1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ F I X D --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Exp_Util; use Exp_Util;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Stand; use Stand;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Urealp; use Urealp;
package body Exp_Fixd is
-----------------------
-- Local Subprograms --
-----------------------
-- General note; in this unit, a number of routines are driven by the
-- types (Etype) of their operands. Since we are dealing with unanalyzed
-- expressions as they are constructed, the Etypes would not normally be
-- set, but the construction routines that we use in this unit do in fact
-- set the Etype values correctly. In addition, setting the Etype ensures
-- that the analyzer does not try to redetermine the type when the node
-- is analyzed (which would be wrong, since in the case where we set the
-- Conversion_OK flag, it would think it was still dealing with a normal
-- fixed-point operation and mess it up).
function Build_Conversion
(N : Node_Id;
Typ : Entity_Id;
Expr : Node_Id;
Rchk : Boolean := False;
Trunc : Boolean := False) return Node_Id;
-- Build an expression that converts the expression Expr to type Typ,
-- taking the source location from Sloc (N). If the conversions involve
-- fixed-point types, then the Conversion_OK flag will be set so that the
-- resulting conversions do not get re-expanded. On return, the resulting
-- node has its Etype set. If Rchk is set, then Do_Range_Check is set
-- in the resulting conversion node. If Trunc is set, then the
-- Float_Truncate flag is set on the conversion, which must be from
-- a floating-point type to an integer type.
function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id;
-- Builds an N_Op_Divide node from the given left and right operand
-- expressions, using the source location from Sloc (N). The operands are
-- either both Universal_Real, in which case Build_Divide differs from
-- Make_Op_Divide only in that the Etype of the resulting node is set (to
-- Universal_Real), or they can be integer or fixed-point types. In this
-- case the types need not be the same, and Build_Divide chooses a type
-- long enough to hold both operands (i.e. the size of the longer of the
-- two operand types), and both operands are converted to this type. The
-- Etype of the result is also set to this value. The Rounded_Result flag
-- of the result in this case is set from the Rounded_Result flag of node
-- N. On return, the resulting node has its Etype set.
function Build_Double_Divide
(N : Node_Id;
X, Y, Z : Node_Id) return Node_Id;
-- Returns a node corresponding to the value X/(Y*Z) using the source
-- location from Sloc (N). The division is rounded if the Rounded_Result
-- flag of N is set. The integer types of X, Y, Z may be different. On
-- return, the resulting node has its Etype set.
procedure Build_Double_Divide_Code
(N : Node_Id;
X, Y, Z : Node_Id;
Qnn, Rnn : out Entity_Id;
Code : out List_Id);
-- Generates a sequence of code for determining the quotient and remainder
-- of the division X/(Y*Z), using the source location from Sloc (N).
-- Entities of appropriate types are allocated for the quotient and
-- remainder and returned in Qnn and Rnn. The result is rounded if the
-- Rounded_Result flag of N is set. The Etype fields of Qnn and Rnn are
-- appropriately set on return.
function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id;
-- Builds an N_Op_Multiply node from the given left and right operand
-- expressions, using the source location from Sloc (N). The operands are
-- either both Universal_Real, in which case Build_Multiply differs from
-- Make_Op_Multiply only in that the Etype of the resulting node is set (to
-- Universal_Real), or they can be integer or fixed-point types. In this
-- case the types need not be the same, and Build_Multiply chooses a type
-- long enough to hold the product and both operands are converted to this
-- type. The type of the result is also set to this value. On return, the
-- resulting node has its Etype set.
function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id;
-- Builds an N_Op_Rem node from the given left and right operand
-- expressions, using the source location from Sloc (N). The operands are
-- both integer types, which need not be the same. Build_Rem converts the
-- operand with the smaller sized type to match the type of the other
-- operand and sets this as the result type. The result is never rounded
-- (rem operations cannot be rounded in any case). On return, the resulting
-- node has its Etype set.
function Build_Scaled_Divide
(N : Node_Id;
X, Y, Z : Node_Id) return Node_Id;
-- Returns a node corresponding to the value X*Y/Z using the source
-- location from Sloc (N). The division is rounded if the Rounded_Result
-- flag of N is set. The integer types of X, Y, Z may be different. On
-- return the resulting node has its Etype set.
procedure Build_Scaled_Divide_Code
(N : Node_Id;
X, Y, Z : Node_Id;
Qnn, Rnn : out Entity_Id;
Code : out List_Id);
-- Generates a sequence of code for determining the quotient and remainder
-- of the division X*Y/Z, using the source location from Sloc (N). Entities
-- of appropriate types are allocated for the quotient and remainder and
-- returned in Qnn and Rrr. The integer types for X, Y, Z may be different.
-- The division is rounded if the Rounded_Result flag of N is set. The
-- Etype fields of Qnn and Rnn are appropriately set on return.
procedure Do_Divide_Fixed_Fixed (N : Node_Id);
-- Handles expansion of divide for case of two fixed-point operands
-- (neither of them universal), with an integer or fixed-point result.
