1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ C H 4 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Accessibility; use Accessibility;
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Aggr; use Exp_Aggr;
with Exp_Ch3; use Exp_Ch3;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch7; use Exp_Ch7;
with Exp_Ch9; use Exp_Ch9;
with Exp_Disp; use Exp_Disp;
with Exp_Fixd; use Exp_Fixd;
with Exp_Intr; use Exp_Intr;
with Exp_Pakd; use Exp_Pakd;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Inline; use Inline;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Par_SCO; use Par_SCO;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Cat; use Sem_Cat;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch13; use Sem_Ch13;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sem_Warn; use Sem_Warn;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Snames; use Snames;
with Stand; use Stand;
with SCIL_LL; use SCIL_LL;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Urealp; use Urealp;
with Validsw; use Validsw;
with Warnsw; use Warnsw;
package body Exp_Ch4 is
Too_Large_Length_For_Array : constant Unat := Uint_256;
-- Threshold from which we do not try to create static array temporaries in
-- order to eliminate dynamic stack allocations.
-----------------------
-- Local Subprograms --
-----------------------
procedure Binary_Op_Validity_Checks (N : Node_Id);
pragma Inline (Binary_Op_Validity_Checks);
-- Performs validity checks for a binary operator
procedure Build_Boolean_Array_Proc_Call
(N : Node_Id;
Op1 : Node_Id;
Op2 : Node_Id);
-- If a boolean array assignment can be done in place, build call to
-- corresponding library procedure.
procedure Displace_Allocator_Pointer (N : Node_Id);
-- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
-- Expand_Allocator_Expression. Allocating class-wide interface objects
-- this routine displaces the pointer to the allocated object to reference
-- the component referencing the corresponding secondary dispatch table.
procedure Expand_Allocator_Expression (N : Node_Id);
-- Subsidiary to Expand_N_Allocator, for the case when the expression
-- is a qualified expression.
procedure Expand_Array_Comparison (N : Node_Id);
-- This routine handles expansion of the comparison operators (N_Op_Lt,
-- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
-- code for these operators is similar, differing only in the details of
-- the actual comparison call that is made. Special processing (call a
-- run-time routine)
function Expand_Array_Equality
(Nod : Node_Id;
Lhs : Node_Id;
Rhs : Node_Id;
Bodies : List_Id;
Typ : Entity_Id) return Node_Id;
-- Expand an array equality into a call to a function implementing this
-- equality, and a call to it. Loc is the location for the generated nodes.
-- Lhs and Rhs are the array expressions to be compared. Bodies is a list
-- on which to attach bodies of local functions that are created in the
-- process. It is the responsibility of the caller to insert those bodies
-- at the right place. Nod provides the Sloc value for the generated code.
-- Normally the types used for the generated equality routine are taken
-- from Lhs and Rhs. However, in some situations of generated code, the
-- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
-- the type to be used for the formal parameters.
procedure Expand_Boolean_Operator (N : Node_Id);
-- Common expansion processing for Boolean operators (And, Or, Xor) for the
-- case of array type arguments.
procedure Expand_Nonbinary_Modular_Op (N : Node_Id);
-- When generating C code, convert nonbinary modular arithmetic operations
-- into code that relies on the front-end expansion of operator Mod. No
-- expansion is performed if N is not a nonbinary modular operand.
procedure Expand_Short_Circuit_Operator (N : Node_Id);
-- Common expansion processing for short-circuit boolean operators
procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id);
-- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
-- where we allow comparison of "out of range" values.
function Expand_Composite_Equality
(Outer_Type : Entity_Id;
Nod : Node_Id;
Comp_Type : Entity_Id;
Lhs : Node_Id;
Rhs : Node_Id) return Node_Id;
-- Local recursive function used to expand equality for nested composite
-- types. Used by Expand_Record/Array_Equality. Nod provides the Sloc value
-- for generated code. Lhs and Rhs are the left and right sides for the
-- comparison, and Comp_Typ is the type of the objects to compare.
-- Outer_Type is the composite type containing a component of type
-- Comp_Type -- used for printing messages.
procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id);
-- Routine to expand concatenation of a sequence of two or more operands
-- (in the list Operands) and replace node Cnode with the result of the
-- concatenation. The operands can be of any appropriate type, and can
-- include both arrays and singleton elements.
procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id);
-- N is an N_In membership test mode, with the overflow check mode set to
-- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
-- integer type. This is a case where top level processing is required to
-- handle overflow checks in subtrees.
procedure Fixup_Universal_Fixed_Operation (N : Node_Id);
-- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
-- fixed. We do not have such a type at runtime, so the purpose of this
-- routine is to find the real type by looking up the tree. We also
-- determine if the operation must be rounded.
procedure Get_First_Index_Bounds (T : Entity_Id; Lo, Hi : out Uint);
-- T is an array whose index bounds are all known at compile time. Return
-- the value of the low and high bounds of the first index of T.
function Get_Size_For_Range (Lo, Hi : Uint) return Uint;
-- Return the size of a small signed integer type covering Lo .. Hi, the
-- main goal being to return a size lower than that of standard types.
procedure Insert_Dereference_Action (N : Node_Id);
-- N is an expression whose type is an access. When the type of the
-- associated storage pool is derived from Checked_Pool, generate a
-- call to the 'Dereference' primitive operation.
function Make_Array_Comparison_Op
(Typ : Entity_Id;
Nod : Node_Id) return Node_Id;
-- Comparisons between arrays are expanded in line. This function produces
-- the body of the implementation of (a > b), where a and b are one-
-- dimensional arrays of some discrete type. The original node is then
-- expanded into the appropriate call to this function. Nod provides the
-- Sloc value for the generated code.
function Make_Boolean_Array_Op
(Typ : Entity_Id;
N : Node_Id) return Node_Id;
-- Boolean operations on boolean arrays are expanded in line. This function
-- produce the body for the node N, which is (a and b), (a or b), or (a xor
-- b). It is used only the normal case and not the packed case. The type
-- involved, Typ, is the Boolean array type, and the logical operations in
-- the body are simple boolean operations. Note that Typ is always a
-- constrained type (the caller has ensured this by using
-- Convert_To_Actual_Subtype if necessary).
function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean;
-- For signed arithmetic operations when the current overflow mode is
-- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
-- as the first thing we do. We then return. We count on the recursive
-- apparatus for overflow checks to call us back with an equivalent
-- operation that is in CHECKED mode, avoiding a recursive entry into this
-- routine, and that is when we will proceed with the expansion of the
-- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
-- these optimizations without first making this check, since there may be
-- operands further down the tree that are relying on the recursive calls
-- triggered by the top level nodes to properly process overflow checking
-- and remaining expansion on these nodes. Note that this call back may be
-- skipped if the operation is done in Bignum mode but that's fine, since
-- the Bignum call takes care of everything.
procedure Narrow_Large_Operation (N : Node_Id);
-- Try to compute the result of a large operation in a narrower type than
-- its nominal type. This is mainly aimed at getting rid of operations done
-- in Universal_Integer that can be generated for attributes.
procedure Optimize_Length_Comparison (N : Node_Id);
-- Given an expression, if it is of the form X'Length op N (or the other
-- way round), where N is known at compile time to be 0 or 1, or something
-- else where the value is known to be nonnegative and in the 32-bit range,
-- and X is a simple entity, and op is a comparison operator, optimizes it
-- into a comparison of X'First and X'Last.
procedure Process_Transients_In_Expression
(Expr : Node_Id;
Stmts : List_Id);
-- Subsidiary routine to the expansion of expression_with_actions, if and
-- case expressions. Inspect and process actions list Stmts of expression
-- Expr for transient objects. If such objects are found, the routine will
-- generate code to finalize them when the enclosing context is elaborated
-- or evaluated.
-- This specific processing is required for these expressions because the
-- management of transient objects for expressions implemented in Exp_Ch7
-- cannot deal with nested lists of actions whose effects may outlive the
-- lists and affect the result of the parent expressions. In these cases,
-- the lifetime of temporaries created in these lists must be extended to
-- match that of the enclosing context of the parent expressions and, in
-- particular, their finalization must be deferred to this context.
procedure Rewrite_Comparison (N : Node_Id);
-- If N is the node for a comparison whose outcome can be determined at
-- compile time, then the node N can be rewritten with True or False. If
-- the outcome cannot be determined at compile time, the call has no
-- effect. If N is a type conversion, then this processing is applied to
-- its expression. If N is neither comparison nor a type conversion, the
-- call has no effect.
procedure Tagged_Membership
(N : Node_Id;
SCIL_Node : out Node_Id;
Result : out Node_Id);
-- Construct the expression corresponding to the tagged membership test.
-- Deals with a second operand being (or not) a class-wide type.
function Safe_In_Place_Array_Op
(Lhs : Node_Id;
Op1 : Node_Id;
Op2 : Node_Id) return Boolean;
-- In the context of an assignment, where the right-hand side is a boolean
-- operation on arrays, check whether operation can be performed in place.
procedure Unary_Op_Validity_Checks (N : Node_Id);
pragma Inline (Unary_Op_Validity_Checks);
-- Performs validity checks for a unary operator
-------------------------------
-- Binary_Op_Validity_Checks --
-------------------------------
procedure Binary_Op_Validity_Checks (N : Node_Id) is
begin
if Validity_Checks_On and Validity_Check_Operands then
Ensure_Valid (Left_Opnd (N));
Ensure_Valid (Right_Opnd (N));
end if;
end Binary_Op_Validity_Checks;
------------------------------------
-- Build_Boolean_Array_Proc_Call --
------------------------------------
procedure Build_Boolean_Array_Proc_Call
(N : Node_Id;
Op1 : Node_Id;
Op2 : Node_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Kind : constant Node_Kind := Nkind (Expression (N));
Target : constant Node_Id :=
Make_Attribute_Reference (Loc,
Prefix => Name (N),
Attribute_Name => Name_Address);
Arg1 : Node_Id := Op1;
Arg2 : Node_Id := Op2;
Call_Node : Node_Id;
Proc_Name : Entity_Id;
begin
if Kind = N_Op_Not then
if Nkind (Op1) in N_Binary_Op then
-- Use negated version of the binary operators
if Nkind (Op1) = N_Op_And then
Proc_Name := RTE (RE_Vector_Nand);
elsif Nkind (Op1) = N_Op_Or then
Proc_Name := RTE (RE_Vector_Nor);
else pragma Assert (Nkind (Op1) = N_Op_Xor);
Proc_Name := RTE (RE_Vector_Xor);
end if;
Call_Node :=
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Name, Loc),
Parameter_Associations => New_List (
Target,
Make_Attribute_Reference (Loc,
Prefix => Left_Opnd (Op1),
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Right_Opnd (Op1),
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Left_Opnd (Op1),
Attribute_Name => Name_Length)));
else
Proc_Name := RTE (RE_Vector_Not);
Call_Node :=
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Name, Loc),
Parameter_Associations => New_List (
Target,
Make_Attribute_Reference (Loc,
Prefix => Op1,
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Op1,
Attribute_Name => Name_Length)));
end if;
else
-- We use the following equivalences:
-- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
-- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
-- (not X) xor (not Y) = X xor Y
-- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
if Nkind (Op1) = N_Op_Not then
Arg1 := Right_Opnd (Op1);
Arg2 := Right_Opnd (Op2);
if Kind = N_Op_And then
Proc_Name := RTE (RE_Vector_Nor);
elsif Kind = N_Op_Or then
Proc_Name := RTE (RE_Vector_Nand);
else
Proc_Name := RTE (RE_Vector_Xor);
end if;
else
if Kind = N_Op_And then
Proc_Name := RTE (RE_Vector_And);
elsif Kind = N_Op_Or then
Proc_Name := RTE (RE_Vector_Or);
elsif Nkind (Op2) = N_Op_Not then
Proc_Name := RTE (RE_Vector_Nxor);
Arg2 := Right_Opnd (Op2);
else
Proc_Name := RTE (RE_Vector_Xor);
end if;
end if;
Call_Node :=
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Name, Loc),
Parameter_Associations => New_List (
Target,
Make_Attribute_Reference (Loc,
Prefix => Arg1,
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Arg2,
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Arg1,
Attribute_Name => Name_Length)));
end if;
Rewrite (N, Call_Node);
Analyze (N);
exception
when RE_Not_Available =>
return;
end Build_Boolean_Array_Proc_Call;
-----------------------
-- Build_Eq_Call --
-----------------------
function Build_Eq_Call
(Typ : Entity_Id;
Loc : Source_Ptr;
Lhs : Node_Id;
Rhs : Node_Id) return Node_Id
is
Eq : constant Entity_Id := Get_User_Defined_Equality (Typ);
begin
if Present (Eq) then
if Is_Abstract_Subprogram (Eq) then
return Make_Raise_Program_Error (Loc,
Reason => PE_Explicit_Raise);
else
return
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Eq, Loc),
Parameter_Associations => New_List (Lhs, Rhs));
end if;
end if;
-- If not found, predefined operation will be used
return Empty;
end Build_Eq_Call;
--------------------------------
-- Displace_Allocator_Pointer --
--------------------------------
procedure Displace_Allocator_Pointer (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Orig_Node : constant Node_Id := Original_Node (N);
Dtyp : Entity_Id;
Etyp : Entity_Id;
PtrT : Entity_Id;
begin
-- Do nothing in case of VM targets: the virtual machine will handle
-- interfaces directly.
if not Tagged_Type_Expansion then
return;
end if;
pragma Assert (Nkind (N) = N_Identifier
and then Nkind (Orig_Node) = N_Allocator);
PtrT := Etype (Orig_Node);
Dtyp := Available_View (Designated_Type (PtrT));
Etyp := Etype (Expression (Orig_Node));
if Is_Class_Wide_Type (Dtyp) and then Is_Interface (Dtyp) then
-- If the type of the allocator expression is not an interface type
-- we can generate code to reference the record component containing
-- the pointer to the secondary dispatch table.
if not Is_Interface (Etyp) then
declare
Saved_Typ : constant Entity_Id := Etype (Orig_Node);
begin
-- 1) Get access to the allocated object
Rewrite (N,
Make_Explicit_Dereference (Loc, Relocate_Node (N)));
Set_Etype (N, Etyp);
Set_Analyzed (N);
-- 2) Add the conversion to displace the pointer to reference
-- the secondary dispatch table.
Rewrite (N, Convert_To (Dtyp, Relocate_Node (N)));
Analyze_And_Resolve (N, Dtyp);
-- 3) The 'access to the secondary dispatch table will be used
-- as the value returned by the allocator.
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (N),
Attribute_Name => Name_Access));
Set_Etype (N, Saved_Typ);
Set_Analyzed (N);
end;
-- If the type of the allocator expression is an interface type we
-- generate a run-time call to displace "this" to reference the
-- component containing the pointer to the secondary dispatch table
-- or else raise Constraint_Error if the actual object does not
-- implement the target interface. This case corresponds to the
-- following example:
-- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
-- begin
-- return new Iface_2'Class'(Obj);
-- end Op;
else
Rewrite (N,
Unchecked_Convert_To (PtrT,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_Displace), Loc),
Parameter_Associations => New_List (
Unchecked_Convert_To (RTE (RE_Address),
Relocate_Node (N)),
New_Occurrence_Of
(Elists.Node
(First_Elmt
(Access_Disp_Table (Etype (Base_Type (Dtyp))))),
Loc)))));
Analyze_And_Resolve (N, PtrT);
end if;
end if;
end Displace_Allocator_Pointer;
---------------------------------
-- Expand_Allocator_Expression --
---------------------------------
procedure Expand_Allocator_Expression (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Exp : constant Node_Id := Expression (Expression (N));
Indic : constant Node_Id := Subtype_Mark (Expression (N));
T : constant Entity_Id := Entity (Indic);
PtrT : constant Entity_Id := Etype (N);
DesigT : constant Entity_Id := Designated_Type (PtrT);
Special_Return : constant Boolean := For_Special_Return_Object (N);
Adj_Call : Node_Id;
Aggr_In_Place : Boolean;
Node : Node_Id;
Temp : Entity_Id;
Temp_Decl : Node_Id;
TagT : Entity_Id := Empty;
-- Type used as source for tag assignment
TagR : Node_Id := Empty;
-- Target reference for tag assignment
begin
-- Handle call to C++ constructor
if Is_CPP_Constructor_Call (Exp) then
Make_CPP_Constructor_Call_In_Allocator
(Allocator => N,
Function_Call => Exp);
return;
end if;
-- If we have:
-- type A is access T1;
-- X : A := new T2'(...);
-- T1 and T2 can be different subtypes, and we might need to check
-- both constraints. First check against the type of the qualified
-- expression.
Apply_Constraint_Check (Exp, T, No_Sliding => True);
Aggr_In_Place := Is_Delayed_Aggregate (Exp);
-- If the expression is an aggregate to be built in place, then we need
-- to delay applying predicate checks, because this would result in the
-- creation of a temporary, which is illegal for limited types,
if not Aggr_In_Place then
Apply_Predicate_Check (Exp, T);
end if;
-- Check that any anonymous access discriminants are suitable
-- for use in an allocator.
-- Note: This check is performed here instead of during analysis so that
-- we can check against the fully resolved etype of Exp.
if Is_Entity_Name (Exp)
and then Has_Anonymous_Access_Discriminant (Etype (Exp))
and then Static_Accessibility_Level (Exp, Object_Decl_Level)
> Static_Accessibility_Level (N, Object_Decl_Level)
then
-- A dynamic check and a warning are generated when we are within
-- an instance.
if In_Instance then
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Accessibility_Check_Failed));
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("anonymous access discriminant is too deep for use"
& " in allocator<<", N);
Error_Msg_N ("\Program_Error [<<", N);
-- Otherwise, make the error static
else
Error_Msg_N ("anonymous access discriminant is too deep for use"
& " in allocator", N);
end if;
end if;
if Do_Range_Check (Exp) then
Generate_Range_Check (Exp, T, CE_Range_Check_Failed);
end if;
-- A check is also needed in cases where the designated subtype is
-- constrained and differs from the subtype given in the qualified
-- expression. Note that the check on the qualified expression does
-- not allow sliding, but this check does (a relaxation from Ada 83).
if Is_Constrained (DesigT)
and then not Subtypes_Statically_Match (T, DesigT)
then
Apply_Constraint_Check (Exp, DesigT, No_Sliding => False);
Apply_Predicate_Check (Exp, DesigT);
if Do_Range_Check (Exp) then
Generate_Range_Check (Exp, DesigT, CE_Range_Check_Failed);
end if;
end if;
if Nkind (Exp) = N_Raise_Constraint_Error then
Rewrite (N, New_Copy (Exp));
Set_Etype (N, PtrT);
return;
end if;
-- Case of tagged type or type requiring finalization
if Is_Tagged_Type (T) or else Needs_Finalization (T) then
-- Ada 2005 (AI-318-02): If the initialization expression is a call
-- to a build-in-place function, then access to the allocated object
-- must be passed to the function.
if Is_Build_In_Place_Function_Call (Exp) then
Make_Build_In_Place_Call_In_Allocator (N, Exp);
Apply_Accessibility_Check_For_Allocator
(N, Exp, N, Built_In_Place => True);
return;
-- Ada 2005 (AI-318-02): Specialization of the previous case for
-- expressions containing a build-in-place function call whose
-- returned object covers interface types, and Expr has calls to
-- Ada.Tags.Displace to displace the pointer to the returned build-
-- in-place object to reference the secondary dispatch table of a
-- covered interface type.
elsif Present (Unqual_BIP_Iface_Function_Call (Exp)) then
Make_Build_In_Place_Iface_Call_In_Allocator (N, Exp);
Apply_Accessibility_Check_For_Allocator
(N, Exp, N, Built_In_Place => True);
return;
end if;
-- Actions inserted before:
-- Temp : constant ptr_T := new T'(Expression);
-- Temp._tag = T'tag; -- when not class-wide
-- [Deep_]Adjust (Temp.all);
-- We analyze by hand the new internal allocator to avoid any
-- recursion and inappropriate call to Initialize.
-- We don't want to remove side effects when the expression must be
-- built in place and we don't need it when there is no storage pool
-- or this is a return/secondary stack allocation.
if not Aggr_In_Place
and then Present (Storage_Pool (N))
and then not Is_RTE (Storage_Pool (N), RE_RS_Pool)
and then not Is_RTE (Storage_Pool (N), RE_SS_Pool)
then
Remove_Side_Effects (Exp);
end if;
Temp := Make_Temporary (Loc, 'P', N);
-- For a class wide allocation generate the following code:
-- type Equiv_Record is record ... end record;
-- implicit subtype CW is <Class_Wide_Subytpe>;
-- temp : PtrT := new CW'(CW!(expr));
if Is_Class_Wide_Type (T) then
Expand_Subtype_From_Expr (Empty, T, Indic, Exp);
-- Ada 2005 (AI-251): If the expression is a class-wide interface
-- object we generate code to move up "this" to reference the
-- base of the object before allocating the new object.
-- Note that Exp'Address is recursively expanded into a call
-- to Base_Address (Exp.Tag)
if Is_Class_Wide_Type (Etype (Exp))
and then Is_Interface (Etype (Exp))
and then Tagged_Type_Expansion
then
Set_Expression
(Expression (N),
Unchecked_Convert_To (Entity (Indic),
Make_Explicit_Dereference (Loc,
Unchecked_Convert_To (RTE (RE_Tag_Ptr),
Make_Attribute_Reference (Loc,
Prefix => Exp,
Attribute_Name => Name_Address)))));
else
Set_Expression
(Expression (N),
Unchecked_Convert_To (Entity (Indic), Exp));
end if;
Analyze_And_Resolve (Expression (N), Entity (Indic));
end if;
-- Processing for allocators returning non-interface types
if not Is_Interface (DesigT) then
if Aggr_In_Place then
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (PtrT, Loc),
Expression =>
Make_Allocator (Loc,
Expression =>
New_Occurrence_Of (Etype (Exp), Loc)));
-- Copy the Comes_From_Source flag for the allocator we just
-- built, since logically this allocator is a replacement of
-- the original allocator node. This is for proper handling of
-- restriction No_Implicit_Heap_Allocations.
Preserve_Comes_From_Source
(Expression (Temp_Decl), N);
Set_No_Initialization (Expression (Temp_Decl));
Insert_Action (N, Temp_Decl);
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
else
Node := Relocate_Node (N);
Set_Analyzed (Node);
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (PtrT, Loc),
Expression => Node);
Insert_Action (N, Temp_Decl);
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
end if;
-- Ada 2005 (AI-251): Handle allocators whose designated type is an
-- interface type. In this case we use the type of the qualified
-- expression to allocate the object.
else
declare
Def_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
New_Decl : Node_Id;
begin
New_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Def_Id,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Null_Exclusion_Present => False,
Constant_Present =>
Is_Access_Constant (Etype (N)),
Subtype_Indication =>
New_Occurrence_Of (Etype (Exp), Loc)));
Insert_Action (N, New_Decl);
-- Inherit the allocation-related attributes from the original
-- access type.
Set_Finalization_Master
(Def_Id, Finalization_Master (PtrT));
Set_Associated_Storage_Pool
(Def_Id, Associated_Storage_Pool (PtrT));
-- Declare the object using the previous type declaration
if Aggr_In_Place then
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Def_Id, Loc),
Expression =>
Make_Allocator (Loc,
New_Occurrence_Of (Etype (Exp), Loc)));
-- Copy the Comes_From_Source flag for the allocator we just
-- built, since logically this allocator is a replacement of
-- the original allocator node. This is for proper handling
-- of restriction No_Implicit_Heap_Allocations.
Set_Comes_From_Source
(Expression (Temp_Decl), Comes_From_Source (N));
Set_No_Initialization (Expression (Temp_Decl));
Insert_Action (N, Temp_Decl);
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
else
Node := Relocate_Node (N);
Set_Analyzed (Node);
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Def_Id, Loc),
Expression => Node);
Insert_Action (N, Temp_Decl);
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
end if;
-- Generate an additional object containing the address of the
-- returned object. The type of this second object declaration
-- is the correct type required for the common processing that
-- is still performed by this subprogram. The displacement of
-- this pointer to reference the component associated with the
-- interface type will be done at the end of common processing.
New_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'P'),
Object_Definition => New_Occurrence_Of (PtrT, Loc),
Expression =>
Unchecked_Convert_To (PtrT,
New_Occurrence_Of (Temp, Loc)));
Insert_Action (N, New_Decl);
Temp_Decl := New_Decl;
Temp := Defining_Identifier (New_Decl);
end;
end if;
-- Generate the tag assignment
-- Suppress the tag assignment for VM targets because VM tags are
-- represented implicitly in objects.
if not Tagged_Type_Expansion then
null;
-- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
-- interface objects because in this case the tag does not change.
elsif Is_Interface (Directly_Designated_Type (Etype (N))) then
pragma Assert (Is_Class_Wide_Type
(Directly_Designated_Type (Etype (N))));
null;
-- Likewise if the allocator is made for a special return object
elsif Special_Return then
null;
elsif Is_Tagged_Type (T) and then not Is_Class_Wide_Type (T) then
TagT := T;
TagR :=
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Temp, Loc));
elsif Is_Private_Type (T)
and then Is_Tagged_Type (Underlying_Type (T))
then
TagT := Underlying_Type (T);
TagR :=
Unchecked_Convert_To (Underlying_Type (T),
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Temp, Loc)));
end if;
if Present (TagT) then
Insert_Action (N,
Make_Tag_Assignment_From_Type
(Loc, TagR, Underlying_Type (TagT)));
end if;
-- Generate an Adjust call if the object will be moved. In Ada 2005,
-- the object may be inherently limited, in which case there is no
-- Adjust procedure, and the object is built in place. In Ada 95, the
-- object can be limited but not inherently limited if this allocator
-- came from a return statement (we're allocating the result on the
-- secondary stack); in that case, the object will be moved, so we do
-- want to Adjust. But the call is always skipped if the allocator is
-- made for a special return object because it's generated elsewhere.
-- Needs_Finalization (DesigT) may differ from Needs_Finalization (T)
-- if one of the two types is class-wide, and the other is not.
if Needs_Finalization (DesigT)
and then Needs_Finalization (T)
and then not Is_Inherently_Limited_Type (T)
and then not Aggr_In_Place
and then Nkind (Exp) /= N_Function_Call
and then not Special_Return
then
-- An unchecked conversion is needed in the classwide case because
-- the designated type can be an ancestor of the subtype mark of
-- the allocator.
Adj_Call :=
Make_Adjust_Call
(Obj_Ref =>
Unchecked_Convert_To (T,
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Temp, Loc))),
Typ => T);
if Present (Adj_Call) then
Insert_Action (N, Adj_Call);
end if;
end if;
-- Note: the accessibility check must be inserted after the call to
-- [Deep_]Adjust to ensure proper completion of the assignment.
Apply_Accessibility_Check_For_Allocator (N, Exp, Temp);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze_And_Resolve (N, PtrT);
if Aggr_In_Place then
Apply_Predicate_Check (N, T, Deref => True);
end if;
-- Ada 2005 (AI-251): Displace the pointer to reference the record
-- component containing the secondary dispatch table of the interface
-- type.
if Is_Interface (DesigT) then
Displace_Allocator_Pointer (N);
end if;
-- Always force the generation of a temporary for aggregates when
-- generating C code, to simplify the work in the code generator.
elsif Aggr_In_Place
or else (Modify_Tree_For_C and then Nkind (Exp) = N_Aggregate)
then
Temp := Make_Temporary (Loc, 'P', N);
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (PtrT, Loc),
Expression =>
Make_Allocator (Loc,
Expression => New_Occurrence_Of (Etype (Exp), Loc)));
-- Copy the Comes_From_Source flag for the allocator we just built,
-- since logically this allocator is a replacement of the original
-- allocator node. This is for proper handling of restriction
-- No_Implicit_Heap_Allocations.
Set_Comes_From_Source
(Expression (Temp_Decl), Comes_From_Source (N));
Set_No_Initialization (Expression (Temp_Decl));
Insert_Action (N, Temp_Decl);
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
Convert_Aggr_In_Allocator (N, Temp_Decl, Exp);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze_And_Resolve (N, PtrT);
if Aggr_In_Place then
Apply_Predicate_Check (N, T, Deref => True);
end if;
elsif Is_Access_Type (T) and then Can_Never_Be_Null (T) then
Install_Null_Excluding_Check (Exp);
elsif Is_Access_Type (DesigT)
and then Nkind (Exp) = N_Allocator
and then Nkind (Expression (Exp)) /= N_Qualified_Expression
then
-- Apply constraint to designated subtype indication
Apply_Constraint_Check
(Expression (Exp), Designated_Type (DesigT), No_Sliding => True);
if Nkind (Expression (Exp)) = N_Raise_Constraint_Error then
-- Propagate constraint_error to enclosing allocator
Rewrite (Exp, New_Copy (Expression (Exp)));
end if;
else
Build_Allocate_Deallocate_Proc (N, True);
-- For an access to unconstrained packed array, GIGI needs to see an
-- expression with a constrained subtype in order to compute the
-- proper size for the allocator.
if Is_Packed_Array (T)
and then not Is_Constrained (T)
then
declare
ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
Internal_Exp : constant Node_Id := Relocate_Node (Exp);
begin
Insert_Action (Exp,
Make_Subtype_Declaration (Loc,
Defining_Identifier => ConstrT,
Subtype_Indication =>
Make_Subtype_From_Expr (Internal_Exp, T)));
Freeze_Itype (ConstrT, Exp);
Rewrite (Exp, OK_Convert_To (ConstrT, Internal_Exp));
end;
end if;
-- Ada 2005 (AI-318-02): If the initialization expression is a call
-- to a build-in-place function, then access to the allocated object
-- must be passed to the function.
if Is_Build_In_Place_Function_Call (Exp) then
Make_Build_In_Place_Call_In_Allocator (N, Exp);
end if;
end if;
exception
when RE_Not_Available =>
return;
end Expand_Allocator_Expression;
-----------------------------
-- Expand_Array_Comparison --
-----------------------------
-- Expansion is only required in the case of array types. For the unpacked
-- case, an appropriate runtime routine is called. For packed cases, and
-- also in some other cases where a runtime routine cannot be called, the
-- form of the expansion is:
-- [body for greater_nn; boolean_expression]
-- The body is built by Make_Array_Comparison_Op, and the form of the
-- Boolean expression depends on the operator involved.
procedure Expand_Array_Comparison (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Op1 : Node_Id := Left_Opnd (N);
Op2 : Node_Id := Right_Opnd (N);
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
Ctyp : constant Entity_Id := Component_Type (Typ1);
Expr : Node_Id;
Func_Body : Node_Id;
Func_Name : Entity_Id;
Comp : RE_Id;
Byte_Addressable : constant Boolean := System_Storage_Unit = Byte'Size;
-- True for byte addressable target
function Length_Less_Than_4 (Opnd : Node_Id) return Boolean;
-- Returns True if the length of the given operand is known to be less
-- than 4. Returns False if this length is known to be four or greater
-- or is not known at compile time.
------------------------
-- Length_Less_Than_4 --
------------------------
function Length_Less_Than_4 (Opnd : Node_Id) return Boolean is
Otyp : constant Entity_Id := Etype (Opnd);
begin
if Ekind (Otyp) = E_String_Literal_Subtype then
return String_Literal_Length (Otyp) < 4;
elsif Compile_Time_Known_Bounds (Otyp) then
declare
Lo, Hi : Uint;
begin
Get_First_Index_Bounds (Otyp, Lo, Hi);
return Hi < Lo + 3;
end;
else
return False;
end if;
end Length_Less_Than_4;
-- Start of processing for Expand_Array_Comparison
begin
-- Deal first with unpacked case, where we can call a runtime routine
-- except that we avoid this for targets for which are not addressable
-- by bytes.
if not Is_Bit_Packed_Array (Typ1) and then Byte_Addressable then
-- The call we generate is:
-- Compare_Array_xn[_Unaligned]
-- (left'address, right'address, left'length, right'length) <op> 0
-- x = U for unsigned, S for signed
-- n = 8,16,32,64,128 for component size
-- Add _Unaligned if length < 4 and component size is 8.
-- <op> is the standard comparison operator
if Component_Size (Typ1) = 8 then
if Length_Less_Than_4 (Op1)
or else
Length_Less_Than_4 (Op2)
then
if Is_Unsigned_Type (Ctyp) then
Comp := RE_Compare_Array_U8_Unaligned;
else
Comp := RE_Compare_Array_S8_Unaligned;
end if;
else
if Is_Unsigned_Type (Ctyp) then
Comp := RE_Compare_Array_U8;
else
Comp := RE_Compare_Array_S8;
end if;
end if;
elsif Component_Size (Typ1) = 16 then
if Is_Unsigned_Type (Ctyp) then
Comp := RE_Compare_Array_U16;
else
Comp := RE_Compare_Array_S16;
end if;
elsif Component_Size (Typ1) = 32 then
if Is_Unsigned_Type (Ctyp) then
Comp := RE_Compare_Array_U32;
else
Comp := RE_Compare_Array_S32;
end if;
elsif Component_Size (Typ1) = 64 then
if Is_Unsigned_Type (Ctyp) then
Comp := RE_Compare_Array_U64;
else
Comp := RE_Compare_Array_S64;
end if;
else pragma Assert (Component_Size (Typ1) = 128);
if Is_Unsigned_Type (Ctyp) then
Comp := RE_Compare_Array_U128;
else
Comp := RE_Compare_Array_S128;
end if;
end if;
if RTE_Available (Comp) then
-- Expand to a call only if the runtime function is available,
-- otherwise fall back to inline code.
Remove_Side_Effects (Op1, Name_Req => True);
Remove_Side_Effects (Op2, Name_Req => True);
declare
Comp_Call : constant Node_Id :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Comp), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Op1),
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Op2),
Attribute_Name => Name_Address),
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Op1),
Attribute_Name => Name_Length),
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Op2),
Attribute_Name => Name_Length)));
Zero : constant Node_Id :=
Make_Integer_Literal (Loc,
Intval => Uint_0);
Comp_Op : Node_Id;
begin
case Nkind (N) is
when N_Op_Lt =>
Comp_Op := Make_Op_Lt (Loc, Comp_Call, Zero);
when N_Op_Le =>
Comp_Op := Make_Op_Le (Loc, Comp_Call, Zero);
when N_Op_Gt =>
Comp_Op := Make_Op_Gt (Loc, Comp_Call, Zero);
when N_Op_Ge =>
Comp_Op := Make_Op_Ge (Loc, Comp_Call, Zero);
when others =>
raise Program_Error;
end case;
Rewrite (N, Comp_Op);
end;
Analyze_And_Resolve (N, Standard_Boolean);
return;
end if;
end if;
-- Cases where we cannot make runtime call
-- For (a <= b) we convert to not (a > b)
if Chars (N) = Name_Op_Le then
Rewrite (N,
Make_Op_Not (Loc,
Right_Opnd =>
Make_Op_Gt (Loc,
Left_Opnd => Op1,
Right_Opnd => Op2)));
Analyze_And_Resolve (N, Standard_Boolean);
return;
-- For < the Boolean expression is
-- greater__nn (op2, op1)
elsif Chars (N) = Name_Op_Lt then
Func_Body := Make_Array_Comparison_Op (Typ1, N);
-- Switch operands
Op1 := Right_Opnd (N);
Op2 := Left_Opnd (N);
-- For (a >= b) we convert to not (a < b)
elsif Chars (N) = Name_Op_Ge then
Rewrite (N,
Make_Op_Not (Loc,
Right_Opnd =>
Make_Op_Lt (Loc,
Left_Opnd => Op1,
Right_Opnd => Op2)));
Analyze_And_Resolve (N, Standard_Boolean);
return;
-- For > the Boolean expression is
-- greater__nn (op1, op2)
else
pragma Assert (Chars (N) = Name_Op_Gt);
Func_Body := Make_Array_Comparison_Op (Typ1, N);
end if;
Func_Name := Defining_Unit_Name (Specification (Func_Body));
Expr :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Name, Loc),
Parameter_Associations => New_List (Op1, Op2));
Insert_Action (N, Func_Body);
Rewrite (N, Expr);
Analyze_And_Resolve (N, Standard_Boolean);
end Expand_Array_Comparison;
---------------------------
-- Expand_Array_Equality --
---------------------------
-- Expand an equality function for multi-dimensional arrays. Here is an
-- example of such a function for Nb_Dimension = 2
-- function Enn (A : atyp; B : btyp) return boolean is
-- begin
-- if (A'length (1) = 0 or else A'length (2) = 0)
-- and then
-- (B'length (1) = 0 or else B'length (2) = 0)
-- then
-- return true; -- RM 4.5.2(22)
-- end if;
-- if A'length (1) /= B'length (1)
-- or else
-- A'length (2) /= B'length (2)
-- then
-- return false; -- RM 4.5.2(23)
-- end if;
-- declare
-- A1 : Index_T1 := A'first (1);
-- B1 : Index_T1 := B'first (1);
-- begin
-- loop
-- declare
-- A2 : Index_T2 := A'first (2);
-- B2 : Index_T2 := B'first (2);
-- begin
-- loop
-- if A (A1, A2) /= B (B1, B2) then
-- return False;
-- end if;
-- exit when A2 = A'last (2);
-- A2 := Index_T2'succ (A2);
-- B2 := Index_T2'succ (B2);
-- end loop;
-- end;
-- exit when A1 = A'last (1);
-- A1 := Index_T1'succ (A1);
-- B1 := Index_T1'succ (B1);
-- end loop;
-- end;
-- return true;
-- end Enn;
-- Note on the formal types used (atyp and btyp). If either of the arrays
-- is of a private type, we use the underlying type, and do an unchecked
-- conversion of the actual. If either of the arrays has a bound depending
-- on a discriminant, then we use the base type since otherwise we have an
-- escaped discriminant in the function.
-- If both arrays are constrained and have the same bounds, we can generate
-- a loop with an explicit iteration scheme using a 'Range attribute over
-- the first array.
function Expand_Array_Equality
(Nod : Node_Id;
Lhs : Node_Id;
Rhs : Node_Id;
Bodies : List_Id;
Typ : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Nod);
Decls : constant List_Id := New_List;
Index_List1 : constant List_Id := New_List;
Index_List2 : constant List_Id := New_List;
First_Idx : Node_Id;
Formals : List_Id;
Func_Name : Entity_Id;
Func_Body : Node_Id;
A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
Ltyp : Entity_Id;
Rtyp : Entity_Id;
-- The parameter types to be used for the formals
New_Lhs : Node_Id;
New_Rhs : Node_Id;
-- The LHS and RHS converted to the parameter types
function Arr_Attr
(Arr : Entity_Id;
Nam : Name_Id;
Dim : Pos) return Node_Id;
-- This builds the attribute reference Arr'Nam (Dim)
function Component_Equality (Typ : Entity_Id) return Node_Id;
-- Create one statement to compare corresponding components, designated
-- by a full set of indexes.
function Get_Arg_Type (N : Node_Id) return Entity_Id;
-- Given one of the arguments, computes the appropriate type to be used
-- for that argument in the corresponding function formal
function Handle_One_Dimension
(N : Pos;
Index : Node_Id) return Node_Id;
-- This procedure returns the following code
--
-- declare
-- An : Index_T := A'First (N);
-- Bn : Index_T := B'First (N);
-- begin
-- loop
-- xxx
-- exit when An = A'Last (N);
-- An := Index_T'Succ (An)
-- Bn := Index_T'Succ (Bn)
-- end loop;
-- end;
--
-- If both indexes are constrained and identical, the procedure
-- returns a simpler loop:
--
-- for An in A'Range (N) loop
-- xxx
-- end loop
--
-- N is the dimension for which we are generating a loop. Index is the
-- N'th index node, whose Etype is Index_Type_n in the above code. The
-- xxx statement is either the loop or declare for the next dimension
-- or if this is the last dimension the comparison of corresponding
-- components of the arrays.
--
-- The actual way the code works is to return the comparison of
-- corresponding components for the N+1 call. That's neater.
function Test_Empty_Arrays return Node_Id;
-- This function constructs the test for both arrays being empty
-- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
-- and then
-- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
function Test_Lengths_Correspond return Node_Id;
-- This function constructs the test for arrays having different lengths
-- in at least one index position, in which case the resulting code is:
-- A'length (1) /= B'length (1)
-- or else
-- A'length (2) /= B'length (2)
-- or else
-- ...
--------------
-- Arr_Attr --
--------------
function Arr_Attr
(Arr : Entity_Id;
Nam : Name_Id;
Dim : Pos) return Node_Id
is
begin
return
Make_Attribute_Reference (Loc,
Attribute_Name => Nam,
Prefix => New_Occurrence_Of (Arr, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, Dim)));
end Arr_Attr;
------------------------
-- Component_Equality --
------------------------
function Component_Equality (Typ : Entity_Id) return Node_Id is
Test : Node_Id;
L, R : Node_Id;
begin
-- if a(i1...) /= b(j1...) then return false; end if;
L :=
Make_Indexed_Component (Loc,
Prefix => Make_Identifier (Loc, Chars (A)),
Expressions => Index_List1);
R :=
Make_Indexed_Component (Loc,
Prefix => Make_Identifier (Loc, Chars (B)),
Expressions => Index_List2);
Test := Expand_Composite_Equality
(Outer_Type => Typ, Nod => Nod, Comp_Type => Component_Type (Typ),
Lhs => L, Rhs => R);
-- If some (sub)component is an unchecked_union, the whole operation
-- will raise program error.
if Nkind (Test) = N_Raise_Program_Error then
-- This node is going to be inserted at a location where a
-- statement is expected: clear its Etype so analysis will set
-- it to the expected Standard_Void_Type.
Set_Etype (Test, Empty);
return Test;
else
return
Make_Implicit_If_Statement (Nod,
Condition => Make_Op_Not (Loc, Right_Opnd => Test),
Then_Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc))));
end if;
end Component_Equality;
------------------
-- Get_Arg_Type --
------------------
function Get_Arg_Type (N : Node_Id) return Entity_Id is
T : Entity_Id;
X : Node_Id;
begin
T := Etype (N);
if No (T) then
return Typ;
else
T := Underlying_Type (T);
X := First_Index (T);
while Present (X) loop
if Denotes_Discriminant (Type_Low_Bound (Etype (X)))
or else
Denotes_Discriminant (Type_High_Bound (Etype (X)))
then
T := Base_Type (T);
exit;
end if;
Next_Index (X);
end loop;
return T;
end if;
end Get_Arg_Type;
--------------------------
-- Handle_One_Dimension --
---------------------------
function Handle_One_Dimension
(N : Pos;
Index : Node_Id) return Node_Id
is
Need_Separate_Indexes : constant Boolean :=
Ltyp /= Rtyp or else not Is_Constrained (Ltyp);
-- If the index types are identical, and we are working with
-- constrained types, then we can use the same index for both
-- of the arrays.
An : constant Entity_Id := Make_Temporary (Loc, 'A');
Bn : Entity_Id;
Index_T : Entity_Id;
Stm_List : List_Id;
Loop_Stm : Node_Id;
begin
if N > Number_Dimensions (Ltyp) then
return Component_Equality (Ltyp);
end if;
-- Case where we generate a loop
Index_T := Base_Type (Etype (Index));
if Need_Separate_Indexes then
Bn := Make_Temporary (Loc, 'B');
else
Bn := An;
end if;
Append (New_Occurrence_Of (An, Loc), Index_List1);
Append (New_Occurrence_Of (Bn, Loc), Index_List2);
Stm_List := New_List (
Handle_One_Dimension (N + 1, Next_Index (Index)));
if Need_Separate_Indexes then
-- Generate guard for loop, followed by increments of indexes
Append_To (Stm_List,
Make_Exit_Statement (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (An, Loc),
Right_Opnd => Arr_Attr (A, Name_Last, N))));
Append_To (Stm_List,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (An, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Index_T, Loc),
Attribute_Name => Name_Succ,
Expressions => New_List (
New_Occurrence_Of (An, Loc)))));
Append_To (Stm_List,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Bn, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Index_T, Loc),
Attribute_Name => Name_Succ,
Expressions => New_List (
New_Occurrence_Of (Bn, Loc)))));
end if;
-- If separate indexes, we need a declare block for An and Bn, and a
-- loop without an iteration scheme.
if Need_Separate_Indexes then
Loop_Stm :=
Make_Implicit_Loop_Statement (Nod, Statements => Stm_List);
return
Make_Block_Statement (Loc,
Declarations => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => An,
Object_Definition => New_Occurrence_Of (Index_T, Loc),
Expression => Arr_Attr (A, Name_First, N)),
Make_Object_Declaration (Loc,
Defining_Identifier => Bn,
Object_Definition => New_Occurrence_Of (Index_T, Loc),
Expression => Arr_Attr (B, Name_First, N))),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Loop_Stm)));
-- If no separate indexes, return loop statement with explicit
-- iteration scheme on its own.
else
Loop_Stm :=
Make_Implicit_Loop_Statement (Nod,
Statements => Stm_List,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => An,
Discrete_Subtype_Definition =>
Arr_Attr (A, Name_Range, N))));
return Loop_Stm;
end if;
end Handle_One_Dimension;
-----------------------
-- Test_Empty_Arrays --
-----------------------
function Test_Empty_Arrays return Node_Id is
Alist : Node_Id := Empty;
Blist : Node_Id := Empty;
begin
for J in 1 .. Number_Dimensions (Ltyp) loop
Evolve_Or_Else (Alist,
Make_Op_Eq (Loc,
Left_Opnd => Arr_Attr (A, Name_Length, J),
Right_Opnd => Make_Integer_Literal (Loc, Uint_0)));
Evolve_Or_Else (Blist,
Make_Op_Eq (Loc,
Left_Opnd => Arr_Attr (B, Name_Length, J),
Right_Opnd => Make_Integer_Literal (Loc, Uint_0)));
end loop;
return
Make_And_Then (Loc,
Left_Opnd => Alist,
Right_Opnd => Blist);
end Test_Empty_Arrays;
-----------------------------
-- Test_Lengths_Correspond --
-----------------------------
function Test_Lengths_Correspond return Node_Id is
Result : Node_Id := Empty;
begin
for J in 1 .. Number_Dimensions (Ltyp) loop
Evolve_Or_Else (Result,
Make_Op_Ne (Loc,
Left_Opnd => Arr_Attr (A, Name_Length, J),
Right_Opnd => Arr_Attr (B, Name_Length, J)));
end loop;
return Result;
end Test_Lengths_Correspond;
-- Start of processing for Expand_Array_Equality
begin
Ltyp := Get_Arg_Type (Lhs);
Rtyp := Get_Arg_Type (Rhs);
-- For now, if the argument types are not the same, go to the base type,
-- since the code assumes that the formals have the same type. This is
-- fixable in future ???
if Ltyp /= Rtyp then
Ltyp := Base_Type (Ltyp);
Rtyp := Base_Type (Rtyp);
end if;
-- If the array type is distinct from the type of the arguments, it
-- is the full view of a private type. Apply an unchecked conversion
-- to ensure that analysis of the code below succeeds.
if No (Etype (Lhs))
or else Base_Type (Etype (Lhs)) /= Base_Type (Ltyp)
then
New_Lhs := OK_Convert_To (Ltyp, Lhs);
else
New_Lhs := Lhs;
end if;
if No (Etype (Rhs))
or else Base_Type (Etype (Rhs)) /= Base_Type (Rtyp)
then
New_Rhs := OK_Convert_To (Rtyp, Rhs);
else
New_Rhs := Rhs;
end if;
pragma Assert (Ltyp = Rtyp);
First_Idx := First_Index (Ltyp);
-- If optimization is enabled and the array boils down to a couple of
-- consecutive elements, generate a simple conjunction of comparisons
-- which should be easier to optimize by the code generator.
if Optimization_Level > 0
and then Is_Constrained (Ltyp)
and then Number_Dimensions (Ltyp) = 1
and then Compile_Time_Known_Bounds (Ltyp)
and then Expr_Value (Type_High_Bound (Etype (First_Idx))) =
Expr_Value (Type_Low_Bound (Etype (First_Idx))) + 1
then
declare
Ctyp : constant Entity_Id := Component_Type (Ltyp);
Low_B : constant Node_Id :=
Type_Low_Bound (Etype (First_Idx));
High_B : constant Node_Id :=
Type_High_Bound (Etype (First_Idx));
L, R : Node_Id;
TestL, TestH : Node_Id;
begin
L :=
Make_Indexed_Component (Loc,
Prefix => New_Copy_Tree (New_Lhs),
Expressions => New_List (New_Copy_Tree (Low_B)));
R :=
Make_Indexed_Component (Loc,
Prefix => New_Copy_Tree (New_Rhs),
Expressions => New_List (New_Copy_Tree (Low_B)));
TestL := Expand_Composite_Equality
(Outer_Type => Ltyp, Nod => Nod, Comp_Type => Ctyp,
Lhs => L, Rhs => R);
L :=
Make_Indexed_Component (Loc,
Prefix => New_Lhs,
Expressions => New_List (New_Copy_Tree (High_B)));
R :=
Make_Indexed_Component (Loc,
Prefix => New_Rhs,
Expressions => New_List (New_Copy_Tree (High_B)));
TestH := Expand_Composite_Equality
(Outer_Type => Ltyp, Nod => Nod, Comp_Type => Ctyp,
Lhs => L, Rhs => R);
return
Make_And_Then (Loc, Left_Opnd => TestL, Right_Opnd => TestH);
end;
end if;
-- Build list of formals for function
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => A,
Parameter_Type => New_Occurrence_Of (Ltyp, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => B,
Parameter_Type => New_Occurrence_Of (Rtyp, Loc)));
Func_Name := Make_Temporary (Loc, 'E');
-- Build statement sequence for function
Func_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Func_Name,
Parameter_Specifications => Formals,
Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Implicit_If_Statement (Nod,
Condition => Test_Empty_Arrays,
Then_Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression =>
New_Occurrence_Of (Standard_True, Loc)))),
Make_Implicit_If_Statement (Nod,
Condition => Test_Lengths_Correspond,
Then_Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc)))),
Handle_One_Dimension (1, First_Idx),
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_True, Loc)))));
Set_Has_Completion (Func_Name, True);
Set_Is_Inlined (Func_Name);
Append_To (Bodies, Func_Body);
return
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Name, Loc),
Parameter_Associations => New_List (New_Lhs, New_Rhs));
end Expand_Array_Equality;
-----------------------------
-- Expand_Boolean_Operator --
-----------------------------
-- Note that we first get the actual subtypes of the operands, since we
-- always want to deal with types that have bounds.
procedure Expand_Boolean_Operator (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
-- Special case of bit packed array where both operands are known to be
-- properly aligned. In this case we use an efficient run time routine
-- to carry out the operation (see System.Bit_Ops).
if Is_Bit_Packed_Array (Typ)
and then not Is_Possibly_Unaligned_Object (Left_Opnd (N))
and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
then
Expand_Packed_Boolean_Operator (N);
return;
end if;
-- For the normal non-packed case, the general expansion is to build
-- function for carrying out the comparison (use Make_Boolean_Array_Op)
-- and then inserting it into the tree. The original operator node is
-- then rewritten as a call to this function. We also use this in the
-- packed case if either operand is a possibly unaligned object.
declare
Loc : constant Source_Ptr := Sloc (N);
L : constant Node_Id := Relocate_Node (Left_Opnd (N));
R : Node_Id := Relocate_Node (Right_Opnd (N));
Func_Body : Node_Id;
Func_Name : Entity_Id;
begin
Convert_To_Actual_Subtype (L);
Convert_To_Actual_Subtype (R);
Ensure_Defined (Etype (L), N);
Ensure_Defined (Etype (R), N);
Apply_Length_Check (R, Etype (L));
if Nkind (N) = N_Op_Xor then
R := Duplicate_Subexpr (R);
Silly_Boolean_Array_Xor_Test (N, R, Etype (L));
end if;
if Nkind (Parent (N)) = N_Assignment_Statement
and then Safe_In_Place_Array_Op (Name (Parent (N)), L, R)
then
Build_Boolean_Array_Proc_Call (Parent (N), L, R);
elsif Nkind (Parent (N)) = N_Op_Not
and then Nkind (N) = N_Op_And
and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
and then Safe_In_Place_Array_Op (Name (Parent (Parent (N))), L, R)
then
return;
else
Func_Body := Make_Boolean_Array_Op (Etype (L), N);
Func_Name := Defining_Unit_Name (Specification (Func_Body));
Insert_Action (N, Func_Body);
-- Now rewrite the expression with a call
if Transform_Function_Array then
declare
Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
Call : Node_Id;
Decl : Node_Id;
begin
-- Generate:
-- Temp : ...;
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp_Id,
Object_Definition =>
New_Occurrence_Of (Etype (L), Loc));
-- Generate:
-- Proc_Call (L, R, Temp);
Call :=
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Func_Name, Loc),
Parameter_Associations =>
New_List (
L,
Make_Type_Conversion
(Loc, New_Occurrence_Of (Etype (L), Loc), R),
New_Occurrence_Of (Temp_Id, Loc)));
Insert_Actions (Parent (N), New_List (Decl, Call));
Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
end;
else
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Name, Loc),
Parameter_Associations =>
New_List (
L,
Make_Type_Conversion
(Loc, New_Occurrence_Of (Etype (L), Loc), R))));
end if;
Analyze_And_Resolve (N, Typ);
end if;
end;
end Expand_Boolean_Operator;
------------------------------------------------
-- Expand_Compare_Minimize_Eliminate_Overflow --
------------------------------------------------
procedure Expand_Compare_Minimize_Eliminate_Overflow (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Result_Type : constant Entity_Id := Etype (N);
-- Capture result type (could be a derived boolean type)
Llo, Lhi : Uint;
Rlo, Rhi : Uint;
LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
-- Entity for Long_Long_Integer'Base
procedure Set_True;
procedure Set_False;
-- These procedures rewrite N with an occurrence of Standard_True or
-- Standard_False, and then makes a call to Warn_On_Known_Condition.
