures have
-- to be generated, but do not have to be called, so we mark them
-- as null to suppress the call. Kill also warnings for the _Init
-- out parameter, which is left entirely uninitialized.
Set_Init_Proc (A_Type, Proc_Id);
if Is_Null_Statement_List (Body_Stmts) then
Set_Is_Null_Init_Proc (Proc_Id);
Set_Warnings_Off (Defining_Identifier (First (Parameters)));
else
-- Try to build a static aggregate to statically initialize
-- objects of the type. This can only be done for constrained
-- one-dimensional arrays with static bounds.
Set_Static_Initialization
(Proc_Id,
Build_Equivalent_Array_Aggregate (First_Subtype (A_Type)));
end if;
end if;
end Build_Array_Init_Proc;
--------------------------------
-- Build_Discr_Checking_Funcs --
--------------------------------
procedure Build_Discr_Checking_Funcs (N : Node_Id) is
Rec_Id : Entity_Id;
Loc : Source_Ptr;
Enclosing_Func_Id : Entity_Id;
Sequence : Nat := 1;
Type_Def : Node_Id;
V : Node_Id;
function Build_Case_Statement
(Case_Id : Entity_Id;
Variant : Node_Id) return Node_Id;
-- Build a case statement containing only two alternatives. The first
-- alternative corresponds to the discrete choices given on the variant
-- that contains the components that we are generating the checks
-- for. If the discriminant is one of these return False. The second
-- alternative is an OTHERS choice that returns True indicating the
-- discriminant did not match.
function Build_Dcheck_Function
(Case_Id : Entity_Id;
Variant : Node_Id) return Entity_Id;
-- Build the discriminant checking function for a given variant
procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
-- Builds the discriminant checking function for each variant of the
-- given variant part of the record type.
--------------------------
-- Build_Case_Statement --
--------------------------
function Build_Case_Statement
(Case_Id : Entity_Id;
Variant : Node_Id) return Node_Id
is
Alt_List : constant List_Id := New_List;
Actuals_List : List_Id;
Case_Node : Node_Id;
Case_Alt_Node : Node_Id;
Choice : Node_Id;
Choice_List : List_Id;
D : Entity_Id;
Return_Node : Node_Id;
begin
Case_Node := New_Node (N_Case_Statement, Loc);
Set_End_Span (Case_Node, Uint_0);
-- Replace the discriminant which controls the variant with the name
-- of the formal of the checking function.
Set_Expression (Case_Node, Make_Identifier (Loc, Chars (Case_Id)));
Choice := First (Discrete_Choices (Variant));
if Nkind (Choice) = N_Others_Choice then
Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
else
Choice_List := New_Copy_List (Discrete_Choices (Variant));
end if;
if not Is_Empty_List (Choice_List) then
Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
Set_Discrete_Choices (Case_Alt_Node, Choice_List);
-- In case this is a nested variant, we need to return the result
-- of the discriminant checking function for the immediately
-- enclosing variant.
if Present (Enclosing_Func_Id) then
Actuals_List := New_List;
D := First_Discriminant (Rec_Id);
while Present (D) loop
Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
Next_Discriminant (D);
end loop;
Return_Node :=
Make_Simple_Return_Statement (Loc,
Expression =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Enclosing_Func_Id, Loc),
Parameter_Associations =>
Actuals_List));
else
Return_Node :=
Make_Simple_Return_Statement (Loc,
Expression =>
New_Occurrence_Of (Standard_False, Loc));
end if;
Set_Statements (Case_Alt_Node, New_List (Return_Node));
Append (Case_Alt_Node, Alt_List);
end if;
Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
Choice_List := New_List (New_Node (N_Others_Choice, Loc));
Set_Discrete_Choices (Case_Alt_Node, Choice_List);
Return_Node :=
Make_Simple_Return_Statement (Loc,
Expression =>
New_Occurrence_Of (Standard_True, Loc));
Set_Statements (Case_Alt_Node, New_List (Return_Node));
Append (Case_Alt_Node, Alt_List);
Set_Alternatives (Case_Node, Alt_List);
return Case_Node;
end Build_Case_Statement;
---------------------------
-- Build_Dcheck_Function --
---------------------------
function Build_Dcheck_Function
(Case_Id : Entity_Id;
Variant : Node_Id) return Entity_Id
is
Body_Node : Node_Id;
Func_Id : Entity_Id;
Parameter_List : List_Id;
Spec_Node : Node_Id;
begin
Body_Node := New_Node (N_Subprogram_Body, Loc);
Sequence := Sequence + 1;
Func_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
Set_Is_Discriminant_Check_Function (Func_Id);
Spec_Node := New_Node (N_Function_Specification, Loc);
Set_Defining_Unit_Name (Spec_Node, Func_Id);
Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
Set_Parameter_Specifications (Spec_Node, Parameter_List);
Set_Result_Definition (Spec_Node,
New_Occurrence_Of (Standard_Boolean, Loc));
Set_Specification (Body_Node, Spec_Node);
Set_Declarations (Body_Node, New_List);
Set_Handled_Statement_Sequence (Body_Node,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Build_Case_Statement (Case_Id, Variant))));
Mutate_Ekind (Func_Id, E_Function);
Set_Mechanism (Func_Id, Default_Mechanism);
Set_Is_Inlined (Func_Id, True);
Set_Is_Pure (Func_Id, True);
Set_Is_Public (Func_Id, Is_Public (Rec_Id));
Set_Is_Internal (Func_Id, True);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Func_Id);
end if;
Analyze (Body_Node);
Append_Freeze_Action (Rec_Id, Body_Node);
Set_Dcheck_Function (Variant, Func_Id);
return Func_Id;
end Build_Dcheck_Function;
----------------------------
-- Build_Dcheck_Functions --
----------------------------
procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
Component_List_Node : Node_Id;
Decl : Entity_Id;
Discr_Name : Entity_Id;
Func_Id : Entity_Id;
Variant : Node_Id;
Saved_Enclosing_Func_Id : Entity_Id;
begin
-- Build the discriminant-checking function for each variant, and
-- label all components of that variant with the function's name.
-- We only Generate a discriminant-checking function when the
-- variant is not empty, to prevent the creation of dead code.
Discr_Name := Entity (Name (Variant_Part_Node));
Variant := First_Non_Pragma (Variants (Variant_Part_Node));
while Present (Variant) loop
Component_List_Node := Component_List (Variant);
if not Null_Present (Component_List_Node) then
Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
Decl :=
First_Non_Pragma (Component_Items (Component_List_Node));
while Present (Decl) loop
Set_Discriminant_Checking_Func
(Defining_Identifier (Decl), Func_Id);
Next_Non_Pragma (Decl);
end loop;
if Present (Variant_Part (Component_List_Node)) then
Saved_Enclosing_Func_Id := Enclosing_Func_Id;
Enclosing_Func_Id := Func_Id;
Build_Dcheck_Functions (Variant_Part (Component_List_Node));
Enclosing_Func_Id := Saved_Enclosing_Func_Id;
end if;
end if;
Next_Non_Pragma (Variant);
end loop;
end Build_Dcheck_Functions;
-- Start of processing for Build_Discr_Checking_Funcs
begin
-- Only build if not done already
if not Discr_Check_Funcs_Built (N) then
Type_Def := Type_Definition (N);
if Nkind (Type_Def) = N_Record_Definition then
if No (Component_List (Type_Def)) then -- null record.
return;
else
V := Variant_Part (Component_List (Type_Def));
end if;
else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
if No (Component_List (Record_Extension_Part (Type_Def))) then
return;
else
V := Variant_Part
(Component_List (Record_Extension_Part (Type_Def)));
end if;
end if;
Rec_Id := Defining_Identifier (N);
if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
Loc := Sloc (N);
Enclosing_Func_Id := Empty;
Build_Dcheck_Functions (V);
end if;
Set_Discr_Check_Funcs_Built (N);
end if;
end Build_Discr_Checking_Funcs;
----------------------------------------
-- Build_Or_Copy_Discr_Checking_Funcs --
----------------------------------------
procedure Build_Or_Copy_Discr_Checking_Funcs (N : Node_Id) is
Typ : constant Entity_Id := Defining_Identifier (N);
begin
if Is_Unchecked_Union (Typ) or else not Has_Discriminants (Typ) then
null;
elsif not Is_Derived_Type (Typ)
or else Has_New_Non_Standard_Rep (Typ)
or else Is_Tagged_Type (Typ)
then
Build_Discr_Checking_Funcs (N);
else
Copy_Discr_Checking_Funcs (N);
end if;
end Build_Or_Copy_Discr_Checking_Funcs;
--------------------------------
-- Build_Discriminant_Formals --
--------------------------------
function Build_Discriminant_Formals
(Rec_Id : Entity_Id;
Use_Dl : Boolean) return List_Id
is
Loc : Source_Ptr := Sloc (Rec_Id);
Parameter_List : constant List_Id := New_List;
D : Entity_Id;
Formal : Entity_Id;
Formal_Type : Entity_Id;
Param_Spec_Node : Node_Id;
begin
if Has_Discriminants (Rec_Id) then
D := First_Discriminant (Rec_Id);
while Present (D) loop
Loc := Sloc (D);
if Use_Dl then
Formal := Discriminal (D);
Formal_Type := Etype (Formal);
else
Formal := Make_Defining_Identifier (Loc, Chars (D));
Formal_Type := Etype (D);
end if;
Param_Spec_Node :=
Make_Parameter_Specification (Loc,
Defining_Identifier => Formal,
Parameter_Type =>
New_Occurrence_Of (Formal_Type, Loc));
Append (Param_Spec_Node, Parameter_List);
Next_Discriminant (D);
end loop;
end if;
return Parameter_List;
end Build_Discriminant_Formals;
--------------------------------------
-- Build_Equivalent_Array_Aggregate --
--------------------------------------
function Build_Equivalent_Array_Aggregate (T : Entity_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (T);
Comp_Type : constant Entity_Id := Component_Type (T);
Index_Type : constant Entity_Id := Etype (First_Index (T));
Proc : constant Entity_Id := Base_Init_Proc (T);
Lo, Hi : Node_Id;
Aggr : Node_Id;
Expr : Node_Id;
begin
if not Is_Constrained (T)
or else Number_Dimensions (T) > 1
or else No (Proc)
then
Initialization_Warning (T);
return Empty;
end if;
Lo := Type_Low_Bound (Index_Type);
Hi := Type_High_Bound (Index_Type);
if not Compile_Time_Known_Value (Lo)
or else not Compile_Time_Known_Value (Hi)
then
Initialization_Warning (T);
return Empty;
end if;
if Is_Record_Type (Comp_Type)
and then Present (Base_Init_Proc (Comp_Type))
then
Expr := Static_Initialization (Base_Init_Proc (Comp_Type));
if No (Expr) then
Initialization_Warning (T);
return Empty;
end if;
else
Initialization_Warning (T);
return Empty;
end if;
Aggr := Make_Aggregate (Loc, No_List, New_List);
Set_Etype (Aggr, T);
Set_Aggregate_Bounds (Aggr,
Make_Range (Loc,
Low_Bound => New_Copy (Lo),
High_Bound => New_Copy (Hi)));
Set_Parent (Aggr, Parent (Proc));
Append_To (Component_Associations (Aggr),
Make_Component_Association (Loc,
Choices =>
New_List (
Make_Range (Loc,
Low_Bound => New_Copy (Lo),
High_Bound => New_Copy (Hi))),
Expression => Expr));
if Static_Array_Aggregate (Aggr) then
return Aggr;
else
Initialization_Warning (T);
return Empty;
end if;
end Build_Equivalent_Array_Aggregate;
---------------------------------------
-- Build_Equivalent_Record_Aggregate --
---------------------------------------
function Build_Equivalent_Record_Aggregate (T : Entity_Id) return Node_Id is
Agg : Node_Id;
Comp : Entity_Id;
Comp_Type : Entity_Id;
begin
if not Is_Record_Type (T)
or else Has_Discriminants (T)
or else Is_Limited_Type (T)
or else Has_Non_Standard_Rep (T)
then
Initialization_Warning (T);
return Empty;
end if;
Comp := First_Component (T);
-- A null record needs no warning
if No (Comp) then
return Empty;
end if;
while Present (Comp) loop
-- Array components are acceptable if initialized by a positional
-- aggregate with static components.
if Is_Array_Type (Etype (Comp)) then
Comp_Type := Component_Type (Etype (Comp));
if Nkind (Parent (Comp)) /= N_Component_Declaration
or else No (Expression (Parent (Comp)))
or else Nkind (Expression (Parent (Comp))) /= N_Aggregate
then
Initialization_Warning (T);
return Empty;
elsif Is_Scalar_Type (Component_Type (Etype (Comp)))
and then
(not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type))
or else
not Compile_Time_Known_Value (Type_High_Bound (Comp_Type)))
then
Initialization_Warning (T);
return Empty;
elsif
not Static_Array_Aggregate (Expression (Parent (Comp)))
then
Initialization_Warning (T);
return Empty;
-- We need to return empty if the type has predicates because
-- this would otherwise duplicate calls to the predicate
-- function. If the type hasn't been frozen before being
-- referenced in the current record, the extraneous call to
-- the predicate function would be inserted somewhere before
-- the predicate function is elaborated, which would result in
-- an invalid tree.
elsif Has_Predicates (Etype (Comp)) then
return Empty;
end if;
elsif Is_Scalar_Type (Etype (Comp)) then
Comp_Type := Etype (Comp);
if Nkind (Parent (Comp)) /= N_Component_Declaration
or else No (Expression (Parent (Comp)))
or else not Compile_Time_Known_Value (Expression (Parent (Comp)))
or else not Compile_Time_Known_Value (Type_Low_Bound (Comp_Type))
or else not
Compile_Time_Known_Value (Type_High_Bound (Comp_Type))
then
Initialization_Warning (T);
return Empty;
end if;
-- For now, other types are excluded
else
Initialization_Warning (T);
return Empty;
end if;
Next_Component (Comp);
end loop;
-- All components have static initialization. Build positional aggregate
-- from the given expressions or defaults.
Agg := Make_Aggregate (Sloc (T), New_List, New_List);
Set_Parent (Agg, Parent (T));
Comp := First_Component (T);
while Present (Comp) loop
Append
(New_Copy_Tree (Expression (Parent (Comp))), Expressions (Agg));
Next_Component (Comp);
end loop;
Analyze_And_Resolve (Agg, T);
return Agg;
end Build_Equivalent_Record_Aggregate;
----------------------------
-- Init_Proc_Level_Formal --
----------------------------
function Init_Proc_Level_Formal (Proc : Entity_Id) return Entity_Id is
Form : Entity_Id;
begin
-- Move through the formals of the initialization procedure Proc to find
-- the extra accessibility level parameter associated with the object
-- being initialized.
Form := First_Formal (Proc);
while Present (Form) loop
if Chars (Form) = Name_uInit_Level then
return Form;
end if;
Next_Formal (Form);
end loop;
-- No formal was found, return Empty
return Empty;
end Init_Proc_Level_Formal;
-------------------------------
-- Build_Initialization_Call --
-------------------------------
-- References to a discriminant inside the record type declaration can
-- appear either in the subtype_indication to constrain a record or an
-- array, or as part of a larger expression given for the initial value
-- of a component. In both of these cases N appears in the record
-- initialization procedure and needs to be replaced by the formal
-- parameter of the initialization procedure which corresponds to that
-- discriminant.
-- In the example below, references to discriminants D1 and D2 in proc_1
-- are replaced by references to formals with the same name
-- (discriminals)
-- A similar replacement is done for calls to any record initialization
-- procedure for any components that are themselves of a record type.
-- type R (D1, D2 : Integer) is record
-- X : Integer := F * D1;
-- Y : Integer := F * D2;
-- end record;
-- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
-- begin
-- Out_2.D1 := D1;
-- Out_2.D2 := D2;
-- Out_2.X := F * D1;
-- Out_2.Y := F * D2;
-- end;
function Build_Initialization_Call
(Loc : Source_Ptr;
Id_Ref : Node_Id;
Typ : Entity_Id;
In_Init_Proc : Boolean := False;
Enclos_Type : Entity_Id := Empty;
Discr_Map : Elist_Id := New_Elmt_List;
With_Default_Init : Boolean := False;
Constructor_Ref : Node_Id := Empty;
Init_Control_Actual : Entity_Id := Empty) return List_Id
is
Res : constant List_Id := New_List;
Full_Type : Entity_Id;
procedure Check_Predicated_Discriminant
(Val : Node_Id;
Discr : Entity_Id);
-- Discriminants whose subtypes have predicates are checked in two
-- cases:
-- a) When an object is default-initialized and assertions are enabled
-- we check that the value of the discriminant obeys the predicate.
-- b) In all cases, if the discriminant controls a variant and the
-- variant has no others_choice, Constraint_Error must be raised if
-- the predicate is violated, because there is no variant covered
-- by the illegal discriminant value.
-----------------------------------
-- Check_Predicated_Discriminant --
-----------------------------------
procedure Check_Predicated_Discriminant
(Val : Node_Id;
Discr : Entity_Id)
is
Typ : constant Entity_Id := Etype (Discr);
procedure Check_Missing_Others (V : Node_Id);
-- Check that a given variant and its nested variants have an others
-- choice, and generate a constraint error raise when it does not.
--------------------------
-- Check_Missing_Others --
--------------------------
procedure Check_Missing_Others (V : Node_Id) is
Alt : Node_Id;
Choice : Node_Id;
Last_Var : Node_Id;
begin
Last_Var := Last_Non_Pragma (Variants (V));
Choice := First (Discrete_Choices (Last_Var));
-- An others_choice is added during expansion for gcc use, but
-- does not cover the illegality.
if Entity (Name (V)) = Discr then
if Present (Choice)
and then (Nkind (Choice) /= N_Others_Choice
or else not Comes_From_Source (Choice))
then
Check_Expression_Against_Static_Predicate (Val, Typ);
if not Is_Static_Expression (Val) then
Prepend_To (Res,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Not (Loc,
Right_Opnd => Make_Predicate_Call (Typ, Val)),
Reason => CE_Invalid_Data));
end if;
end if;
end if;
-- Check whether some nested variant is ruled by the predicated
-- discriminant.
Alt := First (Variants (V));
while Present (Alt) loop
if Nkind (Alt) = N_Variant
and then Present (Variant_Part (Component_List (Alt)))
then
Check_Missing_Others
(Variant_Part (Component_List (Alt)));
end if;
Next (Alt);
end loop;
end Check_Missing_Others;
-- Local variables
Def : Node_Id;
-- Start of processing for Check_Predicated_Discriminant
begin
if Ekind (Base_Type (Full_Type)) = E_Record_Type then
Def := Type_Definition (Parent (Base_Type (Full_Type)));
else
return;
end if;
if Policy_In_Effect (Name_Assert) = Name_Check
and then not Predicates_Ignored (Etype (Discr))
then
Prepend_To (Res, Make_Predicate_Check (Typ, Val));
end if;
-- If discriminant controls a variant, verify that predicate is
-- obeyed or else an Others_Choice is present.
if Nkind (Def) = N_Record_Definition
and then Present (Variant_Part (Component_List (Def)))
and then Policy_In_Effect (Name_Assert) = Name_Ignore
then
Check_Missing_Others (Variant_Part (Component_List (Def)));
end if;
end Check_Predicated_Discriminant;
-- Local variables
Arg : Node_Id;
Args : List_Id;
Decls : List_Id;
Decl : Node_Id;
Discr : Entity_Id;
First_Arg : Node_Id;
Full_Init_Type : Entity_Id;
Init_Call : Node_Id;
Init_Type : Entity_Id;
Proc : Entity_Id;
-- Start of processing for Build_Initialization_Call
begin
pragma Assert (Constructor_Ref = Empty
or else Is_CPP_Constructor_Call (Constructor_Ref));
if No (Constructor_Ref) then
Proc := Base_Init_Proc (Typ);
else
Proc := Base_Init_Proc (Typ, Entity (Name (Constructor_Ref)));
end if;
pragma Assert (Present (Proc));
Init_Type := Etype (First_Formal (Proc));
Full_Init_Type := Underlying_Type (Init_Type);
-- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
-- is active (in which case we make the call anyway, since in the
-- actual compiled client it may be non null).
if Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars then
return Empty_List;
-- Nothing to do for an array of controlled components that have only
-- the inherited Initialize primitive. This is a useful optimization
-- for CodePeer.
elsif Is_Trivial_Subprogram (Proc)
and then Is_Array_Type (Full_Init_Type)
then
return New_List (Make_Null_Statement (Loc));
end if;
-- Use the [underlying] full view when dealing with a private type. This
-- may require several steps depending on derivations.
Full_Type := Typ;
loop
if Is_Private_Type (Full_Type) then
if Present (Full_View (Full_Type)) then
Full_Type := Full_View (Full_Type);
elsif Present (Underlying_Full_View (Full_Type)) then
Full_Type := Underlying_Full_View (Full_Type);
-- When a private type acts as a generic actual and lacks a full
-- view, use the base type.
elsif Is_Generic_Actual_Type (Full_Type) then
Full_Type := Base_Type (Full_Type);
elsif Ekind (Full_Type) = E_Private_Subtype
and then (not Has_Discriminants (Full_Type)
or else No (Discriminant_Constraint (Full_Type)))
then
Full_Type := Etype (Full_Type);
-- The loop has recovered the [underlying] full view, stop the
-- traversal.
else
exit;
end if;
-- The type is not private, nothing to do
else
exit;
end if;
end loop;
-- If Typ is derived, the procedure is the initialization procedure for
-- the root type. Wrap the argument in an conversion to make it type
-- honest. Actually it isn't quite type honest, because there can be
-- conflicts of views in the private type case. That is why we set
-- Conversion_OK in the conversion node.
if (Is_Record_Type (Typ)
or else Is_Array_Type (Typ)
or else Is_Private_Type (Typ))
and then Init_Type /= Base_Type (Typ)
then
First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
Set_Etype (First_Arg, Init_Type);
else
First_Arg := Id_Ref;
end if;
Args := New_List (Convert_Concurrent (First_Arg, Typ));
-- In the tasks case, add _Master as the value of the _Master parameter
-- and _Chain as the value of the _Chain parameter. At the outer level,
-- these will be variables holding the corresponding values obtained
-- from GNARL. At inner levels, they will be the parameters passed down
-- through the outer routines.
if Has_Task (Full_Type) then
if Restriction_Active (No_Task_Hierarchy) then
Append_To (Args, Make_Integer_Literal (Loc, Library_Task_Level));
else
Append_To (Args, Make_Identifier (Loc, Name_uMaster));
end if;
-- Add _Chain (not done for sequential elaboration policy, see
-- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
if Partition_Elaboration_Policy /= 'S' then
Append_To (Args, Make_Identifier (Loc, Name_uChain));
end if;
-- Ada 2005 (AI-287): In case of default initialized components
-- with tasks, we generate a null string actual parameter.
-- This is just a workaround that must be improved later???
if With_Default_Init then
Append_To (Args,
Make_String_Literal (Loc,
Strval => ""));
else
Decls :=
Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type, In_Init_Proc);
Decl := Last (Decls);
Append_To (Args,
New_Occurrence_Of (Defining_Identifier (Decl), Loc));
Append_List (Decls, Res);
end if;
else
Decls := No_List;
Decl := Empty;
end if;
-- Handle the optionally generated formal *_skip_null_excluding_checks
-- Look at the associated node for the object we are referencing and
-- verify that we are expanding a call to an Init_Proc for an internally
-- generated object declaration before passing True and skipping the
-- relevant checks.
if Needs_Conditional_Null_Excluding_Check (Full_Init_Type)
and then Nkind (Id_Ref) in N_Has_Entity
and then (Comes_From_Source (Id_Ref)
or else (Present (Associated_Node (Id_Ref))
and then Comes_From_Source
(Associated_Node (Id_Ref))))
then
Append_To (Args, New_Occurrence_Of (Standard_True, Loc));
end if;
-- Add discriminant values if discriminants are present
if Has_Discriminants (Full_Init_Type) then
Discr := First_Discriminant (Full_Init_Type);
while Present (Discr) loop
-- If this is a discriminated concurrent type, the init_proc
-- for the corresponding record is being called. Use that type
-- directly to find the discriminant value, to handle properly
-- intervening renamed discriminants.
declare
T : Entity_Id := Full_Type;
begin
if Is_Protected_Type (T) then
T := Corresponding_Record_Type (T);
end if;
Arg :=
Get_Discriminant_Value (
Discr,
T,
Discriminant_Constraint (Full_Type));
end;
-- If the target has access discriminants, and is constrained by
-- an access to the enclosing construct, i.e. a current instance,
-- replace the reference to the type by a reference to the object.
if Nkind (Arg) = N_Attribute_Reference
and then Is_Access_Type (Etype (Arg))
and then Is_Entity_Name (Prefix (Arg))
and then Is_Type (Entity (Prefix (Arg)))
then
Arg :=
Make_Attribute_Reference (Loc,
Prefix => New_Copy (Prefix (Id_Ref)),
Attribute_Name => Name_Unrestricted_Access);
elsif In_Init_Proc then
-- Replace any possible references to the discriminant in the
-- call to the record initialization procedure with references
-- to the appropriate formal parameter.
if Nkind (Arg) = N_Identifier
and then Ekind (Entity (Arg)) = E_Discriminant
then
Arg := New_Occurrence_Of (Discriminal (Entity (Arg)), Loc);
-- Otherwise make a copy of the default expression. Note that
-- we use the current Sloc for this, because we do not want the
-- call to appear to be at the declaration point. Within the
-- expression, replace discriminants with their discriminals.
else
Arg :=
New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
end if;
else
if Is_Constrained (Full_Type) then
Arg := Duplicate_Subexpr_No_Checks (Arg);
else
-- The constraints come from the discriminant default exps,
-- they must be reevaluated, so we use New_Copy_Tree but we
-- ensure the proper Sloc (for any embedded calls).
-- In addition, if a predicate check is needed on the value
-- of the discriminant, insert it ahead of the call.
Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
end if;
if Has_Predicates (Etype (Discr)) then
Check_Predicated_Discriminant (Arg, Discr);
end if;
end if;
-- Ada 2005 (AI-287): In case of default initialized components,
-- if the component is constrained with a discriminant of the
-- enclosing type, we need to generate the corresponding selected
-- component node to access the discriminant value. In other cases
-- this is not required, either because we are inside the init
-- proc and we use the corresponding formal, or else because the
-- component is constrained by an expression.
if With_Default_Init
and then Nkind (Id_Ref) = N_Selected_Component
and then Nkind (Arg) = N_Identifier
and then Ekind (Entity (Arg)) = E_Discriminant
then
Append_To (Args,
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Prefix (Id_Ref)),
Selector_Name => Arg));
else
Append_To (Args, Arg);
end if;
Next_Discriminant (Discr);
end loop;
end if;
-- If this is a call to initialize the parent component of a derived
-- tagged type, indicate that the tag should not be set in the parent.
-- This is done via the actual parameter value for the Init_Control
-- formal parameter, which is also used to deal with late initialization
-- requirements.
--
-- We pass in Full_Init_Except_Tag unless the caller tells us to do
-- otherwise (by passing in a nonempty Init_Control_Actual parameter).
if Is_Tagged_Type (Full_Init_Type)
and then not Is_CPP_Class (Full_Init_Type)
and then Nkind (Id_Ref) = N_Selected_Component
and then Chars (Selector_Name (Id_Ref)) = Name_uParent
then
declare
use Initialization_Control;
begin
Append_To (Args,
(if Present (Init_Control_Actual)
then Init_Control_Actual
else Make_Mode_Literal (Loc, Full_Init_Except_Tag)));
end;
elsif Present (Constructor_Ref) then
Append_List_To (Args,
New_Copy_List (Parameter_Associations (Constructor_Ref)));
end if;
-- Pass the extra accessibility level parameter associated with the
-- level of the object being initialized when required.
if Is_Entity_Name (Id_Ref)
and then Present (Init_Proc_Level_Formal (Proc))
then
Append_To (Args,
Make_Parameter_Association (Loc,
Selector_Name =>
Make_Identifier (Loc, Name_uInit_Level),
Explicit_Actual_Parameter =>
Accessibility_Level (Id_Ref, Dynamic_Level)));
end if;
Append_To (Res,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc, Loc),
Parameter_Associations => Args));
if Needs_Finalization (Typ)
and then Nkind (Id_Ref) = N_Selected_Component
then
if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
Init_Call :=
Make_Init_Call
(Obj_Ref => New_Copy_Tree (First_Arg),
Typ => Typ);
-- Guard against a missing [Deep_]Initialize when the type was not
-- properly frozen.
if Present (Init_Call) then
Append_To (Res, Init_Call);
end if;
end if;
end if;
return Res;
exception
when RE_Not_Available =>
return Empty_List;
end Build_Initialization_Call;
----------------------------
-- Build_Record_Init_Proc --
----------------------------
procedure Build_Record_Init_Proc (N : Node_Id; Rec_Ent : Entity_Id) is
Decls : constant List_Id := New_List;
Discr_Map : constant Elist_Id := New_Elmt_List;
Loc : constant Source_Ptr := Sloc (Rec_Ent);
Counter : Nat := 0;
Proc_Id : Entity_Id;
Rec_Type : Entity_Id;
Init_Control_Formal : Entity_Id := Empty; -- set in Build_Init_Statements
Has_Late_Init_Comp : Boolean := False; -- set in Build_Init_Statements
function Build_Assignment
(Id : Entity_Id;
Default : Node_Id) return List_Id;
-- Build an assignment statement that assigns the default expression to
-- its corresponding record component if defined. The left-hand side of
-- the assignment is marked Assignment_OK so that initialization of
-- limited private records works correctly. This routine may also build
-- an adjustment call if the component is controlled.
procedure Build_Discriminant_Assignments (Statement_List : List_Id);
-- If the record has discriminants, add assignment statements to
-- Statement_List to initialize the discriminant values from the
-- arguments of the initialization procedure.
function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
-- Build a list representing a sequence of statements which initialize
-- components of the given component list. This may involve building
-- case statements for the variant parts. Append any locally declared
-- objects on list Decls.
function Build_Init_Call_Thru (Parameters : List_Id) return List_Id;
-- Given an untagged type-derivation that declares discriminants, e.g.
--
-- type R (R1, R2 : Integer) is record ... end record;
-- type D (D1 : Integer) is new R (1, D1);
--
-- we make the _init_proc of D be
--
-- procedure _init_proc (X : D; D1 : Integer) is
-- begin
-- _init_proc (R (X), 1, D1);
-- end _init_proc;
--
-- This function builds the call statement in this _init_proc.
procedure Build_CPP_Init_Procedure;
-- Build the tree corresponding to the procedure specification and body
-- of the IC procedure that initializes the C++ part of the dispatch
-- table of an Ada tagged type that is a derivation of a CPP type.
-- Install it as the CPP_Init TSS.
procedure Build_Init_Procedure;
-- Build the tree corresponding to the procedure specification and body
-- of the initialization procedure and install it as the _init TSS.
procedure Build_Offset_To_Top_Functions;
-- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
-- and body of Offset_To_Top, a function used in conjuction with types
-- having secondary dispatch tables.
procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
-- Add range checks to components of discriminated records. S is a
-- subtype indication of a record component. Check_List is a list
-- to which the check actions are appended.
function Component_Needs_Simple_Initialization
(T : Entity_Id) return Boolean;
-- Determine if a component needs simple initialization, given its type
-- T. This routine is the same as Needs_Simple_Initialization except for
-- components of type Tag and Interface_Tag. These two access types do
-- not require initialization since they are explicitly initialized by
-- other means.
function Parent_Subtype_Renaming_Discrims return Boolean;
-- Returns True for base types N that rename discriminants, else False
function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
-- Determine whether a record initialization procedure needs to be
-- generated for the given record type.
----------------------
-- Build_Assignment --
----------------------
function Build_Assignment
(Id : Entity_Id;
Default : Node_Id) return List_Id
is
Default_Loc : constant Source_Ptr := Sloc (Default);
Typ : constant Entity_Id := Underlying_Type (Etype (Id));
Adj_Call : Node_Id;
Exp : Node_Id;
Exp_Q : Node_Id;
Lhs : Node_Id;
Res : List_Id;
begin
Lhs :=
Make_Selected_Component (Default_Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Selector_Name => New_Occurrence_Of (Id, Default_Loc));
Set_Assignment_OK (Lhs);
-- Take copy of Default to ensure that later copies of this component
-- declaration in derived types see the original tree, not a node
-- rewritten during expansion of the init_proc. If the copy contains
-- itypes, the scope of the new itypes is the init_proc being built.
declare
Map : Elist_Id := No_Elist;
begin
if Has_Late_Init_Comp then
-- Map the type to the _Init parameter in order to
-- handle "current instance" references.
Map := New_Elmt_List
(Elmt1 => Rec_Type,
Elmt2 => Defining_Identifier (First
(Parameter_Specifications
(Parent (Proc_Id)))));
-- If the type has an incomplete view, a current instance
-- may have an incomplete type. In that case, it must also be
-- replaced by the formal of the Init_Proc.
if Nkind (Parent (Rec_Type)) = N_Full_Type_Declaration
and then Present (Incomplete_View (Parent (Rec_Type)))
then
Append_Elmt (
N => Incomplete_View (Parent (Rec_Type)),
To => Map);
Append_Elmt (
N => Defining_Identifier
(First
(Parameter_Specifications
(Parent (Proc_Id)))),
To => Map);
end if;
end if;
Exp := New_Copy_Tree (Default, New_Scope => Proc_Id, Map => Map);
end;
Res := New_List (
Make_Assignment_Statement (Loc,
Name => Lhs,
Expression => Exp));
Set_No_Ctrl_Actions (First (Res));
Exp_Q := Unqualify (Exp);
-- Adjust the tag if tagged (because of possible view conversions).
-- Suppress the tag adjustment when not Tagged_Type_Expansion because
-- tags are represented implicitly in objects, and when the record is
-- initialized with a raise expression.
if Is_Tagged_Type (Typ)
and then Tagged_Type_Expansion
and then Nkind (Exp_Q) /= N_Raise_Expression
then
Append_To (Res,
Make_Tag_Assignment_From_Type
(Default_Loc,
New_Copy_Tree (Lhs, New_Scope => Proc_Id),
Underlying_Type (Typ)));
end if;
-- Adjust the component if controlled except if it is an aggregate
-- that will be expanded inline.
if Needs_Finalization (Typ)
and then Nkind (Exp_Q) not in N_Aggregate | N_Extension_Aggregate
and then not Is_Build_In_Place_Function_Call (Exp)
then
Adj_Call :=
Make_Adjust_Call
(Obj_Ref => New_Copy_Tree (Lhs),
Typ => Etype (Id));
-- Guard against a missing [Deep_]Adjust when the component type
-- was not properly frozen.
if Present (Adj_Call) then
Append_To (Res, Adj_Call);
end if;
end if;
return Res;
exception
when RE_Not_Available =>
return Empty_List;
end Build_Assignment;
------------------------------------
-- Build_Discriminant_Assignments --
------------------------------------
procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
D : Entity_Id;
D_Loc : Source_Ptr;
begin
if Has_Discriminants (Rec_Type)
and then not Is_Unchecked_Union (Rec_Type)
then
D := First_Discriminant (Rec_Type);
while Present (D) loop
-- Don't generate the assignment for discriminants in derived
-- tagged types if the discriminant is a renaming of some
-- ancestor discriminant. This initialization will be done
-- when initializing the _parent field of the derived record.
if Is_Tagged
and then Present (Corresponding_Discriminant (D))
then
null;
else
D_Loc := Sloc (D);
Append_List_To (Statement_List,
Build_Assignment (D,
New_Occurrence_Of (Discriminal (D), D_Loc)));
end if;
Next_Discriminant (D);
end loop;
end if;
end Build_Discriminant_Assignments;
--------------------------
-- Build_Init_Call_Thru --
--------------------------
function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is
Parent_Proc : constant Entity_Id :=
Base_Init_Proc (Etype (Rec_Type));
Parent_Type : constant Entity_Id :=
Etype (First_Formal (Parent_Proc));
Uparent_Type : constant Entity_Id :=
Underlying_Type (Parent_Type);
First_Discr_Param : Node_Id;
Arg : Node_Id;
Args : List_Id;
First_Arg : Node_Id;
Parent_Discr : Entity_Id;
Res : List_Id;
begin
-- First argument (_Init) is the object to be initialized.
-- ??? not sure where to get a reasonable Loc for First_Arg
First_Arg :=
OK_Convert_To (Parent_Type,
New_Occurrence_Of
(Defining_Identifier (First (Parameters)), Loc));
Set_Etype (First_Arg, Parent_Type);
Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
-- In the tasks case,
-- add _Master as the value of the _Master parameter
-- add _Chain as the value of the _Chain parameter.
-- add _Task_Name as the value of the _Task_Name parameter.
-- At the outer level, these will be variables holding the
-- corresponding values obtained from GNARL or the expander.
--
-- At inner levels, they will be the parameters passed down through
-- the outer routines.
First_Discr_Param := Next (First (Parameters));
if Has_Task (Rec_Type) then
if Restriction_Active (No_Task_Hierarchy) then
Append_To
(Args, Make_Integer_Literal (Loc, Library_Task_Level));
else
Append_To (Args, Make_Identifier (Loc, Name_uMaster));
end if;
-- Add _Chain (not done for sequential elaboration policy, see
-- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
if Partition_Elaboration_Policy /= 'S' then
Append_To (Args, Make_Identifier (Loc, Name_uChain));
end if;
Append_To (Args, Make_Identifier (Loc, Name_uTask_Name));
First_Discr_Param := Next (Next (Next (First_Discr_Param)));
end if;
-- Append discriminant values
if Has_Discriminants (Uparent_Type) then
pragma Assert (not Is_Tagged_Type (Uparent_Type));
Parent_Discr := First_Discriminant (Uparent_Type);
while Present (Parent_Discr) loop
-- Get the initial value for this discriminant
-- ??? needs to be cleaned up to use parent_Discr_Constr
-- directly.
declare
Discr : Entity_Id :=
First_Stored_Discriminant (Uparent_Type);
Discr_Value : Elmt_Id :=
First_Elmt (Stored_Constraint (Rec_Type));
begin
while Original_Record_Component (Parent_Discr) /= Discr loop
Next_Stored_Discriminant (Discr);
Next_Elmt (Discr_Value);
end loop;
Arg := Node (Discr_Value);
end;
-- Append it to the list
if Nkind (Arg) = N_Identifier
and then Ekind (Entity (Arg)) = E_Discriminant
then
Append_To (Args,
New_Occurrence_Of (Discriminal (Entity (Arg)), Loc));
-- Case of access discriminants. We replace the reference
-- to the type by a reference to the actual object.
-- Is above comment right??? Use of New_Copy below seems mighty
-- suspicious ???
else
Append_To (Args, New_Copy (Arg));
end if;
Next_Discriminant (Parent_Discr);
end loop;
end if;
Res :=
New_List (
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (Parent_Proc, Loc),
Parameter_Associations => Args));
return Res;
end Build_Init_Call_Thru;
-----------------------------------
-- Build_Offset_To_Top_Functions --
-----------------------------------
procedure Build_Offset_To_Top_Functions is
procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id);
-- Generate:
-- function Fxx (O : Address) return Storage_Offset is
-- type Acc is access all <Typ>;
-- begin
-- return Acc!(O).Iface_Comp'Position;
-- end Fxx;
----------------------------------
-- Build_Offset_To_Top_Function --
----------------------------------
procedure Build_Offset_To_Top_Function (Iface_Comp : Entity_Id) is
Body_Node : Node_Id;
Func_Id : Entity_Id;
Spec_Node : Node_Id;
Acc_Type : Entity_Id;
begin
Func_Id := Make_Temporary (Loc, 'F');
Set_DT_Offset_To_Top_Func (Iface_Comp, Func_Id);
-- Generate
-- function Fxx (O : in Rec_Typ) return Storage_Offset;
Spec_Node := New_Node (N_Function_Specification, Loc);
Set_Defining_Unit_Name (Spec_Node, Func_Id);
Set_Parameter_Specifications (Spec_Node, New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uO),
In_Present => True,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Address), Loc))));
Set_Result_Definition (Spec_Node,
New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
-- Generate
-- function Fxx (O : in Rec_Typ) return Storage_Offset is
-- begin
-- return -O.Iface_Comp'Position;
-- end Fxx;
Body_Node := New_Node (N_Subprogram_Body, Loc);
Set_Specification (Body_Node, Spec_Node);
Acc_Type := Make_Temporary (Loc, 'T');
Set_Declarations (Body_Node, New_List (
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Acc_Type,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Null_Exclusion_Present => False,
Constant_Present => False,
Subtype_Indication =>
New_Occurrence_Of (Rec_Type, Loc)))));
Set_Handled_Statement_Sequence (Body_Node,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression =>
Make_Op_Minus (Loc,
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix =>
Make_Explicit_Dereference (Loc,
Unchecked_Convert_To (Acc_Type,
Make_Identifier (Loc, Name_uO))),
Selector_Name =>
New_Occurrence_Of (Iface_Comp, Loc)),
Attribute_Name => Name_Position))))));
Mutate_Ekind (Func_Id, E_Function);
Set_Mechanism (Func_Id, Default_Mechanism);
Set_Is_Internal (Func_Id, True);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Func_Id);
end if;
Analyze (Body_Node);
Append_Freeze_Action (Rec_Type, Body_Node);
end Build_Offset_To_Top_Function;
-- Local variables
Iface_Comp : Node_Id;
Iface_Comp_Elmt : Elmt_Id;
Ifaces_Comp_List : Elist_Id;
-- Start of processing for Build_Offset_To_Top_Functions
begin
-- Offset_To_Top_Functions are built only for derivations of types
-- with discriminants that cover interface types.