---------------
-- Set_False --
---------------
procedure Set_False is
begin
Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
Warn_On_Known_Condition (N);
end Set_False;
--------------
-- Set_True --
--------------
procedure Set_True is
begin
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
Warn_On_Known_Condition (N);
end Set_True;
-- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
begin
-- OK, this is the case we are interested in. First step is to process
-- our operands using the Minimize_Eliminate circuitry which applies
-- this processing to the two operand subtrees.
Minimize_Eliminate_Overflows
(Left_Opnd (N), Llo, Lhi, Top_Level => False);
Minimize_Eliminate_Overflows
(Right_Opnd (N), Rlo, Rhi, Top_Level => False);
-- See if the range information decides the result of the comparison.
-- We can only do this if we in fact have full range information (which
-- won't be the case if either operand is bignum at this stage).
if Present (Llo) and then Present (Rlo) then
case N_Op_Compare (Nkind (N)) is
when N_Op_Eq =>
if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
Set_True;
elsif Llo > Rhi or else Lhi < Rlo then
Set_False;
end if;
when N_Op_Ge =>
if Llo >= Rhi then
Set_True;
elsif Lhi < Rlo then
Set_False;
end if;
when N_Op_Gt =>
if Llo > Rhi then
Set_True;
elsif Lhi <= Rlo then
Set_False;
end if;
when N_Op_Le =>
if Llo > Rhi then
Set_False;
elsif Lhi <= Rlo then
Set_True;
end if;
when N_Op_Lt =>
if Llo >= Rhi then
Set_False;
elsif Lhi < Rlo then
Set_True;
end if;
when N_Op_Ne =>
if Llo = Lhi and then Rlo = Rhi and then Llo = Rlo then
Set_False;
elsif Llo > Rhi or else Lhi < Rlo then
Set_True;
end if;
end case;
-- All done if we did the rewrite
if Nkind (N) not in N_Op_Compare then
return;
end if;
end if;
-- Otherwise, time to do the comparison
declare
Ltype : constant Entity_Id := Etype (Left_Opnd (N));
Rtype : constant Entity_Id := Etype (Right_Opnd (N));
begin
-- If the two operands have the same signed integer type we are
-- all set, nothing more to do. This is the case where either
-- both operands were unchanged, or we rewrote both of them to
-- be Long_Long_Integer.
-- Note: Entity for the comparison may be wrong, but it's not worth
-- the effort to change it, since the back end does not use it.
if Is_Signed_Integer_Type (Ltype)
and then Base_Type (Ltype) = Base_Type (Rtype)
then
return;
-- Here if bignums are involved (can only happen in ELIMINATED mode)
elsif Is_RTE (Ltype, RE_Bignum) or else Is_RTE (Rtype, RE_Bignum) then
declare
Left : Node_Id := Left_Opnd (N);
Right : Node_Id := Right_Opnd (N);
-- Bignum references for left and right operands
begin
if not Is_RTE (Ltype, RE_Bignum) then
Left := Convert_To_Bignum (Left);
elsif not Is_RTE (Rtype, RE_Bignum) then
Right := Convert_To_Bignum (Right);
end if;
-- We rewrite our node with:
-- do
-- Bnn : Result_Type;
-- declare
-- M : Mark_Id := SS_Mark;
-- begin
-- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
-- SS_Release (M);
-- end;
-- in
-- Bnn
-- end
declare
Blk : constant Node_Id := Make_Bignum_Block (Loc);
Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
Ent : RE_Id;
begin
case N_Op_Compare (Nkind (N)) is
when N_Op_Eq => Ent := RE_Big_EQ;
when N_Op_Ge => Ent := RE_Big_GE;
when N_Op_Gt => Ent := RE_Big_GT;
when N_Op_Le => Ent := RE_Big_LE;
when N_Op_Lt => Ent := RE_Big_LT;
when N_Op_Ne => Ent := RE_Big_NE;
end case;
-- Insert assignment to Bnn into the bignum block
Insert_Before
(First (Statements (Handled_Statement_Sequence (Blk))),
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Bnn, Loc),
Expression =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (Ent), Loc),
Parameter_Associations => New_List (Left, Right))));
-- Now do the rewrite with expression actions
Rewrite (N,
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Bnn,
Object_Definition =>
New_Occurrence_Of (Result_Type, Loc)),
Blk),
Expression => New_Occurrence_Of (Bnn, Loc)));
Analyze_And_Resolve (N, Result_Type);
end;
end;
-- No bignums involved, but types are different, so we must have
-- rewritten one of the operands as a Long_Long_Integer but not
-- the other one.
-- If left operand is Long_Long_Integer, convert right operand
-- and we are done (with a comparison of two Long_Long_Integers).
elsif Ltype = LLIB then
Convert_To_And_Rewrite (LLIB, Right_Opnd (N));
Analyze_And_Resolve (Right_Opnd (N), LLIB, Suppress => All_Checks);
return;
-- If right operand is Long_Long_Integer, convert left operand
-- and we are done (with a comparison of two Long_Long_Integers).
-- This is the only remaining possibility
else pragma Assert (Rtype = LLIB);
Convert_To_And_Rewrite (LLIB, Left_Opnd (N));
Analyze_And_Resolve (Left_Opnd (N), LLIB, Suppress => All_Checks);
return;
end if;
end;
end Expand_Compare_Minimize_Eliminate_Overflow;
-------------------------------
-- Expand_Composite_Equality --
-------------------------------
-- This function is only called for comparing internal fields of composite
-- types when these fields are themselves composites. This is a special
-- case because it is not possible to respect normal Ada visibility rules.
function Expand_Composite_Equality
(Outer_Type : Entity_Id;
Nod : Node_Id;
Comp_Type : Entity_Id;
Lhs : Node_Id;
Rhs : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Nod);
Full_Type : Entity_Id;
Eq_Op : Entity_Id;
begin
if Is_Private_Type (Comp_Type) then
Full_Type := Underlying_Type (Comp_Type);
else
Full_Type := Comp_Type;
end if;
-- If the private type has no completion the context may be the
-- expansion of a composite equality for a composite type with some
-- still incomplete components. The expression will not be analyzed
-- until the enclosing type is completed, at which point this will be
-- properly expanded, unless there is a bona fide completion error.
if No (Full_Type) then
return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
end if;
Full_Type := Base_Type (Full_Type);
-- When the base type itself is private, use the full view to expand
-- the composite equality.
if Is_Private_Type (Full_Type) then
Full_Type := Underlying_Type (Full_Type);
end if;
-- Case of tagged record types
if Is_Tagged_Type (Full_Type) then
Eq_Op := Find_Primitive_Eq (Comp_Type);
pragma Assert (Present (Eq_Op));
return
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Eq_Op, Loc),
Parameter_Associations =>
New_List
(Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Lhs),
Unchecked_Convert_To (Etype (First_Formal (Eq_Op)), Rhs)));
-- Case of untagged record types
elsif Is_Record_Type (Full_Type) then
Eq_Op := TSS (Full_Type, TSS_Composite_Equality);
if Present (Eq_Op) then
declare
Op_Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
L_Exp, R_Exp : Node_Id;
begin
-- Adjust operands if necessary to comparison type
if Base_Type (Full_Type) /= Base_Type (Op_Typ) then
L_Exp := OK_Convert_To (Op_Typ, Lhs);
R_Exp := OK_Convert_To (Op_Typ, Rhs);
else
L_Exp := Relocate_Node (Lhs);
R_Exp := Relocate_Node (Rhs);
end if;
return
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Eq_Op, Loc),
Parameter_Associations => New_List (L_Exp, R_Exp));
end;
-- Equality composes in Ada 2012 for untagged record types. It also
-- composes for bounded strings, because they are part of the
-- predefined environment (see 4.5.2(32.1/1)). We could make it
-- compose for bounded strings by making them tagged, or by making
-- sure all subcomponents are set to the same value, even when not
-- used. Instead, we have this special case in the compiler, because
-- it's more efficient.
elsif Ada_Version >= Ada_2012 or else Is_Bounded_String (Comp_Type)
then
-- If no TSS has been created for the type, check whether there is
-- a primitive equality declared for it.
declare
Op : constant Node_Id :=
Build_Eq_Call (Comp_Type, Loc, Lhs, Rhs);
begin
-- Use user-defined primitive if it exists, otherwise use
-- predefined equality.
if Present (Op) then
return Op;
else
return Make_Op_Eq (Loc, Lhs, Rhs);
end if;
end;
else
return Expand_Record_Equality (Nod, Full_Type, Lhs, Rhs);
end if;
-- Case of non-record types (always use predefined equality)
else
-- Print a warning if there is a user-defined "=", because it can be
-- surprising that the predefined "=" takes precedence over it.
-- Suppress the warning if the "user-defined" one is in the
-- predefined library, because those are defined to compose
-- properly by RM-4.5.2(32.1/1). Intrinsics also compose.
declare
Op : constant Entity_Id := Find_Primitive_Eq (Comp_Type);
begin
if Warn_On_Ignored_Equality
and then Present (Op)
and then not In_Predefined_Unit (Base_Type (Comp_Type))
and then not Is_Intrinsic_Subprogram (Op)
then
pragma Assert
(Is_First_Subtype (Outer_Type)
or else Is_Generic_Actual_Type (Outer_Type));
Error_Msg_Node_1 := Outer_Type;
Error_Msg_Node_2 := Comp_Type;
Error_Msg
("?_q?""="" for type & uses predefined ""="" for }", Loc);
Error_Msg_Sloc := Sloc (Op);
Error_Msg ("\?_q?""="" # is ignored here", Loc);
end if;
end;
return Make_Op_Eq (Loc, Left_Opnd => Lhs, Right_Opnd => Rhs);
end if;
end Expand_Composite_Equality;
------------------------
-- Expand_Concatenate --
------------------------
procedure Expand_Concatenate (Cnode : Node_Id; Opnds : List_Id) is
Loc : constant Source_Ptr := Sloc (Cnode);
Atyp : constant Entity_Id := Base_Type (Etype (Cnode));
-- Result type of concatenation
Ctyp : constant Entity_Id := Base_Type (Component_Type (Etype (Cnode)));
-- Component type. Elements of this component type can appear as one
-- of the operands of concatenation as well as arrays.
Istyp : constant Entity_Id := Etype (First_Index (Atyp));
-- Index subtype
Ityp : constant Entity_Id := Base_Type (Istyp);
-- Index type. This is the base type of the index subtype, and is used
-- for all computed bounds (which may be out of range of Istyp in the
-- case of null ranges).
Artyp : Entity_Id;
-- This is the type we use to do arithmetic to compute the bounds and
-- lengths of operands. The choice of this type is a little subtle and
-- is discussed in a separate section at the start of the body code.
Result_May_Be_Null : Boolean := True;
-- Reset to False if at least one operand is encountered which is known
-- at compile time to be non-null. Used for handling the special case
-- of setting the high bound to the last operand high bound for a null
-- result, thus ensuring a proper high bound in the superflat case.
N : constant Nat := List_Length (Opnds);
-- Number of concatenation operands including possibly null operands
NN : Nat := 0;
-- Number of operands excluding any known to be null, except that the
-- last operand is always retained, in case it provides the bounds for
-- a null result.
Opnd : Node_Id := Empty;
-- Current operand being processed in the loop through operands. After
-- this loop is complete, always contains the last operand (which is not
-- the same as Operands (NN), since null operands are skipped).
-- Arrays describing the operands, only the first NN entries of each
-- array are set (NN < N when we exclude known null operands).
Is_Fixed_Length : array (1 .. N) of Boolean;
-- True if length of corresponding operand known at compile time
Operands : array (1 .. N) of Node_Id;
-- Set to the corresponding entry in the Opnds list (but note that null
-- operands are excluded, so not all entries in the list are stored).
Fixed_Length : array (1 .. N) of Unat;
-- Set to length of operand. Entries in this array are set only if the
-- corresponding entry in Is_Fixed_Length is True.
Max_Length : array (1 .. N) of Unat;
-- Set to the maximum length of operand, or Too_Large_Length_For_Array
-- if it is not known. Entries in this array are set only if the
-- corresponding entry in Is_Fixed_Length is False;
Opnd_Low_Bound : array (1 .. N) of Node_Id;
-- Set to lower bound of operand. Either an integer literal in the case
-- where the bound is known at compile time, else actual lower bound.
-- The operand low bound is of type Ityp.
Var_Length : array (1 .. N) of Entity_Id;
-- Set to an entity of type Natural that contains the length of an
-- operand whose length is not known at compile time. Entries in this
-- array are set only if the corresponding entry in Is_Fixed_Length
-- is False. The entity is of type Artyp.
Aggr_Length : array (0 .. N) of Node_Id;
-- The J'th entry is an expression node that represents the total length
-- of operands 1 through J. It is either an integer literal node, or a
-- reference to a constant entity with the right value, so it is fine
-- to just do a Copy_Node to get an appropriate copy. The extra zeroth
-- entry always is set to zero. The length is of type Artyp.
Max_Aggr_Length : Unat := Too_Large_Length_For_Array;
-- Set to the maximum total length, or Too_Large_Length_For_Array at
-- least if it is not known.
Low_Bound : Node_Id := Empty;
-- A tree node representing the low bound of the result (of type Ityp).
-- This is either an integer literal node, or an identifier reference to
-- a constant entity initialized to the appropriate value.
High_Bound : Node_Id := Empty;
-- A tree node representing the high bound of the result (of type Ityp)
Last_Opnd_Low_Bound : Node_Id := Empty;
-- A tree node representing the low bound of the last operand. This
-- need only be set if the result could be null. It is used for the
-- special case of setting the right low bound for a null result.
-- This is of type Ityp.
Last_Opnd_High_Bound : Node_Id := Empty;
-- A tree node representing the high bound of the last operand. This
-- need only be set if the result could be null. It is used for the
-- special case of setting the right high bound for a null result.
-- This is of type Ityp.
Result : Node_Id := Empty;
-- Result of the concatenation (of type Ityp)
Actions : constant List_Id := New_List;
-- Collect actions to be inserted
Known_Non_Null_Operand_Seen : Boolean;
-- Set True during generation of the assignments of operands into
-- result once an operand known to be non-null has been seen.
function Library_Level_Target return Boolean;
-- Return True if the concatenation is within the expression of the
-- declaration of a library-level object.
function Make_Artyp_Literal (Val : Uint) return Node_Id;
-- This function makes an N_Integer_Literal node that is returned in
-- analyzed form with the type set to Artyp. Importantly this literal
-- is not flagged as static, so that if we do computations with it that
-- result in statically detected out of range conditions, we will not
-- generate error messages but instead warning messages.
function To_Artyp (X : Node_Id) return Node_Id;
-- Given a node of type Ityp, returns the corresponding value of type
-- Artyp. For non-enumeration types, this is a plain integer conversion.
-- For enum types, the Pos of the value is returned.
function To_Ityp (X : Node_Id) return Node_Id;
-- The inverse function (uses Val in the case of enumeration types)
--------------------------
-- Library_Level_Target --
--------------------------
function Library_Level_Target return Boolean is
P : Node_Id := Parent (Cnode);
begin
while Present (P) loop
if Nkind (P) = N_Object_Declaration then
return Is_Library_Level_Entity (Defining_Identifier (P));
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (P) then
return False;
end if;
P := Parent (P);
end loop;
return False;
end Library_Level_Target;
------------------------
-- Make_Artyp_Literal --
------------------------
function Make_Artyp_Literal (Val : Uint) return Node_Id is
Result : constant Node_Id := Make_Integer_Literal (Loc, Val);
begin
Set_Etype (Result, Artyp);
Set_Analyzed (Result, True);
Set_Is_Static_Expression (Result, False);
return Result;
end Make_Artyp_Literal;
--------------
-- To_Artyp --
--------------
function To_Artyp (X : Node_Id) return Node_Id is
begin
if Ityp = Base_Type (Artyp) then
return X;
elsif Is_Enumeration_Type (Ityp) then
return
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (X));
else
return Convert_To (Artyp, X);
end if;
end To_Artyp;
-------------
-- To_Ityp --
-------------
function To_Ityp (X : Node_Id) return Node_Id is
begin
if Is_Enumeration_Type (Ityp) then
return
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Val,
Expressions => New_List (X));
-- Case where we will do a type conversion
else
if Ityp = Base_Type (Artyp) then
return X;
else
return Convert_To (Ityp, X);
end if;
end if;
end To_Ityp;
-- Local Declarations
Opnd_Typ : Entity_Id;
Slice_Rng : Node_Id;
Subtyp_Ind : Node_Id;
Subtyp_Rng : Node_Id;
Ent : Entity_Id;
Len : Unat;
J : Nat;
Clen : Node_Id;
Set : Boolean;
-- Start of processing for Expand_Concatenate
begin
-- Choose an appropriate computational type
-- We will be doing calculations of lengths and bounds in this routine
-- and computing one from the other in some cases, e.g. getting the high
-- bound by adding the length-1 to the low bound.
-- We can't just use the index type, or even its base type for this
-- purpose for two reasons. First it might be an enumeration type which
-- is not suitable for computations of any kind, and second it may
-- simply not have enough range. For example if the index type is
-- -128..+127 then lengths can be up to 256, which is out of range of
-- the type.
-- For enumeration types, we can simply use Standard_Integer, this is
-- sufficient since the actual number of enumeration literals cannot
-- possibly exceed the range of integer (remember we will be doing the
-- arithmetic with POS values, not representation values).
if Is_Enumeration_Type (Ityp) then
Artyp := Standard_Integer;
-- For modular types, we use a 32-bit modular type for types whose size
-- is in the range 1-31 bits. For 32-bit unsigned types, we use the
-- identity type, and for larger unsigned types we use a 64-bit type.
elsif Is_Modular_Integer_Type (Ityp) then
if RM_Size (Ityp) < Standard_Integer_Size then
Artyp := Standard_Unsigned;
elsif RM_Size (Ityp) = Standard_Integer_Size then
Artyp := Ityp;
else
Artyp := Standard_Long_Long_Unsigned;
end if;
-- Similar treatment for signed types
else
if RM_Size (Ityp) < Standard_Integer_Size then
Artyp := Standard_Integer;
elsif RM_Size (Ityp) = Standard_Integer_Size then
Artyp := Ityp;
else
Artyp := Standard_Long_Long_Integer;
end if;
end if;
-- Supply dummy entry at start of length array
Aggr_Length (0) := Make_Artyp_Literal (Uint_0);
-- Go through operands setting up the above arrays
J := 1;
while J <= N loop
Opnd := Remove_Head (Opnds);
Opnd_Typ := Etype (Opnd);
-- The parent got messed up when we put the operands in a list,
-- so now put back the proper parent for the saved operand, that
-- is to say the concatenation node, to make sure that each operand
-- is seen as a subexpression, e.g. if actions must be inserted.
Set_Parent (Opnd, Cnode);
-- Set will be True when we have setup one entry in the array
Set := False;
-- Singleton element (or character literal) case
if Base_Type (Opnd_Typ) = Ctyp then
NN := NN + 1;
Operands (NN) := Opnd;
Is_Fixed_Length (NN) := True;
Fixed_Length (NN) := Uint_1;
Result_May_Be_Null := False;
-- Set low bound of operand (no need to set Last_Opnd_High_Bound
-- since we know that the result cannot be null).
Opnd_Low_Bound (NN) :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Istyp, Loc),
Attribute_Name => Name_First);
Set := True;
-- String literal case (can only occur for strings of course)
elsif Nkind (Opnd) = N_String_Literal then
Len := String_Literal_Length (Opnd_Typ);
if Len > 0 then
Result_May_Be_Null := False;
end if;
-- Capture last operand low and high bound if result could be null
if J = N and then Result_May_Be_Null then
Last_Opnd_Low_Bound :=
New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
Last_Opnd_High_Bound :=
Make_Op_Subtract (Loc,
Left_Opnd =>
New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ)),
Right_Opnd => Make_Integer_Literal (Loc, 1));
end if;
-- Skip null string literal
if J < N and then Len = 0 then
goto Continue;
end if;
NN := NN + 1;
Operands (NN) := Opnd;
Is_Fixed_Length (NN) := True;
-- Set length and bounds
Fixed_Length (NN) := Len;
Opnd_Low_Bound (NN) :=
New_Copy_Tree (String_Literal_Low_Bound (Opnd_Typ));
Set := True;
-- All other cases
else
-- Check constrained case with known bounds
if Is_Constrained (Opnd_Typ)
and then Compile_Time_Known_Bounds (Opnd_Typ)
then
declare
Lo, Hi : Uint;
begin
-- Fixed length constrained array type with known at compile
-- time bounds is last case of fixed length operand.
Get_First_Index_Bounds (Opnd_Typ, Lo, Hi);
Len := UI_Max (Hi - Lo + 1, Uint_0);
if Len > 0 then
Result_May_Be_Null := False;
end if;
-- Capture last operand bounds if result could be null
if J = N and then Result_May_Be_Null then
Last_Opnd_Low_Bound :=
To_Ityp (Make_Integer_Literal (Loc, Lo));
Last_Opnd_High_Bound :=
To_Ityp (Make_Integer_Literal (Loc, Hi));
end if;
-- Exclude null length case unless last operand
if J < N and then Len = 0 then
goto Continue;
end if;
NN := NN + 1;
Operands (NN) := Opnd;
Is_Fixed_Length (NN) := True;
Fixed_Length (NN) := Len;
Opnd_Low_Bound (NN) :=
To_Ityp (Make_Integer_Literal (Loc, Lo));
Set := True;
end;
end if;
-- All cases where the length is not known at compile time, or the
-- special case of an operand which is known to be null but has a
-- lower bound other than 1 or is other than a string type.
if not Set then
NN := NN + 1;
-- Capture operand bounds
Opnd_Low_Bound (NN) :=
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr (Opnd, Name_Req => True),
Attribute_Name => Name_First);
-- Capture last operand bounds if result could be null
if J = N and Result_May_Be_Null then
Last_Opnd_Low_Bound :=
Convert_To (Ityp,
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr (Opnd, Name_Req => True),
Attribute_Name => Name_First));
Last_Opnd_High_Bound :=
Convert_To (Ityp,
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr (Opnd, Name_Req => True),
Attribute_Name => Name_Last));
end if;
-- Capture length of operand in entity
Operands (NN) := Opnd;
Is_Fixed_Length (NN) := False;
Var_Length (NN) := Make_Temporary (Loc, 'L');
-- If the operand is a slice, try to compute an upper bound for
-- its length.
if Nkind (Opnd) = N_Slice
and then Is_Constrained (Etype (Prefix (Opnd)))
and then Compile_Time_Known_Bounds (Etype (Prefix (Opnd)))
then
declare
Lo, Hi : Uint;
begin
Get_First_Index_Bounds (Etype (Prefix (Opnd)), Lo, Hi);
Max_Length (NN) := UI_Max (Hi - Lo + 1, Uint_0);
end;
else
Max_Length (NN) := Too_Large_Length_For_Array;
end if;
Append_To (Actions,
Make_Object_Declaration (Loc,
Defining_Identifier => Var_Length (NN),
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Artyp, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr (Opnd, Name_Req => True),
Attribute_Name => Name_Length)));
end if;
end if;
-- Set next entry in aggregate length array
-- For first entry, make either integer literal for fixed length
-- or a reference to the saved length for variable length.
if NN = 1 then
if Is_Fixed_Length (1) then
Aggr_Length (1) := Make_Integer_Literal (Loc, Fixed_Length (1));
Max_Aggr_Length := Fixed_Length (1);
else
Aggr_Length (1) := New_Occurrence_Of (Var_Length (1), Loc);
Max_Aggr_Length := Max_Length (1);
end if;
-- If entry is fixed length and only fixed lengths so far, make
-- appropriate new integer literal adding new length.
elsif Is_Fixed_Length (NN)
and then Nkind (Aggr_Length (NN - 1)) = N_Integer_Literal
then
Aggr_Length (NN) :=
Make_Integer_Literal (Loc,
Intval => Fixed_Length (NN) + Intval (Aggr_Length (NN - 1)));
Max_Aggr_Length := Intval (Aggr_Length (NN));
-- All other cases, construct an addition node for the length and
-- create an entity initialized to this length.
else
Ent := Make_Temporary (Loc, 'L');
if Is_Fixed_Length (NN) then
Clen := Make_Integer_Literal (Loc, Fixed_Length (NN));
Max_Aggr_Length := Max_Aggr_Length + Fixed_Length (NN);
else
Clen := New_Occurrence_Of (Var_Length (NN), Loc);
Max_Aggr_Length := Max_Aggr_Length + Max_Length (NN);
end if;
Append_To (Actions,
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Artyp, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Copy_Tree (Aggr_Length (NN - 1)),
Right_Opnd => Clen)));
Aggr_Length (NN) := Make_Identifier (Loc, Chars => Chars (Ent));
end if;
<<Continue>>
J := J + 1;
end loop;
-- If we have only skipped null operands, return the last operand
if NN = 0 then
Result := Opnd;
goto Done;
end if;
-- If we have only one non-null operand, return it and we are done.
-- There is one case in which this cannot be done, and that is when
-- the sole operand is of the element type, in which case it must be
-- converted to an array, and the easiest way of doing that is to go
-- through the normal general circuit.
if NN = 1 and then Base_Type (Etype (Operands (1))) /= Ctyp then
Result := Operands (1);
goto Done;
end if;
-- Cases where we have a real concatenation
-- Next step is to find the low bound for the result array that we
-- will allocate. The rules for this are in (RM 4.5.6(5-7)).
-- If the ultimate ancestor of the index subtype is a constrained array
-- definition, then the lower bound is that of the index subtype as
-- specified by (RM 4.5.3(6)).
-- The right test here is to go to the root type, and then the ultimate
-- ancestor is the first subtype of this root type.
if Is_Constrained (First_Subtype (Root_Type (Atyp))) then
Low_Bound :=
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (First_Subtype (Root_Type (Atyp)), Loc),
Attribute_Name => Name_First);
-- If the first operand in the list has known length we know that
-- the lower bound of the result is the lower bound of this operand.
elsif Is_Fixed_Length (1) then
Low_Bound := Opnd_Low_Bound (1);
-- OK, we don't know the lower bound, we have to build a horrible
-- if expression node of the form
-- if Cond1'Length /= 0 then
-- Opnd1 low bound
-- else
-- if Opnd2'Length /= 0 then
-- Opnd2 low bound
-- else
-- ...
-- The nesting ends either when we hit an operand whose length is known
-- at compile time, or on reaching the last operand, whose low bound we
-- take unconditionally whether or not it is null. It's easiest to do
-- this with a recursive procedure:
else
declare
function Get_Known_Bound (J : Nat) return Node_Id;
-- Returns the lower bound determined by operands J .. NN
---------------------
-- Get_Known_Bound --
---------------------
function Get_Known_Bound (J : Nat) return Node_Id is
begin
if Is_Fixed_Length (J) or else J = NN then
return New_Copy_Tree (Opnd_Low_Bound (J));
else
return
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Ne (Loc,
Left_Opnd =>
New_Occurrence_Of (Var_Length (J), Loc),
Right_Opnd =>
Make_Integer_Literal (Loc, 0)),
New_Copy_Tree (Opnd_Low_Bound (J)),
Get_Known_Bound (J + 1)));
end if;
end Get_Known_Bound;
begin
Ent := Make_Temporary (Loc, 'L');
Append_To (Actions,
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Ityp, Loc),
Expression => Get_Known_Bound (1)));
Low_Bound := New_Occurrence_Of (Ent, Loc);
end;
end if;
pragma Assert (Present (Low_Bound));
-- Now we can compute the high bound as Low_Bound + Length - 1
if Compile_Time_Known_Value (Low_Bound)
and then Nkind (Aggr_Length (NN)) = N_Integer_Literal
then
High_Bound :=
To_Ityp
(Make_Artyp_Literal
(Expr_Value (Low_Bound) + Intval (Aggr_Length (NN)) - 1));
else
High_Bound :=
To_Ityp
(Make_Op_Add (Loc,
Left_Opnd => To_Artyp (New_Copy_Tree (Low_Bound)),
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => New_Copy_Tree (Aggr_Length (NN)),
Right_Opnd => Make_Artyp_Literal (Uint_1))));
-- Note that calculation of the high bound may cause overflow in some
-- very weird cases, so in the general case we need an overflow check
-- on the high bound. We can avoid this for the common case of string
-- types and other types whose index is Positive, since we chose a
-- wider range for the arithmetic type. If checks are suppressed, we
-- do not set the flag so superfluous warnings may be omitted.
if Istyp /= Standard_Positive
and then not Overflow_Checks_Suppressed (Istyp)
then
Activate_Overflow_Check (High_Bound);
end if;
end if;
-- Handle the exceptional case where the result is null, in which case
-- case the bounds come from the last operand (so that we get the proper
-- bounds if the last operand is superflat).
if Result_May_Be_Null then
Low_Bound :=
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Eq (Loc,
Left_Opnd => New_Copy_Tree (Aggr_Length (NN)),
Right_Opnd => Make_Artyp_Literal (Uint_0)),
Last_Opnd_Low_Bound,
Low_Bound));
High_Bound :=
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Eq (Loc,
Left_Opnd => New_Copy_Tree (Aggr_Length (NN)),
Right_Opnd => Make_Artyp_Literal (Uint_0)),
Last_Opnd_High_Bound,
High_Bound));
end if;
-- Here is where we insert the saved up actions
Insert_Actions (Cnode, Actions, Suppress => All_Checks);
-- If the low bound is known at compile time and not the high bound, but
-- we have computed a sensible upper bound for the length, then adjust
-- the high bound for the subtype of the array. This will change it into
-- a static subtype and thus help the code generator.
if Compile_Time_Known_Value (Low_Bound)
and then not Compile_Time_Known_Value (High_Bound)
and then Max_Aggr_Length < Too_Large_Length_For_Array
then
declare
Known_High_Bound : constant Node_Id :=
To_Ityp
(Make_Artyp_Literal
(Expr_Value (Low_Bound) + Max_Aggr_Length - 1));
begin
if not Is_Out_Of_Range (Known_High_Bound, Ityp) then
Slice_Rng := Make_Range (Loc, Low_Bound, High_Bound);
High_Bound := Known_High_Bound;
else
Slice_Rng := Empty;
end if;
end;
else
Slice_Rng := Empty;
end if;
Subtyp_Rng := Make_Range (Loc, Low_Bound, High_Bound);
-- If the result cannot be null then the range cannot be superflat
Set_Cannot_Be_Superflat (Subtyp_Rng, not Result_May_Be_Null);
-- Now we construct an array object with appropriate bounds. We mark
-- the target as internal to prevent useless initialization when
-- Initialize_Scalars is enabled. Also since this is the actual result
-- entity, we make sure we have debug information for the result.
Subtyp_Ind :=
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Atyp, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List (Subtyp_Rng)));
Ent := Make_Temporary (Loc, 'S');
Set_Is_Internal (Ent);
Set_Debug_Info_Needed (Ent);
-- If we are concatenating strings and the current scope already uses
-- the secondary stack, allocate the result also on the secondary stack
-- to avoid putting too much pressure on the primary stack.
-- Don't do this if -gnatd.h is set, as this will break the wrapping of
-- Cnode in an Expression_With_Actions, see Expand_N_Op_Concat.
if Atyp = Standard_String
and then Uses_Sec_Stack (Current_Scope)
and then RTE_Available (RE_SS_Pool)
and then not Debug_Flag_Dot_H
then
-- Generate:
-- subtype Axx is String (<low-bound> .. <high-bound>)
-- type Ayy is access Axx;
-- Rxx : Ayy := new <Axx> [storage_pool = ss_pool];
-- Sxx : Axx renames Rxx.all;
declare
ConstrT : constant Entity_Id := Make_Temporary (Loc, 'A');
Acc_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
Alloc : Node_Id;
Temp : Entity_Id;
begin
Insert_Action (Cnode,
Make_Subtype_Declaration (Loc,
Defining_Identifier => ConstrT,
Subtype_Indication => Subtyp_Ind),
Suppress => All_Checks);
Freeze_Itype (ConstrT, Cnode);
Insert_Action (Cnode,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Acc_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
Subtype_Indication => New_Occurrence_Of (ConstrT, Loc))),
Suppress => All_Checks);
Mutate_Ekind (Acc_Typ, E_Access_Type);
Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
Alloc :=
Make_Allocator (Loc,
Expression => New_Occurrence_Of (ConstrT, Loc));
-- This is currently done only for type String, which normally
-- doesn't have default initialization, but we need to set the
-- No_Initialization flag in case of either Initialize_Scalars
-- or Normalize_Scalars.
Set_No_Initialization (Alloc);
Temp := Make_Temporary (Loc, 'R', Alloc);
Insert_Action (Cnode,
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Acc_Typ, Loc),
Expression => Alloc),
Suppress => All_Checks);
Insert_Action (Cnode,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Ent,
Subtype_Mark => New_Occurrence_Of (ConstrT, Loc),
Name =>
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Temp, Loc))),
Suppress => All_Checks);
end;
else
-- If the bound is statically known to be out of range, we do not
-- want to abort, we want a warning and a runtime constraint error.
-- Note that we have arranged that the result will not be treated
-- as a static constant, so we won't get an illegality during this
-- insertion. We also enable checks (in particular range checks) in
-- case the bounds of Subtyp_Ind are out of range.
Insert_Action (Cnode,
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Object_Definition => Subtyp_Ind));
end if;
-- If the result of the concatenation appears as the initializing
-- expression of an object declaration, we can just rename the
-- result, rather than copying it.
Set_OK_To_Rename (Ent);
-- Catch the static out of range case now
if Raises_Constraint_Error (High_Bound)
or else Is_Out_Of_Range (High_Bound, Ityp)
then
-- Kill warning generated for the declaration of the static out of
-- range high bound, and instead generate a Constraint_Error with
-- an appropriate specific message.
if Nkind (High_Bound) = N_Integer_Literal then
Kill_Dead_Code (High_Bound);
Rewrite (High_Bound, New_Copy_Tree (Low_Bound));
else
Kill_Dead_Code (Declaration_Node (Entity (High_Bound)));
end if;
Apply_Compile_Time_Constraint_Error
(N => Cnode,
Msg => "concatenation result upper bound out of range??",
Reason => CE_Range_Check_Failed);
return;
end if;
-- Now we will generate the assignments to do the actual concatenation
-- There is one case in which we will not do this, namely when all the
-- following conditions are met:
-- The result type is Standard.String
-- There are nine or fewer retained (non-null) operands
-- The optimization level is -O0 or the debug flag gnatd.C is set,
-- and the debug flag gnatd.c is not set.
-- The corresponding System.Concat_n.Str_Concat_n routine is
-- available in the run time.
-- If all these conditions are met then we generate a call to the
-- relevant concatenation routine. The purpose of this is to avoid
-- undesirable code bloat at -O0.
-- If the concatenation is within the declaration of a library-level
-- object, we call the built-in concatenation routines to prevent code
-- bloat, regardless of the optimization level. This is space efficient
-- and prevents linking problems when units are compiled with different
-- optimization levels.
if Atyp = Standard_String
and then NN in 2 .. 9
and then (((Optimization_Level = 0 or else Debug_Flag_Dot_CC)
and then not Debug_Flag_Dot_C)
or else Library_Level_Target)
then
declare
RR : constant array (Nat range 2 .. 9) of RE_Id :=
(RE_Str_Concat_2,
RE_Str_Concat_3,
RE_Str_Concat_4,
RE_Str_Concat_5,
RE_Str_Concat_6,
RE_Str_Concat_7,
RE_Str_Concat_8,
RE_Str_Concat_9);
begin
if RTE_Available (RR (NN)) then
declare
Opnds : constant List_Id :=
New_List (New_Occurrence_Of (Ent, Loc));
begin
for J in 1 .. NN loop
if Is_List_Member (Operands (J)) then
Remove (Operands (J));
end if;
if Base_Type (Etype (Operands (J))) = Ctyp then
Append_To (Opnds,
Make_Aggregate (Loc,
Component_Associations => New_List (
Make_Component_Association (Loc,
Choices => New_List (
Make_Integer_Literal (Loc, 1)),
Expression => Operands (J)))));
else
Append_To (Opnds, Operands (J));
end if;
end loop;
Insert_Action (Cnode,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (RR (NN)), Loc),
Parameter_Associations => Opnds));
-- No assignments left to do below
NN := 0;
end;
end if;
end;
end if;
-- Not special case so generate the assignments
Known_Non_Null_Operand_Seen := False;
for J in 1 .. NN loop
declare
Lo : constant Node_Id :=
Make_Op_Add (Loc,
Left_Opnd => To_Artyp (New_Copy_Tree (Low_Bound)),
Right_Opnd => Aggr_Length (J - 1));
Hi : constant Node_Id :=
Make_Op_Add (Loc,
Left_Opnd => To_Artyp (New_Copy_Tree (Low_Bound)),
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => Aggr_Length (J),
Right_Opnd => Make_Artyp_Literal (Uint_1)));
begin
-- Singleton case, simple assignment
if Base_Type (Etype (Operands (J))) = Ctyp then
Known_Non_Null_Operand_Seen := True;
Insert_Action (Cnode,
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Ent, Loc),
Expressions => New_List (To_Ityp (Lo))),
Expression => Operands (J)),
Suppress => All_Checks);
-- Array case, slice assignment, skipped when argument is fixed
-- length and known to be null.
elsif not Is_Fixed_Length (J) or else Fixed_Length (J) > 0 then
declare
Assign : Node_Id :=
Make_Assignment_Statement (Loc,
Name =>
Make_Slice (Loc,
Prefix =>
New_Occurrence_Of (Ent, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => To_Ityp (Lo),
High_Bound => To_Ityp (Hi))),
Expression => Operands (J));
begin
if Is_Fixed_Length (J) then
Known_Non_Null_Operand_Seen := True;
elsif not Known_Non_Null_Operand_Seen then
-- Here if operand length is not statically known and no
-- operand known to be non-null has been processed yet.
-- If operand length is 0, we do not need to perform the
-- assignment, and we must avoid the evaluation of the
-- high bound of the slice, since it may underflow if the
-- low bound is Ityp'First.
Assign :=
Make_Implicit_If_Statement (Cnode,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd =>
New_Occurrence_Of (Var_Length (J), Loc),
Right_Opnd => Make_Integer_Literal (Loc, 0)),
Then_Statements => New_List (Assign));
end if;
Insert_Action (Cnode, Assign, Suppress => All_Checks);
end;
end if;
end;
end loop;
-- Finally we build the result, which is either a direct reference to
-- the array object or a slice of it.
Result := New_Occurrence_Of (Ent, Loc);
if Present (Slice_Rng) then
Result := Make_Slice (Loc, Result, Slice_Rng);
end if;
<<Done>>
pragma Assert (Present (Result));
Rewrite (Cnode, Result);
Analyze_And_Resolve (Cnode, Atyp);
end Expand_Concatenate;
---------------------------------------------------
-- Expand_Membership_Minimize_Eliminate_Overflow --
---------------------------------------------------
procedure Expand_Membership_Minimize_Eliminate_Overflow (N : Node_Id) is
pragma Assert (Nkind (N) = N_In);
-- Despite the name, this routine applies only to N_In, not to
-- N_Not_In. The latter is always rewritten as not (X in Y).
Result_Type : constant Entity_Id := Etype (N);
-- Capture result type, may be a derived boolean type
Loc : constant Source_Ptr := Sloc (N);
Lop : constant Node_Id := Left_Opnd (N);
Rop : constant Node_Id := Right_Opnd (N);
-- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
-- is thus tempting to capture these values, but due to the rewrites
-- that occur as a result of overflow checking, these values change
-- as we go along, and it is safe just to always use Etype explicitly.
Restype : constant Entity_Id := Etype (N);
-- Save result type
Lo, Hi : Uint;
-- Bounds in Minimize calls, not used currently
LLIB : constant Entity_Id := Base_Type (Standard_Long_Long_Integer);
-- Entity for Long_Long_Integer'Base
begin
Minimize_Eliminate_Overflows (Lop, Lo, Hi, Top_Level => False);
-- If right operand is a subtype name, and the subtype name has no
-- predicate, then we can just replace the right operand with an
-- explicit range T'First .. T'Last, and use the explicit range code.
if Nkind (Rop) /= N_Range
and then No (Predicate_Function (Etype (Rop)))
then
declare
Rtyp : constant Entity_Id := Etype (Rop);
begin
Rewrite (Rop,
Make_Range (Loc,
Low_Bound =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix => New_Occurrence_Of (Rtyp, Loc)),
High_Bound =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix => New_Occurrence_Of (Rtyp, Loc))));
Analyze_And_Resolve (Rop, Rtyp, Suppress => All_Checks);
end;
end if;
-- Here for the explicit range case. Note that the bounds of the range
-- have not been processed for minimized or eliminated checks.
if Nkind (Rop) = N_Range then
Minimize_Eliminate_Overflows
(Low_Bound (Rop), Lo, Hi, Top_Level => False);
Minimize_Eliminate_Overflows
(High_Bound (Rop), Lo, Hi, Top_Level => False);
-- We have A in B .. C, treated as A >= B and then A <= C
-- Bignum case
if Is_RTE (Etype (Lop), RE_Bignum)
or else Is_RTE (Etype (Low_Bound (Rop)), RE_Bignum)
or else Is_RTE (Etype (High_Bound (Rop)), RE_Bignum)
then
declare
Blk : constant Node_Id := Make_Bignum_Block (Loc);
Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
L : constant Entity_Id :=
Make_Defining_Identifier (Loc, Name_uL);
Lopnd : constant Node_Id := Convert_To_Bignum (Lop);
Lbound : constant Node_Id :=
Convert_To_Bignum (Low_Bound (Rop));
Hbound : constant Node_Id :=
Convert_To_Bignum (High_Bound (Rop));
-- Now we rewrite the membership test node to look like
-- do
-- Bnn : Result_Type;
-- declare
-- M : Mark_Id := SS_Mark;
-- L : Bignum := Lopnd;
-- begin
-- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
-- SS_Release (M);
-- end;
-- in
-- Bnn
-- end
begin
-- Insert declaration of L into declarations of bignum block
Insert_After
(Last (Declarations (Blk)),
Make_Object_Declaration (Loc,
Defining_Identifier => L,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Bignum), Loc),
Expression => Lopnd));
-- Insert assignment to Bnn into expressions of bignum block
Insert_Before
(First (Statements (Handled_Statement_Sequence (Blk))),
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Bnn, Loc),
Expression =>
Make_And_Then (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Big_GE), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (L, Loc),
Lbound)),
Right_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Big_LE), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (L, Loc),
Hbound)))));
-- Now rewrite the node
Rewrite (N,
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Bnn,
Object_Definition =>
New_Occurrence_Of (Result_Type, Loc)),
Blk),
Expression => New_Occurrence_Of (Bnn, Loc)));
Analyze_And_Resolve (N, Result_Type);
return;
end;
-- Here if no bignums around
else
-- Case where types are all the same
if Base_Type (Etype (Lop)) = Base_Type (Etype (Low_Bound (Rop)))
and then
Base_Type (Etype (Lop)) = Base_Type (Etype (High_Bound (Rop)))
then
null;
-- If types are not all the same, it means that we have rewritten
-- at least one of them to be of type Long_Long_Integer, and we
-- will convert the other operands to Long_Long_Integer.
else
Convert_To_And_Rewrite (LLIB, Lop);
Set_Analyzed (Lop, False);
Analyze_And_Resolve (Lop, LLIB);
-- For the right operand, avoid unnecessary recursion into
-- this routine, we know that overflow is not possible.
Convert_To_And_Rewrite (LLIB, Low_Bound (Rop));
Convert_To_And_Rewrite (LLIB, High_Bound (Rop));
Set_Analyzed (Rop, False);
Analyze_And_Resolve (Rop, LLIB, Suppress => Overflow_Check);
end if;
-- Now the three operands are of the same signed integer type,
-- so we can use the normal expansion routine for membership,
-- setting the flag to prevent recursion into this procedure.
Set_No_Minimize_Eliminate (N);
Expand_N_In (N);
end if;
-- Right operand is a subtype name and the subtype has a predicate. We
-- have to make sure the predicate is checked, and for that we need to
-- use the standard N_In circuitry with appropriate types.
else
pragma Assert (Present (Predicate_Function (Etype (Rop))));
-- If types are "right", just call Expand_N_In preventing recursion
if Base_Type (Etype (Lop)) = Base_Type (Etype (Rop)) then
Set_No_Minimize_Eliminate (N);
Expand_N_In (N);
-- Bignum case
elsif Is_RTE (Etype (Lop), RE_Bignum) then
-- For X in T, we want to rewrite our node as
-- do
-- Bnn : Result_Type;
-- declare
-- M : Mark_Id := SS_Mark;
-- Lnn : Long_Long_Integer'Base
-- Nnn : Bignum;
-- begin
-- Nnn := X;
-- if not Bignum_In_LLI_Range (Nnn) then
-- Bnn := False;
-- else
-- Lnn := From_Bignum (Nnn);
-- Bnn :=
-- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
-- and then T'Base (Lnn) in T;
-- end if;
-- SS_Release (M);
-- end
-- in
-- Bnn
-- end
-- A bit gruesome, but there doesn't seem to be a simpler way
declare
Blk : constant Node_Id := Make_Bignum_Block (Loc);
Bnn : constant Entity_Id := Make_Temporary (Loc, 'B', N);
Lnn : constant Entity_Id := Make_Temporary (Loc, 'L', N);
Nnn : constant Entity_Id := Make_Temporary (Loc, 'N', N);
T : constant Entity_Id := Etype (Rop);
TB : constant Entity_Id := Base_Type (T);
Nin : Node_Id;
begin
-- Mark the last membership operation to prevent recursion
Nin :=
Make_In (Loc,
Left_Opnd => Convert_To (TB, New_Occurrence_Of (Lnn, Loc)),
Right_Opnd => New_Occurrence_Of (T, Loc));
Set_No_Minimize_Eliminate (Nin);
-- Now decorate the block
Insert_After
(Last (Declarations (Blk)),
Make_Object_Declaration (Loc,
Defining_Identifier => Lnn,
Object_Definition => New_Occurrence_Of (LLIB, Loc)));
Insert_After
(Last (Declarations (Blk)),
Make_Object_Declaration (Loc,
Defining_Identifier => Nnn,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Bignum), Loc)));
Insert_List_Before
(First (Statements (Handled_Statement_Sequence (Blk))),
New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Nnn, Loc),
Expression => Relocate_Node (Lop)),
Make_Implicit_If_Statement (N,
Condition =>
Make_Op_Not (Loc,
Right_Opnd =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of
(RTE (RE_Bignum_In_LLI_Range), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Nnn, Loc)))),
Then_Statements => New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Bnn, Loc),
Expression =>
New_Occurrence_Of (Standard_False, Loc))),
Else_Statements => New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Lnn, Loc),
Expression =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_From_Bignum), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Nnn, Loc)))),
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Bnn, Loc),
Expression =>
Make_And_Then (Loc,
Left_Opnd =>
Make_In (Loc,
Left_Opnd => New_Occurrence_Of (Lnn, Loc),
Right_Opnd =>
Make_Range (Loc,
Low_Bound =>
Convert_To (LLIB,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix =>
New_Occurrence_Of (TB, Loc))),
High_Bound =>
Convert_To (LLIB,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix =>
New_Occurrence_Of (TB, Loc))))),
Right_Opnd => Nin))))));
-- Now we can do the rewrite
Rewrite (N,
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Bnn,
Object_Definition =>
New_Occurrence_Of (Result_Type, Loc)),
Blk),
Expression => New_Occurrence_Of (Bnn, Loc)));
Analyze_And_Resolve (N, Result_Type);
return;
end;
-- Not bignum case, but types don't match (this means we rewrote the
-- left operand to be Long_Long_Integer).
else
pragma Assert (Base_Type (Etype (Lop)) = LLIB);
-- We rewrite the membership test as (where T is the type with
-- the predicate, i.e. the type of the right operand)
-- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
-- and then T'Base (Lop) in T
declare
T : constant Entity_Id := Etype (Rop);
TB : constant Entity_Id := Base_Type (T);
Nin : Node_Id;
begin
-- The last membership test is marked to prevent recursion
Nin :=
Make_In (Loc,
Left_Opnd => Convert_To (TB, Duplicate_Subexpr (Lop)),
Right_Opnd => New_Occurrence_Of (T, Loc));
Set_No_Minimize_Eliminate (Nin);
-- Now do the rewrite
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd =>
Make_In (Loc,
Left_Opnd => Lop,
Right_Opnd =>
Make_Range (Loc,
Low_Bound =>
Convert_To (LLIB,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix =>
New_Occurrence_Of (TB, Loc))),
High_Bound =>
Convert_To (LLIB,
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix =>
New_Occurrence_Of (TB, Loc))))),
Right_Opnd => Nin));
Set_Analyzed (N, False);
Analyze_And_Resolve (N, Restype);
end;
end if;
end if;
end Expand_Membership_Minimize_Eliminate_Overflow;
---------------------------------
-- Expand_Nonbinary_Modular_Op --
---------------------------------
procedure Expand_Nonbinary_Modular_Op (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
procedure Expand_Modular_Addition;
-- Expand the modular addition, handling the special case of adding a
-- constant.
procedure Expand_Modular_Op;
-- Compute the general rule: (lhs OP rhs) mod Modulus
procedure Expand_Modular_Subtraction;
-- Expand the modular addition, handling the special case of subtracting
-- a constant.
-----------------------------
-- Expand_Modular_Addition --
-----------------------------
procedure Expand_Modular_Addition is
begin
-- If this is not the addition of a constant then compute it using
-- the general rule: (lhs + rhs) mod Modulus
if Nkind (Right_Opnd (N)) /= N_Integer_Literal then
Expand_Modular_Op;
-- If this is an addition of a constant, convert it to a subtraction
-- plus a conditional expression since we can compute it faster than
-- computing the modulus.
-- modMinusRhs = Modulus - rhs
-- if lhs < modMinusRhs then lhs + rhs
-- else lhs - modMinusRhs
else
declare
Mod_Minus_Right : constant Uint :=
Modulus (Typ) - Intval (Right_Opnd (N));
Cond_Expr : Node_Id;
Then_Expr : Node_Id;
Else_Expr : Node_Id;
begin
-- To prevent spurious visibility issues, convert all
-- operands to Standard.Unsigned.
Cond_Expr :=
Make_Op_Lt (Loc,
Left_Opnd =>
Unchecked_Convert_To (Standard_Unsigned,
New_Copy_Tree (Left_Opnd (N))),
Right_Opnd =>
Make_Integer_Literal (Loc, Mod_Minus_Right));
Then_Expr :=
Make_Op_Add (Loc,
Left_Opnd =>
Unchecked_Convert_To (Standard_Unsigned,
New_Copy_Tree (Left_Opnd (N))),
Right_Opnd =>
Make_Integer_Literal (Loc, Intval (Right_Opnd (N))));
Else_Expr :=
Make_Op_Subtract (Loc,
Left_Opnd =>
Unchecked_Convert_To (Standard_Unsigned,
New_Copy_Tree (Left_Opnd (N))),
Right_Opnd =>
Make_Integer_Literal (Loc, Mod_Minus_Right));
Rewrite (N,
Unchecked_Convert_To (Typ,
Make_If_Expression (Loc,
Expressions =>
New_List (Cond_Expr, Then_Expr, Else_Expr))));
end;
end if;
end Expand_Modular_Addition;
-----------------------
-- Expand_Modular_Op --
-----------------------
procedure Expand_Modular_Op is
-- We will convert to another type (not a nonbinary-modulus modular
-- type), evaluate the op in that representation, reduce the result,
-- and convert back to the original type. This means that the
-- backend does not have to deal with nonbinary-modulus ops.
Op_Expr : constant Node_Id := New_Op_Node (Nkind (N), Loc);
Mod_Expr : Node_Id;
Target_Type : Entity_Id;
begin
-- Select a target type that is large enough to avoid spurious
-- intermediate overflow on pre-reduction computation (for
-- correctness) but is no larger than is needed (for performance).
declare
Required_Size : Uint := RM_Size (Etype (N));
Use_Unsigned : Boolean := True;
begin
case Nkind (N) is
when N_Op_Add =>
-- For example, if modulus is 255 then RM_Size will be 8
-- and the range of possible values (before reduction) will
-- be 0 .. 508; that range requires 9 bits.
Required_Size := Required_Size + 1;
when N_Op_Subtract =>
-- For example, if modulus is 255 then RM_Size will be 8
-- and the range of possible values (before reduction) will
-- be -254 .. 254; that range requires 9 bits, signed.
Use_Unsigned := False;
Required_Size := Required_Size + 1;
when N_Op_Multiply =>
-- For example, if modulus is 255 then RM_Size will be 8
-- and the range of possible values (before reduction) will
-- be 0 .. 64,516; that range requires 16 bits.
Required_Size := Required_Size * 2;
when others =>
null;
end case;
if Use_Unsigned then
if Required_Size <= Standard_Short_Short_Integer_Size then
Target_Type := Standard_Short_Short_Unsigned;
elsif Required_Size <= Standard_Short_Integer_Size then
Target_Type := Standard_Short_Unsigned;
elsif Required_Size <= Standard_Integer_Size then
Target_Type := Standard_Unsigned;
else
pragma Assert (Required_Size <= 64);
Target_Type := Standard_Unsigned_64;
end if;
elsif Required_Size <= 8 then
Target_Type := Standard_Integer_8;
elsif Required_Size <= 16 then
Target_Type := Standard_Integer_16;
elsif Required_Size <= 32 then
Target_Type := Standard_Integer_32;
else
pragma Assert (Required_Size <= 64);
Target_Type := Standard_Integer_64;
end if;
pragma Assert (Present (Target_Type));
end;
Set_Left_Opnd (Op_Expr,
Unchecked_Convert_To (Target_Type,
New_Copy_Tree (Left_Opnd (N))));
Set_Right_Opnd (Op_Expr,
Unchecked_Convert_To (Target_Type,
New_Copy_Tree (Right_Opnd (N))));
-- ??? Why do this stuff for some ops and not others?
if Nkind (N) not in N_Op_And | N_Op_Or | N_Op_Xor then
-- Link this node to the tree to analyze it
-- If the parent node is an expression with actions we link it to
-- N since otherwise Force_Evaluation cannot identify if this node
-- comes from the Expression and rejects generating the temporary.
if Nkind (Parent (N)) = N_Expression_With_Actions then
Set_Parent (Op_Expr, N);
-- Common case
else
Set_Parent (Op_Expr, Parent (N));
end if;
Analyze (Op_Expr);
-- Force generating a temporary because in the expansion of this
-- expression we may generate code that performs this computation
-- several times.
Force_Evaluation (Op_Expr, Mode => Strict);
end if;
Mod_Expr :=
Make_Op_Mod (Loc,
Left_Opnd => Op_Expr,
Right_Opnd => Make_Integer_Literal (Loc, Modulus (Typ)));
Rewrite (N,
Unchecked_Convert_To (Typ, Mod_Expr));
end Expand_Modular_Op;
--------------------------------
-- Expand_Modular_Subtraction --
--------------------------------
procedure Expand_Modular_Subtraction is
begin
-- If this is not the addition of a constant then compute it using
-- the general rule: (lhs + rhs) mod Modulus
if Nkind (Right_Opnd (N)) /= N_Integer_Literal then
Expand_Modular_Op;
-- If this is an addition of a constant, convert it to a subtraction
-- plus a conditional expression since we can compute it faster than
-- computing the modulus.
-- modMinusRhs = Modulus - rhs
-- if lhs < rhs then lhs + modMinusRhs
-- else lhs - rhs
else
declare
Mod_Minus_Right : constant Uint :=
Modulus (Typ) - Intval (Right_Opnd (N));
Cond_Expr : Node_Id;
Then_Expr : Node_Id;
Else_Expr : Node_Id;
begin
Cond_Expr :=
Make_Op_Lt (Loc,
Left_Opnd =>
Unchecked_Convert_To (Standard_Unsigned,
New_Copy_Tree (Left_Opnd (N))),
Right_Opnd =>
Make_Integer_Literal (Loc, Intval (Right_Opnd (N))));
Then_Expr :=
Make_Op_Add (Loc,
Left_Opnd =>
Unchecked_Convert_To (Standard_Unsigned,
New_Copy_Tree (Left_Opnd (N))),
Right_Opnd =>
Make_Integer_Literal (Loc, Mod_Minus_Right));
Else_Expr :=
Make_Op_Subtract (Loc,
Left_Opnd =>
Unchecked_Convert_To (Standard_Unsigned,
New_Copy_Tree (Left_Opnd (N))),
Right_Opnd =>
Unchecked_Convert_To (Standard_Unsigned,
New_Copy_Tree (Right_Opnd (N))));
Rewrite (N,
Unchecked_Convert_To (Typ,
Make_If_Expression (Loc,
Expressions =>
New_List (Cond_Expr, Then_Expr, Else_Expr))));
end;
end if;
end Expand_Modular_Subtraction;
-- Start of processing for Expand_Nonbinary_Modular_Op
begin
-- No action needed if front-end expansion is not required or if we
-- have a binary modular operand.
if not Expand_Nonbinary_Modular_Ops
or else not Non_Binary_Modulus (Typ)
then
return;
end if;
case Nkind (N) is
when N_Op_Add =>
Expand_Modular_Addition;
when N_Op_Subtract =>
Expand_Modular_Subtraction;
when N_Op_Minus =>
-- Expand -expr into (0 - expr)
Rewrite (N,
Make_Op_Subtract (Loc,
Left_Opnd => Make_Integer_Literal (Loc, 0),
Right_Opnd => Right_Opnd (N)));
Analyze_And_Resolve (N, Typ);
when others =>
Expand_Modular_Op;
end case;
Analyze_And_Resolve (N, Typ);
end Expand_Nonbinary_Modular_Op;
------------------------
-- Expand_N_Allocator --
------------------------
procedure Expand_N_Allocator (N : Node_Id) is
Etyp : constant Entity_Id := Etype (Expression (N));
Loc : constant Source_Ptr := Sloc (N);
PtrT : constant Entity_Id := Etype (N);
procedure Rewrite_Coextension (N : Node_Id);
-- Static coextensions have the same lifetime as the entity they
-- constrain. Such occurrences can be rewritten as aliased objects
-- and their unrestricted access used instead of the coextension.
function Size_In_Storage_Elements (E : Entity_Id) return Node_Id;
-- Given a constrained array type E, returns a node representing the
-- code to compute a close approximation of the size in storage elements
-- for the given type; for indexes that are modular types we compute
-- 'Last - First (instead of 'Length) because for large arrays computing
-- 'Last -'First + 1 causes overflow. This is done without using the
-- attribute 'Size_In_Storage_Elements (which malfunctions for large
-- sizes ???).
-------------------------
-- Rewrite_Coextension --
-------------------------
procedure Rewrite_Coextension (N : Node_Id) is
Temp_Id : constant Node_Id := Make_Temporary (Loc, 'C');
Temp_Decl : Node_Id;
begin
-- Generate:
-- Cnn : aliased Etyp;
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp_Id,
Aliased_Present => True,
Object_Definition => New_Occurrence_Of (Etyp, Loc));
if Nkind (Expression (N)) = N_Qualified_Expression then
Set_Expression (Temp_Decl, Expression (Expression (N)));
end if;
Insert_Action (N, Temp_Decl);
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Temp_Id, Loc),
Attribute_Name => Name_Unrestricted_Access));
Analyze_And_Resolve (N, PtrT);
end Rewrite_Coextension;
------------------------------
-- Size_In_Storage_Elements --
------------------------------
function Size_In_Storage_Elements (E : Entity_Id) return Node_Id is
Idx : Node_Id := First_Index (E);
Len : Node_Id;
Res : Node_Id := Empty;
begin
-- Logically this just returns E'Max_Size_In_Storage_Elements.
-- However, the reason for the existence of this function is to
-- construct a test for sizes too large, which means near the 32-bit
-- limit on a 32-bit machine, and precisely the trouble is that we
-- get overflows when sizes are greater than 2**31.
-- So what we end up doing for array types is to use the expression:
-- number-of-elements * component_type'Max_Size_In_Storage_Elements
-- which avoids this problem. All this is a bit bogus, but it does
-- mean we catch common cases of trying to allocate arrays that are
-- too large, and which in the absence of a check results in
-- undetected chaos ???
for J in 1 .. Number_Dimensions (E) loop
if not Is_Modular_Integer_Type (Etype (Idx)) then
Len :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (E, Loc),
Attribute_Name => Name_Length,
Expressions => New_List (Make_Integer_Literal (Loc, J)));
-- For indexes that are modular types we cannot generate code to
-- compute 'Length since for large arrays 'Last -'First + 1 causes
-- overflow; therefore we compute 'Last - 'First (which is not the
-- exact number of components but it is valid for the purpose of
-- this runtime check on 32-bit targets).
else
declare
Len_Minus_1_Expr : Node_Id;
Test_Gt : Node_Id;
begin
Test_Gt :=
Make_Op_Gt (Loc,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (E, Loc),
Attribute_Name => Name_Last,
Expressions =>
New_List (Make_Integer_Literal (Loc, J))),
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (E, Loc),
Attribute_Name => Name_First,
Expressions =>
New_List (Make_Integer_Literal (Loc, J))));
Len_Minus_1_Expr :=
Convert_To (Standard_Unsigned,
Make_Op_Subtract (Loc,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (E, Loc),
Attribute_Name => Name_Last,
Expressions =>
New_List (Make_Integer_Literal (Loc, J))),
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (E, Loc),
Attribute_Name => Name_First,
Expressions =>
New_List (Make_Integer_Literal (Loc, J)))));
-- Handle superflat arrays, i.e. arrays with such bounds as
-- 4 .. 2, to ensure that the result is correct.
-- Generate:
-- (if X'Last > X'First then X'Last - X'First else 0)
Len :=
Make_If_Expression (Loc,
Expressions => New_List (
Test_Gt,
Len_Minus_1_Expr,
Make_Integer_Literal (Loc, Uint_0)));
end;
end if;
if J = 1 then
Res := Len;
else
pragma Assert (Present (Res));
Res :=
Make_Op_Multiply (Loc,
Left_Opnd => Res,
Right_Opnd => Len);
end if;
Next_Index (Idx);
end loop;
return
Make_Op_Multiply (Loc,
Left_Opnd => Len,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Component_Type (E), Loc),
Attribute_Name => Name_Max_Size_In_Storage_Elements));
end Size_In_Storage_Elements;
-- Local variables
Dtyp : constant Entity_Id := Available_View (Designated_Type (PtrT));
Desig : Entity_Id;
Nod : Node_Id;
Pool : Entity_Id;
Rel_Typ : Entity_Id;
Temp : Entity_Id;
-- Start of processing for Expand_N_Allocator
begin
-- Warn on the presence of an allocator of an anonymous access type when
-- enabled, except when it's an object declaration at library level.
if Warn_On_Anonymous_Allocators
and then Ekind (PtrT) = E_Anonymous_Access_Type
and then not (Is_Library_Level_Entity (PtrT)
and then Nkind (Associated_Node_For_Itype (PtrT)) =
N_Object_Declaration)
then
Error_Msg_N ("?_a?use of an anonymous access type allocator", N);
end if;
-- RM E.2.2(17). We enforce that the expected type of an allocator
-- shall not be a remote access-to-class-wide-limited-private type.
-- We probably shouldn't be doing this legality check during expansion,
-- but this is only an issue for Annex E users, and is unlikely to be a
-- problem in practice.
Validate_Remote_Access_To_Class_Wide_Type (N);
-- Processing for anonymous access-to-controlled types. These access
-- types receive a special finalization master which appears in the
-- declarations of the enclosing semantic unit. This expansion is done
-- now to ensure that any additional types generated by this routine or
-- Expand_Allocator_Expression inherit the proper type attributes.
if (Ekind (PtrT) = E_Anonymous_Access_Type
or else (Is_Itype (PtrT) and then No (Finalization_Master (PtrT))))
and then Needs_Finalization (Dtyp)
then
-- Detect the allocation of an anonymous controlled object where the
-- type of the context is named. For example:
-- procedure Proc (Ptr : Named_Access_Typ);
-- Proc (new Designated_Typ);
-- Regardless of the anonymous-to-named access type conversion, the
-- lifetime of the object must be associated with the named access
-- type. Use the finalization-related attributes of this type.
if Nkind (Parent (N)) in N_Type_Conversion
| N_Unchecked_Type_Conversion
and then Ekind (Etype (Parent (N))) in E_Access_Subtype
| E_Access_Type
| E_General_Access_Type
then
Rel_Typ := Etype (Parent (N));
else
Rel_Typ := Empty;
end if;
-- Anonymous access-to-controlled types allocate on the global pool.
-- Note that this is a "root type only" attribute.
if No (Associated_Storage_Pool (PtrT)) then
if Present (Rel_Typ) then
Set_Associated_Storage_Pool
(Root_Type (PtrT), Associated_Storage_Pool (Rel_Typ));
else
Set_Associated_Storage_Pool
(Root_Type (PtrT), RTE (RE_Global_Pool_Object));
end if;
end if;
-- The finalization master must be inserted and analyzed as part of
-- the current semantic unit. Note that the master is updated when
-- analysis changes current units. Note that this is a "root type
-- only" attribute.
if Present (Rel_Typ) then
Set_Finalization_Master
(Root_Type (PtrT), Finalization_Master (Rel_Typ));
else
Build_Anonymous_Master (Root_Type (PtrT));
end if;
end if;
-- Set the storage pool and find the appropriate version of Allocate to
-- call. Do not overwrite the storage pool if it is already set, which
-- can happen for build-in-place function returns (see
-- Exp_Ch4.Expand_N_Extended_Return_Statement).
if No (Storage_Pool (N)) then
Pool := Associated_Storage_Pool (Root_Type (PtrT));
if Present (Pool) then
Set_Storage_Pool (N, Pool);
if Is_RTE (Pool, RE_RS_Pool) then
Set_Procedure_To_Call (N, RTE (RE_RS_Allocate));
elsif Is_RTE (Pool, RE_SS_Pool) then
Check_Restriction (No_Secondary_Stack, N);
Set_Procedure_To_Call (N, RTE (RE_SS_Allocate));
-- In the case of an allocator for a simple storage pool, locate
-- and save a reference to the pool type's Allocate routine.
elsif Present (Get_Rep_Pragma
(Etype (Pool), Name_Simple_Storage_Pool_Type))
then
declare
Pool_Type : constant Entity_Id := Base_Type (Etype (Pool));
Alloc_Op : Entity_Id;
begin
Alloc_Op := Get_Name_Entity_Id (Name_Allocate);
while Present (Alloc_Op) loop
if Scope (Alloc_Op) = Scope (Pool_Type)
and then Present (First_Formal (Alloc_Op))
and then Etype (First_Formal (Alloc_Op)) = Pool_Type
then
Set_Procedure_To_Call (N, Alloc_Op);
exit;
else
Alloc_Op := Homonym (Alloc_Op);
end if;
end loop;
end;
elsif Is_Class_Wide_Type (Etype (Pool)) then
Set_Procedure_To_Call (N, RTE (RE_Allocate_Any));
else
Set_Procedure_To_Call (N,
Find_Storage_Op (Etype (Pool), Name_Allocate));
end if;
end if;
end if;
-- Under certain circumstances we can replace an allocator by an access
-- to statically allocated storage. The conditions, as noted in AARM
-- 3.10 (10c) are as follows:
-- Size and initial value is known at compile time
-- Access type is access-to-constant
-- The allocator is not part of a constraint on a record component,
-- because in that case the inserted actions are delayed until the
-- record declaration is fully analyzed, which is too late for the
-- analysis of the rewritten allocator.
if Is_Access_Constant (PtrT)
and then Nkind (Expression (N)) = N_Qualified_Expression
and then Compile_Time_Known_Value (Expression (Expression (N)))
and then Size_Known_At_Compile_Time
(Etype (Expression (Expression (N))))
and then not Is_Record_Type (Current_Scope)
then
-- Here we can do the optimization. For the allocator
-- new x'(y)
-- We insert an object declaration
-- Tnn : aliased x := y;
-- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
-- marked as requiring static allocation.
Temp := Make_Temporary (Loc, 'T', Expression (Expression (N)));
Desig := Subtype_Mark (Expression (N));
-- If context is constrained, use constrained subtype directly,
-- so that the constant is not labelled as having a nominally
-- unconstrained subtype.
if Entity (Desig) = Base_Type (Dtyp) then
Desig := New_Occurrence_Of (Dtyp, Loc);
end if;
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Aliased_Present => True,
Constant_Present => Is_Access_Constant (PtrT),
Object_Definition => Desig,
Expression => Expression (Expression (N))));
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Temp, Loc),
Attribute_Name => Name_Unrestricted_Access));
Analyze_And_Resolve (N, PtrT);
-- We set the variable as statically allocated, since we don't want
-- it going on the stack of the current procedure.
Set_Is_Statically_Allocated (Temp);
return;
end if;
-- Same if the allocator is an access discriminant for a local object:
-- instead of an allocator we create a local value and constrain the
-- enclosing object with the corresponding access attribute.
if Is_Static_Coextension (N) then
Rewrite_Coextension (N);
return;
end if;
-- Check for size too large, we do this because the back end misses
-- proper checks here and can generate rubbish allocation calls when
-- we are near the limit. We only do this for the 32-bit address case
-- since that is from a practical point of view where we see a problem.
if System_Address_Size = 32
and then not Storage_Checks_Suppressed (PtrT)
and then not Storage_Checks_Suppressed (Dtyp)
and then not Storage_Checks_Suppressed (Etyp)
then
-- The check we want to generate should look like
-- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
-- raise Storage_Error;
-- end if;
-- where 3.5 gigabytes is a constant large enough to accommodate any
-- reasonable request for. But we can't do it this way because at
-- least at the moment we don't compute this attribute right, and
-- can silently give wrong results when the result gets large. Since
-- this is all about large results, that's bad, so instead we only
-- apply the check for constrained arrays, and manually compute the
-- value of the attribute ???
-- The check on No_Initialization is used here to prevent generating
-- this runtime check twice when the allocator is locally replaced by
-- the expander with another one.
if Is_Array_Type (Etyp) and then not No_Initialization (N) then
declare
Cond : Node_Id;
Ins_Nod : Node_Id := N;
Siz_Typ : Entity_Id := Etyp;
Expr : Node_Id;
begin
-- For unconstrained array types initialized with a qualified
-- expression we use its type to perform this check
if not Is_Constrained (Etyp)
and then not No_Initialization (N)
and then Nkind (Expression (N)) = N_Qualified_Expression
then
Expr := Expression (Expression (N));
Siz_Typ := Etype (Expression (Expression (N)));
-- If the qualified expression has been moved to an internal
-- temporary (to remove side effects) then we must insert
-- the runtime check before its declaration to ensure that
-- the check is performed before the execution of the code
-- computing the qualified expression.
if Nkind (Expr) = N_Identifier
and then Is_Internal_Name (Chars (Expr))
and then
Nkind (Parent (Entity (Expr))) = N_Object_Declaration
then
Ins_Nod := Parent (Entity (Expr));
else
Ins_Nod := Expr;
end if;
end if;
if Is_Constrained (Siz_Typ)
and then Ekind (Siz_Typ) /= E_String_Literal_Subtype
then
-- For CCG targets, the largest array may have up to 2**31-1
-- components (i.e. 2 gigabytes if each array component is
-- one byte). This ensures that fat pointer fields do not
-- overflow, since they are 32-bit integer types, and also
-- ensures that 'Length can be computed at run time.
if Modify_Tree_For_C then
Cond :=
Make_Op_Gt (Loc,
Left_Opnd => Size_In_Storage_Elements (Siz_Typ),
Right_Opnd => Make_Integer_Literal (Loc,
Uint_2 ** 31 - Uint_1));
-- For native targets the largest object is 3.5 gigabytes
else
Cond :=
Make_Op_Gt (Loc,
Left_Opnd => Size_In_Storage_Elements (Siz_Typ),
Right_Opnd => Make_Integer_Literal (Loc,
Uint_7 * (Uint_2 ** 29)));
end if;
Insert_Action (Ins_Nod,
Make_Raise_Storage_Error (Loc,
Condition => Cond,
Reason => SE_Object_Too_Large));
if Entity (Cond) = Standard_True then
Error_Msg_N
("object too large: Storage_Error will be raised at "
& "run time??", N);
end if;
end if;
end;
end if;
end if;
-- If no storage pool has been specified, or the storage pool
-- is System.Pool_Global.Global_Pool_Object, and the restriction
-- No_Standard_Allocators_After_Elaboration is present, then generate
-- a call to Elaboration_Allocators.Check_Standard_Allocator.
if Nkind (N) = N_Allocator
and then (No (Storage_Pool (N))
or else Is_RTE (Storage_Pool (N), RE_Global_Pool_Object))
and then Restriction_Active (No_Standard_Allocators_After_Elaboration)
then
Insert_Action (N,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Check_Standard_Allocator), Loc)));
end if;
-- Handle case of qualified expression (other than optimization above)
if Nkind (Expression (N)) = N_Qualified_Expression then
Expand_Allocator_Expression (N);
return;
end if;
-- If the allocator is for a type which requires initialization, and
-- there is no initial value (i.e. operand is a subtype indication
-- rather than a qualified expression), then we must generate a call to
-- the initialization routine using an expressions action node:
-- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
-- Here ptr_T is the pointer type for the allocator, and T is the
-- subtype of the allocator. A special case arises if the designated
-- type of the access type is a task or contains tasks. In this case
-- the call to Init (Temp.all ...) is replaced by code that ensures
-- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
-- for details). In addition, if the type T is a task type, then the
-- first argument to Init must be converted to the task record type.
declare
T : constant Entity_Id := Etype (Expression (N));
Args : List_Id;
Decls : List_Id;
Decl : Node_Id;
Discr : Elmt_Id;
Init : Entity_Id;
Init_Arg1 : Node_Id;
Init_Call : Node_Id;
Temp_Decl : Node_Id;
Temp_Type : Entity_Id;
begin
-- Apply constraint checks against designated subtype (RM 4.8(10/2))
-- but ignore the expression if the No_Initialization flag is set.
-- Discriminant checks will be generated by the expansion below.
if Is_Array_Type (Dtyp) and then not No_Initialization (N) then
Apply_Constraint_Check (Expression (N), Dtyp, No_Sliding => True);
if Nkind (Expression (N)) = N_Raise_Constraint_Error then
Rewrite (N, New_Copy (Expression (N)));
Set_Etype (N, PtrT);
return;
end if;
end if;
if No_Initialization (N) then
-- Even though this might be a simple allocation, create a custom
-- Allocate if the context requires it.
if Present (Finalization_Master (PtrT)) then
Build_Allocate_Deallocate_Proc
(N => N,
Is_Allocate => True);
end if;
-- Optimize the default allocation of an array object when pragma
-- Initialize_Scalars or Normalize_Scalars is in effect. Construct an
-- in-place initialization aggregate which may be convert into a fast
-- memset by the backend.
elsif Init_Or_Norm_Scalars
and then Is_Array_Type (T)
-- The array must lack atomic components because they are treated
-- as non-static, and as a result the backend will not initialize
-- the memory in one go.
and then not Has_Atomic_Components (T)
-- The array must not be packed because the invalid values in
-- System.Scalar_Values are multiples of Storage_Unit.
and then not Is_Packed (T)
-- The array must have static non-empty ranges, otherwise the
-- backend cannot initialize the memory in one go.
and then Has_Static_Non_Empty_Array_Bounds (T)
-- The optimization is only relevant for arrays of scalar types
and then Is_Scalar_Type (Component_Type (T))
-- Similar to regular array initialization using a type init proc,
-- predicate checks are not performed because the initialization
-- values are intentionally invalid, and may violate the predicate.
and then not Has_Predicates (Component_Type (T))
-- The component type must have a single initialization value
and then Needs_Simple_Initialization
(Typ => Component_Type (T),
Consider_IS => True)
then
Set_Analyzed (N);
Temp := Make_Temporary (Loc, 'P');
-- Generate:
-- Temp : Ptr_Typ := new ...;
Insert_Action
(Assoc_Node => N,
Ins_Action =>
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (PtrT, Loc),
Expression => Relocate_Node (N)),
Suppress => All_Checks);
-- Generate:
-- Temp.all := (others => ...);
Insert_Action
(Assoc_Node => N,
Ins_Action =>
Make_Assignment_Statement (Loc,
Name =>
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Temp, Loc)),
Expression =>
Get_Simple_Init_Val
(Typ => T,
N => N,
Size => Esize (Component_Type (T)))),
Suppress => All_Checks);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze_And_Resolve (N, PtrT);
Apply_Predicate_Check (N, Dtyp, Deref => True);
-- Case of no initialization procedure present
elsif not Has_Non_Null_Base_Init_Proc (T) then
-- Case of simple initialization required
if Needs_Simple_Initialization (T) then
Check_Restriction (No_Default_Initialization, N);
Rewrite (Expression (N),
Make_Qualified_Expression (Loc,
Subtype_Mark => New_Occurrence_Of (T, Loc),
Expression => Get_Simple_Init_Val (T, N)));
Analyze_And_Resolve (Expression (Expression (N)), T);
Analyze_And_Resolve (Expression (N), T);
Set_Paren_Count (Expression (Expression (N)), 1);
Expand_N_Allocator (N);
-- No initialization required
else
Build_Allocate_Deallocate_Proc
(N => N,
Is_Allocate => True);
end if;
-- Case of initialization procedure present, must be called
-- NOTE: There is a *huge* amount of code duplication here from
-- Build_Initialization_Call. We should probably refactor???
else
Check_Restriction (No_Default_Initialization, N);
if not Restriction_Active (No_Default_Initialization) then
Init := Base_Init_Proc (T);
Nod := N;
Temp := Make_Temporary (Loc, 'P');
-- Construct argument list for the initialization routine call
Init_Arg1 :=
Make_Explicit_Dereference (Loc,
Prefix =>
New_Occurrence_Of (Temp, Loc));
Set_Assignment_OK (Init_Arg1);
Temp_Type := PtrT;
-- The initialization procedure expects a specific type. if the
-- context is access to class wide, indicate that the object
-- being allocated has the right specific type.
if Is_Class_Wide_Type (Dtyp) then
Init_Arg1 := Unchecked_Convert_To (T, Init_Arg1);
end if;
-- If designated type is a concurrent type or if it is private
-- type whose definition is a concurrent type, the first
-- argument in the Init routine has to be unchecked conversion
-- to the corresponding record type. If the designated type is
-- a derived type, also convert the argument to its root type.
if Is_Concurrent_Type (T) then
Init_Arg1 :=
Unchecked_Convert_To (
Corresponding_Record_Type (T), Init_Arg1);
elsif Is_Private_Type (T)
and then Present (Full_View (T))
and then Is_Concurrent_Type (Full_View (T))
then
Init_Arg1 :=
Unchecked_Convert_To
(Corresponding_Record_Type (Full_View (T)), Init_Arg1);
elsif Etype (First_Formal (Init)) /= Base_Type (T) then
declare
Ftyp : constant Entity_Id := Etype (First_Formal (Init));
begin
Init_Arg1 := OK_Convert_To (Etype (Ftyp), Init_Arg1);
Set_Etype (Init_Arg1, Ftyp);
end;
end if;
Args := New_List (Init_Arg1);
-- For the task case, pass the Master_Id of the access type as
-- the value of the _Master parameter, and _Chain as the value
-- of the _Chain parameter (_Chain will be defined as part of
-- the generated code for the allocator).
-- In Ada 2005, the context may be a function that returns an
-- anonymous access type. In that case the Master_Id has been
-- created when expanding the function declaration.
if Has_Task (T) then
if No (Master_Id (Base_Type (PtrT))) then
-- The designated type was an incomplete type, and the
-- access type did not get expanded. Salvage it now.
if Present (Parent (Base_Type (PtrT))) then
Expand_N_Full_Type_Declaration
(Parent (Base_Type (PtrT)));
-- When the allocator has a subtype indication then a
-- constraint is present and an itype has been added by
-- Analyze_Allocator as the subtype of this allocator.
-- If an allocator with constraints is called in the
-- return statement of a function returning a general
-- access type, then propagate to the itype the master
-- of the general access type (since it is the master
-- associated with the returned object).
elsif Is_Itype (PtrT)
and then Ekind (Current_Scope) = E_Function
and then Ekind (Etype (Current_Scope))
= E_General_Access_Type
and then In_Return_Value (N)
then
Set_Master_Id (PtrT,
Master_Id (Etype (Current_Scope)));
-- The only other possibility is an itype. For this
-- case, the master must exist in the context. This is
-- the case when the allocator initializes an access
-- component in an init-proc.
else
pragma Assert (Is_Itype (PtrT));
Build_Master_Renaming (PtrT, N);
end if;
end if;
-- If the context of the allocator is a declaration or an
-- assignment, we can generate a meaningful image for it,
-- even though subsequent assignments might remove the
-- connection between task and entity. We build this image
-- when the left-hand side is a simple variable, a simple
-- indexed assignment or a simple selected component.
if Nkind (Parent (N)) = N_Assignment_Statement then
declare
Nam : constant Node_Id := Name (Parent (N));
begin
if Is_Entity_Name (Nam) then
Decls :=
Build_Task_Image_Decls
(Loc,
New_Occurrence_Of
(Entity (Nam), Sloc (Nam)), T);
elsif Nkind (Nam) in N_Indexed_Component
| N_Selected_Component
and then Is_Entity_Name (Prefix (Nam))
then
Decls :=
Build_Task_Image_Decls
(Loc, Nam, Etype (Prefix (Nam)));
else
Decls := Build_Task_Image_Decls (Loc, T, T);
end if;
end;
elsif Nkind (Parent (N)) = N_Object_Declaration then
Decls :=
Build_Task_Image_Decls
(Loc, Defining_Identifier (Parent (N)), T);
else
Decls := Build_Task_Image_Decls (Loc, T, T);
end if;
if Restriction_Active (No_Task_Hierarchy) then
Append_To
(Args, Make_Integer_Literal (Loc, Library_Task_Level));
else
Append_To (Args,
New_Occurrence_Of
(Master_Id (Base_Type (Root_Type (PtrT))), Loc));
end if;
Append_To (Args, Make_Identifier (Loc, Name_uChain));
Decl := Last (Decls);
Append_To (Args,
New_Occurrence_Of (Defining_Identifier (Decl), Loc));
-- Has_Task is false, Decls not used
else
Decls := No_List;
end if;
-- Add discriminants if discriminated type
declare
Dis : Boolean := False;
Typ : Entity_Id := T;
begin
if Has_Discriminants (T) then
Dis := True;
-- Type may be a private type with no visible discriminants
-- in which case check full view if in scope, or the
-- underlying_full_view if dealing with a type whose full
-- view may be derived from a private type whose own full
-- view has discriminants.
elsif Is_Private_Type (T) then
if Present (Full_View (T))
and then Has_Discriminants (Full_View (T))
then
Dis := True;
Typ := Full_View (T);
elsif Present (Underlying_Full_View (T))
and then Has_Discriminants (Underlying_Full_View (T))
then
Dis := True;
Typ := Underlying_Full_View (T);
end if;
end if;
if Dis then
-- If the allocated object will be constrained by the
-- default values for discriminants, then build a subtype
-- with those defaults, and change the allocated subtype
-- to that. Note that this happens in fewer cases in Ada
-- 2005 (AI-363).
if not Is_Constrained (Typ)
and then Present (Discriminant_Default_Value
(First_Discriminant (Typ)))
and then (Ada_Version < Ada_2005
or else not
Object_Type_Has_Constrained_Partial_View
(Typ, Current_Scope))
then
Typ := Build_Default_Subtype (Typ, N);
Set_Expression (N, New_Occurrence_Of (Typ, Loc));
end if;
Discr := First_Elmt (Discriminant_Constraint (Typ));
while Present (Discr) loop
Nod := Node (Discr);
Append (New_Copy_Tree (Node (Discr)), Args);
-- AI-416: when the discriminant constraint is an
-- anonymous access type make sure an accessibility
-- check is inserted if necessary (3.10.2(22.q/2))
if Ada_Version >= Ada_2005
and then
Ekind (Etype (Nod)) = E_Anonymous_Access_Type
and then not
No_Dynamic_Accessibility_Checks_Enabled (Nod)
then
Apply_Accessibility_Check
(Nod, Typ, Insert_Node => Nod);
end if;
Next_Elmt (Discr);
end loop;
end if;
-- When the designated subtype is unconstrained and
-- the allocator specifies a constrained subtype (or
-- such a subtype has been created, such as above by
-- Build_Default_Subtype), associate that subtype with
-- the dereference of the allocator's access value.
-- This is needed by the expander for cases where the
-- access type has a Designated_Storage_Model in order
-- to support allocation of a host object of the right
-- size for passing to the initialization procedure.
if not Is_Constrained (Dtyp)
and then Is_Constrained (Typ)
then
declare
Deref : constant Node_Id := Unqual_Conv (Init_Arg1);
begin
pragma Assert (Nkind (Deref) = N_Explicit_Dereference);
Set_Actual_Designated_Subtype (Deref, Typ);
end;
end if;
end;
-- We set the allocator as analyzed so that when we analyze
-- the if expression node, we do not get an unwanted recursive
-- expansion of the allocator expression.
Set_Analyzed (N, True);
Nod := Relocate_Node (N);
-- Here is the transformation:
-- input: new Ctrl_Typ
-- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
-- Ctrl_TypIP (Temp.all, ...);
-- [Deep_]Initialize (Temp.all);
-- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
-- is the subtype of the allocator.
Temp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Temp_Type, Loc),
Expression => Nod);
Set_Assignment_OK (Temp_Decl);
Insert_Action (N, Temp_Decl, Suppress => All_Checks);
Build_Allocate_Deallocate_Proc (Temp_Decl, True);
-- If the designated type is a task type or contains tasks,
-- create block to activate created tasks, and insert
-- declaration for Task_Image variable ahead of call.
if Has_Task (T) then
declare
L : constant List_Id := New_List;
Blk : Node_Id;
begin
Build_Task_Allocate_Block (L, Nod, Args);
Blk := Last (L);
Insert_List_Before (First (Declarations (Blk)), Decls);
Insert_Actions (N, L);
end;
else
Insert_Action (N,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Init, Loc),
Parameter_Associations => Args));
end if;
if Needs_Finalization (T) then
-- Generate:
-- [Deep_]Initialize (Init_Arg1);
Init_Call :=
Make_Init_Call
(Obj_Ref => New_Copy_Tree (Init_Arg1),
Typ => T);
-- Guard against a missing [Deep_]Initialize when the
-- designated type was not properly frozen.
if Present (Init_Call) then
Insert_Action (N, Init_Call);
end if;
end if;
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze_And_Resolve (N, PtrT);
Apply_Predicate_Check (N, Dtyp, Deref => True);
-- When designated type has Default_Initial_Condition aspects,
-- make a call to the type's DIC procedure to perform the
-- checks. Theoretically this might also be needed for cases
-- where the type doesn't have an init proc, but those should
-- be very uncommon, and for now we only support the init proc
-- case. ???
if Has_DIC (Dtyp)
and then Present (DIC_Procedure (Dtyp))
and then not Has_Null_Body (DIC_Procedure (Dtyp))
then
Insert_Action (N,
Build_DIC_Call (Loc,
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Temp, Loc)),
Dtyp));
end if;
end if;
end if;
end;
-- Ada 2005 (AI-251): If the allocator is for a class-wide interface
-- object that has been rewritten as a reference, we displace "this"
-- to reference properly its secondary dispatch table.
if Nkind (N) = N_Identifier and then Is_Interface (Dtyp) then
Displace_Allocator_Pointer (N);
end if;
exception
when RE_Not_Available =>
return;
end Expand_N_Allocator;
-----------------------
-- Expand_N_And_Then --
-----------------------
procedure Expand_N_And_Then (N : Node_Id)
renames Expand_Short_Circuit_Operator;
------------------------------
-- Expand_N_Case_Expression --
------------------------------
procedure Expand_N_Case_Expression (N : Node_Id) is
function Is_Copy_Type (Typ : Entity_Id) return Boolean;
-- Return True if we can copy objects of this type when expanding a case
-- expression.
------------------
-- Is_Copy_Type --
------------------
function Is_Copy_Type (Typ : Entity_Id) return Boolean is
begin
-- If Minimize_Expression_With_Actions is True, we can afford to copy
-- large objects, as long as they are constrained and not limited.
return
Is_Elementary_Type (Underlying_Type (Typ))
or else
(Minimize_Expression_With_Actions
and then Is_Constrained (Underlying_Type (Typ))
and then not Is_Limited_Type (Underlying_Type (Typ)));
end Is_Copy_Type;
-- Local variables
Loc : constant Source_Ptr := Sloc (N);
Par : constant Node_Id := Parent (N);
Typ : constant Entity_Id := Etype (N);
Acts : List_Id;
Alt : Node_Id;
Case_Stmt : Node_Id;
Decl : Node_Id;
Target : Entity_Id := Empty;
Target_Typ : Entity_Id;
In_Predicate : Boolean := False;
-- Flag set when the case expression appears within a predicate
Optimize_Return_Stmt : Boolean := False;
-- Flag set when the case expression can be optimized in the context of
-- a simple return statement.
-- Start of processing for Expand_N_Case_Expression
begin
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- If the case expression is a predicate specification, and the type
-- to which it applies has a static predicate aspect, do not expand,
-- because it will be converted to the proper predicate form later.
if Ekind (Current_Scope) in E_Function | E_Procedure
and then Is_Predicate_Function (Current_Scope)
then
In_Predicate := True;
if Has_Static_Predicate_Aspect (Etype (First_Entity (Current_Scope)))
then
return;
end if;
end if;
-- When the type of the case expression is elementary, expand
-- (case X is when A => AX, when B => BX ...)
-- into
-- do
-- Target : Typ;
-- case X is
-- when A =>
-- Target := AX;
-- when B =>
-- Target := BX;
-- ...
-- end case;
-- in Target end;
-- In all other cases expand into
-- type Ptr_Typ is access all Typ;
-- Target : Ptr_Typ;
-- case X is
-- when A =>
-- Target := AX'Unrestricted_Access;
-- when B =>
-- Target := BX'Unrestricted_Access;
-- ...
-- end case;
-- and replace the case expression by a reference to Target.all.
-- This approach avoids extra copies of potentially large objects. It
-- also allows handling of values of limited or unconstrained types.
-- Note that we do the copy also for constrained, nonlimited types
-- when minimizing expressions with actions (e.g. when generating C
-- code) since it allows us to do the optimization below in more cases.
Case_Stmt :=
Make_Case_Statement (Loc,
Expression => Expression (N),
Alternatives => New_List);
-- Preserve the original context for which the case statement is being
-- generated. This is needed by the finalization machinery to prevent
-- the premature finalization of controlled objects found within the
-- case statement.
Set_From_Conditional_Expression (Case_Stmt);
Acts := New_List;
-- Small optimization: when the case expression appears in the context
-- of a simple return statement, expand into
-- case X is
-- when A =>
-- return AX;
-- when B =>
-- return BX;
-- ...
-- end case;
-- This makes the expansion much easier when expressions are calls to
-- a BIP function. But do not perform it when the return statement is
-- within a predicate function, as this causes spurious errors.
Optimize_Return_Stmt :=
Nkind (Par) = N_Simple_Return_Statement and then not In_Predicate;
-- Scalar/Copy case
if Is_Copy_Type (Typ) then
Target_Typ := Typ;
-- Otherwise create an access type to handle the general case using
-- 'Unrestricted_Access.
-- Generate:
-- type Ptr_Typ is access all Typ;
else
if Generate_C_Code then
-- We cannot ensure that correct C code will be generated if any
-- temporary is created down the line (to e.g. handle checks or
-- capture values) since we might end up with dangling references
-- to local variables, so better be safe and reject the construct.
Error_Msg_N
("case expression too complex, use case statement instead", N);
end if;
Target_Typ := Make_Temporary (Loc, 'P');
Append_To (Acts,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Target_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
end if;
-- Create the declaration of the target which captures the value of the
-- expression.
-- Generate:
-- Target : [Ptr_]Typ;
if not Optimize_Return_Stmt then
Target := Make_Temporary (Loc, 'T');
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Target,
Object_Definition => New_Occurrence_Of (Target_Typ, Loc));
Set_No_Initialization (Decl);
Append_To (Acts, Decl);
end if;
-- Process the alternatives
Alt := First (Alternatives (N));
while Present (Alt) loop
declare
Alt_Expr : Node_Id := Expression (Alt);
Alt_Loc : constant Source_Ptr := Sloc (Alt_Expr);
LHS : Node_Id;
Stmts : List_Id;
begin
-- Take the unrestricted access of the expression value for non-
-- scalar types. This approach avoids big copies and covers the
-- limited and unconstrained cases.
-- Generate:
-- return AX['Unrestricted_Access];
if Optimize_Return_Stmt then
Stmts := New_List (
Make_Simple_Return_Statement (Alt_Loc,
Expression => Alt_Expr));
-- Generate:
-- Target := AX['Unrestricted_Access];
else
if not Is_Copy_Type (Typ) then
Alt_Expr :=
Make_Attribute_Reference (Alt_Loc,
Prefix => Relocate_Node (Alt_Expr),
Attribute_Name => Name_Unrestricted_Access);
end if;
LHS := New_Occurrence_Of (Target, Loc);
Set_Assignment_OK (LHS);
Stmts := New_List (
Make_Assignment_Statement (Alt_Loc,
Name => LHS,
Expression => Alt_Expr));
end if;
-- Propagate declarations inserted in the node by Insert_Actions
-- (for example, temporaries generated to remove side effects).
-- These actions must remain attached to the alternative, given
-- that they are generated by the corresponding expression.
if Present (Actions (Alt)) then
Prepend_List (Actions (Alt), Stmts);
end if;
Append_To
(Alternatives (Case_Stmt),
Make_Case_Statement_Alternative (Sloc (Alt),
Discrete_Choices => Discrete_Choices (Alt),
Statements => Stmts));
-- Finalize any transient objects on exit from the alternative.
-- Note that this needs to be done only after Stmts is attached
-- to the Alternatives list above (for Safe_To_Capture_Value).
Process_Transients_In_Expression (N, Stmts);
end;
Next (Alt);
end loop;
-- Rewrite the parent return statement as a case statement
if Optimize_Return_Stmt then
Rewrite (Par, Case_Stmt);
Analyze (Par);
-- Otherwise rewrite the case expression itself
else
Append_To (Acts, Case_Stmt);
if Is_Copy_Type (Typ) then
Rewrite (N,
Make_Expression_With_Actions (Loc,
Expression => New_Occurrence_Of (Target, Loc),
Actions => Acts));
else
Insert_Actions (N, Acts);
Rewrite (N,
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Target, Loc)));
end if;
Analyze_And_Resolve (N, Typ);
end if;
end Expand_N_Case_Expression;
-----------------------------------
-- Expand_N_Explicit_Dereference --
-----------------------------------
procedure Expand_N_Explicit_Dereference (N : Node_Id) is
begin
-- Insert explicit dereference call for the checked storage pool case
Insert_Dereference_Action (Prefix (N));
-- If the type is an Atomic type for which Atomic_Sync is enabled, then
-- we set the atomic sync flag.
if Is_Atomic (Etype (N))
and then not Atomic_Synchronization_Disabled (Etype (N))
then
Activate_Atomic_Synchronization (N);
end if;
end Expand_N_Explicit_Dereference;
--------------------------------------
-- Expand_N_Expression_With_Actions --
--------------------------------------
procedure Expand_N_Expression_With_Actions (N : Node_Id) is
Acts : constant List_Id := Actions (N);
procedure Force_Boolean_Evaluation (Expr : Node_Id);
-- Force the evaluation of Boolean expression Expr
------------------------------
-- Force_Boolean_Evaluation --
------------------------------
procedure Force_Boolean_Evaluation (Expr : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Flag_Decl : Node_Id;
Flag_Id : Entity_Id;
begin
-- Relocate the expression to the actions list by capturing its value
-- in a Boolean flag. Generate:
-- Flag : constant Boolean := Expr;
Flag_Id := Make_Temporary (Loc, 'F');
Flag_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Flag_Id,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
Expression => Relocate_Node (Expr));
Append (Flag_Decl, Acts);
Analyze (Flag_Decl);
-- Replace the expression with a reference to the flag
Rewrite (Expression (N), New_Occurrence_Of (Flag_Id, Loc));
Analyze (Expression (N));
end Force_Boolean_Evaluation;
-- Start of processing for Expand_N_Expression_With_Actions
begin
-- Do not evaluate the expression when it denotes an entity because the
-- expression_with_actions node will be replaced by the reference.
if Is_Entity_Name (Expression (N)) then
null;
-- Do not evaluate the expression when there are no actions because the
-- expression_with_actions node will be replaced by the expression.
elsif Is_Empty_List (Acts) then
null;
-- Force the evaluation of the expression by capturing its value in a
-- temporary. This ensures that aliases of transient objects do not leak
-- to the expression of the expression_with_actions node:
-- do
-- Trans_Id : Ctrl_Typ := ...;
-- Alias : ... := Trans_Id;
-- in ... Alias ... end;
-- In the example above, Trans_Id cannot be finalized at the end of the
-- actions list because this may affect the alias and the final value of
-- the expression_with_actions. Forcing the evaluation encapsulates the
-- reference to the Alias within the actions list:
-- do
-- Trans_Id : Ctrl_Typ := ...;
-- Alias : ... := Trans_Id;
-- Val : constant Boolean := ... Alias ...;
-- <finalize Trans_Id>
-- in Val end;
-- Once this transformation is performed, it is safe to finalize the
-- transient object at the end of the actions list.
-- Note that Force_Evaluation does not remove side effects in operators
-- because it assumes that all operands are evaluated and side effect
-- free. This is not the case when an operand depends implicitly on the
-- transient object through the use of access types.
elsif Is_Boolean_Type (Etype (Expression (N))) then
Force_Boolean_Evaluation (Expression (N));
-- The expression of an expression_with_actions node may not necessarily
-- be Boolean when the node appears in an if expression. In this case do
-- the usual forced evaluation to encapsulate potential aliasing.
else
-- A check is also needed since the subtype of the EWA node and the
-- subtype of the expression may differ (for example, the EWA node
-- may have a null-excluding access subtype).
Apply_Constraint_Check (Expression (N), Etype (N));
Force_Evaluation (Expression (N));
end if;
-- Process transient objects found within the actions of the EWA node
Process_Transients_In_Expression (N, Acts);
-- Deal with case where there are no actions. In this case we simply
-- rewrite the node with its expression since we don't need the actions
-- and the specification of this node does not allow a null action list.
-- Note: we use Rewrite instead of Replace, because Codepeer is using
-- the expanded tree and relying on being able to retrieve the original
-- tree in cases like this. This raises a whole lot of issues of whether
-- we have problems elsewhere, which will be addressed in the future???
if Is_Empty_List (Acts) then
Rewrite (N, Relocate_Node (Expression (N)));
end if;
end Expand_N_Expression_With_Actions;
----------------------------
-- Expand_N_If_Expression --
----------------------------
-- Deal with limited types and condition actions
procedure Expand_N_If_Expression (N : Node_Id) is
Cond : constant Node_Id := First (Expressions (N));
Loc : constant Source_Ptr := Sloc (N);
Thenx : constant Node_Id := Next (Cond);
Elsex : constant Node_Id := Next (Thenx);
Par : constant Node_Id := Parent (N);
Typ : constant Entity_Id := Etype (N);
Force_Expand : constant Boolean := Is_Anonymous_Access_Actual (N);
-- Determine if we are dealing with a special case of a conditional
-- expression used as an actual for an anonymous access type which
-- forces us to transform the if expression into an expression with
-- actions in order to create a temporary to capture the level of the
-- expression in each branch.
function OK_For_Single_Subtype (T1, T2 : Entity_Id) return Boolean;
-- Return true if it is acceptable to use a single subtype for two
-- dependent expressions of subtype T1 and T2 respectively, which are
-- unidimensional arrays whose index bounds are known at compile time.
---------------------------
-- OK_For_Single_Subtype --
---------------------------
function OK_For_Single_Subtype (T1, T2 : Entity_Id) return Boolean is
Lo1, Hi1 : Uint;
Lo2, Hi2 : Uint;
begin
Get_First_Index_Bounds (T1, Lo1, Hi1);
Get_First_Index_Bounds (T2, Lo2, Hi2);
-- Return true if the length of the covering subtype is not too large
return
UI_Max (Hi1, Hi2) - UI_Min (Lo1, Lo2) < Too_Large_Length_For_Array;
end OK_For_Single_Subtype;
-- Local variables
Actions : List_Id;
Decl : Node_Id;
Expr : Node_Id;
New_If : Node_Id;
New_N : Node_Id;
Optimize_Return_Stmt : Boolean := False;
-- Flag set when the if expression can be optimized in the context of
-- a simple return statement.
-- Start of processing for Expand_N_If_Expression
begin
-- Deal with non-standard booleans
Adjust_Condition (Cond);
-- Check for MINIMIZED/ELIMINATED overflow mode.
-- Apply_Arithmetic_Overflow_Check will not deal with Then/Else_Actions
-- so skip this step if any actions are present.
if Minimized_Eliminated_Overflow_Check (N)
and then No (Then_Actions (N))
and then No (Else_Actions (N))
then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Fold at compile time if condition known. We have already folded
-- static if expressions, but it is possible to fold any case in which
-- the condition is known at compile time, even though the result is
-- non-static.
-- Note that we don't do the fold of such cases in Sem_Elab because
-- it can cause infinite loops with the expander adding a conditional
-- expression, and Sem_Elab circuitry removing it repeatedly.
if Compile_Time_Known_Value (Cond) then
declare
function Fold_Known_Value (Cond : Node_Id) return Boolean;
-- Fold at compile time. Assumes condition known. Return True if
-- folding occurred, meaning we're done.
----------------------
-- Fold_Known_Value --
----------------------
function Fold_Known_Value (Cond : Node_Id) return Boolean is
begin
if Is_True (Expr_Value (Cond)) then
Expr := Thenx;
Actions := Then_Actions (N);
else
Expr := Elsex;
Actions := Else_Actions (N);
end if;
Remove (Expr);
if Present (Actions) then
-- To minimize the use of Expression_With_Actions, just skip
-- the optimization as it is not critical for correctness.
if Minimize_Expression_With_Actions then
return False;
end if;
Rewrite (N,
Make_Expression_With_Actions (Loc,
Expression => Relocate_Node (Expr),
Actions => Actions));
Analyze_And_Resolve (N, Typ);
else
Rewrite (N, Relocate_Node (Expr));
end if;
-- Note that the result is never static (legitimate cases of
-- static if expressions were folded in Sem_Eval).