-- Nothing is needed either in case of virtual targets, since
-- interfaces are handled directly by the target.
if not Is_Tagged_Type (Rec_Type)
or else Etype (Rec_Type) = Rec_Type
or else not Has_Discriminants (Etype (Rec_Type))
or else not Tagged_Type_Expansion
then
return;
end if;
Collect_Interface_Components (Rec_Type, Ifaces_Comp_List);
-- For each interface type with secondary dispatch table we generate
-- the Offset_To_Top_Functions (required to displace the pointer in
-- interface conversions)
Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
while Present (Iface_Comp_Elmt) loop
Iface_Comp := Node (Iface_Comp_Elmt);
pragma Assert (Is_Interface (Related_Type (Iface_Comp)));
-- If the interface is a parent of Rec_Type it shares the primary
-- dispatch table and hence there is no need to build the function
if not Is_Ancestor (Related_Type (Iface_Comp), Rec_Type,
Use_Full_View => True)
then
Build_Offset_To_Top_Function (Iface_Comp);
end if;
Next_Elmt (Iface_Comp_Elmt);
end loop;
end Build_Offset_To_Top_Functions;
------------------------------
-- Build_CPP_Init_Procedure --
------------------------------
procedure Build_CPP_Init_Procedure is
Body_Node : Node_Id;
Body_Stmts : List_Id;
Flag_Id : Entity_Id;
Handled_Stmt_Node : Node_Id;
Init_Tags_List : List_Id;
Proc_Id : Entity_Id;
Proc_Spec_Node : Node_Id;
begin
-- Check cases requiring no IC routine
if not Is_CPP_Class (Root_Type (Rec_Type))
or else Is_CPP_Class (Rec_Type)
or else CPP_Num_Prims (Rec_Type) = 0
or else not Tagged_Type_Expansion
or else No_Run_Time_Mode
then
return;
end if;
-- Generate:
-- Flag : Boolean := False;
--
-- procedure Typ_IC is
-- begin
-- if not Flag then
-- Copy C++ dispatch table slots from parent
-- Update C++ slots of overridden primitives
-- end if;
-- end;
Flag_Id := Make_Temporary (Loc, 'F');
Append_Freeze_Action (Rec_Type,
Make_Object_Declaration (Loc,
Defining_Identifier => Flag_Id,
Object_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc),
Expression =>
New_Occurrence_Of (Standard_True, Loc)));
Body_Stmts := New_List;
Body_Node := New_Node (N_Subprogram_Body, Loc);
Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
Proc_Id :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name (Rec_Type, TSS_CPP_Init_Proc));
Mutate_Ekind (Proc_Id, E_Procedure);
Set_Is_Internal (Proc_Id);
Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
Set_Parameter_Specifications (Proc_Spec_Node, New_List);
Set_Specification (Body_Node, Proc_Spec_Node);
Set_Declarations (Body_Node, New_List);
Init_Tags_List := Build_Inherit_CPP_Prims (Rec_Type);
Append_To (Init_Tags_List,
Make_Assignment_Statement (Loc,
Name =>
New_Occurrence_Of (Flag_Id, Loc),
Expression =>
New_Occurrence_Of (Standard_False, Loc)));
Append_To (Body_Stmts,
Make_If_Statement (Loc,
Condition => New_Occurrence_Of (Flag_Id, Loc),
Then_Statements => Init_Tags_List));
Handled_Stmt_Node :=
New_Node (N_Handled_Sequence_Of_Statements, Loc);
Set_Statements (Handled_Stmt_Node, Body_Stmts);
Set_Exception_Handlers (Handled_Stmt_Node, No_List);
Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Proc_Id);
end if;
-- Associate CPP_Init_Proc with type
Set_Init_Proc (Rec_Type, Proc_Id);
end Build_CPP_Init_Procedure;
--------------------------
-- Build_Init_Procedure --
--------------------------
procedure Build_Init_Procedure is
Body_Stmts : List_Id;
Body_Node : Node_Id;
Handled_Stmt_Node : Node_Id;
Init_Tags_List : List_Id;
Parameters : List_Id;
Proc_Spec_Node : Node_Id;
Record_Extension_Node : Node_Id;
use Initialization_Control;
begin
Body_Stmts := New_List;
Body_Node := New_Node (N_Subprogram_Body, Loc);
Mutate_Ekind (Proc_Id, E_Procedure);
Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
Parameters := Init_Formals (Rec_Type, Proc_Id);
Append_List_To (Parameters,
Build_Discriminant_Formals (Rec_Type, True));
-- For tagged types, we add a parameter to indicate what
-- portion of the object's initialization is to be performed.
-- This is used for two purposes:
-- 1) When a type extension's initialization procedure calls
-- the initialization procedure of the parent type, we do
-- not want the parent to initialize the Tag component;
-- it has been set already.
-- 2) If an ancestor type has at least one component that requires
-- late initialization, then we need to be able to initialize
-- those components separately after initializing any other
-- components.
if Is_Tagged_Type (Rec_Type) then
Init_Control_Formal := Make_Temporary (Loc, 'P');
Append_To (Parameters,
Make_Parameter_Specification (Loc,
Defining_Identifier => Init_Control_Formal,
Parameter_Type =>
New_Occurrence_Of (Standard_Natural, Loc),
Expression => Make_Mode_Literal (Loc, Full_Init)));
end if;
-- Create an extra accessibility parameter to capture the level of
-- the object being initialized when its type is a limited record.
if Is_Limited_Record (Rec_Type) then
Append_To (Parameters,
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier
(Loc, Name_uInit_Level),
Parameter_Type =>
New_Occurrence_Of (Standard_Natural, Loc),
Expression =>
Make_Integer_Literal
(Loc, Scope_Depth (Standard_Standard))));
end if;
Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
Set_Specification (Body_Node, Proc_Spec_Node);
Set_Declarations (Body_Node, Decls);
-- N is a Derived_Type_Definition that renames the parameters of the
-- ancestor type. We initialize it by expanding our discriminants and
-- call the ancestor _init_proc with a type-converted object.
if Parent_Subtype_Renaming_Discrims then
Append_List_To (Body_Stmts, Build_Init_Call_Thru (Parameters));
elsif Nkind (Type_Definition (N)) = N_Record_Definition then
Build_Discriminant_Assignments (Body_Stmts);
if not Null_Present (Type_Definition (N)) then
Append_List_To (Body_Stmts,
Build_Init_Statements (Component_List (Type_Definition (N))));
end if;
-- N is a Derived_Type_Definition with a possible non-empty
-- extension. The initialization of a type extension consists in the
-- initialization of the components in the extension.
else
Build_Discriminant_Assignments (Body_Stmts);
Record_Extension_Node :=
Record_Extension_Part (Type_Definition (N));
if not Null_Present (Record_Extension_Node) then
declare
Stmts : constant List_Id :=
Build_Init_Statements (
Component_List (Record_Extension_Node));
begin
-- The parent field must be initialized first because the
-- offset of the new discriminants may depend on it. This is
-- not needed if the parent is an interface type because in
-- such case the initialization of the _parent field was not
-- generated.
if not Is_Interface (Etype (Rec_Ent)) then
declare
Parent_IP : constant Name_Id :=
Make_Init_Proc_Name (Etype (Rec_Ent));
Stmt : Node_Id := First (Stmts);
IP_Call : Node_Id := Empty;
begin
-- Look for a call to the parent IP associated with
-- the record extension.
-- The call will be inside not one but two
-- if-statements (with the same condition). Testing
-- the same Early_Init condition twice might seem
-- redundant. However, as soon as we exit this loop,
-- we are going to hoist the inner if-statement out
-- of the outer one; the "redundant" test was built
-- in anticipation of this hoisting.
while Present (Stmt) loop
if Nkind (Stmt) = N_If_Statement then
declare
Then_Stmt1 : Node_Id :=
First (Then_Statements (Stmt));
Then_Stmt2 : Node_Id;
begin
while Present (Then_Stmt1) loop
if Nkind (Then_Stmt1) = N_If_Statement then
Then_Stmt2 :=
First (Then_Statements (Then_Stmt1));
if Nkind (Then_Stmt2) =
N_Procedure_Call_Statement
and then Chars (Name (Then_Stmt2)) =
Parent_IP
then
-- IP_Call is a call wrapped in an
-- if statement.
IP_Call := Then_Stmt1;
exit;
end if;
end if;
Next (Then_Stmt1);
end loop;
end;
end if;
Next (Stmt);
end loop;
-- If found then move it to the beginning of the
-- statements of this IP routine
if Present (IP_Call) then
Remove (IP_Call);
Prepend_List_To (Body_Stmts, New_List (IP_Call));
end if;
end;
end if;
Append_List_To (Body_Stmts, Stmts);
end;
end if;
end if;
-- Add here the assignment to instantiate the Tag
-- The assignment corresponds to the code:
-- _Init._Tag := Typ'Tag;
-- Suppress the tag assignment when not Tagged_Type_Expansion because
-- tags are represented implicitly in objects. It is also suppressed
-- in case of CPP_Class types because in this case the tag is
-- initialized in the C++ side.
if Is_Tagged_Type (Rec_Type)
and then Tagged_Type_Expansion
and then not No_Run_Time_Mode
then
-- Case 1: Ada tagged types with no CPP ancestor. Set the tags of
-- the actual object and invoke the IP of the parent (in this
-- order). The tag must be initialized before the call to the IP
-- of the parent and the assignments to other components because
-- the initial value of the components may depend on the tag (eg.
-- through a dispatching operation on an access to the current
-- type). The tag assignment is not done when initializing the
-- parent component of a type extension, because in that case the
-- tag is set in the extension.
if not Is_CPP_Class (Root_Type (Rec_Type)) then
-- Initialize the primary tag component
Init_Tags_List := New_List (
Make_Tag_Assignment_From_Type
(Loc, Make_Identifier (Loc, Name_uInit), Rec_Type));
-- Ada 2005 (AI-251): Initialize the secondary tags components
-- located at fixed positions (tags whose position depends on
-- variable size components are initialized later ---see below)
if Ada_Version >= Ada_2005
and then not Is_Interface (Rec_Type)
and then Has_Interfaces (Rec_Type)
then
declare
Elab_Sec_DT_Stmts_List : constant List_Id := New_List;
Elab_List : List_Id := New_List;
begin
Init_Secondary_Tags
(Typ => Rec_Type,
Target => Make_Identifier (Loc, Name_uInit),
Init_Tags_List => Init_Tags_List,
Stmts_List => Elab_Sec_DT_Stmts_List,
Fixed_Comps => True,
Variable_Comps => False);
Elab_List := New_List (
Make_If_Statement (Loc,
Condition =>
Tag_Init_Condition (Loc, Init_Control_Formal),
Then_Statements => Init_Tags_List));
if Elab_Flag_Needed (Rec_Type) then
Append_To (Elab_Sec_DT_Stmts_List,
Make_Assignment_Statement (Loc,
Name =>
New_Occurrence_Of
(Access_Disp_Table_Elab_Flag (Rec_Type),
Loc),
Expression =>
New_Occurrence_Of (Standard_False, Loc)));
Append_To (Elab_List,
Make_If_Statement (Loc,
Condition =>
New_Occurrence_Of
(Access_Disp_Table_Elab_Flag (Rec_Type), Loc),
Then_Statements => Elab_Sec_DT_Stmts_List));
end if;
Prepend_List_To (Body_Stmts, Elab_List);
end;
else
Prepend_To (Body_Stmts,
Make_If_Statement (Loc,
Condition =>
Tag_Init_Condition (Loc, Init_Control_Formal),
Then_Statements => Init_Tags_List));
end if;
-- Case 2: CPP type. The imported C++ constructor takes care of
-- tags initialization. No action needed here because the IP
-- is built by Set_CPP_Constructors; in this case the IP is a
-- wrapper that invokes the C++ constructor and copies the C++
-- tags locally. Done to inherit the C++ slots in Ada derivations
-- (see case 3).
elsif Is_CPP_Class (Rec_Type) then
pragma Assert (False);
null;
-- Case 3: Combined hierarchy containing C++ types and Ada tagged
-- type derivations. Derivations of imported C++ classes add a
-- complication, because we cannot inhibit tag setting in the
-- constructor for the parent. Hence we initialize the tag after
-- the call to the parent IP (that is, in reverse order compared
-- with pure Ada hierarchies ---see comment on case 1).
else
-- Initialize the primary tag
Init_Tags_List := New_List (
Make_Tag_Assignment_From_Type
(Loc, Make_Identifier (Loc, Name_uInit), Rec_Type));
-- Ada 2005 (AI-251): Initialize the secondary tags components
-- located at fixed positions (tags whose position depends on
-- variable size components are initialized later ---see below)
if Ada_Version >= Ada_2005
and then not Is_Interface (Rec_Type)
and then Has_Interfaces (Rec_Type)
then
Init_Secondary_Tags
(Typ => Rec_Type,
Target => Make_Identifier (Loc, Name_uInit),
Init_Tags_List => Init_Tags_List,
Stmts_List => Init_Tags_List,
Fixed_Comps => True,
Variable_Comps => False);
end if;
-- Initialize the tag component after invocation of parent IP.
-- Generate:
-- parent_IP(_init.parent); // Invokes the C++ constructor
-- [ typIC; ] // Inherit C++ slots from parent
-- init_tags
declare
Ins_Nod : Node_Id;
begin
-- Search for the call to the IP of the parent. We assume
-- that the first init_proc call is for the parent.
-- It is wrapped in an "if Early_Init_Condition"
-- if-statement.
Ins_Nod := First (Body_Stmts);
while Present (Next (Ins_Nod))
and then
(Nkind (Ins_Nod) /= N_If_Statement
or else Nkind (First (Then_Statements (Ins_Nod)))
/= N_Procedure_Call_Statement
or else not Is_Init_Proc
(Name (First (Then_Statements
(Ins_Nod)))))
loop
Next (Ins_Nod);
end loop;
-- The IC routine copies the inherited slots of the C+ part
-- of the dispatch table from the parent and updates the
-- overridden C++ slots.
if CPP_Num_Prims (Rec_Type) > 0 then
declare
Init_DT : Entity_Id;
New_Nod : Node_Id;
begin
Init_DT := CPP_Init_Proc (Rec_Type);
pragma Assert (Present (Init_DT));
New_Nod :=
Make_Procedure_Call_Statement (Loc,
New_Occurrence_Of (Init_DT, Loc));
Insert_After (Ins_Nod, New_Nod);
-- Update location of init tag statements
Ins_Nod := New_Nod;
end;
end if;
Insert_List_After (Ins_Nod, Init_Tags_List);
end;
end if;
-- Ada 2005 (AI-251): Initialize the secondary tag components
-- located at variable positions. We delay the generation of this
-- code until here because the value of the attribute 'Position
-- applied to variable size components of the parent type that
-- depend on discriminants is only safely read at runtime after
-- the parent components have been initialized.
if Ada_Version >= Ada_2005
and then not Is_Interface (Rec_Type)
and then Has_Interfaces (Rec_Type)
and then Has_Discriminants (Etype (Rec_Type))
and then Is_Variable_Size_Record (Etype (Rec_Type))
then
Init_Tags_List := New_List;
Init_Secondary_Tags
(Typ => Rec_Type,
Target => Make_Identifier (Loc, Name_uInit),
Init_Tags_List => Init_Tags_List,
Stmts_List => Init_Tags_List,
Fixed_Comps => False,
Variable_Comps => True);
Append_List_To (Body_Stmts, Init_Tags_List);
end if;
end if;
Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
Set_Statements (Handled_Stmt_Node, Body_Stmts);
-- Generate:
-- Deep_Finalize (_init, C1, ..., CN);
-- raise;
if Counter > 0
and then Needs_Finalization (Rec_Type)
and then not Is_Abstract_Type (Rec_Type)
and then not Restriction_Active (No_Exception_Propagation)
then
declare
DF_Call : Node_Id;
DF_Id : Entity_Id;
begin
-- Create a local version of Deep_Finalize which has indication
-- of partial initialization state.
DF_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Name_uFinalizer));
Append_To (Decls, Make_Local_Deep_Finalize (Rec_Type, DF_Id));
DF_Call :=
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (DF_Id, Loc),
Parameter_Associations => New_List (
Make_Identifier (Loc, Name_uInit),
New_Occurrence_Of (Standard_False, Loc)));
-- Do not emit warnings related to the elaboration order when a
-- controlled object is declared before the body of Finalize is
-- seen.
if Legacy_Elaboration_Checks then
Set_No_Elaboration_Check (DF_Call);
end if;
Set_Exception_Handlers (Handled_Stmt_Node, New_List (
Make_Exception_Handler (Loc,
Exception_Choices => New_List (
Make_Others_Choice (Loc)),
Statements => New_List (
DF_Call,
Make_Raise_Statement (Loc)))));
end;
else
Set_Exception_Handlers (Handled_Stmt_Node, No_List);
end if;
Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Proc_Id);
end if;
-- Associate Init_Proc with type, and determine if the procedure
-- is null (happens because of the Initialize_Scalars pragma case,
-- where we have to generate a null procedure in case it is called
-- by a client with Initialize_Scalars set). Such procedures have
-- to be generated, but do not have to be called, so we mark them
-- as null to suppress the call. Kill also warnings for the _Init
-- out parameter, which is left entirely uninitialized.
Set_Init_Proc (Rec_Type, Proc_Id);
if Is_Null_Statement_List (Body_Stmts) then
Set_Is_Null_Init_Proc (Proc_Id);
Set_Warnings_Off (Defining_Identifier (First (Parameters)));
end if;
end Build_Init_Procedure;
---------------------------
-- Build_Init_Statements --
---------------------------
function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
Checks : constant List_Id := New_List;
Actions : List_Id := No_List;
Counter_Id : Entity_Id := Empty;
Comp_Loc : Source_Ptr;
Decl : Node_Id;
Id : Entity_Id;
Parent_Stmts : List_Id;
Parent_Id : Entity_Id := Empty;
Stmts, Late_Stmts : List_Id := Empty_List;
Typ : Entity_Id;
procedure Increment_Counter
(Loc : Source_Ptr; Late : Boolean := False);
-- Generate an "increment by one" statement for the current counter
-- and append it to the appropriate statement list.
procedure Make_Counter (Loc : Source_Ptr);
-- Create a new counter for the current component list. The routine
-- creates a new defining Id, adds an object declaration and sets
-- the Id generator for the next variant.
-----------------------
-- Increment_Counter --
-----------------------
procedure Increment_Counter
(Loc : Source_Ptr; Late : Boolean := False) is
begin
-- Generate:
-- Counter := Counter + 1;
Append_To ((if Late then Late_Stmts else Stmts),
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Counter_Id, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Counter_Id, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
end Increment_Counter;
------------------
-- Make_Counter --
------------------
procedure Make_Counter (Loc : Source_Ptr) is
begin
-- Increment the Id generator
Counter := Counter + 1;
-- Create the entity and declaration
Counter_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name ('C', Counter));
-- Generate:
-- Cnn : Integer := 0;
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Counter_Id,
Object_Definition =>
New_Occurrence_Of (Standard_Integer, Loc),
Expression =>
Make_Integer_Literal (Loc, 0)));
end Make_Counter;
-- Start of processing for Build_Init_Statements
begin
if Null_Present (Comp_List) then
return New_List (Make_Null_Statement (Loc));
end if;
Parent_Stmts := New_List;
Stmts := New_List;
-- Loop through visible declarations of task types and protected
-- types moving any expanded code from the spec to the body of the
-- init procedure.
if Is_Concurrent_Record_Type (Rec_Type) then
declare
Decl : constant Node_Id :=
Parent (Corresponding_Concurrent_Type (Rec_Type));
Def : Node_Id;
N1 : Node_Id;
N2 : Node_Id;
begin
if Is_Task_Record_Type (Rec_Type) then
Def := Task_Definition (Decl);
else
Def := Protected_Definition (Decl);
end if;
if Present (Def) then
N1 := First (Visible_Declarations (Def));
while Present (N1) loop
N2 := N1;
N1 := Next (N1);
if Nkind (N2) in N_Statement_Other_Than_Procedure_Call
or else Nkind (N2) in N_Raise_xxx_Error
or else Nkind (N2) = N_Procedure_Call_Statement
then
Append_To (Stmts,
New_Copy_Tree (N2, New_Scope => Proc_Id));
Rewrite (N2, Make_Null_Statement (Sloc (N2)));
Analyze (N2);
end if;
end loop;
end if;
end;
end if;
-- Loop through components, skipping pragmas, in 2 steps. The first
-- step deals with regular components. The second step deals with
-- components that require late initialization.
-- First pass : regular components
Decl := First_Non_Pragma (Component_Items (Comp_List));
while Present (Decl) loop
Comp_Loc := Sloc (Decl);
Build_Record_Checks
(Subtype_Indication (Component_Definition (Decl)), Checks);
Id := Defining_Identifier (Decl);
Typ := Etype (Id);
-- Leave any processing of component requiring late initialization
-- for the second pass.
if Initialization_Control.Requires_Late_Init (Decl, Rec_Type) then
if not Has_Late_Init_Comp then
Late_Stmts := New_List;
end if;
Has_Late_Init_Comp := True;
-- Regular component cases
else
-- In the context of the init proc, references to discriminants
-- resolve to denote the discriminals: this is where we can
-- freeze discriminant dependent component subtypes.
if not Is_Frozen (Typ) then
Append_List_To (Stmts, Freeze_Entity (Typ, N));
end if;
-- Explicit initialization
if Present (Expression (Decl)) then
if Is_CPP_Constructor_Call (Expression (Decl)) then
Actions :=
Build_Initialization_Call
(Comp_Loc,
Id_Ref =>
Make_Selected_Component (Comp_Loc,
Prefix =>
Make_Identifier (Comp_Loc, Name_uInit),
Selector_Name =>
New_Occurrence_Of (Id, Comp_Loc)),
Typ => Typ,
In_Init_Proc => True,
Enclos_Type => Rec_Type,
Discr_Map => Discr_Map,
Constructor_Ref => Expression (Decl));
else
Actions := Build_Assignment (Id, Expression (Decl));
end if;
-- CPU, Dispatching_Domain, Priority, and Secondary_Stack_Size
-- components are filled in with the corresponding rep-item
-- expression of the concurrent type (if any).
elsif Ekind (Scope (Id)) = E_Record_Type
and then Present (Corresponding_Concurrent_Type (Scope (Id)))
and then Chars (Id) in Name_uCPU
| Name_uDispatching_Domain
| Name_uPriority
| Name_uSecondary_Stack_Size
then
declare
Exp : Node_Id;
Nam : Name_Id;
pragma Warnings (Off, Nam);
Ritem : Node_Id;
begin
if Chars (Id) = Name_uCPU then
Nam := Name_CPU;
elsif Chars (Id) = Name_uDispatching_Domain then
Nam := Name_Dispatching_Domain;
elsif Chars (Id) = Name_uPriority then
Nam := Name_Priority;
elsif Chars (Id) = Name_uSecondary_Stack_Size then
Nam := Name_Secondary_Stack_Size;
end if;
-- Get the Rep Item (aspect specification, attribute
-- definition clause or pragma) of the corresponding
-- concurrent type.
Ritem :=
Get_Rep_Item
(Corresponding_Concurrent_Type (Scope (Id)),
Nam,
Check_Parents => False);
if Present (Ritem) then
-- Pragma case
if Nkind (Ritem) = N_Pragma then
Exp :=
Get_Pragma_Arg
(First (Pragma_Argument_Associations (Ritem)));
-- Conversion for Priority expression
if Nam = Name_Priority then
if Pragma_Name (Ritem) = Name_Priority
and then not GNAT_Mode
then
Exp := Convert_To (RTE (RE_Priority), Exp);
else
Exp :=
Convert_To (RTE (RE_Any_Priority), Exp);
end if;
end if;
-- Aspect/Attribute definition clause case
else
Exp := Expression (Ritem);
-- Conversion for Priority expression
if Nam = Name_Priority then
if Chars (Ritem) = Name_Priority
and then not GNAT_Mode
then
Exp := Convert_To (RTE (RE_Priority), Exp);
else
Exp :=
Convert_To (RTE (RE_Any_Priority), Exp);
end if;
end if;
end if;
-- Conversion for Dispatching_Domain value
if Nam = Name_Dispatching_Domain then
Exp :=
Unchecked_Convert_To
(RTE (RE_Dispatching_Domain_Access), Exp);
-- Conversion for Secondary_Stack_Size value
elsif Nam = Name_Secondary_Stack_Size then
Exp := Convert_To (RTE (RE_Size_Type), Exp);
end if;
Actions := Build_Assignment (Id, Exp);
-- Nothing needed if no Rep Item
else
Actions := No_List;
end if;
end;
-- Composite component with its own Init_Proc
elsif not Is_Interface (Typ)
and then Has_Non_Null_Base_Init_Proc (Typ)
then
declare
use Initialization_Control;
Init_Control_Actual : Node_Id := Empty;
Is_Parent : constant Boolean := Chars (Id) = Name_uParent;
Init_Call_Stmts : List_Id;
begin
if Is_Parent and then Has_Late_Init_Component (Etype (Id))
then
Init_Control_Actual :=
Make_Mode_Literal (Comp_Loc, Early_Init_Only);
-- Parent_Id used later in second call to parent's
-- init proc to initialize late-init components.
Parent_Id := Id;
end if;
Init_Call_Stmts :=
Build_Initialization_Call
(Comp_Loc,
Make_Selected_Component (Comp_Loc,
Prefix =>
Make_Identifier (Comp_Loc, Name_uInit),
Selector_Name => New_Occurrence_Of (Id, Comp_Loc)),
Typ,
In_Init_Proc => True,
Enclos_Type => Rec_Type,
Discr_Map => Discr_Map,
Init_Control_Actual => Init_Control_Actual);
if Is_Parent then
-- This is tricky. At first it looks like
-- we are going to end up with nested
-- if-statements with the same condition:
-- if Early_Init_Condition then
-- if Early_Init_Condition then
-- Parent_TypeIP (...);
-- end if;
-- end if;
-- But later we will hoist the inner if-statement
-- out of the outer one; we do this because the
-- init-proc call for the _Parent component of a type
-- extension has to precede any other initialization.
Actions :=
New_List (Make_If_Statement (Loc,
Condition =>
Early_Init_Condition (Loc, Init_Control_Formal),
Then_Statements => Init_Call_Stmts));
else
Actions := Init_Call_Stmts;
end if;
end;
Clean_Task_Names (Typ, Proc_Id);
-- Simple initialization. If the Esize is not yet set, we pass
-- Uint_0 as expected by Get_Simple_Init_Val.
elsif Component_Needs_Simple_Initialization (Typ) then
Actions :=
Build_Assignment
(Id => Id,
Default =>
Get_Simple_Init_Val
(Typ => Typ,
N => N,
Size =>
(if Known_Esize (Id) then Esize (Id)
else Uint_0)));
-- Nothing needed for this case
else
Actions := No_List;
end if;
-- When the component's type has a Default_Initial_Condition,
-- and the component is default initialized, then check the
-- DIC here.
if Has_DIC (Typ)
and then No (Expression (Decl))
and then Present (DIC_Procedure (Typ))
and then not Has_Null_Body (DIC_Procedure (Typ))
-- The DICs of ancestors are checked as part of the type's
-- DIC procedure.
and then Chars (Id) /= Name_uParent
-- In GNATprove mode, the component DICs are checked by other
-- means. They should not be added to the record type DIC
-- procedure, so that the procedure can be used to check the
-- record type invariants or DICs if any.
and then not GNATprove_Mode
then
Append_New_To (Actions,
Build_DIC_Call
(Comp_Loc,
Make_Selected_Component (Comp_Loc,
Prefix =>
Make_Identifier (Comp_Loc, Name_uInit),
Selector_Name =>
New_Occurrence_Of (Id, Comp_Loc)),
Typ));
end if;
if Present (Checks) then
if Chars (Id) = Name_uParent then
Append_List_To (Parent_Stmts, Checks);
else
Append_List_To (Stmts, Checks);
end if;
end if;
if Present (Actions) then
if Chars (Id) = Name_uParent then
Append_List_To (Parent_Stmts, Actions);
else
Append_List_To (Stmts, Actions);
-- Preserve initialization state in the current counter
if Needs_Finalization (Typ) then
if No (Counter_Id) then
Make_Counter (Comp_Loc);
end if;
Increment_Counter (Comp_Loc);
end if;
end if;
end if;
end if;
Next_Non_Pragma (Decl);
end loop;
-- The parent field must be initialized first because variable
-- size components of the parent affect the location of all the
-- new components.
Prepend_List_To (Stmts, Parent_Stmts);
-- Set up tasks and protected object support. This needs to be done
-- before any component with a per-object access discriminant
-- constraint, or any variant part (which may contain such
-- components) is initialized, because the initialization of these
-- components may reference the enclosing concurrent object.
-- For a task record type, add the task create call and calls to bind
-- any interrupt (signal) entries.
if Is_Task_Record_Type (Rec_Type) then
-- In the case of the restricted run time the ATCB has already
-- been preallocated.
if Restricted_Profile then
Append_To (Stmts,
Make_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Selector_Name => Make_Identifier (Loc, Name_uTask_Id)),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_uInit),
Selector_Name => Make_Identifier (Loc, Name_uATCB)),
Attribute_Name => Name_Unchecked_Access)));
end if;
Append_To (Stmts, Make_Task_Create_Call (Rec_Type));
declare
Task_Type : constant Entity_Id :=
Corresponding_Concurrent_Type (Rec_Type);
Task_Decl : constant Node_Id := Parent (Task_Type);
Task_Def : constant Node_Id := Task_Definition (Task_Decl);
Decl_Loc : Source_Ptr;
Ent : Entity_Id;
Vis_Decl : Node_Id;
begin
if Present (Task_Def) then
Vis_Decl := First (Visible_Declarations (Task_Def));
while Present (Vis_Decl) loop
Decl_Loc := Sloc (Vis_Decl);
if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
if Get_Attribute_Id (Chars (Vis_Decl)) =
Attribute_Address
then
Ent := Entity (Name (Vis_Decl));
if Ekind (Ent) = E_Entry then
Append_To (Stmts,
Make_Procedure_Call_Statement (Decl_Loc,
Name =>
New_Occurrence_Of (RTE (
RE_Bind_Interrupt_To_Entry), Decl_Loc),
Parameter_Associations => New_List (
Make_Selected_Component (Decl_Loc,
Prefix =>
Make_Identifier (Decl_Loc, Name_uInit),
Selector_Name =>
Make_Identifier
(Decl_Loc, Name_uTask_Id)),
Entry_Index_Expression
(Decl_Loc, Ent, Empty, Task_Type),
Expression (Vis_Decl))));
end if;
end if;
end if;
Next (Vis_Decl);
end loop;
end if;
end;
-- For a protected type, add statements generated by
-- Make_Initialize_Protection.
elsif Is_Protected_Record_Type (Rec_Type) then
Append_List_To (Stmts,
Make_Initialize_Protection (Rec_Type));
end if;
-- Second pass: components that require late initialization
if Present (Parent_Id) then
declare
Parent_Loc : constant Source_Ptr := Sloc (Parent (Parent_Id));
use Initialization_Control;
begin
-- We are building the init proc for a type extension.
-- Call the parent type's init proc a second time, this
-- time to initialize the parent's components that require
-- late initialization.
Append_List_To (Late_Stmts,
Build_Initialization_Call
(Loc => Parent_Loc,
Id_Ref =>
Make_Selected_Component (Parent_Loc,
Prefix => Make_Identifier
(Parent_Loc, Name_uInit),
Selector_Name => New_Occurrence_Of (Parent_Id,
Parent_Loc)),
Typ => Etype (Parent_Id),
In_Init_Proc => True,
Enclos_Type => Rec_Type,
Discr_Map => Discr_Map,
Init_Control_Actual => Make_Mode_Literal
(Parent_Loc, Late_Init_Only)));
end;
end if;
if Has_Late_Init_Comp then
Decl := First_Non_Pragma (Component_Items (Comp_List));
while Present (Decl) loop
Comp_Loc := Sloc (Decl);
Id := Defining_Identifier (Decl);
Typ := Etype (Id);
if Initialization_Control.Requires_Late_Init (Decl, Rec_Type)
then
if Present (Expression (Decl)) then
Append_List_To (Late_Stmts,
Build_Assignment (Id, Expression (Decl)));
elsif Has_Non_Null_Base_Init_Proc (Typ) then
Append_List_To (Late_Stmts,
Build_Initialization_Call (Comp_Loc,
Make_Selected_Component (Comp_Loc,
Prefix =>
Make_Identifier (Comp_Loc, Name_uInit),
Selector_Name => New_Occurrence_Of (Id, Comp_Loc)),
Typ,
In_Init_Proc => True,
Enclos_Type => Rec_Type,
Discr_Map => Discr_Map));
Clean_Task_Names (Typ, Proc_Id);
-- Preserve initialization state in the current counter
if Needs_Finalization (Typ) then
if No (Counter_Id) then
Make_Counter (Comp_Loc);
end if;
Increment_Counter (Comp_Loc, Late => True);
end if;
elsif Component_Needs_Simple_Initialization (Typ) then
Append_List_To (Late_Stmts,
Build_Assignment
(Id => Id,
Default =>
Get_Simple_Init_Val
(Typ => Typ,
N => N,
Size => Esize (Id))));
end if;
end if;
Next_Non_Pragma (Decl);
end loop;
end if;
-- Process the variant part (incorrectly ignoring late
-- initialization requirements for components therein).
if Present (Variant_Part (Comp_List)) then
declare
Variant_Alts : constant List_Id := New_List;
Var_Loc : Source_Ptr := No_Location;
Variant : Node_Id;
begin
Variant :=
First_Non_Pragma (Variants (Variant_Part (Comp_List)));
while Present (Variant) loop
Var_Loc := Sloc (Variant);
Append_To (Variant_Alts,
Make_Case_Statement_Alternative (Var_Loc,
Discrete_Choices =>
New_Copy_List (Discrete_Choices (Variant)),
Statements =>
Build_Init_Statements (Component_List (Variant))));
Next_Non_Pragma (Variant);
end loop;
-- The expression of the case statement which is a reference
-- to one of the discriminants is replaced by the appropriate
-- formal parameter of the initialization procedure.
Append_To (Stmts,
Make_Case_Statement (Var_Loc,
Expression =>
New_Occurrence_Of (Discriminal (
Entity (Name (Variant_Part (Comp_List)))), Var_Loc),
Alternatives => Variant_Alts));
end;
end if;
if No (Init_Control_Formal) then
Append_List_To (Stmts, Late_Stmts);
-- If no initializations were generated for component declarations
-- and included in Stmts, then append a null statement to Stmts
-- to make it a valid Ada tree.
if Is_Empty_List (Stmts) then
Append (Make_Null_Statement (Loc), Stmts);
end if;
return Stmts;
else
declare
use Initialization_Control;
If_Early : constant Node_Id :=
(if Is_Empty_List (Stmts) then
Make_Null_Statement (Loc)
else
Make_If_Statement (Loc,
Condition =>
Early_Init_Condition (Loc, Init_Control_Formal),
Then_Statements => Stmts));
If_Late : constant Node_Id :=
(if Is_Empty_List (Late_Stmts) then
Make_Null_Statement (Loc)
else
Make_If_Statement (Loc,
Condition =>
Late_Init_Condition (Loc, Init_Control_Formal),
Then_Statements => Late_Stmts));
begin
return New_List (If_Early, If_Late);
end;
end if;
exception
when RE_Not_Available =>
return Empty_List;
end Build_Init_Statements;
-------------------------
-- Build_Record_Checks --
-------------------------
procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
Subtype_Mark_Id : Entity_Id;
procedure Constrain_Array
(SI : Node_Id;
Check_List : List_Id);
-- Apply a list of index constraints to an unconstrained array type.
-- The first parameter is the entity for the resulting subtype.
-- Check_List is a list to which the check actions are appended.
---------------------
-- Constrain_Array --
---------------------
procedure Constrain_Array
(SI : Node_Id;
Check_List : List_Id)
is
C : constant Node_Id := Constraint (SI);
Number_Of_Constraints : Nat := 0;
Index : Node_Id;
S, T : Entity_Id;
procedure Constrain_Index
(Index : Node_Id;
S : Node_Id;
Check_List : List_Id);
-- Process an index constraint in a constrained array declaration.
-- The constraint can be either a subtype name or a range with or
-- without an explicit subtype mark. Index is the corresponding
-- index of the unconstrained array. S is the range expression.
-- Check_List is a list to which the check actions are appended.
---------------------
-- Constrain_Index --
---------------------
procedure Constrain_Index
(Index : Node_Id;
S : Node_Id;
Check_List : List_Id)
is
T : constant Entity_Id := Etype (Index);
begin
if Nkind (S) = N_Range then
Process_Range_Expr_In_Decl (S, T, Check_List => Check_List);
end if;
end Constrain_Index;
-- Start of processing for Constrain_Array
begin
T := Entity (Subtype_Mark (SI));
if Is_Access_Type (T) then
T := Designated_Type (T);
end if;
S := First (Constraints (C));
while Present (S) loop
Number_Of_Constraints := Number_Of_Constraints + 1;
Next (S);
end loop;
-- In either case, the index constraint must provide a discrete
-- range for each index of the array type and the type of each
-- discrete range must be the same as that of the corresponding
-- index. (RM 3.6.1)
S := First (Constraints (C));
Index := First_Index (T);
Analyze (Index);
-- Apply constraints to each index type
for J in 1 .. Number_Of_Constraints loop
Constrain_Index (Index, S, Check_List);
Next (Index);
Next (S);
end loop;
end Constrain_Array;
-- Start of processing for Build_Record_Checks
begin
if Nkind (S) = N_Subtype_Indication then
Find_Type (Subtype_Mark (S));
Subtype_Mark_Id := Entity (Subtype_Mark (S));
-- Remaining processing depends on type
case Ekind (Subtype_Mark_Id) is
when Array_Kind =>
Constrain_Array (S, Check_List);
when others =>
null;
end case;
end if;
end Build_Record_Checks;
-------------------------------------------
-- Component_Needs_Simple_Initialization --
-------------------------------------------
function Component_Needs_Simple_Initialization
(T : Entity_Id) return Boolean
is
begin
return
Needs_Simple_Initialization (T)
and then not Is_RTE (T, RE_Tag)
-- Ada 2005 (AI-251): Check also the tag of abstract interfaces
and then not Is_RTE (T, RE_Interface_Tag);
end Component_Needs_Simple_Initialization;
--------------------------------------
-- Parent_Subtype_Renaming_Discrims --
--------------------------------------
function Parent_Subtype_Renaming_Discrims return Boolean is
De : Entity_Id;
Dp : Entity_Id;
begin
if Base_Type (Rec_Ent) /= Rec_Ent then
return False;
end if;
if Etype (Rec_Ent) = Rec_Ent
or else not Has_Discriminants (Rec_Ent)
or else Is_Constrained (Rec_Ent)
or else Is_Tagged_Type (Rec_Ent)
then
return False;
end if;
-- If there are no explicit stored discriminants we have inherited
-- the root type discriminants so far, so no renamings occurred.
if First_Discriminant (Rec_Ent) =
First_Stored_Discriminant (Rec_Ent)
then
return False;
end if;
-- Check if we have done some trivial renaming of the parent
-- discriminants, i.e. something like
--
-- type DT (X1, X2: int) is new PT (X1, X2);
De := First_Discriminant (Rec_Ent);
Dp := First_Discriminant (Etype (Rec_Ent));
while Present (De) loop
pragma Assert (Present (Dp));
if Corresponding_Discriminant (De) /= Dp then
return True;
end if;
Next_Discriminant (De);
Next_Discriminant (Dp);
end loop;
return Present (Dp);
end Parent_Subtype_Renaming_Discrims;
------------------------
-- Requires_Init_Proc --
------------------------
function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
Comp_Decl : Node_Id;
Id : Entity_Id;
Typ : Entity_Id;
begin
-- Definitely do not need one if specifically suppressed
if Initialization_Suppressed (Rec_Id) then
return False;
end if;
-- If it is a type derived from a type with unknown discriminants,
-- we cannot build an initialization procedure for it.
if Has_Unknown_Discriminants (Rec_Id)
or else Has_Unknown_Discriminants (Etype (Rec_Id))
then
return False;
end if;
-- Otherwise we need to generate an initialization procedure if
-- Is_CPP_Class is False and at least one of the following applies:
-- 1. Discriminants are present, since they need to be initialized
-- with the appropriate discriminant constraint expressions.