Set_Is_Static_Expression (N, False);
return True;
end Fold_Known_Value;
begin
if Fold_Known_Value (Cond) then
return;
end if;
end;
end if;
-- Small optimization: when the if expression appears in the context of
-- a simple return statement, expand into
-- if cond then
-- return then-expr
-- else
-- return else-expr;
-- end if;
-- This makes the expansion much easier when expressions are calls to
-- a BIP function. But do not perform it when the return statement is
-- within a predicate function, as this causes spurious errors.
Optimize_Return_Stmt :=
Nkind (Par) = N_Simple_Return_Statement
and then not (Ekind (Current_Scope) in E_Function | E_Procedure
and then Is_Predicate_Function (Current_Scope));
if Optimize_Return_Stmt then
-- When the "then" or "else" expressions involve controlled function
-- calls, generated temporaries are chained on the corresponding list
-- of actions. These temporaries need to be finalized after the if
-- expression is evaluated.
Process_Transients_In_Expression (N, Then_Actions (N));
Process_Transients_In_Expression (N, Else_Actions (N));
New_If :=
Make_Implicit_If_Statement (N,
Condition => Relocate_Node (Cond),
Then_Statements => New_List (
Make_Simple_Return_Statement (Sloc (Thenx),
Expression => Relocate_Node (Thenx))),
Else_Statements => New_List (
Make_Simple_Return_Statement (Sloc (Elsex),
Expression => Relocate_Node (Elsex))));
-- Preserve the original context for which the if statement is
-- being generated. This is needed by the finalization machinery
-- to prevent the premature finalization of controlled objects
-- found within the if statement.
Set_From_Conditional_Expression (New_If);
-- If the type is by reference, then we expand as follows to avoid the
-- possibility of improper copying.
-- type Ptr is access all Typ;
-- Cnn : Ptr;
-- if cond then
-- <<then actions>>
-- Cnn := then-expr'Unrestricted_Access;
-- else
-- <<else actions>>
-- Cnn := else-expr'Unrestricted_Access;
-- end if;
-- and replace the if expression by a reference to Cnn.all.
elsif Is_By_Reference_Type (Typ) then
-- When the "then" or "else" expressions involve controlled function
-- calls, generated temporaries are chained on the corresponding list
-- of actions. These temporaries need to be finalized after the if
-- expression is evaluated.
Process_Transients_In_Expression (N, Then_Actions (N));
Process_Transients_In_Expression (N, Else_Actions (N));
declare
Cnn : constant Entity_Id := Make_Temporary (Loc, 'C', N);
Ptr_Typ : constant Entity_Id := Make_Temporary (Loc, 'A');
begin
-- Generate:
-- type Ann is access all Typ;
Insert_Action (N,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ptr_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication => New_Occurrence_Of (Typ, Loc))));
-- Generate:
-- Cnn : Ann;
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Cnn,
Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc));
-- Generate:
-- if Cond then
-- Cnn := <Thenx>'Unrestricted_Access;
-- else
-- Cnn := <Elsex>'Unrestricted_Access;
-- end if;
New_If :=
Make_Implicit_If_Statement (N,
Condition => Relocate_Node (Cond),
Then_Statements => New_List (
Make_Assignment_Statement (Sloc (Thenx),
Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Thenx),
Attribute_Name => Name_Unrestricted_Access))),
Else_Statements => New_List (
Make_Assignment_Statement (Sloc (Elsex),
Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Elsex),
Attribute_Name => Name_Unrestricted_Access))));
-- Preserve the original context for which the if statement is
-- being generated. This is needed by the finalization machinery
-- to prevent the premature finalization of controlled objects
-- found within the if statement.
Set_From_Conditional_Expression (New_If);
New_N :=
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Cnn, Loc));
end;
-- If the result is a unidimensional unconstrained array but the two
-- dependent expressions have constrained subtypes with known bounds,
-- then we expand as follows:
-- subtype Txx is Typ (<static low-bound> .. <static high-bound>);
-- Cnn : Txx;
-- if cond then
-- <<then actions>>
-- Cnn (<then low-bound .. then high-bound>) := then-expr;
-- else
-- <<else actions>>
-- Cnn (<else low bound .. else high-bound>) := else-expr;
-- end if;
-- and replace the if expression by a slice of Cnn, provided that Txx
-- is not too large. This will create a static temporary instead of the
-- dynamic one of the next case and thus help the code generator.
-- Note that we need to deal with the case where the else expression is
-- itself such a slice, in order to catch if expressions with more than
-- two dependent expressions in the source code.
-- Also note that this creates variables on branches without an explicit
-- scope, causing troubles with e.g. the LLVM IR, so disable this
-- optimization when Unnest_Subprogram_Mode (enabled for LLVM).
elsif Is_Array_Type (Typ)
and then Number_Dimensions (Typ) = 1
and then not Is_Constrained (Typ)
and then Is_Constrained (Etype (Thenx))
and then Compile_Time_Known_Bounds (Etype (Thenx))
and then
((Is_Constrained (Etype (Elsex))
and then Compile_Time_Known_Bounds (Etype (Elsex))
and then OK_For_Single_Subtype (Etype (Thenx), Etype (Elsex)))
or else
(Nkind (Elsex) = N_Slice
and then Is_Constrained (Etype (Prefix (Elsex)))
and then Compile_Time_Known_Bounds (Etype (Prefix (Elsex)))
and then
OK_For_Single_Subtype (Etype (Thenx), Etype (Prefix (Elsex)))))
and then not Generate_C_Code
and then not Unnest_Subprogram_Mode
then
-- When the "then" or "else" expressions involve controlled function
-- calls, generated temporaries are chained on the corresponding list
-- of actions. These temporaries need to be finalized after the if
-- expression is evaluated.
Process_Transients_In_Expression (N, Then_Actions (N));
Process_Transients_In_Expression (N, Else_Actions (N));
declare
Ityp : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
function Build_New_Bound
(Then_Bnd : Uint;
Else_Bnd : Uint;
Slice_Bnd : Node_Id) return Node_Id;
-- Build a new bound from the bounds of the if expression
function To_Ityp (V : Uint) return Node_Id;
-- Convert V to an index value in Ityp
---------------------
-- Build_New_Bound --
---------------------
function Build_New_Bound
(Then_Bnd : Uint;
Else_Bnd : Uint;
Slice_Bnd : Node_Id) return Node_Id is
begin
-- We need to use the special processing for slices only if
-- they do not have compile-time known bounds; if they do, they
-- can be treated like any other expressions.
if Nkind (Elsex) = N_Slice
and then not Compile_Time_Known_Bounds (Etype (Elsex))
then
if Compile_Time_Known_Value (Slice_Bnd)
and then Expr_Value (Slice_Bnd) = Then_Bnd
then
return To_Ityp (Then_Bnd);
else
return Make_If_Expression (Loc,
Expressions => New_List (
Duplicate_Subexpr (Cond),
To_Ityp (Then_Bnd),
New_Copy_Tree (Slice_Bnd)));
end if;
elsif Then_Bnd = Else_Bnd then
return To_Ityp (Then_Bnd);
else
return Make_If_Expression (Loc,
Expressions => New_List (
Duplicate_Subexpr (Cond),
To_Ityp (Then_Bnd),
To_Ityp (Else_Bnd)));
end if;
end Build_New_Bound;
-------------
-- To_Ityp --
-------------
function To_Ityp (V : Uint) return Node_Id is
Result : constant Node_Id := Make_Integer_Literal (Loc, V);
begin
if Is_Enumeration_Type (Ityp) then
return
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ityp, Loc),
Attribute_Name => Name_Val,
Expressions => New_List (Result));
else
return Result;
end if;
end To_Ityp;
Ent : Node_Id;
Slice_Lo, Slice_Hi : Node_Id;
Subtyp_Ind : Node_Id;
Else_Lo, Else_Hi : Uint;
Min_Lo, Max_Hi : Uint;
Then_Lo, Then_Hi : Uint;
Then_List, Else_List : List_Id;
begin
Get_First_Index_Bounds (Etype (Thenx), Then_Lo, Then_Hi);
-- See the rationale in Build_New_Bound
if Nkind (Elsex) = N_Slice
and then not Compile_Time_Known_Bounds (Etype (Elsex))
then
Slice_Lo := Low_Bound (Discrete_Range (Elsex));
Slice_Hi := High_Bound (Discrete_Range (Elsex));
Get_First_Index_Bounds
(Etype (Prefix (Elsex)), Else_Lo, Else_Hi);
else
Slice_Lo := Empty;
Slice_Hi := Empty;
Get_First_Index_Bounds (Etype (Elsex), Else_Lo, Else_Hi);
end if;
Min_Lo := UI_Min (Then_Lo, Else_Lo);
Max_Hi := UI_Max (Then_Hi, Else_Hi);
-- Now we construct an array object with appropriate bounds and
-- mark it as internal to prevent useless initialization when
-- Initialize_Scalars is enabled. Also since this is the actual
-- result entity, we make sure we have debug information for it.
Subtyp_Ind :=
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List (
Make_Range (Loc,
Low_Bound => To_Ityp (Min_Lo),
High_Bound => To_Ityp (Max_Hi)))));
Ent := Make_Temporary (Loc, 'C');
Set_Is_Internal (Ent);
Set_Debug_Info_Needed (Ent);
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Object_Definition => Subtyp_Ind);
-- If the result of the expression appears as the initializing
-- expression of an object declaration, we can just rename the
-- result, rather than copying it.
Mutate_Ekind (Ent, E_Variable);
Set_OK_To_Rename (Ent);
Then_List := New_List (
Make_Assignment_Statement (Loc,
Name =>
Make_Slice (Loc,
Prefix => New_Occurrence_Of (Ent, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => To_Ityp (Then_Lo),
High_Bound => To_Ityp (Then_Hi))),
Expression => Relocate_Node (Thenx)));
Set_Suppress_Assignment_Checks (Last (Then_List));
-- See the rationale in Build_New_Bound
if Nkind (Elsex) = N_Slice
and then not Compile_Time_Known_Bounds (Etype (Elsex))
then
Else_List := New_List (
Make_Assignment_Statement (Loc,
Name =>
Make_Slice (Loc,
Prefix => New_Occurrence_Of (Ent, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => New_Copy_Tree (Slice_Lo),
High_Bound => New_Copy_Tree (Slice_Hi))),
Expression => Relocate_Node (Elsex)));
else
Else_List := New_List (
Make_Assignment_Statement (Loc,
Name =>
Make_Slice (Loc,
Prefix => New_Occurrence_Of (Ent, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => To_Ityp (Else_Lo),
High_Bound => To_Ityp (Else_Hi))),
Expression => Relocate_Node (Elsex)));
end if;
Set_Suppress_Assignment_Checks (Last (Else_List));
New_If :=
Make_Implicit_If_Statement (N,
Condition => Duplicate_Subexpr (Cond),
Then_Statements => Then_List,
Else_Statements => Else_List);
New_N :=
Make_Slice (Loc,
Prefix => New_Occurrence_Of (Ent, Loc),
Discrete_Range => Make_Range (Loc,
Low_Bound => Build_New_Bound (Then_Lo, Else_Lo, Slice_Lo),
High_Bound => Build_New_Bound (Then_Hi, Else_Hi, Slice_Hi)));
end;
-- If the result is an unconstrained array and the if expression is in a
-- context other than the initializing expression of the declaration of
-- an object, then we pull out the if expression as follows:
-- Cnn : constant typ := if-expression
-- and then replace the if expression with an occurrence of Cnn. This
-- avoids the need in the back end to create on-the-fly variable length
-- temporaries (which it cannot do!)
-- Note that the test for being in an object declaration avoids doing an
-- unnecessary expansion, and also avoids infinite recursion.
elsif Is_Array_Type (Typ)
and then not Is_Constrained (Typ)
and then not (Nkind (Par) = N_Object_Declaration
and then Expression (Par) = N)
then
declare
Cnn : constant Node_Id := Make_Temporary (Loc, 'C', N);
begin
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Cnn,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (N),
Has_Init_Expression => True));
Rewrite (N, New_Occurrence_Of (Cnn, Loc));
return;
end;
-- For other types, we only need to expand if there are other actions
-- associated with either branch or we need to force expansion to deal
-- with if expressions used as an actual of an anonymous access type.
elsif Present (Then_Actions (N))
or else Present (Else_Actions (N))
or else Force_Expand
then
-- We now wrap the actions into the appropriate expression
if Minimize_Expression_With_Actions
and then (Is_Elementary_Type (Underlying_Type (Typ))
or else Is_Constrained (Underlying_Type (Typ)))
then
-- When the "then" or "else" expressions involve controlled
-- function calls, generated temporaries are chained on the
-- corresponding list of actions. These temporaries need to
-- be finalized after the if expression is evaluated.
Process_Transients_In_Expression (N, Then_Actions (N));
Process_Transients_In_Expression (N, Else_Actions (N));
-- If we can't use N_Expression_With_Actions nodes, then we insert
-- the following sequence of actions (using Insert_Actions):
-- Cnn : typ;
-- if cond then
-- <<then actions>>
-- Cnn := then-expr;
-- else
-- <<else actions>>
-- Cnn := else-expr
-- end if;
-- and replace the if expression by a reference to Cnn
declare
Cnn : constant Node_Id := Make_Temporary (Loc, 'C', N);
begin
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Cnn,
Object_Definition => New_Occurrence_Of (Typ, Loc));
New_If :=
Make_Implicit_If_Statement (N,
Condition => Relocate_Node (Cond),
Then_Statements => New_List (
Make_Assignment_Statement (Sloc (Thenx),
Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
Expression => Relocate_Node (Thenx))),
Else_Statements => New_List (
Make_Assignment_Statement (Sloc (Elsex),
Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
Expression => Relocate_Node (Elsex))));
Set_Assignment_OK (Name (First (Then_Statements (New_If))));
Set_Assignment_OK (Name (First (Else_Statements (New_If))));
New_N := New_Occurrence_Of (Cnn, Loc);
end;
-- Regular path using Expression_With_Actions
else
-- We do not need to call Process_Transients_In_Expression on
-- the list of actions in this case, because the expansion of
-- Expression_With_Actions will do it.
if Present (Then_Actions (N)) then
Rewrite (Thenx,
Make_Expression_With_Actions (Sloc (Thenx),
Actions => Then_Actions (N),
Expression => Relocate_Node (Thenx)));
Set_Then_Actions (N, No_List);
Analyze_And_Resolve (Thenx, Typ);
end if;
if Present (Else_Actions (N)) then
Rewrite (Elsex,
Make_Expression_With_Actions (Sloc (Elsex),
Actions => Else_Actions (N),
Expression => Relocate_Node (Elsex)));
Set_Else_Actions (N, No_List);
Analyze_And_Resolve (Elsex, Typ);
end if;
-- We must force expansion into an expression with actions when
-- an if expression gets used directly as an actual for an
-- anonymous access type.
if Force_Expand then
declare
Cnn : constant Entity_Id := Make_Temporary (Loc, 'C');
Acts : List_Id;
begin
Acts := New_List;
-- Generate:
-- Cnn : Ann;
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Cnn,
Object_Definition => New_Occurrence_Of (Typ, Loc));
Append_To (Acts, Decl);
Set_No_Initialization (Decl);
-- Generate:
-- if Cond then
-- Cnn := <Thenx>;
-- else
-- Cnn := <Elsex>;
-- end if;
New_If :=
Make_Implicit_If_Statement (N,
Condition => Relocate_Node (Cond),
Then_Statements => New_List (
Make_Assignment_Statement (Sloc (Thenx),
Name => New_Occurrence_Of (Cnn, Sloc (Thenx)),
Expression => Relocate_Node (Thenx))),
Else_Statements => New_List (
Make_Assignment_Statement (Sloc (Elsex),
Name => New_Occurrence_Of (Cnn, Sloc (Elsex)),
Expression => Relocate_Node (Elsex))));
Append_To (Acts, New_If);
-- Generate:
-- do
-- ...
-- in Cnn end;
Rewrite (N,
Make_Expression_With_Actions (Loc,
Expression => New_Occurrence_Of (Cnn, Loc),
Actions => Acts));
Analyze_And_Resolve (N, Typ);
end;
end if;
return;
end if;
-- For the sake of GNATcoverage, generate an intermediate temporary in
-- the case where the if expression is a condition in an outer decision,
-- in order to make sure that no branch is shared between the decisions.
elsif Opt.Suppress_Control_Flow_Optimizations
and then Nkind (Original_Node (Par)) in N_Case_Expression
| N_Case_Statement
| N_If_Expression
| N_If_Statement
| N_Goto_When_Statement
| N_Loop_Statement
| N_Return_When_Statement
| N_Short_Circuit
then
declare
Cnn : constant Entity_Id := Make_Temporary (Loc, 'C');
Acts : List_Id;
begin
-- Generate:
-- do
-- Cnn : constant Typ := N;
-- in Cnn end
Acts := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Cnn,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (N)));
Rewrite (N,
Make_Expression_With_Actions (Loc,
Expression => New_Occurrence_Of (Cnn, Loc),
Actions => Acts));
Analyze_And_Resolve (N, Typ);
return;
end;
-- If no actions then no expansion needed, gigi will handle it using the
-- same approach as a C conditional expression.
else
return;
end if;
-- Fall through here for either the limited expansion, or the case of
-- inserting actions for nonlimited types. In both these cases, we must
-- move the SLOC of the parent If statement to the newly created one and
-- change it to the SLOC of the expression which, after expansion, will
-- correspond to what is being evaluated.
if Present (Par) and then Nkind (Par) = N_If_Statement then
Set_Sloc (New_If, Sloc (Par));
Set_Sloc (Par, Loc);
end if;
-- Move Then_Actions and Else_Actions, if any, to the new if statement
if Present (Then_Actions (N)) then
Prepend_List (Then_Actions (N), Then_Statements (New_If));
end if;
if Present (Else_Actions (N)) then
Prepend_List (Else_Actions (N), Else_Statements (New_If));
end if;
-- Rewrite the parent return statement as an if statement
if Optimize_Return_Stmt then
Rewrite (Par, New_If);
Analyze (Par);
-- Otherwise rewrite the if expression itself
else
Insert_Action (N, Decl);
Insert_Action (N, New_If);
Rewrite (N, New_N);
Analyze_And_Resolve (N, Typ);
end if;
end Expand_N_If_Expression;
-----------------
-- Expand_N_In --
-----------------
procedure Expand_N_In (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Restyp : constant Entity_Id := Etype (N);
Lop : constant Node_Id := Left_Opnd (N);
Rop : constant Node_Id := Right_Opnd (N);
Static : constant Boolean := Is_OK_Static_Expression (N);
procedure Substitute_Valid_Test;
-- Replaces node N by Lop'Valid. This is done when we have an explicit
-- test for the left operand being in range of its subtype.
---------------------------
-- Substitute_Valid_Test --
---------------------------
procedure Substitute_Valid_Test is
function Is_OK_Object_Reference (Nod : Node_Id) return Boolean;
-- Determine whether arbitrary node Nod denotes a source object that
-- may safely act as prefix of attribute 'Valid.
----------------------------
-- Is_OK_Object_Reference --
----------------------------
function Is_OK_Object_Reference (Nod : Node_Id) return Boolean is
Obj_Ref : constant Node_Id := Original_Node (Nod);
-- The original operand
begin
-- The object reference must be a source construct, otherwise the
-- codefix suggestion may refer to nonexistent code from a user
-- perspective.
return Comes_From_Source (Obj_Ref)
and then Is_Object_Reference (Unqual_Conv (Obj_Ref));
end Is_OK_Object_Reference;
-- Start of processing for Substitute_Valid_Test
begin
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Lop),
Attribute_Name => Name_Valid));
Analyze_And_Resolve (N, Restyp);
-- Emit a warning when the left-hand operand of the membership test
-- is a source object, otherwise the use of attribute 'Valid would be
-- illegal. The warning is not given when overflow checking is either
-- MINIMIZED or ELIMINATED, as the danger of optimization has been
-- eliminated above.
if Is_OK_Object_Reference (Lop)
and then Overflow_Check_Mode not in Minimized_Or_Eliminated
then
Error_Msg_N
("??explicit membership test may be optimized away", N);
Error_Msg_N -- CODEFIX
("\??use ''Valid attribute instead", N);
end if;
end Substitute_Valid_Test;
-- Local variables
Ltyp : Entity_Id;
Rtyp : Entity_Id;
-- Start of processing for Expand_N_In
begin
-- If set membership case, expand with separate procedure
if Present (Alternatives (N)) then
Expand_Set_Membership (N);
return;
end if;
-- Not set membership, proceed with expansion
Ltyp := Etype (Left_Opnd (N));
Rtyp := Etype (Right_Opnd (N));
-- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
-- type, then expand with a separate procedure. Note the use of the
-- flag No_Minimize_Eliminate to prevent infinite recursion.
if Minimized_Eliminated_Overflow_Check (Left_Opnd (N))
and then not No_Minimize_Eliminate (N)
then
Expand_Membership_Minimize_Eliminate_Overflow (N);
return;
end if;
-- Check case of explicit test for an expression in range of its
-- subtype. This is suspicious usage and we replace it with a 'Valid
-- test and give a warning for scalar types.
if Is_Scalar_Type (Ltyp)
-- Only relevant for source comparisons
and then Comes_From_Source (N)
-- In floating-point this is a standard way to check for finite values
-- and using 'Valid would typically be a pessimization.
and then not Is_Floating_Point_Type (Ltyp)
-- Don't give the message unless right operand is a type entity and
-- the type of the left operand matches this type. Note that this
-- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
-- checks have changed the type of the left operand.
and then Is_Entity_Name (Rop)
and then Ltyp = Entity (Rop)
-- Skip this for predicated types, where such expressions are a
-- reasonable way of testing if something meets the predicate.
and then No (Predicate_Function (Ltyp))
then
Substitute_Valid_Test;
return;
end if;
-- Do validity check on operands
if Validity_Checks_On and Validity_Check_Operands then
Ensure_Valid (Left_Opnd (N));
Validity_Check_Range (Right_Opnd (N));
end if;
-- Case of explicit range
if Nkind (Rop) = N_Range then
declare
Lo : constant Node_Id := Low_Bound (Rop);
Hi : constant Node_Id := High_Bound (Rop);
Lo_Orig : constant Node_Id := Original_Node (Lo);
Hi_Orig : constant Node_Id := Original_Node (Hi);
Rop_Orig : constant Node_Id := Original_Node (Rop);
Comes_From_Simple_Range_In_Source : constant Boolean :=
Comes_From_Source (N)
and then not
(Is_Entity_Name (Rop_Orig)
and then Is_Type (Entity (Rop_Orig))
and then Present (Predicate_Function (Entity (Rop_Orig))));
-- This is true for a membership test present in the source with a
-- range or mark for a subtype that is not predicated. As already
-- explained a few lines above, we do not want to give warnings on
-- a test with a mark for a subtype that is predicated.
Warn : constant Boolean :=
Constant_Condition_Warnings
and then Comes_From_Simple_Range_In_Source
and then not In_Instance;
-- This must be true for any of the optimization warnings, we
-- clearly want to give them only for source with the flag on. We
-- also skip these warnings in an instance since it may be the
-- case that different instantiations have different ranges.
Lcheck : Compare_Result;
Ucheck : Compare_Result;
begin
-- If test is explicit x'First .. x'Last, replace by 'Valid test
if Is_Scalar_Type (Ltyp)
-- Only relevant for source comparisons
and then Comes_From_Simple_Range_In_Source
-- And left operand is X'First where X matches left operand
-- type (this eliminates cases of type mismatch, including
-- the cases where ELIMINATED/MINIMIZED mode has changed the
-- type of the left operand.
and then Nkind (Lo_Orig) = N_Attribute_Reference
and then Attribute_Name (Lo_Orig) = Name_First
and then Is_Entity_Name (Prefix (Lo_Orig))
and then Entity (Prefix (Lo_Orig)) = Ltyp
-- Same tests for right operand
and then Nkind (Hi_Orig) = N_Attribute_Reference
and then Attribute_Name (Hi_Orig) = Name_Last
and then Is_Entity_Name (Prefix (Hi_Orig))
and then Entity (Prefix (Hi_Orig)) = Ltyp
then
Substitute_Valid_Test;
goto Leave;
end if;
-- If bounds of type are known at compile time, and the end points
-- are known at compile time and identical, this is another case
-- for substituting a valid test. We only do this for discrete
-- types, since it won't arise in practice for float types.
if Comes_From_Simple_Range_In_Source
and then Is_Discrete_Type (Ltyp)
and then Compile_Time_Known_Value (Type_High_Bound (Ltyp))
and then Compile_Time_Known_Value (Type_Low_Bound (Ltyp))
and then Compile_Time_Known_Value (Lo)
and then Compile_Time_Known_Value (Hi)
and then Expr_Value (Type_High_Bound (Ltyp)) = Expr_Value (Hi)
and then Expr_Value (Type_Low_Bound (Ltyp)) = Expr_Value (Lo)
-- Kill warnings in instances, since they may be cases where we
-- have a test in the generic that makes sense with some types
-- and not with other types.
-- Similarly, do not rewrite membership as a 'Valid test if
-- within the predicate function for the type.
-- Finally, if the original bounds are type conversions, even
-- if they have been folded into constants, there are different
-- types involved and 'Valid is not appropriate.
then
if In_Instance
or else (Ekind (Current_Scope) = E_Function
and then Is_Predicate_Function (Current_Scope))
then
null;
elsif Nkind (Lo_Orig) = N_Type_Conversion
or else Nkind (Hi_Orig) = N_Type_Conversion
then
null;
else
Substitute_Valid_Test;
goto Leave;
end if;
end if;
-- If we have an explicit range, do a bit of optimization based on
-- range analysis (we may be able to kill one or both checks).
Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => False);
Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => False);
-- If either check is known to fail, replace result by False since
-- the other check does not matter. Preserve the static flag for
-- legality checks, because we are constant-folding beyond RM 4.9.
if Lcheck = LT or else Ucheck = GT then
if Warn then
Error_Msg_N ("?c?range test optimized away", N);
Error_Msg_N ("\?c?value is known to be out of range", N);
end if;
Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
Analyze_And_Resolve (N, Restyp);
Set_Is_Static_Expression (N, Static);
goto Leave;
-- If both checks are known to succeed, replace result by True,
-- since we know we are in range.
elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
if Warn then
Error_Msg_N ("?c?range test optimized away", N);
Error_Msg_N ("\?c?value is known to be in range", N);
end if;
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
Analyze_And_Resolve (N, Restyp);
Set_Is_Static_Expression (N, Static);
goto Leave;
-- If lower bound check succeeds and upper bound check is not
-- known to succeed or fail, then replace the range check with
-- a comparison against the upper bound.
elsif Lcheck in Compare_GE then
Rewrite (N,
Make_Op_Le (Loc,
Left_Opnd => Lop,
Right_Opnd => High_Bound (Rop)));
Analyze_And_Resolve (N, Restyp);
goto Leave;
-- Inverse of previous case.
elsif Ucheck in Compare_LE then
Rewrite (N,
Make_Op_Ge (Loc,
Left_Opnd => Lop,
Right_Opnd => Low_Bound (Rop)));
Analyze_And_Resolve (N, Restyp);
goto Leave;
end if;
-- We couldn't optimize away the range check, but there is one
-- more issue. If we are checking constant conditionals, then we
-- see if we can determine the outcome assuming everything is
-- valid, and if so give an appropriate warning.
if Warn and then not Assume_No_Invalid_Values then
Lcheck := Compile_Time_Compare (Lop, Lo, Assume_Valid => True);
Ucheck := Compile_Time_Compare (Lop, Hi, Assume_Valid => True);
-- Result is out of range for valid value
if Lcheck = LT or else Ucheck = GT then
Error_Msg_N
("?c?value can only be in range if it is invalid", N);
-- Result is in range for valid value
elsif Lcheck in Compare_GE and then Ucheck in Compare_LE then
Error_Msg_N
("?c?value can only be out of range if it is invalid", N);
end if;
end if;
end;
-- Try to narrow the operation
if Ltyp = Universal_Integer and then Nkind (N) = N_In then
Narrow_Large_Operation (N);
end if;
-- For all other cases of an explicit range, nothing to be done
goto Leave;
-- Here right operand is a subtype mark
else
declare
Typ : Entity_Id := Etype (Rop);
Is_Acc : constant Boolean := Is_Access_Type (Typ);
Check_Null_Exclusion : Boolean;
Cond : Node_Id := Empty;
New_N : Node_Id;
Obj : Node_Id := Lop;
SCIL_Node : Node_Id;
begin
Remove_Side_Effects (Obj);
-- For tagged type, do tagged membership operation
if Is_Tagged_Type (Typ) then
-- No expansion will be performed for VM targets, as the VM
-- back ends will handle the membership tests directly.
if Tagged_Type_Expansion then
Tagged_Membership (N, SCIL_Node, New_N);
Rewrite (N, New_N);
Analyze_And_Resolve (N, Restyp, Suppress => All_Checks);
-- Update decoration of relocated node referenced by the
-- SCIL node.
if Generate_SCIL and then Present (SCIL_Node) then
Set_SCIL_Node (N, SCIL_Node);
end if;
end if;
goto Leave;
-- If type is scalar type, rewrite as x in t'First .. t'Last.
-- The reason we do this is that the bounds may have the wrong
-- type if they come from the original type definition. Also this
-- way we get all the processing above for an explicit range.
-- Don't do this for predicated types, since in this case we want
-- to generate the predicate check at the end of the function.
elsif Is_Scalar_Type (Typ) then
if No (Predicate_Function (Typ)) then
Rewrite (Rop,
Make_Range (Loc,
Low_Bound =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix => New_Occurrence_Of (Typ, Loc)),
High_Bound =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix => New_Occurrence_Of (Typ, Loc))));
Analyze_And_Resolve (N, Restyp);
end if;
goto Leave;
-- Ada 2005 (AI95-0216 amended by AI12-0162): Program_Error is
-- raised when evaluating an individual membership test if the
-- subtype mark denotes a constrained Unchecked_Union subtype
-- and the expression lacks inferable discriminants.
elsif Is_Unchecked_Union (Base_Type (Typ))
and then Is_Constrained (Typ)
and then not Has_Inferable_Discriminants (Lop)
then
Rewrite (N,
Make_Expression_With_Actions (Loc,
Actions =>
New_List (Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction)),
Expression =>
New_Occurrence_Of (Standard_False, Loc)));
Analyze_And_Resolve (N, Restyp);
goto Leave;
end if;
-- Here we have a non-scalar type
if Is_Acc then
-- If the null exclusion checks are not compatible, need to
-- perform further checks. In other words, we cannot have
-- Ltyp including null or Lop being null, and Typ excluding
-- null. All other cases are OK.
Check_Null_Exclusion :=
Can_Never_Be_Null (Typ)
and then (not Can_Never_Be_Null (Ltyp)
or else Nkind (Lop) = N_Null);
Typ := Designated_Type (Typ);
end if;
if not Is_Constrained (Typ) then
Cond := New_Occurrence_Of (Standard_True, Loc);
-- For the constrained array case, we have to check the subscripts
-- for an exact match if the lengths are non-zero (the lengths
-- must match in any case).
elsif Is_Array_Type (Typ) then
Check_Subscripts : declare
function Build_Attribute_Reference
(E : Node_Id;
Nam : Name_Id;
Dim : Nat) return Node_Id;
-- Build attribute reference E'Nam (Dim)
-------------------------------
-- Build_Attribute_Reference --
-------------------------------
function Build_Attribute_Reference
(E : Node_Id;
Nam : Name_Id;
Dim : Nat) return Node_Id
is
begin
return
Make_Attribute_Reference (Loc,
Prefix => E,
Attribute_Name => Nam,
Expressions => New_List (
Make_Integer_Literal (Loc, Dim)));
end Build_Attribute_Reference;
-- Start of processing for Check_Subscripts
begin
for J in 1 .. Number_Dimensions (Typ) loop
Evolve_And_Then (Cond,
Make_Op_Eq (Loc,
Left_Opnd =>
Build_Attribute_Reference
(Duplicate_Subexpr_No_Checks (Obj),
Name_First, J),
Right_Opnd =>
Build_Attribute_Reference
(New_Occurrence_Of (Typ, Loc), Name_First, J)));
Evolve_And_Then (Cond,
Make_Op_Eq (Loc,
Left_Opnd =>
Build_Attribute_Reference
(Duplicate_Subexpr_No_Checks (Obj),
Name_Last, J),
Right_Opnd =>
Build_Attribute_Reference
(New_Occurrence_Of (Typ, Loc), Name_Last, J)));
end loop;
end Check_Subscripts;
-- These are the cases where constraint checks may be required,
-- e.g. records with possible discriminants
else
-- Expand the test into a series of discriminant comparisons.
-- The expression that is built is the negation of the one that
-- is used for checking discriminant constraints.
Obj := Relocate_Node (Left_Opnd (N));
if Has_Discriminants (Typ) then
Cond := Make_Op_Not (Loc,
Right_Opnd => Build_Discriminant_Checks (Obj, Typ));
else
Cond := New_Occurrence_Of (Standard_True, Loc);
end if;
end if;
if Is_Acc then
if Check_Null_Exclusion then
Cond := Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Ne (Loc,
Left_Opnd => Obj,
Right_Opnd => Make_Null (Loc)),
Right_Opnd => Cond);
else
Cond := Make_Or_Else (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => Obj,
Right_Opnd => Make_Null (Loc)),
Right_Opnd => Cond);
end if;
end if;
Rewrite (N, Cond);
Analyze_And_Resolve (N, Restyp);
-- Ada 2012 (AI05-0149): Handle membership tests applied to an
-- expression of an anonymous access type. This can involve an
-- accessibility test and a tagged type membership test in the
-- case of tagged designated types.
if Ada_Version >= Ada_2012
and then Is_Acc
and then Ekind (Ltyp) = E_Anonymous_Access_Type
then
declare
Expr_Entity : Entity_Id := Empty;
New_N : Node_Id;
Param_Level : Node_Id;
Type_Level : Node_Id;
begin
if Is_Entity_Name (Lop) then
Expr_Entity := Param_Entity (Lop);
if No (Expr_Entity) then
Expr_Entity := Entity (Lop);
end if;
end if;
-- When restriction No_Dynamic_Accessibility_Checks is in
-- effect, expand the membership test to a static value
-- since we cannot rely on dynamic levels.
if No_Dynamic_Accessibility_Checks_Enabled (Lop) then
if Static_Accessibility_Level
(Lop, Object_Decl_Level)
> Type_Access_Level (Rtyp)
then
Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
else
Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
end if;
Analyze_And_Resolve (N, Restyp);
-- If a conversion of the anonymous access value to the
-- tested type would be illegal, then the result is False.
elsif not Valid_Conversion
(Lop, Rtyp, Lop, Report_Errs => False)
then
Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
Analyze_And_Resolve (N, Restyp);
-- Apply an accessibility check if the access object has an
-- associated access level and when the level of the type is
-- less deep than the level of the access parameter. This
-- can only occur for access parameters and stand-alone
-- objects of an anonymous access type.
else
Param_Level := Accessibility_Level
(Expr_Entity, Dynamic_Level);
Type_Level :=
Make_Integer_Literal (Loc, Type_Access_Level (Rtyp));
-- Return True only if the accessibility level of the
-- expression entity is not deeper than the level of
-- the tested access type.
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (N),
Right_Opnd => Make_Op_Le (Loc,
Left_Opnd => Param_Level,
Right_Opnd => Type_Level)));
Analyze_And_Resolve (N);
-- If the designated type is tagged, do tagged membership
-- operation.
if Is_Tagged_Type (Typ) then
-- No expansion will be performed for VM targets, as
-- the VM back ends will handle the membership tests
-- directly.
if Tagged_Type_Expansion then
-- Note that we have to pass Original_Node, because
-- the membership test might already have been
-- rewritten by earlier parts of membership test.
Tagged_Membership
(Original_Node (N), SCIL_Node, New_N);
-- Update decoration of relocated node referenced
-- by the SCIL node.
if Generate_SCIL and then Present (SCIL_Node) then
Set_SCIL_Node (New_N, SCIL_Node);
end if;
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (N),
Right_Opnd => New_N));
Analyze_And_Resolve (N, Restyp);
end if;
end if;
end if;
end;
end if;
end;
end if;
-- At this point, we have done the processing required for the basic
-- membership test, but not yet dealt with the predicate.
<<Leave>>
-- If a predicate is present, then we do the predicate test, but we
-- most certainly want to omit this if we are within the predicate
-- function itself, since otherwise we have an infinite recursion.
-- The check should also not be emitted when testing against a range
-- (the check is only done when the right operand is a subtype; see
-- RM12-4.5.2 (28.1/3-30/3)).
Predicate_Check : declare
function In_Range_Check return Boolean;
-- Within an expanded range check that may raise Constraint_Error do
-- not generate a predicate check as well. It is redundant because
-- the context will add an explicit predicate check, and it will
-- raise the wrong exception if it fails.
--------------------
-- In_Range_Check --
--------------------
function In_Range_Check return Boolean is
P : Node_Id;
begin
P := Parent (N);
while Present (P) loop
if Nkind (P) = N_Raise_Constraint_Error then
return True;
elsif Nkind (P) in N_Statement_Other_Than_Procedure_Call
or else Nkind (P) = N_Procedure_Call_Statement
or else Nkind (P) in N_Declaration
then
return False;
end if;
P := Parent (P);
end loop;
return False;
end In_Range_Check;
-- Local variables
PFunc : constant Entity_Id := Predicate_Function (Rtyp);
R_Op : Node_Id;
-- Start of processing for Predicate_Check
begin
if Present (PFunc)
and then Current_Scope /= PFunc
and then Nkind (Rop) /= N_Range
then
-- First apply the transformation that was skipped above
if Is_Scalar_Type (Rtyp) then
Rewrite (Rop,
Make_Range (Loc,
Low_Bound =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_First,
Prefix => New_Occurrence_Of (Rtyp, Loc)),
High_Bound =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Last,
Prefix => New_Occurrence_Of (Rtyp, Loc))));
Analyze_And_Resolve (N, Restyp);
end if;
if not In_Range_Check then
-- Indicate via Static_Mem parameter that this predicate
-- evaluation is for a membership test.
R_Op := Make_Predicate_Call (Rtyp, Lop, Static_Mem => True);
else
R_Op := New_Occurrence_Of (Standard_True, Loc);
end if;
Rewrite (N,
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (N),
Right_Opnd => R_Op));
-- Analyze new expression, mark left operand as analyzed to
-- avoid infinite recursion adding predicate calls. Similarly,
-- suppress further range checks on the call.
Set_Analyzed (Left_Opnd (N));
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
end if;
end Predicate_Check;
end Expand_N_In;
--------------------------------
-- Expand_N_Indexed_Component --
--------------------------------
procedure Expand_N_Indexed_Component (N : Node_Id) is
Wild_Reads_May_Have_Bad_Side_Effects : Boolean
renames Validity_Check_Subscripts;
-- This Boolean needs to be True if reading from a bad address can
-- have a bad side effect (e.g., a segmentation fault that is not
-- transformed into a Storage_Error exception, or interactions with
-- memory-mapped I/O) that needs to be prevented. This refers to the
-- act of reading itself, not to any damage that might be caused later
-- by making use of whatever value was read. We assume here that
-- Validity_Check_Subscripts meets this requirement, but introduce
-- this declaration in order to document this assumption.
function Is_Renamed_Variable_Name (N : Node_Id) return Boolean;
-- Returns True if the given name occurs as part of the renaming
-- of a variable. In this case, the indexing operation should be
-- treated as a write, rather than a read, with respect to validity
-- checking. This is because the renamed variable can later be
-- written to.
function Type_Requires_Subscript_Validity_Checks_For_Reads
(Typ : Entity_Id) return Boolean;
-- If Wild_Reads_May_Have_Bad_Side_Effects is False and we are indexing
-- into an array of characters in order to read an element, it is ok
-- if an invalid index value goes undetected. But if it is an array of
-- pointers or an array of tasks, the consequences of such a read are
-- potentially more severe and so we want to detect an invalid index
-- value. This function captures that distinction; this is intended to
-- be consistent with the "but does not by itself lead to erroneous
-- ... execution" rule of RM 13.9.1(11).
------------------------------
-- Is_Renamed_Variable_Name --
------------------------------
function Is_Renamed_Variable_Name (N : Node_Id) return Boolean is
Rover : Node_Id := N;
begin
if Is_Variable (N) then
loop
declare
Rover_Parent : constant Node_Id := Parent (Rover);
begin
case Nkind (Rover_Parent) is
when N_Object_Renaming_Declaration =>
return Rover = Name (Rover_Parent);
when N_Indexed_Component
| N_Slice
| N_Selected_Component
=>
exit when Rover /= Prefix (Rover_Parent);
Rover := Rover_Parent;
-- No need to check for qualified expressions or type
-- conversions here, mostly because of the Is_Variable
-- test. It is possible to have a view conversion for
-- which Is_Variable yields True and which occurs as
-- part of an object renaming, but only if the type is
-- tagged; in that case this function will not be called.
when others =>
exit;
end case;
end;
end loop;
end if;
return False;
end Is_Renamed_Variable_Name;
-------------------------------------------------------
-- Type_Requires_Subscript_Validity_Checks_For_Reads --
-------------------------------------------------------
function Type_Requires_Subscript_Validity_Checks_For_Reads
(Typ : Entity_Id) return Boolean
is
-- a shorter name for recursive calls
function Needs_Check (Typ : Entity_Id) return Boolean renames
Type_Requires_Subscript_Validity_Checks_For_Reads;
begin
if Is_Access_Type (Typ)
or else Is_Tagged_Type (Typ)
or else Is_Concurrent_Type (Typ)
or else (Is_Array_Type (Typ)
and then Needs_Check (Component_Type (Typ)))
or else (Is_Scalar_Type (Typ)
and then Has_Aspect (Typ, Aspect_Default_Value))
then
return True;
end if;
if Is_Record_Type (Typ) then
declare
Comp : Entity_Id := First_Component_Or_Discriminant (Typ);
begin
while Present (Comp) loop
if Needs_Check (Etype (Comp)) then
return True;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end;
end if;
return False;
end Type_Requires_Subscript_Validity_Checks_For_Reads;
-- Local constants
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
P : constant Node_Id := Prefix (N);
T : constant Entity_Id := Etype (P);
-- Start of processing for Expand_N_Indexed_Component
begin
-- A special optimization, if we have an indexed component that is
-- selecting from a slice, then we can eliminate the slice, since, for
-- example, x (i .. j)(k) is identical to x(k). The only difference is
-- the range check required by the slice. The range check for the slice
-- itself has already been generated. The range check for the
-- subscripting operation is ensured by converting the subject to
-- the subtype of the slice.
-- This optimization not only generates better code, avoiding slice
-- messing especially in the packed case, but more importantly bypasses
-- some problems in handling this peculiar case, for example, the issue
-- of dealing specially with object renamings.
if Nkind (P) = N_Slice
-- This optimization is disabled for CodePeer because it can transform
-- an index-check constraint_error into a range-check constraint_error
-- and CodePeer cares about that distinction.
and then not CodePeer_Mode
then
Rewrite (N,
Make_Indexed_Component (Loc,
Prefix => Prefix (P),
Expressions => New_List (
Convert_To
(Etype (First_Index (Etype (P))),
First (Expressions (N))))));
Analyze_And_Resolve (N, Typ);
return;
end if;
-- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
-- function, then additional actuals must be passed.
if Is_Build_In_Place_Function_Call (P) then
Make_Build_In_Place_Call_In_Anonymous_Context (P);
-- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
-- containing build-in-place function calls whose returned object covers
-- interface types.
elsif Present (Unqual_BIP_Iface_Function_Call (P)) then
Make_Build_In_Place_Iface_Call_In_Anonymous_Context (P);
end if;
-- Generate index and validity checks
declare
Dims_Checked : Dimension_Set (Dimensions =>
(if Is_Array_Type (T)
then Number_Dimensions (T)
else 1));
-- Dims_Checked is used to avoid generating two checks (one in
-- Generate_Index_Checks, one in Apply_Subscript_Validity_Checks)
-- for the same index value in cases where the index check eliminates
-- the need for the validity check. The Is_Array_Type test avoids
-- cascading errors.
begin
Generate_Index_Checks (N, Checks_Generated => Dims_Checked);
if Validity_Checks_On
and then (Validity_Check_Subscripts
or else Wild_Reads_May_Have_Bad_Side_Effects
or else Type_Requires_Subscript_Validity_Checks_For_Reads
(Typ)
or else Is_Renamed_Variable_Name (N))
then
if Validity_Check_Subscripts then
-- If we index into an array with an uninitialized variable
-- and we generate an index check that passes at run time,
-- passing that check does not ensure that the variable is
-- valid (although it does in the common case where the
-- object's subtype matches the index subtype).
-- Consider an uninitialized variable with subtype 1 .. 10
-- used to index into an array with bounds 1 .. 20 when the
-- value of the uninitialized variable happens to be 15.
-- The index check will succeed but the variable is invalid.
-- If Validity_Check_Subscripts is True then we need to
-- ensure validity, so we adjust Dims_Checked accordingly.
Dims_Checked.Elements := (others => False);
elsif Is_Array_Type (T) then
-- We are only adding extra validity checks here to
-- deal with uninitialized variables (but this includes
-- assigning one uninitialized variable to another). Other
-- ways of producing invalid objects imply erroneousness, so
-- the compiler can do whatever it wants for those cases.
-- If an index type has the Default_Value aspect specified,
-- then we don't have to worry about the possibility of an
-- uninitialized variable, so no need for these extra
-- validity checks.
declare
Idx : Node_Id := First_Index (T);
begin
for No_Check_Needed of Dims_Checked.Elements loop
No_Check_Needed := No_Check_Needed
or else Has_Aspect (Etype (Idx), Aspect_Default_Value);
Next_Index (Idx);
end loop;
end;
end if;
Apply_Subscript_Validity_Checks
(N, No_Check_Needed => Dims_Checked);
end if;
end;
-- If selecting from an array with atomic components, and atomic sync
-- is not suppressed for this array type, set atomic sync flag.
if (Has_Atomic_Components (T)
and then not Atomic_Synchronization_Disabled (T))
or else (Is_Atomic (Typ)
and then not Atomic_Synchronization_Disabled (Typ))
or else (Is_Entity_Name (P)
and then Has_Atomic_Components (Entity (P))
and then not Atomic_Synchronization_Disabled (Entity (P)))
then
Activate_Atomic_Synchronization (N);
end if;
-- All done if the prefix is not a packed array implemented specially
if not (Is_Packed (Etype (Prefix (N)))
and then Present (Packed_Array_Impl_Type (Etype (Prefix (N)))))
then
return;
end if;
-- For packed arrays that are not bit-packed (i.e. the case of an array
-- with one or more index types with a non-contiguous enumeration type),
-- we can always use the normal packed element get circuit.
if not Is_Bit_Packed_Array (Etype (Prefix (N))) then
Expand_Packed_Element_Reference (N);
return;
end if;
-- For a reference to a component of a bit packed array, we convert it
-- to a reference to the corresponding Packed_Array_Impl_Type. We only
-- want to do this for simple references, and not for:
-- Left side of assignment, or prefix of left side of assignment, or
-- prefix of the prefix, to handle packed arrays of packed arrays,
-- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
-- Renaming objects in renaming associations
-- This case is handled when a use of the renamed variable occurs
-- Actual parameters for a subprogram call
-- This case is handled in Exp_Ch6.Expand_Actuals
-- The second expression in a 'Read attribute reference
-- The prefix of an address or bit or size attribute reference
-- The following circuit detects these exceptions. Note that we need to
-- deal with implicit dereferences when climbing up the parent chain,
-- with the additional difficulty that the type of parents may have yet
-- to be resolved since prefixes are usually resolved first.
declare
Child : Node_Id := N;
Parnt : Node_Id := Parent (N);
begin
loop
if Nkind (Parnt) = N_Unchecked_Expression then
null;
elsif Nkind (Parnt) = N_Object_Renaming_Declaration then
return;
elsif Nkind (Parnt) in N_Subprogram_Call
or else (Nkind (Parnt) = N_Parameter_Association
and then Nkind (Parent (Parnt)) in N_Subprogram_Call)
then
return;
elsif Nkind (Parnt) = N_Attribute_Reference
and then Attribute_Name (Parnt) in Name_Address
| Name_Bit
| Name_Size
and then Prefix (Parnt) = Child
then
return;
elsif Nkind (Parnt) = N_Assignment_Statement
and then Name (Parnt) = Child
then
return;
-- If the expression is an index of an indexed component, it must
-- be expanded regardless of context.
elsif Nkind (Parnt) = N_Indexed_Component
and then Child /= Prefix (Parnt)
then
Expand_Packed_Element_Reference (N);
return;
elsif Nkind (Parent (Parnt)) = N_Assignment_Statement
and then Name (Parent (Parnt)) = Parnt
then
return;
elsif Nkind (Parnt) = N_Attribute_Reference
and then Attribute_Name (Parnt) = Name_Read
and then Next (First (Expressions (Parnt))) = Child
then
return;
elsif Nkind (Parnt) = N_Indexed_Component
and then Prefix (Parnt) = Child
then
null;
elsif Nkind (Parnt) = N_Selected_Component
and then Prefix (Parnt) = Child
and then not (Present (Etype (Selector_Name (Parnt)))
and then
Is_Access_Type (Etype (Selector_Name (Parnt))))
then
null;
-- If the parent is a dereference, either implicit or explicit,
-- then the packed reference needs to be expanded.
else
Expand_Packed_Element_Reference (N);
return;
end if;
-- Keep looking up tree for unchecked expression, or if we are the
-- prefix of a possible assignment left side.
Child := Parnt;
Parnt := Parent (Child);
end loop;
end;
end Expand_N_Indexed_Component;
---------------------
-- Expand_N_Not_In --
---------------------
-- Replace a not in b by not (a in b) so that the expansions for (a in b)
-- can be done. This avoids needing to duplicate this expansion code.
procedure Expand_N_Not_In (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Cfs : constant Boolean := Comes_From_Source (N);
begin
Rewrite (N,
Make_Op_Not (Loc,
Right_Opnd =>
Make_In (Loc,
Left_Opnd => Left_Opnd (N),
Right_Opnd => Right_Opnd (N))));
-- If this is a set membership, preserve list of alternatives
Set_Alternatives (Right_Opnd (N), Alternatives (Original_Node (N)));
-- We want this to appear as coming from source if original does (see
-- transformations in Expand_N_In).
Set_Comes_From_Source (N, Cfs);
Set_Comes_From_Source (Right_Opnd (N), Cfs);
-- Now analyze transformed node
Analyze_And_Resolve (N, Typ);
end Expand_N_Not_In;
-------------------
-- Expand_N_Null --
-------------------
-- The only replacement required is for the case of a null of a type that
-- is an access to protected subprogram, or a subtype thereof. We represent
-- such access values as a record, and so we must replace the occurrence of
-- null by the equivalent record (with a null address and a null pointer in
-- it), so that the back end creates the proper value.
procedure Expand_N_Null (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Base_Type (Etype (N));
Agg : Node_Id;
begin
if Is_Access_Protected_Subprogram_Type (Typ) then
Agg :=
Make_Aggregate (Loc,
Expressions => New_List (
New_Occurrence_Of (RTE (RE_Null_Address), Loc),
Make_Null (Loc)));
Rewrite (N, Agg);
Analyze_And_Resolve (N, Equivalent_Type (Typ));
-- For subsequent semantic analysis, the node must retain its type.
-- Gigi in any case replaces this type by the corresponding record
-- type before processing the node.
Set_Etype (N, Typ);
end if;
exception
when RE_Not_Available =>
return;
end Expand_N_Null;
---------------------
-- Expand_N_Op_Abs --
---------------------
procedure Expand_N_Op_Abs (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Expr : constant Node_Id := Right_Opnd (N);
Typ : constant Entity_Id := Etype (N);
begin
Unary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Try to narrow the operation
if Typ = Universal_Integer then
Narrow_Large_Operation (N);
if Nkind (N) /= N_Op_Abs then
return;
end if;
end if;
-- Deal with software overflow checking
if Is_Signed_Integer_Type (Typ)
and then Do_Overflow_Check (N)
then
-- The only case to worry about is when the argument is equal to the
-- largest negative number, so what we do is to insert the check:
-- [constraint_error when Expr = typ'Base'First]
-- with the usual Duplicate_Subexpr use coding for expr
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr (Expr),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Base_Type (Etype (Expr)), Loc),
Attribute_Name => Name_First)),
Reason => CE_Overflow_Check_Failed));
Set_Do_Overflow_Check (N, False);
end if;
end Expand_N_Op_Abs;
---------------------
-- Expand_N_Op_Add --
---------------------
procedure Expand_N_Op_Add (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
Binary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- N + 0 = 0 + N = N for integer types
if Is_Integer_Type (Typ) then
if Compile_Time_Known_Value (Right_Opnd (N))
and then Expr_Value (Right_Opnd (N)) = Uint_0
then
Rewrite (N, Left_Opnd (N));
return;
elsif Compile_Time_Known_Value (Left_Opnd (N))
and then Expr_Value (Left_Opnd (N)) = Uint_0
then
Rewrite (N, Right_Opnd (N));
return;
end if;
end if;
-- Try to narrow the operation
if Typ = Universal_Integer then
Narrow_Large_Operation (N);
if Nkind (N) /= N_Op_Add then
return;
end if;
end if;
-- Arithmetic overflow checks for signed integer/fixed point types
if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Overflow checks for floating-point if -gnateF mode active
Check_Float_Op_Overflow (N);
Expand_Nonbinary_Modular_Op (N);
end Expand_N_Op_Add;
---------------------
-- Expand_N_Op_And --
---------------------
procedure Expand_N_Op_And (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
Binary_Op_Validity_Checks (N);
if Is_Array_Type (Etype (N)) then
Expand_Boolean_Operator (N);
elsif Is_Boolean_Type (Etype (N)) then
Adjust_Condition (Left_Opnd (N));
Adjust_Condition (Right_Opnd (N));
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
elsif Is_Intrinsic_Subprogram (Entity (N)) then
Expand_Intrinsic_Call (N, Entity (N));
end if;
Expand_Nonbinary_Modular_Op (N);
end Expand_N_Op_And;
------------------------
-- Expand_N_Op_Concat --
------------------------
procedure Expand_N_Op_Concat (N : Node_Id) is
Opnds : List_Id;
-- List of operands to be concatenated
Cnode : Node_Id;
-- Node which is to be replaced by the result of concatenating the nodes
-- in the list Opnds.
begin
-- Ensure validity of both operands
Binary_Op_Validity_Checks (N);
-- If we are the left operand of a concatenation higher up the tree,
-- then do nothing for now, since we want to deal with a series of
-- concatenations as a unit.
if Nkind (Parent (N)) = N_Op_Concat
and then N = Left_Opnd (Parent (N))
then
return;
end if;
-- We get here with a concatenation whose left operand may be a
-- concatenation itself with a consistent type. We need to process
-- these concatenation operands from left to right, which means
-- from the deepest node in the tree to the highest node.
Cnode := N;
while Nkind (Left_Opnd (Cnode)) = N_Op_Concat loop
Cnode := Left_Opnd (Cnode);
end loop;
-- Now Cnode is the deepest concatenation, and its parents are the
-- concatenation nodes above, so now we process bottom up, doing the
-- operands.
-- The outer loop runs more than once if more than one concatenation
-- type is involved.
Outer : loop
Opnds := New_List (Left_Opnd (Cnode), Right_Opnd (Cnode));
Set_Parent (Opnds, N);
-- The inner loop gathers concatenation operands
Inner : while Cnode /= N
and then Base_Type (Etype (Cnode)) =
Base_Type (Etype (Parent (Cnode)))
loop
Cnode := Parent (Cnode);
Append (Right_Opnd (Cnode), Opnds);
end loop Inner;
-- Note: The following code is a temporary workaround for N731-034
-- and N829-028 and will be kept until the general issue of internal
-- symbol serialization is addressed. The workaround is kept under a
-- debug switch to avoid permiating into the general case.
-- Wrap the node to concatenate into an expression actions node to
-- keep it nicely packaged. This is useful in the case of an assert
-- pragma with a concatenation where we want to be able to delete
-- the concatenation and all its expansion stuff.
if Debug_Flag_Dot_H then
declare
Cnod : constant Node_Id := New_Copy_Tree (Cnode);
Typ : constant Entity_Id := Base_Type (Etype (Cnode));
begin
-- Note: use Rewrite rather than Replace here, so that for
-- example Why_Not_Static can find the original concatenation
-- node OK!
Rewrite (Cnode,
Make_Expression_With_Actions (Sloc (Cnode),
Actions => New_List (Make_Null_Statement (Sloc (Cnode))),
Expression => Cnod));
Expand_Concatenate (Cnod, Opnds);
Analyze_And_Resolve (Cnode, Typ);
end;
-- Default case
else
Expand_Concatenate (Cnode, Opnds);
end if;
exit Outer when Cnode = N;
Cnode := Parent (Cnode);
end loop Outer;
end Expand_N_Op_Concat;
------------------------
-- Expand_N_Op_Divide --
------------------------
procedure Expand_N_Op_Divide (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Lopnd : constant Node_Id := Left_Opnd (N);
Ropnd : constant Node_Id := Right_Opnd (N);
Ltyp : constant Entity_Id := Etype (Lopnd);
Rtyp : constant Entity_Id := Etype (Ropnd);
Typ : Entity_Id := Etype (N);
Rknow : constant Boolean := Is_Integer_Type (Typ)
and then
Compile_Time_Known_Value (Ropnd);
Rval : Uint;
begin
Binary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Otherwise proceed with expansion of division
if Rknow then
Rval := Expr_Value (Ropnd);
end if;
-- N / 1 = N for integer types
if Rknow and then Rval = Uint_1 then
Rewrite (N, Lopnd);
return;
end if;
-- Try to narrow the operation
if Typ = Universal_Integer then
Narrow_Large_Operation (N);
if Nkind (N) /= N_Op_Divide then
return;
end if;
end if;
-- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
-- Is_Power_Of_2_For_Shift is set means that we know that our left
-- operand is an unsigned integer, as required for this to work.
if Nkind (Ropnd) = N_Op_Expon
and then Is_Power_Of_2_For_Shift (Ropnd)
-- We cannot do this transformation in configurable run time mode if we
-- have 64-bit integers and long shifts are not available.
and then (Esize (Ltyp) <= 32 or else Support_Long_Shifts_On_Target)
then
Rewrite (N,
Make_Op_Shift_Right (Loc,
Left_Opnd => Lopnd,
Right_Opnd =>
Convert_To (Standard_Natural, Right_Opnd (Ropnd))));
Analyze_And_Resolve (N, Typ);
return;
end if;
-- Do required fixup of universal fixed operation
if Typ = Universal_Fixed then
Fixup_Universal_Fixed_Operation (N);
Typ := Etype (N);
end if;
-- Divisions with fixed-point results
if Is_Fixed_Point_Type (Typ) then
if Is_Integer_Type (Rtyp) then
Expand_Divide_Fixed_By_Integer_Giving_Fixed (N);
else
Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N);
end if;
-- Deal with divide-by-zero check if back end cannot handle them
-- and the flag is set indicating that we need such a check. Note
-- that we don't need to bother here with the case of mixed-mode
-- (Right operand an integer type), since these will be rewritten
-- with conversions to a divide with a fixed-point right operand.
if Nkind (N) = N_Op_Divide
and then Do_Division_Check (N)
and then not Backend_Divide_Checks_On_Target
and then not Is_Integer_Type (Rtyp)
then
Set_Do_Division_Check (N, False);
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr_Move_Checks (Ropnd),
Right_Opnd => Make_Real_Literal (Loc, Ureal_0)),
Reason => CE_Divide_By_Zero));
end if;
-- Other cases of division of fixed-point operands
elsif Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp) then
if Is_Integer_Type (Typ) then
Expand_Divide_Fixed_By_Fixed_Giving_Integer (N);
else
pragma Assert (Is_Floating_Point_Type (Typ));
Expand_Divide_Fixed_By_Fixed_Giving_Float (N);
end if;
-- Mixed-mode operations can appear in a non-static universal context,
-- in which case the integer argument must be converted explicitly.
elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
Rewrite (Ropnd,
Convert_To (Universal_Real, Relocate_Node (Ropnd)));
Analyze_And_Resolve (Ropnd, Universal_Real);
elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
Rewrite (Lopnd,
Convert_To (Universal_Real, Relocate_Node (Lopnd)));
Analyze_And_Resolve (Lopnd, Universal_Real);
-- Non-fixed point cases, do integer zero divide and overflow checks
elsif Is_Integer_Type (Typ) then
Apply_Divide_Checks (N);
end if;
-- Overflow checks for floating-point if -gnateF mode active
Check_Float_Op_Overflow (N);
Expand_Nonbinary_Modular_Op (N);
end Expand_N_Op_Divide;
--------------------
-- Expand_N_Op_Eq --
--------------------
procedure Expand_N_Op_Eq (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Lhs : constant Node_Id := Left_Opnd (N);
Rhs : constant Node_Id := Right_Opnd (N);
Bodies : constant List_Id := New_List;
A_Typ : constant Entity_Id := Etype (Lhs);
procedure Build_Equality_Call (Eq : Entity_Id);
-- If a constructed equality exists for the type or for its parent,
-- build and analyze call, adding conversions if the operation is
-- inherited.
function Find_Equality (Prims : Elist_Id) return Entity_Id;
-- Find a primitive equality function within primitive operation list
-- Prims.
function Has_Unconstrained_UU_Component (Typ : Entity_Id) return Boolean;
-- Determines whether a type has a subcomponent of an unconstrained
-- Unchecked_Union subtype. Typ is a record type.
-------------------------
-- Build_Equality_Call --
-------------------------
procedure Build_Equality_Call (Eq : Entity_Id) is
Op_Typ : constant Entity_Id := Etype (First_Formal (Eq));
L_Exp, R_Exp : Node_Id;
begin
-- Adjust operands if necessary to comparison type
if Base_Type (A_Typ) /= Base_Type (Op_Typ)
and then not Is_Class_Wide_Type (A_Typ)
then
L_Exp := OK_Convert_To (Op_Typ, Lhs);
R_Exp := OK_Convert_To (Op_Typ, Rhs);
else
L_Exp := Relocate_Node (Lhs);
R_Exp := Relocate_Node (Rhs);
end if;
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Eq, Loc),
Parameter_Associations => New_List (L_Exp, R_Exp)));
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
end Build_Equality_Call;
-------------------
-- Find_Equality --
-------------------
function Find_Equality (Prims : Elist_Id) return Entity_Id is
function Find_Aliased_Equality (Prim : Entity_Id) return Entity_Id;
-- Find an equality in a possible alias chain starting from primitive
-- operation Prim.
---------------------------
-- Find_Aliased_Equality --
---------------------------
function Find_Aliased_Equality (Prim : Entity_Id) return Entity_Id is
Candid : Entity_Id;
begin
-- Inspect each candidate in the alias chain, checking whether it
-- denotes an equality.
Candid := Prim;
while Present (Candid) loop
if Is_User_Defined_Equality (Candid) then
return Candid;
end if;
Candid := Alias (Candid);
end loop;
return Empty;
end Find_Aliased_Equality;
-- Local variables
Eq_Prim : Entity_Id;
Prim_Elmt : Elmt_Id;
-- Start of processing for Find_Equality
begin
-- Assume that the tagged type lacks an equality
Eq_Prim := Empty;
-- Inspect the list of primitives looking for a suitable equality
-- within a possible chain of aliases.
Prim_Elmt := First_Elmt (Prims);
while Present (Prim_Elmt) and then No (Eq_Prim) loop
Eq_Prim := Find_Aliased_Equality (Node (Prim_Elmt));
Next_Elmt (Prim_Elmt);
end loop;
-- A tagged type should always have an equality
pragma Assert (Present (Eq_Prim));
return Eq_Prim;
end Find_Equality;
------------------------------------
-- Has_Unconstrained_UU_Component --
------------------------------------
function Has_Unconstrained_UU_Component
(Typ : Entity_Id) return Boolean
is
function Unconstrained_UU_In_Component_Declaration
(N : Node_Id) return Boolean;
function Unconstrained_UU_In_Component_Items
(L : List_Id) return Boolean;
function Unconstrained_UU_In_Component_List
(N : Node_Id) return Boolean;
function Unconstrained_UU_In_Variant_Part
(N : Node_Id) return Boolean;
-- A family of routines that determine whether a particular construct
-- of a record type definition contains a subcomponent of an
-- unchecked union type whose nominal subtype is unconstrained.
--
-- Individual routines correspond to the production rules of the Ada
-- grammar, as described in the Ada RM (P).
-----------------------------------------------
-- Unconstrained_UU_In_Component_Declaration --
-----------------------------------------------
function Unconstrained_UU_In_Component_Declaration
(N : Node_Id) return Boolean
is
pragma Assert (Nkind (N) = N_Component_Declaration);
Sindic : constant Node_Id :=
Subtype_Indication (Component_Definition (N));
begin
-- If the component declaration includes a subtype indication
-- it is not an unchecked_union. Otherwise verify that it carries
-- the Unchecked_Union flag and is either a record or a private
-- type. A Record_Subtype declared elsewhere does not qualify,
-- even if its parent type carries the flag.
return Nkind (Sindic) in N_Expanded_Name | N_Identifier
and then Is_Unchecked_Union (Base_Type (Etype (Sindic)))
and then Ekind (Entity (Sindic)) in
E_Private_Type | E_Record_Type;
end Unconstrained_UU_In_Component_Declaration;
-----------------------------------------
-- Unconstrained_UU_In_Component_Items --
-----------------------------------------
function Unconstrained_UU_In_Component_Items
(L : List_Id) return Boolean
is
N : Node_Id := First (L);
begin
while Present (N) loop
if Nkind (N) = N_Component_Declaration
and then Unconstrained_UU_In_Component_Declaration (N)
then
return True;
end if;
Next (N);
end loop;
return False;
end Unconstrained_UU_In_Component_Items;
----------------------------------------
-- Unconstrained_UU_In_Component_List --
----------------------------------------
function Unconstrained_UU_In_Component_List
(N : Node_Id) return Boolean
is
pragma Assert (Nkind (N) = N_Component_List);
Optional_Variant_Part : Node_Id;
begin
if Unconstrained_UU_In_Component_Items (Component_Items (N)) then
return True;
end if;
Optional_Variant_Part := Variant_Part (N);
return
Present (Optional_Variant_Part)
and then
Unconstrained_UU_In_Variant_Part (Optional_Variant_Part);
end Unconstrained_UU_In_Component_List;
--------------------------------------
-- Unconstrained_UU_In_Variant_Part --
--------------------------------------
function Unconstrained_UU_In_Variant_Part
(N : Node_Id) return Boolean
is
pragma Assert (Nkind (N) = N_Variant_Part);
Variant : Node_Id := First (Variants (N));
begin
loop
if Unconstrained_UU_In_Component_List (Component_List (Variant))
then
return True;
end if;
Next (Variant);
exit when No (Variant);
end loop;
return False;
end Unconstrained_UU_In_Variant_Part;
Typ_Def : constant Node_Id :=
Type_Definition (Declaration_Node (Base_Type (Typ)));
Optional_Component_List : constant Node_Id :=
Component_List (Typ_Def);
-- Start of processing for Has_Unconstrained_UU_Component
begin
return Present (Optional_Component_List)
and then
Unconstrained_UU_In_Component_List (Optional_Component_List);
end Has_Unconstrained_UU_Component;
-- Local variables
Typl : Entity_Id;
-- Start of processing for Expand_N_Op_Eq
begin
Binary_Op_Validity_Checks (N);
-- Deal with private types
Typl := Underlying_Type (A_Typ);
-- It may happen in error situations that the underlying type is not
-- set. The error will be detected later, here we just defend the
-- expander code.
if No (Typl) then
return;
end if;
-- Now get the implementation base type (note that plain Base_Type here
-- might lead us back to the private type, which is not what we want!)
Typl := Implementation_Base_Type (Typl);
-- Equality between variant records results in a call to a routine
-- that has conditional tests of the discriminant value(s), and hence
-- violates the No_Implicit_Conditionals restriction.
if Has_Variant_Part (Typl) then
declare
Msg : Boolean;
begin
Check_Restriction (Msg, No_Implicit_Conditionals, N);
if Msg then
Error_Msg_N
("\comparison of variant records tests discriminants", N);
return;
end if;
end;
end if;
-- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
-- means we no longer have a comparison operation, we are all done.
if Minimized_Eliminated_Overflow_Check (Left_Opnd (N)) then
Expand_Compare_Minimize_Eliminate_Overflow (N);
end if;
if Nkind (N) /= N_Op_Eq then
return;
end if;
-- Boolean types (requiring handling of non-standard case)
if Is_Boolean_Type (Typl) then
Adjust_Condition (Left_Opnd (N));
Adjust_Condition (Right_Opnd (N));
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
-- Array types
elsif Is_Array_Type (Typl) then
-- If we are doing full validity checking, and it is possible for the
-- array elements to be invalid then expand out array comparisons to
-- make sure that we check the array elements.
if Validity_Check_Operands
and then not Is_Known_Valid (Component_Type (Typl))
then
declare
Save_Force_Validity_Checks : constant Boolean :=
Force_Validity_Checks;
begin
Force_Validity_Checks := True;
Rewrite (N,
Expand_Array_Equality
(N,
Relocate_Node (Lhs),
Relocate_Node (Rhs),
Bodies,
Typl));
Insert_Actions (N, Bodies);
Analyze_And_Resolve (N, Standard_Boolean);
Force_Validity_Checks := Save_Force_Validity_Checks;
end;
-- Packed case where both operands are known aligned
elsif Is_Bit_Packed_Array (Typl)
and then not Is_Possibly_Unaligned_Object (Lhs)
and then not Is_Possibly_Unaligned_Object (Rhs)
then
Expand_Packed_Eq (N);
-- Where the component type is elementary we can use a block bit
-- comparison (if supported on the target) exception in the case
-- of floating-point (negative zero issues require element by
-- element comparison), and full access types (where we must be sure
-- to load elements independently) and possibly unaligned arrays.
elsif Is_Elementary_Type (Component_Type (Typl))
and then not Is_Floating_Point_Type (Component_Type (Typl))
and then not Is_Full_Access (Component_Type (Typl))
and then not Is_Possibly_Unaligned_Object (Lhs)
and then not Is_Possibly_Unaligned_Slice (Lhs)
and then not Is_Possibly_Unaligned_Object (Rhs)
and then not Is_Possibly_Unaligned_Slice (Rhs)
and then Support_Composite_Compare_On_Target
then
null;
-- For composite and floating-point cases, expand equality loop to
-- make sure of using proper comparisons for tagged types, and
-- correctly handling the floating-point case.
else
Rewrite (N,
Expand_Array_Equality
(N,
Relocate_Node (Lhs),
Relocate_Node (Rhs),
Bodies,
Typl));
Insert_Actions (N, Bodies, Suppress => All_Checks);
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
end if;
-- Record Types
elsif Is_Record_Type (Typl) then
-- For tagged types, use the primitive "="
if Is_Tagged_Type (Typl) then
-- No need to do anything else compiling under restriction
-- No_Dispatching_Calls. During the semantic analysis we
-- already notified such violation.
if Restriction_Active (No_Dispatching_Calls) then
return;
end if;
-- If this is an untagged private type completed with a derivation
-- of an untagged private type whose full view is a tagged type,
-- we use the primitive operations of the private type (since it
-- does not have a full view, and also because its equality
-- primitive may have been overridden in its untagged full view).
if Inherits_From_Tagged_Full_View (A_Typ) then
Build_Equality_Call
(Find_Equality (Collect_Primitive_Operations (A_Typ)));
-- Find the type's predefined equality or an overriding
-- user-defined equality. The reason for not simply calling
-- Find_Prim_Op here is that there may be a user-defined
-- overloaded equality op that precedes the equality that we
-- want, so we have to explicitly search (e.g., there could be
-- an equality with two different parameter types).
else
if Is_Class_Wide_Type (Typl) then
Typl := Find_Specific_Type (Typl);
end if;
Build_Equality_Call
(Find_Equality (Primitive_Operations (Typl)));
end if;
-- Ada 2005 (AI-216): Program_Error is raised when evaluating the
-- predefined equality operator for a type which has a subcomponent
-- of an unchecked union type whose nominal subtype is unconstrained.
elsif Has_Unconstrained_UU_Component (Typl) then
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
Rewrite (N,
New_Occurrence_Of (Standard_False, Loc));
-- If a type support function is present, e.g. if there is a variant
-- part, including an unchecked union type, use it.
elsif Present (TSS (Root_Type (Typl), TSS_Composite_Equality)) then
Build_Equality_Call
(TSS (Root_Type (Typl), TSS_Composite_Equality));
-- When comparing two Bounded_Strings, use the primitive equality of
-- the root Super_String type.
elsif Is_Bounded_String (Typl) then
Build_Equality_Call
(Find_Equality
(Collect_Primitive_Operations (Root_Type (Typl))));
-- Otherwise expand the component by component equality. Note that
-- we never use block-bit comparisons for records, because of the
-- problems with gaps. The back end will often be able to recombine
-- the separate comparisons that we generate here.
else
Remove_Side_Effects (Lhs);
Remove_Side_Effects (Rhs);
Rewrite (N, Expand_Record_Equality (N, Typl, Lhs, Rhs));
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
end if;
-- If unnesting, handle elementary types whose Equivalent_Types are
-- records because there may be padding or undefined fields.
elsif Unnest_Subprogram_Mode
and then Ekind (Typl) in E_Class_Wide_Type
| E_Class_Wide_Subtype
| E_Access_Subprogram_Type
| E_Access_Protected_Subprogram_Type
| E_Anonymous_Access_Protected_Subprogram_Type
| E_Exception_Type
and then Present (Equivalent_Type (Typl))
and then Is_Record_Type (Equivalent_Type (Typl))
then
Typl := Equivalent_Type (Typl);
Remove_Side_Effects (Lhs);
Remove_Side_Effects (Rhs);
Rewrite (N,
Expand_Record_Equality (N, Typl,
Unchecked_Convert_To (Typl, Lhs),
Unchecked_Convert_To (Typl, Rhs)));
Analyze_And_Resolve (N, Standard_Boolean, Suppress => All_Checks);
end if;
-- Test if result is known at compile time
Rewrite_Comparison (N);
-- Try to narrow the operation
if Typl = Universal_Integer and then Nkind (N) = N_Op_Eq then
Narrow_Large_Operation (N);
end if;
-- Special optimization of length comparison
Optimize_Length_Comparison (N);
-- One more special case: if we have a comparison of X'Result = expr
-- in floating-point, then if not already there, change expr to be
-- f'Machine (expr) to eliminate surprise from extra precision.
if Is_Floating_Point_Type (Typl)
and then Is_Attribute_Result (Original_Node (Lhs))
then
-- Stick in the Typ'Machine call if not already there
if Nkind (Rhs) /= N_Attribute_Reference
or else Attribute_Name (Rhs) /= Name_Machine
then
Rewrite (Rhs,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typl, Loc),
Attribute_Name => Name_Machine,
Expressions => New_List (Relocate_Node (Rhs))));
Analyze_And_Resolve (Rhs, Typl);
end if;
end if;
end Expand_N_Op_Eq;
-----------------------
-- Expand_N_Op_Expon --
-----------------------
procedure Expand_N_Op_Expon (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Ovflo : constant Boolean := Do_Overflow_Check (N);
Typ : constant Entity_Id := Etype (N);
Rtyp : constant Entity_Id := Root_Type (Typ);
Bastyp : Entity_Id;
function Wrap_MA (Exp : Node_Id) return Node_Id;
-- Given an expression Exp, if the root type is Float or Long_Float,
-- then wrap the expression in a call of Bastyp'Machine, to stop any
-- extra precision. This is done to ensure that X**A = X**B when A is
-- a static constant and B is a variable with the same value. For any
-- other type, the node Exp is returned unchanged.
-------------
-- Wrap_MA --
-------------
function Wrap_MA (Exp : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (Exp);
begin
if Rtyp = Standard_Float or else Rtyp = Standard_Long_Float then
return
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Machine,
Prefix => New_Occurrence_Of (Bastyp, Loc),
Expressions => New_List (Relocate_Node (Exp)));
else
return Exp;
end if;
end Wrap_MA;
-- Local variables
Base : Node_Id;
Ent : Entity_Id;
Etyp : Entity_Id;
Exp : Node_Id;
Exptyp : Entity_Id;
Expv : Uint;
Rent : RE_Id;
Temp : Node_Id;
Xnode : Node_Id;
-- Start of processing for Expand_N_Op_Expon
begin
Binary_Op_Validity_Checks (N);
-- CodePeer wants to see the unexpanded N_Op_Expon node
if CodePeer_Mode then
return;
end if;
-- Relocation of left and right operands must be done after performing
-- the validity checks since the generation of validation checks may
-- remove side effects.
Base := Relocate_Node (Left_Opnd (N));
Bastyp := Etype (Base);
Exp := Relocate_Node (Right_Opnd (N));
Exptyp := Etype (Exp);
-- If either operand is of a private type, then we have the use of an
-- intrinsic operator, and we get rid of the privateness, by using root
-- types of underlying types for the actual operation. Otherwise the
-- private types will cause trouble if we expand multiplications or
-- shifts etc. We also do this transformation if the result type is
-- different from the base type.
if Is_Private_Type (Etype (Base))
or else Is_Private_Type (Typ)
or else Is_Private_Type (Exptyp)
or else Rtyp /= Root_Type (Bastyp)
then
declare
Bt : constant Entity_Id := Root_Type (Underlying_Type (Bastyp));
Et : constant Entity_Id := Root_Type (Underlying_Type (Exptyp));
begin
Rewrite (N,
Unchecked_Convert_To (Typ,
Make_Op_Expon (Loc,
Left_Opnd => Unchecked_Convert_To (Bt, Base),
Right_Opnd => Unchecked_Convert_To (Et, Exp))));
Analyze_And_Resolve (N, Typ);
return;
end;
end if;
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Test for case of known right argument where we can replace the
-- exponentiation by an equivalent expression using multiplication.
-- Note: use CRT_Safe version of Compile_Time_Known_Value because in
-- configurable run-time mode, we may not have the exponentiation
-- routine available, and we don't want the legality of the program
-- to depend on how clever the compiler is in knowing values.
if CRT_Safe_Compile_Time_Known_Value (Exp) then
Expv := Expr_Value (Exp);
-- We only fold small non-negative exponents. You might think we
-- could fold small negative exponents for the real case, but we
-- can't because we are required to raise Constraint_Error for
-- the case of 0.0 ** (negative) even if Machine_Overflows = False.
-- See ACVC test C4A012B, and it is not worth generating the test.
-- For small negative exponents, we return the reciprocal of
-- the folding of the exponentiation for the opposite (positive)
-- exponent, as required by Ada RM 4.5.6(11/3).
if abs Expv <= 4 then
-- X ** 0 = 1 (or 1.0)
if Expv = 0 then
-- Call Remove_Side_Effects to ensure that any side effects
-- in the ignored left operand (in particular function calls
-- to user defined functions) are properly executed.
Remove_Side_Effects (Base);
if Ekind (Typ) in Integer_Kind then
Xnode := Make_Integer_Literal (Loc, Intval => 1);
else
Xnode := Make_Real_Literal (Loc, Ureal_1);
end if;
-- X ** 1 = X
elsif Expv = 1 then
Xnode := Base;
-- X ** 2 = X * X
elsif Expv = 2 then
Xnode :=
Wrap_MA (
Make_Op_Multiply (Loc,
Left_Opnd => Duplicate_Subexpr (Base),
Right_Opnd => Duplicate_Subexpr_No_Checks (Base)));
-- X ** 3 = X * X * X
elsif Expv = 3 then
Xnode :=
Wrap_MA (
Make_Op_Multiply (Loc,
Left_Opnd =>
Make_Op_Multiply (Loc,
Left_Opnd => Duplicate_Subexpr (Base),
Right_Opnd => Duplicate_Subexpr_No_Checks (Base)),
Right_Opnd => Duplicate_Subexpr_No_Checks (Base)));
-- X ** 4 ->
-- do
-- En : constant base'type := base * base;
-- in
-- En * En
elsif Expv = 4 then
Temp := Make_Temporary (Loc, 'E', Base);
Xnode :=
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression =>
Wrap_MA (
Make_Op_Multiply (Loc,
Left_Opnd =>
Duplicate_Subexpr (Base),
Right_Opnd =>
Duplicate_Subexpr_No_Checks (Base))))),
Expression =>
Wrap_MA (
Make_Op_Multiply (Loc,
Left_Opnd => New_Occurrence_Of (Temp, Loc),
Right_Opnd => New_Occurrence_Of (Temp, Loc))));
-- X ** N = 1.0 / X ** (-N)
-- N in -4 .. -1
else
pragma Assert
(Expv = -1 or Expv = -2 or Expv = -3 or Expv = -4);
Xnode :=
Make_Op_Divide (Loc,
Left_Opnd =>
Make_Float_Literal (Loc,
Radix => Uint_1,
Significand => Uint_1,
Exponent => Uint_0),
Right_Opnd =>
Make_Op_Expon (Loc,
Left_Opnd => Duplicate_Subexpr (Base),
Right_Opnd =>
Make_Integer_Literal (Loc,
Intval => -Expv)));
end if;
Rewrite (N, Xnode);
Analyze_And_Resolve (N, Typ);
return;
end if;
end if;
-- Optimize 2 ** expression to shift where possible
-- Note: we used to check that Exptyp was an unsigned type. But that is
-- an unnecessary check, since if Exp is negative, we have a run-time
-- error that is either caught (so we get the right result) or we have
-- suppressed the check, in which case the code is erroneous anyway.
if Is_Integer_Type (Rtyp)
-- The base value must be "safe compile-time known", and exactly 2
and then Nkind (Base) = N_Integer_Literal
and then CRT_Safe_Compile_Time_Known_Value (Base)
and then Expr_Value (Base) = Uint_2
-- This transformation is not applicable for a modular type with a
-- nonbinary modulus because shifting makes no sense in that case.
and then not Non_Binary_Modulus (Typ)
then
-- Handle the cases where our parent is a division or multiplication
-- specially. In these cases we can convert to using a shift at the
-- parent level if we are not doing overflow checking, since it is
-- too tricky to combine the overflow check at the parent level.
if not Ovflo
and then Nkind (Parent (N)) in N_Op_Divide | N_Op_Multiply
then
declare
P : constant Node_Id := Parent (N);
L : constant Node_Id := Left_Opnd (P);
R : constant Node_Id := Right_Opnd (P);
begin
if (Nkind (P) = N_Op_Multiply
and then
((Is_Integer_Type (Etype (L)) and then R = N)
or else
(Is_Integer_Type (Etype (R)) and then L = N))
and then not Do_Overflow_Check (P))
or else
(Nkind (P) = N_Op_Divide
and then Is_Integer_Type (Etype (L))
and then Is_Unsigned_Type (Etype (L))
and then R = N
and then not Do_Overflow_Check (P))
then
Set_Is_Power_Of_2_For_Shift (N);
return;
end if;
end;
-- Here we have 2 ** N on its own, so we can convert this into a
-- shift.
else
-- Op_Shift_Left (generated below) has modular-shift semantics;
-- therefore we might need to generate an overflow check here
-- if the type is signed.
if Is_Signed_Integer_Type (Typ) and then Ovflo then
declare
OK : Boolean;
Lo : Uint;
Hi : Uint;
MaxS : constant Uint := Esize (Rtyp) - 2;
-- Maximum shift count with no overflow
begin
Determine_Range (Exp, OK, Lo, Hi, Assume_Valid => True);
if not OK or else Hi > MaxS then
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Gt (Loc,
Left_Opnd => Duplicate_Subexpr (Exp),
Right_Opnd => Make_Integer_Literal (Loc, MaxS)),
Reason => CE_Overflow_Check_Failed));
end if;
end;
end if;
-- Generate Shift_Left (1, Exp)
Rewrite (N,
Make_Op_Shift_Left (Loc,
Left_Opnd => Make_Integer_Literal (Loc, Uint_1),
Right_Opnd => Exp));
Analyze_And_Resolve (N, Typ);
return;
end if;
end if;
-- Fall through if exponentiation must be done using a runtime routine
-- First deal with modular case
if Is_Modular_Integer_Type (Rtyp) then
-- Nonbinary modular case, we call the special exponentiation
-- routine for the nonbinary case, converting the argument to
-- Long_Long_Integer and passing the modulus value. Then the
-- result is converted back to the base type.
if Non_Binary_Modulus (Rtyp) then
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Exp_Modular), Loc),
Parameter_Associations => New_List (
Convert_To (RTE (RE_Unsigned), Base),
Make_Integer_Literal (Loc, Modulus (Rtyp)),
Exp))));
-- Binary modular case, in this case, we call one of three routines,
-- either the unsigned integer case, or the unsigned long long
-- integer case, or the unsigned long long long integer case, with a
-- final "and" operation to do the required mod.
else
if Esize (Rtyp) <= Standard_Integer_Size then
Ent := RTE (RE_Exp_Unsigned);
elsif Esize (Rtyp) <= Standard_Long_Long_Integer_Size then
Ent := RTE (RE_Exp_Long_Long_Unsigned);
else
Ent := RTE (RE_Exp_Long_Long_Long_Unsigned);
end if;
Rewrite (N,
Convert_To (Typ,
Make_Op_And (Loc,
Left_Opnd =>
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Ent, Loc),
Parameter_Associations => New_List (
Convert_To (Etype (First_Formal (Ent)), Base),
Exp)),
Right_Opnd =>
Make_Integer_Literal (Loc, Modulus (Rtyp) - 1))));
end if;
-- Common exit point for modular type case
Analyze_And_Resolve (N, Typ);
return;
-- Signed integer cases, using either Integer, Long_Long_Integer or
-- Long_Long_Long_Integer. It is not worth also having routines for
-- Short_[Short_]Integer, since for most machines it would not help,
-- and it would generate more code that might need certification when
-- a certified run time is required.
-- In the integer cases, we have two routines, one for when overflow
-- checks are required, and one when they are not required, since there
-- is a real gain in omitting checks on many machines.
elsif Is_Signed_Integer_Type (Rtyp) then
if Esize (Rtyp) <= Standard_Integer_Size then
Etyp := Standard_Integer;
if Ovflo then
Rent := RE_Exp_Integer;
else
Rent := RE_Exn_Integer;
end if;
elsif Esize (Rtyp) <= Standard_Long_Long_Integer_Size then
Etyp := Standard_Long_Long_Integer;
if Ovflo then
Rent := RE_Exp_Long_Long_Integer;
else
Rent := RE_Exn_Long_Long_Integer;
end if;
else
Etyp := Standard_Long_Long_Long_Integer;
if Ovflo then
Rent := RE_Exp_Long_Long_Long_Integer;
else
Rent := RE_Exn_Long_Long_Long_Integer;
end if;
end if;
-- Floating-point cases. We do not need separate routines for the
-- overflow case here, since in the case of floating-point, we generate
-- infinities anyway as a rule (either that or we automatically trap
-- overflow), and if there is an infinity generated and a range check
-- is required, the check will fail anyway.
else
pragma Assert (Is_Floating_Point_Type (Rtyp));
-- Short_Float and Float are the same type for GNAT
if Rtyp = Standard_Short_Float or else Rtyp = Standard_Float then
Etyp := Standard_Float;
Rent := RE_Exn_Float;
elsif Rtyp = Standard_Long_Float then
Etyp := Standard_Long_Float;
Rent := RE_Exn_Long_Float;
else
Etyp := Standard_Long_Long_Float;
Rent := RE_Exn_Long_Long_Float;
end if;
end if;
-- Common processing for integer cases and floating-point cases.
-- If we are in the right type, we can call runtime routine directly
if Typ = Etyp
and then not Is_Universal_Numeric_Type (Rtyp)
then
Rewrite (N,
Wrap_MA (
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Rent), Loc),
Parameter_Associations => New_List (Base, Exp))));
-- Otherwise we have to introduce conversions (conversions are also
-- required in the universal cases, since the runtime routine is
-- typed using one of the standard types).
else
Rewrite (N,
Convert_To (Typ,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Rent), Loc),
Parameter_Associations => New_List (
Convert_To (Etyp, Base),
Exp))));
end if;
Analyze_And_Resolve (N, Typ);
return;
exception
when RE_Not_Available =>
return;
end Expand_N_Op_Expon;
--------------------
-- Expand_N_Op_Ge --
--------------------
procedure Expand_N_Op_Ge (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
Op1 : constant Node_Id := Left_Opnd (N);
Op2 : constant Node_Id := Right_Opnd (N);
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
begin
Binary_Op_Validity_Checks (N);
-- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
-- means we no longer have a comparison operation, we are all done.
if Minimized_Eliminated_Overflow_Check (Op1) then
Expand_Compare_Minimize_Eliminate_Overflow (N);
end if;
if Nkind (N) /= N_Op_Ge then
return;
end if;
-- Array type case
if Is_Array_Type (Typ1) then
Expand_Array_Comparison (N);
return;
end if;
-- Deal with boolean operands
if Is_Boolean_Type (Typ1) then
Adjust_Condition (Op1);
Adjust_Condition (Op2);
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
end if;
Rewrite_Comparison (N);
-- Try to narrow the operation
if Typ1 = Universal_Integer and then Nkind (N) = N_Op_Ge then
Narrow_Large_Operation (N);
end if;
Optimize_Length_Comparison (N);
end Expand_N_Op_Ge;
--------------------
-- Expand_N_Op_Gt --
--------------------
procedure Expand_N_Op_Gt (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
Op1 : constant Node_Id := Left_Opnd (N);
Op2 : constant Node_Id := Right_Opnd (N);
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
begin
Binary_Op_Validity_Checks (N);
-- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
-- means we no longer have a comparison operation, we are all done.
if Minimized_Eliminated_Overflow_Check (Op1) then
Expand_Compare_Minimize_Eliminate_Overflow (N);
end if;
if Nkind (N) /= N_Op_Gt then
return;
end if;
-- Deal with array type operands
if Is_Array_Type (Typ1) then
Expand_Array_Comparison (N);
return;
end if;
-- Deal with boolean type operands
if Is_Boolean_Type (Typ1) then
Adjust_Condition (Op1);
Adjust_Condition (Op2);
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
end if;
Rewrite_Comparison (N);
-- Try to narrow the operation
if Typ1 = Universal_Integer and then Nkind (N) = N_Op_Gt then
Narrow_Large_Operation (N);
end if;
Optimize_Length_Comparison (N);
end Expand_N_Op_Gt;
--------------------
-- Expand_N_Op_Le --
--------------------
procedure Expand_N_Op_Le (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
Op1 : constant Node_Id := Left_Opnd (N);
Op2 : constant Node_Id := Right_Opnd (N);
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
begin
Binary_Op_Validity_Checks (N);
-- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
-- means we no longer have a comparison operation, we are all done.
if Minimized_Eliminated_Overflow_Check (Op1) then
Expand_Compare_Minimize_Eliminate_Overflow (N);
end if;
if Nkind (N) /= N_Op_Le then
return;
end if;
-- Deal with array type operands
if Is_Array_Type (Typ1) then
Expand_Array_Comparison (N);
return;
end if;
-- Deal with Boolean type operands
if Is_Boolean_Type (Typ1) then
Adjust_Condition (Op1);
Adjust_Condition (Op2);
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
end if;
Rewrite_Comparison (N);
-- Try to narrow the operation
if Typ1 = Universal_Integer and then Nkind (N) = N_Op_Le then
Narrow_Large_Operation (N);
end if;
Optimize_Length_Comparison (N);
end Expand_N_Op_Le;
--------------------
-- Expand_N_Op_Lt --
--------------------
procedure Expand_N_Op_Lt (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
Op1 : constant Node_Id := Left_Opnd (N);
Op2 : constant Node_Id := Right_Opnd (N);
Typ1 : constant Entity_Id := Base_Type (Etype (Op1));
begin
Binary_Op_Validity_Checks (N);
-- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
-- means we no longer have a comparison operation, we are all done.
if Minimized_Eliminated_Overflow_Check (Op1) then
Expand_Compare_Minimize_Eliminate_Overflow (N);
end if;
if Nkind (N) /= N_Op_Lt then
return;
end if;
-- Deal with array type operands
if Is_Array_Type (Typ1) then
Expand_Array_Comparison (N);
return;
end if;
-- Deal with Boolean type operands
if Is_Boolean_Type (Typ1) then
Adjust_Condition (Op1);
Adjust_Condition (Op2);
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
end if;
Rewrite_Comparison (N);
-- Try to narrow the operation
if Typ1 = Universal_Integer and then Nkind (N) = N_Op_Lt then
Narrow_Large_Operation (N);
end if;
Optimize_Length_Comparison (N);
end Expand_N_Op_Lt;
-----------------------
-- Expand_N_Op_Minus --
-----------------------
procedure Expand_N_Op_Minus (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
begin
Unary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Try to narrow the operation
if Typ = Universal_Integer then
Narrow_Large_Operation (N);
if Nkind (N) /= N_Op_Minus then
return;
end if;
end if;
if not Backend_Overflow_Checks_On_Target
and then Is_Signed_Integer_Type (Typ)
and then Do_Overflow_Check (N)
then
-- Software overflow checking expands -expr into (0 - expr)
Rewrite (N,
Make_Op_Subtract (Loc,
Left_Opnd => Make_Integer_Literal (Loc, 0),
Right_Opnd => Right_Opnd (N)));
Analyze_And_Resolve (N, Typ);
end if;
Expand_Nonbinary_Modular_Op (N);
end Expand_N_Op_Minus;
---------------------
-- Expand_N_Op_Mod --
---------------------
procedure Expand_N_Op_Mod (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
DDC : constant Boolean := Do_Division_Check (N);
Is_Stoele_Mod : constant Boolean :=
Is_RTE (Typ, RE_Address)
and then Nkind (Right_Opnd (N)) = N_Unchecked_Type_Conversion
and then
Is_RTE (Etype (Expression (Right_Opnd (N))), RE_Storage_Offset);
-- True if this is the special mod operator of System.Storage_Elements
Left : Node_Id;
Right : Node_Id;
LLB : Uint;
Llo : Uint;
Lhi : Uint;
LOK : Boolean;
Rlo : Uint;
Rhi : Uint;
ROK : Boolean;
pragma Warnings (Off, Lhi);
begin
Binary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Try to narrow the operation
if Typ = Universal_Integer then
Narrow_Large_Operation (N);
if Nkind (N) /= N_Op_Mod then
return;
end if;
end if;
-- For the special mod operator of System.Storage_Elements, the checks
-- are subsumed into the handling of the negative case below.
if Is_Integer_Type (Typ) and then not Is_Stoele_Mod then
Apply_Divide_Checks (N);
-- All done if we don't have a MOD any more, which can happen as a
-- result of overflow expansion in MINIMIZED or ELIMINATED modes.
if Nkind (N) /= N_Op_Mod then
return;
end if;
end if;
-- Proceed with expansion of mod operator
Left := Left_Opnd (N);
Right := Right_Opnd (N);
Determine_Range (Right, ROK, Rlo, Rhi, Assume_Valid => True);
Determine_Range (Left, LOK, Llo, Lhi, Assume_Valid => True);
-- Convert mod to rem if operands are both known to be non-negative, or
-- both known to be non-positive (these are the cases in which rem and
-- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
-- likely that this will improve the quality of code, (the operation now
-- corresponds to the hardware remainder), and it does not seem likely
-- that it could be harmful. It also avoids some cases of the elaborate
-- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
if (LOK and ROK)
and then ((Llo >= 0 and then Rlo >= 0)
or else
(Lhi <= 0 and then Rhi <= 0))
and then not Is_Stoele_Mod
then
Rewrite (N,
Make_Op_Rem (Sloc (N),
Left_Opnd => Left_Opnd (N),
Right_Opnd => Right_Opnd (N)));
-- Instead of reanalyzing the node we do the analysis manually. This
-- avoids anomalies when the replacement is done in an instance and
-- is epsilon more efficient.
pragma Assert (Entity (N) = Standard_Op_Rem);
Set_Etype (N, Typ);
Set_Do_Division_Check (N, DDC);
Expand_N_Op_Rem (N);
Set_Analyzed (N);
return;
-- Otherwise, normal mod processing
else
-- Apply optimization x mod 1 = 0. We don't really need that with
-- gcc, but it is useful with other back ends and is certainly
-- harmless.
if Is_Integer_Type (Etype (N))
and then Compile_Time_Known_Value (Right)
and then Expr_Value (Right) = Uint_1
then
-- Call Remove_Side_Effects to ensure that any side effects in
-- the ignored left operand (in particular function calls to
-- user defined functions) are properly executed.
Remove_Side_Effects (Left);
Rewrite (N, Make_Integer_Literal (Loc, 0));
Analyze_And_Resolve (N, Typ);
return;
end if;
-- The negative case makes no sense since it is a case of a mod where
-- the left argument is unsigned and the right argument is signed. In
-- accordance with the (spirit of the) permission of RM 13.7.1(16),
-- we raise CE, and also include the zero case here. Yes, the RM says
-- PE, but this really is so obviously more like a constraint error.
if Is_Stoele_Mod and then (not ROK or else Rlo <= 0) then
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Le (Loc,
Left_Opnd =>
Duplicate_Subexpr_No_Checks (Expression (Right)),
Right_Opnd => Make_Integer_Literal (Loc, 0)),
Reason => CE_Overflow_Check_Failed));
return;
end if;
-- If we still have a mod operator and we are in Modify_Tree_For_C
-- mode, and we have a signed integer type, then here is where we do
-- the rewrite in terms of Rem. Note this rewrite bypasses the need
-- for the special handling of the annoying case of largest negative
-- number mod minus one.
if Nkind (N) = N_Op_Mod
and then Is_Signed_Integer_Type (Typ)
and then Modify_Tree_For_C
then
-- In the general case, we expand A mod B as
-- Tnn : constant typ := A rem B;
-- ..
-- (if (A >= 0) = (B >= 0) then Tnn
-- elsif Tnn = 0 then 0
-- else Tnn + B)
-- The comparison can be written simply as A >= 0 if we know that
-- B >= 0 which is a very common case.
-- An important optimization is when B is known at compile time
-- to be 2**K for some constant. In this case we can simply AND
-- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
-- and that works for both the positive and negative cases.
declare
P2 : constant Nat := Power_Of_Two (Right);
begin
if P2 /= 0 then
Rewrite (N,
Unchecked_Convert_To (Typ,
Make_Op_And (Loc,
Left_Opnd =>
Unchecked_Convert_To
(Corresponding_Unsigned_Type (Typ), Left),
Right_Opnd =>
Make_Integer_Literal (Loc, 2 ** P2 - 1))));
Analyze_And_Resolve (N, Typ);
return;
end if;
end;
-- Here for the full rewrite
declare
Tnn : constant Entity_Id := Make_Temporary (Sloc (N), 'T', N);
Cmp : Node_Id;
begin
Cmp :=
Make_Op_Ge (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
Right_Opnd => Make_Integer_Literal (Loc, 0));
if not LOK or else Rlo < 0 then
Cmp :=
Make_Op_Eq (Loc,
Left_Opnd => Cmp,
Right_Opnd =>
Make_Op_Ge (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Right),
Right_Opnd => Make_Integer_Literal (Loc, 0)));
end if;
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Tnn,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression =>
Make_Op_Rem (Loc,
Left_Opnd => Left,
Right_Opnd => Right)));
Rewrite (N,
Make_If_Expression (Loc,
Expressions => New_List (
Cmp,
New_Occurrence_Of (Tnn, Loc),
Make_If_Expression (Loc,
Is_Elsif => True,
Expressions => New_List (
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (Tnn, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 0)),
Make_Integer_Literal (Loc, 0),
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Tnn, Loc),
Right_Opnd =>
Duplicate_Subexpr_No_Checks (Right)))))));
Analyze_And_Resolve (N, Typ);
return;
end;
end if;
-- Deal with annoying case of largest negative number mod minus one.
-- Gigi may not handle this case correctly, because on some targets,
-- the mod value is computed using a divide instruction which gives
-- an overflow trap for this case.
-- It would be a bit more efficient to figure out which targets
-- this is really needed for, but in practice it is reasonable
-- to do the following special check in all cases, since it means
-- we get a clearer message, and also the overhead is minimal given
-- that division is expensive in any case.
-- In fact the check is quite easy, if the right operand is -1, then
-- the mod value is always 0, and we can just ignore the left operand
-- completely in this case.
-- This only applies if we still have a mod operator. Skip if we
-- have already rewritten this (e.g. in the case of eliminated
-- overflow checks which have driven us into bignum mode).
if Nkind (N) = N_Op_Mod then
-- The operand type may be private (e.g. in the expansion of an
-- intrinsic operation) so we must use the underlying type to get
-- the bounds, and convert the literals explicitly.
LLB :=
Expr_Value
(Type_Low_Bound (Base_Type (Underlying_Type (Etype (Left)))));
if (not ROK or else (Rlo <= (-1) and then (-1) <= Rhi))
and then (not LOK or else Llo = LLB)
and then not CodePeer_Mode
then
Rewrite (N,
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr (Right),
Right_Opnd =>
Unchecked_Convert_To (Typ,
Make_Integer_Literal (Loc, -1))),
Unchecked_Convert_To (Typ,
Make_Integer_Literal (Loc, Uint_0)),
Relocate_Node (N))));
Set_Analyzed (Next (Next (First (Expressions (N)))));
Analyze_And_Resolve (N, Typ);
end if;
end if;
end if;
end Expand_N_Op_Mod;
--------------------------
-- Expand_N_Op_Multiply --
--------------------------
procedure Expand_N_Op_Multiply (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Lop : constant Node_Id := Left_Opnd (N);
Rop : constant Node_Id := Right_Opnd (N);
Lp2 : constant Boolean :=
Nkind (Lop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Lop);
Rp2 : constant Boolean :=
Nkind (Rop) = N_Op_Expon and then Is_Power_Of_2_For_Shift (Rop);
Ltyp : constant Entity_Id := Etype (Lop);
Rtyp : constant Entity_Id := Etype (Rop);
Typ : Entity_Id := Etype (N);
begin
Binary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Special optimizations for integer types
if Is_Integer_Type (Typ) then
-- N * 0 = 0 for integer types
if Compile_Time_Known_Value (Rop)
and then Expr_Value (Rop) = Uint_0
then
-- Call Remove_Side_Effects to ensure that any side effects in
-- the ignored left operand (in particular function calls to
-- user defined functions) are properly executed.