-- However, the discriminant of an unchecked union does not
-- count, since the discriminant is not present.
-- 2. The type is a tagged type, since the implicit Tag component
-- needs to be initialized with a pointer to the dispatch table.
-- 3. The type contains tasks
-- 4. One or more components has an initial value
-- 5. One or more components is for a type which itself requires
-- an initialization procedure.
-- 6. One or more components is a type that requires simple
-- initialization (see Needs_Simple_Initialization), except
-- that types Tag and Interface_Tag are excluded, since fields
-- of these types are initialized by other means.
-- 7. The type is the record type built for a task type (since at
-- the very least, Create_Task must be called)
-- 8. The type is the record type built for a protected type (since
-- at least Initialize_Protection must be called)
-- 9. The type is marked as a public entity. The reason we add this
-- case (even if none of the above apply) is to properly handle
-- Initialize_Scalars. If a package is compiled without an IS
-- pragma, and the client is compiled with an IS pragma, then
-- the client will think an initialization procedure is present
-- and call it, when in fact no such procedure is required, but
-- since the call is generated, there had better be a routine
-- at the other end of the call, even if it does nothing).
-- Note: the reason we exclude the CPP_Class case is because in this
-- case the initialization is performed by the C++ constructors, and
-- the IP is built by Set_CPP_Constructors.
if Is_CPP_Class (Rec_Id) then
return False;
elsif Is_Interface (Rec_Id) then
return False;
elsif (Has_Discriminants (Rec_Id)
and then not Is_Unchecked_Union (Rec_Id))
or else Is_Tagged_Type (Rec_Id)
or else Is_Concurrent_Record_Type (Rec_Id)
or else Has_Task (Rec_Id)
then
return True;
end if;
Id := First_Component (Rec_Id);
while Present (Id) loop
Comp_Decl := Parent (Id);
Typ := Etype (Id);
if Present (Expression (Comp_Decl))
or else Has_Non_Null_Base_Init_Proc (Typ)
or else Component_Needs_Simple_Initialization (Typ)
then
return True;
end if;
Next_Component (Id);
end loop;
-- As explained above, a record initialization procedure is needed
-- for public types in case Initialize_Scalars applies to a client.
-- However, such a procedure is not needed in the case where either
-- of restrictions No_Initialize_Scalars or No_Default_Initialization
-- applies. No_Initialize_Scalars excludes the possibility of using
-- Initialize_Scalars in any partition, and No_Default_Initialization
-- implies that no initialization should ever be done for objects of
-- the type, so is incompatible with Initialize_Scalars.
if not Restriction_Active (No_Initialize_Scalars)
and then not Restriction_Active (No_Default_Initialization)
and then Is_Public (Rec_Id)
then
return True;
end if;
return False;
end Requires_Init_Proc;
-- Start of processing for Build_Record_Init_Proc
begin
Rec_Type := Defining_Identifier (N);
-- This may be full declaration of a private type, in which case
-- the visible entity is a record, and the private entity has been
-- exchanged with it in the private part of the current package.
-- The initialization procedure is built for the record type, which
-- is retrievable from the private entity.
if Is_Incomplete_Or_Private_Type (Rec_Type) then
Rec_Type := Underlying_Type (Rec_Type);
end if;
-- If we have a variant record with restriction No_Implicit_Conditionals
-- in effect, then we skip building the procedure. This is safe because
-- if we can see the restriction, so can any caller, calls to initialize
-- such records are not allowed for variant records if this restriction
-- is active.
if Has_Variant_Part (Rec_Type)
and then Restriction_Active (No_Implicit_Conditionals)
then
return;
end if;
-- If there are discriminants, build the discriminant map to replace
-- discriminants by their discriminals in complex bound expressions.
-- These only arise for the corresponding records of synchronized types.
if Is_Concurrent_Record_Type (Rec_Type)
and then Has_Discriminants (Rec_Type)
then
declare
Disc : Entity_Id;
begin
Disc := First_Discriminant (Rec_Type);
while Present (Disc) loop
Append_Elmt (Disc, Discr_Map);
Append_Elmt (Discriminal (Disc), Discr_Map);
Next_Discriminant (Disc);
end loop;
end;
end if;
-- Derived types that have no type extension can use the initialization
-- procedure of their parent and do not need a procedure of their own.
-- This is only correct if there are no representation clauses for the
-- type or its parent, and if the parent has in fact been frozen so
-- that its initialization procedure exists.
if Is_Derived_Type (Rec_Type)
and then not Is_Tagged_Type (Rec_Type)
and then not Is_Unchecked_Union (Rec_Type)
and then not Has_New_Non_Standard_Rep (Rec_Type)
and then not Parent_Subtype_Renaming_Discrims
and then Present (Base_Init_Proc (Etype (Rec_Type)))
then
Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
-- Otherwise if we need an initialization procedure, then build one,
-- mark it as public and inlinable and as having a completion.
elsif Requires_Init_Proc (Rec_Type)
or else Is_Unchecked_Union (Rec_Type)
then
Proc_Id :=
Make_Defining_Identifier (Loc,
Chars => Make_Init_Proc_Name (Rec_Type));
-- If No_Default_Initialization restriction is active, then we don't
-- want to build an init_proc, but we need to mark that an init_proc
-- would be needed if this restriction was not active (so that we can
-- detect attempts to call it), so set a dummy init_proc in place.
if Restriction_Active (No_Default_Initialization) then
Set_Init_Proc (Rec_Type, Proc_Id);
return;
end if;
Build_Offset_To_Top_Functions;
Build_CPP_Init_Procedure;
Build_Init_Procedure;
Set_Is_Public (Proc_Id, Is_Public (Rec_Ent));
Set_Is_Internal (Proc_Id);
Set_Has_Completion (Proc_Id);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Proc_Id);
end if;
Set_Is_Inlined (Proc_Id, Inline_Init_Proc (Rec_Type));
-- Do not build an aggregate if Modify_Tree_For_C, this isn't
-- needed and may generate early references to non frozen types
-- since we expand aggregate much more systematically.
if Modify_Tree_For_C then
return;
end if;
declare
Agg : constant Node_Id :=
Build_Equivalent_Record_Aggregate (Rec_Type);
procedure Collect_Itypes (Comp : Node_Id);
-- Generate references to itypes in the aggregate, because
-- the first use of the aggregate may be in a nested scope.
--------------------
-- Collect_Itypes --
--------------------
procedure Collect_Itypes (Comp : Node_Id) is
Ref : Node_Id;
Sub_Aggr : Node_Id;
Typ : constant Entity_Id := Etype (Comp);
begin
if Is_Array_Type (Typ) and then Is_Itype (Typ) then
Ref := Make_Itype_Reference (Loc);
Set_Itype (Ref, Typ);
Append_Freeze_Action (Rec_Type, Ref);
Ref := Make_Itype_Reference (Loc);
Set_Itype (Ref, Etype (First_Index (Typ)));
Append_Freeze_Action (Rec_Type, Ref);
-- Recurse on nested arrays
Sub_Aggr := First (Expressions (Comp));
while Present (Sub_Aggr) loop
Collect_Itypes (Sub_Aggr);
Next (Sub_Aggr);
end loop;
end if;
end Collect_Itypes;
begin
-- If there is a static initialization aggregate for the type,
-- generate itype references for the types of its (sub)components,
-- to prevent out-of-scope errors in the resulting tree.
-- The aggregate may have been rewritten as a Raise node, in which
-- case there are no relevant itypes.
if Present (Agg) and then Nkind (Agg) = N_Aggregate then
Set_Static_Initialization (Proc_Id, Agg);
declare
Comp : Node_Id;
begin
Comp := First (Component_Associations (Agg));
while Present (Comp) loop
Collect_Itypes (Expression (Comp));
Next (Comp);
end loop;
end;
end if;
end;
end if;
end Build_Record_Init_Proc;
----------------------------
-- Build_Slice_Assignment --
----------------------------
-- Generates the following subprogram:
-- procedure array_typeSA
-- (Source, Target : Array_Type,
-- Left_Lo, Left_Hi : Index;
-- Right_Lo, Right_Hi : Index;
-- Rev : Boolean)
-- is
-- Li1 : Index;
-- Ri1 : Index;
-- begin
-- if Left_Hi < Left_Lo then
-- return;
-- end if;
-- if Rev then
-- Li1 := Left_Hi;
-- Ri1 := Right_Hi;
-- else
-- Li1 := Left_Lo;
-- Ri1 := Right_Lo;
-- end if;
-- loop
-- Target (Li1) := Source (Ri1);
-- if Rev then
-- exit when Li1 = Left_Lo;
-- Li1 := Index'pred (Li1);
-- Ri1 := Index'pred (Ri1);
-- else
-- exit when Li1 = Left_Hi;
-- Li1 := Index'succ (Li1);
-- Ri1 := Index'succ (Ri1);
-- end if;
-- end loop;
-- end array_typeSA;
procedure Build_Slice_Assignment (Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
Larray : constant Entity_Id := Make_Temporary (Loc, 'A');
Rarray : constant Entity_Id := Make_Temporary (Loc, 'R');
Left_Lo : constant Entity_Id := Make_Temporary (Loc, 'L');
Left_Hi : constant Entity_Id := Make_Temporary (Loc, 'L');
Right_Lo : constant Entity_Id := Make_Temporary (Loc, 'R');
Right_Hi : constant Entity_Id := Make_Temporary (Loc, 'R');
Rev : constant Entity_Id := Make_Temporary (Loc, 'D');
-- Formal parameters of procedure
Proc_Name : constant Entity_Id :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name (Typ, TSS_Slice_Assign));
Lnn : constant Entity_Id := Make_Temporary (Loc, 'L');
Rnn : constant Entity_Id := Make_Temporary (Loc, 'R');
-- Subscripts for left and right sides
Decls : List_Id;
Loops : Node_Id;
Stats : List_Id;
begin
-- Build declarations for indexes
Decls := New_List;
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Lnn,
Object_Definition =>
New_Occurrence_Of (Index, Loc)));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition =>
New_Occurrence_Of (Index, Loc)));
Stats := New_List;
-- Build test for empty slice case
Append_To (Stats,
Make_If_Statement (Loc,
Condition =>
Make_Op_Lt (Loc,
Left_Opnd => New_Occurrence_Of (Left_Hi, Loc),
Right_Opnd => New_Occurrence_Of (Left_Lo, Loc)),
Then_Statements => New_List (Make_Simple_Return_Statement (Loc))));
-- Build initializations for indexes
declare
F_Init : constant List_Id := New_List;
B_Init : constant List_Id := New_List;
begin
Append_To (F_Init,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Lnn, Loc),
Expression => New_Occurrence_Of (Left_Lo, Loc)));
Append_To (F_Init,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Rnn, Loc),
Expression => New_Occurrence_Of (Right_Lo, Loc)));
Append_To (B_Init,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Lnn, Loc),
Expression => New_Occurrence_Of (Left_Hi, Loc)));
Append_To (B_Init,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Rnn, Loc),
Expression => New_Occurrence_Of (Right_Hi, Loc)));
Append_To (Stats,
Make_If_Statement (Loc,
Condition => New_Occurrence_Of (Rev, Loc),
Then_Statements => B_Init,
Else_Statements => F_Init));
end;
-- Now construct the assignment statement
Loops :=
Make_Loop_Statement (Loc,
Statements => New_List (
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Larray, Loc),
Expressions => New_List (New_Occurrence_Of (Lnn, Loc))),
Expression =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Rarray, Loc),
Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))),
End_Label => Empty);
-- Build the exit condition and increment/decrement statements
declare
F_Ass : constant List_Id := New_List;
B_Ass : constant List_Id := New_List;
begin
Append_To (F_Ass,
Make_Exit_Statement (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (Lnn, Loc),
Right_Opnd => New_Occurrence_Of (Left_Hi, Loc))));
Append_To (F_Ass,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Lnn, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Index, Loc),
Attribute_Name => Name_Succ,
Expressions => New_List (
New_Occurrence_Of (Lnn, Loc)))));
Append_To (F_Ass,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Rnn, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Index, Loc),
Attribute_Name => Name_Succ,
Expressions => New_List (
New_Occurrence_Of (Rnn, Loc)))));
Append_To (B_Ass,
Make_Exit_Statement (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (Lnn, Loc),
Right_Opnd => New_Occurrence_Of (Left_Lo, Loc))));
Append_To (B_Ass,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Lnn, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Index, Loc),
Attribute_Name => Name_Pred,
Expressions => New_List (
New_Occurrence_Of (Lnn, Loc)))));
Append_To (B_Ass,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Rnn, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Index, Loc),
Attribute_Name => Name_Pred,
Expressions => New_List (
New_Occurrence_Of (Rnn, Loc)))));
Append_To (Statements (Loops),
Make_If_Statement (Loc,
Condition => New_Occurrence_Of (Rev, Loc),
Then_Statements => B_Ass,
Else_Statements => F_Ass));
end;
Append_To (Stats, Loops);
declare
Spec : Node_Id;
Formals : List_Id;
begin
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Larray,
Out_Present => True,
Parameter_Type =>
New_Occurrence_Of (Base_Type (Typ), Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Rarray,
Parameter_Type =>
New_Occurrence_Of (Base_Type (Typ), Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Left_Lo,
Parameter_Type =>
New_Occurrence_Of (Index, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Left_Hi,
Parameter_Type =>
New_Occurrence_Of (Index, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Right_Lo,
Parameter_Type =>
New_Occurrence_Of (Index, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Right_Hi,
Parameter_Type =>
New_Occurrence_Of (Index, Loc)));
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier => Rev,
Parameter_Type =>
New_Occurrence_Of (Standard_Boolean, Loc)));
Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Name,
Parameter_Specifications => Formals);
Discard_Node (
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stats)));
end;
Set_TSS (Typ, Proc_Name);
Set_Is_Pure (Proc_Name);
end Build_Slice_Assignment;
------------------------------------
-- Build_Untagged_Record_Equality --
------------------------------------
procedure Build_Untagged_Record_Equality (Typ : Entity_Id) is
Build_Eq : Boolean;
Comp : Entity_Id;
Decl : Node_Id;
Op : Entity_Id;
Eq_Op : Entity_Id;
function User_Defined_Eq (T : Entity_Id) return Entity_Id;
-- Check whether the type T has a user-defined primitive equality. If so
-- return it, else return Empty. If true for a component of Typ, we have
-- to build the primitive equality for it.
---------------------
-- User_Defined_Eq --
---------------------
function User_Defined_Eq (T : Entity_Id) return Entity_Id is
Op : constant Entity_Id := TSS (T, TSS_Composite_Equality);
begin
if Present (Op) then
return Op;
else
return Get_User_Defined_Equality (T);
end if;
end User_Defined_Eq;
-- Start of processing for Build_Untagged_Record_Equality
begin
-- If a record component has a primitive equality operation, we must
-- build the corresponding one for the current type.
Build_Eq := False;
Comp := First_Component (Typ);
while Present (Comp) loop
if Is_Record_Type (Etype (Comp))
and then Present (User_Defined_Eq (Etype (Comp)))
then
Build_Eq := True;
exit;
end if;
Next_Component (Comp);
end loop;
-- If there is a user-defined equality for the type, we do not create
-- the implicit one.
Eq_Op := Get_User_Defined_Equality (Typ);
if Present (Eq_Op) then
if Comes_From_Source (Eq_Op) then
Build_Eq := False;
else
Eq_Op := Empty;
end if;
end if;
-- If the type is derived, inherit the operation, if present, from the
-- parent type. It may have been declared after the type derivation. If
-- the parent type itself is derived, it may have inherited an operation
-- that has itself been overridden, so update its alias and related
-- flags. Ditto for inequality.
if No (Eq_Op) and then Is_Derived_Type (Typ) then
Eq_Op := Get_User_Defined_Equality (Etype (Typ));
if Present (Eq_Op) then
Copy_TSS (Eq_Op, Typ);
Build_Eq := False;
declare
Op : constant Entity_Id := User_Defined_Eq (Typ);
NE_Op : constant Entity_Id := Next_Entity (Eq_Op);
begin
if Present (Op) then
Set_Alias (Op, Eq_Op);
Set_Is_Abstract_Subprogram
(Op, Is_Abstract_Subprogram (Eq_Op));
if Chars (Next_Entity (Op)) = Name_Op_Ne then
Set_Is_Abstract_Subprogram
(Next_Entity (Op), Is_Abstract_Subprogram (NE_Op));
end if;
end if;
end;
end if;
end if;
-- If not inherited and not user-defined, build body as for a type with
-- components of record type (i.e. a type for which "=" composes when
-- used as a component in an outer composite type).
if Build_Eq then
Decl :=
Make_Eq_Body (Typ, Make_TSS_Name (Typ, TSS_Composite_Equality));
Op := Defining_Entity (Decl);
Set_TSS (Typ, Op);
Set_Is_Pure (Op);
if Is_Library_Level_Entity (Typ) then
Set_Is_Public (Op);
end if;
end if;
end Build_Untagged_Record_Equality;
-----------------------------------
-- Build_Variant_Record_Equality --
-----------------------------------
-- Generates:
-- function <<Body_Id>> (Left, Right : T) return Boolean is
-- [ X : T renames Left; ]
-- [ Y : T renames Right; ]
-- -- The above renamings are generated only if the parameters of
-- -- this built function (which are passed by the caller) are not
-- -- named 'X' and 'Y'; these names are required to reuse several
-- -- expander routines when generating this body.
-- begin
-- -- Compare discriminants
-- if X.D1 /= Y.D1 or else X.D2 /= Y.D2 or else ... then
-- return False;
-- end if;
-- -- Compare components
-- if X.C1 /= Y.C1 or else X.C2 /= Y.C2 or else ... then
-- return False;
-- end if;
-- -- Compare variant part
-- case X.D1 is
-- when V1 =>
-- if X.C2 /= Y.C2 or else X.C3 /= Y.C3 or else ... then
-- return False;
-- end if;
-- ...
-- when Vn =>
-- if X.Cn /= Y.Cn or else ... then
-- return False;
-- end if;
-- end case;
-- return True;
-- end _Equality;
function Build_Variant_Record_Equality
(Typ : Entity_Id;
Spec_Id : Entity_Id;
Body_Id : Entity_Id;
Param_Specs : List_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Typ);
Def : constant Node_Id := Parent (Typ);
Comps : constant Node_Id := Component_List (Type_Definition (Def));
Left : constant Entity_Id := Defining_Identifier (First (Param_Specs));
Right : constant Entity_Id :=
Defining_Identifier (Next (First (Param_Specs)));
Decls : constant List_Id := New_List;
Stmts : constant List_Id := New_List;
Subp_Body : Node_Id;
begin
pragma Assert (not Is_Tagged_Type (Typ));
-- In order to reuse the expander routines Make_Eq_If and Make_Eq_Case
-- the name of the formals must be X and Y; otherwise we generate two
-- renaming declarations for such purpose.
if Chars (Left) /= Name_X then
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
Name => Make_Identifier (Loc, Chars (Left))));
end if;
if Chars (Right) /= Name_Y then
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
Name => Make_Identifier (Loc, Chars (Right))));
end if;
-- Unchecked_Unions require additional machinery to support equality.
-- Two extra parameters (A and B) are added to the equality function
-- parameter list for each discriminant of the type, in order to
-- capture the inferred values of the discriminants in equality calls.
-- The names of the parameters match the names of the corresponding
-- discriminant, with an added suffix.
if Is_Unchecked_Union (Typ) then
declare
Right_Formal : constant Entity_Id :=
(if Present (Spec_Id) then Last_Formal (Spec_Id) else Right);
Scop : constant Entity_Id :=
(if Present (Spec_Id) then Spec_Id else Body_Id);
procedure Decorate_Extra_Formal (F, F_Typ : Entity_Id);
-- Decorate extra formal F with type F_Typ
---------------------------
-- Decorate_Extra_Formal --
---------------------------
procedure Decorate_Extra_Formal (F, F_Typ : Entity_Id) is
begin
Mutate_Ekind (F, E_In_Parameter);
Set_Etype (F, F_Typ);
Set_Scope (F, Scop);
Set_Mechanism (F, By_Copy);
end Decorate_Extra_Formal;
A : Entity_Id;
B : Entity_Id;
Discr : Entity_Id;
Discr_Type : Entity_Id;
Last_Extra : Entity_Id := Empty;
New_Discrs : Elist_Id;
begin
Mutate_Ekind (Body_Id, E_Subprogram_Body);
New_Discrs := New_Elmt_List;
Discr := First_Discriminant (Typ);
while Present (Discr) loop
Discr_Type := Etype (Discr);
-- Add the new parameters as extra formals
A :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Discr), 'A'));
Decorate_Extra_Formal (A, Discr_Type);
if Present (Last_Extra) then
Set_Extra_Formal (Last_Extra, A);
else
Set_Extra_Formal (Right_Formal, A);
Set_Extra_Formals (Scop, A);
end if;
Append_Elmt (A, New_Discrs);
B :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Discr), 'B'));
Decorate_Extra_Formal (B, Discr_Type);
Set_Extra_Formal (A, B);
Last_Extra := B;
-- Generate the following code to compare each of the inferred
-- discriminants:
-- if a /= b then
-- return False;
-- end if;
Append_To (Stmts,
Make_If_Statement (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => New_Occurrence_Of (A, Loc),
Right_Opnd => New_Occurrence_Of (B, Loc)),
Then_Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression =>
New_Occurrence_Of (Standard_False, Loc)))));
Next_Discriminant (Discr);
end loop;
-- Generate component-by-component comparison. Note that we must
-- propagate the inferred discriminants formals to act as the case
-- statement switch. Their value is added when an equality call on
-- unchecked unions is expanded.
Append_List_To (Stmts, Make_Eq_Case (Typ, Comps, New_Discrs));
end;
-- Normal case (not unchecked union)
else
Append_To (Stmts,
Make_Eq_If (Typ, Discriminant_Specifications (Def)));
Append_List_To (Stmts, Make_Eq_Case (Typ, Comps));
end if;
Append_To (Stmts,
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_True, Loc)));
Subp_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Body_Id,
Parameter_Specifications => Param_Specs,
Result_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc)),
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts));
return Subp_Body;
end Build_Variant_Record_Equality;
-----------------------------
-- Check_Stream_Attributes --
-----------------------------
procedure Check_Stream_Attributes (Typ : Entity_Id) is
Comp : Entity_Id;
Par_Read : constant Boolean :=
Stream_Attribute_Available (Typ, TSS_Stream_Read)
and then not Has_Specified_Stream_Read (Typ);
Par_Write : constant Boolean :=
Stream_Attribute_Available (Typ, TSS_Stream_Write)
and then not Has_Specified_Stream_Write (Typ);
procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type);
-- Check that Comp has a user-specified Nam stream attribute
----------------
-- Check_Attr --
----------------
procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type) is
begin
-- Move this check to sem???
if not Stream_Attribute_Available (Etype (Comp), TSS_Nam) then
Error_Msg_Name_1 := Nam;
Error_Msg_N
("|component& in limited extension must have% attribute", Comp);
end if;
end Check_Attr;
-- Start of processing for Check_Stream_Attributes
begin
if Par_Read or else Par_Write then
Comp := First_Component (Typ);
while Present (Comp) loop
if Comes_From_Source (Comp)
and then Original_Record_Component (Comp) = Comp
and then Is_Limited_Type (Etype (Comp))
then
if Par_Read then
Check_Attr (Name_Read, TSS_Stream_Read);
end if;
if Par_Write then
Check_Attr (Name_Write, TSS_Stream_Write);
end if;
end if;
Next_Component (Comp);
end loop;
end if;
end Check_Stream_Attributes;
----------------------
-- Clean_Task_Names --
----------------------
procedure Clean_Task_Names
(Typ : Entity_Id;
Proc_Id : Entity_Id)
is
begin
if Has_Task (Typ)
and then not Restriction_Active (No_Implicit_Heap_Allocations)
and then not Global_Discard_Names
and then Tagged_Type_Expansion
then
Set_Uses_Sec_Stack (Proc_Id);
end if;
end Clean_Task_Names;
-------------------------------
-- Copy_Discr_Checking_Funcs --
-------------------------------
procedure Copy_Discr_Checking_Funcs (N : Node_Id) is
Typ : constant Entity_Id := Defining_Identifier (N);
Comp : Entity_Id := First_Component (Typ);
Old_Comp : Entity_Id := First_Component
(Base_Type (Underlying_Type (Etype (Typ))));
begin
while Present (Comp) loop
if Chars (Comp) = Chars (Old_Comp) then
Set_Discriminant_Checking_Func
(Comp, Discriminant_Checking_Func (Old_Comp));
end if;
Next_Component (Old_Comp);
Next_Component (Comp);
end loop;
end Copy_Discr_Checking_Funcs;
------------------------------
-- Expand_Freeze_Array_Type --
------------------------------
procedure Expand_Freeze_Array_Type (N : Node_Id) is
Typ : constant Entity_Id := Entity (N);
Base : constant Entity_Id := Base_Type (Typ);
Comp_Typ : constant Entity_Id := Component_Type (Typ);
begin
if not Is_Bit_Packed_Array (Typ) then
-- If the component contains tasks, so does the array type. This may
-- not be indicated in the array type because the component may have
-- been a private type at the point of definition. Same if component
-- type is controlled or contains protected objects.
Propagate_Concurrent_Flags (Base, Comp_Typ);
Set_Has_Controlled_Component
(Base, Has_Controlled_Component (Comp_Typ)
or else Is_Controlled (Comp_Typ));
if No (Init_Proc (Base)) then
-- If this is an anonymous array built for an object declaration
-- with an initial value, its Init_Proc will never be called. The
-- initial value itself may have been expanded into assignments,
-- in which case the declaration has the No_Initialization flag.
-- The exception is when the initial value is a 2-pass aggregate,
-- because the special expansion used for it creates a temporary
-- that needs a fully-fledged initialization.
if Is_Itype (Base)
and then Nkind (Associated_Node_For_Itype (Base)) =
N_Object_Declaration
and then
((Present (Expression (Associated_Node_For_Itype (Base)))
and then not
Is_Two_Pass_Aggregate
(Expression (Associated_Node_For_Itype (Base))))
or else No_Initialization (Associated_Node_For_Itype (Base)))
then
null;
-- We do not need an init proc for string or wide [wide] string,
-- since the only time these need initialization in normalize or
-- initialize scalars mode, and these types are treated specially
-- and do not need initialization procedures.
elsif Is_Standard_String_Type (Base) then
null;
-- Otherwise we have to build an init proc for the subtype
else
Build_Array_Init_Proc (Base, N);
end if;
end if;
if Typ = Base and then Has_Controlled_Component (Base) then
Build_Controlling_Procs (Base);
if not Is_Limited_Type (Comp_Typ)
and then Number_Dimensions (Typ) = 1
then
Build_Slice_Assignment (Typ);
end if;
end if;
-- For packed case, default initialization, except if the component type
-- is itself a packed structure with an initialization procedure, or
-- initialize/normalize scalars active, and we have a base type, or the
-- type is public, because in that case a client might specify
-- Normalize_Scalars and there better be a public Init_Proc for it.
elsif (Present (Init_Proc (Component_Type (Base)))
and then No (Base_Init_Proc (Base)))
or else (Init_Or_Norm_Scalars and then Base = Typ)
or else Is_Public (Typ)
then
Build_Array_Init_Proc (Base, N);
end if;
end Expand_Freeze_Array_Type;
-----------------------------------
-- Expand_Freeze_Class_Wide_Type --
-----------------------------------
procedure Expand_Freeze_Class_Wide_Type (N : Node_Id) is
function Is_C_Derivation (Typ : Entity_Id) return Boolean;
-- Given a type, determine whether it is derived from a C or C++ root
---------------------
-- Is_C_Derivation --
---------------------
function Is_C_Derivation (Typ : Entity_Id) return Boolean is
T : Entity_Id;
begin
T := Typ;
loop
if Is_CPP_Class (T)
or else Convention (T) = Convention_C
or else Convention (T) = Convention_CPP
then
return True;
end if;
exit when T = Etype (T);
T := Etype (T);
end loop;
return False;
end Is_C_Derivation;
-- Local variables
Typ : constant Entity_Id := Entity (N);
Root : constant Entity_Id := Root_Type (Typ);
-- Start of processing for Expand_Freeze_Class_Wide_Type
begin
-- Certain run-time configurations and targets do not provide support
-- for controlled types.
if Restriction_Active (No_Finalization) then
return;
-- Do not create TSS routine Finalize_Address when dispatching calls are
-- disabled since the core of the routine is a dispatching call.
elsif Restriction_Active (No_Dispatching_Calls) then
return;
-- Do not create TSS routine Finalize_Address for concurrent class-wide
-- types. Ignore C, C++, CIL and Java types since it is assumed that the
-- non-Ada side will handle their destruction.
--
-- Concurrent Ada types are functionally represented by an associated
-- "corresponding record type" (typenameV), which owns the actual TSS
-- finalize bodies for the type (and technically class-wide type).
elsif Is_Concurrent_Type (Root)
or else Is_C_Derivation (Root)
or else Convention (Typ) = Convention_CPP
then
return;
-- Do not create TSS routine Finalize_Address when compiling in CodePeer
-- mode since the routine contains an Unchecked_Conversion.
elsif CodePeer_Mode then
return;
end if;
-- Create the body of TSS primitive Finalize_Address. This automatically
-- sets the TSS entry for the class-wide type.
Make_Finalize_Address_Body (Typ);
end Expand_Freeze_Class_Wide_Type;
------------------------------------
-- Expand_Freeze_Enumeration_Type --
------------------------------------
procedure Expand_Freeze_Enumeration_Type (N : Node_Id) is
Typ : constant Entity_Id := Entity (N);
Loc : constant Source_Ptr := Sloc (Typ);
Arr : Entity_Id;
Ent : Entity_Id;
Fent : Entity_Id;
Is_Contiguous : Boolean;
Index_Typ : Entity_Id;
Ityp : Entity_Id;
Last_Repval : Uint;
Lst : List_Id;
Num : Nat;
Pos_Expr : Node_Id;
Func : Entity_Id;
pragma Warnings (Off, Func);
begin
-- Various optimizations possible if given representation is contiguous
Is_Contiguous := True;
Ent := First_Literal (Typ);
Last_Repval := Enumeration_Rep (Ent);
Num := 1;
Next_Literal (Ent);
while Present (Ent) loop
if Enumeration_Rep (Ent) - Last_Repval /= 1 then
Is_Contiguous := False;
else
Last_Repval := Enumeration_Rep (Ent);
end if;
Num := Num + 1;
Next_Literal (Ent);
end loop;
if Is_Contiguous then
Set_Has_Contiguous_Rep (Typ);
-- Now build a subtype declaration
-- subtype typI is new Natural range 0 .. num - 1
Index_Typ :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), 'I'));
Append_Freeze_Action (Typ,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Index_Typ,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Occurrence_Of (Standard_Natural, Loc),
Constraint =>
Make_Range_Constraint (Loc,
Range_Expression =>
Make_Range (Loc,
Low_Bound =>
Make_Integer_Literal (Loc, 0),
High_Bound =>
Make_Integer_Literal (Loc, Num - 1))))));
Set_Enum_Pos_To_Rep (Typ, Index_Typ);
else
-- Build list of literal references
Lst := New_List;
Ent := First_Literal (Typ);
while Present (Ent) loop
Append_To (Lst, New_Occurrence_Of (Ent, Sloc (Ent)));
Next_Literal (Ent);
end loop;
-- Now build an array declaration
-- typA : constant array (Natural range 0 .. num - 1) of typ :=
-- (v, v, v, v, v, ....)
Arr :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), 'A'));
Append_Freeze_Action (Typ,
Make_Object_Declaration (Loc,
Defining_Identifier => Arr,
Constant_Present => True,
Object_Definition =>
Make_Constrained_Array_Definition (Loc,
Discrete_Subtype_Definitions => New_List (
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Occurrence_Of (Standard_Natural, Loc),
Constraint =>
Make_Range_Constraint (Loc,
Range_Expression =>
Make_Range (Loc,
Low_Bound =>
Make_Integer_Literal (Loc, 0),
High_Bound =>
Make_Integer_Literal (Loc, Num - 1))))),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Occurrence_Of (Typ, Loc))),
Expression =>
Make_Aggregate (Loc,
Expressions => Lst)));
Set_Enum_Pos_To_Rep (Typ, Arr);
end if;
-- Now we build the function that converts representation values to
-- position values. This function has the form:
-- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
-- begin
-- case ityp!(A) is
-- when enum-lit'Enum_Rep => return posval;
-- when enum-lit'Enum_Rep => return posval;
-- ...
-- when others =>
-- [raise Constraint_Error when F "invalid data"]
-- return -1;
-- end case;
-- end;
-- Note: the F parameter determines whether the others case (no valid
-- representation) raises Constraint_Error or returns a unique value
-- of minus one. The latter case is used, e.g. in 'Valid code.
-- Note: the reason we use Enum_Rep values in the case here is to avoid
-- the code generator making inappropriate assumptions about the range
-- of the values in the case where the value is invalid. ityp is a
-- signed or unsigned integer type of appropriate width.
-- Note: if exceptions are not supported, then we suppress the raise
-- and return -1 unconditionally (this is an erroneous program in any
-- case and there is no obligation to raise Constraint_Error here). We
-- also do this if pragma Restrictions (No_Exceptions) is active.
-- Is this right??? What about No_Exception_Propagation???
-- The underlying type is signed. Reset the Is_Unsigned_Type explicitly
-- because it might have been inherited from the parent type.
if Enumeration_Rep (First_Literal (Typ)) < 0 then
Set_Is_Unsigned_Type (Typ, False);
end if;
Ityp := Integer_Type_For (Esize (Typ), Is_Unsigned_Type (Typ));
-- The body of the function is a case statement. First collect case
-- alternatives, or optimize the contiguous case.
Lst := New_List;
-- If representation is contiguous, Pos is computed by subtracting
-- the representation of the first literal.
if Is_Contiguous then
Ent := First_Literal (Typ);
if Enumeration_Rep (Ent) = Last_Repval then
-- Another special case: for a single literal, Pos is zero
Pos_Expr := Make_Integer_Literal (Loc, Uint_0);
else
Pos_Expr :=
Convert_To (Standard_Integer,
Make_Op_Subtract (Loc,
Left_Opnd =>
Unchecked_Convert_To
(Ityp, Make_Identifier (Loc, Name_uA)),
Right_Opnd =>
Make_Integer_Literal (Loc,
Intval => Enumeration_Rep (First_Literal (Typ)))));
end if;
Append_To (Lst,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => New_List (
Make_Range (Sloc (Enumeration_Rep_Expr (Ent)),
Low_Bound =>
Make_Integer_Literal (Loc,
Intval => Enumeration_Rep (Ent)),
High_Bound =>
Make_Integer_Literal (Loc, Intval => Last_Repval))),
Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => Pos_Expr))));
else
Ent := First_Literal (Typ);
while Present (Ent) loop
Append_To (Lst,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => New_List (
Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
Intval => Enumeration_Rep (Ent))),
Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression =>
Make_Integer_Literal (Loc,
Intval => Enumeration_Pos (Ent))))));
Next_Literal (Ent);
end loop;
end if;
-- In normal mode, add the others clause with the test.
-- If Predicates_Ignored is True, validity checks do not apply to
-- the subtype.
if not No_Exception_Handlers_Set
and then not Predicates_Ignored (Typ)
then
Append_To (Lst,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => New_List (Make_Others_Choice (Loc)),
Statements => New_List (
Make_Raise_Constraint_Error (Loc,
Condition => Make_Identifier (Loc, Name_uF),
Reason => CE_Invalid_Data),
Make_Simple_Return_Statement (Loc,
Expression => Make_Integer_Literal (Loc, -1)))));
-- If either of the restrictions No_Exceptions_Handlers/Propagation is
-- active then return -1 (we cannot usefully raise Constraint_Error in
-- this case). See description above for further details.
else
Append_To (Lst,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => New_List (Make_Others_Choice (Loc)),
Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => Make_Integer_Literal (Loc, -1)))));
end if;
-- Now we can build the function body
Fent :=
Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos));
Func :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Fent,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uA),
Parameter_Type => New_Occurrence_Of (Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uF),
Parameter_Type =>
New_Occurrence_Of (Standard_Boolean, Loc))),
Result_Definition => New_Occurrence_Of (Standard_Integer, Loc)),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Case_Statement (Loc,
Expression =>
Unchecked_Convert_To
(Ityp, Make_Identifier (Loc, Name_uA)),
Alternatives => Lst))));
Set_TSS (Typ, Fent);
-- Set Pure flag (it will be reset if the current context is not Pure).
-- We also pretend there was a pragma Pure_Function so that for purposes
-- of optimization and constant-folding, we will consider the function
-- Pure even if we are not in a Pure context).
Set_Is_Pure (Fent);
Set_Has_Pragma_Pure_Function (Fent);
-- Unless we are in -gnatD mode, where we are debugging generated code,
-- this is an internal entity for which we don't need debug info.
if not Debug_Generated_Code then
Set_Debug_Info_Off (Fent);
end if;
Set_Is_Inlined (Fent);
exception
when RE_Not_Available =>
return;
end Expand_Freeze_Enumeration_Type;
-------------------------------
-- Expand_Freeze_Record_Type --
-------------------------------
procedure Expand_Freeze_Record_Type (N : Node_Id) is
procedure Build_Class_Condition_Subprograms (Typ : Entity_Id);
-- Create internal subprograms of Typ primitives that have class-wide
-- preconditions or postconditions; they are invoked by the caller to
-- evaluate the conditions.
procedure Build_Variant_Record_Equality (Typ : Entity_Id);
-- Create an equality function for the untagged variant record Typ and
-- attach it to the TSS list.
procedure Register_Dispatch_Table_Wrappers (Typ : Entity_Id);
-- Register dispatch-table wrappers in the dispatch table of Typ
procedure Validate_Tagged_Type_Extra_Formals (Typ : Entity_Id);
-- Check extra formals of dispatching primitives of tagged type Typ.
-- Used in pragma Debug.