Remove_Side_Effects (Lop);
Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
Analyze_And_Resolve (N, Typ);
return;
end if;
-- Similar handling for 0 * N = 0
if Compile_Time_Known_Value (Lop)
and then Expr_Value (Lop) = Uint_0
then
Remove_Side_Effects (Rop);
Rewrite (N, Make_Integer_Literal (Loc, Uint_0));
Analyze_And_Resolve (N, Typ);
return;
end if;
-- N * 1 = 1 * N = N for integer types
-- This optimisation is not done if we are going to
-- rewrite the product 1 * 2 ** N to a shift.
if Compile_Time_Known_Value (Rop)
and then Expr_Value (Rop) = Uint_1
and then not Lp2
then
Rewrite (N, Lop);
return;
elsif Compile_Time_Known_Value (Lop)
and then Expr_Value (Lop) = Uint_1
and then not Rp2
then
Rewrite (N, Rop);
return;
end if;
end if;
-- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
-- Is_Power_Of_2_For_Shift is set means that we know that our left
-- operand is an integer, as required for this to work.
if Rp2 then
if Lp2 then
-- Convert 2 ** A * 2 ** B into 2 ** (A + B)
Rewrite (N,
Make_Op_Expon (Loc,
Left_Opnd => Make_Integer_Literal (Loc, 2),
Right_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => Right_Opnd (Lop),
Right_Opnd => Right_Opnd (Rop))));
Analyze_And_Resolve (N, Typ);
return;
else
-- If the result is modular, perform the reduction of the result
-- appropriately.
if Is_Modular_Integer_Type (Typ)
and then not Non_Binary_Modulus (Typ)
then
Rewrite (N,
Make_Op_And (Loc,
Left_Opnd =>
Make_Op_Shift_Left (Loc,
Left_Opnd => Lop,
Right_Opnd =>
Convert_To (Standard_Natural, Right_Opnd (Rop))),
Right_Opnd =>
Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
else
Rewrite (N,
Make_Op_Shift_Left (Loc,
Left_Opnd => Lop,
Right_Opnd =>
Convert_To (Standard_Natural, Right_Opnd (Rop))));
end if;
Analyze_And_Resolve (N, Typ);
return;
end if;
-- Same processing for the operands the other way round
elsif Lp2 then
if Is_Modular_Integer_Type (Typ)
and then not Non_Binary_Modulus (Typ)
then
Rewrite (N,
Make_Op_And (Loc,
Left_Opnd =>
Make_Op_Shift_Left (Loc,
Left_Opnd => Rop,
Right_Opnd =>
Convert_To (Standard_Natural, Right_Opnd (Lop))),
Right_Opnd =>
Make_Integer_Literal (Loc, Modulus (Typ) - 1)));
else
Rewrite (N,
Make_Op_Shift_Left (Loc,
Left_Opnd => Rop,
Right_Opnd =>
Convert_To (Standard_Natural, Right_Opnd (Lop))));
end if;
Analyze_And_Resolve (N, Typ);
return;
end if;
-- Try to narrow the operation
if Typ = Universal_Integer then
Narrow_Large_Operation (N);
if Nkind (N) /= N_Op_Multiply then
return;
end if;
end if;
-- Do required fixup of universal fixed operation
if Typ = Universal_Fixed then
Fixup_Universal_Fixed_Operation (N);
Typ := Etype (N);
end if;
-- Multiplications with fixed-point results
if Is_Fixed_Point_Type (Typ) then
-- Case of fixed * integer => fixed
if Is_Integer_Type (Rtyp) then
Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N);
-- Case of integer * fixed => fixed
elsif Is_Integer_Type (Ltyp) then
Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N);
-- Case of fixed * fixed => fixed
else
Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N);
end if;
-- Other cases of multiplication of fixed-point operands
elsif Is_Fixed_Point_Type (Ltyp) or else Is_Fixed_Point_Type (Rtyp) then
if Is_Integer_Type (Typ) then
Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N);
else
pragma Assert (Is_Floating_Point_Type (Typ));
Expand_Multiply_Fixed_By_Fixed_Giving_Float (N);
end if;
-- Mixed-mode operations can appear in a non-static universal context,
-- in which case the integer argument must be converted explicitly.
elsif Typ = Universal_Real and then Is_Integer_Type (Rtyp) then
Rewrite (Rop, Convert_To (Universal_Real, Relocate_Node (Rop)));
Analyze_And_Resolve (Rop, Universal_Real);
elsif Typ = Universal_Real and then Is_Integer_Type (Ltyp) then
Rewrite (Lop, Convert_To (Universal_Real, Relocate_Node (Lop)));
Analyze_And_Resolve (Lop, Universal_Real);
-- Non-fixed point cases, check software overflow checking required
elsif Is_Signed_Integer_Type (Etype (N)) then
Apply_Arithmetic_Overflow_Check (N);
end if;
-- Overflow checks for floating-point if -gnateF mode active
Check_Float_Op_Overflow (N);
Expand_Nonbinary_Modular_Op (N);
end Expand_N_Op_Multiply;
--------------------
-- Expand_N_Op_Ne --
--------------------
procedure Expand_N_Op_Ne (N : Node_Id) is
Typ : constant Entity_Id := Etype (Left_Opnd (N));
begin
-- Case of elementary type with standard operator. But if unnesting,
-- handle elementary types whose Equivalent_Types are records because
-- there may be padding or undefined fields.
if Is_Elementary_Type (Typ)
and then Sloc (Entity (N)) = Standard_Location
and then not (Ekind (Typ) in E_Class_Wide_Type
| E_Class_Wide_Subtype
| E_Access_Subprogram_Type
| E_Access_Protected_Subprogram_Type
| E_Anonymous_Access_Protected_Subprogram_Type
| E_Exception_Type
and then Present (Equivalent_Type (Typ))
and then Is_Record_Type (Equivalent_Type (Typ)))
then
Binary_Op_Validity_Checks (N);
-- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
-- means we no longer have a /= operation, we are all done.
if Minimized_Eliminated_Overflow_Check (Left_Opnd (N)) then
Expand_Compare_Minimize_Eliminate_Overflow (N);
end if;
if Nkind (N) /= N_Op_Ne then
return;
end if;
-- Boolean types (requiring handling of non-standard case)
if Is_Boolean_Type (Typ) then
Adjust_Condition (Left_Opnd (N));
Adjust_Condition (Right_Opnd (N));
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
end if;
Rewrite_Comparison (N);
-- Try to narrow the operation
if Typ = Universal_Integer and then Nkind (N) = N_Op_Ne then
Narrow_Large_Operation (N);
end if;
-- For all cases other than elementary types, we rewrite node as the
-- negation of an equality operation, and reanalyze. The equality to be
-- used is defined in the same scope and has the same signature. This
-- signature must be set explicitly since in an instance it may not have
-- the same visibility as in the generic unit. This avoids duplicating
-- or factoring the complex code for record/array equality tests etc.
-- This case is also used for the minimal expansion performed in
-- GNATprove mode.
else
declare
Loc : constant Source_Ptr := Sloc (N);
Neg : Node_Id;
Ne : constant Entity_Id := Entity (N);
begin
Binary_Op_Validity_Checks (N);
Neg :=
Make_Op_Not (Loc,
Right_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => Left_Opnd (N),
Right_Opnd => Right_Opnd (N)));
if Scope (Ne) /= Standard_Standard then
Set_Entity (Right_Opnd (Neg), Corresponding_Equality (Ne));
end if;
-- For navigation purposes, we want to treat the inequality as an
-- implicit reference to the corresponding equality. Preserve the
-- Comes_From_ source flag to generate proper Xref entries.
Preserve_Comes_From_Source (Neg, N);
Preserve_Comes_From_Source (Right_Opnd (Neg), N);
Rewrite (N, Neg);
Analyze_And_Resolve (N, Standard_Boolean);
end;
end if;
-- No need for optimization in GNATprove mode, where we would rather see
-- the original source expression.
if not GNATprove_Mode then
Optimize_Length_Comparison (N);
end if;
end Expand_N_Op_Ne;
---------------------
-- Expand_N_Op_Not --
---------------------
-- If the argument is other than a Boolean array type, there is no special
-- expansion required, except for dealing with validity checks, and non-
-- standard boolean representations.
-- For the packed array case, we call the special routine in Exp_Pakd,
-- except that if the component size is greater than one, we use the
-- standard routine generating a gruesome loop (it is so peculiar to have
-- packed arrays with non-standard Boolean representations anyway, so it
-- does not matter that we do not handle this case efficiently).
-- For the unpacked array case (and for the special packed case where we
-- have non standard Booleans, as discussed above), we generate and insert
-- into the tree the following function definition:
-- function Nnnn (A : arr) is
-- B : arr;
-- begin
-- for J in a'range loop
-- B (J) := not A (J);
-- end loop;
-- return B;
-- end Nnnn;
-- or in the case of Transform_Function_Array:
-- procedure Nnnn (A : arr; RESULT : out arr) is
-- begin
-- for J in a'range loop
-- RESULT (J) := not A (J);
-- end loop;
-- end Nnnn;
-- Here arr is the actual subtype of the parameter (and hence always
-- constrained). Then we replace the not with a call to this subprogram.
procedure Expand_N_Op_Not (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (Right_Opnd (N));
Opnd : Node_Id;
Arr : Entity_Id;
A : Entity_Id;
B : Entity_Id;
J : Entity_Id;
A_J : Node_Id;
B_J : Node_Id;
Func_Name : Entity_Id;
Loop_Statement : Node_Id;
begin
Unary_Op_Validity_Checks (N);
-- For boolean operand, deal with non-standard booleans
if Is_Boolean_Type (Typ) then
Adjust_Condition (Right_Opnd (N));
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
return;
end if;
-- Only array types need any other processing
if not Is_Array_Type (Typ) then
return;
end if;
-- Case of array operand. If bit packed with a component size of 1,
-- handle it in Exp_Pakd if the operand is known to be aligned.
if Is_Bit_Packed_Array (Typ)
and then Component_Size (Typ) = 1
and then not Is_Possibly_Unaligned_Object (Right_Opnd (N))
then
Expand_Packed_Not (N);
return;
end if;
-- Case of array operand which is not bit-packed. If the context is
-- a safe assignment, call in-place operation, If context is a larger
-- boolean expression in the context of a safe assignment, expansion is
-- done by enclosing operation.
Opnd := Relocate_Node (Right_Opnd (N));
Convert_To_Actual_Subtype (Opnd);
Arr := Etype (Opnd);
Ensure_Defined (Arr, N);
Silly_Boolean_Array_Not_Test (N, Arr);
if Nkind (Parent (N)) = N_Assignment_Statement then
if Safe_In_Place_Array_Op (Name (Parent (N)), N, Empty) then
Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
return;
-- Special case the negation of a binary operation
elsif Nkind (Opnd) in N_Op_And | N_Op_Or | N_Op_Xor
and then Safe_In_Place_Array_Op
(Name (Parent (N)), Left_Opnd (Opnd), Right_Opnd (Opnd))
then
Build_Boolean_Array_Proc_Call (Parent (N), Opnd, Empty);
return;
end if;
elsif Nkind (Parent (N)) in N_Binary_Op
and then Nkind (Parent (Parent (N))) = N_Assignment_Statement
then
declare
Op1 : constant Node_Id := Left_Opnd (Parent (N));
Op2 : constant Node_Id := Right_Opnd (Parent (N));
Lhs : constant Node_Id := Name (Parent (Parent (N)));
begin
if Safe_In_Place_Array_Op (Lhs, Op1, Op2) then
-- (not A) op (not B) can be reduced to a single call
if N = Op1 and then Nkind (Op2) = N_Op_Not then
return;
elsif N = Op2 and then Nkind (Op1) = N_Op_Not then
return;
-- A xor (not B) can also be special-cased
elsif N = Op2 and then Nkind (Parent (N)) = N_Op_Xor then
return;
end if;
end if;
end;
end if;
A := Make_Defining_Identifier (Loc, Name_uA);
if Transform_Function_Array then
B := Make_Defining_Identifier (Loc, Name_UP_RESULT);
else
B := Make_Defining_Identifier (Loc, Name_uB);
end if;
J := Make_Defining_Identifier (Loc, Name_uJ);
A_J :=
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (A, Loc),
Expressions => New_List (New_Occurrence_Of (J, Loc)));
B_J :=
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (B, Loc),
Expressions => New_List (New_Occurrence_Of (J, Loc)));
Loop_Statement :=
Make_Implicit_Loop_Statement (N,
Identifier => Empty,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => J,
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Chars (A)),
Attribute_Name => Name_Range))),
Statements => New_List (
Make_Assignment_Statement (Loc,
Name => B_J,
Expression => Make_Op_Not (Loc, A_J))));
Func_Name := Make_Temporary (Loc, 'N');
Set_Is_Inlined (Func_Name);
if Transform_Function_Array then
Insert_Action (N,
Make_Subprogram_Body (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Func_Name,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => A,
Parameter_Type => New_Occurrence_Of (Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => B,
Out_Present => True,
Parameter_Type => New_Occurrence_Of (Typ, Loc)))),
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Loop_Statement))));
declare
Temp_Id : constant Entity_Id := Make_Temporary (Loc, 'T');
Call : Node_Id;
Decl : Node_Id;
begin
-- Generate:
-- Temp : ...;
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp_Id,
Object_Definition => New_Occurrence_Of (Typ, Loc));
-- Generate:
-- Proc_Call (Opnd, Temp);
Call :=
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Func_Name, Loc),
Parameter_Associations =>
New_List (Opnd, New_Occurrence_Of (Temp_Id, Loc)));
Insert_Actions (Parent (N), New_List (Decl, Call));
Rewrite (N, New_Occurrence_Of (Temp_Id, Loc));
end;
else
Insert_Action (N,
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Func_Name,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => A,
Parameter_Type => New_Occurrence_Of (Typ, Loc))),
Result_Definition => New_Occurrence_Of (Typ, Loc)),
Declarations => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => B,
Object_Definition => New_Occurrence_Of (Arr, Loc))),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Loop_Statement,
Make_Simple_Return_Statement (Loc,
Expression => Make_Identifier (Loc, Chars (B)))))));
Rewrite (N,
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Name, Loc),
Parameter_Associations => New_List (Opnd)));
end if;
Analyze_And_Resolve (N, Typ);
end Expand_N_Op_Not;
--------------------
-- Expand_N_Op_Or --
--------------------
procedure Expand_N_Op_Or (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
Binary_Op_Validity_Checks (N);
if Is_Array_Type (Etype (N)) then
Expand_Boolean_Operator (N);
elsif Is_Boolean_Type (Etype (N)) then
Adjust_Condition (Left_Opnd (N));
Adjust_Condition (Right_Opnd (N));
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
elsif Is_Intrinsic_Subprogram (Entity (N)) then
Expand_Intrinsic_Call (N, Entity (N));
end if;
Expand_Nonbinary_Modular_Op (N);
end Expand_N_Op_Or;
----------------------
-- Expand_N_Op_Plus --
----------------------
procedure Expand_N_Op_Plus (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
Unary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Try to narrow the operation
if Typ = Universal_Integer then
Narrow_Large_Operation (N);
end if;
end Expand_N_Op_Plus;
---------------------
-- Expand_N_Op_Rem --
---------------------
procedure Expand_N_Op_Rem (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Left : Node_Id;
Right : Node_Id;
Lo : Uint;
Hi : Uint;
OK : Boolean;
Lneg : Boolean;
Rneg : Boolean;
-- Set if corresponding operand can be negative
begin
Binary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Try to narrow the operation
if Typ = Universal_Integer then
Narrow_Large_Operation (N);
if Nkind (N) /= N_Op_Rem then
return;
end if;
end if;
if Is_Integer_Type (Etype (N)) then
Apply_Divide_Checks (N);
-- All done if we don't have a REM any more, which can happen as a
-- result of overflow expansion in MINIMIZED or ELIMINATED modes.
if Nkind (N) /= N_Op_Rem then
return;
end if;
end if;
-- Proceed with expansion of REM
Left := Left_Opnd (N);
Right := Right_Opnd (N);
-- Apply optimization x rem 1 = 0. We don't really need that with gcc,
-- but it is useful with other back ends, and is certainly harmless.
if Is_Integer_Type (Etype (N))
and then Compile_Time_Known_Value (Right)
and then Expr_Value (Right) = Uint_1
then
-- Call Remove_Side_Effects to ensure that any side effects in the
-- ignored left operand (in particular function calls to user defined
-- functions) are properly executed.
Remove_Side_Effects (Left);
Rewrite (N, Make_Integer_Literal (Loc, 0));
Analyze_And_Resolve (N, Typ);
return;
end if;
-- Deal with annoying case of largest negative number remainder minus
-- one. Gigi may not handle this case correctly, because on some
-- targets, the mod value is computed using a divide instruction
-- which gives an overflow trap for this case.
-- It would be a bit more efficient to figure out which targets this
-- is really needed for, but in practice it is reasonable to do the
-- following special check in all cases, since it means we get a clearer
-- message, and also the overhead is minimal given that division is
-- expensive in any case.
-- In fact the check is quite easy, if the right operand is -1, then
-- the remainder is always 0, and we can just ignore the left operand
-- completely in this case.
Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
Lneg := not OK or else Lo < 0;
Determine_Range (Left, OK, Lo, Hi, Assume_Valid => True);
Rneg := not OK or else Lo < 0;
-- We won't mess with trying to find out if the left operand can really
-- be the largest negative number (that's a pain in the case of private
-- types and this is really marginal). We will just assume that we need
-- the test if the left operand can be negative at all.
if (Lneg and Rneg)
and then not CodePeer_Mode
then
Rewrite (N,
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Eq (Loc,
Left_Opnd => Duplicate_Subexpr (Right),
Right_Opnd =>
Unchecked_Convert_To (Typ, Make_Integer_Literal (Loc, -1))),
Unchecked_Convert_To (Typ,
Make_Integer_Literal (Loc, Uint_0)),
Relocate_Node (N))));
Set_Analyzed (Next (Next (First (Expressions (N)))));
Analyze_And_Resolve (N, Typ);
end if;
end Expand_N_Op_Rem;
-----------------------------
-- Expand_N_Op_Rotate_Left --
-----------------------------
procedure Expand_N_Op_Rotate_Left (N : Node_Id) is
begin
Binary_Op_Validity_Checks (N);
-- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
-- so we rewrite in terms of logical shifts
-- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
-- where Bits is the shift count mod Esize (the mod operation here
-- deals with ludicrous large shift counts, which are apparently OK).
if Modify_Tree_For_C then
declare
Loc : constant Source_Ptr := Sloc (N);
Rtp : constant Entity_Id := Etype (Right_Opnd (N));
Typ : constant Entity_Id := Etype (N);
begin
-- Sem_Intr should prevent getting there with a non binary modulus
pragma Assert (not Non_Binary_Modulus (Typ));
Rewrite (Right_Opnd (N),
Make_Op_Rem (Loc,
Left_Opnd => Relocate_Node (Right_Opnd (N)),
Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
Analyze_And_Resolve (Right_Opnd (N), Rtp);
Rewrite (N,
Make_Op_Or (Loc,
Left_Opnd =>
Make_Op_Shift_Left (Loc,
Left_Opnd => Left_Opnd (N),
Right_Opnd => Right_Opnd (N)),
Right_Opnd =>
Make_Op_Shift_Right (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
Right_Opnd =>
Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
Analyze_And_Resolve (N, Typ);
end;
end if;
end Expand_N_Op_Rotate_Left;
------------------------------
-- Expand_N_Op_Rotate_Right --
------------------------------
procedure Expand_N_Op_Rotate_Right (N : Node_Id) is
begin
Binary_Op_Validity_Checks (N);
-- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
-- so we rewrite in terms of logical shifts
-- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
-- where Bits is the shift count mod Esize (the mod operation here
-- deals with ludicrous large shift counts, which are apparently OK).
if Modify_Tree_For_C then
declare
Loc : constant Source_Ptr := Sloc (N);
Rtp : constant Entity_Id := Etype (Right_Opnd (N));
Typ : constant Entity_Id := Etype (N);
begin
-- Sem_Intr should prevent getting there with a non binary modulus
pragma Assert (not Non_Binary_Modulus (Typ));
Rewrite (Right_Opnd (N),
Make_Op_Rem (Loc,
Left_Opnd => Relocate_Node (Right_Opnd (N)),
Right_Opnd => Make_Integer_Literal (Loc, Esize (Typ))));
Analyze_And_Resolve (Right_Opnd (N), Rtp);
Rewrite (N,
Make_Op_Or (Loc,
Left_Opnd =>
Make_Op_Shift_Right (Loc,
Left_Opnd => Left_Opnd (N),
Right_Opnd => Right_Opnd (N)),
Right_Opnd =>
Make_Op_Shift_Left (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Left_Opnd (N)),
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => Make_Integer_Literal (Loc, Esize (Typ)),
Right_Opnd =>
Duplicate_Subexpr_No_Checks (Right_Opnd (N))))));
Analyze_And_Resolve (N, Typ);
end;
end if;
end Expand_N_Op_Rotate_Right;
----------------------------
-- Expand_N_Op_Shift_Left --
----------------------------
-- Note: nothing in this routine depends on left as opposed to right shifts
-- so we share the routine for expanding shift right operations.
procedure Expand_N_Op_Shift_Left (N : Node_Id) is
begin
Binary_Op_Validity_Checks (N);
-- If we are in Modify_Tree_For_C mode, then ensure that the right
-- operand is not greater than the word size (since that would not
-- be defined properly by the corresponding C shift operator).
if Modify_Tree_For_C then
declare
Right : constant Node_Id := Right_Opnd (N);
Loc : constant Source_Ptr := Sloc (Right);
Typ : constant Entity_Id := Etype (N);
Siz : constant Uint := Esize (Typ);
Orig : Node_Id;
OK : Boolean;
Lo : Uint;
Hi : Uint;
begin
-- Sem_Intr should prevent getting there with a non binary modulus
pragma Assert (not Non_Binary_Modulus (Typ));
if Compile_Time_Known_Value (Right) then
if Expr_Value (Right) >= Siz then
Rewrite (N, Make_Integer_Literal (Loc, 0));
Analyze_And_Resolve (N, Typ);
end if;
-- Not compile time known, find range
else
Determine_Range (Right, OK, Lo, Hi, Assume_Valid => True);
-- Nothing to do if known to be OK range, otherwise expand
if not OK or else Hi >= Siz then
-- Prevent recursion on copy of shift node
Orig := Relocate_Node (N);
Set_Analyzed (Orig);
-- Now do the rewrite
Rewrite (N,
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Ge (Loc,
Left_Opnd => Duplicate_Subexpr_Move_Checks (Right),
Right_Opnd => Make_Integer_Literal (Loc, Siz)),
Make_Integer_Literal (Loc, 0),
Orig)));
Analyze_And_Resolve (N, Typ);
end if;
end if;
end;
end if;
end Expand_N_Op_Shift_Left;
-----------------------------
-- Expand_N_Op_Shift_Right --
-----------------------------
procedure Expand_N_Op_Shift_Right (N : Node_Id) is
begin
-- Share shift left circuit
Expand_N_Op_Shift_Left (N);
end Expand_N_Op_Shift_Right;
----------------------------------------
-- Expand_N_Op_Shift_Right_Arithmetic --
----------------------------------------
procedure Expand_N_Op_Shift_Right_Arithmetic (N : Node_Id) is
begin
Binary_Op_Validity_Checks (N);
-- If we are in Modify_Tree_For_C mode, there is no shift right
-- arithmetic in C, so we rewrite in terms of logical shifts for
-- modular integers, and keep the Shift_Right intrinsic for signed
-- integers: even though doing a shift on a signed integer is not
-- fully guaranteed by the C standard, this is what C compilers
-- implement in practice.
-- Consider also taking advantage of this for modular integers by first
-- performing an unchecked conversion of the modular integer to a signed
-- integer of the same sign, and then convert back.
-- Shift_Right (Num, Bits) or
-- (if Num >= Sign
-- then not (Shift_Right (Mask, bits))
-- else 0)
-- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
-- Note: the above works fine for shift counts greater than or equal
-- to the word size, since in this case (not (Shift_Right (Mask, bits)))
-- generates all 1'bits.
if Modify_Tree_For_C and then Is_Modular_Integer_Type (Etype (N)) then
declare
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Sign : constant Uint := 2 ** (Esize (Typ) - 1);
Mask : constant Uint := (2 ** Esize (Typ)) - 1;
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Maskx : Node_Id;
begin
-- Sem_Intr should prevent getting there with a non binary modulus
pragma Assert (not Non_Binary_Modulus (Typ));
-- Here if not (Shift_Right (Mask, bits)) can be computed at
-- compile time as a single constant.
if Compile_Time_Known_Value (Right) then
declare
Val : constant Uint := Expr_Value (Right);
begin
if Val >= Esize (Typ) then
Maskx := Make_Integer_Literal (Loc, Mask);
else
Maskx :=
Make_Integer_Literal (Loc,
Intval => Mask - (Mask / (2 ** Expr_Value (Right))));
end if;
end;
else
Maskx :=
Make_Op_Not (Loc,
Right_Opnd =>
Make_Op_Shift_Right (Loc,
Left_Opnd => Make_Integer_Literal (Loc, Mask),
Right_Opnd => Duplicate_Subexpr_No_Checks (Right)));
end if;
-- Now do the rewrite
Rewrite (N,
Make_Op_Or (Loc,
Left_Opnd =>
Make_Op_Shift_Right (Loc,
Left_Opnd => Left,
Right_Opnd => Right),
Right_Opnd =>
Make_If_Expression (Loc,
Expressions => New_List (
Make_Op_Ge (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Left),
Right_Opnd => Make_Integer_Literal (Loc, Sign)),
Maskx,
Make_Integer_Literal (Loc, 0)))));
Analyze_And_Resolve (N, Typ);
end;
end if;
end Expand_N_Op_Shift_Right_Arithmetic;
--------------------------
-- Expand_N_Op_Subtract --
--------------------------
procedure Expand_N_Op_Subtract (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
Binary_Op_Validity_Checks (N);
-- Check for MINIMIZED/ELIMINATED overflow mode
if Minimized_Eliminated_Overflow_Check (N) then
Apply_Arithmetic_Overflow_Check (N);
return;
end if;
-- Try to narrow the operation
if Typ = Universal_Integer then
Narrow_Large_Operation (N);
if Nkind (N) /= N_Op_Subtract then
return;
end if;
end if;
-- N - 0 = N for integer types
if Is_Integer_Type (Typ)
and then Compile_Time_Known_Value (Right_Opnd (N))
and then Expr_Value (Right_Opnd (N)) = 0
then
Rewrite (N, Left_Opnd (N));
return;
end if;
-- Arithmetic overflow checks for signed integer/fixed point types
if Is_Signed_Integer_Type (Typ) or else Is_Fixed_Point_Type (Typ) then
Apply_Arithmetic_Overflow_Check (N);
end if;
-- Overflow checks for floating-point if -gnateF mode active
Check_Float_Op_Overflow (N);
Expand_Nonbinary_Modular_Op (N);
end Expand_N_Op_Subtract;
---------------------
-- Expand_N_Op_Xor --
---------------------
procedure Expand_N_Op_Xor (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
begin
Binary_Op_Validity_Checks (N);
if Is_Array_Type (Etype (N)) then
Expand_Boolean_Operator (N);
elsif Is_Boolean_Type (Etype (N)) then
Adjust_Condition (Left_Opnd (N));
Adjust_Condition (Right_Opnd (N));
Set_Etype (N, Standard_Boolean);
Adjust_Result_Type (N, Typ);
elsif Is_Intrinsic_Subprogram (Entity (N)) then
Expand_Intrinsic_Call (N, Entity (N));
end if;
Expand_Nonbinary_Modular_Op (N);
end Expand_N_Op_Xor;
----------------------
-- Expand_N_Or_Else --
----------------------
procedure Expand_N_Or_Else (N : Node_Id)
renames Expand_Short_Circuit_Operator;
-----------------------------------
-- Expand_N_Qualified_Expression --
-----------------------------------
procedure Expand_N_Qualified_Expression (N : Node_Id) is
Operand : constant Node_Id := Expression (N);
Target_Type : constant Entity_Id := Entity (Subtype_Mark (N));
begin
-- Do validity check if validity checking operands
if Validity_Checks_On and Validity_Check_Operands then
Ensure_Valid (Operand);
end if;
Freeze_Before (Operand, Target_Type);
-- Apply possible constraint check
Apply_Constraint_Check (Operand, Target_Type, No_Sliding => True);
-- Apply possible predicate check
Apply_Predicate_Check (Operand, Target_Type);
if Do_Range_Check (Operand) then
Generate_Range_Check (Operand, Target_Type, CE_Range_Check_Failed);
end if;
end Expand_N_Qualified_Expression;
------------------------------------
-- Expand_N_Quantified_Expression --
------------------------------------
-- We expand:
-- for all X in range => Cond
-- into:
-- T := True;
-- for X in range loop
-- if not Cond then
-- T := False;
-- exit;
-- end if;
-- end loop;
-- Similarly, an existentially quantified expression:
-- for some X in range => Cond
-- becomes:
-- T := False;
-- for X in range loop
-- if Cond then
-- T := True;
-- exit;
-- end if;
-- end loop;
-- In both cases, the iteration may be over a container in which case it is
-- given by an iterator specification, not a loop parameter specification.
procedure Expand_N_Quantified_Expression (N : Node_Id) is
Actions : constant List_Id := New_List;
For_All : constant Boolean := All_Present (N);
Iter_Spec : constant Node_Id := Iterator_Specification (N);
Loc : constant Source_Ptr := Sloc (N);
Loop_Spec : constant Node_Id := Loop_Parameter_Specification (N);
Cond : Node_Id;
Flag : Entity_Id;
Scheme : Node_Id;
Stmts : List_Id;
Var : Entity_Id;
begin
-- Ensure that the bound variable as well as the type of Name of the
-- Iter_Spec if present are properly frozen. We must do this before
-- expansion because the expression is about to be converted into a
-- loop, and resulting freeze nodes may end up in the wrong place in the
-- tree.
if Present (Iter_Spec) then
Var := Defining_Identifier (Iter_Spec);
else
Var := Defining_Identifier (Loop_Spec);
end if;
declare
P : Node_Id := Parent (N);
begin
while Nkind (P) in N_Subexpr loop
P := Parent (P);
end loop;
if Present (Iter_Spec) then
Freeze_Before (P, Etype (Name (Iter_Spec)));
end if;
Freeze_Before (P, Etype (Var));
end;
-- Create the declaration of the flag which tracks the status of the
-- quantified expression. Generate:
-- Flag : Boolean := (True | False);
Flag := Make_Temporary (Loc, 'T', N);
Append_To (Actions,
Make_Object_Declaration (Loc,
Defining_Identifier => Flag,
Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc),
Expression =>
New_Occurrence_Of (Boolean_Literals (For_All), Loc)));
-- Construct the circuitry which tracks the status of the quantified
-- expression. Generate:
-- if [not] Cond then
-- Flag := (False | True);
-- exit;
-- end if;
Cond := Relocate_Node (Condition (N));
if For_All then
Cond := Make_Op_Not (Loc, Cond);
end if;
Stmts := New_List (
Make_Implicit_If_Statement (N,
Condition => Cond,
Then_Statements => New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Flag, Loc),
Expression =>
New_Occurrence_Of (Boolean_Literals (not For_All), Loc)),
Make_Exit_Statement (Loc))));
-- Build the loop equivalent of the quantified expression
if Present (Iter_Spec) then
Scheme :=
Make_Iteration_Scheme (Loc,
Iterator_Specification => Iter_Spec);
else
Scheme :=
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification => Loop_Spec);
end if;
Append_To (Actions,
Make_Loop_Statement (Loc,
Iteration_Scheme => Scheme,
Statements => Stmts,
End_Label => Empty));
-- Transform the quantified expression
Rewrite (N,
Make_Expression_With_Actions (Loc,
Expression => New_Occurrence_Of (Flag, Loc),
Actions => Actions));
Analyze_And_Resolve (N, Standard_Boolean);
end Expand_N_Quantified_Expression;
---------------------------------
-- Expand_N_Selected_Component --
---------------------------------
procedure Expand_N_Selected_Component (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Par : constant Node_Id := Parent (N);
P : constant Node_Id := Prefix (N);
S : constant Node_Id := Selector_Name (N);
Ptyp : constant Entity_Id := Underlying_Type (Etype (P));
Disc : Entity_Id;
New_N : Node_Id;
Dcon : Elmt_Id;
Dval : Node_Id;
function In_Left_Hand_Side (Comp : Node_Id) return Boolean;
-- Gigi needs a temporary for prefixes that depend on a discriminant,
-- unless the context of an assignment can provide size information.
-- Don't we have a general routine that does this???
function Is_Subtype_Declaration return Boolean;
-- The replacement of a discriminant reference by its value is required
-- if this is part of the initialization of an temporary generated by a
-- change of representation. This shows up as the construction of a
-- discriminant constraint for a subtype declared at the same point as
-- the entity in the prefix of the selected component. We recognize this
-- case when the context of the reference is:
-- subtype ST is T(Obj.D);
-- where the entity for Obj comes from source, and ST has the same sloc.
-----------------------
-- In_Left_Hand_Side --
-----------------------
function In_Left_Hand_Side (Comp : Node_Id) return Boolean is
begin
return (Nkind (Parent (Comp)) = N_Assignment_Statement
and then Comp = Name (Parent (Comp)))
or else (Present (Parent (Comp))
and then Nkind (Parent (Comp)) in N_Subexpr
and then In_Left_Hand_Side (Parent (Comp)));
end In_Left_Hand_Side;
-----------------------------
-- Is_Subtype_Declaration --
-----------------------------
function Is_Subtype_Declaration return Boolean is
Par : constant Node_Id := Parent (N);
begin
return
Nkind (Par) = N_Index_Or_Discriminant_Constraint
and then Nkind (Parent (Parent (Par))) = N_Subtype_Declaration
and then Comes_From_Source (Entity (Prefix (N)))
and then Sloc (Par) = Sloc (Entity (Prefix (N)));
end Is_Subtype_Declaration;
-- Start of processing for Expand_N_Selected_Component
begin
-- Deal with discriminant check required
if Do_Discriminant_Check (N) then
if Present (Discriminant_Checking_Func
(Original_Record_Component (Entity (S))))
then
-- Present the discriminant checking function to the backend, so
-- that it can inline the call to the function.
Add_Inlined_Body
(Discriminant_Checking_Func
(Original_Record_Component (Entity (S))),
N);
-- Now reset the flag and generate the call
Set_Do_Discriminant_Check (N, False);
Generate_Discriminant_Check (N);
-- In the case of Unchecked_Union, no discriminant checking is
-- actually performed.
else
if not Is_Unchecked_Union
(Implementation_Base_Type (Etype (Prefix (N))))
and then not Is_Predefined_Unit (Get_Source_Unit (N))
then
Error_Msg_N
("sorry - unable to generate discriminant check for" &
" reference to variant component &",
Selector_Name (N));
end if;
Set_Do_Discriminant_Check (N, False);
end if;
end if;
-- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
-- function, then additional actuals must be passed.
if Is_Build_In_Place_Function_Call (P) then
Make_Build_In_Place_Call_In_Anonymous_Context (P);
-- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
-- containing build-in-place function calls whose returned object covers
-- interface types.
elsif Present (Unqual_BIP_Iface_Function_Call (P)) then
Make_Build_In_Place_Iface_Call_In_Anonymous_Context (P);
end if;
-- Gigi cannot handle unchecked conversions that are the prefix of a
-- selected component with discriminants. This must be checked during
-- expansion, because during analysis the type of the selector is not
-- known at the point the prefix is analyzed. If the conversion is the
-- target of an assignment, then we cannot force the evaluation.
if Nkind (Prefix (N)) = N_Unchecked_Type_Conversion
and then Has_Discriminants (Etype (N))
and then not In_Left_Hand_Side (N)
then
Force_Evaluation (Prefix (N));
end if;
-- Remaining processing applies only if selector is a discriminant
if Ekind (Entity (Selector_Name (N))) = E_Discriminant then
-- If the selector is a discriminant of a constrained record type,
-- we may be able to rewrite the expression with the actual value
-- of the discriminant, a useful optimization in some cases.
if Is_Record_Type (Ptyp)
and then Has_Discriminants (Ptyp)
and then Is_Constrained (Ptyp)
then
-- Do this optimization for discrete types only, and not for
-- access types (access discriminants get us into trouble).
if not Is_Discrete_Type (Etype (N)) then
null;
-- Don't do this on the left-hand side of an assignment statement.
-- Normally one would think that references like this would not
-- occur, but they do in generated code, and mean that we really
-- do want to assign the discriminant.
elsif Nkind (Par) = N_Assignment_Statement
and then Name (Par) = N
then
null;
-- Don't do this optimization for the prefix of an attribute or
-- the name of an object renaming declaration since these are
-- contexts where we do not want the value anyway.
elsif (Nkind (Par) = N_Attribute_Reference
and then Prefix (Par) = N)
or else Is_Renamed_Object (N)
then
null;
-- Don't do this optimization if we are within the code for a
-- discriminant check, since the whole point of such a check may
-- be to verify the condition on which the code below depends.
elsif Is_In_Discriminant_Check (N) then
null;
-- Green light to see if we can do the optimization. There is
-- still one condition that inhibits the optimization below but
-- now is the time to check the particular discriminant.
else
-- Loop through discriminants to find the matching discriminant
-- constraint to see if we can copy it.
Disc := First_Discriminant (Ptyp);
Dcon := First_Elmt (Discriminant_Constraint (Ptyp));
Discr_Loop : while Present (Dcon) loop
Dval := Node (Dcon);
-- Check if this is the matching discriminant and if the
-- discriminant value is simple enough to make sense to
-- copy. We don't want to copy complex expressions, and
-- indeed to do so can cause trouble (before we put in
-- this guard, a discriminant expression containing an
-- AND THEN was copied, causing problems for coverage
-- analysis tools).
-- However, if the reference is part of the initialization
-- code generated for an object declaration, we must use
-- the discriminant value from the subtype constraint,
-- because the selected component may be a reference to the
-- object being initialized, whose discriminant is not yet
-- set. This only happens in complex cases involving changes
-- of representation.
if Disc = Entity (Selector_Name (N))
and then (Is_Entity_Name (Dval)
or else Compile_Time_Known_Value (Dval)
or else Is_Subtype_Declaration)
then
-- Here we have the matching discriminant. Check for
-- the case of a discriminant of a component that is
-- constrained by an outer discriminant, which cannot
-- be optimized away.
if Denotes_Discriminant (Dval, Check_Concurrent => True)
then
exit Discr_Loop;
-- Do not retrieve value if constraint is not static. It
-- is generally not useful, and the constraint may be a
-- rewritten outer discriminant in which case it is in
-- fact incorrect.
elsif Is_Entity_Name (Dval)
and then
Nkind (Parent (Entity (Dval))) = N_Object_Declaration
and then Present (Expression (Parent (Entity (Dval))))
and then not
Is_OK_Static_Expression
(Expression (Parent (Entity (Dval))))
then
exit Discr_Loop;
-- In the context of a case statement, the expression may
-- have the base type of the discriminant, and we need to
-- preserve the constraint to avoid spurious errors on
-- missing cases.
elsif Nkind (Parent (N)) = N_Case_Statement
and then Etype (Dval) /= Etype (Disc)
then
Rewrite (N,
Make_Qualified_Expression (Loc,
Subtype_Mark =>
New_Occurrence_Of (Etype (Disc), Loc),
Expression =>
New_Copy_Tree (Dval)));
Analyze_And_Resolve (N, Etype (Disc));
-- In case that comes out as a static expression,
-- reset it (a selected component is never static).
Set_Is_Static_Expression (N, False);
return;
-- Otherwise we can just copy the constraint, but the
-- result is certainly not static. In some cases the
-- discriminant constraint has been analyzed in the
-- context of the original subtype indication, but for
-- itypes the constraint might not have been analyzed
-- yet, and this must be done now.
else
Rewrite (N, New_Copy_Tree (Dval));
Analyze_And_Resolve (N);
Set_Is_Static_Expression (N, False);
return;
end if;
end if;
Next_Elmt (Dcon);
Next_Discriminant (Disc);
end loop Discr_Loop;
-- Note: the above loop should always find a matching
-- discriminant, but if it does not, we just missed an
-- optimization due to some glitch (perhaps a previous
-- error), so ignore.
end if;
end if;
-- The only remaining processing is in the case of a discriminant of
-- a concurrent object, where we rewrite the prefix to denote the
-- corresponding record type. If the type is derived and has renamed
-- discriminants, use corresponding discriminant, which is the one
-- that appears in the corresponding record.
if not Is_Concurrent_Type (Ptyp) then
return;
end if;
Disc := Entity (Selector_Name (N));
if Is_Derived_Type (Ptyp)
and then Present (Corresponding_Discriminant (Disc))
then
Disc := Corresponding_Discriminant (Disc);
end if;
New_N :=
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To (Corresponding_Record_Type (Ptyp),
New_Copy_Tree (P)),
Selector_Name => Make_Identifier (Loc, Chars (Disc)));
Rewrite (N, New_N);
Analyze (N);
end if;
-- Set Atomic_Sync_Required if necessary for atomic component
if Nkind (N) = N_Selected_Component then
declare
E : constant Entity_Id := Entity (Selector_Name (N));
Set : Boolean;
begin
-- If component is atomic, but type is not, setting depends on
-- disable/enable state for the component.
if Is_Atomic (E) and then not Is_Atomic (Etype (E)) then
Set := not Atomic_Synchronization_Disabled (E);
-- If component is not atomic, but its type is atomic, setting
-- depends on disable/enable state for the type.
elsif not Is_Atomic (E) and then Is_Atomic (Etype (E)) then
Set := not Atomic_Synchronization_Disabled (Etype (E));
-- If both component and type are atomic, we disable if either
-- component or its type have sync disabled.
elsif Is_Atomic (E) and then Is_Atomic (Etype (E)) then
Set := not Atomic_Synchronization_Disabled (E)
and then
not Atomic_Synchronization_Disabled (Etype (E));
else
Set := False;
end if;
-- Set flag if required
if Set then
Activate_Atomic_Synchronization (N);
end if;
end;
end if;
end Expand_N_Selected_Component;
--------------------
-- Expand_N_Slice --
--------------------
procedure Expand_N_Slice (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
function Is_Procedure_Actual (N : Node_Id) return Boolean;
-- Check whether the argument is an actual for a procedure call, in
-- which case the expansion of a bit-packed slice is deferred until the
-- call itself is expanded. The reason this is required is that we might
-- have an IN OUT or OUT parameter, and the copy out is essential, and
-- that copy out would be missed if we created a temporary here in
-- Expand_N_Slice. Note that we don't bother to test specifically for an
-- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
-- is harmless to defer expansion in the IN case, since the call
-- processing will still generate the appropriate copy in operation,
-- which will take care of the slice.
procedure Make_Temporary_For_Slice;
-- Create a named variable for the value of the slice, in cases where
-- the back end cannot handle it properly, e.g. when packed types or
-- unaligned slices are involved.
-------------------------
-- Is_Procedure_Actual --
-------------------------
function Is_Procedure_Actual (N : Node_Id) return Boolean is
Par : Node_Id := Parent (N);
begin
loop
-- If our parent is a procedure call we can return
if Nkind (Par) = N_Procedure_Call_Statement then
return True;
-- If our parent is a type conversion, keep climbing the tree,
-- since a type conversion can be a procedure actual. Also keep
-- climbing if parameter association or a qualified expression,
-- since these are additional cases that do can appear on
-- procedure actuals.
elsif Nkind (Par) in N_Type_Conversion
| N_Parameter_Association
| N_Qualified_Expression
then
Par := Parent (Par);
-- Any other case is not what we are looking for
else
return False;
end if;
end loop;
end Is_Procedure_Actual;
------------------------------
-- Make_Temporary_For_Slice --
------------------------------
procedure Make_Temporary_For_Slice is
Ent : constant Entity_Id := Make_Temporary (Loc, 'T', N);
Decl : Node_Id;
begin
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Ent,
Object_Definition => New_Occurrence_Of (Typ, Loc));
Set_No_Initialization (Decl);
Insert_Actions (N, New_List (
Decl,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Ent, Loc),
Expression => Relocate_Node (N))));
Rewrite (N, New_Occurrence_Of (Ent, Loc));
Analyze_And_Resolve (N, Typ);
end Make_Temporary_For_Slice;
-- Local variables
Pref : constant Node_Id := Prefix (N);
-- Start of processing for Expand_N_Slice
begin
-- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
-- function, then additional actuals must be passed.
if Is_Build_In_Place_Function_Call (Pref) then
Make_Build_In_Place_Call_In_Anonymous_Context (Pref);
-- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
-- containing build-in-place function calls whose returned object covers
-- interface types.
elsif Present (Unqual_BIP_Iface_Function_Call (Pref)) then
Make_Build_In_Place_Iface_Call_In_Anonymous_Context (Pref);
end if;
-- The remaining case to be handled is packed slices. We can leave
-- packed slices as they are in the following situations:
-- 1. Right or left side of an assignment (we can handle this
-- situation correctly in the assignment statement expansion).
-- 2. Prefix of indexed component (the slide is optimized away in this
-- case, see the start of Expand_N_Indexed_Component.)
-- 3. Object renaming declaration, since we want the name of the
-- slice, not the value.
-- 4. Argument to procedure call, since copy-in/copy-out handling may
-- be required, and this is handled in the expansion of call
-- itself.
-- 5. Prefix of an address attribute (this is an error which is caught
-- elsewhere, and the expansion would interfere with generating the
-- error message) or of a size attribute (because 'Size may change
-- when applied to the temporary instead of the slice directly).
if not Is_Packed (Typ) then
-- Apply transformation for actuals of a function call, where
-- Expand_Actuals is not used.
if Nkind (Parent (N)) = N_Function_Call
and then Is_Possibly_Unaligned_Slice (N)
then
Make_Temporary_For_Slice;
end if;
elsif Nkind (Parent (N)) = N_Assignment_Statement
or else (Nkind (Parent (Parent (N))) = N_Assignment_Statement
and then Parent (N) = Name (Parent (Parent (N))))
then
return;
elsif Nkind (Parent (N)) = N_Indexed_Component
or else Is_Renamed_Object (N)
or else Is_Procedure_Actual (N)
then
return;
elsif Nkind (Parent (N)) = N_Attribute_Reference
and then (Attribute_Name (Parent (N)) = Name_Address
or else Attribute_Name (Parent (N)) = Name_Size)
then
return;
else
Make_Temporary_For_Slice;
end if;
end Expand_N_Slice;
------------------------------
-- Expand_N_Type_Conversion --
------------------------------
procedure Expand_N_Type_Conversion (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Operand : constant Node_Id := Expression (N);
Operand_Acc : Node_Id := Operand;
Target_Type : Entity_Id := Etype (N);
Operand_Type : Entity_Id := Etype (Operand);
procedure Discrete_Range_Check;
-- Handles generation of range check for discrete target value
procedure Handle_Changed_Representation;
-- This is called in the case of record and array type conversions to
-- see if there is a change of representation to be handled. Change of
-- representation is actually handled at the assignment statement level,
-- and what this procedure does is rewrite node N conversion as an
-- assignment to temporary. If there is no change of representation,
-- then the conversion node is unchanged.
procedure Raise_Accessibility_Error;
-- Called when we know that an accessibility check will fail. Rewrites
-- node N to an appropriate raise statement and outputs warning msgs.
-- The Etype of the raise node is set to Target_Type. Note that in this
-- case the rest of the processing should be skipped (i.e. the call to
-- this procedure will be followed by "goto Done").
procedure Real_Range_Check;
-- Handles generation of range check for real target value
function Has_Extra_Accessibility (Id : Entity_Id) return Boolean;
-- True iff Present (Effective_Extra_Accessibility (Id)) successfully
-- evaluates to True.
function Statically_Deeper_Relation_Applies (Targ_Typ : Entity_Id)
return Boolean;
-- Given a target type for a conversion, determine whether the
-- statically deeper accessibility rules apply to it.
--------------------------
-- Discrete_Range_Check --
--------------------------
-- Case of conversions to a discrete type. We let Generate_Range_Check
-- do the heavy lifting, after converting a fixed-point operand to an
-- appropriate integer type.
procedure Discrete_Range_Check is
Expr : Node_Id;
Ityp : Entity_Id;
procedure Generate_Temporary;
-- Generate a temporary to facilitate in the C backend the code
-- generation of the unchecked conversion since the size of the
-- source type may differ from the size of the target type.
------------------------
-- Generate_Temporary --
------------------------
procedure Generate_Temporary is
begin
if Esize (Etype (Expr)) < Esize (Etype (Ityp)) then
declare
Exp_Type : constant Entity_Id := Ityp;
Def_Id : constant Entity_Id :=
Make_Temporary (Loc, 'R', Expr);
E : Node_Id;
Res : Node_Id;
begin
Set_Is_Internal (Def_Id);
Set_Etype (Def_Id, Exp_Type);
Res := New_Occurrence_Of (Def_Id, Loc);
E :=
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Occurrence_Of
(Exp_Type, Loc),
Constant_Present => True,
Expression => Relocate_Node (Expr));
Set_Assignment_OK (E);
Insert_Action (Expr, E);
Set_Assignment_OK (Res, Assignment_OK (Expr));
Rewrite (Expr, Res);
Analyze_And_Resolve (Expr, Exp_Type);
end;
end if;
end Generate_Temporary;
-- Start of processing for Discrete_Range_Check
begin
-- Nothing more to do if conversion was rewritten
if Nkind (N) /= N_Type_Conversion then
return;
end if;
Expr := Expression (N);
-- Clear the Do_Range_Check flag on Expr
Set_Do_Range_Check (Expr, False);
-- Nothing to do if range checks suppressed
if Range_Checks_Suppressed (Target_Type) then
return;
end if;
-- Nothing to do if expression is an entity on which checks have been
-- suppressed.
if Is_Entity_Name (Expr)
and then Range_Checks_Suppressed (Entity (Expr))
then
return;
end if;
-- Before we do a range check, we have to deal with treating
-- a fixed-point operand as an integer. The way we do this
-- is simply to do an unchecked conversion to an appropriate
-- integer type with the smallest size, so that we can suppress
-- trivial checks.
if Is_Fixed_Point_Type (Etype (Expr)) then
Ityp := Small_Integer_Type_For
(Esize (Base_Type (Etype (Expr))), Uns => False);
-- Generate a temporary with the integer type to facilitate in the
-- C backend the code generation for the unchecked conversion.
if Modify_Tree_For_C then
Generate_Temporary;
end if;
Rewrite (Expr, Unchecked_Convert_To (Ityp, Expr));
end if;
-- Reset overflow flag, since the range check will include
-- dealing with possible overflow, and generate the check.
Set_Do_Overflow_Check (N, False);
Generate_Range_Check (Expr, Target_Type, CE_Range_Check_Failed);
end Discrete_Range_Check;
-----------------------------------
-- Handle_Changed_Representation --
-----------------------------------
procedure Handle_Changed_Representation is
Temp : Entity_Id;
Decl : Node_Id;
Odef : Node_Id;
N_Ix : Node_Id;
Cons : List_Id;
begin
-- Nothing else to do if no change of representation
if Has_Compatible_Representation (Target_Type, Operand_Type) then
return;
-- The real change of representation work is done by the assignment
-- statement processing. So if this type conversion is appearing as
-- the expression of an assignment statement, nothing needs to be
-- done to the conversion.
elsif Nkind (Parent (N)) = N_Assignment_Statement then
return;
-- Otherwise we need to generate a temporary variable, and do the
-- change of representation assignment into that temporary variable.
-- The conversion is then replaced by a reference to this variable.
else
Cons := No_List;
-- If type is unconstrained we have to add a constraint, copied
-- from the actual value of the left-hand side.
if not Is_Constrained (Target_Type) then
if Has_Discriminants (Operand_Type) then
-- A change of representation can only apply to untagged
-- types. We need to build the constraint that applies to
-- the target type, using the constraints of the operand.
-- The analysis is complicated if there are both inherited
-- discriminants and constrained discriminants.
-- We iterate over the discriminants of the target, and
-- find the discriminant of the same name:
-- a) If there is a corresponding discriminant in the object
-- then the value is a selected component of the operand.
-- b) Otherwise the value of a constrained discriminant is
-- found in the stored constraint of the operand.
declare
Stored : constant Elist_Id :=
Stored_Constraint (Operand_Type);
-- Stored constraints of the operand. If present, they
-- correspond to the discriminants of the parent type.
Disc_O : Entity_Id;
-- Discriminant of the operand type. Its value in the
-- object is captured in a selected component.
Disc_T : Entity_Id;
-- Discriminant of the target type
Elmt : Elmt_Id;
begin
Disc_O := First_Discriminant (Operand_Type);
Disc_T := First_Discriminant (Target_Type);
Elmt := (if Present (Stored)
then First_Elmt (Stored)
else No_Elmt);
Cons := New_List;
while Present (Disc_T) loop
if Present (Disc_O)
and then Chars (Disc_T) = Chars (Disc_O)
then
Append_To (Cons,
Make_Selected_Component (Loc,
Prefix =>
Duplicate_Subexpr_Move_Checks (Operand),
Selector_Name =>
Make_Identifier (Loc, Chars (Disc_O))));
Next_Discriminant (Disc_O);
elsif Present (Elmt) then
Append_To (Cons, New_Copy_Tree (Node (Elmt)));
end if;
if Present (Elmt) then
Next_Elmt (Elmt);
end if;
Next_Discriminant (Disc_T);
end loop;
end;
elsif Is_Array_Type (Operand_Type) then
N_Ix := First_Index (Target_Type);
Cons := New_List;
for J in 1 .. Number_Dimensions (Operand_Type) loop
-- We convert the bounds explicitly. We use an unchecked
-- conversion because bounds checks are done elsewhere.
Append_To (Cons,
Make_Range (Loc,
Low_Bound =>
Unchecked_Convert_To (Etype (N_Ix),
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks
(Operand, Name_Req => True),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, J)))),
High_Bound =>
Unchecked_Convert_To (Etype (N_Ix),
Make_Attribute_Reference (Loc,
Prefix =>
Duplicate_Subexpr_No_Checks
(Operand, Name_Req => True),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, J))))));
Next_Index (N_Ix);
end loop;
end if;
end if;
Odef := New_Occurrence_Of (Target_Type, Loc);
if Present (Cons) then
Odef :=
Make_Subtype_Indication (Loc,
Subtype_Mark => Odef,
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Cons));
end if;
Temp := Make_Temporary (Loc, 'C');
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => Odef);
Set_No_Initialization (Decl, True);
-- Insert required actions. It is essential to suppress checks
-- since we have suppressed default initialization, which means
-- that the variable we create may have no discriminants.
Insert_Actions (N,
New_List (
Decl,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Temp, Loc),
Expression => Relocate_Node (N))),
Suppress => All_Checks);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
return;
end if;
end Handle_Changed_Representation;
-------------------------------
-- Raise_Accessibility_Error --
-------------------------------
procedure Raise_Accessibility_Error is
begin
Error_Msg_Warn := SPARK_Mode /= On;
Rewrite (N,
Make_Raise_Program_Error (Sloc (N),
Reason => PE_Accessibility_Check_Failed));
Set_Etype (N, Target_Type);
Error_Msg_N ("accessibility check failure<<", N);
Error_Msg_N ("\Program_Error [<<", N);
end Raise_Accessibility_Error;
----------------------
-- Real_Range_Check --
----------------------
-- Case of conversions to floating-point or fixed-point. If range checks
-- are enabled and the target type has a range constraint, we convert:
-- typ (x)
-- to
-- Tnn : typ'Base := typ'Base (x);
-- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
-- typ (Tnn)
-- This is necessary when there is a conversion of integer to float or
-- to fixed-point to ensure that the correct checks are made. It is not
-- necessary for the float-to-float case where it is enough to just set
-- the Do_Range_Check flag on the expression.
procedure Real_Range_Check is
Btyp : constant Entity_Id := Base_Type (Target_Type);
Lo : constant Node_Id := Type_Low_Bound (Target_Type);
Hi : constant Node_Id := Type_High_Bound (Target_Type);
Conv : Node_Id;
Hi_Arg : Node_Id;
Hi_Val : Node_Id;
Lo_Arg : Node_Id;
Lo_Val : Node_Id;
Expr : Entity_Id;
Tnn : Entity_Id;
begin
-- Nothing more to do if conversion was rewritten
if Nkind (N) /= N_Type_Conversion then
return;
end if;
Expr := Expression (N);
-- Clear the Do_Range_Check flag on Expr
Set_Do_Range_Check (Expr, False);
-- Nothing to do if range checks suppressed, or target has the same
-- range as the base type (or is the base type).
if Range_Checks_Suppressed (Target_Type)
or else (Lo = Type_Low_Bound (Btyp)
and then
Hi = Type_High_Bound (Btyp))
then
return;
end if;
-- Nothing to do if expression is an entity on which checks have been
-- suppressed.
if Is_Entity_Name (Expr)
and then Range_Checks_Suppressed (Entity (Expr))
then
return;
end if;
-- Nothing to do if expression was rewritten into a float-to-float
-- conversion, since this kind of conversion is handled elsewhere.
if Is_Floating_Point_Type (Etype (Expr))
and then Is_Floating_Point_Type (Target_Type)
then
return;
end if;
-- Nothing to do if bounds are all static and we can tell that the
-- expression is within the bounds of the target. Note that if the
-- operand is of an unconstrained floating-point type, then we do
-- not trust it to be in range (might be infinite)
declare
S_Lo : constant Node_Id := Type_Low_Bound (Etype (Expr));
S_Hi : constant Node_Id := Type_High_Bound (Etype (Expr));
begin
if (not Is_Floating_Point_Type (Etype (Expr))
or else Is_Constrained (Etype (Expr)))
and then Compile_Time_Known_Value (S_Lo)
and then Compile_Time_Known_Value (S_Hi)
and then Compile_Time_Known_Value (Hi)
and then Compile_Time_Known_Value (Lo)
then
declare
D_Lov : constant Ureal := Expr_Value_R (Lo);
D_Hiv : constant Ureal := Expr_Value_R (Hi);
S_Lov : Ureal;
S_Hiv : Ureal;
begin
if Is_Real_Type (Etype (Expr)) then
S_Lov := Expr_Value_R (S_Lo);
S_Hiv := Expr_Value_R (S_Hi);
else
S_Lov := UR_From_Uint (Expr_Value (S_Lo));
S_Hiv := UR_From_Uint (Expr_Value (S_Hi));
end if;
if D_Hiv > D_Lov
and then S_Lov >= D_Lov
and then S_Hiv <= D_Hiv
then
return;
end if;
end;
end if;
end;
-- Otherwise rewrite the conversion as described above
Conv := Convert_To (Btyp, Expr);
-- If a conversion is necessary, then copy the specific flags from
-- the original one and also move the Do_Overflow_Check flag since
-- this new conversion is to the base type.
if Nkind (Conv) = N_Type_Conversion then
Set_Conversion_OK (Conv, Conversion_OK (N));
Set_Float_Truncate (Conv, Float_Truncate (N));
Set_Rounded_Result (Conv, Rounded_Result (N));
if Do_Overflow_Check (N) then
Set_Do_Overflow_Check (Conv);
Set_Do_Overflow_Check (N, False);
end if;
end if;
Tnn := Make_Temporary (Loc, 'T', Conv);
-- For a conversion from Float to Fixed where the bounds of the
-- fixed-point type are static, we can obtain a more accurate
-- fixed-point value by converting the result of the floating-
-- point expression to an appropriate integer type, and then
-- performing an unchecked conversion to the target fixed-point
-- type. The range check can then use the corresponding integer
-- value of the bounds instead of requiring further conversions.
-- This preserves the identity:
-- Fix_Val = Fixed_Type (Float_Type (Fix_Val))
-- which used to fail when Fix_Val was a bound of the type and
-- the 'Small was not a representable number.
-- This transformation requires an integer type large enough to
-- accommodate a fixed-point value.
if Is_Ordinary_Fixed_Point_Type (Target_Type)
and then Is_Floating_Point_Type (Etype (Expr))
and then RM_Size (Btyp) <= System_Max_Integer_Size
and then Nkind (Lo) = N_Real_Literal
and then Nkind (Hi) = N_Real_Literal
then
declare
Expr_Id : constant Entity_Id := Make_Temporary (Loc, 'T', Conv);
Int_Typ : constant Entity_Id :=
Small_Integer_Type_For (RM_Size (Btyp), Uns => False);
Trunc : constant Boolean := Float_Truncate (Conv);
begin
Conv := Convert_To (Int_Typ, Expression (Conv));
Set_Float_Truncate (Conv, Trunc);
-- Generate a temporary with the integer value. Required in the
-- CCG compiler to ensure that run-time checks reference this
-- integer expression (instead of the resulting fixed-point
-- value because fixed-point values are handled by means of
-- unsigned integer types).
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Expr_Id,
Object_Definition => New_Occurrence_Of (Int_Typ, Loc),
Constant_Present => True,
Expression => Conv));
-- Create integer objects for range checking of result.
Lo_Arg :=
Unchecked_Convert_To
(Int_Typ, New_Occurrence_Of (Expr_Id, Loc));
Lo_Val :=
Make_Integer_Literal (Loc, Corresponding_Integer_Value (Lo));
Hi_Arg :=
Unchecked_Convert_To
(Int_Typ, New_Occurrence_Of (Expr_Id, Loc));
Hi_Val :=
Make_Integer_Literal (Loc, Corresponding_Integer_Value (Hi));
-- Rewrite conversion as an integer conversion of the
-- original floating-point expression, followed by an
-- unchecked conversion to the target fixed-point type.
Conv :=
Unchecked_Convert_To
(Target_Type, New_Occurrence_Of (Expr_Id, Loc));
end;
-- All other conversions
else
Lo_Arg := New_Occurrence_Of (Tnn, Loc);
Lo_Val :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Target_Type, Loc),
Attribute_Name => Name_First);
Hi_Arg := New_Occurrence_Of (Tnn, Loc);
Hi_Val :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Target_Type, Loc),
Attribute_Name => Name_Last);
end if;
-- Build code for range checking. Note that checks are suppressed
-- here since we don't want a recursive range check popping up.
Insert_Actions (N, New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Tnn,
Object_Definition => New_Occurrence_Of (Btyp, Loc),
Constant_Present => True,
Expression => Conv),
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Or_Else (Loc,
Left_Opnd =>
Make_Op_Lt (Loc,
Left_Opnd => Lo_Arg,
Right_Opnd => Lo_Val),
Right_Opnd =>
Make_Op_Gt (Loc,
Left_Opnd => Hi_Arg,
Right_Opnd => Hi_Val)),
Reason => CE_Range_Check_Failed)),
Suppress => All_Checks);
Rewrite (Expr, New_Occurrence_Of (Tnn, Loc));
end Real_Range_Check;
-----------------------------
-- Has_Extra_Accessibility --
-----------------------------
-- Returns true for a formal of an anonymous access type or for an Ada
-- 2012-style stand-alone object of an anonymous access type.
function Has_Extra_Accessibility (Id : Entity_Id) return Boolean is
begin
if Is_Formal (Id) or else Ekind (Id) in E_Constant | E_Variable then
return Present (Effective_Extra_Accessibility (Id));
else
return False;
end if;
end Has_Extra_Accessibility;
----------------------------------------
-- Statically_Deeper_Relation_Applies --
----------------------------------------
function Statically_Deeper_Relation_Applies (Targ_Typ : Entity_Id)
return Boolean
is
begin
-- The case where the target type is an anonymous access type is
-- ignored since they have different semantics and get covered by
-- various runtime checks depending on context.
-- Note, the current implementation of this predicate is incomplete
-- and doesn't fully reflect the rules given in RM 3.10.2 (19) and
-- (19.1) ???
return Ekind (Targ_Typ) /= E_Anonymous_Access_Type;
end Statically_Deeper_Relation_Applies;
-- Start of processing for Expand_N_Type_Conversion
begin
-- First remove check marks put by the semantic analysis on the type
-- conversion between array types. We need these checks, and they will
-- be generated by this expansion routine, but we do not depend on these
-- flags being set, and since we do intend to expand the checks in the
-- front end, we don't want them on the tree passed to the back end.
if Is_Array_Type (Target_Type) then
if Is_Constrained (Target_Type) then
Set_Do_Length_Check (N, False);
else
Set_Do_Range_Check (Operand, False);
end if;
end if;
-- Nothing at all to do if conversion is to the identical type so remove
-- the conversion completely, it is useless, except that it may carry
-- an Assignment_OK attribute, which must be propagated to the operand
-- and the Do_Range_Check flag on the operand must be cleared, if any.
if Operand_Type = Target_Type then
if Assignment_OK (N) then
Set_Assignment_OK (Operand);
end if;
Set_Do_Range_Check (Operand, False);
Rewrite (N, Relocate_Node (Operand));
goto Done;
end if;
-- Nothing to do if this is the second argument of read. This is a
-- "backwards" conversion that will be handled by the specialized code
-- in attribute processing.
if Nkind (Parent (N)) = N_Attribute_Reference
and then Attribute_Name (Parent (N)) = Name_Read
and then Next (First (Expressions (Parent (N)))) = N
then
goto Done;
end if;
-- Check for case of converting to a type that has an invariant
-- associated with it. This requires an invariant check. We insert
-- a call:
-- invariant_check (typ (expr))
-- in the code, after removing side effects from the expression.
-- This is clearer than replacing the conversion into an expression
-- with actions, because the context may impose additional actions
-- (tag checks, membership tests, etc.) that conflict with this
-- rewriting (used previously).
-- Note: the Comes_From_Source check, and then the resetting of this
-- flag prevents what would otherwise be an infinite recursion.
if Has_Invariants (Target_Type)
and then Present (Invariant_Procedure (Target_Type))
and then Comes_From_Source (N)
then
Set_Comes_From_Source (N, False);
Remove_Side_Effects (N);
Insert_Action (N, Make_Invariant_Call (Duplicate_Subexpr (N)));
goto Done;
-- AI12-0042: For a view conversion to a class-wide type occurring
-- within the immediate scope of T, from a specific type that is
-- a descendant of T (including T itself), an invariant check is
-- performed on the part of the object that is of type T. (We don't
-- need to explicitly check for the operand type being a descendant,
-- just that it's a specific type, because the conversion would be
-- illegal if it's specific and not a descendant -- downward conversion
-- is not allowed).
elsif Is_Class_Wide_Type (Target_Type)
and then not Is_Class_Wide_Type (Etype (Expression (N)))
and then Present (Invariant_Procedure (Root_Type (Target_Type)))
and then Comes_From_Source (N)
and then Within_Scope (Find_Enclosing_Scope (N), Scope (Target_Type))
then
Remove_Side_Effects (N);
-- Perform the invariant check on a conversion to the class-wide
-- type's root type.
declare
Root_Conv : constant Node_Id :=
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Root_Type (Target_Type), Loc),
Expression => Duplicate_Subexpr (Expression (N)));
begin
Set_Etype (Root_Conv, Root_Type (Target_Type));
Insert_Action (N, Make_Invariant_Call (Root_Conv));
goto Done;
end;
end if;
-- Here if we may need to expand conversion
-- If the operand of the type conversion is an arithmetic operation on
-- signed integers, and the based type of the signed integer type in
-- question is smaller than Standard.Integer, we promote both of the
-- operands to type Integer.
-- For example, if we have
-- target-type (opnd1 + opnd2)
-- and opnd1 and opnd2 are of type short integer, then we rewrite
-- this as:
-- target-type (integer(opnd1) + integer(opnd2))
-- We do this because we are always allowed to compute in a larger type
-- if we do the right thing with the result, and in this case we are
-- going to do a conversion which will do an appropriate check to make
-- sure that things are in range of the target type in any case. This
-- avoids some unnecessary intermediate overflows.
-- We might consider a similar transformation in the case where the
-- target is a real type or a 64-bit integer type, and the operand
-- is an arithmetic operation using a 32-bit integer type. However,
-- we do not bother with this case, because it could cause significant
-- inefficiencies on 32-bit machines. On a 64-bit machine it would be
-- much cheaper, but we don't want different behavior on 32-bit and
-- 64-bit machines. Note that the exclusion of the 64-bit case also
-- handles the configurable run-time cases where 64-bit arithmetic
-- may simply be unavailable.
-- Note: this circuit is partially redundant with respect to the circuit
-- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
-- the processing here. Also we still need the Checks circuit, since we
-- have to be sure not to generate junk overflow checks in the first
-- place, since it would be tricky to remove them here.
if Integer_Promotion_Possible (N) then
-- All conditions met, go ahead with transformation
declare
Opnd : Node_Id;
L, R : Node_Id;
begin
Opnd := New_Op_Node (Nkind (Operand), Loc);
R := Convert_To (Standard_Integer, Right_Opnd (Operand));
Set_Right_Opnd (Opnd, R);
if Nkind (Operand) in N_Binary_Op then
L := Convert_To (Standard_Integer, Left_Opnd (Operand));
Set_Left_Opnd (Opnd, L);
end if;
Rewrite (N,
Make_Type_Conversion (Loc,
Subtype_Mark => Relocate_Node (Subtype_Mark (N)),
Expression => Opnd));
Analyze_And_Resolve (N, Target_Type);
goto Done;
end;
end if;
-- If the conversion is from Universal_Integer and requires an overflow
-- check, try to do an intermediate conversion to a narrower type first
-- without overflow check, in order to avoid doing the overflow check
-- in Universal_Integer, which can be a very large type.
if Operand_Type = Universal_Integer and then Do_Overflow_Check (N) then
declare
Lo, Hi, Siz : Uint;
OK : Boolean;
Typ : Entity_Id;
begin
Determine_Range (Operand, OK, Lo, Hi, Assume_Valid => True);
if OK then
Siz := Get_Size_For_Range (Lo, Hi);
-- We use the base type instead of the first subtype because
-- overflow checks are done in the base type, so this avoids
-- the need for useless conversions.
if Siz < System_Max_Integer_Size then
Typ := Etype (Integer_Type_For (Siz, Uns => False));
Convert_To_And_Rewrite (Typ, Operand);
Analyze_And_Resolve
(Operand, Typ, Suppress => Overflow_Check);
Analyze_And_Resolve (N, Target_Type);
goto Done;
end if;
end if;
end;
end if;
-- Do validity check if validity checking operands
if Validity_Checks_On and Validity_Check_Operands then
Ensure_Valid (Operand);
end if;
-- Special case of converting from non-standard boolean type
if Is_Boolean_Type (Operand_Type)
and then Nonzero_Is_True (Operand_Type)
then
Adjust_Condition (Operand);
Set_Etype (Operand, Standard_Boolean);
Operand_Type := Standard_Boolean;
end if;
-- Case of converting to an access type
if Is_Access_Type (Target_Type) then
-- In terms of accessibility rules, an anonymous access discriminant
-- is not considered separate from its parent object.
if Nkind (Operand) = N_Selected_Component
and then Ekind (Entity (Selector_Name (Operand))) = E_Discriminant
and then Ekind (Operand_Type) = E_Anonymous_Access_Type
then
Operand_Acc := Original_Node (Prefix (Operand));
end if;
-- If this type conversion was internally generated by the front end
-- to displace the pointer to the object to reference an interface
-- type and the original node was an Unrestricted_Access attribute,
-- then skip applying accessibility checks (because, according to the
-- GNAT Reference Manual, this attribute is similar to 'Access except
-- that all accessibility and aliased view checks are omitted).
if not Comes_From_Source (N)
and then Is_Interface (Designated_Type (Target_Type))
and then Nkind (Original_Node (N)) = N_Attribute_Reference
and then Attribute_Name (Original_Node (N)) =
Name_Unrestricted_Access
then
null;
-- Apply an accessibility check when the conversion operand is an
-- access parameter (or a renaming thereof), unless conversion was
-- expanded from an Unchecked_ or Unrestricted_Access attribute,
-- or for the actual of a class-wide interface parameter. Note that
-- other checks may still need to be applied below (such as tagged
-- type checks).
elsif Is_Entity_Name (Operand_Acc)
and then Has_Extra_Accessibility (Entity (Operand_Acc))
and then Ekind (Etype (Operand_Acc)) = E_Anonymous_Access_Type
and then (Nkind (Original_Node (N)) /= N_Attribute_Reference
or else Attribute_Name (Original_Node (N)) = Name_Access)
and then not No_Dynamic_Accessibility_Checks_Enabled (N)
then
if not Comes_From_Source (N)
and then Nkind (Parent (N)) in N_Function_Call
| N_Parameter_Association
| N_Procedure_Call_Statement
and then Is_Interface (Designated_Type (Target_Type))
and then Is_Class_Wide_Type (Designated_Type (Target_Type))
then
null;
else
Apply_Accessibility_Check
(Operand, Target_Type, Insert_Node => Operand);
end if;
-- If the level of the operand type is statically deeper than the
-- level of the target type, then force Program_Error. Note that this
-- can only occur for cases where the attribute is within the body of
-- an instantiation, otherwise the conversion will already have been
-- rejected as illegal.
-- Note: warnings are issued by the analyzer for the instance cases,
-- and, since we are late in expansion, a check is performed to
-- verify that neither the target type nor the operand type are
-- internally generated - as this can lead to spurious errors when,
-- for example, the operand type is a result of BIP expansion.
elsif In_Instance_Body
and then Statically_Deeper_Relation_Applies (Target_Type)
and then not Is_Internal (Target_Type)
and then not Is_Internal (Operand_Type)
and then
Type_Access_Level (Operand_Type) > Type_Access_Level (Target_Type)
then
Raise_Accessibility_Error;
goto Done;
-- When the operand is a selected access discriminant the check needs
-- to be made against the level of the object denoted by the prefix
-- of the selected name. Force Program_Error for this case as well
-- (this accessibility violation can only happen if within the body
-- of an instantiation).
elsif In_Instance_Body
and then Ekind (Operand_Type) = E_Anonymous_Access_Type
and then Nkind (Operand) = N_Selected_Component
and then Ekind (Entity (Selector_Name (Operand))) = E_Discriminant
and then Static_Accessibility_Level (Operand, Zero_On_Dynamic_Level)
> Type_Access_Level (Target_Type)
then
Raise_Accessibility_Error;
goto Done;
end if;
end if;
-- Case of conversions of tagged types and access to tagged types
-- When needed, that is to say when the expression is class-wide, Add
-- runtime a tag check for (strict) downward conversion by using the
-- membership test, generating:
-- [constraint_error when Operand not in Target_Type'Class]
-- or in the access type case
-- [constraint_error
-- when Operand /= null
-- and then Operand.all not in
-- Designated_Type (Target_Type)'Class]
if (Is_Access_Type (Target_Type)
and then Is_Tagged_Type (Designated_Type (Target_Type)))
or else Is_Tagged_Type (Target_Type)
then
-- Do not do any expansion in the access type case if the parent is a
-- renaming, since this is an error situation which will be caught by
-- Sem_Ch8, and the expansion can interfere with this error check.
if Is_Access_Type (Target_Type) and then Is_Renamed_Object (N) then
goto Done;
end if;
-- Otherwise, proceed with processing tagged conversion
Tagged_Conversion : declare
Actual_Op_Typ : Entity_Id;
Actual_Targ_Typ : Entity_Id;
Root_Op_Typ : Entity_Id;
procedure Make_Tag_Check (Targ_Typ : Entity_Id);
-- Create a membership check to test whether Operand is a member
-- of Targ_Typ. If the original Target_Type is an access, include
-- a test for null value. The check is inserted at N.
--------------------
-- Make_Tag_Check --
--------------------
procedure Make_Tag_Check (Targ_Typ : Entity_Id) is
Cond : Node_Id;
begin
-- Generate:
-- [Constraint_Error
-- when Operand /= null
-- and then Operand.all not in Targ_Typ]
if Is_Access_Type (Target_Type) then
Cond :=
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Ne (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
Right_Opnd => Make_Null (Loc)),
Right_Opnd =>
Make_Not_In (Loc,
Left_Opnd =>
Make_Explicit_Dereference (Loc,
Prefix => Duplicate_Subexpr_No_Checks (Operand)),
Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc)));
-- Generate:
-- [Constraint_Error when Operand not in Targ_Typ]
else
Cond :=
Make_Not_In (Loc,
Left_Opnd => Duplicate_Subexpr_No_Checks (Operand),
Right_Opnd => New_Occurrence_Of (Targ_Typ, Loc));
end if;
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition => Cond,
Reason => CE_Tag_Check_Failed),
Suppress => All_Checks);
end Make_Tag_Check;
-- Start of processing for Tagged_Conversion
begin
-- Handle entities from the limited view
if Is_Access_Type (Operand_Type) then
Actual_Op_Typ :=
Available_View (Designated_Type (Operand_Type));
else
Actual_Op_Typ := Operand_Type;
end if;
if Is_Access_Type (Target_Type) then
Actual_Targ_Typ :=
Available_View (Designated_Type (Target_Type));
else
Actual_Targ_Typ := Target_Type;
end if;
Root_Op_Typ := Root_Type (Actual_Op_Typ);
-- Ada 2005 (AI-251): Handle interface type conversion
if Is_Interface (Actual_Op_Typ)
or else
Is_Interface (Actual_Targ_Typ)
then
Expand_Interface_Conversion (N);
goto Done;
end if;
-- Create a runtime tag check for a downward CW type conversion
if Is_Class_Wide_Type (Actual_Op_Typ)
and then Actual_Op_Typ /= Actual_Targ_Typ
and then Root_Op_Typ /= Actual_Targ_Typ
and then Is_Ancestor
(Root_Op_Typ, Actual_Targ_Typ, Use_Full_View => True)
and then not Tag_Checks_Suppressed (Actual_Targ_Typ)
then
declare
Conv : Node_Id;
begin
Make_Tag_Check (Class_Wide_Type (Actual_Targ_Typ));
Conv := Unchecked_Convert_To (Target_Type, Expression (N));
Rewrite (N, Conv);
Analyze_And_Resolve (N, Target_Type);
end;
end if;
end Tagged_Conversion;
-- Case of other access type conversions
elsif Is_Access_Type (Target_Type) then
Apply_Constraint_Check (Operand, Target_Type);
-- Case of conversions from a fixed-point type
-- These conversions require special expansion and processing, found in
-- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
-- since from a semantic point of view, these are simple integer
-- conversions, which do not need further processing except for the
-- generation of range checks, which is performed at the end of this
-- procedure.
elsif Is_Fixed_Point_Type (Operand_Type)
and then not Conversion_OK (N)
then
-- We should never see universal fixed at this case, since the
-- expansion of the constituent divide or multiply should have
-- eliminated the explicit mention of universal fixed.
pragma Assert (Operand_Type /= Universal_Fixed);
-- Check for special case of the conversion to universal real that
-- occurs as a result of the use of a round attribute. In this case,
-- the real type for the conversion is taken from the target type of
-- the Round attribute and the result must be marked as rounded.
if Target_Type = Universal_Real
and then Nkind (Parent (N)) = N_Attribute_Reference
and then Attribute_Name (Parent (N)) = Name_Round
then
Set_Etype (N, Etype (Parent (N)));
Target_Type := Etype (N);
Set_Rounded_Result (N);
end if;
if Is_Fixed_Point_Type (Target_Type) then
Expand_Convert_Fixed_To_Fixed (N);
elsif Is_Integer_Type (Target_Type) then
Expand_Convert_Fixed_To_Integer (N);
else
pragma Assert (Is_Floating_Point_Type (Target_Type));
Expand_Convert_Fixed_To_Float (N);
end if;
-- Case of conversions to a fixed-point type
-- These conversions require special expansion and processing, found in
-- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
-- since from a semantic point of view, these are simple integer
-- conversions, which do not need further processing.
elsif Is_Fixed_Point_Type (Target_Type)
and then not Conversion_OK (N)
then
if Is_Integer_Type (Operand_Type) then
Expand_Convert_Integer_To_Fixed (N);
else
pragma Assert (Is_Floating_Point_Type (Operand_Type));
Expand_Convert_Float_To_Fixed (N);
end if;
-- Case of array conversions
-- Expansion of array conversions, add required length/range checks but
-- only do this if there is no change of representation. For handling of
-- this case, see Handle_Changed_Representation.
elsif Is_Array_Type (Target_Type) then
if Is_Constrained (Target_Type) then
Apply_Length_Check (Operand, Target_Type);
else
-- If the object has an unconstrained array subtype with fixed
-- lower bound, then sliding to that bound may be needed.
if Is_Fixed_Lower_Bound_Array_Subtype (Target_Type) then
Expand_Sliding_Conversion (Operand, Target_Type);
end if;
Apply_Range_Check (Operand, Target_Type);
end if;
Handle_Changed_Representation;
-- Case of conversions of discriminated types
-- Add required discriminant checks if target is constrained. Again this
-- change is skipped if we have a change of representation.
elsif Has_Discriminants (Target_Type)
and then Is_Constrained (Target_Type)
then
Apply_Discriminant_Check (Operand, Target_Type);
Handle_Changed_Representation;
-- Case of all other record conversions. The only processing required
-- is to check for a change of representation requiring the special
-- assignment processing.
elsif Is_Record_Type (Target_Type) then
-- Ada 2005 (AI-216): Program_Error is raised when converting from
-- a derived Unchecked_Union type to an unconstrained type that is
-- not Unchecked_Union if the operand lacks inferable discriminants.
if Is_Derived_Type (Operand_Type)
and then Is_Unchecked_Union (Base_Type (Operand_Type))
and then not Is_Constrained (Target_Type)
and then not Is_Unchecked_Union (Base_Type (Target_Type))
and then not Has_Inferable_Discriminants (Operand)
then
-- To prevent Gigi from generating illegal code, we generate a
-- Program_Error node, but we give it the target type of the
-- conversion (is this requirement documented somewhere ???)
declare
PE : constant Node_Id := Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction);
begin
Set_Etype (PE, Target_Type);
Rewrite (N, PE);
end;
else
Handle_Changed_Representation;
end if;
-- Case of conversions of enumeration types
elsif Is_Enumeration_Type (Target_Type) then
-- Special processing is required if there is a change of
-- representation (from enumeration representation clauses).
if not Has_Compatible_Representation (Target_Type, Operand_Type)
and then not Conversion_OK (N)
then
if Optimization_Level > 0
and then Is_Boolean_Type (Target_Type)
then
-- Convert x(y) to (if y then x'(True) else x'(False)).
-- Use literals, instead of indexing x'val, to enable
-- further optimizations in the middle-end.
Rewrite (N,
Make_If_Expression (Loc,
Expressions => New_List (
Operand,
Convert_To (Target_Type,
New_Occurrence_Of (Standard_True, Loc)),
Convert_To (Target_Type,
New_Occurrence_Of (Standard_False, Loc)))));
else
-- Convert: x(y) to x'val (ytyp'pos (y))
Rewrite (N,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Target_Type, Loc),
Attribute_Name => Name_Val,
Expressions => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Operand_Type, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (Operand)))));
end if;
Analyze_And_Resolve (N, Target_Type);
end if;
end if;
-- At this stage, either the conversion node has been transformed into
-- some other equivalent expression, or left as a conversion that can be
-- handled by Gigi.
-- The only remaining step is to generate a range check if we still have
-- a type conversion at this stage and Do_Range_Check is set. Note that
-- we need to deal with at most 8 out of the 9 possible cases of numeric
-- conversions here, because the float-to-integer case is entirely dealt
-- with by Apply_Float_Conversion_Check.
if Nkind (N) = N_Type_Conversion
and then Do_Range_Check (Expression (N))
then
-- Float-to-float conversions
if Is_Floating_Point_Type (Target_Type)
and then Is_Floating_Point_Type (Etype (Expression (N)))
then
-- Reset overflow flag, since the range check will include
-- dealing with possible overflow, and generate the check.
Set_Do_Overflow_Check (N, False);
Generate_Range_Check
(Expression (N), Target_Type, CE_Range_Check_Failed);
-- Discrete-to-discrete conversions or fixed-point-to-discrete
-- conversions when Conversion_OK is set.
elsif Is_Discrete_Type (Target_Type)
and then (Is_Discrete_Type (Etype (Expression (N)))
or else (Is_Fixed_Point_Type (Etype (Expression (N)))
and then Conversion_OK (N)))
then
-- If Address is either a source type or target type,
-- suppress range check to avoid typing anomalies when
-- it is a visible integer type.
if Is_Descendant_Of_Address (Etype (Expression (N)))
or else Is_Descendant_Of_Address (Target_Type)
then
Set_Do_Range_Check (Expression (N), False);
else
Discrete_Range_Check;
end if;
-- Conversions to floating- or fixed-point when Conversion_OK is set
elsif Is_Floating_Point_Type (Target_Type)
or else (Is_Fixed_Point_Type (Target_Type)
and then Conversion_OK (N))
then
Real_Range_Check;
end if;
pragma Assert (not Do_Range_Check (Expression (N)));
end if;
-- Here at end of processing
<<Done>>
-- Apply predicate check if required. Note that we can't just call
-- Apply_Predicate_Check here, because the type looks right after
-- the conversion and it would omit the check. The Comes_From_Source
-- guard is necessary to prevent infinite recursions when we generate
-- internal conversions for the purpose of checking predicates.
-- A view conversion of a tagged object is an object and can appear
-- in an assignment context, in which case no predicate check applies
-- to the now-dead value.
if Nkind (Parent (N)) = N_Assignment_Statement
and then N = Name (Parent (N))
then
null;
elsif Predicate_Enabled (Target_Type)
and then Target_Type /= Operand_Type
and then Comes_From_Source (N)
then
declare
New_Expr : constant Node_Id := Duplicate_Subexpr (N);
begin
-- Avoid infinite recursion on the subsequent expansion of the
-- copy of the original type conversion. When needed, a range
-- check has already been applied to the expression.
Set_Comes_From_Source (New_Expr, False);
Insert_Action (N,
Make_Predicate_Check (Target_Type, New_Expr),
Suppress => Range_Check);
end;
end if;
end Expand_N_Type_Conversion;
-----------------------------------
-- Expand_N_Unchecked_Expression --
-----------------------------------
-- Remove the unchecked expression node from the tree. Its job was simply
-- to make sure that its constituent expression was handled with checks
-- off, and now that is done, we can remove it from the tree, and indeed
-- must, since Gigi does not expect to see these nodes.
procedure Expand_N_Unchecked_Expression (N : Node_Id) is
Exp : constant Node_Id := Expression (N);
begin
Set_Assignment_OK (Exp, Assignment_OK (N) or else Assignment_OK (Exp));
Rewrite (N, Exp);
end Expand_N_Unchecked_Expression;
----------------------------------------
-- Expand_N_Unchecked_Type_Conversion --
----------------------------------------
-- If this cannot be handled by Gigi and we haven't already made a
-- temporary for it, do it now.
procedure Expand_N_Unchecked_Type_Conversion (N : Node_Id) is
Target_Type : constant Entity_Id := Etype (N);
Operand : constant Node_Id := Expression (N);
Operand_Type : constant Entity_Id := Etype (Operand);
begin
-- Nothing at all to do if conversion is to the identical type so remove
-- the conversion completely, it is useless, except that it may carry
-- an Assignment_OK indication which must be propagated to the operand.
if Operand_Type = Target_Type then
Expand_N_Unchecked_Expression (N);
return;
end if;
-- Generate an extra temporary for cases unsupported by the C backend
if Modify_Tree_For_C then
declare
Source : constant Node_Id := Unqual_Conv (Expression (N));
Source_Typ : Entity_Id := Get_Full_View (Etype (Source));
begin
if Is_Packed_Array (Source_Typ) then
Source_Typ := Packed_Array_Impl_Type (Source_Typ);
end if;
if Nkind (Source) = N_Function_Call
and then (Is_Composite_Type (Etype (Source))
or else Is_Composite_Type (Target_Type))
then
Force_Evaluation (Source);
end if;
end;
end if;
-- Nothing to do if conversion is safe
if Safe_Unchecked_Type_Conversion (N) then
return;
end if;
if Assignment_OK (N) then
null;
else
Force_Evaluation (N);
end if;
end Expand_N_Unchecked_Type_Conversion;
----------------------------
-- Expand_Record_Equality --
----------------------------
-- For non-variant records, Equality is expanded when needed into:
-- and then Lhs.Discr1 = Rhs.Discr1
-- and then ...
-- and then Lhs.Discrn = Rhs.Discrn
-- and then Lhs.Cmp1 = Rhs.Cmp1
-- and then ...
-- and then Lhs.Cmpn = Rhs.Cmpn
-- The expression is folded by the back end for adjacent fields. This
-- function is called for tagged record in only one occasion: for imple-
-- menting predefined primitive equality (see Predefined_Primitives_Bodies)
-- otherwise the primitive "=" is used directly.
function Expand_Record_Equality
(Nod : Node_Id;
Typ : Entity_Id;
Lhs : Node_Id;
Rhs : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Nod);
Result : Node_Id;
C : Entity_Id;
First_Time : Boolean := True;
function Element_To_Compare (C : Entity_Id) return Entity_Id;
-- Return the next discriminant or component to compare, starting with
-- C, skipping inherited components.
------------------------
-- Element_To_Compare --
------------------------
function Element_To_Compare (C : Entity_Id) return Entity_Id is
Comp : Entity_Id := C;
begin
while Present (Comp) loop
-- Skip inherited components
-- Note: for a tagged type, we always generate the "=" primitive
-- for the base type (not on the first subtype), so the test for
-- Comp /= Original_Record_Component (Comp) is True for inherited
-- components only.
if (Is_Tagged_Type (Typ)
and then Comp /= Original_Record_Component (Comp))
-- Skip _Tag
or else Chars (Comp) = Name_uTag
-- Skip interface elements (secondary tags???)
or else Is_Interface (Etype (Comp))
then
Next_Component_Or_Discriminant (Comp);
else
return Comp;
end if;
end loop;
return Empty;
end Element_To_Compare;
-- Start of processing for Expand_Record_Equality
begin
-- Generates the following code: (assuming that Typ has one Discr and
-- component C2 is also a record)
-- Lhs.Discr1 = Rhs.Discr1
-- and then Lhs.C1 = Rhs.C1
-- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
-- and then ...
-- and then Lhs.Cmpn = Rhs.Cmpn
Result := New_Occurrence_Of (Standard_True, Loc);
C := Element_To_Compare (First_Component_Or_Discriminant (Typ));
while Present (C) loop
declare
New_Lhs : Node_Id;
New_Rhs : Node_Id;
Check : Node_Id;
begin
if First_Time then
New_Lhs := Lhs;
New_Rhs := Rhs;
else
New_Lhs := New_Copy_Tree (Lhs);
New_Rhs := New_Copy_Tree (Rhs);
end if;
Check :=
Expand_Composite_Equality
(Outer_Type => Typ, Nod => Nod, Comp_Type => Etype (C),
Lhs =>
Make_Selected_Component (Loc,
Prefix => New_Lhs,
Selector_Name => New_Occurrence_Of (C, Loc)),
Rhs =>
Make_Selected_Component (Loc,
Prefix => New_Rhs,
Selector_Name => New_Occurrence_Of (C, Loc)));
-- If some (sub)component is an unchecked_union, the whole
-- operation will raise program error.
if Nkind (Check) = N_Raise_Program_Error then
Result := Check;
Set_Etype (Result, Standard_Boolean);
exit;
else
if First_Time then
Result := Check;
-- Generate logical "and" for CodePeer to simplify the
-- generated code and analysis.
elsif CodePeer_Mode then
Result :=
Make_Op_And (Loc,
Left_Opnd => Result,
Right_Opnd => Check);
else
Result :=
Make_And_Then (Loc,
Left_Opnd => Result,
Right_Opnd => Check);
end if;
end if;
end;
First_Time := False;
C := Element_To_Compare (Next_Component_Or_Discriminant (C));
end loop;
return Result;
end Expand_Record_Equality;
---------------------------
-- Expand_Set_Membership --
---------------------------
procedure Expand_Set_Membership (N : Node_Id) is
Lop : constant Node_Id := Left_Opnd (N);
function Make_Cond (Alt : Node_Id) return Node_Id;
-- If the alternative is a subtype mark, create a simple membership
-- test. Otherwise create an equality test for it.
---------------
-- Make_Cond --
---------------
function Make_Cond (Alt : Node_Id) return Node_Id is
Cond : Node_Id;
L : constant Node_Id := New_Copy_Tree (Lop);
R : constant Node_Id := Relocate_Node (Alt);
begin
if (Is_Entity_Name (Alt) and then Is_Type (Entity (Alt)))
or else Nkind (Alt) = N_Range
then
Cond := Make_In (Sloc (Alt), Left_Opnd => L, Right_Opnd => R);
else
Cond := Make_Op_Eq (Sloc (Alt), Left_Opnd => L, Right_Opnd => R);
Resolve_Membership_Equality (Cond, Etype (Alt));
end if;
return Cond;
end Make_Cond;
-- Local variables
Alt : Node_Id;
Res : Node_Id := Empty;
-- Start of processing for Expand_Set_Membership
begin
Remove_Side_Effects (Lop);
-- We use left associativity as in the equivalent boolean case. This
-- kind of canonicalization helps the optimizer of the code generator.
Alt := First (Alternatives (N));
while Present (Alt) loop
Evolve_Or_Else (Res, Make_Cond (Alt));
Next (Alt);
end loop;
Rewrite (N, Res);
Analyze_And_Resolve (N, Standard_Boolean);
end Expand_Set_Membership;
-----------------------------------
-- Expand_Short_Circuit_Operator --
-----------------------------------
-- Deal with special expansion if actions are present for the right operand
-- and deal with optimizing case of arguments being True or False. We also
-- deal with the special case of non-standard boolean values.
procedure Expand_Short_Circuit_Operator (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
LocR : constant Source_Ptr := Sloc (Right);
Actlist : List_Id;
Shortcut_Value : constant Boolean := Nkind (N) = N_Or_Else;
Shortcut_Ent : constant Entity_Id := Boolean_Literals (Shortcut_Value);
-- If Left = Shortcut_Value then Right need not be evaluated
function Make_Test_Expr (Opnd : Node_Id) return Node_Id;
-- For Opnd a boolean expression, return a Boolean expression equivalent
-- to Opnd /= Shortcut_Value.
function Useful (Actions : List_Id) return Boolean;
-- Return True if Actions is not empty and contains useful nodes to
-- process.
--------------------
-- Make_Test_Expr --
--------------------
function Make_Test_Expr (Opnd : Node_Id) return Node_Id is
begin
if Shortcut_Value then
return Make_Op_Not (Sloc (Opnd), Opnd);
else
return Opnd;
end if;
end Make_Test_Expr;
------------
-- Useful --
------------
function Useful (Actions : List_Id) return Boolean is
L : Node_Id;
begin
if Present (Actions) then
L := First (Actions);
-- For now "useful" means not N_Variable_Reference_Marker.
-- Consider stripping other nodes in the future.
while Present (L) loop
if Nkind (L) /= N_Variable_Reference_Marker then
return True;
end if;
Next (L);
end loop;
end if;
return False;
end Useful;
-- Local variables
Op_Var : Entity_Id;
-- Entity for a temporary variable holding the value of the operator,
-- used for expansion in the case where actions are present.
-- Start of processing for Expand_Short_Circuit_Operator
begin
-- Deal with non-standard booleans
if Is_Boolean_Type (Typ) then
Adjust_Condition (Left);
Adjust_Condition (Right);
Set_Etype (N, Standard_Boolean);
end if;
-- Check for cases where left argument is known to be True or False
if Compile_Time_Known_Value (Left) then
-- Mark SCO for left condition as compile time known
if Generate_SCO and then Comes_From_Source (Left) then
Set_SCO_Condition (Left, Expr_Value_E (Left) = Standard_True);
end if;
-- Rewrite True AND THEN Right / False OR ELSE Right to Right.
-- Any actions associated with Right will be executed unconditionally
-- and can thus be inserted into the tree unconditionally.
if Expr_Value_E (Left) /= Shortcut_Ent then
if Present (Actions (N)) then
Insert_Actions (N, Actions (N));
end if;
Rewrite (N, Right);
-- Rewrite False AND THEN Right / True OR ELSE Right to Left.
-- In this case we can forget the actions associated with Right,
-- since they will never be executed.
else
Kill_Dead_Code (Right);
Kill_Dead_Code (Actions (N));
Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
end if;
Adjust_Result_Type (N, Typ);
return;
end if;
-- If Actions are present for the right operand, we have to do some
-- special processing. We can't just let these actions filter back into
-- code preceding the short circuit (which is what would have happened
-- if we had not trapped them in the short-circuit form), since they
-- must only be executed if the right operand of the short circuit is
-- executed and not otherwise.
if Useful (Actions (N)) then
Actlist := Actions (N);
-- The old approach is to expand:
-- left AND THEN right
-- into
-- C : Boolean := False;
-- IF left THEN
-- Actions;
-- IF right THEN
-- C := True;
-- END IF;
-- END IF;
-- and finally rewrite the operator into a reference to C. Similarly
-- for left OR ELSE right, with negated values. Note that this
-- rewrite causes some difficulties for coverage analysis because
-- of the introduction of the new variable C, which obscures the
-- structure of the test.
-- We use this "old approach" if Minimize_Expression_With_Actions
-- is True.
if Minimize_Expression_With_Actions then
Op_Var := Make_Temporary (Loc, 'C', Related_Node => N);
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Op_Var,
Object_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc),
Expression =>
New_Occurrence_Of (Shortcut_Ent, Loc)));
Append_To (Actlist,
Make_Implicit_If_Statement (Right,
Condition => Make_Test_Expr (Right),
Then_Statements => New_List (
Make_Assignment_Statement (LocR,
Name => New_Occurrence_Of (Op_Var, LocR),
Expression =>
New_Occurrence_Of
(Boolean_Literals (not Shortcut_Value), LocR)))));
Insert_Action (N,
Make_Implicit_If_Statement (Left,
Condition => Make_Test_Expr (Left),
Then_Statements => Actlist));
Rewrite (N, New_Occurrence_Of (Op_Var, Loc));
Analyze_And_Resolve (N, Standard_Boolean);
-- The new approach (the default) is to use an
-- Expression_With_Actions node for the right operand of the
-- short-circuit form. Note that this solves the traceability
-- problems for coverage analysis.
else
Rewrite (Right,
Make_Expression_With_Actions (LocR,
Expression => Relocate_Node (Right),
Actions => Actlist));
Set_Actions (N, No_List);
Analyze_And_Resolve (Right, Standard_Boolean);
end if;
Adjust_Result_Type (N, Typ);
return;
end if;
-- No actions present, check for cases of right argument True/False
if Compile_Time_Known_Value (Right) then
-- Mark SCO for left condition as compile time known
if Generate_SCO and then Comes_From_Source (Right) then
Set_SCO_Condition (Right, Expr_Value_E (Right) = Standard_True);
end if;
-- Change (Left and then True), (Left or else False) to Left. Note
-- that we know there are no actions associated with the right
-- operand, since we just checked for this case above.
if Expr_Value_E (Right) /= Shortcut_Ent then
Rewrite (N, Left);
-- Change (Left and then False), (Left or else True) to Right,
-- making sure to preserve any side effects associated with the Left
-- operand.
else
Remove_Side_Effects (Left);
Rewrite (N, New_Occurrence_Of (Shortcut_Ent, Loc));
end if;
end if;
Adjust_Result_Type (N, Typ);
end Expand_Short_Circuit_Operator;
-------------------------------------
-- Expand_Unchecked_Union_Equality --
-------------------------------------
procedure Expand_Unchecked_Union_Equality (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Eq : constant Entity_Id := Entity (Name (N));
Lhs : constant Node_Id := First_Actual (N);
Rhs : constant Node_Id := Next_Actual (Lhs);
function Get_Discr_Values (Op : Node_Id; Lhs : Boolean) return Elist_Id;
-- Return the list of inferred discriminant values for Op
----------------------
-- Get_Discr_Values --
----------------------
function Get_Discr_Values (Op : Node_Id; Lhs : Boolean) return Elist_Id
is
Typ : constant Entity_Id := Etype (Op);
Values : constant Elist_Id := New_Elmt_List;
function Get_Extra_Formal (Nam : Name_Id) return Entity_Id;
-- Return the extra formal Nam from the current scope, which must be
-- an equality function for an unchecked union type.
----------------------
-- Get_Extra_Formal --
----------------------
function Get_Extra_Formal (Nam : Name_Id) return Entity_Id is
Func : constant Entity_Id := Current_Scope;
Formal : Entity_Id;
begin
pragma Assert (Ekind (Func) = E_Function);
Formal := Extra_Formals (Func);
while Present (Formal) loop
if Chars (Formal) = Nam then
return Formal;
end if;
Formal := Extra_Formal (Formal);
end loop;
-- An extra formal of the proper name must be found
raise Program_Error;
end Get_Extra_Formal;
-- Local variables
Discr : Entity_Id;
-- Start of processing for Get_Discr_Values
begin
-- Per-object constrained selected components require special
-- attention. If the enclosing scope of the component is an
-- Unchecked_Union, we cannot reference its discriminants
-- directly. This is why we use the extra parameters of the
-- equality function of the enclosing Unchecked_Union.
-- type UU_Type (Discr : Integer := 0) is
-- . . .
-- end record;
-- pragma Unchecked_Union (UU_Type);
-- 1. Unchecked_Union enclosing record:
-- type Enclosing_UU_Type (Discr : Integer := 0) is record
-- . . .
-- Comp : UU_Type (Discr);
-- . . .
-- end Enclosing_UU_Type;
-- pragma Unchecked_Union (Enclosing_UU_Type);
-- Obj1 : Enclosing_UU_Type;
-- Obj2 : Enclosing_UU_Type (1);
-- [. . .] Obj1 = Obj2 [. . .]
-- Generated code:
-- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
-- A and B are the formal parameters of the equality function
-- of Enclosing_UU_Type. The function always has two extra
-- formals to capture the inferred discriminant values for
-- each discriminant of the type.
-- 2. Non-Unchecked_Union enclosing record:
-- type
-- Enclosing_Non_UU_Type (Discr : Integer := 0)
-- is record
-- . . .
-- Comp : UU_Type (Discr);
-- . . .
-- end Enclosing_Non_UU_Type;
-- Obj1 : Enclosing_Non_UU_Type;
-- Obj2 : Enclosing_Non_UU_Type (1);
-- ... Obj1 = Obj2 ...
-- Generated code:
-- if not (uu_typeEQ (obj1.comp, obj2.comp,
-- obj1.discr, obj2.discr)) then
-- In this case we can directly reference the discriminants of
-- the enclosing record.
if Nkind (Op) = N_Selected_Component
and then Has_Per_Object_Constraint (Entity (Selector_Name (Op)))
then
-- If enclosing record is an Unchecked_Union, use formals
-- corresponding to each discriminant. The name of the
-- formal is that of the discriminant, with added suffix,
-- see Exp_Ch3.Build_Variant_Record_Equality for details.
if Is_Unchecked_Union (Scope (Entity (Selector_Name (Op)))) then
Discr :=
First_Discriminant
(Scope (Entity (Selector_Name (Op))));
while Present (Discr) loop
Append_Elmt
(New_Occurrence_Of
(Get_Extra_Formal
(New_External_Name
(Chars (Discr), (if Lhs then 'A' else 'B'))), Loc),
To => Values);
Next_Discriminant (Discr);
end loop;
-- If enclosing record is of a non-Unchecked_Union type, it
-- is possible to reference its discriminants directly.
else
Discr := First_Discriminant (Typ);
while Present (Discr) loop
Append_Elmt
(Make_Selected_Component (Loc,
Prefix => Prefix (Op),
Selector_Name =>
New_Copy
(Get_Discriminant_Value (Discr,
Typ,
Stored_Constraint (Typ)))),
To => Values);
Next_Discriminant (Discr);
end loop;
end if;
-- Otherwise operand is on object with a constrained type.