---------------------------------------
-- Build_Class_Condition_Subprograms --
---------------------------------------
procedure Build_Class_Condition_Subprograms (Typ : Entity_Id) is
Prim_List : constant Elist_Id := Primitive_Operations (Typ);
Prim_Elmt : Elmt_Id := First_Elmt (Prim_List);
Prim : Entity_Id;
begin
while Present (Prim_Elmt) loop
Prim := Node (Prim_Elmt);
-- Primitive with class-wide preconditions
if Comes_From_Source (Prim)
and then Has_Significant_Contract (Prim)
and then
(Present (Class_Preconditions (Prim))
or else Present (Ignored_Class_Preconditions (Prim)))
then
if Expander_Active then
Make_Class_Precondition_Subps (Prim);
end if;
-- Wrapper of a primitive that has or inherits class-wide
-- preconditions.
elsif Is_Primitive_Wrapper (Prim)
and then
(Present (Nearest_Class_Condition_Subprogram
(Spec_Id => Prim,
Kind => Class_Precondition))
or else
Present (Nearest_Class_Condition_Subprogram
(Spec_Id => Prim,
Kind => Ignored_Class_Precondition)))
then
if Expander_Active then
Make_Class_Precondition_Subps (Prim);
end if;
end if;
Next_Elmt (Prim_Elmt);
end loop;
end Build_Class_Condition_Subprograms;
-----------------------------------
-- Build_Variant_Record_Equality --
-----------------------------------
procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
F : constant Entity_Id :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name (Typ, TSS_Composite_Equality));
begin
-- For a variant record with restriction No_Implicit_Conditionals
-- in effect we skip building the procedure. This is safe because
-- if we can see the restriction, so can any caller, and calls to
-- equality test routines are not allowed for variant records if
-- this restriction is active.
if Restriction_Active (No_Implicit_Conditionals) then
return;
end if;
-- Derived Unchecked_Union types no longer inherit the equality
-- function of their parent.
if Is_Derived_Type (Typ)
and then not Is_Unchecked_Union (Typ)
and then not Has_New_Non_Standard_Rep (Typ)
then
declare
Parent_Eq : constant Entity_Id :=
TSS (Root_Type (Typ), TSS_Composite_Equality);
begin
if Present (Parent_Eq) then
Copy_TSS (Parent_Eq, Typ);
return;
end if;
end;
end if;
Discard_Node (
Build_Variant_Record_Equality
(Typ => Typ,
Spec_Id => Empty,
Body_Id => F,
Param_Specs => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Occurrence_Of (Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_Y),
Parameter_Type => New_Occurrence_Of (Typ, Loc)))));
Set_TSS (Typ, F);
Set_Is_Pure (F);
if not Debug_Generated_Code then
Set_Debug_Info_Off (F);
end if;
end Build_Variant_Record_Equality;
--------------------------------------
-- Register_Dispatch_Table_Wrappers --
--------------------------------------
procedure Register_Dispatch_Table_Wrappers (Typ : Entity_Id) is
Elmt : Elmt_Id := First_Elmt (Primitive_Operations (Typ));
Subp : Entity_Id;
begin
while Present (Elmt) loop
Subp := Node (Elmt);
if Is_Dispatch_Table_Wrapper (Subp) then
Append_Freeze_Actions (Typ,
Register_Primitive (Sloc (Subp), Subp));
end if;
Next_Elmt (Elmt);
end loop;
end Register_Dispatch_Table_Wrappers;
----------------------------------------
-- Validate_Tagged_Type_Extra_Formals --
----------------------------------------
procedure Validate_Tagged_Type_Extra_Formals (Typ : Entity_Id) is
Ovr_Subp : Entity_Id;
Elmt : Elmt_Id;
Subp : Entity_Id;
begin
pragma Assert (not Is_Class_Wide_Type (Typ));
-- No check required if expansion is not active since we never
-- generate extra formals in such case.
if not Expander_Active then
return;
end if;
Elmt := First_Elmt (Primitive_Operations (Typ));
while Present (Elmt) loop
Subp := Node (Elmt);
-- Extra formals of a dispatching primitive must match:
-- 1) The extra formals of its covered interface primitive
if Present (Interface_Alias (Subp)) then
pragma Assert
(Extra_Formals_Match_OK
(E => Interface_Alias (Subp),
Ref_E => Alias (Subp)));
end if;
-- 2) The extra formals of its renamed primitive
if Present (Alias (Subp)) then
pragma Assert
(Extra_Formals_Match_OK
(E => Subp,
Ref_E => Ultimate_Alias (Subp)));
end if;
-- 3) The extra formals of its overridden primitive
if Present (Overridden_Operation (Subp)) then
Ovr_Subp := Overridden_Operation (Subp);
-- Handle controlling function wrapper
if Is_Wrapper (Subp)
and then Ultimate_Alias (Ovr_Subp) = Subp
then
if Present (Overridden_Operation (Ovr_Subp)) then
pragma Assert
(Extra_Formals_Match_OK
(E => Subp,
Ref_E => Overridden_Operation (Ovr_Subp)));
end if;
else
pragma Assert
(Extra_Formals_Match_OK
(E => Subp,
Ref_E => Ovr_Subp));
end if;
end if;
Next_Elmt (Elmt);
end loop;
end Validate_Tagged_Type_Extra_Formals;
-- Local variables
Typ : constant Node_Id := Entity (N);
Typ_Decl : constant Node_Id := Parent (Typ);
Comp : Entity_Id;
Comp_Typ : Entity_Id;
Predef_List : List_Id;
Wrapper_Decl_List : List_Id;
Wrapper_Body_List : List_Id := No_List;
Renamed_Eq : Node_Id := Empty;
-- Defining unit name for the predefined equality function in the case
-- where the type has a primitive operation that is a renaming of
-- predefined equality (but only if there is also an overriding
-- user-defined equality function). Used to pass this entity from
-- Make_Predefined_Primitive_Specs to Predefined_Primitive_Bodies.
-- Start of processing for Expand_Freeze_Record_Type
begin
-- Build discriminant checking functions if not a derived type (for
-- derived types that are not tagged types, always use the discriminant
-- checking functions of the parent type). However, for untagged types
-- the derivation may have taken place before the parent was frozen, so
-- we copy explicitly the discriminant checking functions from the
-- parent into the components of the derived type.
Build_Or_Copy_Discr_Checking_Funcs (Typ_Decl);
if Is_Derived_Type (Typ)
and then Is_Limited_Type (Typ)
and then Is_Tagged_Type (Typ)
then
Check_Stream_Attributes (Typ);
end if;
-- Update task, protected, and controlled component flags, because some
-- of the component types may have been private at the point of the
-- record declaration. Detect anonymous access-to-controlled components.
Comp := First_Component (Typ);
while Present (Comp) loop
Comp_Typ := Etype (Comp);
Propagate_Concurrent_Flags (Typ, Comp_Typ);
-- Do not set Has_Controlled_Component on a class-wide equivalent
-- type. See Make_CW_Equivalent_Type.
if not Is_Class_Wide_Equivalent_Type (Typ)
and then
(Has_Controlled_Component (Comp_Typ)
or else (Chars (Comp) /= Name_uParent
and then Is_Controlled (Comp_Typ)))
then
Set_Has_Controlled_Component (Typ);
end if;
Next_Component (Comp);
end loop;
-- Handle constructors of untagged CPP_Class types
if not Is_Tagged_Type (Typ) and then Is_CPP_Class (Typ) then
Set_CPP_Constructors (Typ);
end if;
-- Creation of the Dispatch Table. Note that a Dispatch Table is built
-- for regular tagged types as well as for Ada types deriving from a C++
-- Class, but not for tagged types directly corresponding to C++ classes
-- In the later case we assume that it is created in the C++ side and we
-- just use it.
if Is_Tagged_Type (Typ) then
-- Add the _Tag component
if Underlying_Type (Etype (Typ)) = Typ then
Expand_Tagged_Root (Typ);
end if;
if Is_CPP_Class (Typ) then
Set_All_DT_Position (Typ);
-- Create the tag entities with a minimum decoration
if Tagged_Type_Expansion then
Append_Freeze_Actions (Typ, Make_Tags (Typ));
end if;
Set_CPP_Constructors (Typ);
else
if not Building_Static_DT (Typ) then
-- Usually inherited primitives are not delayed but the first
-- Ada extension of a CPP_Class is an exception since the
-- address of the inherited subprogram has to be inserted in
-- the new Ada Dispatch Table and this is a freezing action.
-- Similarly, if this is an inherited operation whose parent is
-- not frozen yet, it is not in the DT of the parent, and we
-- generate an explicit freeze node for the inherited operation
-- so it is properly inserted in the DT of the current type.
declare
Elmt : Elmt_Id;
Subp : Entity_Id;
begin
Elmt := First_Elmt (Primitive_Operations (Typ));
while Present (Elmt) loop
Subp := Node (Elmt);
if Present (Alias (Subp)) then
if Is_CPP_Class (Etype (Typ)) then
Set_Has_Delayed_Freeze (Subp);
elsif Has_Delayed_Freeze (Alias (Subp))
and then not Is_Frozen (Alias (Subp))
then
Set_Is_Frozen (Subp, False);
Set_Has_Delayed_Freeze (Subp);
end if;
end if;
Next_Elmt (Elmt);
end loop;
end;
end if;
-- Unfreeze momentarily the type to add the predefined primitives
-- operations. The reason we unfreeze is so that these predefined
-- operations will indeed end up as primitive operations (which
-- must be before the freeze point).
Set_Is_Frozen (Typ, False);
-- Do not add the spec of predefined primitives in case of
-- CPP tagged type derivations that have convention CPP.
if Is_CPP_Class (Root_Type (Typ))
and then Convention (Typ) = Convention_CPP
then
null;
-- Do not add the spec of the predefined primitives if we are
-- compiling under restriction No_Dispatching_Calls.
elsif not Restriction_Active (No_Dispatching_Calls) then
Make_Predefined_Primitive_Specs (Typ, Predef_List, Renamed_Eq);
Insert_List_Before_And_Analyze (N, Predef_List);
end if;
-- Ada 2005 (AI-391): For a nonabstract null extension, create
-- wrapper functions for each nonoverridden inherited function
-- with a controlling result of the type. The wrapper for such
-- a function returns an extension aggregate that invokes the
-- parent function.
if Ada_Version >= Ada_2005
and then not Is_Abstract_Type (Typ)
and then Is_Null_Extension (Typ)
then
Make_Controlling_Function_Wrappers
(Typ, Wrapper_Decl_List, Wrapper_Body_List);
Insert_List_Before_And_Analyze (N, Wrapper_Decl_List);
end if;
-- Ada 2005 (AI-251): For a nonabstract type extension, build
-- null procedure declarations for each set of homographic null
-- procedures that are inherited from interface types but not
-- overridden. This is done to ensure that the dispatch table
-- entry associated with such null primitives are properly filled.
if Ada_Version >= Ada_2005
and then Etype (Typ) /= Typ
and then not Is_Abstract_Type (Typ)
and then Has_Interfaces (Typ)
then
Insert_Actions (N, Make_Null_Procedure_Specs (Typ));
end if;
Set_Is_Frozen (Typ);
if not Is_Derived_Type (Typ)
or else Is_Tagged_Type (Etype (Typ))
then
Set_All_DT_Position (Typ);
-- If this is a type derived from an untagged private type whose
-- full view is tagged, the type is marked tagged for layout
-- reasons, but it has no dispatch table.
elsif Is_Derived_Type (Typ)
and then Is_Private_Type (Etype (Typ))
and then not Is_Tagged_Type (Etype (Typ))
then
return;
end if;
-- Create and decorate the tags. Suppress their creation when
-- not Tagged_Type_Expansion because the dispatching mechanism is
-- handled internally by the virtual target.
if Tagged_Type_Expansion then
Append_Freeze_Actions (Typ, Make_Tags (Typ));
-- Generate dispatch table of locally defined tagged type.
-- Dispatch tables of library level tagged types are built
-- later (see Build_Static_Dispatch_Tables).
if not Building_Static_DT (Typ) then
Append_Freeze_Actions (Typ, Make_DT (Typ));
-- Register dispatch table wrappers in the dispatch table.
-- It could not be done when these wrappers were built
-- because, at that stage, the dispatch table was not
-- available.
Register_Dispatch_Table_Wrappers (Typ);
end if;
end if;
-- If the type has unknown discriminants, propagate dispatching
-- information to its underlying record view, which does not get
-- its own dispatch table.
if Is_Derived_Type (Typ)
and then Has_Unknown_Discriminants (Typ)
and then Present (Underlying_Record_View (Typ))
then
declare
Rep : constant Entity_Id := Underlying_Record_View (Typ);
begin
Set_Access_Disp_Table
(Rep, Access_Disp_Table (Typ));
Set_Dispatch_Table_Wrappers
(Rep, Dispatch_Table_Wrappers (Typ));
Set_Direct_Primitive_Operations
(Rep, Direct_Primitive_Operations (Typ));
end;
end if;
-- Make sure that the primitives Initialize, Adjust and Finalize
-- are Frozen before other TSS subprograms. We don't want them
-- Frozen inside.
if Is_Controlled (Typ) then
if not Is_Limited_Type (Typ) then
Append_Freeze_Actions (Typ,
Freeze_Entity (Find_Prim_Op (Typ, Name_Adjust), Typ));
end if;
Append_Freeze_Actions (Typ,
Freeze_Entity (Find_Prim_Op (Typ, Name_Initialize), Typ));
Append_Freeze_Actions (Typ,
Freeze_Entity (Find_Prim_Op (Typ, Name_Finalize), Typ));
end if;
-- Freeze rest of primitive operations. There is no need to handle
-- the predefined primitives if we are compiling under restriction
-- No_Dispatching_Calls.
if not Restriction_Active (No_Dispatching_Calls) then
Append_Freeze_Actions (Typ, Predefined_Primitive_Freeze (Typ));
end if;
end if;
-- In the untagged case, ever since Ada 83 an equality function must
-- be provided for variant records that are not unchecked unions.
elsif Has_Discriminants (Typ)
and then not Is_Limited_Type (Typ)
and then Present (Component_List (Type_Definition (Typ_Decl)))
and then
Present (Variant_Part (Component_List (Type_Definition (Typ_Decl))))
then
Build_Variant_Record_Equality (Typ);
-- In Ada 2012 the equality function composes, and thus must be built
-- explicitly just as for tagged records.
-- This is done unconditionally to ensure that tools can be linked
-- properly with user programs compiled with older language versions.
-- In addition, this is needed because "=" composes for bounded strings
-- in all language versions (see Exp_Ch4.Expand_Composite_Equality).
elsif Comes_From_Source (Typ)
and then Convention (Typ) = Convention_Ada
and then not Is_Limited_Type (Typ)
then
Build_Untagged_Record_Equality (Typ);
end if;
-- Before building the record initialization procedure, if we are
-- dealing with a concurrent record value type, then we must go through
-- the discriminants, exchanging discriminals between the concurrent
-- type and the concurrent record value type. See the section "Handling
-- of Discriminants" in the Einfo spec for details.
if Is_Concurrent_Record_Type (Typ) and then Has_Discriminants (Typ) then
declare
Ctyp : constant Entity_Id :=
Corresponding_Concurrent_Type (Typ);
Conc_Discr : Entity_Id;
Rec_Discr : Entity_Id;
Temp : Entity_Id;
begin
Conc_Discr := First_Discriminant (Ctyp);
Rec_Discr := First_Discriminant (Typ);
while Present (Conc_Discr) loop
Temp := Discriminal (Conc_Discr);
Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
Set_Discriminal (Rec_Discr, Temp);
Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr);
Next_Discriminant (Conc_Discr);
Next_Discriminant (Rec_Discr);
end loop;
end;
end if;
if Has_Controlled_Component (Typ) then
Build_Controlling_Procs (Typ);
end if;
Adjust_Discriminants (Typ);
-- Do not need init for interfaces on virtual targets since they're
-- abstract.
if Tagged_Type_Expansion or else not Is_Interface (Typ) then
Build_Record_Init_Proc (Typ_Decl, Typ);
end if;
-- For tagged type that are not interfaces, build bodies of primitive
-- operations. Note: do this after building the record initialization
-- procedure, since the primitive operations may need the initialization
-- routine. There is no need to add predefined primitives of interfaces
-- because all their predefined primitives are abstract.
if Is_Tagged_Type (Typ) and then not Is_Interface (Typ) then
-- Do not add the body of predefined primitives in case of CPP tagged
-- type derivations that have convention CPP.
if Is_CPP_Class (Root_Type (Typ))
and then Convention (Typ) = Convention_CPP
then
null;
-- Do not add the body of the predefined primitives if we are
-- compiling under restriction No_Dispatching_Calls or if we are
-- compiling a CPP tagged type.
elsif not Restriction_Active (No_Dispatching_Calls) then
-- Create the body of TSS primitive Finalize_Address. This must
-- be done before the bodies of all predefined primitives are
-- created. If Typ is limited, Stream_Input and Stream_Read may
-- produce build-in-place allocations and for those the expander
-- needs Finalize_Address.
Make_Finalize_Address_Body (Typ);
Predef_List := Predefined_Primitive_Bodies (Typ, Renamed_Eq);
Append_Freeze_Actions (Typ, Predef_List);
end if;
-- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
-- inherited functions, then add their bodies to the freeze actions.
Append_Freeze_Actions (Typ, Wrapper_Body_List);
end if;
-- Create extra formals for the primitive operations of the type.
-- This must be done before analyzing the body of the initialization
-- procedure, because a self-referential type might call one of these
-- primitives in the body of the init_proc itself.
--
-- This is not needed:
-- 1) If expansion is disabled, because extra formals are only added
-- when we are generating code.
--
-- 2) For types with foreign convention since primitives with foreign
-- convention don't have extra formals and AI95-117 requires that
-- all primitives of a tagged type inherit the convention.
if Expander_Active
and then Is_Tagged_Type (Typ)
and then not Has_Foreign_Convention (Typ)
then
declare
Elmt : Elmt_Id;
E : Entity_Id;
begin
-- Add extra formals to primitive operations
Elmt := First_Elmt (Primitive_Operations (Typ));
while Present (Elmt) loop
Create_Extra_Formals (Node (Elmt));
Next_Elmt (Elmt);
end loop;
-- Add extra formals to renamings of primitive operations. The
-- addition of extra formals is done in two steps to minimize
-- the compile time required for this action; the evaluation of
-- Find_Dispatching_Type() and Contains() is only done here for
-- renamings that are not primitive operations.
E := First_Entity (Scope (Typ));
while Present (E) loop
if Is_Dispatching_Operation (E)
and then Present (Alias (E))
and then Find_Dispatching_Type (E) = Typ
and then not Contains (Primitive_Operations (Typ), E)
then
Create_Extra_Formals (E);
end if;
Next_Entity (E);
end loop;
pragma Debug (Validate_Tagged_Type_Extra_Formals (Typ));
end;
end if;
-- Build internal subprograms of primitives with class-wide
-- pre/postconditions.
if Is_Tagged_Type (Typ) then
Build_Class_Condition_Subprograms (Typ);
end if;
end Expand_Freeze_Record_Type;
------------------------------------
-- Expand_N_Full_Type_Declaration --
------------------------------------
procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
procedure Build_Master (Ptr_Typ : Entity_Id);
-- Create the master associated with Ptr_Typ
------------------
-- Build_Master --
------------------
procedure Build_Master (Ptr_Typ : Entity_Id) is
Desig_Typ : Entity_Id := Designated_Type (Ptr_Typ);
begin
-- If the designated type is an incomplete view coming from a
-- limited-with'ed package, we need to use the nonlimited view in
-- case it has tasks.
if Is_Incomplete_Type (Desig_Typ)
and then Present (Non_Limited_View (Desig_Typ))
then
Desig_Typ := Non_Limited_View (Desig_Typ);
end if;
-- Anonymous access types are created for the components of the
-- record parameter for an entry declaration. No master is created
-- for such a type.
if Has_Task (Desig_Typ) then
Build_Master_Entity (Ptr_Typ);
Build_Master_Renaming (Ptr_Typ);
-- Create a class-wide master because a Master_Id must be generated
-- for access-to-limited-class-wide types whose root may be extended
-- with task components.
-- Note: This code covers access-to-limited-interfaces because they
-- can be used to reference tasks implementing them.
-- Suppress the master creation for access types created for entry
-- formal parameters (parameter block component types). Seems like
-- suppression should be more general for compiler-generated types,
-- but testing Comes_From_Source may be too general in this case
-- (affects some test output)???
elsif not Is_Param_Block_Component_Type (Ptr_Typ)
and then Is_Limited_Class_Wide_Type (Desig_Typ)
then
Build_Class_Wide_Master (Ptr_Typ);
end if;
end Build_Master;
-- Local declarations
Def_Id : constant Entity_Id := Defining_Identifier (N);
B_Id : constant Entity_Id := Base_Type (Def_Id);
FN : Node_Id;
Par_Id : Entity_Id;
-- Start of processing for Expand_N_Full_Type_Declaration
begin
if Is_Access_Type (Def_Id) then
Build_Master (Def_Id);
if Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
Expand_Access_Protected_Subprogram_Type (N);
end if;
-- Array of anonymous access-to-task pointers
elsif Ada_Version >= Ada_2005
and then Is_Array_Type (Def_Id)
and then Is_Access_Type (Component_Type (Def_Id))
and then Ekind (Component_Type (Def_Id)) = E_Anonymous_Access_Type
then
Build_Master (Component_Type (Def_Id));
elsif Has_Task (Def_Id) then
Expand_Previous_Access_Type (Def_Id);
-- Check the components of a record type or array of records for
-- anonymous access-to-task pointers.
elsif Ada_Version >= Ada_2005
and then (Is_Record_Type (Def_Id)
or else
(Is_Array_Type (Def_Id)
and then Is_Record_Type (Component_Type (Def_Id))))
then
declare
Comp : Entity_Id;
First : Boolean;
M_Id : Entity_Id := Empty;
Typ : Entity_Id;
begin
if Is_Array_Type (Def_Id) then
Comp := First_Entity (Component_Type (Def_Id));
else
Comp := First_Entity (Def_Id);
end if;
-- Examine all components looking for anonymous access-to-task
-- types.
First := True;
while Present (Comp) loop
Typ := Etype (Comp);
if Ekind (Typ) = E_Anonymous_Access_Type
and then Might_Have_Tasks
(Available_View (Designated_Type (Typ)))
and then No (Master_Id (Typ))
then
-- Ensure that the record or array type have a _master
if First then
Build_Master_Entity (Def_Id);
Build_Master_Renaming (Typ);
M_Id := Master_Id (Typ);
First := False;
-- Reuse the same master to service any additional types
else
pragma Assert (Present (M_Id));
Set_Master_Id (Typ, M_Id);
end if;
end if;
Next_Entity (Comp);
end loop;
end;
end if;
Par_Id := Etype (B_Id);
-- The parent type is private then we need to inherit any TSS operations
-- from the full view.
if Is_Private_Type (Par_Id)
and then Present (Full_View (Par_Id))
then
Par_Id := Base_Type (Full_View (Par_Id));
end if;
if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
and then not Is_Tagged_Type (Def_Id)
and then Present (Freeze_Node (Par_Id))
and then Present (TSS_Elist (Freeze_Node (Par_Id)))
then
Ensure_Freeze_Node (B_Id);
FN := Freeze_Node (B_Id);
if No (TSS_Elist (FN)) then
Set_TSS_Elist (FN, New_Elmt_List);
end if;
declare
T_E : constant Elist_Id := TSS_Elist (FN);
Elmt : Elmt_Id;
begin
Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
while Present (Elmt) loop
if Chars (Node (Elmt)) /= Name_uInit then
Append_Elmt (Node (Elmt), T_E);
end if;
Next_Elmt (Elmt);
end loop;
-- If the derived type itself is private with a full view, then
-- associate the full view with the inherited TSS_Elist as well.
if Is_Private_Type (B_Id)
and then Present (Full_View (B_Id))
then
Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
Set_TSS_Elist
(Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
end if;
end;
end if;
end Expand_N_Full_Type_Declaration;
---------------------------------
-- Expand_N_Object_Declaration --
---------------------------------
procedure Expand_N_Object_Declaration (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Def_Id : constant Entity_Id := Defining_Identifier (N);
Expr : constant Node_Id := Expression (N);
Obj_Def : constant Node_Id := Object_Definition (N);
Typ : constant Entity_Id := Etype (Def_Id);
Base_Typ : constant Entity_Id := Base_Type (Typ);
Next_N : constant Node_Id := Next (N);
Special_Ret_Obj : constant Boolean := Is_Special_Return_Object (Def_Id);
-- If this is a special return object, it will be allocated differently
-- and ultimately rewritten as a renaming, so initialization activities
-- need to be deferred until after that is done.
Func_Id : constant Entity_Id :=
(if Special_Ret_Obj then Return_Applies_To (Scope (Def_Id)) else Empty);
-- The function if this is a special return object, otherwise Empty
function Build_Equivalent_Aggregate return Boolean;
-- If the object has a constrained discriminated type and no initial
-- value, it may be possible to build an equivalent aggregate instead,
-- and prevent an actual call to the initialization procedure.
function Build_Heap_Or_Pool_Allocator
(Temp_Id : Entity_Id;
Temp_Typ : Entity_Id;
Ret_Typ : Entity_Id;
Alloc_Expr : Node_Id) return Node_Id;
-- Create the statements necessary to allocate a return object on the
-- heap or user-defined storage pool. The object may need finalization
-- actions depending on the return type.
--
-- * Controlled case
--
-- if BIPfinalizationmaster = null then
-- Temp_Id := <Alloc_Expr>;
-- else
-- declare
-- type Ptr_Typ is access Ret_Typ;
-- for Ptr_Typ'Storage_Pool use
-- Base_Pool (BIPfinalizationmaster.all).all;
-- Local : Ptr_Typ;
--
-- begin
-- procedure Allocate (...) is
-- begin
-- System.Storage_Pools.Subpools.Allocate_Any (...);
-- end Allocate;
--
-- Local := <Alloc_Expr>;
-- Temp_Id := Temp_Typ (Local);
-- end;
-- end if;
--
-- * Non-controlled case
--
-- Temp_Id := <Alloc_Expr>;
--
-- Temp_Id is the temporary which is used to reference the internally
-- created object in all allocation forms. Temp_Typ is the type of the
-- temporary. Func_Id is the enclosing function. Ret_Typ is the return
-- type of Func_Id. Alloc_Expr is the actual allocator.
function BIP_Function_Call_Id return Entity_Id;
-- If the object initialization expression is a call to a build-in-place
-- function, return the id of the called function; otherwise return
-- Empty.
procedure Count_Default_Sized_Task_Stacks
(Typ : Entity_Id;
Pri_Stacks : out Int;
Sec_Stacks : out Int);
-- Count the number of default-sized primary and secondary task stacks
-- required for task objects contained within type Typ. If the number of
-- task objects contained within the type is not known at compile time
-- the procedure will return the stack counts of zero.
procedure Default_Initialize_Object (After : Node_Id);
-- Generate all default initialization actions for object Def_Id. Any
-- new code is inserted after node After.
procedure Initialize_Return_Object
(Tag_Assign : Node_Id;
Adj_Call : Node_Id;
Expr : Node_Id;
Init_Stmt : Node_Id;
After : Node_Id);
-- Generate all initialization actions for return object Def_Id. Any
-- new code is inserted after node After.
function Is_Renamable_Function_Call (Expr : Node_Id) return Boolean;
-- If we are not at library level and the object declaration originally
-- appears in the form:
-- Obj : Typ := Func (...);
-- and has been rewritten as the dereference of a captured reference
-- to the function result built either on the primary or the secondary
-- stack, then the declaration can be rewritten as the renaming of this
-- dereference:
-- type Ann is access all Typ;
-- Rnn : constant Axx := Func (...)'reference;
-- Obj : Typ renames Rnn.all;
-- This will avoid making an extra copy and, in the case where Typ needs
-- finalization, a pair of calls to the Adjust and Finalize primitives,
-- or Deep_Adjust and Deep_Finalize routines, depending on whether Typ
-- has components that themselves need finalization.
-- However, in the case of a special return object, we need to make sure
-- that the object Rnn is recognized by the Is_Related_To_Func_Return
-- predicate; otherwise, if it is of a type that needs finalization,
-- then Requires_Cleanup_Actions would return true because of this and
-- Build_Finalizer would finalize it prematurely because of this (see
-- also Expand_Simple_Function_Return for the same test in the case of
-- a simple return).
-- Finally, in the case of a special return object, we also need to make
-- sure that the two functions return on the same stack, otherwise we
-- would create a dangling reference.
function Make_Allocator_For_Return (Expr : Node_Id) return Node_Id;
-- Make an allocator for a return object initialized with Expr
function OK_To_Rename_Ref (N : Node_Id) return Boolean;
-- Return True if N denotes an entity with OK_To_Rename set
--------------------------------
-- Build_Equivalent_Aggregate --
--------------------------------
function Build_Equivalent_Aggregate return Boolean is
Aggr : Node_Id;
Comp : Entity_Id;
Discr : Elmt_Id;
Full_Type : Entity_Id;
begin
Full_Type := Typ;
if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
Full_Type := Full_View (Typ);
end if;
-- Only perform this transformation if Elaboration_Code is forbidden
-- or undesirable, and if this is a global entity of a constrained
-- record type.
-- If Initialize_Scalars might be active this transformation cannot
-- be performed either, because it will lead to different semantics
-- or because elaboration code will in fact be created.
if Ekind (Full_Type) /= E_Record_Subtype
or else not Has_Discriminants (Full_Type)
or else not Is_Constrained (Full_Type)
or else Is_Controlled (Full_Type)
or else Is_Limited_Type (Full_Type)
or else not Restriction_Active (No_Initialize_Scalars)
then
return False;
end if;
if Ekind (Current_Scope) = E_Package
and then
(Restriction_Active (No_Elaboration_Code)
or else Is_Preelaborated (Current_Scope))
then
-- Building a static aggregate is possible if the discriminants
-- have static values and the other components have static
-- defaults or none.
Discr := First_Elmt (Discriminant_Constraint (Full_Type));
while Present (Discr) loop
if not Is_OK_Static_Expression (Node (Discr)) then
return False;
end if;
Next_Elmt (Discr);
end loop;
-- Check that initialized components are OK, and that non-
-- initialized components do not require a call to their own
-- initialization procedure.
Comp := First_Component (Full_Type);
while Present (Comp) loop
if Present (Expression (Parent (Comp)))
and then
not Is_OK_Static_Expression (Expression (Parent (Comp)))
then
return False;
elsif Has_Non_Null_Base_Init_Proc (Etype (Comp)) then
return False;
end if;
Next_Component (Comp);
end loop;
-- Everything is static, assemble the aggregate, discriminant
-- values first.
Aggr :=
Make_Aggregate (Loc,
Expressions => New_List,
Component_Associations => New_List);
Discr := First_Elmt (Discriminant_Constraint (Full_Type));
while Present (Discr) loop
Append_To (Expressions (Aggr), New_Copy (Node (Discr)));
Next_Elmt (Discr);
end loop;
-- Now collect values of initialized components
Comp := First_Component (Full_Type);
while Present (Comp) loop
if Present (Expression (Parent (Comp))) then
Append_To (Component_Associations (Aggr),
Make_Component_Association (Loc,
Choices => New_List (New_Occurrence_Of (Comp, Loc)),
Expression => New_Copy_Tree
(Expression (Parent (Comp)))));
end if;
Next_Component (Comp);
end loop;
-- Finally, box-initialize remaining components
Append_To (Component_Associations (Aggr),
Make_Component_Association (Loc,
Choices => New_List (Make_Others_Choice (Loc)),
Expression => Empty));
Set_Box_Present (Last (Component_Associations (Aggr)));
Set_Expression (N, Aggr);
if Typ /= Full_Type then
Analyze_And_Resolve (Aggr, Full_View (Base_Type (Full_Type)));
Rewrite (Aggr, Unchecked_Convert_To (Typ, Aggr));
Analyze_And_Resolve (Aggr, Typ);
else
Analyze_And_Resolve (Aggr, Full_Type);
end if;
return True;
else
return False;
end if;
end Build_Equivalent_Aggregate;
----------------------------------
-- Build_Heap_Or_Pool_Allocator --
----------------------------------
function Build_Heap_Or_Pool_Allocator
(Temp_Id : Entity_Id;
Temp_Typ : Entity_Id;
Ret_Typ : Entity_Id;
Alloc_Expr : Node_Id) return Node_Id
is
begin
pragma Assert (Is_Build_In_Place_Function (Func_Id));
-- Processing for objects that require finalization actions
if Needs_Finalization (Ret_Typ) then
declare
Decls : constant List_Id := New_List;
Fin_Mas_Id : constant Entity_Id :=
Build_In_Place_Formal (Func_Id, BIP_Finalization_Master);
Orig_Expr : constant Node_Id := New_Copy_Tree (Alloc_Expr);
Stmts : constant List_Id := New_List;
Local_Id : Entity_Id;
Pool_Id : Entity_Id;
Ptr_Typ : Entity_Id;
begin
-- Generate:
-- Pool_Id renames Base_Pool (BIPfinalizationmaster.all).all;
Pool_Id := Make_Temporary (Loc, 'P');
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pool_Id,
Subtype_Mark =>
New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc),
Name =>
Make_Explicit_Dereference (Loc,
Prefix =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Base_Pool), Loc),
Parameter_Associations => New_List (
Make_Explicit_Dereference (Loc,
Prefix =>
New_Occurrence_Of (Fin_Mas_Id, Loc)))))));
-- Create an access type which uses the storage pool of the
-- caller's master. This additional type is necessary because
-- the finalization master cannot be associated with the type
-- of the temporary. Otherwise the secondary stack allocation
-- will fail.
-- Generate:
-- type Ptr_Typ is access Ret_Typ;
Ptr_Typ := Make_Temporary (Loc, 'P');
Append_To (Decls,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ptr_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
Subtype_Indication =>
New_Occurrence_Of (Ret_Typ, Loc))));
-- Perform minor decoration in order to set the master and the
-- storage pool attributes.
Mutate_Ekind (Ptr_Typ, E_Access_Type);
Set_Finalization_Master (Ptr_Typ, Fin_Mas_Id);
Set_Associated_Storage_Pool (Ptr_Typ, Pool_Id);
-- Create the temporary, generate:
-- Local_Id : Ptr_Typ;
Local_Id := Make_Temporary (Loc, 'T');
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Local_Id,
Object_Definition =>
New_Occurrence_Of (Ptr_Typ, Loc)));
-- Allocate the object, generate:
-- Local_Id := <Alloc_Expr>;
Append_To (Stmts,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Local_Id, Loc),
Expression => Alloc_Expr));
-- Generate:
-- Temp_Id := Temp_Typ (Local_Id);
Append_To (Stmts,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Temp_Id, Loc),
Expression =>
Unchecked_Convert_To (Temp_Typ,
New_Occurrence_Of (Local_Id, Loc))));
-- Wrap the allocation in a block. This is further conditioned
-- by checking the caller finalization master at runtime. A
-- null value indicates a non-existent master, most likely due
-- to a Finalize_Storage_Only allocation.
-- Generate:
-- if BIPfinalizationmaster = null then
-- Temp_Id := <Orig_Expr>;
-- else
-- declare
-- <Decls>
-- begin
-- <Stmts>
-- end;
-- end if;
return
Make_If_Statement (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (Fin_Mas_Id, Loc),
Right_Opnd => Make_Null (Loc)),
Then_Statements => New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Temp_Id, Loc),
Expression => Orig_Expr)),
Else_Statements => New_List (
Make_Block_Statement (Loc,
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts))));
end;
-- For all other cases, generate:
-- Temp_Id := <Alloc_Expr>;
else
return
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Temp_Id, Loc),
Expression => Alloc_Expr);
end if;
end Build_Heap_Or_Pool_Allocator;
--------------------------
-- BIP_Function_Call_Id --
--------------------------
function BIP_Function_Call_Id return Entity_Id is
function Func_Call_Id (Function_Call : Node_Id) return Entity_Id;
-- Return the id of the called function.
function Func_Call_Id (Function_Call : Node_Id) return Entity_Id is
Call_Node : constant Node_Id := Unqual_Conv (Function_Call);
begin
if Is_Entity_Name (Name (Call_Node)) then
return Entity (Name (Call_Node));
elsif Nkind (Name (Call_Node)) = N_Explicit_Dereference then
return Etype (Name (Call_Node));
else
pragma Assert (Nkind (Name (Call_Node)) = N_Selected_Component);
return Etype (Entity (Selector_Name (Name (Call_Node))));
end if;
end Func_Call_Id;
-- Local declarations
BIP_Func_Call : Node_Id;
Expr_Q : constant Node_Id := Unqual_Conv (Expr);
-- Start of processing for BIP_Function_Call_Id
begin
if Is_Build_In_Place_Function_Call (Expr_Q) then
return Func_Call_Id (Expr_Q);
end if;
BIP_Func_Call := Unqual_BIP_Iface_Function_Call (Expr_Q);
if Present (BIP_Func_Call) then
-- In the case of an explicitly dereferenced call, return the
-- subprogram type.
if Nkind (Name (BIP_Func_Call)) = N_Explicit_Dereference then
return Etype (Name (BIP_Func_Call));
else
pragma Assert (Is_Entity_Name (Name (BIP_Func_Call)));
return Entity (Name (BIP_Func_Call));
end if;
elsif Nkind (Expr_Q) = N_Reference
and then Is_Build_In_Place_Function_Call (Prefix (Expr_Q))
then
return Func_Call_Id (Prefix (Expr_Q));
else
return Empty;
end if;
end BIP_Function_Call_Id;
-------------------------------------
-- Count_Default_Sized_Task_Stacks --
-------------------------------------
procedure Count_Default_Sized_Task_Stacks
(Typ : Entity_Id;
Pri_Stacks : out Int;
Sec_Stacks : out Int)
is
Component : Entity_Id;
begin
-- To calculate the number of default-sized task stacks required for
-- an object of Typ, a depth-first recursive traversal of the AST
-- from the Typ entity node is undertaken. Only type nodes containing
-- task objects are visited.
Pri_Stacks := 0;
Sec_Stacks := 0;
if not Has_Task (Typ) then
return;
end if;
case Ekind (Typ) is
when E_Task_Subtype
| E_Task_Type
=>
-- A task type is found marking the bottom of the descent. If
-- the type has no representation aspect for the corresponding
-- stack then that stack is using the default size.
if Present (Get_Rep_Item (Typ, Name_Storage_Size)) then
Pri_Stacks := 0;
else
Pri_Stacks := 1;
end if;
if Present (Get_Rep_Item (Typ, Name_Secondary_Stack_Size)) then
Sec_Stacks := 0;
else
Sec_Stacks := 1;
end if;
when E_Array_Subtype
| E_Array_Type
=>
-- First find the number of default stacks contained within an
-- array component.
Count_Default_Sized_Task_Stacks
(Component_Type (Typ),
Pri_Stacks,
Sec_Stacks);
-- Then multiply the result by the size of the array
declare
Quantity : constant Int := Number_Of_Elements_In_Array (Typ);
-- Number_Of_Elements_In_Array is non-trival, consequently
-- its result is captured as an optimization.
begin
Pri_Stacks := Pri_Stacks * Quantity;
Sec_Stacks := Sec_Stacks * Quantity;
end;
when E_Protected_Subtype
| E_Protected_Type
| E_Record_Subtype
| E_Record_Type
=>
Component := First_Component_Or_Discriminant (Typ);
-- Recursively descend each component of the composite type
-- looking for tasks, but only if the component is marked as
-- having a task.
while Present (Component) loop
if Has_Task (Etype (Component)) then
declare
P : Int;
S : Int;
begin
Count_Default_Sized_Task_Stacks
(Etype (Component), P, S);
Pri_Stacks := Pri_Stacks + P;
Sec_Stacks := Sec_Stacks + S;
end;
end if;
Next_Component_Or_Discriminant (Component);
end loop;
when E_Limited_Private_Subtype
| E_Limited_Private_Type
| E_Record_Subtype_With_Private
| E_Record_Type_With_Private
=>
-- Switch to the full view of the private type to continue
-- search.
Count_Default_Sized_Task_Stacks
(Full_View (Typ), Pri_Stacks, Sec_Stacks);
-- Other types should not contain tasks
when others =>
raise Program_Error;
end case;
end Count_Default_Sized_Task_Stacks;
-------------------------------
-- Default_Initialize_Object --
-------------------------------
procedure Default_Initialize_Object (After : Node_Id) is
function New_Object_Reference return Node_Id;
-- Return a new reference to Def_Id with attributes Assignment_OK and
-- Must_Not_Freeze already set.
function Simple_Initialization_OK
(Init_Typ : Entity_Id) return Boolean;
-- Determine whether object declaration N with entity Def_Id needs
-- simple initialization, assuming that it is of type Init_Typ.
--------------------------
-- New_Object_Reference --
--------------------------
function New_Object_Reference return Node_Id is
Obj_Ref : constant Node_Id := New_Occurrence_Of (Def_Id, Loc);
begin
-- The call to the type init proc or [Deep_]Finalize must not
-- freeze the related object as the call is internally generated.
-- This way legal rep clauses that apply to the object will not be
-- flagged. Note that the initialization call may be removed if
-- pragma Import is encountered or moved to the freeze actions of
-- the object because of an address clause.
Set_Assignment_OK (Obj_Ref);
Set_Must_Not_Freeze (Obj_Ref);
return Obj_Ref;
end New_Object_Reference;
------------------------------
-- Simple_Initialization_OK --
------------------------------
function Simple_Initialization_OK
(Init_Typ : Entity_Id) return Boolean
is
begin
-- Do not consider the object declaration if it comes with an
-- initialization expression, or is internal in which case it
-- will be assigned later.
return
not Is_Internal (Def_Id)
and then not Has_Init_Expression (N)
and then Needs_Simple_Initialization
(Typ => Init_Typ,
Consider_IS =>
Initialize_Scalars
and then No (Following_Address_Clause (N)));
end Simple_Initialization_OK;
-- Local variables
Exceptions_OK : constant Boolean :=
not Restriction_Active (No_Exception_Propagation);
Aggr_Init : Node_Id;
Comp_Init : List_Id := No_List;
Fin_Block : Node_Id;
Fin_Call : Node_Id;
Init_Stmts : List_Id := No_List;
Obj_Init : Node_Id := Empty;
Obj_Ref : Node_Id;
-- Start of processing for Default_Initialize_Object
begin
-- Default initialization is suppressed for objects that are already
-- known to be imported (i.e. whose declaration specifies the Import
-- aspect). Note that for objects with a pragma Import, we generate
-- initialization here, and then remove it downstream when processing
-- the pragma. It is also suppressed for variables for which a pragma
-- Suppress_Initialization has been explicitly given
if Is_Imported (Def_Id) or else Suppress_Initialization (Def_Id) then
return;
-- Nothing to do if the object being initialized is of a task type
-- and restriction No_Tasking is in effect, because this is a direct
-- violation of the restriction.
elsif Is_Task_Type (Base_Typ)
and then Restriction_Active (No_Tasking)
then
return;
end if;
-- The expansion performed by this routine is as follows:
-- begin
-- Abort_Defer;
-- Type_Init_Proc (Obj);
-- begin
-- [Deep_]Initialize (Obj);
-- exception
-- when others =>
-- [Deep_]Finalize (Obj, Self => False);
-- raise;
-- end;
-- at end
-- Abort_Undefer_Direct;
-- end;
-- Initialize the components of the object
if Has_Non_Null_Base_Init_Proc (Typ)
and then not No_Initialization (N)
and then not Initialization_Suppressed (Typ)
then
-- Do not initialize the components if No_Default_Initialization
-- applies as the actual restriction check will occur later when
-- the object is frozen as it is not known yet whether the object
-- is imported or not.
if not Restriction_Active (No_Default_Initialization) then
-- If the values of the components are compile-time known, use
-- their prebuilt aggregate form directly.
Aggr_Init := Static_Initialization (Base_Init_Proc (Typ));
if Present (Aggr_Init) then
Set_Expression (N,
New_Copy_Tree (Aggr_Init, New_Scope => Current_Scope));
-- If type has discriminants, try to build an equivalent
-- aggregate using discriminant values from the declaration.
-- This is a useful optimization, in particular if restriction
-- No_Elaboration_Code is active.
elsif Build_Equivalent_Aggregate then
null;
-- Optimize the default initialization of an array object when
-- pragma Initialize_Scalars or Normalize_Scalars is in effect.
-- Construct an in-place initialization aggregate which may be
-- convert into a fast memset by the backend.
elsif Init_Or_Norm_Scalars
and then Is_Array_Type (Typ)
-- The array must lack atomic components because they are
-- treated as non-static, and as a result the backend will
-- not initialize the memory in one go.
and then not Has_Atomic_Components (Typ)
-- The array must not be packed because the invalid values
-- in System.Scalar_Values are multiples of Storage_Unit.
and then not Is_Packed (Typ)
-- The array must have static non-empty ranges, otherwise
-- the backend cannot initialize the memory in one go.
and then Has_Static_Non_Empty_Array_Bounds (Typ)
-- The optimization is only relevant for arrays of scalar
-- types.
and then Is_Scalar_Type (Component_Type (Typ))
-- Similar to regular array initialization using a type
-- init proc, predicate checks are not performed because the
-- initialization values are intentionally invalid, and may
-- violate the predicate.
and then not Has_Predicates (Component_Type (Typ))
-- Array default component value takes precedence over
-- Init_Or_Norm_Scalars.
and then No (Find_Aspect (Typ,
Aspect_Default_Component_Value))
-- The component type must have a single initialization value
and then Simple_Initialization_OK (Component_Type (Typ))
then
Set_No_Initialization (N, False);
Set_Expression (N,
Get_Simple_Init_Val
(Typ => Typ,
N => Obj_Def,
Size => (if Known_Esize (Def_Id) then Esize (Def_Id)
else Uint_0)));
Analyze_And_Resolve
(Expression (N), Typ, Suppress => All_Checks);
-- Otherwise invoke the type init proc, generate:
-- Type_Init_Proc (Obj);
else
Obj_Ref := New_Object_Reference;
if Comes_From_Source (Def_Id) then
Initialization_Warning (Obj_Ref);
end if;
Comp_Init := Build_Initialization_Call (Loc, Obj_Ref, Typ);
end if;
end if;
-- Provide a default value if the object needs simple initialization
elsif Simple_Initialization_OK (Typ) then
Set_No_Initialization (N, False);
Set_Expression (N,
Get_Simple_Init_Val
(Typ => Typ,
N => Obj_Def,
Size =>
(if Known_Esize (Def_Id) then Esize (Def_Id) else Uint_0)));
Analyze_And_Resolve (Expression (N), Typ);
end if;
-- Initialize the object, generate:
-- [Deep_]Initialize (Obj);
if Needs_Finalization (Typ) and then not No_Initialization (N) then
Obj_Init :=
Make_Init_Call
(Obj_Ref => New_Object_Reference,
Typ => Typ);
end if;
-- Build a special finalization block when both the object and its
-- controlled components are to be initialized. The block finalizes
-- the components if the object initialization fails. Generate:
-- begin
-- <Obj_Init>
-- exception
-- when others =>
-- <Fin_Call>
-- raise;
-- end;
if Has_Controlled_Component (Typ)
and then Present (Comp_Init)
and then Present (Obj_Init)
and then Exceptions_OK
then
Init_Stmts := Comp_Init;
Fin_Call :=
Make_Final_Call
(Obj_Ref => New_Object_Reference,
Typ => Typ,
Skip_Self => True);
if Present (Fin_Call) then
-- Do not emit warnings related to the elaboration order when a
-- controlled object is declared before the body of Finalize is
-- seen.
if Legacy_Elaboration_Checks then
Set_No_Elaboration_Check (Fin_Call);
end if;
Fin_Block :=
Make_Block_Statement (Loc,
Declarations => No_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Obj_Init),
Exception_Handlers => New_List (
Make_Exception_Handler (Loc,
Exception_Choices => New_List (
Make_Others_Choice (Loc)),
Statements => New_List (
Fin_Call,
Make_Raise_Statement (Loc))))));
-- Signal the ABE mechanism that the block carries out
-- initialization actions.
Set_Is_Initialization_Block (Fin_Block);
Append_To (Init_Stmts, Fin_Block);
end if;
-- Otherwise finalization is not required, the initialization calls
-- are passed to the abort block building circuitry, generate:
-- Type_Init_Proc (Obj);
-- [Deep_]Initialize (Obj);
else
if Present (Comp_Init) then
Init_Stmts := Comp_Init;
end if;
if Present (Obj_Init) then
if No (Init_Stmts) then
Init_Stmts := New_List;
end if;
Append_To (Init_Stmts, Obj_Init);
end if;
end if;
-- Build an abort block to protect the initialization calls
if Abort_Allowed
and then Present (Comp_Init)
and then Present (Obj_Init)
then
-- Generate:
-- Abort_Defer;
Prepend_To (Init_Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
-- When exceptions are propagated, abort deferral must take place
-- in the presence of initialization or finalization exceptions.
-- Generate:
-- begin
-- Abort_Defer;
-- <Init_Stmts>
-- at end
-- Abort_Undefer_Direct;
-- end;
if Exceptions_OK then
Init_Stmts := New_List (
Build_Abort_Undefer_Block (Loc,
Stmts => Init_Stmts,
Context => N));
-- Otherwise exceptions are not propagated. Generate:
-- Abort_Defer;
-- <Init_Stmts>
-- Abort_Undefer;
else
Append_To (Init_Stmts,
Build_Runtime_Call (Loc, RE_Abort_Undefer));
end if;
end if;
-- Insert the whole initialization sequence into the tree. If the
-- object has a delayed freeze, as will be the case when it has
-- aspect specifications, the initialization sequence is part of
-- the freeze actions.
if Present (Init_Stmts) then
if Has_Delayed_Freeze (Def_Id) then
Append_Freeze_Actions (Def_Id, Init_Stmts);
else
Insert_Actions_After (After, Init_Stmts);
end if;
end if;
end Default_Initialize_Object;
------------------------------
-- Initialize_Return_Object --
------------------------------
procedure Initialize_Return_Object
(Tag_Assign : Node_Id;
Adj_Call : Node_Id;
Expr : Node_Id;
Init_Stmt : Node_Id;
After : Node_Id)
is
begin
if Present (Tag_Assign) then
Insert_Action_After (After, Tag_Assign);
end if;
if Present (Adj_Call) then
Insert_Action_After (After, Adj_Call);
end if;
if No (Expr) then
Default_Initialize_Object (After);
elsif Is_Delayed_Aggregate (Expr)
and then not No_Initialization (N)
then
Convert_Aggr_In_Object_Decl (N);
elsif Present (Init_Stmt) then
Insert_Action_After (After, Init_Stmt);
Set_Expression (N, Empty);
end if;
end Initialize_Return_Object;
--------------------------------
-- Is_Renamable_Function_Call --
--------------------------------
function Is_Renamable_Function_Call (Expr : Node_Id) return Boolean is
begin
return not Is_Library_Level_Entity (Def_Id)
and then Is_Captured_Function_Call (Expr)
and then (not Special_Ret_Obj
or else
(Is_Related_To_Func_Return (Entity (Prefix (Expr)))
and then Needs_Secondary_Stack (Etype (Expr)) =
Needs_Secondary_Stack (Etype (Func_Id))));
end Is_Renamable_Function_Call;
-------------------------------
-- Make_Allocator_For_Return --
-------------------------------
function Make_Allocator_For_Return (Expr : Node_Id) return Node_Id is
Alloc : Node_Id;
Alloc_Expr : Entity_Id;
Alloc_Typ : Entity_Id;
begin
-- If the return object's declaration does not include an expression,
-- then we use its subtype for the allocation. Likewise in the case
-- of a degenerate expression like a raise expression.
if No (Expr)
or else Nkind (Original_Node (Expr)) = N_Raise_Expression
then
Alloc_Typ := Typ;
-- If the return object's declaration includes an expression, then
-- there are two cases: either the nominal subtype of the object is
-- definite and we can use it for the allocation directly, or it is
-- not and Analyze_Object_Declaration should have built an actual
-- subtype from the expression.
-- However, there are exceptions in the latter case for interfaces
-- (see Analyze_Object_Declaration), as well as class-wide types and
-- types with unknown discriminants if they are additionally limited
-- (see Expand_Subtype_From_Expr), so we must cope with them.
elsif Is_Interface (Typ) then
pragma Assert (Is_Class_Wide_Type (Typ));
-- For interfaces, we use the type of the expression, except if
-- we need to put back a conversion that we have removed earlier
-- in the processing.
if Is_Class_Wide_Type (Etype (Expr)) then
Alloc_Typ := Typ;
else
Alloc_Typ := Etype (Expr);
end if;
elsif Is_Class_Wide_Type (Typ) then
-- For class-wide types, we have to make sure that we use the
-- dynamic type of the expression for the allocation, either by
-- means of its (static) subtype or through the actual subtype.
if Has_Tag_Of_Type (Expr) then
Alloc_Typ := Etype (Expr);
else pragma Assert (Ekind (Typ) = E_Class_Wide_Subtype
and then Present (Equivalent_Type (Typ)));
Alloc_Typ := Typ;
end if;
else pragma Assert (Is_Definite_Subtype (Typ)
or else (Has_Unknown_Discriminants (Typ)
and then Is_Inherently_Limited_Type (Typ)));
Alloc_Typ := Typ;
end if;
-- If the return object's declaration includes an expression and the
-- declaration isn't marked as No_Initialization, then we generate an
-- allocator with a qualified expression. Although this is necessary
-- only in the case where the result type is an interface (or class-
-- wide interface), we do it in all cases for the sake of consistency
-- instead of subsequently generating a separate assignment.
if Present (Expr)
and then not Is_Delayed_Aggregate (Expr)
and then not No_Initialization (N)
then
-- Ada 2005 (AI95-344): If the result type is class-wide, insert
-- a check that the level of the return expression's underlying
-- type is not deeper than the level of the master enclosing the
-- function.
-- AI12-043: The check is made immediately after the return object
-- is created.
if Is_Class_Wide_Type (Etype (Func_Id)) then
Apply_CW_Accessibility_Check (Expr, Func_Id);
end if;
Alloc_Expr := New_Copy_Tree (Expr);
if Etype (Alloc_Expr) /= Alloc_Typ then
Alloc_Expr := Convert_To (Alloc_Typ, Alloc_Expr);
end if;
Alloc :=
Make_Allocator (Loc,
Expression =>
Make_Qualified_Expression (Loc,
Subtype_Mark =>
New_Occurrence_Of (Alloc_Typ, Loc),
Expression => Alloc_Expr));
else
Alloc :=
Make_Allocator (Loc,
Expression => New_Occurrence_Of (Alloc_Typ, Loc));
-- If the return object requires default initialization, then it
-- will happen later following the elaboration of the renaming.
-- If we don't turn it off here, then the object will be default
-- initialized twice.
Set_No_Initialization (Alloc);
end if;
-- Set the flag indicating that the allocator is made for a special
-- return object. This is used to bypass various legality checks as
-- well as to make sure that the result is not adjusted twice.
Set_For_Special_Return_Object (Alloc);
return Alloc;
end Make_Allocator_For_Return;
----------------------
-- OK_To_Rename_Ref --
----------------------
function OK_To_Rename_Ref (N : Node_Id) return Boolean is
begin
return Is_Entity_Name (N)
and then Ekind (Entity (N)) = E_Variable
and then OK_To_Rename (Entity (N));
end OK_To_Rename_Ref;
-- Local variables
Adj_Call : Node_Id := Empty;
Expr_Q : Node_Id := Empty;
Tag_Assign : Node_Id := Empty;
Init_After : Node_Id := N;
-- Node after which the initialization actions are to be inserted. This
-- is normally N, except for the case of a shared passive variable, in
-- which case the init proc call must be inserted only after the bodies
-- of the shared variable procedures have been seen.
Has_BIP_Init_Expr : Boolean := False;
-- Whether the object is initialized with a BIP function call
Rewrite_As_Renaming : Boolean := False;
-- Whether to turn the declaration into a renaming at the end
-- Start of processing for Expand_N_Object_Declaration
begin
-- Don't do anything for deferred constants. All proper actions will be
-- expanded during the full declaration.
if No (Expr) and Constant_Present (N) then
return;
end if;
-- The type of the object cannot be abstract. This is diagnosed at the
-- point the object is frozen, which happens after the declaration is
-- fully expanded, so simply return now.
if Is_Abstract_Type (Typ) then
return;
end if;
-- No action needed for the internal imported dummy object added by
-- Make_DT to compute the offset of the components that reference
-- secondary dispatch tables; required to avoid never-ending loop
-- processing this internal object declaration.
if Tagged_Type_Expansion
and then Is_Internal (Def_Id)
and then Is_Imported (Def_Id)
and then Related_Type (Def_Id) = Implementation_Base_Type (Typ)
then
return;
end if;
-- Make shared memory routines for shared passive variable
if Is_Shared_Passive (Def_Id) then
Init_After := Make_Shared_Var_Procs (N);
end if;
-- Determine whether the object is initialized with a BIP function call
if Present (Expr) then
Expr_Q := Unqualify (Expr);
Has_BIP_Init_Expr :=
Is_Build_In_Place_Function_Call (Expr_Q)
or else Present (Unqual_BIP_Iface_Function_Call (Expr_Q))
or else (Nkind (Expr_Q) = N_Reference
and then
Is_Build_In_Place_Function_Call (Prefix (Expr_Q)));
end if;
-- If tasks are being declared, make sure we have an activation chain
-- defined for the tasks (has no effect if we already have one), and
-- also that a Master variable is established (and that the appropriate
-- enclosing construct is established as a task master).
if Has_Task (Typ)
or else Might_Have_Tasks (Typ)
or else (Has_BIP_Init_Expr
and then Needs_BIP_Task_Actuals (BIP_Function_Call_Id))
then
Build_Activation_Chain_Entity (N);
if Has_Task (Typ) then
Build_Master_Entity (Def_Id);
-- Handle objects initialized with BIP function calls
elsif Has_BIP_Init_Expr then
Build_Master_Entity (Def_Id);
end if;
end if;
-- If No_Implicit_Heap_Allocations or No_Implicit_Task_Allocations
-- restrictions are active then default-sized secondary stacks are
-- generated by the binder and allocated by SS_Init. To provide the
-- binder the number of stacks to generate, the number of default-sized
-- stacks required for task objects contained within the object
-- declaration N is calculated here as it is at this point where
-- unconstrained types become constrained. The result is stored in the
-- enclosing unit's Unit_Record.
-- Note if N is an array object declaration that has an initialization
-- expression, a second object declaration for the initialization
-- expression is created by the compiler. To prevent double counting
-- of the stacks in this scenario, the stacks of the first array are
-- not counted.
if Might_Have_Tasks (Typ)
and then not Restriction_Active (No_Secondary_Stack)
and then (Restriction_Active (No_Implicit_Heap_Allocations)
or else Restriction_Active (No_Implicit_Task_Allocations))
and then not (Ekind (Typ) in E_Array_Type | E_Array_Subtype
and then Has_Init_Expression (N))
then
declare
PS_Count, SS_Count : Int := 0;
begin
Count_Default_Sized_Task_Stacks (Typ, PS_Count, SS_Count);
Increment_Primary_Stack_Count (PS_Count);
Increment_Sec_Stack_Count (SS_Count);
end;
end if;
-- Default initialization required, and no expression present
if No (Expr) then
-- If we have a type with a variant part, the initialization proc
-- will contain implicit tests of the discriminant values, which
-- counts as a violation of the restriction No_Implicit_Conditionals.
if Has_Variant_Part (Typ) then
declare
Msg : Boolean;
begin
Check_Restriction (Msg, No_Implicit_Conditionals, Obj_Def);
if Msg then
Error_Msg_N
("\initialization of variant record tests discriminants",
Obj_Def);
return;
end if;
end;
end if;
-- For the default initialization case, if we have a private type
-- with invariants, and invariant checks are enabled, then insert an
-- invariant check after the object declaration. Note that it is OK
-- to clobber the object with an invalid value since if the exception
-- is raised, then the object will go out of scope. In the case where
-- an array object is initialized with an aggregate, the expression
-- is removed. Check flag Has_Init_Expression to avoid generating a
-- junk invariant check and flag No_Initialization to avoid checking
-- an uninitialized object such as a compiler temporary used for an
-- aggregate.
if Has_Invariants (Base_Typ)
and then Present (Invariant_Procedure (Base_Typ))
and then not Has_Init_Expression (N)
and then not No_Initialization (N)
then
-- If entity has an address clause or aspect, make invariant
-- call into a freeze action for the explicit freeze node for
-- object. Otherwise insert invariant check after declaration.
if Present (Following_Address_Clause (N))
or else Has_Aspect (Def_Id, Aspect_Address)
then
Ensure_Freeze_Node (Def_Id);
Set_Has_Delayed_Freeze (Def_Id);
Set_Is_Frozen (Def_Id, False);
if not Partial_View_Has_Unknown_Discr (Typ) then
Append_Freeze_Action (Def_Id,
Make_Invariant_Call (New_Occurrence_Of (Def_Id, Loc)));
end if;
elsif not Partial_View_Has_Unknown_Discr (Typ) then
Insert_After (N,
Make_Invariant_Call (New_Occurrence_Of (Def_Id, Loc)));
end if;
end if;
if not Special_Ret_Obj then
Default_Initialize_Object (Init_After);
end if;
-- Generate attribute for Persistent_BSS if needed
if Persistent_BSS_Mode
and then Comes_From_Source (N)
and then Is_Potentially_Persistent_Type (Typ)
and then not Has_Init_Expression (N)
and then Is_Library_Level_Entity (Def_Id)
then
declare
Prag : Node_Id;
begin
Prag :=
Make_Linker_Section_Pragma
(Def_Id, Sloc (N), ".persistent.bss");
Insert_After (N, Prag);
Analyze (Prag);
end;
end if;
-- If access type, then we know it is null if not initialized
if Is_Access_Type (Typ) then
Set_Is_Known_Null (Def_Id);
end if;
-- Explicit initialization present
else
-- Obtain actual expression from qualified expression
Expr_Q := Unqualify (Expr);
-- When we have the appropriate type of aggregate in the expression
-- (it has been determined during analysis of the aggregate by
-- setting the delay flag), let's perform in place assignment and
-- thus avoid creating a temporary.
if Is_Delayed_Aggregate (Expr_Q) then
-- An aggregate that must be built in place is not resolved and
-- expanded until the enclosing construct is expanded. This will
-- happen when the aggregate is limited and the declared object
-- has a following address clause; it happens also when generating
-- C code for an aggregate that has an alignment or address clause
-- (see Analyze_Object_Declaration). Resolution is done without
-- expansion because it will take place when the declaration
-- itself is expanded.
if (Is_Limited_Type (Typ) or else Modify_Tree_For_C)
and then not Analyzed (Expr)
then
Expander_Mode_Save_And_Set (False);
Resolve (Expr, Typ);
Expander_Mode_Restore;
end if;
if not Special_Ret_Obj then
Convert_Aggr_In_Object_Decl (N);
end if;
-- Ada 2005 (AI-318-02): If the initialization expression is a call
-- to a build-in-place function, then access to the declared object
-- must be passed to the function. Currently we limit such functions
-- to those with constrained limited result subtypes, but eventually
-- plan to expand the allowed forms of functions that are treated as
-- build-in-place.
elsif Is_Build_In_Place_Function_Call (Expr_Q) then
Make_Build_In_Place_Call_In_Object_Declaration (N, Expr_Q);
-- The previous call expands the expression initializing the
-- built-in-place object into further code that will be analyzed
-- later. No further expansion needed here.
return;
-- This is the same as the previous 'elsif', except that the call has
-- been transformed by other expansion activities into something like
-- F(...)'Reference.
elsif Nkind (Expr_Q) = N_Reference
and then Is_Build_In_Place_Function_Call (Prefix (Expr_Q))
and then not Is_Expanded_Build_In_Place_Call
(Unqual_Conv (Prefix (Expr_Q)))
then
Make_Build_In_Place_Call_In_Anonymous_Context (Prefix (Expr_Q));
-- The previous call expands the expression initializing the
-- built-in-place object into further code that will be analyzed
-- later. No further expansion needed here.
return;
-- Ada 2005 (AI-318-02): Specialization of the previous case for
-- expressions containing a build-in-place function call whose
-- returned object covers interface types, and Expr_Q has calls to
-- Ada.Tags.Displace to displace the pointer to the returned build-
-- in-place object to reference the secondary dispatch table of a
-- covered interface type.
elsif Present (Unqual_BIP_Iface_Function_Call (Expr_Q)) then
Make_Build_In_Place_Iface_Call_In_Object_Declaration (N, Expr_Q);
-- The previous call expands the expression initializing the
-- built-in-place object into further code that will be analyzed
-- later. No further expansion needed here.
return;
-- Ada 2005 (AI-251): Rewrite the expression that initializes a
-- class-wide interface object to ensure that we copy the full
-- object, unless we are targetting a VM where interfaces are handled
-- by VM itself. Note that if the root type of Typ is an ancestor of
-- Expr's type, both types share the same dispatch table and there is
-- no need to displace the pointer.
elsif Is_Interface (Typ)
-- Avoid never-ending recursion because if Equivalent_Type is set
-- then we've done it already and must not do it again.
and then not
(Nkind (Obj_Def) = N_Identifier
and then Present (Equivalent_Type (Entity (Obj_Def))))
then
pragma Assert (Is_Class_Wide_Type (Typ));
-- If the original node of the expression was a conversion
-- to this specific class-wide interface type then restore
-- the original node because we must copy the object before
-- displacing the pointer to reference the secondary tag
-- component. This code must be kept synchronized with the
-- expansion done by routine Expand_Interface_Conversion
if not Comes_From_Source (Expr)
and then Nkind (Expr) = N_Explicit_Dereference
and then Nkind (Original_Node (Expr)) = N_Type_Conversion
and then Etype (Original_Node (Expr)) = Typ
then
Rewrite (Expr, Original_Node (Expression (N)));
end if;
-- Avoid expansion of redundant interface conversion
if Nkind (Expr) = N_Type_Conversion
and then Etype (Expr) = Typ
then
Expr_Q := Expression (Expr);
else
Expr_Q := Expr;
end if;
-- We may use a renaming if the initialization expression is a
-- captured function call that meets a few conditions.
Rewrite_As_Renaming := Is_Renamable_Function_Call (Expr_Q);
-- If the object is a special return object, then bypass special
-- treatment of class-wide interface initialization below. In this
-- case, the expansion of the return object will take care of this
-- initialization via the expansion of the allocator.
if Special_Ret_Obj and then not Rewrite_As_Renaming then
-- If the type needs finalization and is not inherently
-- limited, then the target is adjusted after the copy
-- and attached to the finalization list.
if Needs_Finalization (Typ)
and then not Is_Inherently_Limited_Type (Typ)
then
Adj_Call :=
Make_Adjust_Call (
Obj_Ref => New_Occurrence_Of (Def_Id, Loc),
Typ => Base_Typ);
end if;
-- Renaming an expression of the object's type is immediate
elsif Rewrite_As_Renaming
and then Base_Type (Etype (Expr_Q)) = Base_Type (Typ)
then
null;
elsif Tagged_Type_Expansion then
declare
Iface : constant Entity_Id := Root_Type (Typ);
Expr_Typ : Entity_Id;
New_Expr : Node_Id;
Obj_Id : Entity_Id;
Ptr_Obj_Decl : Node_Id;
Ptr_Obj_Id : Entity_Id;
Tag_Comp : Node_Id;
begin
Expr_Typ := Base_Type (Etype (Expr_Q));
if Is_Class_Wide_Type (Expr_Typ) then
Expr_Typ := Root_Type (Expr_Typ);
end if;
-- Rename limited objects since they cannot be copied
if Is_Limited_Record (Expr_Typ) then
Rewrite_As_Renaming := True;
end if;
Obj_Id := Make_Temporary (Loc, 'D', Expr_Q);
-- Replace
-- IW : I'Class := Expr;
-- by
-- Dnn : Tag renames Tag_Ptr!(Expr'Address).all;
-- type Ityp is not null access I'Class;
-- Rnn : constant Ityp :=
-- Ityp!(Displace (Dnn'Address, I'Tag));
-- IW : I'Class renames Rnn.all;
if Rewrite_As_Renaming then
New_Expr :=
Make_Explicit_Dereference (Loc,
Unchecked_Convert_To (RTE (RE_Tag_Ptr),
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Expr_Q),
Attribute_Name => Name_Address)));
-- Suppress junk access checks on RE_Tag_Ptr
Insert_Action (N,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Obj_Id,
Subtype_Mark =>
New_Occurrence_Of (RTE (RE_Tag), Loc),
Name => New_Expr),
Suppress => Access_Check);
-- Dynamically reference the tag associated with the
-- interface.
Tag_Comp :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Obj_Id, Loc),
Attribute_Name => Name_Address),
New_Occurrence_Of
(Node (First_Elmt (Access_Disp_Table (Iface))),
Loc)));
-- Replace
-- IW : I'Class := Expr;
-- by
-- Dnn : Typ := Expr;
-- type Ityp is not null access I'Class;
-- Rnn : constant Ityp := Ityp (Dnn.I_Tag'Address);
-- IW : I'Class renames Rnn.all;
elsif Has_Tag_Of_Type (Expr_Q)
and then Interface_Present_In_Ancestor (Expr_Typ, Typ)
and then (Expr_Typ = Etype (Expr_Typ)
or else not
Is_Variable_Size_Record (Etype (Expr_Typ)))
then
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Obj_Id,
Object_Definition =>
New_Occurrence_Of (Expr_Typ, Loc),
Expression => Relocate_Node (Expr_Q)));
-- Statically reference the tag associated with the
-- interface
Tag_Comp :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Obj_Id, Loc),
Selector_Name =>
New_Occurrence_Of
(Find_Interface_Tag (Expr_Typ, Iface), Loc));
-- Replace
-- IW : I'Class := Expr;
-- by
-- type Equiv_Record is record ... end record;
-- implicit subtype CW is <Class_Wide_Subtype>;
-- Dnn : CW := CW!(Expr);
-- type Ityp is not null access I'Class;
-- Rnn : constant Ityp :=
-- Ityp!(Displace (Dnn'Address, I'Tag));
-- IW : I'Class renames Rnn.all;
else
-- Generate the equivalent record type and update the
-- subtype indication to reference it.
Expand_Subtype_From_Expr
(N => N,
Unc_Type => Typ,
Subtype_Indic => Obj_Def,
Exp => Expr_Q);
-- For interface types we use 'Address which displaces
-- the pointer to the base of the object (if required).
if Is_Interface (Etype (Expr_Q)) then
New_Expr :=
Unchecked_Convert_To (Etype (Obj_Def),
Make_Explicit_Dereference (Loc,
Unchecked_Convert_To (RTE (RE_Tag_Ptr),
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Expr_Q),
Attribute_Name => Name_Address))));
-- For other types, no displacement is needed
else
New_Expr := Relocate_Node (Expr_Q);
end if;
-- Suppress junk access checks on RE_Tag_Ptr
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Obj_Id,
Object_Definition =>
New_Occurrence_Of (Etype (Obj_Def), Loc),
Expression => New_Expr),
Suppress => Access_Check);
-- Dynamically reference the tag associated with the
-- interface.
Tag_Comp :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Obj_Id, Loc),
Attribute_Name => Name_Address),
New_Occurrence_Of
(Node (First_Elmt (Access_Disp_Table (Iface))),
Loc)));
end if;
-- As explained in Exp_Disp, we use Convert_Tag_To_Interface
-- to do the final conversion, but we insert an intermediate
-- temporary before the dereference so that we can process
-- the expansion as part of the analysis of the declaration
-- of this temporary, and then rewrite manually the original
-- object as the simple renaming of this dereference.
Tag_Comp := Convert_Tag_To_Interface (Typ, Tag_Comp);
pragma Assert (Nkind (Tag_Comp) = N_Explicit_Dereference
and then
Nkind (Prefix (Tag_Comp)) = N_Unchecked_Type_Conversion);
Ptr_Obj_Id := Make_Temporary (Loc, 'R');
Ptr_Obj_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Ptr_Obj_Id,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of
(Entity (Subtype_Mark (Prefix (Tag_Comp))), Loc),
Expression => Prefix (Tag_Comp));
Insert_Action (N, Ptr_Obj_Decl, Suppress => All_Checks);
Set_Prefix (Tag_Comp, New_Occurrence_Of (Ptr_Obj_Id, Loc));
Expr_Q := Tag_Comp;
Set_Etype (Expr_Q, Typ);
Set_Parent (Expr_Q, N);
Rewrite_As_Renaming := True;
end;
else
return;
end if;
-- Common case of explicit object initialization
else
-- Small optimization: if the expression is a function call and
-- the object is stand-alone, not declared at library level and of
-- a class-wide type, then we capture the result of the call into
-- a temporary, with the benefit that, if the result's type does
-- not need finalization, nothing will be finalized and, if it
-- does, the temporary only will be finalized by means of a direct
-- call to the Finalize primitive if the result's type is not a
-- class-wide type; whereas, in both cases, the stand-alone object
-- itself would be finalized by means of a dispatching call to the
-- Deep_Finalize routine.
if Nkind (Expr_Q) = N_Function_Call
and then not Special_Ret_Obj
and then not Is_Library_Level_Entity (Def_Id)
and then Is_Class_Wide_Type (Typ)
then
Remove_Side_Effects (Expr_Q);
end if;
-- In most cases, we must check that the initial value meets any
-- constraint imposed by the declared type. However, there is one
-- very important exception to this rule. If the entity has an
-- unconstrained nominal subtype, then it acquired its constraints
-- from the expression in the first place, and not only does this
-- mean that the constraint check is not needed, but an attempt to
-- perform the constraint check can cause order of elaboration
-- problems.
if not Is_Constr_Subt_For_U_Nominal (Typ) then
-- If this is an allocator for an aggregate that has been
-- allocated in place, delay checks until assignments are
-- made, because the discriminants are not initialized.
if Nkind (Expr) = N_Allocator
and then No_Initialization (Expr)
then
null;
-- Otherwise apply a constraint check now if no prev error
elsif Nkind (Expr) /= N_Error then
Apply_Constraint_Check (Expr, Typ);
-- Deal with possible range check
if Do_Range_Check (Expr) then
-- If assignment checks are suppressed, turn off flag
if Suppress_Assignment_Checks (N) then
Set_Do_Range_Check (Expr, False);
-- Otherwise generate the range check
else
Generate_Range_Check
(Expr, Typ, CE_Range_Check_Failed);
end if;
end if;
end if;
end if;
-- For tagged types, when an init value is given, the tag has to
-- be re-initialized separately in order to avoid the propagation
-- of a wrong tag coming from a view conversion unless the type
-- is class wide (in this case the tag comes from the init value).
-- Suppress the tag assignment when not Tagged_Type_Expansion
-- because tags are represented implicitly in objects. Ditto for
-- types that are CPP_CLASS, and for initializations that are
-- aggregates, because they have to have the right tag.
-- The re-assignment of the tag has to be done even if the object
-- is a constant. The assignment must be analyzed after the
-- declaration. If an address clause follows, this is handled as
-- part of the freeze actions for the object, otherwise insert
-- tag assignment here.
Tag_Assign := Make_Tag_Assignment (N);
if Present (Tag_Assign) then
if Present (Following_Address_Clause (N)) then
Ensure_Freeze_Node (Def_Id);
elsif not Special_Ret_Obj then
Insert_Action_After (Init_After, Tag_Assign);
end if;
-- Handle C++ constructor calls. Note that we do not check that
-- Typ is a tagged type since the equivalent Ada type of a C++
-- class that has no virtual methods is an untagged limited
-- record type.
elsif Is_CPP_Constructor_Call (Expr) then
declare
Id_Ref : constant Node_Id := New_Occurrence_Of (Def_Id, Loc);
begin
-- The call to the initialization procedure does NOT freeze
-- the object being initialized.
Set_Must_Not_Freeze (Id_Ref);
Set_Assignment_OK (Id_Ref);
Insert_Actions_After (Init_After,
Build_Initialization_Call (Loc, Id_Ref, Typ,
Constructor_Ref => Expr));
-- We remove here the original call to the constructor
-- to avoid its management in the backend
Set_Expression (N, Empty);
return;
end;
-- Handle initialization of limited tagged types
elsif Is_Tagged_Type (Typ)
and then Is_Class_Wide_Type (Typ)
and then Is_Limited_Record (Typ)
and then not Is_Limited_Interface (Typ)
then
-- Given that the type is limited we cannot perform a copy. If
-- Expr_Q is the reference to a variable we mark the variable
-- as OK_To_Rename to expand this declaration into a renaming
-- declaration (see below).
if Is_Entity_Name (Expr_Q) then
Set_OK_To_Rename (Entity (Expr_Q));
-- If we cannot convert the expression into a renaming we must
-- consider it an internal error because the backend does not
-- have support to handle it. But avoid crashing on a raise
-- expression or conditional expression.
elsif Nkind (Original_Node (Expr_Q)) not in
N_Raise_Expression | N_If_Expression | N_Case_Expression
then
raise Program_Error;
end if;
-- For discrete types, set the Is_Known_Valid flag if the
-- initializing value is known to be valid. Only do this for
-- source assignments, since otherwise we can end up turning
-- on the known valid flag prematurely from inserted code.
elsif Comes_From_Source (N)
and then Is_Discrete_Type (Typ)
and then Expr_Known_Valid (Expr)
and then Safe_To_Capture_Value (N, Def_Id)
then
Set_Is_Known_Valid (Def_Id);
-- For access types, set the Is_Known_Non_Null flag if the
-- initializing value is known to be non-null. We can also
-- set Can_Never_Be_Null if this is a constant.
elsif Is_Access_Type (Typ) and then Known_Non_Null (Expr) then
Set_Is_Known_Non_Null (Def_Id, True);
if Constant_Present (N) then
Set_Can_Never_Be_Null (Def_Id);
end if;
end if;
-- If validity checking on copies, validate initial expression.
-- But skip this if declaration is for a generic type, since it
-- makes no sense to validate generic types. Not clear if this
-- can happen for legal programs, but it definitely can arise
-- from previous instantiation errors.
if Validity_Checks_On
and then Comes_From_Source (N)
and then Validity_Check_Copies
and then not Is_Generic_Type (Typ)
then
Ensure_Valid (Expr);
if Safe_To_Capture_Value (N, Def_Id) then
Set_Is_Known_Valid (Def_Id);
end if;
end if;
-- Now determine whether we will use a renaming
Rewrite_As_Renaming :=
-- The declaration cannot be rewritten if it has got constraints
Is_Entity_Name (Original_Node (Obj_Def))
-- If we have "X : S := ...;", and S is a constrained array
-- subtype, then we cannot rename, because renamings ignore
-- the constraints of S, so that would change the semantics
-- (sliding would not occur on the initial value). This is
-- only a problem for source objects though, the others have
-- the correct bounds.
and then not (Comes_From_Source (Obj_Def)
and then Is_Array_Type (Typ)
and then Is_Constrained (Typ))
-- Moreover, if we have "X : aliased S := "...;" and S is an
-- unconstrained array type, then we can rename only if the
-- initialization expression has an unconstrained subtype too,
-- because the bounds must be present within X.
and then not (Is_Constr_Array_Subt_With_Bounds (Typ)
and then Is_Constrained (Etype (Expr_Q)))
-- We may use a renaming if the initialization expression is a
-- captured function call that meets a few conditions.
and then
(Is_Renamable_Function_Call (Expr_Q)
-- Or else if it is a variable with OK_To_Rename set
or else (OK_To_Rename_Ref (Expr_Q)
and then not Special_Ret_Obj)
-- Or else if it is a slice of such a variable
or else (Nkind (Expr_Q) = N_Slice
and then OK_To_Rename_Ref (Prefix (Expr_Q))
and then not Special_Ret_Obj));
-- If the type needs finalization and is not inherently limited,
-- then the target is adjusted after the copy and attached to the
-- finalization list. However, no adjustment is needed in the case
-- where the object has been initialized by a call to a function
-- returning on the primary stack (see Expand_Ctrl_Function_Call)
-- since no copy occurred, given that the type is by-reference.
-- Similarly, no adjustment is needed if we are going to rewrite
-- the object declaration into a renaming declaration.
if Needs_Finalization (Typ)
and then not Is_Inherently_Limited_Type (Typ)
and then Nkind (Expr_Q) /= N_Function_Call
and then not Rewrite_As_Renaming
then
Adj_Call :=
Make_Adjust_Call (
Obj_Ref => New_Occurrence_Of (Def_Id, Loc),
Typ => Base_Typ);
if Present (Adj_Call) and then not Special_Ret_Obj then
Insert_Action_After (Init_After, Adj_Call);
end if;
end if;
end if;
-- Cases where the back end cannot handle the initialization
-- directly. In such cases, we expand an assignment that will
-- be appropriately handled by Expand_N_Assignment_Statement.
-- The exclusion of the unconstrained case is wrong, but for now it
-- is too much trouble ???
if (Is_Possibly_Unaligned_Slice (Expr)
or else (Is_Possibly_Unaligned_Object (Expr)
and then not Represented_As_Scalar (Etype (Expr))))
and then not (Is_Array_Type (Etype (Expr))
and then not Is_Constrained (Etype (Expr)))
then
declare
Stat : constant Node_Id :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Def_Id, Loc),
Expression => Relocate_Node (Expr));
begin
Set_Assignment_OK (Name (Stat));
Set_No_Ctrl_Actions (Stat);
Insert_Action_After (Init_After, Stat);
Set_Expression (N, Empty);
Set_No_Initialization (N);
end;
end if;
end if;
if Nkind (Obj_Def) = N_Access_Definition
and then not Is_Local_Anonymous_Access (Typ)
then
-- An Ada 2012 stand-alone object of an anonymous access type
declare
Loc : constant Source_Ptr := Sloc (N);
Level : constant Entity_Id :=
Make_Defining_Identifier (Sloc (N),
Chars =>
New_External_Name (Chars (Def_Id), Suffix => "L"));
Level_Decl : Node_Id;
Level_Expr : Node_Id;
begin
Mutate_Ekind (Level, Ekind (Def_Id));
Set_Etype (Level, Standard_Natural);
Set_Scope (Level, Scope (Def_Id));
-- Set accessibility level of null
if No (Expr) then
Level_Expr :=
Make_Integer_Literal
(Loc, Scope_Depth (Standard_Standard));
-- When the expression of the object is a function which returns
-- an anonymous access type the master of the call is the object
-- being initialized instead of the type.
elsif Nkind (Expr) = N_Function_Call
and then Ekind (Etype (Name (Expr))) = E_Anonymous_Access_Type
then
Level_Expr := Accessibility_Level
(Def_Id, Object_Decl_Level);
-- General case
else
Level_Expr := Accessibility_Level (Expr, Dynamic_Level);
end if;
Level_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Level,
Object_Definition =>
New_Occurrence_Of (Standard_Natural, Loc),
Expression => Level_Expr,
Constant_Present => Constant_Present (N),
Has_Init_Expression => True);
Insert_Action_After (Init_After, Level_Decl);
Set_Extra_Accessibility (Def_Id, Level);
end;
end if;
-- If the object is default initialized and its type is subject to
-- pragma Default_Initial_Condition, add a runtime check to verify
-- the assumption of the pragma (SPARK RM 7.3.3). Generate:
-- <Base_Typ>DIC (<Base_Typ> (Def_Id));
-- Note that the check is generated for source objects only
if Comes_From_Source (Def_Id)
and then Has_DIC (Typ)
and then Present (DIC_Procedure (Typ))
and then not Has_Null_Body (DIC_Procedure (Typ))
and then not Has_Init_Expression (N)
and then No (Expr)
and then not Is_Imported (Def_Id)
then
declare
DIC_Call : constant Node_Id :=
Build_DIC_Call
(Loc, New_Occurrence_Of (Def_Id, Loc), Typ);
begin
if Present (Next_N) then
Insert_Before_And_Analyze (Next_N, DIC_Call);
-- The object declaration is the last node in a declarative or a
-- statement list.
else
Append_To (List_Containing (N), DIC_Call);
Analyze (DIC_Call);
end if;
end;
end if;
-- If this is the return object of a build-in-place function, locate the
-- implicit BIPaccess parameter designating the caller-supplied return
-- object and convert the declaration to a renaming of a dereference of
-- this parameter. If the declaration includes an expression, add an
-- assignment statement to ensure the return object gets initialized.