-- Infer the discriminant values from the constraint.
else
Discr := First_Discriminant (Typ);
while Present (Discr) loop
Append_Elmt
(New_Copy
(Get_Discriminant_Value (Discr,
Typ,
Stored_Constraint (Typ))),
To => Values);
Next_Discriminant (Discr);
end loop;
end if;
return Values;
end Get_Discr_Values;
-- Start of processing for Expand_Unchecked_Union_Equality
begin
-- Guard against repeated invocation on the same node
if Present (Next_Actual (Rhs)) then
return;
end if;
-- If we can infer the discriminants of the operands, make a call to Eq
if Has_Inferable_Discriminants (Lhs)
and then
Has_Inferable_Discriminants (Rhs)
then
declare
Lhs_Values : constant Elist_Id := Get_Discr_Values (Lhs, True);
Rhs_Values : constant Elist_Id := Get_Discr_Values (Rhs, False);
Formal : Entity_Id;
L_Elmt : Elmt_Id;
R_Elmt : Elmt_Id;
begin
-- Add the inferred discriminant values as extra actuals
Formal := Extra_Formals (Eq);
L_Elmt := First_Elmt (Lhs_Values);
R_Elmt := First_Elmt (Rhs_Values);
while Present (L_Elmt) loop
Analyze_And_Resolve (Node (L_Elmt), Etype (Formal));
Add_Extra_Actual_To_Call (N, Formal, Node (L_Elmt));
Formal := Extra_Formal (Formal);
Analyze_And_Resolve (Node (R_Elmt), Etype (Formal));
Add_Extra_Actual_To_Call (N, Formal, Node (R_Elmt));
Formal := Extra_Formal (Formal);
Next_Elmt (L_Elmt);
Next_Elmt (R_Elmt);
end loop;
end;
-- Ada 2005 (AI-216): Program_Error is raised when evaluating
-- the predefined equality operator for an Unchecked_Union type
-- if either of the operands lack inferable discriminants.
else
Insert_Action (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
-- Give a warning on source equalities only, otherwise the message
-- may appear out of place due to internal use. It is unconditional
-- because it is required by the language.
if Comes_From_Source (Original_Node (N)) then
Error_Msg_N
("Unchecked_Union discriminants cannot be determined??", N);
Error_Msg_N
("\Program_Error will be raised for equality operation??", N);
end if;
Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
end if;
end Expand_Unchecked_Union_Equality;
------------------------------------
-- Fixup_Universal_Fixed_Operation --
-------------------------------------
procedure Fixup_Universal_Fixed_Operation (N : Node_Id) is
Conv : constant Node_Id := Parent (N);
begin
-- We must have a type conversion immediately above us
pragma Assert (Nkind (Conv) = N_Type_Conversion);
-- Normally the type conversion gives our target type. The exception
-- occurs in the case of the Round attribute, where the conversion
-- will be to universal real, and our real type comes from the Round
-- attribute (as well as an indication that we must round the result)
if Etype (Conv) = Universal_Real
and then Nkind (Parent (Conv)) = N_Attribute_Reference
and then Attribute_Name (Parent (Conv)) = Name_Round
then
Set_Etype (N, Base_Type (Etype (Parent (Conv))));
Set_Rounded_Result (N);
-- Normal case where type comes from conversion above us
else
Set_Etype (N, Base_Type (Etype (Conv)));
end if;
end Fixup_Universal_Fixed_Operation;
----------------------------
-- Get_First_Index_Bounds --
----------------------------
procedure Get_First_Index_Bounds (T : Entity_Id; Lo, Hi : out Uint) is
Typ : Entity_Id;
begin
pragma Assert (Is_Array_Type (T));
-- This follows Sem_Eval.Compile_Time_Known_Bounds
if Ekind (T) = E_String_Literal_Subtype then
Lo := Expr_Value (String_Literal_Low_Bound (T));
Hi := Lo + String_Literal_Length (T) - 1;
else
Typ := Underlying_Type (Etype (First_Index (T)));
Lo := Expr_Value (Type_Low_Bound (Typ));
Hi := Expr_Value (Type_High_Bound (Typ));
end if;
end Get_First_Index_Bounds;
------------------------
-- Get_Size_For_Range --
------------------------
function Get_Size_For_Range (Lo, Hi : Uint) return Uint is
function Is_OK_For_Range (Siz : Uint) return Boolean;
-- Return True if a signed integer with given size can cover Lo .. Hi
--------------------------
-- Is_OK_For_Range --
--------------------------
function Is_OK_For_Range (Siz : Uint) return Boolean is
B : constant Uint := Uint_2 ** (Siz - 1);
begin
-- Test B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
return Lo >= -B and then Hi >= -B and then Lo < B and then Hi < B;
end Is_OK_For_Range;
begin
-- This is (almost always) the size of Integer
if Is_OK_For_Range (Uint_32) then
return Uint_32;
-- Check 63
elsif Is_OK_For_Range (Uint_63) then
return Uint_63;
-- This is (almost always) the size of Long_Long_Integer
elsif Is_OK_For_Range (Uint_64) then
return Uint_64;
-- Check 127
elsif Is_OK_For_Range (Uint_127) then
return Uint_127;
else
return Uint_128;
end if;
end Get_Size_For_Range;
-------------------------------
-- Insert_Dereference_Action --
-------------------------------
procedure Insert_Dereference_Action (N : Node_Id) is
function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean;
-- Return true if type of P is derived from Checked_Pool;
-----------------------------
-- Is_Checked_Storage_Pool --
-----------------------------
function Is_Checked_Storage_Pool (P : Entity_Id) return Boolean is
T : Entity_Id;
begin
if No (P) then
return False;
end if;
T := Etype (P);
while T /= Etype (T) loop
if Is_RTE (T, RE_Checked_Pool) then
return True;
else
T := Etype (T);
end if;
end loop;
return False;
end Is_Checked_Storage_Pool;
-- Local variables
Context : constant Node_Id := Parent (N);
Ptr_Typ : constant Entity_Id := Etype (N);
Desig_Typ : constant Entity_Id :=
Available_View (Designated_Type (Ptr_Typ));
Loc : constant Source_Ptr := Sloc (N);
Pool : constant Entity_Id := Associated_Storage_Pool (Ptr_Typ);
Addr : Entity_Id;
Alig : Entity_Id;
Deref : Node_Id;
Size : Entity_Id;
Size_Bits : Node_Id;
Stmt : Node_Id;
-- Start of processing for Insert_Dereference_Action
begin
pragma Assert (Nkind (Context) = N_Explicit_Dereference);
-- Do not re-expand a dereference which has already been processed by
-- this routine.
if Has_Dereference_Action (Context) then
return;
-- Do not perform this type of expansion for internally-generated
-- dereferences.
elsif not Comes_From_Source (Original_Node (Context)) then
return;
-- A dereference action is only applicable to objects which have been
-- allocated on a checked pool.
elsif not Is_Checked_Storage_Pool (Pool) then
return;
end if;
-- Extract the address of the dereferenced object. Generate:
-- Addr : System.Address := <N>'Pool_Address;
Addr := Make_Temporary (Loc, 'P');
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Addr,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Address), Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr_Move_Checks (N),
Attribute_Name => Name_Pool_Address)));
-- Calculate the size of the dereferenced object. Generate:
-- Size : Storage_Count := <N>.all'Size / Storage_Unit;
Deref :=
Make_Explicit_Dereference (Loc,
Prefix => Duplicate_Subexpr_Move_Checks (N));
Set_Has_Dereference_Action (Deref);
Size_Bits :=
Make_Attribute_Reference (Loc,
Prefix => Deref,
Attribute_Name => Name_Size);
-- Special case of an unconstrained array: need to add descriptor size
if Is_Array_Type (Desig_Typ)
and then not Is_Constrained (First_Subtype (Desig_Typ))
then
Size_Bits :=
Make_Op_Add (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (First_Subtype (Desig_Typ), Loc),
Attribute_Name => Name_Descriptor_Size),
Right_Opnd => Size_Bits);
end if;
Size := Make_Temporary (Loc, 'S');
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Size,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
Expression =>
Make_Op_Divide (Loc,
Left_Opnd => Size_Bits,
Right_Opnd => Make_Integer_Literal (Loc, System_Storage_Unit))));
-- Calculate the alignment of the dereferenced object. Generate:
-- Alig : constant Storage_Count := <N>.all'Alignment;
Deref :=
Make_Explicit_Dereference (Loc,
Prefix => Duplicate_Subexpr_Move_Checks (N));
Set_Has_Dereference_Action (Deref);
Alig := Make_Temporary (Loc, 'A');
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Alig,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Storage_Count), Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Deref,
Attribute_Name => Name_Alignment)));
-- A dereference of a controlled object requires special processing. The
-- finalization machinery requests additional space from the underlying
-- pool to allocate and hide two pointers. As a result, a checked pool
-- may mark the wrong memory as valid. Since checked pools do not have
-- knowledge of hidden pointers, we have to bring the two pointers back
-- in view in order to restore the original state of the object.
-- The address manipulation is not performed for access types that are
-- subject to pragma No_Heap_Finalization because the two pointers do
-- not exist in the first place.
if No_Heap_Finalization (Ptr_Typ) then
null;
elsif Needs_Finalization (Desig_Typ) then
-- Adjust the address and size of the dereferenced object. Generate:
-- Adjust_Controlled_Dereference (Addr, Size, Alig);
Stmt :=
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Adjust_Controlled_Dereference), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Addr, Loc),
New_Occurrence_Of (Size, Loc),
New_Occurrence_Of (Alig, Loc)));
-- Class-wide types complicate things because we cannot determine
-- statically whether the actual object is truly controlled. We must
-- generate a runtime check to detect this property. Generate:
--
-- if Needs_Finalization (<N>.all'Tag) then
-- <Stmt>;
-- end if;
if Is_Class_Wide_Type (Desig_Typ) then
Deref :=
Make_Explicit_Dereference (Loc,
Prefix => Duplicate_Subexpr_Move_Checks (N));
Set_Has_Dereference_Action (Deref);
Stmt :=
Make_Implicit_If_Statement (N,
Condition =>
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Deref,
Attribute_Name => Name_Tag))),
Then_Statements => New_List (Stmt));
end if;
Insert_Action (N, Stmt);
end if;
-- Generate:
-- Dereference (Pool, Addr, Size, Alig);
Insert_Action (N,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of
(Find_Prim_Op (Etype (Pool), Name_Dereference), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Pool, Loc),
New_Occurrence_Of (Addr, Loc),
New_Occurrence_Of (Size, Loc),
New_Occurrence_Of (Alig, Loc))));
-- Mark the explicit dereference as processed to avoid potential
-- infinite expansion.
Set_Has_Dereference_Action (Context);
exception
when RE_Not_Available =>
return;
end Insert_Dereference_Action;
--------------------------------
-- Integer_Promotion_Possible --
--------------------------------
function Integer_Promotion_Possible (N : Node_Id) return Boolean is
Operand : constant Node_Id := Expression (N);
Operand_Type : constant Entity_Id := Etype (Operand);
Root_Operand_Type : constant Entity_Id := Root_Type (Operand_Type);
begin
pragma Assert (Nkind (N) = N_Type_Conversion);
return
-- We only do the transformation for source constructs. We assume
-- that the expander knows what it is doing when it generates code.
Comes_From_Source (N)
-- If the operand type is Short_Integer or Short_Short_Integer,
-- then we will promote to Integer, which is available on all
-- targets, and is sufficient to ensure no intermediate overflow.
-- Furthermore it is likely to be as efficient or more efficient
-- than using the smaller type for the computation so we do this
-- unconditionally.
and then
(Root_Operand_Type = Base_Type (Standard_Short_Integer)
or else
Root_Operand_Type = Base_Type (Standard_Short_Short_Integer))
-- Test for interesting operation, which includes addition,
-- division, exponentiation, multiplication, subtraction, absolute
-- value and unary negation. Unary "+" is omitted since it is a
-- no-op and thus can't overflow.
and then Nkind (Operand) in
N_Op_Abs | N_Op_Add | N_Op_Divide | N_Op_Expon |
N_Op_Minus | N_Op_Multiply | N_Op_Subtract;
end Integer_Promotion_Possible;
------------------------------
-- Make_Array_Comparison_Op --
------------------------------
-- This is a hand-coded expansion of the following generic function:
-- generic
-- type elem is (<>);
-- type index is (<>);
-- type a is array (index range <>) of elem;
-- function Gnnn (X : a; Y: a) return boolean is
-- J : index := Y'first;
-- begin
-- if X'length = 0 then
-- return false;
-- elsif Y'length = 0 then
-- return true;
-- else
-- for I in X'range loop
-- if X (I) = Y (J) then
-- if J = Y'last then
-- exit;
-- else
-- J := index'succ (J);
-- end if;
-- else
-- return X (I) > Y (J);
-- end if;
-- end loop;
-- return X'length > Y'length;
-- end if;
-- end Gnnn;
-- Note that since we are essentially doing this expansion by hand, we
-- do not need to generate an actual or formal generic part, just the
-- instantiated function itself.
function Make_Array_Comparison_Op
(Typ : Entity_Id;
Nod : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Nod);
X : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uX);
Y : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uY);
I : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uI);
J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
Loop_Statement : Node_Id;
Loop_Body : Node_Id;
If_Stat : Node_Id;
Inner_If : Node_Id;
Final_Expr : Node_Id;
Func_Body : Node_Id;
Func_Name : Entity_Id;
Formals : List_Id;
Length1 : Node_Id;
Length2 : Node_Id;
begin
-- if J = Y'last then
-- exit;
-- else
-- J := index'succ (J);
-- end if;
Inner_If :=
Make_Implicit_If_Statement (Nod,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (J, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Y, Loc),
Attribute_Name => Name_Last)),
Then_Statements => New_List (
Make_Exit_Statement (Loc)),
Else_Statements =>
New_List (
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (J, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Index, Loc),
Attribute_Name => Name_Succ,
Expressions => New_List (New_Occurrence_Of (J, Loc))))));
-- if X (I) = Y (J) then
-- if ... end if;
-- else
-- return X (I) > Y (J);
-- end if;
Loop_Body :=
Make_Implicit_If_Statement (Nod,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (X, Loc),
Expressions => New_List (New_Occurrence_Of (I, Loc))),
Right_Opnd =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Y, Loc),
Expressions => New_List (New_Occurrence_Of (J, Loc)))),
Then_Statements => New_List (Inner_If),
Else_Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression =>
Make_Op_Gt (Loc,
Left_Opnd =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (X, Loc),
Expressions => New_List (New_Occurrence_Of (I, Loc))),
Right_Opnd =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Y, Loc),
Expressions => New_List (
New_Occurrence_Of (J, Loc)))))));
-- for I in X'range loop
-- if ... end if;
-- end loop;
Loop_Statement :=
Make_Implicit_Loop_Statement (Nod,
Identifier => Empty,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => I,
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (X, Loc),
Attribute_Name => Name_Range))),
Statements => New_List (Loop_Body));
-- if X'length = 0 then
-- return false;
-- elsif Y'length = 0 then
-- return true;
-- else
-- for ... loop ... end loop;
-- return X'length > Y'length;
-- end if;
Length1 :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (X, Loc),
Attribute_Name => Name_Length);
Length2 :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Y, Loc),
Attribute_Name => Name_Length);
Final_Expr :=
Make_Op_Gt (Loc,
Left_Opnd => Length1,
Right_Opnd => Length2);
If_Stat :=
Make_Implicit_If_Statement (Nod,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (X, Loc),
Attribute_Name => Name_Length),
Right_Opnd =>
Make_Integer_Literal (Loc, 0)),
Then_Statements =>
New_List (
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_False, Loc))),
Elsif_Parts => New_List (
Make_Elsif_Part (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Y, Loc),
Attribute_Name => Name_Length),
Right_Opnd =>
Make_Integer_Literal (Loc, 0)),
Then_Statements =>
New_List (
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Standard_True, Loc))))),
Else_Statements => New_List (
Loop_Statement,
Make_Simple_Return_Statement (Loc,
Expression => Final_Expr)));
-- (X : a; Y: a)
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => X,
Parameter_Type => New_Occurrence_Of (Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => Y,
Parameter_Type => New_Occurrence_Of (Typ, Loc)));
-- function Gnnn (...) return boolean is
-- J : index := Y'first;
-- begin
-- if ... end if;
-- end Gnnn;
Func_Name := Make_Temporary (Loc, 'G');
Func_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Func_Name,
Parameter_Specifications => Formals,
Result_Definition => New_Occurrence_Of (Standard_Boolean, Loc)),
Declarations => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => J,
Object_Definition => New_Occurrence_Of (Index, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Y, Loc),
Attribute_Name => Name_First))),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (If_Stat)));
return Func_Body;
end Make_Array_Comparison_Op;
---------------------------
-- Make_Boolean_Array_Op --
---------------------------
-- For logical operations on boolean arrays, expand in line the following,
-- replacing 'and' with 'or' or 'xor' where needed:
-- function Annn (A : typ; B: typ) return typ is
-- C : typ;
-- begin
-- for J in A'range loop
-- C (J) := A (J) op B (J);
-- end loop;
-- return C;
-- end Annn;
-- or in the case of Transform_Function_Array:
-- procedure Annn (A : typ; B: typ; RESULT: out typ) is
-- begin
-- for J in A'range loop
-- RESULT (J) := A (J) op B (J);
-- end loop;
-- end Annn;
-- Here typ is the boolean array type
function Make_Boolean_Array_Op
(Typ : Entity_Id;
N : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
A : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uA);
B : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uB);
J : constant Entity_Id := Make_Defining_Identifier (Loc, Name_uJ);
C : Entity_Id;
A_J : Node_Id;
B_J : Node_Id;
C_J : Node_Id;
Op : Node_Id;
Formals : List_Id;
Func_Name : Entity_Id;
Func_Body : Node_Id;
Loop_Statement : Node_Id;
begin
if Transform_Function_Array then
C := Make_Defining_Identifier (Loc, Name_UP_RESULT);
else
C := Make_Defining_Identifier (Loc, Name_uC);
end if;
A_J :=
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (A, Loc),
Expressions => New_List (New_Occurrence_Of (J, Loc)));
B_J :=
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (B, Loc),
Expressions => New_List (New_Occurrence_Of (J, Loc)));
C_J :=
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (C, Loc),
Expressions => New_List (New_Occurrence_Of (J, Loc)));
if Nkind (N) = N_Op_And then
Op :=
Make_Op_And (Loc,
Left_Opnd => A_J,
Right_Opnd => B_J);
elsif Nkind (N) = N_Op_Or then
Op :=
Make_Op_Or (Loc,
Left_Opnd => A_J,
Right_Opnd => B_J);
else
Op :=
Make_Op_Xor (Loc,
Left_Opnd => A_J,
Right_Opnd => B_J);
end if;
Loop_Statement :=
Make_Implicit_Loop_Statement (N,
Identifier => Empty,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => J,
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (A, Loc),
Attribute_Name => Name_Range))),
Statements => New_List (
Make_Assignment_Statement (Loc,
Name => C_J,
Expression => Op)));
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => A,
Parameter_Type => New_Occurrence_Of (Typ, Loc)),
Make_Parameter_Specification (Loc,
Defining_Identifier => B,
Parameter_Type => New_Occurrence_Of (Typ, Loc)));
if Transform_Function_Array then
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier => C,
Out_Present => True,
Parameter_Type => New_Occurrence_Of (Typ, Loc)));
end if;
Func_Name := Make_Temporary (Loc, 'A');
Set_Is_Inlined (Func_Name);
if Transform_Function_Array then
Func_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Func_Name,
Parameter_Specifications => Formals),
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Loop_Statement)));
else
Func_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Make_Function_Specification (Loc,
Defining_Unit_Name => Func_Name,
Parameter_Specifications => Formals,
Result_Definition => New_Occurrence_Of (Typ, Loc)),
Declarations => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => C,
Object_Definition => New_Occurrence_Of (Typ, Loc))),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Loop_Statement,
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (C, Loc)))));
end if;
return Func_Body;
end Make_Boolean_Array_Op;
-----------------------------------------
-- Minimized_Eliminated_Overflow_Check --
-----------------------------------------
function Minimized_Eliminated_Overflow_Check (N : Node_Id) return Boolean is
begin
-- The MINIMIZED mode operates in Long_Long_Integer so we cannot use it
-- if the type of the expression is already larger.
return
Is_Signed_Integer_Type (Etype (N))
and then Overflow_Check_Mode in Minimized_Or_Eliminated
and then not (Overflow_Check_Mode = Minimized
and then
Esize (Etype (N)) > Standard_Long_Long_Integer_Size);
end Minimized_Eliminated_Overflow_Check;
----------------------------
-- Narrow_Large_Operation --
----------------------------
procedure Narrow_Large_Operation (N : Node_Id) is
Kind : constant Node_Kind := Nkind (N);
Otyp : constant Entity_Id := Etype (N);
In_Rng : constant Boolean := Kind = N_In;
Binary : constant Boolean := Kind in N_Binary_Op or else In_Rng;
Compar : constant Boolean := Kind in N_Op_Compare or else In_Rng;
R : constant Node_Id := Right_Opnd (N);
Typ : constant Entity_Id := Etype (R);
Tsiz : constant Uint := RM_Size (Typ);
-- Local variables
L : Node_Id;
Llo, Lhi : Uint;
Rlo, Rhi : Uint;
Lsiz, Rsiz : Uint;
Nlo, Nhi : Uint;
Nsiz : Uint;
Ntyp : Entity_Id;
Nop : Node_Id;
OK : Boolean;
-- Start of processing for Narrow_Large_Operation
begin
-- First, determine the range of the left operand, if any
if Binary then
L := Left_Opnd (N);
Determine_Range (L, OK, Llo, Lhi, Assume_Valid => True);
if not OK then
return;
end if;
else
L := Empty;
Llo := Uint_0;
Lhi := Uint_0;
end if;
-- Second, determine the range of the right operand, which can itself
-- be a range, in which case we take the lower bound of the low bound
-- and the upper bound of the high bound.
if In_Rng then
declare
Zlo, Zhi : Uint;
begin
Determine_Range
(Low_Bound (R), OK, Rlo, Zhi, Assume_Valid => True);
if not OK then
return;
end if;
Determine_Range
(High_Bound (R), OK, Zlo, Rhi, Assume_Valid => True);
if not OK then
return;
end if;
end;
else
Determine_Range (R, OK, Rlo, Rhi, Assume_Valid => True);
if not OK then
return;
end if;
end if;
-- Then compute a size suitable for each range
if Binary then
Lsiz := Get_Size_For_Range (Llo, Lhi);
else
Lsiz := Uint_0;
end if;
Rsiz := Get_Size_For_Range (Rlo, Rhi);
-- Now compute the size of the narrower type
if Compar then
-- The type must be able to accommodate the operands
Nsiz := UI_Max (Lsiz, Rsiz);
else
-- The type must be able to accommodate the operand(s) and result.
-- Note that Determine_Range typically does not report the bounds of
-- the value as being larger than those of the base type, which means
-- that it does not report overflow (see also Enable_Overflow_Check).
Determine_Range (N, OK, Nlo, Nhi, Assume_Valid => True);
if not OK then
return;
end if;
-- Therefore, if Nsiz is not lower than the size of the original type
-- here, we cannot be sure that the operation does not overflow.
Nsiz := Get_Size_For_Range (Nlo, Nhi);
Nsiz := UI_Max (Nsiz, Lsiz);
Nsiz := UI_Max (Nsiz, Rsiz);
end if;
-- If the size is not lower than the size of the original type, then
-- there is no point in changing the type, except in the case where
-- we can remove a conversion to the original type from an operand.
if Nsiz >= Tsiz
and then not (Binary
and then Nkind (L) = N_Type_Conversion
and then Entity (Subtype_Mark (L)) = Typ)
and then not (Nkind (R) = N_Type_Conversion
and then Entity (Subtype_Mark (R)) = Typ)
then
return;
end if;
-- Now pick the narrower type according to the size. We use the base
-- type instead of the first subtype because operations are done in
-- the base type, so this avoids the need for useless conversions.
if Nsiz <= System_Max_Integer_Size then
Ntyp := Etype (Integer_Type_For (Nsiz, Uns => False));
else
return;
end if;
-- Finally, rewrite the operation in the narrower type, but make sure
-- not to perform name resolution for the operator again.
Nop := New_Op_Node (Kind, Sloc (N));
if Nkind (N) in N_Has_Entity then
Set_Entity (Nop, Entity (N));
end if;
if Binary then
Set_Left_Opnd (Nop, Convert_To (Ntyp, L));
end if;
if In_Rng then
Set_Right_Opnd (Nop,
Make_Range (Sloc (N),
Convert_To (Ntyp, Low_Bound (R)),
Convert_To (Ntyp, High_Bound (R))));
else
Set_Right_Opnd (Nop, Convert_To (Ntyp, R));
end if;
Rewrite (N, Nop);
if Compar then
-- Analyze it with the comparison type and checks suppressed since
-- the conversions of the operands cannot overflow.
Analyze_And_Resolve (N, Otyp, Suppress => Overflow_Check);
else
-- Analyze it with the narrower type and checks suppressed, but only
-- when we are sure that the operation does not overflow, see above.
if Nsiz < Tsiz then
Analyze_And_Resolve (N, Ntyp, Suppress => Overflow_Check);
else
Analyze_And_Resolve (N, Ntyp);
end if;
-- Put back a conversion to the original type
Convert_To_And_Rewrite (Typ, N);
end if;
end Narrow_Large_Operation;
--------------------------------
-- Optimize_Length_Comparison --
--------------------------------
procedure Optimize_Length_Comparison (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Result : Node_Id;
Left : Node_Id;
Right : Node_Id;
-- First and Last attribute reference nodes, which end up as left and
-- right operands of the optimized result.
Is_Zero : Boolean;
-- True for comparison operand of zero
Maybe_Superflat : Boolean;
-- True if we may be in the dynamic superflat case, i.e. Is_Zero is set
-- to false but the comparison operand can be zero at run time. In this
-- case, we normally cannot do anything because the canonical formula of
-- the length is not valid, but there is one exception: when the operand
-- is itself the length of an array with the same bounds as the array on
-- the LHS, we can entirely optimize away the comparison.
Comp : Node_Id;
-- Comparison operand, set only if Is_Zero is false
Ent : array (Pos range 1 .. 2) of Entity_Id := (Empty, Empty);
-- Entities whose length is being compared
Index : array (Pos range 1 .. 2) of Node_Id := (Empty, Empty);
-- Integer_Literal nodes for length attribute expressions, or Empty
-- if there is no such expression present.
Op : Node_Kind := Nkind (N);
-- Kind of comparison operator, gets flipped if operands backwards
function Convert_To_Long_Long_Integer (N : Node_Id) return Node_Id;
-- Given a discrete expression, returns a Long_Long_Integer typed
-- expression representing the underlying value of the expression.
-- This is done with an unchecked conversion to Long_Long_Integer.
-- We use unchecked conversion to handle the enumeration type case.
function Is_Entity_Length (N : Node_Id; Num : Pos) return Boolean;
-- Tests if N is a length attribute applied to a simple entity. If so,
-- returns True, and sets Ent to the entity, and Index to the integer
-- literal provided as an attribute expression, or to Empty if none.
-- Num is the index designating the relevant slot in Ent and Index.
-- Also returns True if the expression is a generated type conversion
-- whose expression is of the desired form. This latter case arises
-- when Apply_Universal_Integer_Attribute_Check installs a conversion
-- to check for being in range, which is not needed in this context.
-- Returns False if neither condition holds.
function Is_Optimizable (N : Node_Id) return Boolean;
-- Tests N to see if it is an optimizable comparison value (defined as
-- constant zero or one, or something else where the value is known to
-- be nonnegative and in the 32-bit range and where the corresponding
-- Length value is also known to be 32 bits). If result is true, sets
-- Is_Zero, Maybe_Superflat and Comp accordingly.
procedure Rewrite_For_Equal_Lengths;
-- Rewrite the comparison of two equal lengths into either True or False
----------------------------------
-- Convert_To_Long_Long_Integer --
----------------------------------
function Convert_To_Long_Long_Integer (N : Node_Id) return Node_Id is
begin
return Unchecked_Convert_To (Standard_Long_Long_Integer, N);
end Convert_To_Long_Long_Integer;
----------------------
-- Is_Entity_Length --
----------------------
function Is_Entity_Length (N : Node_Id; Num : Pos) return Boolean is
begin
if Nkind (N) = N_Attribute_Reference
and then Attribute_Name (N) = Name_Length
and then Is_Entity_Name (Prefix (N))
then
Ent (Num) := Entity (Prefix (N));
if Present (Expressions (N)) then
Index (Num) := First (Expressions (N));
else
Index (Num) := Empty;
end if;
return True;
elsif Nkind (N) = N_Type_Conversion
and then not Comes_From_Source (N)
then
return Is_Entity_Length (Expression (N), Num);
else
return False;
end if;
end Is_Entity_Length;
--------------------
-- Is_Optimizable --
--------------------
function Is_Optimizable (N : Node_Id) return Boolean is
Val : Uint;
OK : Boolean;
Lo : Uint;
Hi : Uint;
Indx : Node_Id;
Dbl : Boolean;
Ityp : Entity_Id;
begin
if Compile_Time_Known_Value (N) then
Val := Expr_Value (N);
if Val = Uint_0 then
Is_Zero := True;
Maybe_Superflat := False;
Comp := Empty;
return True;
elsif Val = Uint_1 then
Is_Zero := False;
Maybe_Superflat := False;
Comp := Empty;
return True;
end if;
end if;
-- Here we have to make sure of being within a 32-bit range (take the
-- full unsigned range so the length of 32-bit arrays is accepted).
Determine_Range (N, OK, Lo, Hi, Assume_Valid => True);
if not OK
or else Lo < Uint_0
or else Hi > Uint_2 ** 32
then
return False;
end if;
Maybe_Superflat := (Lo = Uint_0);
-- Tests if N is also a length attribute applied to a simple entity
Dbl := Is_Entity_Length (N, 2);
-- We can deal with the superflat case only if N is also a length
if Maybe_Superflat and then not Dbl then
return False;
end if;
-- Comparison value was within range, so now we must check the index
-- value to make sure it is also within 32 bits.
for K in Pos range 1 .. 2 loop
Indx := First_Index (Etype (Ent (K)));
if Present (Index (K)) then
for J in 2 .. UI_To_Int (Intval (Index (K))) loop
Next_Index (Indx);
end loop;
end if;
Ityp := Etype (Indx);
if Esize (Ityp) > 32 then
return False;
end if;
exit when not Dbl;
end loop;
Is_Zero := False;
Comp := N;
return True;
end Is_Optimizable;
-------------------------------
-- Rewrite_For_Equal_Lengths --
-------------------------------
procedure Rewrite_For_Equal_Lengths is
begin
case Op is
when N_Op_Eq
| N_Op_Ge
| N_Op_Le
=>
Rewrite (N,
Convert_To (Typ,
New_Occurrence_Of (Standard_True, Sloc (N))));
when N_Op_Ne
| N_Op_Gt
| N_Op_Lt
=>
Rewrite (N,
Convert_To (Typ,
New_Occurrence_Of (Standard_False, Sloc (N))));
when others =>
raise Program_Error;
end case;
Analyze_And_Resolve (N, Typ);
end Rewrite_For_Equal_Lengths;
-- Start of processing for Optimize_Length_Comparison
begin
-- Nothing to do if not a comparison
if Op not in N_Op_Compare then
return;
end if;
-- Nothing to do if special -gnatd.P debug flag set.
if Debug_Flag_Dot_PP then
return;
end if;
-- Ent'Length op 0/1
if Is_Entity_Length (Left_Opnd (N), 1)
and then Is_Optimizable (Right_Opnd (N))
then
null;
-- 0/1 op Ent'Length
elsif Is_Entity_Length (Right_Opnd (N), 1)
and then Is_Optimizable (Left_Opnd (N))
then
-- Flip comparison to opposite sense
case Op is
when N_Op_Lt => Op := N_Op_Gt;
when N_Op_Le => Op := N_Op_Ge;
when N_Op_Gt => Op := N_Op_Lt;
when N_Op_Ge => Op := N_Op_Le;
when others => null;
end case;
-- Else optimization not possible
else
return;
end if;
-- Fall through if we will do the optimization
-- Cases to handle:
-- X'Length = 0 => X'First > X'Last
-- X'Length = 1 => X'First = X'Last
-- X'Length = n => X'First + (n - 1) = X'Last
-- X'Length /= 0 => X'First <= X'Last
-- X'Length /= 1 => X'First /= X'Last
-- X'Length /= n => X'First + (n - 1) /= X'Last
-- X'Length >= 0 => always true, warn
-- X'Length >= 1 => X'First <= X'Last
-- X'Length >= n => X'First + (n - 1) <= X'Last
-- X'Length > 0 => X'First <= X'Last
-- X'Length > 1 => X'First < X'Last
-- X'Length > n => X'First + (n - 1) < X'Last
-- X'Length <= 0 => X'First > X'Last (warn, could be =)
-- X'Length <= 1 => X'First >= X'Last
-- X'Length <= n => X'First + (n - 1) >= X'Last
-- X'Length < 0 => always false (warn)
-- X'Length < 1 => X'First > X'Last
-- X'Length < n => X'First + (n - 1) > X'Last
-- Note: for the cases of n (not constant 0,1), we require that the
-- corresponding index type be integer or shorter (i.e. not 64-bit),
-- and the same for the comparison value. Then we do the comparison
-- using 64-bit arithmetic (actually long long integer), so that we
-- cannot have overflow intefering with the result.
-- First deal with warning cases
if Is_Zero then
case Op is
-- X'Length >= 0
when N_Op_Ge =>
Rewrite (N,
Convert_To (Typ, New_Occurrence_Of (Standard_True, Loc)));
Analyze_And_Resolve (N, Typ);
Warn_On_Known_Condition (N);
return;
-- X'Length < 0
when N_Op_Lt =>
Rewrite (N,
Convert_To (Typ, New_Occurrence_Of (Standard_False, Loc)));
Analyze_And_Resolve (N, Typ);
Warn_On_Known_Condition (N);
return;
when N_Op_Le =>
if Constant_Condition_Warnings
and then Comes_From_Source (Original_Node (N))
then
Error_Msg_N ("could replace by ""'=""?c?", N);
end if;
Op := N_Op_Eq;
when others =>
null;
end case;
end if;
-- Build the First reference we will use
Left :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ent (1), Loc),
Attribute_Name => Name_First);
if Present (Index (1)) then
Set_Expressions (Left, New_List (New_Copy (Index (1))));
end if;
-- Build the Last reference we will use
Right :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ent (1), Loc),
Attribute_Name => Name_Last);
if Present (Index (1)) then
Set_Expressions (Right, New_List (New_Copy (Index (1))));
end if;
-- If general value case, then do the addition of (n - 1), and
-- also add the needed conversions to type Long_Long_Integer.
-- If n = Y'Length, we rewrite X'First + (n - 1) op X'Last into:
-- Y'Last + (X'First - Y'First) op X'Last
-- in the hope that X'First - Y'First can be computed statically.
if Present (Comp) then
if Present (Ent (2)) then
declare
Y_First : constant Node_Id :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ent (2), Loc),
Attribute_Name => Name_First);
Y_Last : constant Node_Id :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Ent (2), Loc),
Attribute_Name => Name_Last);
R : Compare_Result;
begin
if Present (Index (2)) then
Set_Expressions (Y_First, New_List (New_Copy (Index (2))));
Set_Expressions (Y_Last, New_List (New_Copy (Index (2))));
end if;
Analyze (Left);
Analyze (Y_First);
-- If X'First = Y'First, simplify the above formula into a
-- direct comparison of Y'Last and X'Last.
R := Compile_Time_Compare (Left, Y_First, Assume_Valid => True);
if R = EQ then
Analyze (Right);
Analyze (Y_Last);
R := Compile_Time_Compare
(Right, Y_Last, Assume_Valid => True);
-- If the pairs of attributes are equal, we are done
if R = EQ then
Rewrite_For_Equal_Lengths;
return;
end if;
-- If the base types are different, convert both operands to
-- Long_Long_Integer, else compare them directly.
if Base_Type (Etype (Right)) /= Base_Type (Etype (Y_Last))
then
Left := Convert_To_Long_Long_Integer (Y_Last);
else
Left := Y_Last;
Comp := Empty;
end if;
-- Otherwise, use the above formula as-is
else
Left :=
Make_Op_Add (Loc,
Left_Opnd =>
Convert_To_Long_Long_Integer (Y_Last),
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd =>
Convert_To_Long_Long_Integer (Left),
Right_Opnd =>
Convert_To_Long_Long_Integer (Y_First)));
end if;
end;
-- General value case
else
Left :=
Make_Op_Add (Loc,
Left_Opnd => Convert_To_Long_Long_Integer (Left),
Right_Opnd =>
Make_Op_Subtract (Loc,
Left_Opnd => Convert_To_Long_Long_Integer (Comp),
Right_Opnd => Make_Integer_Literal (Loc, 1)));
end if;
end if;
-- We cannot do anything in the superflat case past this point
if Maybe_Superflat then
return;
end if;
-- If general operand, convert Last reference to Long_Long_Integer
if Present (Comp) then
Right := Convert_To_Long_Long_Integer (Right);
end if;
-- Check for cases to optimize
-- X'Length = 0 => X'First > X'Last
-- X'Length < 1 => X'First > X'Last
-- X'Length < n => X'First + (n - 1) > X'Last
if (Is_Zero and then Op = N_Op_Eq)
or else (not Is_Zero and then Op = N_Op_Lt)
then
Result :=
Make_Op_Gt (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- X'Length = 1 => X'First = X'Last
-- X'Length = n => X'First + (n - 1) = X'Last
elsif not Is_Zero and then Op = N_Op_Eq then
Result :=
Make_Op_Eq (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- X'Length /= 0 => X'First <= X'Last
-- X'Length > 0 => X'First <= X'Last
elsif Is_Zero and (Op = N_Op_Ne or else Op = N_Op_Gt) then
Result :=
Make_Op_Le (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- X'Length /= 1 => X'First /= X'Last
-- X'Length /= n => X'First + (n - 1) /= X'Last
elsif not Is_Zero and then Op = N_Op_Ne then
Result :=
Make_Op_Ne (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- X'Length >= 1 => X'First <= X'Last
-- X'Length >= n => X'First + (n - 1) <= X'Last
elsif not Is_Zero and then Op = N_Op_Ge then
Result :=
Make_Op_Le (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- X'Length > 1 => X'First < X'Last
-- X'Length > n => X'First + (n = 1) < X'Last
elsif not Is_Zero and then Op = N_Op_Gt then
Result :=
Make_Op_Lt (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- X'Length <= 1 => X'First >= X'Last
-- X'Length <= n => X'First + (n - 1) >= X'Last
elsif not Is_Zero and then Op = N_Op_Le then
Result :=
Make_Op_Ge (Loc,
Left_Opnd => Left,
Right_Opnd => Right);
-- Should not happen at this stage
else
raise Program_Error;
end if;
-- Rewrite and finish up (we can suppress overflow checks, see above)
Rewrite (N, Result);
Analyze_And_Resolve (N, Typ, Suppress => Overflow_Check);
end Optimize_Length_Comparison;
--------------------------------------
-- Process_Transients_In_Expression --
--------------------------------------
procedure Process_Transients_In_Expression
(Expr : Node_Id;
Stmts : List_Id)
is
procedure Process_Transient_In_Expression (Obj_Decl : Node_Id);
-- Process the object whose declaration Obj_Decl is present in Stmts
-------------------------------------
-- Process_Transient_In_Expression --
-------------------------------------
procedure Process_Transient_In_Expression (Obj_Decl : Node_Id) is
Loc : constant Source_Ptr := Sloc (Obj_Decl);
Obj_Id : constant Entity_Id := Defining_Identifier (Obj_Decl);
Hook_Context : constant Node_Id := Find_Hook_Context (Expr);
-- The node on which to insert the hook as an action. This is usually
-- the innermost enclosing non-transient construct.
Fin_Call : Node_Id;
Hook_Assign : Node_Id;
Hook_Clear : Node_Id;
Hook_Decl : Node_Id;
Hook_Insert : Node_Id;
Ptr_Decl : Node_Id;
Fin_Context : Node_Id;
-- The node after which to insert the finalization actions of the
-- transient object.
begin
pragma Assert (Nkind (Expr) in N_Case_Expression
| N_Expression_With_Actions
| N_If_Expression);
-- When the context is a Boolean evaluation, all three nodes capture
-- the result of their computation in a local temporary:
-- do
-- Trans_Id : Ctrl_Typ := ...;
-- Result : constant Boolean := ... Trans_Id ...;
-- <finalize Trans_Id>
-- in Result end;
-- As a result, the finalization of any transient objects can take
-- place just after the result is captured, except for the case of
-- conditional expressions in a simple return statement because the
-- return statement will be distributed into dependent expressions
-- (see the special handling of simple return statements below).
-- ??? could this be extended to elementary types?
if Is_Boolean_Type (Etype (Expr))
and then
(Nkind (Expr) = N_Expression_With_Actions
or else Nkind (Parent (Expr)) /= N_Simple_Return_Statement)
then
Fin_Context := Last (Stmts);
-- Otherwise the immediate context may not be safe enough to carry
-- out transient object finalization due to aliasing and nesting of
-- constructs. Insert calls to [Deep_]Finalize after the innermost
-- enclosing non-transient construct.
else
Fin_Context := Hook_Context;
end if;
-- Mark the transient object as successfully processed to avoid
-- double finalization.
Set_Is_Finalized_Transient (Obj_Id);
-- Construct all the pieces necessary to hook and finalize a
-- transient object.
Build_Transient_Object_Statements
(Obj_Decl => Obj_Decl,
Fin_Call => Fin_Call,
Hook_Assign => Hook_Assign,
Hook_Clear => Hook_Clear,
Hook_Decl => Hook_Decl,
Ptr_Decl => Ptr_Decl,
Finalize_Obj => False);
-- Add the access type which provides a reference to the transient
-- object. Generate:
-- type Ptr_Typ is access all Desig_Typ;
Insert_Action (Hook_Context, Ptr_Decl);
-- Add the temporary which acts as a hook to the transient object.
-- Generate:
-- Hook : Ptr_Id := null;
Insert_Action (Hook_Context, Hook_Decl);
-- When the transient object is initialized by an aggregate, the hook
-- must capture the object after the last aggregate assignment takes
-- place. Only then is the object considered initialized. Generate:
-- Hook := Ptr_Typ (Obj_Id);
-- <or>
-- Hook := Obj_Id'Unrestricted_Access;
if Ekind (Obj_Id) in E_Constant | E_Variable
and then Present (Last_Aggregate_Assignment (Obj_Id))
then
Hook_Insert := Last_Aggregate_Assignment (Obj_Id);
-- Otherwise the hook seizes the related object immediately
else
Hook_Insert := Obj_Decl;
end if;
Insert_After_And_Analyze (Hook_Insert, Hook_Assign);
-- When the node is part of a return statement, there is no need to
-- insert a finalization call, as the general finalization mechanism
-- (see Build_Finalizer) would take care of the transient object on
-- subprogram exit. Note that it would also be impossible to insert
-- the finalization code after the return statement as this will
-- render it unreachable.
if Nkind (Fin_Context) = N_Simple_Return_Statement then
null;
-- Finalize the hook after the context has been evaluated. Generate:
-- if Hook /= null then
-- [Deep_]Finalize (Hook.all);
-- Hook := null;
-- end if;
-- But the node returned by Find_Hook_Context may be an operator,
-- which is not a list member. We must locate the proper node
-- in the tree after which to insert the finalization code.
else
while not Is_List_Member (Fin_Context) loop
Fin_Context := Parent (Fin_Context);
end loop;
pragma Assert (Present (Fin_Context));
Insert_Action_After (Fin_Context,
Make_Implicit_If_Statement (Obj_Decl,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd =>
New_Occurrence_Of (Defining_Entity (Hook_Decl), Loc),
Right_Opnd => Make_Null (Loc)),
Then_Statements => New_List (
Fin_Call,
Hook_Clear)));
end if;
end Process_Transient_In_Expression;
-- Local variables
Decl : Node_Id;
-- Start of processing for Process_Transients_In_Expression
begin
pragma Assert (Nkind (Expr) in N_Case_Expression
| N_Expression_With_Actions
| N_If_Expression);
Decl := First (Stmts);
while Present (Decl) loop
if Nkind (Decl) = N_Object_Declaration
and then Is_Finalizable_Transient (Decl, Expr)
then
Process_Transient_In_Expression (Decl);
end if;
Next (Decl);
end loop;
end Process_Transients_In_Expression;
------------------------
-- Rewrite_Comparison --
------------------------
procedure Rewrite_Comparison (N : Node_Id) is
Typ : constant Entity_Id := Etype (N);
False_Result : Boolean;
True_Result : Boolean;
begin
if Nkind (N) = N_Type_Conversion then
Rewrite_Comparison (Expression (N));
return;
elsif Nkind (N) not in N_Op_Compare then
return;
end if;
-- If both operands are static, then the comparison has been already
-- folded in evaluation.
pragma Assert
(not Is_Static_Expression (Left_Opnd (N))
or else
not Is_Static_Expression (Right_Opnd (N)));
-- Determine the potential outcome of the comparison assuming that the
-- operands are valid and emit a warning when the comparison evaluates
-- to True or False only in the presence of invalid values.
Warn_On_Constant_Valid_Condition (N);
-- Determine the potential outcome of the comparison assuming that the
-- operands are not valid.
Test_Comparison
(Op => N,
Assume_Valid => False,
True_Result => True_Result,
False_Result => False_Result);
-- The outcome is a decisive False or True, rewrite the operator into a
-- non-static literal.
if False_Result or True_Result then
Rewrite (N,
Convert_To (Typ,
New_Occurrence_Of (Boolean_Literals (True_Result), Sloc (N))));
Analyze_And_Resolve (N, Typ);
Set_Is_Static_Expression (N, False);
Warn_On_Known_Condition (N);
end if;
end Rewrite_Comparison;
----------------------------
-- Safe_In_Place_Array_Op --
----------------------------
function Safe_In_Place_Array_Op
(Lhs : Node_Id;
Op1 : Node_Id;
Op2 : Node_Id) return Boolean
is
Target : Entity_Id;
function Is_Safe_Operand (Op : Node_Id) return Boolean;
-- Operand is safe if it cannot overlap part of the target of the
-- operation. If the operand and the target are identical, the operand
-- is safe. The operand can be empty in the case of negation.
function Is_Unaliased (N : Node_Id) return Boolean;
-- Check that N is a stand-alone entity
------------------
-- Is_Unaliased --
------------------
function Is_Unaliased (N : Node_Id) return Boolean is
begin
return
Is_Entity_Name (N)
and then No (Address_Clause (Entity (N)))
and then No (Renamed_Object (Entity (N)));
end Is_Unaliased;
---------------------
-- Is_Safe_Operand --
---------------------
function Is_Safe_Operand (Op : Node_Id) return Boolean is
begin
if No (Op) then
return True;
elsif Is_Entity_Name (Op) then
return Is_Unaliased (Op);
elsif Nkind (Op) in N_Indexed_Component | N_Selected_Component then
return Is_Unaliased (Prefix (Op));
elsif Nkind (Op) = N_Slice then
return
Is_Unaliased (Prefix (Op))
and then Entity (Prefix (Op)) /= Target;
elsif Nkind (Op) = N_Op_Not then
return Is_Safe_Operand (Right_Opnd (Op));
else
return False;
end if;
end Is_Safe_Operand;
-- Start of processing for Safe_In_Place_Array_Op
begin
-- Skip this processing if the component size is different from system
-- storage unit (since at least for NOT this would cause problems).
if Component_Size (Etype (Lhs)) /= System_Storage_Unit then
return False;
-- Cannot do in place stuff if non-standard Boolean representation
elsif Has_Non_Standard_Rep (Component_Type (Etype (Lhs))) then
return False;
elsif not Is_Unaliased (Lhs) then
return False;
else
Target := Entity (Lhs);
return Is_Safe_Operand (Op1) and then Is_Safe_Operand (Op2);
end if;
end Safe_In_Place_Array_Op;
-----------------------
-- Tagged_Membership --
-----------------------
-- There are two different cases to consider depending on whether the right
-- operand is a class-wide type or not. If not we just compare the actual
-- tag of the left expr to the target type tag:
--
-- Left_Expr.Tag = Right_Type'Tag;
--
-- If it is a class-wide type we use the RT function CW_Membership which is
-- usually implemented by looking in the ancestor tables contained in the
-- dispatch table pointed by Left_Expr.Tag for Typ'Tag
-- In both cases if Left_Expr is an access type, we first check whether it
-- is null.
-- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
-- function IW_Membership which is usually implemented by looking in the
-- table of abstract interface types plus the ancestor table contained in
-- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
procedure Tagged_Membership
(N : Node_Id;
SCIL_Node : out Node_Id;
Result : out Node_Id)
is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Loc : constant Source_Ptr := Sloc (N);
-- Handle entities from the limited view
Orig_Right_Type : constant Entity_Id := Available_View (Etype (Right));
Full_R_Typ : Entity_Id;
Left_Type : Entity_Id := Available_View (Etype (Left));
Right_Type : Entity_Id := Orig_Right_Type;
Obj_Tag : Node_Id;
begin
SCIL_Node := Empty;
-- We have to examine the corresponding record type when dealing with
-- protected types instead of the original, unexpanded, type.
if Ekind (Right_Type) = E_Protected_Type then
Right_Type := Corresponding_Record_Type (Right_Type);
end if;
if Ekind (Left_Type) = E_Protected_Type then
Left_Type := Corresponding_Record_Type (Left_Type);
end if;
-- In the case where the type is an access type, the test is applied
-- using the designated types (needed in Ada 2012 for implicit anonymous
-- access conversions, for AI05-0149).
if Is_Access_Type (Right_Type) then
Left_Type := Designated_Type (Left_Type);
Right_Type := Designated_Type (Right_Type);
end if;
if Is_Class_Wide_Type (Left_Type) then
Left_Type := Root_Type (Left_Type);
end if;
if Is_Class_Wide_Type (Right_Type) then
Full_R_Typ := Underlying_Type (Root_Type (Right_Type));
else
Full_R_Typ := Underlying_Type (Right_Type);
end if;
Obj_Tag :=
Make_Selected_Component (Loc,
Prefix => Relocate_Node (Left),
Selector_Name =>
New_Occurrence_Of (First_Tag_Component (Left_Type), Loc));
if Is_Class_Wide_Type (Right_Type) then
-- No need to issue a run-time check if we statically know that the
-- result of this membership test is always true. For example,
-- considering the following declarations:
-- type Iface is interface;
-- type T is tagged null record;
-- type DT is new T and Iface with null record;
-- Obj1 : T;
-- Obj2 : DT;
-- These membership tests are always true:
-- Obj1 in T'Class
-- Obj2 in T'Class;
-- Obj2 in Iface'Class;
-- We do not need to handle cases where the membership is illegal.
-- For example:
-- Obj1 in DT'Class; -- Compile time error
-- Obj1 in Iface'Class; -- Compile time error
if not Is_Interface (Left_Type)
and then not Is_Class_Wide_Type (Left_Type)
and then (Is_Ancestor (Etype (Right_Type), Left_Type,
Use_Full_View => True)
or else (Is_Interface (Etype (Right_Type))
and then Interface_Present_In_Ancestor
(Typ => Left_Type,
Iface => Etype (Right_Type))))
then
Result := New_Occurrence_Of (Standard_True, Loc);
return;
end if;
-- Ada 2005 (AI-251): Class-wide applied to interfaces
if Is_Interface (Etype (Class_Wide_Type (Right_Type)))
-- Support to: "Iface_CW_Typ in Typ'Class"
or else Is_Interface (Left_Type)
then
-- Issue error if IW_Membership operation not available in a
-- configurable run-time setting.
if not RTE_Available (RE_IW_Membership) then
Error_Msg_CRT
("dynamic membership test on interface types", N);
Result := Empty;
return;
end if;
Result :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_IW_Membership), Loc),
Parameter_Associations => New_List (
Make_Attribute_Reference (Loc,
Prefix => Obj_Tag,
Attribute_Name => Name_Address),
New_Occurrence_Of (
Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
Loc)));
-- Ada 95: Normal case
else
-- Issue error if CW_Membership operation not available in a
-- configurable run-time setting.
if not RTE_Available (RE_CW_Membership) then
Error_Msg_CRT
("dynamic membership test on tagged types", N);
Result := Empty;
return;
end if;
Result :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_CW_Membership), Loc),
Parameter_Associations => New_List (
Obj_Tag,
New_Occurrence_Of (
Node (First_Elmt (Access_Disp_Table (Full_R_Typ))),
Loc)));
-- Generate the SCIL node for this class-wide membership test.
if Generate_SCIL then
SCIL_Node := Make_SCIL_Membership_Test (Sloc (N));
Set_SCIL_Entity (SCIL_Node, Etype (Right_Type));
Set_SCIL_Tag_Value (SCIL_Node, Obj_Tag);
end if;
end if;
-- Right_Type is not a class-wide type
else
-- No need to check the tag of the object if Right_Typ is abstract
if Is_Abstract_Type (Right_Type) then
Result := New_Occurrence_Of (Standard_False, Loc);
else
Result :=
Make_Op_Eq (Loc,
Left_Opnd => Obj_Tag,
Right_Opnd =>
New_Occurrence_Of
(Node (First_Elmt (Access_Disp_Table (Full_R_Typ))), Loc));
end if;
end if;
-- if Left is an access object then generate test of the form:
-- * if Right_Type excludes null: Left /= null and then ...
-- * if Right_Type includes null: Left = null or else ...
if Is_Access_Type (Orig_Right_Type) then
if Can_Never_Be_Null (Orig_Right_Type) then
Result := Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Ne (Loc,
Left_Opnd => Left,
Right_Opnd => Make_Null (Loc)),
Right_Opnd => Result);
else
Result := Make_Or_Else (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd => Left,
Right_Opnd => Make_Null (Loc)),
Right_Opnd => Result);
end if;
end if;
end Tagged_Membership;
------------------------------
-- Unary_Op_Validity_Checks --
------------------------------
procedure Unary_Op_Validity_Checks (N : Node_Id) is
begin
if Validity_Checks_On and Validity_Check_Operands then
Ensure_Valid (Right_Opnd (N));
end if;
end Unary_Op_Validity_Checks;
end Exp_Ch4;
|