-- Result : T [:= <expression>];
-- is converted to
-- Result : T renames BIPaccess.all;
-- [Result := <expression>;]
-- in the constrained case, or to
-- type Txx is access all ...;
-- Rxx : Txx := null;
-- if BIPalloc = 1 then
-- Rxx := BIPaccess;
-- Rxx.all := <expression>;
-- elsif BIPalloc = 2 then
-- Rxx := new <expression-type>'(<expression>)[storage_pool =
-- system__secondary_stack__ss_pool][procedure_to_call =
-- system__secondary_stack__ss_allocate];
-- elsif BIPalloc = 3 then
-- Rxx := new <expression-type>'(<expression>)
-- elsif BIPalloc = 4 then
-- Pxx : system__storage_pools__root_storage_pool renames
-- BIPstoragepool.all;
-- Rxx := new <expression-type>'(<expression>)[storage_pool =
-- Pxx][procedure_to_call =
-- system__storage_pools__allocate_any];
-- else
-- [program_error "build in place mismatch"]
-- end if;
-- Result : T renames Rxx.all;
-- in the unconstrained case.
if Is_Build_In_Place_Return_Object (Def_Id) then
declare
Init_Stmt : Node_Id;
Obj_Acc_Formal : Entity_Id;
begin
-- Retrieve the implicit access parameter passed by the caller
Obj_Acc_Formal :=
Build_In_Place_Formal (Func_Id, BIP_Object_Access);
-- If the return object's declaration includes an expression
-- and the declaration isn't marked as No_Initialization, then
-- we need to generate an assignment to the object and insert
-- it after the declaration before rewriting it as a renaming
-- (otherwise we'll lose the initialization). The case where
-- the result type is an interface (or class-wide interface)
-- is also excluded because the context of the function call
-- must be unconstrained, so the initialization will always
-- be done as part of an allocator evaluation (storage pool
-- or secondary stack), never to a constrained target object
-- passed in by the caller. Besides the assignment being
-- unneeded in this case, it avoids problems with trying to
-- generate a dispatching assignment when the return expression
-- is a nonlimited descendant of a limited interface (the
-- interface has no assignment operation).
if Present (Expr_Q)
and then not Is_Delayed_Aggregate (Expr_Q)
and then not No_Initialization (N)
and then not Is_Interface (Typ)
then
if Is_Class_Wide_Type (Typ)
and then not Is_Class_Wide_Type (Etype (Expr_Q))
then
Init_Stmt :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Def_Id, Loc),
Expression =>
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Typ, Loc),
Expression => New_Copy_Tree (Expr_Q)));
else
Init_Stmt :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Def_Id, Loc),
Expression => New_Copy_Tree (Expr_Q));
end if;
Set_Assignment_OK (Name (Init_Stmt));
Set_No_Ctrl_Actions (Init_Stmt);
else
Init_Stmt := Empty;
end if;
-- When the function's subtype is unconstrained, a run-time
-- test may be needed to decide the form of allocation to use
-- for the return object. The function has an implicit formal
-- parameter indicating this. If the BIP_Alloc_Form formal has
-- the value one, then the caller has passed access to an
-- existing object for use as the return object. If the value
-- is two, then the return object must be allocated on the
-- secondary stack. If the value is three, then the return
-- object must be allocated on the heap. Otherwise, the object
-- must be allocated in a storage pool. We generate an if
-- statement to test the BIP_Alloc_Form formal and initialize
-- a local access value appropriately.
if Needs_BIP_Alloc_Form (Func_Id) then
declare
Desig_Typ : constant Entity_Id :=
(if Ekind (Typ) = E_Array_Subtype
then Etype (Func_Id) else Typ);
-- Ensure that the we use a fat pointer when allocating
-- an unconstrained array on the heap. In this case the
-- result object's type is a constrained array type even
-- though the function's type is unconstrained.
Obj_Alloc_Formal : constant Entity_Id :=
Build_In_Place_Formal (Func_Id, BIP_Alloc_Form);
Pool_Id : constant Entity_Id :=
Make_Temporary (Loc, 'P');
Acc_Typ : Entity_Id;
Alloc_Obj_Decl : Node_Id;
Alloc_Obj_Id : Entity_Id;
Alloc_Stmt : Node_Id;
Guard_Except : Node_Id;
Heap_Allocator : Node_Id;
Pool_Allocator : Node_Id;
Pool_Decl : Node_Id;
Ptr_Typ_Decl : Node_Id;
SS_Allocator : Node_Id;
begin
-- Create an access type designating the function's
-- result subtype.
Acc_Typ := Make_Temporary (Loc, 'A');
Ptr_Typ_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Acc_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Occurrence_Of (Desig_Typ, Loc)));
Insert_Action (N, Ptr_Typ_Decl, Suppress => All_Checks);
-- Create an access object that will be initialized to an
-- access value denoting the return object, either coming
-- from an implicit access value passed in by the caller
-- or from the result of an allocator.
Alloc_Obj_Id := Make_Temporary (Loc, 'R');
Alloc_Obj_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Alloc_Obj_Id,
Object_Definition =>
New_Occurrence_Of (Acc_Typ, Loc));
Insert_Action (N, Alloc_Obj_Decl, Suppress => All_Checks);
-- First create the Heap_Allocator
Heap_Allocator := Make_Allocator_For_Return (Expr_Q);
-- The Pool_Allocator is just like the Heap_Allocator,
-- except we set Storage_Pool and Procedure_To_Call so
-- it will use the user-defined storage pool.
Pool_Allocator := Make_Allocator_For_Return (Expr_Q);
-- Do not generate the renaming of the build-in-place
-- pool parameter on ZFP because the parameter is not
-- created in the first place.
if RTE_Available (RE_Root_Storage_Pool_Ptr) then
Pool_Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pool_Id,
Subtype_Mark =>
New_Occurrence_Of
(RTE (RE_Root_Storage_Pool), Loc),
Name =>
Make_Explicit_Dereference (Loc,
New_Occurrence_Of
(Build_In_Place_Formal
(Func_Id, BIP_Storage_Pool), Loc)));
Set_Storage_Pool (Pool_Allocator, Pool_Id);
Set_Procedure_To_Call
(Pool_Allocator, RTE (RE_Allocate_Any));
else
Pool_Decl := Make_Null_Statement (Loc);
end if;
-- If the No_Allocators restriction is active, then only
-- an allocator for secondary stack allocation is needed.
-- It's OK for such allocators to have Comes_From_Source
-- set to False, because gigi knows not to flag them as
-- being a violation of No_Implicit_Heap_Allocations.
if Restriction_Active (No_Allocators) then
SS_Allocator := Heap_Allocator;
Heap_Allocator := Make_Null (Loc);
Pool_Allocator := Make_Null (Loc);
-- Otherwise the heap and pool allocators may be needed,
-- so we make another allocator for secondary stack
-- allocation.
else
SS_Allocator := Make_Allocator_For_Return (Expr_Q);
-- The heap and pool allocators are marked as
-- Comes_From_Source since they correspond to an
-- explicit user-written allocator (that is, it will
-- only be executed on behalf of callers that call the
-- function as initialization for such an allocator).
-- Prevents errors when No_Implicit_Heap_Allocations
-- is in force.
Set_Comes_From_Source (Heap_Allocator, True);
Set_Comes_From_Source (Pool_Allocator, True);
end if;
-- The allocator is returned on the secondary stack
Check_Restriction (No_Secondary_Stack, N);
Set_Storage_Pool (SS_Allocator, RTE (RE_SS_Pool));
Set_Procedure_To_Call
(SS_Allocator, RTE (RE_SS_Allocate));
-- The allocator is returned on the secondary stack,
-- so indicate that the function return, as well as
-- all blocks that encloses the allocator, must not
-- release it. The flags must be set now because
-- the decision to use the secondary stack is done
-- very late in the course of expanding the return
-- statement, past the point where these flags are
-- normally set.
Set_Uses_Sec_Stack (Func_Id);
Set_Uses_Sec_Stack (Scope (Def_Id));
Set_Sec_Stack_Needed_For_Return (Scope (Def_Id));
-- Guard against poor expansion on the caller side by
-- using a raise statement to catch out-of-range values
-- of formal parameter BIP_Alloc_Form.
if Exceptions_OK then
Guard_Except :=
Make_Raise_Program_Error (Loc,
Reason => PE_Build_In_Place_Mismatch);
else
Guard_Except := Make_Null_Statement (Loc);
end if;
-- Create an if statement to test the BIP_Alloc_Form
-- formal and initialize the access object to either the
-- BIP_Object_Access formal (BIP_Alloc_Form =
-- Caller_Allocation), the result of allocating the
-- object in the secondary stack (BIP_Alloc_Form =
-- Secondary_Stack), or else an allocator to create the
-- return object in the heap or user-defined pool
-- (BIP_Alloc_Form = Global_Heap or User_Storage_Pool).
-- ??? An unchecked type conversion must be made in the
-- case of assigning the access object formal to the
-- local access object, because a normal conversion would
-- be illegal in some cases (such as converting access-
-- to-unconstrained to access-to-constrained), but the
-- the unchecked conversion will presumably fail to work
-- right in just such cases. It's not clear at all how to
-- handle this.
Alloc_Stmt :=
Make_If_Statement (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
New_Occurrence_Of (Obj_Alloc_Formal, Loc),
Right_Opnd =>
Make_Integer_Literal (Loc,
UI_From_Int (BIP_Allocation_Form'Pos
(Caller_Allocation)))),
Then_Statements => New_List (
Make_Assignment_Statement (Loc,
Name =>
New_Occurrence_Of (Alloc_Obj_Id, Loc),
Expression =>
Unchecked_Convert_To
(Acc_Typ,
New_Occurrence_Of (Obj_Acc_Formal, Loc)))),
Elsif_Parts => New_List (
Make_Elsif_Part (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
New_Occurrence_Of (Obj_Alloc_Formal, Loc),
Right_Opnd =>
Make_Integer_Literal (Loc,
UI_From_Int (BIP_Allocation_Form'Pos
(Secondary_Stack)))),
Then_Statements => New_List (
Make_Assignment_Statement (Loc,
Name =>
New_Occurrence_Of (Alloc_Obj_Id, Loc),
Expression => SS_Allocator))),
Make_Elsif_Part (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
New_Occurrence_Of (Obj_Alloc_Formal, Loc),
Right_Opnd =>
Make_Integer_Literal (Loc,
UI_From_Int (BIP_Allocation_Form'Pos
(Global_Heap)))),
Then_Statements => New_List (
Build_Heap_Or_Pool_Allocator
(Temp_Id => Alloc_Obj_Id,
Temp_Typ => Acc_Typ,
Ret_Typ => Desig_Typ,
Alloc_Expr => Heap_Allocator))),
-- ??? If all is well, we can put the following
-- 'elsif' in the 'else', but this is a useful
-- self-check in case caller and callee don't agree
-- on whether BIPAlloc and so on should be passed.
Make_Elsif_Part (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
New_Occurrence_Of (Obj_Alloc_Formal, Loc),
Right_Opnd =>
Make_Integer_Literal (Loc,
UI_From_Int (BIP_Allocation_Form'Pos
(User_Storage_Pool)))),
Then_Statements => New_List (
Pool_Decl,
Build_Heap_Or_Pool_Allocator
(Temp_Id => Alloc_Obj_Id,
Temp_Typ => Acc_Typ,
Ret_Typ => Desig_Typ,
Alloc_Expr => Pool_Allocator)))),
-- Raise Program_Error if it's none of the above;
-- this is a compiler bug.
Else_Statements => New_List (Guard_Except));
-- If a separate initialization assignment was created
-- earlier, append that following the assignment of the
-- implicit access formal to the access object, to ensure
-- that the return object is initialized in that case. In
-- this situation, the target of the assignment must be
-- rewritten to denote a dereference of the access to the
-- return object passed in by the caller.
if Present (Init_Stmt) then
Set_Name (Init_Stmt,
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc)));
Set_Assignment_OK (Name (Init_Stmt));
Append_To (Then_Statements (Alloc_Stmt), Init_Stmt);
Init_Stmt := Empty;
end if;
Insert_Action (N, Alloc_Stmt, Suppress => All_Checks);
-- From now on, the type of the return object is the
-- designated type.
if Desig_Typ /= Typ then
Set_Etype (Def_Id, Desig_Typ);
Set_Actual_Subtype (Def_Id, Typ);
end if;
-- Remember the local access object for use in the
-- dereference of the renaming created below.
Obj_Acc_Formal := Alloc_Obj_Id;
end;
-- When the function's type is unconstrained and a run-time test
-- is not needed, we nevertheless need to build the return using
-- the return object's type.
elsif not Is_Constrained (Underlying_Type (Etype (Func_Id))) then
declare
Acc_Typ : Entity_Id;
Alloc_Obj_Decl : Node_Id;
Alloc_Obj_Id : Entity_Id;
Ptr_Typ_Decl : Node_Id;
begin
-- Create an access type designating the function's
-- result subtype.
Acc_Typ := Make_Temporary (Loc, 'A');
Ptr_Typ_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Acc_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Occurrence_Of (Typ, Loc)));
Insert_Action (N, Ptr_Typ_Decl, Suppress => All_Checks);
-- Create an access object initialized to the conversion
-- of the implicit access value passed in by the caller.
Alloc_Obj_Id := Make_Temporary (Loc, 'R');
-- See the ??? comment a few lines above about the use of
-- an unchecked conversion here.
Alloc_Obj_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Alloc_Obj_Id,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Acc_Typ, Loc),
Expression =>
Unchecked_Convert_To
(Acc_Typ, New_Occurrence_Of (Obj_Acc_Formal, Loc)));
Insert_Action (N, Alloc_Obj_Decl, Suppress => All_Checks);
-- Remember the local access object for use in the
-- dereference of the renaming created below.
Obj_Acc_Formal := Alloc_Obj_Id;
end;
end if;
-- Initialize the object now that it has got its final subtype,
-- but before rewriting it as a renaming.
Initialize_Return_Object
(Tag_Assign, Adj_Call, Expr_Q, Init_Stmt, Init_After);
-- Replace the return object declaration with a renaming of a
-- dereference of the access value designating the return object.
Expr_Q :=
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Obj_Acc_Formal, Loc));
Set_Etype (Expr_Q, Etype (Def_Id));
Rewrite_As_Renaming := True;
end;
-- If we can rename the initialization expression, we need to make sure
-- that we use the proper type in the case of a return object that lives
-- on the secondary stack (see other cases below for a similar handling)
-- and that the tag is assigned in the case of any return object.
elsif Rewrite_As_Renaming then
if Special_Ret_Obj then
declare
Desig_Typ : constant Entity_Id :=
(if Ekind (Typ) = E_Array_Subtype
then Etype (Func_Id) else Typ);
begin
-- From now on, the type of the return object is the
-- designated type.
if Desig_Typ /= Typ then
Set_Etype (Def_Id, Desig_Typ);
Set_Actual_Subtype (Def_Id, Typ);
end if;
if Present (Tag_Assign) then
Insert_Action_After (Init_After, Tag_Assign);
end if;
-- Ada 2005 (AI95-344): If the result type is class-wide,
-- insert a check that the level of the return expression's
-- underlying type is not deeper than the level of the master
-- enclosing the function.
-- AI12-043: The check is made immediately after the return
-- object is created.
if Is_Class_Wide_Type (Etype (Func_Id)) then
Apply_CW_Accessibility_Check (Expr_Q, Func_Id);
end if;
end;
end if;
-- If this is the return object of a function returning on the secondary
-- stack, convert the declaration to a renaming of the dereference of ah
-- allocator for the secondary stack.
-- Result : T [:= <expression>];
-- is converted to
-- type Txx is access all ...;
-- Rxx : constant Txx :=
-- new <expression-type>['(<expression>)][storage_pool =
-- system__secondary_stack__ss_pool][procedure_to_call =
-- system__secondary_stack__ss_allocate];
-- Result : T renames Rxx.all;
elsif Is_Secondary_Stack_Return_Object (Def_Id) then
declare
Desig_Typ : constant Entity_Id :=
(if Ekind (Typ) = E_Array_Subtype
then Etype (Func_Id) else Typ);
-- Ensure that the we use a fat pointer when allocating
-- an unconstrained array on the heap. In this case the
-- result object's type is a constrained array type even
-- though the function's type is unconstrained.
Acc_Typ : Entity_Id;
Alloc_Obj_Decl : Node_Id;
Alloc_Obj_Id : Entity_Id;
Ptr_Type_Decl : Node_Id;
begin
-- Create an access type designating the function's
-- result subtype.
Acc_Typ := Make_Temporary (Loc, 'A');
Ptr_Type_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Acc_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Occurrence_Of (Desig_Typ, Loc)));
Insert_Action (N, Ptr_Type_Decl, Suppress => All_Checks);
Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
Alloc_Obj_Id := Make_Temporary (Loc, 'R');
Alloc_Obj_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Alloc_Obj_Id,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Acc_Typ, Loc),
Expression => Make_Allocator_For_Return (Expr_Q));
Insert_Action (N, Alloc_Obj_Decl, Suppress => All_Checks);
Set_Uses_Sec_Stack (Func_Id);
Set_Uses_Sec_Stack (Scope (Def_Id));
Set_Sec_Stack_Needed_For_Return (Scope (Def_Id));
-- From now on, the type of the return object is the
-- designated type.
if Desig_Typ /= Typ then
Set_Etype (Def_Id, Desig_Typ);
Set_Actual_Subtype (Def_Id, Typ);
end if;
-- Initialize the object now that it has got its final subtype,
-- but before rewriting it as a renaming.
Initialize_Return_Object
(Tag_Assign, Adj_Call, Expr_Q, Empty, Init_After);
-- Replace the return object declaration with a renaming of a
-- dereference of the access value designating the return object.
Expr_Q :=
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc));
Set_Etype (Expr_Q, Etype (Def_Id));
Rewrite_As_Renaming := True;
end;
-- If this is the return object of a function returning a by-reference
-- type, convert the declaration to a renaming of the dereference of ah
-- allocator for the return stack.
-- Result : T [:= <expression>];
-- is converted to
-- type Txx is access all ...;
-- Rxx : constant Txx :=
-- new <expression-type>['(<expression>)][storage_pool =
-- system__return_stack__rs_pool][procedure_to_call =
-- system__return_stack__rs_allocate];
-- Result : T renames Rxx.all;
elsif Back_End_Return_Slot
and then Is_By_Reference_Return_Object (Def_Id)
then
declare
Acc_Typ : Entity_Id;
Alloc_Obj_Decl : Node_Id;
Alloc_Obj_Id : Entity_Id;
Ptr_Type_Decl : Node_Id;
begin
-- Create an access type designating the function's
-- result subtype.
Acc_Typ := Make_Temporary (Loc, 'A');
Ptr_Type_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Acc_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Occurrence_Of (Typ, Loc)));
Insert_Action (N, Ptr_Type_Decl, Suppress => All_Checks);
Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_RS_Pool));
Alloc_Obj_Id := Make_Temporary (Loc, 'R');
Alloc_Obj_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Alloc_Obj_Id,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Acc_Typ, Loc),
Expression => Make_Allocator_For_Return (Expr_Q));
Insert_Action (N, Alloc_Obj_Decl, Suppress => All_Checks);
-- Initialize the object now that it has got its final subtype,
-- but before rewriting it as a renaming.
Initialize_Return_Object
(Tag_Assign, Adj_Call, Expr_Q, Empty, Init_After);
-- Replace the return object declaration with a renaming of a
-- dereference of the access value designating the return object.
Expr_Q :=
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Alloc_Obj_Id, Loc));
Set_Etype (Expr_Q, Etype (Def_Id));
Rewrite_As_Renaming := True;
end;
end if;
-- Final transformation - turn the object declaration into a renaming
-- if appropriate. If this is the completion of a deferred constant
-- declaration, then this transformation generates what would be
-- illegal code if written by hand, but that's OK.
if Rewrite_As_Renaming then
Rewrite (N,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Occurrence_Of (Etype (Def_Id), Loc),
Name => Expr_Q));
-- Keep original aspects
Move_Aspects (Original_Node (N), N);
-- We do not analyze this renaming declaration, because all its
-- components have already been analyzed, and if we were to go
-- ahead and analyze it, we would in effect be trying to generate
-- another declaration of X, which won't do.
Set_Renamed_Object (Def_Id, Expr_Q);
Set_Analyzed (N);
-- We do need to deal with debug issues for this renaming
-- First, if entity comes from source, then mark it as needing
-- debug information, even though it is defined by a generated
-- renaming that does not come from source.
Set_Debug_Info_Defining_Id (N);
-- Now call the routine to generate debug info for the renaming
Insert_Action (N, Debug_Renaming_Declaration (N));
end if;
-- Exception on library entity not available
exception
when RE_Not_Available =>
return;
end Expand_N_Object_Declaration;
---------------------------------
-- Expand_N_Subtype_Indication --
---------------------------------
-- Add a check on the range of the subtype and deal with validity checking
procedure Expand_N_Subtype_Indication (N : Node_Id) is
Ran : constant Node_Id := Range_Expression (Constraint (N));
Typ : constant Entity_Id := Entity (Subtype_Mark (N));
begin
if Nkind (Constraint (N)) = N_Range_Constraint then
Validity_Check_Range (Range_Expression (Constraint (N)));
end if;
-- Do not duplicate the work of Process_Range_Expr_In_Decl in Sem_Ch3
if Nkind (Parent (N)) in N_Constrained_Array_Definition | N_Slice
and then Nkind (Parent (Parent (N))) not in
N_Full_Type_Declaration | N_Object_Declaration
then
Apply_Range_Check (Ran, Typ);
end if;
end Expand_N_Subtype_Indication;
---------------------------
-- Expand_N_Variant_Part --
---------------------------
-- Note: this procedure no longer has any effect. It used to be that we
-- would replace the choices in the last variant by a when others, and
-- also expanded static predicates in variant choices here, but both of
-- those activities were being done too early, since we can't check the
-- choices until the statically predicated subtypes are frozen, which can
-- happen as late as the free point of the record, and we can't change the
-- last choice to an others before checking the choices, which is now done
-- at the freeze point of the record.
procedure Expand_N_Variant_Part (N : Node_Id) is
begin
null;
end Expand_N_Variant_Part;
---------------------------------
-- Expand_Previous_Access_Type --
---------------------------------
procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
Ptr_Typ : Entity_Id;
begin
-- Find all access types in the current scope whose designated type is
-- Def_Id and build master renamings for them.
Ptr_Typ := First_Entity (Current_Scope);
while Present (Ptr_Typ) loop
if Is_Access_Type (Ptr_Typ)
and then Designated_Type (Ptr_Typ) = Def_Id
and then No (Master_Id (Ptr_Typ))
then
-- Ensure that the designated type has a master
Build_Master_Entity (Def_Id);
-- Private and incomplete types complicate the insertion of master
-- renamings because the access type may precede the full view of
-- the designated type. For this reason, the master renamings are
-- inserted relative to the designated type.
Build_Master_Renaming (Ptr_Typ, Ins_Nod => Parent (Def_Id));
end if;
Next_Entity (Ptr_Typ);
end loop;
end Expand_Previous_Access_Type;
-----------------------------
-- Expand_Record_Extension --
-----------------------------
-- Add a field _parent at the beginning of the record extension. This is
-- used to implement inheritance. Here are some examples of expansion:
-- 1. no discriminants
-- type T2 is new T1 with null record;
-- gives
-- type T2 is new T1 with record
-- _Parent : T1;
-- end record;
-- 2. renamed discriminants
-- type T2 (B, C : Int) is new T1 (A => B) with record
-- _Parent : T1 (A => B);
-- D : Int;
-- end;
-- 3. inherited discriminants
-- type T2 is new T1 with record -- discriminant A inherited
-- _Parent : T1 (A);
-- D : Int;
-- end;
procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is
Indic : constant Node_Id := Subtype_Indication (Def);
Loc : constant Source_Ptr := Sloc (Def);
Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
Par_Subtype : Entity_Id;
Comp_List : Node_Id;
Comp_Decl : Node_Id;
Parent_N : Node_Id;
D : Entity_Id;
List_Constr : constant List_Id := New_List;
begin
-- Expand_Record_Extension is called directly from the semantics, so
-- we must check to see whether expansion is active before proceeding,
-- because this affects the visibility of selected components in bodies
-- of instances. Within a generic we still need to set Parent_Subtype
-- link because the visibility of inherited components will have to be
-- verified in subsequent instances.
if not Expander_Active then
if Inside_A_Generic and then Ekind (T) = E_Record_Type then
Set_Parent_Subtype (T, Etype (T));
end if;
return;
end if;
-- This may be a derivation of an untagged private type whose full
-- view is tagged, in which case the Derived_Type_Definition has no
-- extension part. Build an empty one now.
if No (Rec_Ext_Part) then
Rec_Ext_Part :=
Make_Record_Definition (Loc,
End_Label => Empty,
Component_List => Empty,
Null_Present => True);
Set_Record_Extension_Part (Def, Rec_Ext_Part);
Mark_Rewrite_Insertion (Rec_Ext_Part);
end if;
Comp_List := Component_List (Rec_Ext_Part);
Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
-- If the derived type inherits its discriminants the type of the
-- _parent field must be constrained by the inherited discriminants
if Has_Discriminants (T)
and then Nkind (Indic) /= N_Subtype_Indication
and then not Is_Constrained (Entity (Indic))
then
D := First_Discriminant (T);
while Present (D) loop
Append_To (List_Constr, New_Occurrence_Of (D, Loc));
Next_Discriminant (D);
end loop;
Par_Subtype :=
Process_Subtype (
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Entity (Indic), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => List_Constr)),
Def);
-- Otherwise the original subtype_indication is just what is needed
else
Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
end if;
Set_Parent_Subtype (T, Par_Subtype);
Comp_Decl :=
Make_Component_Declaration (Loc,
Defining_Identifier => Parent_N,
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Occurrence_Of (Par_Subtype, Loc)));
if Null_Present (Rec_Ext_Part) then
Set_Component_List (Rec_Ext_Part,
Make_Component_List (Loc,
Component_Items => New_List (Comp_Decl),
Variant_Part => Empty,
Null_Present => False));
Set_Null_Present (Rec_Ext_Part, False);
elsif Null_Present (Comp_List)
or else Is_Empty_List (Component_Items (Comp_List))
then
Set_Component_Items (Comp_List, New_List (Comp_Decl));
Set_Null_Present (Comp_List, False);
else
Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
end if;
Analyze (Comp_Decl);
end Expand_Record_Extension;
------------------------
-- Expand_Tagged_Root --
------------------------
procedure Expand_Tagged_Root (T : Entity_Id) is
Def : constant Node_Id := Type_Definition (Parent (T));
Comp_List : Node_Id;
Comp_Decl : Node_Id;
Sloc_N : Source_Ptr;
begin
if Null_Present (Def) then
Set_Component_List (Def,
Make_Component_List (Sloc (Def),
Component_Items => Empty_List,
Variant_Part => Empty,
Null_Present => True));
end if;
Comp_List := Component_List (Def);
if Null_Present (Comp_List)
or else Is_Empty_List (Component_Items (Comp_List))
then
Sloc_N := Sloc (Comp_List);
else
Sloc_N := Sloc (First (Component_Items (Comp_List)));
end if;
Comp_Decl :=
Make_Component_Declaration (Sloc_N,
Defining_Identifier => First_Tag_Component (T),
Component_Definition =>
Make_Component_Definition (Sloc_N,
Aliased_Present => False,
Subtype_Indication => New_Occurrence_Of (RTE (RE_Tag), Sloc_N)));
if Null_Present (Comp_List)
or else Is_Empty_List (Component_Items (Comp_List))
then
Set_Component_Items (Comp_List, New_List (Comp_Decl));
Set_Null_Present (Comp_List, False);
else
Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
end if;
-- We don't Analyze the whole expansion because the tag component has
-- already been analyzed previously. Here we just insure that the tree
-- is coherent with the semantic decoration
Find_Type (Subtype_Indication (Component_Definition (Comp_Decl)));
exception
when RE_Not_Available =>
return;
end Expand_Tagged_Root;
------------------------------
-- Freeze_Stream_Operations --
------------------------------
procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
Names : constant array (1 .. 4) of TSS_Name_Type :=
(TSS_Stream_Input,
TSS_Stream_Output,
TSS_Stream_Read,
TSS_Stream_Write);
Stream_Op : Entity_Id;
begin
-- Primitive operations of tagged types are frozen when the dispatch
-- table is constructed.
if not Comes_From_Source (Typ) or else Is_Tagged_Type (Typ) then
return;
end if;
for J in Names'Range loop
Stream_Op := TSS (Typ, Names (J));
if Present (Stream_Op)
and then Is_Subprogram (Stream_Op)
and then Nkind (Unit_Declaration_Node (Stream_Op)) =
N_Subprogram_Declaration
and then not Is_Frozen (Stream_Op)
then
Append_Freeze_Actions (Typ, Freeze_Entity (Stream_Op, N));
end if;
end loop;
end Freeze_Stream_Operations;
-----------------
-- Freeze_Type --
-----------------
-- Full type declarations are expanded at the point at which the type is
-- frozen. The formal N is the Freeze_Node for the type. Any statements or
-- declarations generated by the freezing (e.g. the procedure generated
-- for initialization) are chained in the Actions field list of the freeze
-- node using Append_Freeze_Actions.
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
function Freeze_Type (N : Node_Id) return Boolean is
procedure Process_RACW_Types (Typ : Entity_Id);
-- Validate and generate stubs for all RACW types associated with type
-- Typ.
procedure Process_Pending_Access_Types (Typ : Entity_Id);
-- Associate type Typ's Finalize_Address primitive with the finalization
-- masters of pending access-to-Typ types.
------------------------
-- Process_RACW_Types --
------------------------
procedure Process_RACW_Types (Typ : Entity_Id) is
List : constant Elist_Id := Access_Types_To_Process (N);
E : Elmt_Id;
Seen : Boolean := False;
begin
if Present (List) then
E := First_Elmt (List);
while Present (E) loop
if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
Validate_RACW_Primitives (Node (E));
Seen := True;
end if;
Next_Elmt (E);
end loop;
end if;
-- If there are RACWs designating this type, make stubs now
if Seen then
Remote_Types_Tagged_Full_View_Encountered (Typ);
end if;
end Process_RACW_Types;
----------------------------------
-- Process_Pending_Access_Types --
----------------------------------
procedure Process_Pending_Access_Types (Typ : Entity_Id) is
E : Elmt_Id;
begin
-- Finalize_Address is not generated in CodePeer mode because the
-- body contains address arithmetic. This processing is disabled.
if CodePeer_Mode then
null;
-- Certain itypes are generated for contexts that cannot allocate
-- objects and should not set primitive Finalize_Address.
elsif Is_Itype (Typ)
and then Nkind (Associated_Node_For_Itype (Typ)) =
N_Explicit_Dereference
then
null;
-- When an access type is declared after the incomplete view of a
-- Taft-amendment type, the access type is considered pending in
-- case the full view of the Taft-amendment type is controlled. If
-- this is indeed the case, associate the Finalize_Address routine
-- of the full view with the finalization masters of all pending
-- access types. This scenario applies to anonymous access types as
-- well. But the Finalize_Address routine is missing if the type is
-- class-wide and we are under restriction No_Dispatching_Calls, see
-- Expand_Freeze_Class_Wide_Type above for the rationale.
elsif Needs_Finalization (Typ)
and then (not Is_Class_Wide_Type (Typ)
or else not Restriction_Active (No_Dispatching_Calls))
and then Present (Pending_Access_Types (Typ))
then
E := First_Elmt (Pending_Access_Types (Typ));
while Present (E) loop
-- Generate:
-- Set_Finalize_Address
-- (Ptr_Typ, <Typ>FD'Unrestricted_Access);
Append_Freeze_Action (Typ,
Make_Set_Finalize_Address_Call
(Loc => Sloc (N),
Ptr_Typ => Node (E)));
Next_Elmt (E);
end loop;
end if;
end Process_Pending_Access_Types;
-- Local variables
Def_Id : constant Entity_Id := Entity (N);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
Result : Boolean := False;
-- Start of processing for Freeze_Type
begin
-- The type being frozen may be subject to pragma Ghost. Set the mode
-- now to ensure that any nodes generated during freezing are properly
-- marked as Ghost.
Set_Ghost_Mode (Def_Id);
-- Process any remote access-to-class-wide types designating the type
-- being frozen.
Process_RACW_Types (Def_Id);
-- Freeze processing for record types
if Is_Record_Type (Def_Id) then
if Ekind (Def_Id) = E_Record_Type then
Expand_Freeze_Record_Type (N);
elsif Is_Class_Wide_Type (Def_Id) then
Expand_Freeze_Class_Wide_Type (N);
end if;
-- Freeze processing for array types
elsif Is_Array_Type (Def_Id) then
Expand_Freeze_Array_Type (N);
-- Freeze processing for access types
-- For pool-specific access types, find out the pool object used for
-- this type, needs actual expansion of it in some cases. Here are the
-- different cases :
-- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
-- ---> don't use any storage pool
-- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
-- Expand:
-- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
-- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
-- ---> Storage Pool is the specified one
-- See GNAT Pool packages in the Run-Time for more details
elsif Ekind (Def_Id) in E_Access_Type | E_General_Access_Type then
declare
Loc : constant Source_Ptr := Sloc (N);
Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
Freeze_Action_Typ : Entity_Id;
Pool_Object : Entity_Id;
begin
-- Case 1
-- Rep Clause "for Def_Id'Storage_Size use 0;"
-- ---> don't use any storage pool
if No_Pool_Assigned (Def_Id) then
null;
-- Case 2
-- Rep Clause : for Def_Id'Storage_Size use Expr.
-- ---> Expand:
-- Def_Id__Pool : Stack_Bounded_Pool
-- (Expr, DT'Size, DT'Alignment);
elsif Has_Storage_Size_Clause (Def_Id) then
declare
DT_Align : Node_Id;
DT_Size : Node_Id;
begin
-- For unconstrained composite types we give a size of zero
-- so that the pool knows that it needs a special algorithm
-- for variable size object allocation.
if Is_Composite_Type (Desig_Type)
and then not Is_Constrained (Desig_Type)
then
DT_Size := Make_Integer_Literal (Loc, 0);
DT_Align := Make_Integer_Literal (Loc, Maximum_Alignment);
else
DT_Size :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Desig_Type, Loc),
Attribute_Name => Name_Max_Size_In_Storage_Elements);
DT_Align :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Desig_Type, Loc),
Attribute_Name => Name_Alignment);
end if;
Pool_Object :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Def_Id), 'P'));
-- We put the code associated with the pools in the entity
-- that has the later freeze node, usually the access type
-- but it can also be the designated_type; because the pool
-- code requires both those types to be frozen
if Is_Frozen (Desig_Type)
and then (No (Freeze_Node (Desig_Type))
or else Analyzed (Freeze_Node (Desig_Type)))
then
Freeze_Action_Typ := Def_Id;
-- A Taft amendment type cannot get the freeze actions
-- since the full view is not there.
elsif Is_Incomplete_Or_Private_Type (Desig_Type)
and then No (Full_View (Desig_Type))
then
Freeze_Action_Typ := Def_Id;
else
Freeze_Action_Typ := Desig_Type;
end if;
Append_Freeze_Action (Freeze_Action_Typ,
Make_Object_Declaration (Loc,
Defining_Identifier => Pool_Object,
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Occurrence_Of
(RTE (RE_Stack_Bounded_Pool), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List (
-- First discriminant is the Pool Size
New_Occurrence_Of (
Storage_Size_Variable (Def_Id), Loc),
-- Second discriminant is the element size
DT_Size,
-- Third discriminant is the alignment
DT_Align)))));
end;
Set_Associated_Storage_Pool (Def_Id, Pool_Object);
-- Case 3
-- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
-- ---> Storage Pool is the specified one
-- When compiling in Ada 2012 mode, ensure that the accessibility
-- level of the subpool access type is not deeper than that of the
-- pool_with_subpools.
elsif Ada_Version >= Ada_2012
and then Present (Associated_Storage_Pool (Def_Id))
and then RTU_Loaded (System_Storage_Pools_Subpools)
then
declare
Loc : constant Source_Ptr := Sloc (Def_Id);
Pool : constant Entity_Id :=
Associated_Storage_Pool (Def_Id);
begin
-- It is known that the accessibility level of the access
-- type is deeper than that of the pool.
if Type_Access_Level (Def_Id)
> Static_Accessibility_Level (Pool, Object_Decl_Level)
and then Is_Class_Wide_Type (Etype (Pool))
and then not Accessibility_Checks_Suppressed (Def_Id)
and then not Accessibility_Checks_Suppressed (Pool)
then
-- When the pool is of a class-wide type, it may or may
-- not support subpools depending on the path of
-- derivation. Generate:
-- if Def_Id in RSPWS'Class then
-- raise Program_Error;
-- end if;
Append_Freeze_Action (Def_Id,
Make_If_Statement (Loc,
Condition =>
Make_In (Loc,
Left_Opnd => New_Occurrence_Of (Pool, Loc),
Right_Opnd =>
New_Occurrence_Of
(Class_Wide_Type
(RTE
(RE_Root_Storage_Pool_With_Subpools)),
Loc)),
Then_Statements => New_List (
Make_Raise_Program_Error (Loc,
Reason => PE_Accessibility_Check_Failed))));
end if;
end;
end if;
-- For access-to-controlled types (including class-wide types and
-- Taft-amendment types, which potentially have controlled
-- components), expand the list controller object that will store
-- the dynamically allocated objects. Don't do this transformation
-- for expander-generated access types, except do it for types
-- that are the full view of types derived from other private
-- types and for access types used to implement indirect temps.
-- Also suppress the list controller in the case of a designated
-- type with convention Java, since this is used when binding to
-- Java API specs, where there's no equivalent of a finalization
-- list and we don't want to pull in the finalization support if
-- not needed.
if not Comes_From_Source (Def_Id)
and then not Has_Private_Declaration (Def_Id)
and then not Old_Attr_Util.Indirect_Temps
.Is_Access_Type_For_Indirect_Temp (Def_Id)
then
null;
-- An exception is made for types defined in the run-time because
-- Ada.Tags.Tag itself is such a type and cannot afford this
-- unnecessary overhead that would generates a loop in the
-- expansion scheme. Another exception is if Restrictions
-- (No_Finalization) is active, since then we know nothing is
-- controlled.
elsif Restriction_Active (No_Finalization)
or else In_Runtime (Def_Id)
then
null;
-- Create a finalization master for an access-to-controlled type
-- or an access-to-incomplete type. It is assumed that the full
-- view will be controlled.
elsif Needs_Finalization (Desig_Type)
or else (Is_Incomplete_Type (Desig_Type)
and then No (Full_View (Desig_Type)))
then
Build_Finalization_Master (Def_Id);
-- Create a finalization master when the designated type contains
-- a private component. It is assumed that the full view will be
-- controlled.
elsif Has_Private_Component (Desig_Type) then
Build_Finalization_Master
(Typ => Def_Id,
For_Private => True,
Context_Scope => Scope (Def_Id),
Insertion_Node => Declaration_Node (Desig_Type));
end if;
end;
-- Freeze processing for enumeration types
elsif Ekind (Def_Id) = E_Enumeration_Type then
-- We only have something to do if we have a non-standard
-- representation (i.e. at least one literal whose pos value
-- is not the same as its representation)
if Has_Non_Standard_Rep (Def_Id) then
Expand_Freeze_Enumeration_Type (N);
end if;
-- Private types that are completed by a derivation from a private
-- type have an internally generated full view, that needs to be
-- frozen. This must be done explicitly because the two views share
-- the freeze node, and the underlying full view is not visible when
-- the freeze node is analyzed.
elsif Is_Private_Type (Def_Id)
and then Is_Derived_Type (Def_Id)
and then Present (Full_View (Def_Id))
and then Is_Itype (Full_View (Def_Id))
and then Has_Private_Declaration (Full_View (Def_Id))
and then Freeze_Node (Full_View (Def_Id)) = N
then
Set_Entity (N, Full_View (Def_Id));
Result := Freeze_Type (N);
Set_Entity (N, Def_Id);
-- All other types require no expander action. There are such cases
-- (e.g. task types and protected types). In such cases, the freeze
-- nodes are there for use by Gigi.
end if;
-- Complete the initialization of all pending access types' finalization
-- masters now that the designated type has been is frozen and primitive
-- Finalize_Address generated.
Process_Pending_Access_Types (Def_Id);
Freeze_Stream_Operations (N, Def_Id);
-- Generate the [spec and] body of the invariant procedure tasked with
-- the runtime verification of all invariants that pertain to the type.
-- This includes invariants on the partial and full view, inherited
-- class-wide invariants from parent types or interfaces, and invariants
-- on array elements or record components. But skip internal types.
if Is_Itype (Def_Id) then
null;
elsif Is_Interface (Def_Id) then
-- Interfaces are treated as the partial view of a private type in
-- order to achieve uniformity with the general case. As a result, an
-- interface receives only a "partial" invariant procedure which is
-- never called.
if Has_Own_Invariants (Def_Id) then
Build_Invariant_Procedure_Body
(Typ => Def_Id,
Partial_Invariant => Is_Interface (Def_Id));
end if;
-- Non-interface types
-- Do not generate invariant procedure within other assertion
-- subprograms, which may involve local declarations of local
-- subtypes to which these checks do not apply.
else
if Has_Invariants (Def_Id) then
if not Predicate_Check_In_Scope (Def_Id)
or else (Ekind (Current_Scope) = E_Function
and then Is_Predicate_Function (Current_Scope))
then
null;
else
Build_Invariant_Procedure_Body (Def_Id);
end if;
end if;
-- Generate the [spec and] body of the procedure tasked with the
-- run-time verification of pragma Default_Initial_Condition's
-- expression.
if Has_DIC (Def_Id) then
Build_DIC_Procedure_Body (Def_Id);
end if;
end if;
Restore_Ghost_Region (Saved_GM, Saved_IGR);
return Result;
exception
when RE_Not_Available =>
Restore_Ghost_Region (Saved_GM, Saved_IGR);
return False;
end Freeze_Type;
-------------------------
-- Get_Simple_Init_Val --
-------------------------
function Get_Simple_Init_Val
(Typ : Entity_Id;
N : Node_Id;
Size : Uint := No_Uint) return Node_Id
is
IV_Attribute : constant Boolean :=
Nkind (N) = N_Attribute_Reference
and then Attribute_Name (N) = Name_Invalid_Value;
Loc : constant Source_Ptr := Sloc (N);
procedure Extract_Subtype_Bounds
(Lo_Bound : out Uint;
Hi_Bound : out Uint);
-- Inspect subtype Typ as well its ancestor subtypes and derived types
-- to determine the best known information about the bounds of the type.
-- The output parameters are set as follows:
--
-- * Lo_Bound - Set to No_Unit when there is no information available,
-- or to the known low bound.
--
-- * Hi_Bound - Set to No_Unit when there is no information available,
-- or to the known high bound.
function Simple_Init_Array_Type return Node_Id;
-- Build an expression to initialize array type Typ
function Simple_Init_Defaulted_Type return Node_Id;
-- Build an expression to initialize type Typ which is subject to
-- aspect Default_Value.
function Simple_Init_Initialize_Scalars_Type
(Size_To_Use : Uint) return Node_Id;
-- Build an expression to initialize scalar type Typ which is subject to
-- pragma Initialize_Scalars. Size_To_Use is the size of the object.
function Simple_Init_Normalize_Scalars_Type
(Size_To_Use : Uint) return Node_Id;
-- Build an expression to initialize scalar type Typ which is subject to
-- pragma Normalize_Scalars. Size_To_Use is the size of the object.
function Simple_Init_Private_Type return Node_Id;
-- Build an expression to initialize private type Typ
function Simple_Init_Scalar_Type return Node_Id;
-- Build an expression to initialize scalar type Typ
----------------------------
-- Extract_Subtype_Bounds --
----------------------------
procedure Extract_Subtype_Bounds
(Lo_Bound : out Uint;
Hi_Bound : out Uint)
is
ST1 : Entity_Id;
ST2 : Entity_Id;
Lo : Node_Id;
Hi : Node_Id;
Lo_Val : Uint;
Hi_Val : Uint;
begin
Lo_Bound := No_Uint;
Hi_Bound := No_Uint;
-- Loop to climb ancestor subtypes and derived types
ST1 := Typ;
loop
if not Is_Discrete_Type (ST1) then
return;
end if;
Lo := Type_Low_Bound (ST1);
Hi := Type_High_Bound (ST1);
if Compile_Time_Known_Value (Lo) then
Lo_Val := Expr_Value (Lo);
if No (Lo_Bound) or else Lo_Bound < Lo_Val then
Lo_Bound := Lo_Val;
end if;
end if;
if Compile_Time_Known_Value (Hi) then
Hi_Val := Expr_Value (Hi);
if No (Hi_Bound) or else Hi_Bound > Hi_Val then
Hi_Bound := Hi_Val;
end if;
end if;
ST2 := Ancestor_Subtype (ST1);
if No (ST2) then
ST2 := Etype (ST1);
end if;
exit when ST1 = ST2;
ST1 := ST2;
end loop;
end Extract_Subtype_Bounds;
----------------------------
-- Simple_Init_Array_Type --
----------------------------
function Simple_Init_Array_Type return Node_Id is
Comp_Typ : constant Entity_Id := Component_Type (Typ);
function Simple_Init_Dimension (Index : Node_Id) return Node_Id;
-- Initialize a single array dimension with index constraint Index
--------------------
-- Simple_Init_Dimension --
--------------------
function Simple_Init_Dimension (Index : Node_Id) return Node_Id is
begin
-- Process the current dimension
if Present (Index) then
-- Build a suitable "others" aggregate for the next dimension,
-- or initialize the component itself. Generate:
--
-- (others => ...)
return
Make_Aggregate (Loc,
Component_Associations => New_List (
Make_Component_Association (Loc,
Choices => New_List (Make_Others_Choice (Loc)),
Expression =>
Simple_Init_Dimension (Next_Index (Index)))));
-- Otherwise all dimensions have been processed. Initialize the
-- component itself.
else
return
Get_Simple_Init_Val
(Typ => Comp_Typ,
N => N,
Size => Esize (Comp_Typ));
end if;
end Simple_Init_Dimension;
-- Start of processing for Simple_Init_Array_Type
begin
return Simple_Init_Dimension (First_Index (Typ));
end Simple_Init_Array_Type;
--------------------------------
-- Simple_Init_Defaulted_Type --
--------------------------------
function Simple_Init_Defaulted_Type return Node_Id is
Subtyp : Entity_Id := First_Subtype (Typ);
begin
-- When the first subtype is private, retrieve the expression of the
-- Default_Value from the underlying type.
if Is_Private_Type (Subtyp) then
Subtyp := Full_View (Subtyp);
end if;
-- Use the Sloc of the context node when constructing the initial
-- value because the expression of Default_Value may come from a
-- different unit. Updating the Sloc will result in accurate error
-- diagnostics.
return
OK_Convert_To
(Typ => Typ,
Expr =>
New_Copy_Tree
(Source => Default_Aspect_Value (Subtyp),
New_Sloc => Loc));
end Simple_Init_Defaulted_Type;
-----------------------------------------
-- Simple_Init_Initialize_Scalars_Type --
-----------------------------------------
function Simple_Init_Initialize_Scalars_Type
(Size_To_Use : Uint) return Node_Id
is
Float_Typ : Entity_Id;
Hi_Bound : Uint;
Lo_Bound : Uint;
Scal_Typ : Scalar_Id;
begin
Extract_Subtype_Bounds (Lo_Bound, Hi_Bound);
-- Float types
if Is_Floating_Point_Type (Typ) then
Float_Typ := Root_Type (Typ);
if Float_Typ = Standard_Short_Float then
Scal_Typ := Name_Short_Float;
elsif Float_Typ = Standard_Float then
Scal_Typ := Name_Float;
elsif Float_Typ = Standard_Long_Float then
Scal_Typ := Name_Long_Float;
else pragma Assert (Float_Typ = Standard_Long_Long_Float);
Scal_Typ := Name_Long_Long_Float;
end if;
-- If zero is invalid, it is a convenient value to use that is for
-- sure an appropriate invalid value in all situations.
elsif Present (Lo_Bound) and then Lo_Bound > Uint_0 then
return Make_Integer_Literal (Loc, 0);
-- Unsigned types
elsif Is_Unsigned_Type (Typ) then
if Size_To_Use <= 8 then
Scal_Typ := Name_Unsigned_8;
elsif Size_To_Use <= 16 then
Scal_Typ := Name_Unsigned_16;
elsif Size_To_Use <= 32 then
Scal_Typ := Name_Unsigned_32;
elsif Size_To_Use <= 64 then
Scal_Typ := Name_Unsigned_64;
else
Scal_Typ := Name_Unsigned_128;
end if;
-- Signed types
else
if Size_To_Use <= 8 then
Scal_Typ := Name_Signed_8;
elsif Size_To_Use <= 16 then
Scal_Typ := Name_Signed_16;
elsif Size_To_Use <= 32 then
Scal_Typ := Name_Signed_32;
elsif Size_To_Use <= 64 then
Scal_Typ := Name_Signed_64;
else
Scal_Typ := Name_Signed_128;
end if;
end if;
-- Use the values specified by pragma Initialize_Scalars or the ones
-- provided by the binder. Higher precedence is given to the pragma.
return Invalid_Scalar_Value (Loc, Scal_Typ);
end Simple_Init_Initialize_Scalars_Type;
----------------------------------------
-- Simple_Init_Normalize_Scalars_Type --
----------------------------------------
function Simple_Init_Normalize_Scalars_Type
(Size_To_Use : Uint) return Node_Id
is
Signed_Size : constant Uint := UI_Min (Uint_63, Size_To_Use - 1);
Expr : Node_Id;
Hi_Bound : Uint;
Lo_Bound : Uint;
begin
Extract_Subtype_Bounds (Lo_Bound, Hi_Bound);
-- If zero is invalid, it is a convenient value to use that is for
-- sure an appropriate invalid value in all situations.
if Present (Lo_Bound) and then Lo_Bound > Uint_0 then
Expr := Make_Integer_Literal (Loc, 0);
-- Cases where all one bits is the appropriate invalid value
-- For modular types, all 1 bits is either invalid or valid. If it
-- is valid, then there is nothing that can be done since there are
-- no invalid values (we ruled out zero already).
-- For signed integer types that have no negative values, either
-- there is room for negative values, or there is not. If there
-- is, then all 1-bits may be interpreted as minus one, which is
-- certainly invalid. Alternatively it is treated as the largest
-- positive value, in which case the observation for modular types
-- still applies.
-- For float types, all 1-bits is a NaN (not a number), which is
-- certainly an appropriately invalid value.
elsif Is_Enumeration_Type (Typ)
or else Is_Floating_Point_Type (Typ)
or else Is_Unsigned_Type (Typ)
then
Expr := Make_Integer_Literal (Loc, 2 ** Size_To_Use - 1);
-- Resolve as Long_Long_Long_Unsigned, because the largest number
-- we can generate is out of range of universal integer.
Analyze_And_Resolve (Expr, Standard_Long_Long_Long_Unsigned);
-- Case of signed types
else
-- Normally we like to use the most negative number. The one
-- exception is when this number is in the known subtype range and
-- the largest positive number is not in the known subtype range.
-- For this exceptional case, use largest positive value
if Present (Lo_Bound) and then Present (Hi_Bound)
and then Lo_Bound <= (-(2 ** Signed_Size))
and then Hi_Bound < 2 ** Signed_Size
then
Expr := Make_Integer_Literal (Loc, 2 ** Signed_Size - 1);
-- Normal case of largest negative value
else
Expr := Make_Integer_Literal (Loc, -(2 ** Signed_Size));
end if;
end if;
return Expr;
end Simple_Init_Normalize_Scalars_Type;
------------------------------
-- Simple_Init_Private_Type --
------------------------------
function Simple_Init_Private_Type return Node_Id is
Under_Typ : constant Entity_Id := Underlying_Type (Typ);
Expr : Node_Id;
begin
-- The availability of the underlying view must be checked by routine
-- Needs_Simple_Initialization.
pragma Assert (Present (Under_Typ));
Expr := Get_Simple_Init_Val (Under_Typ, N, Size);
-- If the initial value is null or an aggregate, qualify it with the
-- underlying type in order to provide a proper context.
if Nkind (Expr) in N_Aggregate | N_Null then
Expr :=
Make_Qualified_Expression (Loc,
Subtype_Mark => New_Occurrence_Of (Under_Typ, Loc),
Expression => Expr);
end if;
Expr := Unchecked_Convert_To (Typ, Expr);
-- Do not truncate the result when scalar types are involved and
-- Initialize/Normalize_Scalars is in effect.
if Nkind (Expr) = N_Unchecked_Type_Conversion
and then Is_Scalar_Type (Under_Typ)
then
Set_No_Truncation (Expr);
end if;
return Expr;
end Simple_Init_Private_Type;
-----------------------------
-- Simple_Init_Scalar_Type --
-----------------------------
function Simple_Init_Scalar_Type return Node_Id is
Expr : Node_Id;
Size_To_Use : Uint;
begin
pragma Assert (Init_Or_Norm_Scalars or IV_Attribute);
-- Determine the size of the object. This is either the size provided
-- by the caller, or the Esize of the scalar type.
if No (Size) or else Size <= Uint_0 then
Size_To_Use := UI_Max (Uint_1, Esize (Typ));
else
Size_To_Use := Size;
end if;
-- The maximum size to use is System_Max_Integer_Size bits. This
-- will create values of type Long_Long_Long_Unsigned and the range
-- must fit this type.
if Present (Size_To_Use)
and then Size_To_Use > System_Max_Integer_Size
then
Size_To_Use := UI_From_Int (System_Max_Integer_Size);
end if;
if Normalize_Scalars and then not IV_Attribute then
Expr := Simple_Init_Normalize_Scalars_Type (Size_To_Use);
else
Expr := Simple_Init_Initialize_Scalars_Type (Size_To_Use);
end if;
-- The final expression is obtained by doing an unchecked conversion
-- of this result to the base type of the required subtype. Use the
-- base type to prevent the unchecked conversion from chopping bits,
-- and then we set Kill_Range_Check to preserve the "bad" value.
Expr := Unchecked_Convert_To (Base_Type (Typ), Expr);
-- Ensure that the expression is not truncated since the "bad" bits
-- are desired, and also kill the range checks.
if Nkind (Expr) = N_Unchecked_Type_Conversion then
Set_Kill_Range_Check (Expr);
Set_No_Truncation (Expr);
end if;
return Expr;
end Simple_Init_Scalar_Type;
-- Start of processing for Get_Simple_Init_Val
begin
if Is_Private_Type (Typ) then
return Simple_Init_Private_Type;
elsif Is_Scalar_Type (Typ) then
if Has_Default_Aspect (Typ) then
return Simple_Init_Defaulted_Type;
else
return Simple_Init_Scalar_Type;
end if;
-- Array type with Initialize or Normalize_Scalars
elsif Is_Array_Type (Typ) then
pragma Assert (Init_Or_Norm_Scalars);
return Simple_Init_Array_Type;
-- Access type is initialized to null
elsif Is_Access_Type (Typ) then
return Make_Null (Loc);
-- No other possibilities should arise, since we should only be calling
-- Get_Simple_Init_Val if Needs_Simple_Initialization returned True,
-- indicating one of the above cases held.
else
raise Program_Error;
end if;
exception
when RE_Not_Available =>
return Empty;
end Get_Simple_Init_Val;
------------------------------
-- Has_New_Non_Standard_Rep --
------------------------------
function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
begin
if not Is_Derived_Type (T) then
return Has_Non_Standard_Rep (T)
or else Has_Non_Standard_Rep (Root_Type (T));
-- If Has_Non_Standard_Rep is not set on the derived type, the
-- representation is fully inherited.
elsif not Has_Non_Standard_Rep (T) then
return False;
else
return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));
-- May need a more precise check here: the First_Rep_Item may be a
-- stream attribute, which does not affect the representation of the
-- type ???
end if;
end Has_New_Non_Standard_Rep;
----------------------
-- Inline_Init_Proc --
----------------------
function Inline_Init_Proc (Typ : Entity_Id) return Boolean is
begin
-- The initialization proc of protected records is not worth inlining.
-- In addition, when compiled for another unit for inlining purposes,
-- it may make reference to entities that have not been elaborated yet.
-- The initialization proc of records that need finalization contains
-- a nested clean-up procedure that makes it impractical to inline as
-- well, except for simple controlled types themselves. And similar
-- considerations apply to task types.
if Is_Concurrent_Type (Typ) then
return False;
elsif Needs_Finalization (Typ) and then not Is_Controlled (Typ) then
return False;
elsif Has_Task (Typ) then
return False;
else
return True;
end if;
end Inline_Init_Proc;
----------------
-- In_Runtime --
----------------
function In_Runtime (E : Entity_Id) return Boolean is
S1 : Entity_Id;
begin
S1 := Scope (E);
while Scope (S1) /= Standard_Standard loop
S1 := Scope (S1);
end loop;
return Is_RTU (S1, System) or else Is_RTU (S1, Ada);
end In_Runtime;
package body Initialization_Control is
------------------------
-- Requires_Late_Init --
------------------------
function Requires_Late_Init
(Decl : Node_Id;
Rec_Type : Entity_Id) return Boolean
is
References_Current_Instance : Boolean := False;
Has_Access_Discriminant : Boolean := False;
Has_Internal_Call : Boolean := False;
function Find_Access_Discriminant
(N : Node_Id) return Traverse_Result;
-- Look for a name denoting an access discriminant
function Find_Current_Instance
(N : Node_Id) return Traverse_Result;
-- Look for a reference to the current instance of the type
function Find_Internal_Call
(N : Node_Id) return Traverse_Result;
-- Look for an internal protected function call
------------------------------
-- Find_Access_Discriminant --
------------------------------
function Find_Access_Discriminant
(N : Node_Id) return Traverse_Result is
begin
if Is_Entity_Name (N)
and then Denotes_Discriminant (N)
and then Is_Access_Type (Etype (N))
then
Has_Access_Discriminant := True;
return Abandon;
else
return OK;
end if;
end Find_Access_Discriminant;
---------------------------
-- Find_Current_Instance --
---------------------------
function Find_Current_Instance
(N : Node_Id) return Traverse_Result is
begin
if Is_Entity_Name (N)
and then Present (Entity (N))
and then Is_Current_Instance (N)
then
References_Current_Instance := True;
return Abandon;
else
return OK;
end if;
end Find_Current_Instance;
------------------------
-- Find_Internal_Call --
------------------------
function Find_Internal_Call (N : Node_Id) return Traverse_Result is
function Call_Scope (N : Node_Id) return Entity_Id;
-- Return the scope enclosing a given call node N
----------------
-- Call_Scope --
----------------
function Call_Scope (N : Node_Id) return Entity_Id is
Nam : constant Node_Id := Name (N);
begin
if Nkind (Nam) = N_Selected_Component then
return Scope (Entity (Prefix (Nam)));
else
return Scope (Entity (Nam));
end if;
end Call_Scope;
begin
if Nkind (N) = N_Function_Call
and then Call_Scope (N)
= Corresponding_Concurrent_Type (Rec_Type)
then
Has_Internal_Call := True;
return Abandon;
else
return OK;
end if;
end Find_Internal_Call;
procedure Search_Access_Discriminant is new
Traverse_Proc (Find_Access_Discriminant);
procedure Search_Current_Instance is new
Traverse_Proc (Find_Current_Instance);
procedure Search_Internal_Call is new
Traverse_Proc (Find_Internal_Call);
-- Start of processing for Requires_Late_Init
begin
-- A component of an object is said to require late initialization
-- if:
-- it has an access discriminant value constrained by a per-object
-- expression;
if Has_Access_Constraint (Defining_Identifier (Decl))
and then No (Expression (Decl))
then
return True;
elsif Present (Expression (Decl)) then
-- it has an initialization expression that includes a name
-- denoting an access discriminant;
Search_Access_Discriminant (Expression (Decl));
if Has_Access_Discriminant then
return True;
end if;
-- or it has an initialization expression that includes a
-- reference to the current instance of the type either by
-- name...
Search_Current_Instance (Expression (Decl));
if References_Current_Instance then
return True;
end if;
-- ...or implicitly as the target object of a call.
if Is_Protected_Record_Type (Rec_Type) then
Search_Internal_Call (Expression (Decl));
if Has_Internal_Call then
return True;
end if;
end if;
end if;
return False;
end Requires_Late_Init;
-----------------------------
-- Has_Late_Init_Component --
-----------------------------
function Has_Late_Init_Component
(Tagged_Rec_Type : Entity_Id) return Boolean
is
Comp_Id : Entity_Id :=
First_Component (Implementation_Base_Type (Tagged_Rec_Type));
begin
while Present (Comp_Id) loop
if Requires_Late_Init (Decl => Parent (Comp_Id),
Rec_Type => Tagged_Rec_Type)
then
return True; -- found a component that requires late init
elsif Chars (Comp_Id) = Name_uParent
and then Has_Late_Init_Component (Etype (Comp_Id))
then
return True; -- an ancestor type has a late init component
end if;
Next_Component (Comp_Id);
end loop;
return False;
end Has_Late_Init_Component;
------------------------
-- Tag_Init_Condition --
------------------------
function Tag_Init_Condition
(Loc : Source_Ptr;
Init_Control_Formal : Entity_Id) return Node_Id is
begin
return Make_Op_Eq (Loc,
New_Occurrence_Of (Init_Control_Formal, Loc),
Make_Mode_Literal (Loc, Full_Init));
end Tag_Init_Condition;
--------------------------
-- Early_Init_Condition --
--------------------------
function Early_Init_Condition
(Loc : Source_Ptr;
Init_Control_Formal : Entity_Id) return Node_Id is
begin
return Make_Op_Ne (Loc,
New_Occurrence_Of (Init_Control_Formal, Loc),
Make_Mode_Literal (Loc, Late_Init_Only));
end Early_Init_Condition;
-------------------------
-- Late_Init_Condition --
-------------------------
function Late_Init_Condition
(Loc : Source_Ptr;
Init_Control_Formal : Entity_Id) return Node_Id is
begin
return Make_Op_Ne (Loc,
New_Occurrence_Of (Init_Control_Formal, Loc),
Make_Mode_Literal (Loc, Early_Init_Only));
end Late_Init_Condition;
end Initialization_Control;
----------------------------
-- Initialization_Warning --
----------------------------
procedure Initialization_Warning (E : Entity_Id) is
Warning_Needed : Boolean;
begin
Warning_Needed := False;
if Ekind (Current_Scope) = E_Package
and then Static_Elaboration_Desired (Current_Scope)
then
if Is_Type (E) then
if Is_Record_Type (E) then
if Has_Discriminants (E)
or else Is_Limited_Type (E)
or else Has_Non_Standard_Rep (E)
then
Warning_Needed := True;
else
-- Verify that at least one component has an initialization
-- expression. No need for a warning on a type if all its
-- components have no initialization.
declare
Comp : Entity_Id;
begin
Comp := First_Component (E);
while Present (Comp) loop
pragma Assert
(Nkind (Parent (Comp)) = N_Component_Declaration);
if Present (Expression (Parent (Comp))) then
Warning_Needed := True;
exit;
end if;
Next_Component (Comp);
end loop;
end;
end if;
if Warning_Needed then
Error_Msg_N
("objects of the type cannot be initialized statically "
& "by default??", Parent (E));
end if;
end if;
else
Error_Msg_N ("object cannot be initialized statically??", E);
end if;
end if;
end Initialization_Warning;
------------------
-- Init_Formals --
------------------
function Init_Formals (Typ : Entity_Id; Proc_Id : Entity_Id) return List_Id
is
Loc : constant Source_Ptr := Sloc (Typ);
Unc_Arr : constant Boolean :=
Is_Array_Type (Typ) and then not Is_Constrained (Typ);
With_Prot : constant Boolean :=
Has_Protected (Typ)
or else (Is_Record_Type (Typ)
and then Is_Protected_Record_Type (Typ));
With_Task : constant Boolean :=
not Global_No_Tasking
and then
(Has_Task (Typ)
or else (Is_Record_Type (Typ)
and then Is_Task_Record_Type (Typ)));
Formals : List_Id;
begin
-- The first parameter is always _Init : [in] out Typ. Note that we need
-- it to be in/out in the case of an unconstrained array, because of the
-- need to have the bounds, and in the case of protected or task record
-- value, because there are default record fields that may be referenced
-- in the generated initialization routine.
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_uInit),
In_Present => Unc_Arr or else With_Prot or else With_Task,
Out_Present => True,
Parameter_Type => New_Occurrence_Of (Typ, Loc)));
-- For task record value, or type that contains tasks, add two more
-- formals, _Master : Master_Id and _Chain : in out Activation_Chain
-- We also add these parameters for the task record type case.
if With_Task then
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uMaster),
Parameter_Type =>
New_Occurrence_Of (Standard_Integer, Loc)));
Set_Has_Master_Entity (Proc_Id);
-- Add _Chain (not done for sequential elaboration policy, see
-- comment for Create_Restricted_Task_Sequential in s-tarest.ads).
if Partition_Elaboration_Policy /= 'S' then
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uChain),
In_Present => True,
Out_Present => True,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Activation_Chain), Loc)));
end if;
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uTask_Name),
In_Present => True,
Parameter_Type => New_Occurrence_Of (Standard_String, Loc)));
end if;
-- Due to certain edge cases such as arrays with null-excluding
-- components being built with the secondary stack it becomes necessary
-- to add a formal to the Init_Proc which controls whether we raise
-- Constraint_Errors on generated calls for internal object
-- declarations.
if Needs_Conditional_Null_Excluding_Check (Typ) then
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc,
New_External_Name (Chars
(Component_Type (Typ)), "_skip_null_excluding_check")),
Expression => New_Occurrence_Of (Standard_False, Loc),
In_Present => True,
Parameter_Type =>
New_Occurrence_Of (Standard_Boolean, Loc)));
end if;
return Formals;
exception
when RE_Not_Available =>
return Empty_List;
end Init_Formals;
-------------------------
-- Init_Secondary_Tags --
-------------------------
procedure Init_Secondary_Tags
(Typ : Entity_Id;
Target : Node_Id;
Init_Tags_List : List_Id;
Stmts_List : List_Id;
Fixed_Comps : Boolean := True;
Variable_Comps : Boolean := True)
is
Loc : constant Source_Ptr := Sloc (Target);
-- Inherit the C++ tag of the secondary dispatch table of Typ associated
-- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
procedure Initialize_Tag
(Typ : Entity_Id;
Iface : Entity_Id;
Tag_Comp : Entity_Id;
Iface_Tag : Node_Id);
-- Initialize the tag of the secondary dispatch table of Typ associated
-- with Iface. Tag_Comp is the component of Typ that stores Iface_Tag.
-- Compiling under the CPP full ABI compatibility mode, if the ancestor
-- of Typ CPP tagged type we generate code to inherit the contents of
-- the dispatch table directly from the ancestor.
--------------------
-- Initialize_Tag --
--------------------
procedure Initialize_Tag
(Typ : Entity_Id;
Iface : Entity_Id;
Tag_Comp : Entity_Id;
Iface_Tag : Node_Id)
is
Comp_Typ : Entity_Id;
Offset_To_Top_Comp : Entity_Id := Empty;
begin
-- Initialize pointer to secondary DT associated with the interface
if not Is_Ancestor (Iface, Typ, Use_Full_View => True) then
Append_To (Init_Tags_List,
Make_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Occurrence_Of (Tag_Comp, Loc)),
Expression =>
New_Occurrence_Of (Iface_Tag, Loc)));
end if;
Comp_Typ := Scope (Tag_Comp);
-- Initialize the entries of the table of interfaces. We generate a
-- different call when the parent of the type has variable size
-- components.
if Comp_Typ /= Etype (Comp_Typ)
and then Is_Variable_Size_Record (Etype (Comp_Typ))
and then Chars (Tag_Comp) /= Name_uTag
then
pragma Assert (Present (DT_Offset_To_Top_Func (Tag_Comp)));
-- Issue error if Set_Dynamic_Offset_To_Top is not available in a
-- configurable run-time environment.
if not RTE_Available (RE_Set_Dynamic_Offset_To_Top) then
Error_Msg_CRT
("variable size record with interface types", Typ);
return;
end if;
-- Generate:
-- Set_Dynamic_Offset_To_Top
-- (This => Init,
-- Prim_T => Typ'Tag,
-- Interface_T => Iface'Tag,
-- Offset_Value => n,
-- Offset_Func => Fn'Unrestricted_Access)
Append_To (Stmts_List,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Set_Dynamic_Offset_To_Top), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Copy_Tree (Target),
Attribute_Name => Name_Address),
Unchecked_Convert_To (RTE (RE_Tag),
New_Occurrence_Of
(Node (First_Elmt (Access_Disp_Table (Typ))), Loc)),
Unchecked_Convert_To (RTE (RE_Tag),
New_Occurrence_Of
(Node (First_Elmt (Access_Disp_Table (Iface))),
Loc)),
Unchecked_Convert_To
(RTE (RE_Storage_Offset),
Make_Op_Minus (Loc,
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name =>
New_Occurrence_Of (Tag_Comp, Loc)),
Attribute_Name => Name_Position))),
Unchecked_Convert_To (RTE (RE_Offset_To_Top_Function_Ptr),
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of
(DT_Offset_To_Top_Func (Tag_Comp), Loc),
Attribute_Name => Name_Unrestricted_Access)))));
-- In this case the next component stores the value of the offset
-- to the top.
Offset_To_Top_Comp := Next_Entity (Tag_Comp);
pragma Assert (Present (Offset_To_Top_Comp));
Append_To (Init_Tags_List,
Make_Assignment_Statement (Loc,
Name =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name =>
New_Occurrence_Of (Offset_To_Top_Comp, Loc)),
Expression =>
Make_Op_Minus (Loc,
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name => New_Occurrence_Of (Tag_Comp, Loc)),
Attribute_Name => Name_Position))));
-- Normal case: No discriminants in the parent type
else
-- Don't need to set any value if the offset-to-top field is
-- statically set or if this interface shares the primary
-- dispatch table.
if not Building_Static_Secondary_DT (Typ)
and then not Is_Ancestor (Iface, Typ, Use_Full_View => True)
then
Append_To (Stmts_List,
Build_Set_Static_Offset_To_Top (Loc,
Iface_Tag => New_Occurrence_Of (Iface_Tag, Loc),
Offset_Value =>
Unchecked_Convert_To (RTE (RE_Storage_Offset),
Make_Op_Minus (Loc,
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name =>
New_Occurrence_Of (Tag_Comp, Loc)),
Attribute_Name => Name_Position)))));
end if;
-- Generate:
-- Register_Interface_Offset
-- (Prim_T => Typ'Tag,
-- Interface_T => Iface'Tag,
-- Is_Constant => True,
-- Offset_Value => n,
-- Offset_Func => null);
if not Building_Static_Secondary_DT (Typ)
and then RTE_Available (RE_Register_Interface_Offset)
then
Append_To (Stmts_List,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of
(RTE (RE_Register_Interface_Offset), Loc),
Parameter_Associations => New_List (
Unchecked_Convert_To (RTE (RE_Tag),
New_Occurrence_Of
(Node (First_Elmt (Access_Disp_Table (Typ))), Loc)),
Unchecked_Convert_To (RTE (RE_Tag),
New_Occurrence_Of
(Node (First_Elmt (Access_Disp_Table (Iface))), Loc)),
New_Occurrence_Of (Standard_True, Loc),
Unchecked_Convert_To (RTE (RE_Storage_Offset),
Make_Op_Minus (Loc,
Make_Attribute_Reference (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Target),
Selector_Name =>
New_Occurrence_Of (Tag_Comp, Loc)),
Attribute_Name => Name_Position))),
Make_Null (Loc))));
end if;
end if;
end Initialize_Tag;
-- Local variables
Full_Typ : Entity_Id;
Ifaces_List : Elist_Id;
Ifaces_Comp_List : Elist_Id;
Ifaces_Tag_List : Elist_Id;
Iface_Elmt : Elmt_Id;
Iface_Comp_Elmt : Elmt_Id;
Iface_Tag_Elmt : Elmt_Id;
Tag_Comp : Node_Id;
In_Variable_Pos : Boolean;
-- Start of processing for Init_Secondary_Tags
begin
-- Handle private types
if Present (Full_View (Typ)) then
Full_Typ := Full_View (Typ);
else
Full_Typ := Typ;
end if;
Collect_Interfaces_Info
(Full_Typ, Ifaces_List, Ifaces_Comp_List, Ifaces_Tag_List);
Iface_Elmt := First_Elmt (Ifaces_List);
Iface_Comp_Elmt := First_Elmt (Ifaces_Comp_List);
Iface_Tag_Elmt := First_Elmt (Ifaces_Tag_List);
while Present (Iface_Elmt) loop
Tag_Comp := Node (Iface_Comp_Elmt);
-- Check if parent of record type has variable size components
In_Variable_Pos := Scope (Tag_Comp) /= Etype (Scope (Tag_Comp))
and then Is_Variable_Size_Record (Etype (Scope (Tag_Comp)));
-- If we are compiling under the CPP full ABI compatibility mode and
-- the ancestor is a CPP_Pragma tagged type then we generate code to
-- initialize the secondary tag components from tags that reference
-- secondary tables filled with copy of parent slots.
if Is_CPP_Class (Root_Type (Full_Typ)) then
-- Reject interface components located at variable offset in
-- C++ derivations. This is currently unsupported.
if not Fixed_Comps and then In_Variable_Pos then
-- Locate the first dynamic component of the record. Done to
-- improve the text of the warning.
declare
Comp : Entity_Id;
Comp_Typ : Entity_Id;
begin
Comp := First_Entity (Typ);
while Present (Comp) loop
Comp_Typ := Etype (Comp);
if Ekind (Comp) /= E_Discriminant
and then not Is_Tag (Comp)
then
exit when
(Is_Record_Type (Comp_Typ)
and then
Is_Variable_Size_Record (Base_Type (Comp_Typ)))
or else
(Is_Array_Type (Comp_Typ)
and then Is_Variable_Size_Array (Comp_Typ));
end if;
Next_Entity (Comp);
end loop;
pragma Assert (Present (Comp));
-- Move this check to sem???
Error_Msg_Node_2 := Comp;
Error_Msg_NE
("parent type & with dynamic component & cannot be parent"
& " of 'C'P'P derivation if new interfaces are present",
Typ, Scope (Original_Record_Component (Comp)));
Error_Msg_Sloc :=
Sloc (Scope (Original_Record_Component (Comp)));
Error_Msg_NE
("type derived from 'C'P'P type & defined #",
Typ, Scope (Original_Record_Component (Comp)));
-- Avoid duplicated warnings
exit;
end;
-- Initialize secondary tags
else
Initialize_Tag
(Typ => Full_Typ,
Iface => Node (Iface_Elmt),
Tag_Comp => Tag_Comp,
Iface_Tag => Node (Iface_Tag_Elmt));
end if;
-- Otherwise generate code to initialize the tag
else
if (In_Variable_Pos and then Variable_Comps)
or else (not In_Variable_Pos and then Fixed_Comps)
then
Initialize_Tag
(Typ => Full_Typ,
Iface => Node (Iface_Elmt),
Tag_Comp => Tag_Comp,
Iface_Tag => Node (Iface_Tag_Elmt));
end if;
end if;
Next_Elmt (Iface_Elmt);
Next_Elmt (Iface_Comp_Elmt);
Next_Elmt (Iface_Tag_Elmt);
end loop;
end Init_Secondary_Tags;
----------------------------
-- Is_Null_Statement_List --
----------------------------
function Is_Null_Statement_List (Stmts : List_Id) return Boolean is
Stmt : Node_Id;
begin
-- We must skip SCIL nodes because they may have been added to the list
-- by Insert_Actions.
Stmt := First_Non_SCIL_Node (Stmts);
while Present (Stmt) loop
if Nkind (Stmt) = N_Case_Statement then
declare
Alt : Node_Id;
begin
Alt := First (Alternatives (Stmt));
while Present (Alt) loop
if not Is_Null_Statement_List (Statements (Alt)) then
return False;
end if;
Next (Alt);
end loop;
end;
elsif Nkind (Stmt) /= N_Null_Statement then
return False;
end if;
Stmt := Next_Non_SCIL_Node (Stmt);
end loop;
return True;
end Is_Null_Statement_List;
----------------------------------------
-- Make_Controlling_Function_Wrappers --
----------------------------------------
procedure Make_Controlling_Function_Wrappers
(Tag_Typ : Entity_Id;
Decl_List : out List_Id;
Body_List : out List_Id)
is
Loc : constant Source_Ptr := Sloc (Tag_Typ);
function Make_Wrapper_Specification (Subp : Entity_Id) return Node_Id;
-- Returns a function specification with the same profile as Subp
--------------------------------
-- Make_Wrapper_Specification --
--------------------------------
function Make_Wrapper_Specification (Subp : Entity_Id) return Node_Id is
begin
return
Make_Function_Specification (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Loc,
Chars => Chars (Subp)),
Parameter_Specifications =>
Copy_Parameter_List (Subp),
Result_Definition =>
New_Occurrence_Of (Etype (Subp), Loc));
end Make_Wrapper_Specification;
Prim_Elmt : Elmt_Id;
Subp : Entity_Id;
Actual_List : List_Id;
Formal : Entity_Id;
Par_Formal : Entity_Id;
Ext_Aggr : Node_Id;
Formal_Node : Node_Id;
Func_Body : Node_Id;
Func_Decl : Node_Id;
Func_Id : Entity_Id;
-- Start of processing for Make_Controlling_Function_Wrappers
begin
Decl_List := New_List;
Body_List := New_List;
Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim_Elmt) loop
Subp := Node (Prim_Elmt);
-- If a primitive function with a controlling result of the type has
-- not been overridden by the user, then we must create a wrapper
-- function here that effectively overrides it and invokes the
-- (non-abstract) parent function. This can only occur for a null
-- extension. Note that functions with anonymous controlling access
-- results don't qualify and must be overridden. We also exclude
-- Input attributes, since each type will have its own version of
-- Input constructed by the expander. The test for Comes_From_Source
-- is needed to distinguish inherited operations from renamings
-- (which also have Alias set). We exclude internal entities with
-- Interface_Alias to avoid generating duplicated wrappers since
-- the primitive which covers the interface is also available in
-- the list of primitive operations.
-- The function may be abstract, or require_Overriding may be set
-- for it, because tests for null extensions may already have reset
-- the Is_Abstract_Subprogram_Flag. If Requires_Overriding is not
-- set, functions that need wrappers are recognized by having an
-- alias that returns the parent type.
if Comes_From_Source (Subp)
or else No (Alias (Subp))
or else Present (Interface_Alias (Subp))
or else Ekind (Subp) /= E_Function
or else not Has_Controlling_Result (Subp)
or else Is_Access_Type (Etype (Subp))
or else Is_Abstract_Subprogram (Alias (Subp))
or else Is_TSS (Subp, TSS_Stream_Input)
then
goto Next_Prim;
elsif Is_Abstract_Subprogram (Subp)
or else Requires_Overriding (Subp)
or else
(Is_Null_Extension (Etype (Subp))
and then Etype (Alias (Subp)) /= Etype (Subp))
then
-- If there is a non-overloadable homonym in the current
-- scope, the implicit declaration remains invisible.
-- We check the current entity with the same name, or its
-- homonym in case the derivation takes place after the
-- hiding object declaration.
if Present (Current_Entity (Subp)) then
declare
Curr : constant Entity_Id := Current_Entity (Subp);
Prev : constant Entity_Id := Homonym (Curr);
begin
if (Comes_From_Source (Curr)
and then Scope (Curr) = Current_Scope
and then not Is_Overloadable (Curr))
or else
(Present (Prev)
and then Comes_From_Source (Prev)
and then Scope (Prev) = Current_Scope
and then not Is_Overloadable (Prev))
then
goto Next_Prim;
end if;
end;
end if;
Func_Decl :=
Make_Subprogram_Declaration (Loc,
Specification => Make_Wrapper_Specification (Subp));
Append_To (Decl_List, Func_Decl);
-- Build a wrapper body that calls the parent function. The body
-- contains a single return statement that returns an extension
-- aggregate whose ancestor part is a call to the parent function,
-- passing the formals as actuals (with any controlling arguments
-- converted to the types of the corresponding formals of the
-- parent function, which might be anonymous access types), and
-- having a null extension.
Formal := First_Formal (Subp);
Par_Formal := First_Formal (Alias (Subp));
Formal_Node :=
First (Parameter_Specifications (Specification (Func_Decl)));
if Present (Formal) then
Actual_List := New_List;
while Present (Formal) loop
if Is_Controlling_Formal (Formal) then
Append_To (Actual_List,
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Etype (Par_Formal), Loc),
Expression =>
New_Occurrence_Of
(Defining_Identifier (Formal_Node), Loc)));
else
Append_To
(Actual_List,
New_Occurrence_Of
(Defining_Identifier (Formal_Node), Loc));
end if;
Next_Formal (Formal);
Next_Formal (Par_Formal);
Next (Formal_Node);
end loop;
else
Actual_List := No_List;
end if;
Ext_Aggr :=
Make_Extension_Aggregate (Loc,
Ancestor_Part =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Alias (Subp), Loc),
Parameter_Associations => Actual_List),
Null_Record_Present => True);
-- GNATprove will use expression of an expression function as an
-- implicit postcondition. GNAT will also benefit from expression
-- function to avoid premature freezing, but would struggle if we
-- added an expression function to freezing actions, so we create
-- the expanded form directly.
if GNATprove_Mode then
Func_Body :=
Make_Expression_Function (Loc,
Specification =>
Make_Wrapper_Specification (Subp),
Expression => Ext_Aggr);
else
Func_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Wrapper_Specification (Subp),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => Ext_Aggr))));
Set_Was_Expression_Function (Func_Body);
end if;
Append_To (Body_List, Func_Body);
-- Replace the inherited function with the wrapper function in the
-- primitive operations list. We add the minimum decoration needed
-- to override interface primitives.
Func_Id := Defining_Unit_Name (Specification (Func_Decl));
Mutate_Ekind (Func_Id, E_Function);
Set_Is_Wrapper (Func_Id);
-- Corresponding_Spec will be set again to the same value during
-- analysis, but we need this information earlier.
-- Expand_N_Freeze_Entity needs to know whether a subprogram body
-- is a wrapper's body in order to get check suppression right.
Set_Corresponding_Spec (Func_Body, Func_Id);
end if;
<<Next_Prim>>
Next_Elmt (Prim_Elmt);
end loop;
end Make_Controlling_Function_Wrappers;
------------------
-- Make_Eq_Body --
------------------
function Make_Eq_Body
(Typ : Entity_Id;
Eq_Name : Name_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Parent (Typ));
Decl : Node_Id;
Def : constant Node_Id := Parent (Typ);
Stmts : constant List_Id := New_List;
Variant_Case : Boolean := Has_Discriminants (Typ);
Comps : Node_Id := Empty;
Typ_Def : Node_Id := Type_Definition (Def);
begin
Decl :=
Predef_Spec_Or_Body (Loc,
Tag_Typ => Typ,
Name => Eq_Name,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Occurrence_Of (Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_Y),
Parameter_Type => New_Occurrence_Of (Typ, Loc))),
Ret_Type => Standard_Boolean,
For_Body => True);
if Variant_Case then
if Nkind (Typ_Def) = N_Derived_Type_Definition then
Typ_Def := Record_Extension_Part (Typ_Def);
end if;
if Present (Typ_Def) then
Comps := Component_List (Typ_Def);
end if;
Variant_Case :=
Present (Comps) and then Present (Variant_Part (Comps));
end if;
if Variant_Case then
Append_To (Stmts,
Make_Eq_If (Typ, Discriminant_Specifications (Def)));
Append_List_To (Stmts, Make_Eq_Case (Typ, Comps));
Append_To (Stmts,
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_True, Loc)));
else
Append_To (Stmts,
Make_Simple_Return_Statement (Loc,
Expression =>
Expand_Record_Equality
(Typ,
Typ => Typ,
Lhs => Make_Identifier (Loc, Name_X),
Rhs => Make_Identifier (Loc, Name_Y))));
end if;
Set_Handled_Statement_Sequence
(Decl, Make_Handled_Sequence_Of_Statements (Loc, Stmts));
return Decl;
end Make_Eq_Body;
------------------
-- Make_Eq_Case --
------------------
-- <Make_Eq_If shared components>
-- case X.D1 is
-- when V1 => <Make_Eq_Case> on subcomponents
-- ...
-- when Vn => <Make_Eq_Case> on subcomponents
-- end case;
function Make_Eq_Case
(E : Entity_Id;
CL : Node_Id;
Discrs : Elist_Id := New_Elmt_List) return List_Id
is
Loc : constant Source_Ptr := Sloc (E);
Result : constant List_Id := New_List;
Variant : Node_Id;
Alt_List : List_Id;
function Corresponding_Formal (C : Node_Id) return Entity_Id;
-- Given the discriminant that controls a given variant of an unchecked
-- union, find the formal of the equality function that carries the
-- inferred value of the discriminant.
function External_Name (E : Entity_Id) return Name_Id;
-- The value of a given discriminant is conveyed in the corresponding
-- formal parameter of the equality routine. The name of this formal
-- parameter carries a one-character suffix which is removed here.
--------------------------
-- Corresponding_Formal --
--------------------------
function Corresponding_Formal (C : Node_Id) return Entity_Id is
Discr : constant Entity_Id := Entity (Name (Variant_Part (C)));
Elm : Elmt_Id;
begin
Elm := First_Elmt (Discrs);
while Present (Elm) loop
if Chars (Discr) = External_Name (Node (Elm)) then
return Node (Elm);
end if;
Next_Elmt (Elm);
end loop;
-- A formal of the proper name must be found
raise Program_Error;
end Corresponding_Formal;
-------------------
-- External_Name --
-------------------
function External_Name (E : Entity_Id) return Name_Id is
begin
Get_Name_String (Chars (E));
Name_Len := Name_Len - 1;
return Name_Find;
end External_Name;
-- Start of processing for Make_Eq_Case
begin
Append_To (Result, Make_Eq_If (E, Component_Items (CL)));
if No (Variant_Part (CL)) then
return Result;
end if;
Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
if No (Variant) then
return Result;
end if;
Alt_List := New_List;
while Present (Variant) loop
Append_To (Alt_List,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
Statements =>
Make_Eq_Case (E, Component_List (Variant), Discrs)));
Next_Non_Pragma (Variant);
end loop;
-- If we have an Unchecked_Union, use one of the parameters of the
-- enclosing equality routine that captures the discriminant, to use
-- as the expression in the generated case statement.
if Is_Unchecked_Union (E) then
Append_To (Result,
Make_Case_Statement (Loc,
Expression =>
New_Occurrence_Of (Corresponding_Formal (CL), Loc),
Alternatives => Alt_List));
else
Append_To (Result,
Make_Case_Statement (Loc,
Expression =>
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_X),
Selector_Name => New_Copy (Name (Variant_Part (CL)))),
Alternatives => Alt_List));
end if;
return Result;
end Make_Eq_Case;
----------------
-- Make_Eq_If --
----------------
-- Generates:
-- if
-- X.C1 /= Y.C1
-- or else
-- X.C2 /= Y.C2
-- ...
-- then
-- return False;
-- end if;
-- or a null statement if the list L is empty
-- Equality may be user-defined for a given component type, in which case
-- a function call is constructed instead of an operator node. This is an
-- Ada 2012 change in the composability of equality for untagged composite
-- types.
function Make_Eq_If
(E : Entity_Id;
L : List_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (E);
C : Node_Id;
Cond : Node_Id;
Field_Name : Name_Id;
Next_Test : Node_Id;
Typ : Entity_Id;
begin
if No (L) then
return Make_Null_Statement (Loc);
else
Cond := Empty;
C := First_Non_Pragma (L);
while Present (C) loop
Typ := Etype (Defining_Identifier (C));
Field_Name := Chars (Defining_Identifier (C));
-- The tags must not be compared: they are not part of the value.
-- Ditto for parent interfaces because their equality operator is
-- abstract.
-- Note also that in the following, we use Make_Identifier for
-- the component names. Use of New_Occurrence_Of to identify the
-- components would be incorrect because the wrong entities for
-- discriminants could be picked up in the private type case.
if Field_Name = Name_uParent
and then Is_Interface (Typ)
then
null;
elsif Field_Name /= Name_uTag then
declare
Lhs : constant Node_Id :=
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_X),
Selector_Name => Make_Identifier (Loc, Field_Name));
Rhs : constant Node_Id :=
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_Y),
Selector_Name => Make_Identifier (Loc, Field_Name));
Eq_Call : Node_Id;
begin
-- Build equality code with a user-defined operator, if
-- available, and with the predefined "=" otherwise. For
-- compatibility with older Ada versions, we also use the
-- predefined operation if the component-type equality is
-- abstract, rather than raising Program_Error.
if Ada_Version < Ada_2012 then
Next_Test := Make_Op_Ne (Loc, Lhs, Rhs);
else
Eq_Call := Build_Eq_Call (Typ, Loc, Lhs, Rhs);
if No (Eq_Call) then
Next_Test := Make_Op_Ne (Loc, Lhs, Rhs);
-- If a component has a defined abstract equality, its
-- application raises Program_Error on that component
-- and therefore on the current variant.
elsif Nkind (Eq_Call) = N_Raise_Program_Error then
Set_Etype (Eq_Call, Standard_Boolean);
Next_Test := Make_Op_Not (Loc, Eq_Call);
else
Next_Test := Make_Op_Not (Loc, Eq_Call);
end if;
end if;
end;
Evolve_Or_Else (Cond, Next_Test);
end if;
Next_Non_Pragma (C);
end loop;
if No (Cond) then
return Make_Null_Statement (Loc);
else
return
Make_Implicit_If_Statement (E,
Condition => Cond,
Then_Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc))));
end if;
end if;
end Make_Eq_If;
-------------------
-- Make_Neq_Body --
-------------------
function Make_Neq_Body (Tag_Typ : Entity_Id) return Node_Id is
function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean;
-- Returns true if Prim is a renaming of an unresolved predefined
-- inequality operation.
--------------------------------
-- Is_Predefined_Neq_Renaming --
--------------------------------
function Is_Predefined_Neq_Renaming (Prim : Node_Id) return Boolean is
begin
return Chars (Prim) /= Name_Op_Ne
and then Present (Alias (Prim))
and then Comes_From_Source (Prim)
and then Is_Intrinsic_Subprogram (Alias (Prim))
and then Chars (Alias (Prim)) = Name_Op_Ne;
end Is_Predefined_Neq_Renaming;
-- Local variables
Loc : constant Source_Ptr := Sloc (Parent (Tag_Typ));
Decl : Node_Id;
Eq_Prim : Entity_Id;
Left_Op : Entity_Id;
Renaming_Prim : Entity_Id;
Right_Op : Entity_Id;
Target : Entity_Id;
-- Start of processing for Make_Neq_Body
begin
-- For a call on a renaming of a dispatching subprogram that is
-- overridden, if the overriding occurred before the renaming, then
-- the body executed is that of the overriding declaration, even if the
-- overriding declaration is not visible at the place of the renaming;
-- otherwise, the inherited or predefined subprogram is called, see
-- (RM 8.5.4(8)).
-- Stage 1: Search for a renaming of the inequality primitive and also
-- search for an overriding of the equality primitive located before the
-- renaming declaration.
declare
Elmt : Elmt_Id;
Prim : Node_Id;
begin
Eq_Prim := Empty;
Renaming_Prim := Empty;
Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Elmt) loop
Prim := Node (Elmt);
if Is_User_Defined_Equality (Prim) and then No (Alias (Prim)) then
if No (Renaming_Prim) then
pragma Assert (No (Eq_Prim));
Eq_Prim := Prim;
end if;
elsif Is_Predefined_Neq_Renaming (Prim) then
Renaming_Prim := Prim;
end if;
Next_Elmt (Elmt);
end loop;
end;
-- No further action needed if no renaming was found
if No (Renaming_Prim) then
return Empty;
end if;
-- Stage 2: Replace the renaming declaration by a subprogram declaration
-- (required to add its body)
Decl := Parent (Parent (Renaming_Prim));
Rewrite (Decl,
Make_Subprogram_Declaration (Loc,
Specification => Specification (Decl)));
Set_Analyzed (Decl);
-- Remove the decoration of intrinsic renaming subprogram
Set_Is_Intrinsic_Subprogram (Renaming_Prim, False);
Set_Convention (Renaming_Prim, Convention_Ada);
Set_Alias (Renaming_Prim, Empty);
Set_Has_Completion (Renaming_Prim, False);
-- Stage 3: Build the corresponding body
Left_Op := First_Formal (Renaming_Prim);
Right_Op := Next_Formal (Left_Op);
Decl :=
Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Chars (Renaming_Prim),
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Chars (Left_Op)),
Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Chars (Right_Op)),
Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
Ret_Type => Standard_Boolean,
For_Body => True);
-- If the overriding of the equality primitive occurred before the
-- renaming, then generate:
-- function <Neq_Name> (X : Y : Typ) return Boolean is
-- begin
-- return not Oeq (X, Y);
-- end;
if Present (Eq_Prim) then
Target := Eq_Prim;
-- Otherwise build a nested subprogram which performs the predefined
-- evaluation of the equality operator. That is, generate:
-- function <Neq_Name> (X : Y : Typ) return Boolean is
-- function Oeq (X : Y) return Boolean is
-- begin
-- <<body of default implementation>>
-- end;
-- begin
-- return not Oeq (X, Y);
-- end;
else
declare
Local_Subp : Node_Id;
begin
Local_Subp := Make_Eq_Body (Tag_Typ, Name_Op_Eq);
Set_Declarations (Decl, New_List (Local_Subp));
Target := Defining_Entity (Local_Subp);
end;
end if;
Set_Handled_Statement_Sequence
(Decl,
Make_Handled_Sequence_Of_Statements (Loc, New_List (
Make_Simple_Return_Statement (Loc,
Expression =>
Make_Op_Not (Loc,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Target, Loc),
Parameter_Associations => New_List (
Make_Identifier (Loc, Chars (Left_Op)),
Make_Identifier (Loc, Chars (Right_Op)))))))));
return Decl;
end Make_Neq_Body;
-------------------------------
-- Make_Null_Procedure_Specs --
-------------------------------
function Make_Null_Procedure_Specs (Tag_Typ : Entity_Id) return List_Id is
Decl_List : constant List_Id := New_List;
Loc : constant Source_Ptr := Sloc (Tag_Typ);
Formal : Entity_Id;
New_Param_Spec : Node_Id;
New_Spec : Node_Id;
Parent_Subp : Entity_Id;
Prim_Elmt : Elmt_Id;
Subp : Entity_Id;
begin
Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim_Elmt) loop
Subp := Node (Prim_Elmt);
-- If a null procedure inherited from an interface has not been
-- overridden, then we build a null procedure declaration to
-- override the inherited procedure.
Parent_Subp := Alias (Subp);
if Present (Parent_Subp)
and then Is_Null_Interface_Primitive (Parent_Subp)
then
-- The null procedure spec is copied from the inherited procedure,
-- except for the IS NULL (which must be added) and the overriding
-- indicators (which must be removed, if present).
New_Spec :=
Copy_Subprogram_Spec (Subprogram_Specification (Subp), Loc);
Set_Null_Present (New_Spec, True);
Set_Must_Override (New_Spec, False);
Set_Must_Not_Override (New_Spec, False);
Formal := First_Formal (Subp);
New_Param_Spec := First (Parameter_Specifications (New_Spec));
while Present (Formal) loop
-- For controlling arguments we must change their parameter
-- type to reference the tagged type (instead of the interface
-- type).
if Is_Controlling_Formal (Formal) then
if Nkind (Parameter_Type (Parent (Formal))) = N_Identifier
then
Set_Parameter_Type (New_Param_Spec,
New_Occurrence_Of (Tag_Typ, Loc));
else pragma Assert
(Nkind (Parameter_Type (Parent (Formal))) =
N_Access_Definition);
Set_Subtype_Mark (Parameter_Type (New_Param_Spec),
New_Occurrence_Of (Tag_Typ, Loc));
end if;
end if;
Next_Formal (Formal);
Next (New_Param_Spec);
end loop;
Append_To (Decl_List,
Make_Subprogram_Declaration (Loc,
Specification => New_Spec));
end if;
Next_Elmt (Prim_Elmt);
end loop;
return Decl_List;
end Make_Null_Procedure_Specs;
---------------------------------------
-- Make_Predefined_Primitive_Eq_Spec --
---------------------------------------
procedure Make_Predefined_Primitive_Eq_Spec
(Tag_Typ : Entity_Id;
Predef_List : List_Id;
Renamed_Eq : out Entity_Id)
is
function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
-- Returns true if Prim is a renaming of an unresolved predefined
-- equality operation.
-------------------------------
-- Is_Predefined_Eq_Renaming --
-------------------------------
function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
begin
return Chars (Prim) /= Name_Op_Eq
and then Present (Alias (Prim))
and then Comes_From_Source (Prim)
and then Is_Intrinsic_Subprogram (Alias (Prim))
and then Chars (Alias (Prim)) = Name_Op_Eq;
end Is_Predefined_Eq_Renaming;
-- Local variables
Loc : constant Source_Ptr := Sloc (Tag_Typ);
Eq_Name : Name_Id := Name_Op_Eq;
Eq_Needed : Boolean := True;
Eq_Spec : Node_Id;
Prim : Elmt_Id;
Has_Predef_Eq_Renaming : Boolean := False;
-- Set to True if Tag_Typ has a primitive that renames the predefined
-- equality operator. Used to implement (RM 8-5-4(8)).
-- Start of processing for Make_Predefined_Primitive_Specs
begin
Renamed_Eq := Empty;
Prim := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim) loop
-- If a primitive is encountered that renames the predefined equality
-- operator before reaching any explicit equality primitive, then we
-- still need to create a predefined equality function, because calls
-- to it can occur via the renaming. A new name is created for the
-- equality to avoid conflicting with any user-defined equality.
-- (Note that this doesn't account for renamings of equality nested
-- within subpackages???)
if Is_Predefined_Eq_Renaming (Node (Prim)) then
Has_Predef_Eq_Renaming := True;
Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
-- User-defined equality
elsif Is_User_Defined_Equality (Node (Prim)) then
if No (Alias (Node (Prim)))
or else Nkind (Unit_Declaration_Node (Node (Prim))) =
N_Subprogram_Renaming_Declaration
then
Eq_Needed := False;
exit;
-- If the parent is not an interface type and has an abstract
-- equality function explicitly defined in the sources, then the
-- inherited equality is abstract as well, and no body can be
-- created for it.
elsif not Is_Interface (Etype (Tag_Typ))
and then Present (Alias (Node (Prim)))
and then Comes_From_Source (Alias (Node (Prim)))
and then Is_Abstract_Subprogram (Alias (Node (Prim)))
then
Eq_Needed := False;
exit;
-- If the type has an equality function corresponding with a
-- primitive defined in an interface type, the inherited equality
-- is abstract as well, and no body can be created for it.
elsif Present (Alias (Node (Prim)))
and then Comes_From_Source (Ultimate_Alias (Node (Prim)))
and then
Is_Interface
(Find_Dispatching_Type (Ultimate_Alias (Node (Prim))))
then
Eq_Needed := False;
exit;
end if;
end if;
Next_Elmt (Prim);
end loop;
-- If a renaming of predefined equality was found but there was no
-- user-defined equality (so Eq_Needed is still true), then set the name
-- back to Name_Op_Eq. But in the case where a user-defined equality was
-- located after such a renaming, then the predefined equality function
-- is still needed, so Eq_Needed must be set back to True.
if Eq_Name /= Name_Op_Eq then
if Eq_Needed then
Eq_Name := Name_Op_Eq;
else
Eq_Needed := True;
end if;
end if;
if Eq_Needed then
Eq_Spec := Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Eq_Name,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_Y),
Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
Ret_Type => Standard_Boolean);
Append_To (Predef_List, Eq_Spec);
if Has_Predef_Eq_Renaming then
Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
Prim := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim) loop
-- Any renamings of equality that appeared before an overriding
-- equality must be updated to refer to the entity for the
-- predefined equality, otherwise calls via the renaming would
-- get incorrectly resolved to call the user-defined equality
-- function.
if Is_Predefined_Eq_Renaming (Node (Prim)) then
Set_Alias (Node (Prim), Renamed_Eq);
-- Exit upon encountering a user-defined equality
elsif Chars (Node (Prim)) = Name_Op_Eq
and then No (Alias (Node (Prim)))
then
exit;
end if;
Next_Elmt (Prim);
end loop;
end if;
end if;
end Make_Predefined_Primitive_Eq_Spec;
-------------------------------------
-- Make_Predefined_Primitive_Specs --
-------------------------------------
procedure Make_Predefined_Primitive_Specs
(Tag_Typ : Entity_Id;
Predef_List : out List_Id;
Renamed_Eq : out Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Tag_Typ);
Res : constant List_Id := New_List;
use Exp_Put_Image;
begin
Renamed_Eq := Empty;
-- Spec of _Size
Append_To (Res, Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uSize,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
Ret_Type => Standard_Long_Long_Integer));
-- Spec of Put_Image
if not No_Run_Time_Mode
and then RTE_Available (RE_Root_Buffer_Type)
then
-- No_Run_Time_Mode implies that the declaration of Tag_Typ
-- (like any tagged type) will be rejected. Given this, avoid
-- cascading errors associated with the Tag_Typ's TSS_Put_Image
-- procedure.
Append_To (Res, Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Make_TSS_Name (Tag_Typ, TSS_Put_Image),
Profile => Build_Put_Image_Profile (Loc, Tag_Typ)));
end if;
-- Specs for dispatching stream attributes
declare
Stream_Op_TSS_Names :
constant array (Positive range <>) of TSS_Name_Type :=
(TSS_Stream_Read,
TSS_Stream_Write,
TSS_Stream_Input,
TSS_Stream_Output);
begin
for Op in Stream_Op_TSS_Names'Range loop
if Stream_Operation_OK (Tag_Typ, Stream_Op_TSS_Names (Op)) then
Append_To (Res,
Predef_Stream_Attr_Spec (Loc, Tag_Typ,
Stream_Op_TSS_Names (Op)));
end if;
end loop;
end;
-- Spec of "=" is expanded if the type is not limited and if a user
-- defined "=" was not already declared for the non-full view of a
-- private extension.
if not Is_Limited_Type (Tag_Typ) then
Make_Predefined_Primitive_Eq_Spec (Tag_Typ, Res, Renamed_Eq);
-- Spec for dispatching assignment
Append_To (Res, Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uAssign,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Out_Present => True,
Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)))));
end if;
-- Ada 2005: Generate declarations for the following primitive
-- operations for limited interfaces and synchronized types that
-- implement a limited interface.
-- Disp_Asynchronous_Select
-- Disp_Conditional_Select
-- Disp_Get_Prim_Op_Kind
-- Disp_Get_Task_Id
-- Disp_Requeue
-- Disp_Timed_Select
-- Disable the generation of these bodies if Ravenscar or ZFP is active
if Ada_Version >= Ada_2005
and then not Restriction_Active (No_Select_Statements)
and then RTE_Available (RE_Select_Specific_Data)
then
-- These primitives are defined abstract in interface types
if Is_Interface (Tag_Typ)
and then Is_Limited_Record (Tag_Typ)
then
Append_To (Res,
Make_Abstract_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
Append_To (Res,
Make_Abstract_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Conditional_Select_Spec (Tag_Typ)));
Append_To (Res,
Make_Abstract_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
Append_To (Res,
Make_Abstract_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
Append_To (Res,
Make_Abstract_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Requeue_Spec (Tag_Typ)));
Append_To (Res,
Make_Abstract_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Timed_Select_Spec (Tag_Typ)));
-- If ancestor is an interface type, declare non-abstract primitives
-- to override the abstract primitives of the interface type.
-- In VM targets we define these primitives in all root tagged types
-- that are not interface types. Done because in VM targets we don't
-- have secondary dispatch tables and any derivation of Tag_Typ may
-- cover limited interfaces (which always have these primitives since
-- they may be ancestors of synchronized interface types).
elsif (not Is_Interface (Tag_Typ)
and then Is_Interface (Etype (Tag_Typ))
and then Is_Limited_Record (Etype (Tag_Typ)))
or else
(Is_Concurrent_Record_Type (Tag_Typ)
and then Has_Interfaces (Tag_Typ))
or else
(not Tagged_Type_Expansion
and then not Is_Interface (Tag_Typ)
and then Tag_Typ = Root_Type (Tag_Typ))
then
Append_To (Res,
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
Append_To (Res,
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Conditional_Select_Spec (Tag_Typ)));
Append_To (Res,
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
Append_To (Res,
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
Append_To (Res,
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Requeue_Spec (Tag_Typ)));
Append_To (Res,
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Disp_Timed_Select_Spec (Tag_Typ)));
end if;
end if;
-- All tagged types receive their own Deep_Adjust and Deep_Finalize
-- regardless of whether they are controlled or may contain controlled
-- components.
-- Do not generate the routines if finalization is disabled
if Restriction_Active (No_Finalization) then
null;
else
if not Is_Limited_Type (Tag_Typ) then
Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust));
end if;
Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize));
end if;
Predef_List := Res;
end Make_Predefined_Primitive_Specs;
-------------------------
-- Make_Tag_Assignment --
-------------------------
function Make_Tag_Assignment (N : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
Def_Id : constant Entity_Id := Defining_Identifier (N);
Expr : constant Node_Id := Expression (N);
Typ : constant Entity_Id := Etype (Def_Id);
Full_Typ : constant Entity_Id := Underlying_Type (Typ);
begin
-- This expansion activity is called during analysis
if Is_Tagged_Type (Typ)
and then not Is_Class_Wide_Type (Typ)
and then not Is_CPP_Class (Typ)
and then Tagged_Type_Expansion
and then Nkind (Unqualify (Expr)) /= N_Aggregate
then
return
Make_Tag_Assignment_From_Type
(Loc, New_Occurrence_Of (Def_Id, Loc), Full_Typ);
else
return Empty;
end if;
end Make_Tag_Assignment;
----------------------
-- Predef_Deep_Spec --
----------------------
function Predef_Deep_Spec
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : TSS_Name_Type;
For_Body : Boolean := False) return Node_Id
is
Formals : List_Id;
begin
-- V : in out Tag_Typ
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
In_Present => True,
Out_Present => True,
Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)));
-- F : Boolean := True
if Name = TSS_Deep_Adjust
or else Name = TSS_Deep_Finalize
then
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_F),
Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
Expression => New_Occurrence_Of (Standard_True, Loc)));
end if;
return
Predef_Spec_Or_Body (Loc,
Name => Make_TSS_Name (Tag_Typ, Name),
Tag_Typ => Tag_Typ,
Profile => Formals,
For_Body => For_Body);
exception
when RE_Not_Available =>
return Empty;
end Predef_Deep_Spec;
-------------------------
-- Predef_Spec_Or_Body --
-------------------------
function Predef_Spec_Or_Body
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : Name_Id;
Profile : List_Id;
Ret_Type : Entity_Id := Empty;
For_Body : Boolean := False) return Node_Id
is
Id : constant Entity_Id := Make_Defining_Identifier (Loc, Name);
Spec : Node_Id;
begin
Set_Is_Public (Id, Is_Public (Tag_Typ));
-- The internal flag is set to mark these declarations because they have
-- specific properties. First, they are primitives even if they are not
-- defined in the type scope (the freezing point is not necessarily in
-- the same scope). Second, the predefined equality can be overridden by
-- a user-defined equality, no body will be generated in this case.
Set_Is_Internal (Id);
if not Debug_Generated_Code then
Set_Debug_Info_Off (Id);
end if;
if No (Ret_Type) then
Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Id,
Parameter_Specifications => Profile);
else
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => Id,
Parameter_Specifications => Profile,
Result_Definition => New_Occurrence_Of (Ret_Type, Loc));
end if;
-- Declare an abstract subprogram for primitive subprograms of an
-- interface type (except for "=").
if Is_Interface (Tag_Typ) then
if Name /= Name_Op_Eq then
return Make_Abstract_Subprogram_Declaration (Loc, Spec);
-- The equality function (if any) for an interface type is defined
-- to be nonabstract, so we create an expression function for it that
-- always returns False. Note that the function can never actually be
-- invoked because interface types are abstract, so there aren't any
-- objects of such types (and their equality operation will always
-- dispatch).
else
return Make_Expression_Function
(Loc, Spec, New_Occurrence_Of (Standard_False, Loc));
end if;
-- If body case, return empty subprogram body. Note that this is ill-
-- formed, because there is not even a null statement, and certainly not
-- a return in the function case. The caller is expected to do surgery
-- on the body to add the appropriate stuff.
elsif For_Body then
return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
-- For the case of an Input attribute predefined for an abstract type,
-- generate an abstract specification. This will never be called, but we
-- need the slot allocated in the dispatching table so that attributes
-- typ'Class'Input and typ'Class'Output will work properly.
elsif Is_TSS (Name, TSS_Stream_Input)
and then Is_Abstract_Type (Tag_Typ)
then
return Make_Abstract_Subprogram_Declaration (Loc, Spec);
-- Normal spec case, where we return a subprogram declaration
else
return Make_Subprogram_Declaration (Loc, Spec);
end if;
end Predef_Spec_Or_Body;
-----------------------------
-- Predef_Stream_Attr_Spec --
-----------------------------
function Predef_Stream_Attr_Spec
(Loc : Source_Ptr;
Tag_Typ : Entity_Id;
Name : TSS_Name_Type) return Node_Id
is
Ret_Type : Entity_Id;
begin
if Name = TSS_Stream_Input then
Ret_Type := Tag_Typ;
else
Ret_Type := Empty;
end if;
return
Predef_Spec_Or_Body
(Loc,
Name => Make_TSS_Name (Tag_Typ, Name),
Tag_Typ => Tag_Typ,
Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
Ret_Type => Ret_Type,
For_Body => False);
end Predef_Stream_Attr_Spec;
----------------------------------
-- Predefined_Primitive_Eq_Body --
----------------------------------
procedure Predefined_Primitive_Eq_Body
(Tag_Typ : Entity_Id;
Predef_List : List_Id;
Renamed_Eq : Entity_Id)
is
Decl : Node_Id;
Eq_Needed : Boolean;
Eq_Name : Name_Id;
Prim : Elmt_Id;
begin
-- See if we have a predefined "=" operator
if Present (Renamed_Eq) then
Eq_Needed := True;
Eq_Name := Chars (Renamed_Eq);
-- If the parent is an interface type then it has defined all the
-- predefined primitives abstract and we need to check if the type
-- has some user defined "=" function which matches the profile of
-- the Ada predefined equality operator to avoid generating it.
elsif Is_Interface (Etype (Tag_Typ)) then
Eq_Needed := True;
Eq_Name := Name_Op_Eq;
Prim := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim) loop
if Is_User_Defined_Equality (Node (Prim))
and then not Is_Internal (Node (Prim))
then
Eq_Needed := False;
Eq_Name := No_Name;
exit;
end if;
Next_Elmt (Prim);
end loop;
else
Eq_Needed := False;
Eq_Name := No_Name;
Prim := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim) loop
if Is_User_Defined_Equality (Node (Prim))
and then Is_Internal (Node (Prim))
then
Eq_Needed := True;
Eq_Name := Name_Op_Eq;
exit;
end if;
Next_Elmt (Prim);
end loop;
end if;
-- If equality is needed, we will have its name
pragma Assert (Eq_Needed = Present (Eq_Name));
-- Body for equality
if Eq_Needed then
Decl := Make_Eq_Body (Tag_Typ, Eq_Name);
Append_To (Predef_List, Decl);
end if;
-- Body for inequality (if required)
Decl := Make_Neq_Body (Tag_Typ);
if Present (Decl) then
Append_To (Predef_List, Decl);
end if;
end Predefined_Primitive_Eq_Body;
---------------------------------
-- Predefined_Primitive_Bodies --
---------------------------------
function Predefined_Primitive_Bodies
(Tag_Typ : Entity_Id;
Renamed_Eq : Entity_Id) return List_Id
is
Loc : constant Source_Ptr := Sloc (Tag_Typ);
Res : constant List_Id := New_List;
Adj_Call : Node_Id;
Decl : Node_Id;
Fin_Call : Node_Id;
Ent : Entity_Id;
pragma Warnings (Off, Ent);
use Exp_Put_Image;
begin
pragma Assert (not Is_Interface (Tag_Typ));
-- Body of _Size
Decl := Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uSize,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
Ret_Type => Standard_Long_Long_Integer,
For_Body => True);
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc, New_List (
Make_Simple_Return_Statement (Loc,
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_X),
Attribute_Name => Name_Size)))));
Append_To (Res, Decl);
-- Body of Put_Image
if No (TSS (Tag_Typ, TSS_Put_Image))
and then not No_Run_Time_Mode
and then RTE_Available (RE_Root_Buffer_Type)
then
Build_Record_Put_Image_Procedure (Loc, Tag_Typ, Decl, Ent);
Append_To (Res, Decl);
end if;
-- Bodies for Dispatching stream IO routines. We need these only for
-- non-limited types (in the limited case there is no dispatching).
-- We also skip them if dispatching or finalization are not available
-- or if stream operations are prohibited by restriction No_Streams or
-- from use of pragma/aspect No_Tagged_Streams.
if Stream_Operation_OK (Tag_Typ, TSS_Stream_Read)
and then No (TSS (Tag_Typ, TSS_Stream_Read))
then
Build_Record_Read_Procedure (Tag_Typ, Decl, Ent);
Append_To (Res, Decl);
end if;
if Stream_Operation_OK (Tag_Typ, TSS_Stream_Write)
and then No (TSS (Tag_Typ, TSS_Stream_Write))
then
Build_Record_Write_Procedure (Tag_Typ, Decl, Ent);
Append_To (Res, Decl);
end if;
-- Skip body of _Input for the abstract case, since the corresponding
-- spec is abstract (see Predef_Spec_Or_Body).
if not Is_Abstract_Type (Tag_Typ)
and then Stream_Operation_OK (Tag_Typ, TSS_Stream_Input)
and then No (TSS (Tag_Typ, TSS_Stream_Input))
then
Build_Record_Or_Elementary_Input_Function
(Tag_Typ, Decl, Ent);
Append_To (Res, Decl);
end if;
if Stream_Operation_OK (Tag_Typ, TSS_Stream_Output)
and then No (TSS (Tag_Typ, TSS_Stream_Output))
then
Build_Record_Or_Elementary_Output_Procedure (Tag_Typ, Decl, Ent);
Append_To (Res, Decl);
end if;
-- Ada 2005: Generate bodies for the following primitive operations for
-- limited interfaces and synchronized types that implement a limited
-- interface.
-- disp_asynchronous_select
-- disp_conditional_select
-- disp_get_prim_op_kind
-- disp_get_task_id
-- disp_timed_select
-- The interface versions will have null bodies
-- Disable the generation of these bodies if Ravenscar or ZFP is active
-- In VM targets we define these primitives in all root tagged types
-- that are not interface types. Done because in VM targets we don't
-- have secondary dispatch tables and any derivation of Tag_Typ may
-- cover limited interfaces (which always have these primitives since
-- they may be ancestors of synchronized interface types).
if Ada_Version >= Ada_2005
and then
((Is_Interface (Etype (Tag_Typ))
and then Is_Limited_Record (Etype (Tag_Typ)))
or else
(Is_Concurrent_Record_Type (Tag_Typ)
and then Has_Interfaces (Tag_Typ))
or else
(not Tagged_Type_Expansion
and then Tag_Typ = Root_Type (Tag_Typ)))
and then not Restriction_Active (No_Select_Statements)
and then RTE_Available (RE_Select_Specific_Data)
then
Append_To (Res, Make_Disp_Asynchronous_Select_Body (Tag_Typ));
Append_To (Res, Make_Disp_Conditional_Select_Body (Tag_Typ));
Append_To (Res, Make_Disp_Get_Prim_Op_Kind_Body (Tag_Typ));
Append_To (Res, Make_Disp_Get_Task_Id_Body (Tag_Typ));
Append_To (Res, Make_Disp_Requeue_Body (Tag_Typ));
Append_To (Res, Make_Disp_Timed_Select_Body (Tag_Typ));
end if;
if not Is_Limited_Type (Tag_Typ) then
-- Body for equality and inequality
Predefined_Primitive_Eq_Body (Tag_Typ, Res, Renamed_Eq);
-- Body for dispatching assignment
Decl :=
Predef_Spec_Or_Body (Loc,
Tag_Typ => Tag_Typ,
Name => Name_uAssign,
Profile => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
Out_Present => True,
Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
Parameter_Type => New_Occurrence_Of (Tag_Typ, Loc))),
For_Body => True);
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc, New_List (
Make_Assignment_Statement (Loc,
Name => Make_Identifier (Loc, Name_X),
Expression => Make_Identifier (Loc, Name_Y)))));
Append_To (Res, Decl);
end if;
-- Generate empty bodies of routines Deep_Adjust and Deep_Finalize for
-- tagged types which do not contain controlled components.
-- Do not generate the routines if finalization is disabled
if Restriction_Active (No_Finalization) then
null;
elsif not Has_Controlled_Component (Tag_Typ) then
if not Is_Limited_Type (Tag_Typ) then
Adj_Call := Empty;
Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True);
if Is_Controlled (Tag_Typ) then
Adj_Call :=
Make_Adjust_Call (
Obj_Ref => Make_Identifier (Loc, Name_V),
Typ => Tag_Typ);
end if;
if No (Adj_Call) then
Adj_Call := Make_Null_Statement (Loc);
end if;
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Adj_Call)));
Append_To (Res, Decl);
end if;
Fin_Call := Empty;
Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True);
if Is_Controlled (Tag_Typ) then
Fin_Call :=
Make_Final_Call
(Obj_Ref => Make_Identifier (Loc, Name_V),
Typ => Tag_Typ);
end if;
if No (Fin_Call) then
Fin_Call := Make_Null_Statement (Loc);
end if;
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Fin_Call)));
Append_To (Res, Decl);
end if;
return Res;
end Predefined_Primitive_Bodies;
---------------------------------
-- Predefined_Primitive_Freeze --
---------------------------------
function Predefined_Primitive_Freeze
(Tag_Typ : Entity_Id) return List_Id
is
Res : constant List_Id := New_List;
Prim : Elmt_Id;
Frnodes : List_Id;
begin
Prim := First_Elmt (Primitive_Operations (Tag_Typ));
while Present (Prim) loop
if Is_Predefined_Dispatching_Operation (Node (Prim)) then
Frnodes := Freeze_Entity (Node (Prim), Tag_Typ);
if Present (Frnodes) then
Append_List_To (Res, Frnodes);
end if;
end if;
Next_Elmt (Prim);
end loop;
return Res;
end Predefined_Primitive_Freeze;
-------------------------
-- Stream_Operation_OK --
-------------------------
function Stream_Operation_OK
(Typ : Entity_Id;
Operation : TSS_Name_Type) return Boolean
is
Has_Predefined_Or_Specified_Stream_Attribute : Boolean := False;
begin
-- Special case of a limited type extension: a default implementation
-- of the stream attributes Read or Write exists if that attribute
-- has been specified or is available for an ancestor type; a default
-- implementation of the attribute Output (resp. Input) exists if the
-- attribute has been specified or Write (resp. Read) is available for
-- an ancestor type. The last condition only applies under Ada 2005.
if Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ) then
if Operation = TSS_Stream_Read then
Has_Predefined_Or_Specified_Stream_Attribute :=
Has_Specified_Stream_Read (Typ);
elsif Operation = TSS_Stream_Write then
Has_Predefined_Or_Specified_Stream_Attribute :=
Has_Specified_Stream_Write (Typ);
elsif Operation = TSS_Stream_Input then
Has_Predefined_Or_Specified_Stream_Attribute :=
Has_Specified_Stream_Input (Typ)
or else
(Ada_Version >= Ada_2005
and then Stream_Operation_OK (Typ, TSS_Stream_Read));
elsif Operation = TSS_Stream_Output then
Has_Predefined_Or_Specified_Stream_Attribute :=
Has_Specified_Stream_Output (Typ)
or else
(Ada_Version >= Ada_2005
and then Stream_Operation_OK (Typ, TSS_Stream_Write));
end if;
-- Case of inherited TSS_Stream_Read or TSS_Stream_Write
if not Has_Predefined_Or_Specified_Stream_Attribute
and then Is_Derived_Type (Typ)
and then (Operation = TSS_Stream_Read
or else Operation = TSS_Stream_Write)
then
Has_Predefined_Or_Specified_Stream_Attribute :=
Present
(Find_Inherited_TSS (Base_Type (Etype (Typ)), Operation));
end if;
end if;
-- If the type is not limited, or else is limited but the attribute is
-- explicitly specified or is predefined for the type, then return True,
-- unless other conditions prevail, such as restrictions prohibiting
-- streams or dispatching operations. We also return True for limited
-- interfaces, because they may be extended by nonlimited types and
-- permit inheritance in this case (addresses cases where an abstract
-- extension doesn't get 'Input declared, as per comments below, but
-- 'Class'Input must still be allowed). Note that attempts to apply
-- stream attributes to a limited interface or its class-wide type
-- (or limited extensions thereof) will still get properly rejected
-- by Check_Stream_Attribute.
-- We exclude the Input operation from being a predefined subprogram in
-- the case where the associated type is an abstract extension, because
-- the attribute is not callable in that case, per 13.13.2(49/2). Also,
-- we don't want an abstract version created because types derived from
-- the abstract type may not even have Input available (for example if
-- derived from a private view of the abstract type that doesn't have
-- a visible Input).
-- Do not generate stream routines for type Finalization_Master because
-- a master may never appear in types and therefore cannot be read or
-- written.
return
(not Is_Limited_Type (Typ)
or else Is_Interface (Typ)
or else Has_Predefined_Or_Specified_Stream_Attribute)
and then
(Operation /= TSS_Stream_Input
or else not Is_Abstract_Type (Typ)
or else not Is_Derived_Type (Typ))
and then not Has_Unknown_Discriminants (Typ)
and then not Is_Concurrent_Interface (Typ)
and then not Restriction_Active (No_Streams)
and then not Restriction_Active (No_Dispatch)
and then No (No_Tagged_Streams_Pragma (Typ))
and then not No_Run_Time_Mode
and then RTE_Available (RE_Tag)
and then No (Type_Without_Stream_Operation (Typ))
and then RTE_Available (RE_Root_Stream_Type)
and then not Is_RTE (Typ, RE_Finalization_Master);
end Stream_Operation_OK;
end Exp_Ch3;
|