-- N is the N_Op_Divide node to be expanded.
procedure Do_Divide_Fixed_Universal (N : Node_Id);
-- Handles expansion of divide for case of a fixed-point operand divided
-- by a universal real operand, with an integer or fixed-point result. N
-- is the N_Op_Divide node to be expanded.
procedure Do_Divide_Universal_Fixed (N : Node_Id);
-- Handles expansion of divide for case of a universal real operand
-- divided by a fixed-point operand, with an integer or fixed-point
-- result. N is the N_Op_Divide node to be expanded.
procedure Do_Multiply_Fixed_Fixed (N : Node_Id);
-- Handles expansion of multiply for case of two fixed-point operands
-- (neither of them universal), with an integer or fixed-point result.
-- N is the N_Op_Multiply node to be expanded.
procedure Do_Multiply_Fixed_Universal (N : Node_Id; Left, Right : Node_Id);
-- Handles expansion of multiply for case of a fixed-point operand
-- multiplied by a universal real operand, with an integer or fixed-
-- point result. N is the N_Op_Multiply node to be expanded, and
-- Left, Right are the operands (which may have been switched).
procedure Expand_Convert_Fixed_Static (N : Node_Id);
-- This routine is called where the node N is a conversion of a literal
-- or other static expression of a fixed-point type to some other type.
-- In such cases, we simply rewrite the operand as a real literal and
-- reanalyze. This avoids problems which would otherwise result from
-- attempting to build and fold expressions involving constants.
function Fpt_Value (N : Node_Id) return Node_Id;
-- Given an operand of fixed-point operation, return an expression that
-- represents the corresponding Universal_Real value. The expression
-- can be of integer type, floating-point type, or fixed-point type.
-- The expression returned is neither analyzed nor resolved. The Etype
-- of the result is properly set (to Universal_Real).
function Get_Size_For_Value (V : Uint) return Pos;
-- Given a non-negative universal integer value, return the size of a small
-- signed integer type covering -V .. V, or Pos'Max if no such type exists.
function Get_Type_For_Size (Siz : Pos; Force : Boolean) return Entity_Id;
-- Return the smallest signed integer type containing at least Siz bits.
-- If no such type exists, return Empty if Force is False or the largest
-- signed integer type if Force is True.
function Integer_Literal
(N : Node_Id;
V : Uint;
Negative : Boolean := False) return Node_Id;
-- Given a non-negative universal integer value, build a typed integer
-- literal node, using the smallest applicable standard integer type.
-- If Negative is true, then a negative literal is built. If V exceeds
-- 2**(System_Max_Integer_Size - 1) - 1, the largest value allowed for
-- perfect result set scaling factors (see RM G.2.3(22)), then Empty is
-- returned. The node N provides the Sloc value for the constructed
-- literal. The Etype of the resulting literal is correctly set, and it
-- is marked as analyzed.
function Real_Literal (N : Node_Id; V : Ureal) return Node_Id;
-- Build a real literal node from the given value, the Etype of the
-- returned node is set to Universal_Real, since all floating-point
-- arithmetic operations that we construct use Universal_Real
function Rounded_Result_Set (N : Node_Id) return Boolean;
-- Returns True if N is a node that contains the Rounded_Result flag
-- and if the flag is true or the target type is an integer type.
procedure Set_Result
(N : Node_Id;
Expr : Node_Id;
Rchk : Boolean := False;
Trunc : Boolean := False);
-- N is the node for the current conversion, division or multiplication
-- operation, and Expr is an expression representing the result. Expr may
-- be of floating-point or integer type. If the operation result is fixed-
-- point, then the value of Expr is in units of small of the result type
-- (i.e. small's have already been dealt with). The result of the call is
-- to replace N by an appropriate conversion to the result type, dealing
-- with rounding for the decimal types case. The node is then analyzed and
-- resolved using the result type. If Rchk or Trunc are True, then
-- respectively Do_Range_Check and Float_Truncate are set in the
-- resulting conversion.
----------------------
-- Build_Conversion --
----------------------
function Build_Conversion
(N : Node_Id;
Typ : Entity_Id;
Expr : Node_Id;
Rchk : Boolean := False;
Trunc : Boolean := False) return Node_Id
is
Loc : constant Source_Ptr := Sloc (N);
Result : Node_Id;
Rcheck : Boolean := Rchk;
begin
-- A special case, if the expression is an integer literal and the
-- target type is an integer type, then just retype the integer
-- literal to the desired target type. Don't do this if we need
-- a range check.
if Nkind (Expr) = N_Integer_Literal
and then Is_Integer_Type (Typ)
and then not Rchk
then
Result := Expr;
-- Cases where we end up with a conversion. Note that we do not use the
-- Convert_To abstraction here, since we may be decorating the resulting
-- conversion with Rounded_Result and/or Conversion_OK, so we want the
-- conversion node present, even if it appears to be redundant.
else
-- Remove inner conversion if both inner and outer conversions are
-- to integer types, since the inner one serves no purpose (except
-- perhaps to set rounding, so we preserve the Rounded_Result flag)
-- and also preserve the Conversion_OK and Do_Range_Check flags of
-- the inner conversion.
if Is_Integer_Type (Typ)
and then Is_Integer_Type (Etype (Expr))
and then Nkind (Expr) = N_Type_Conversion
then
Result :=
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
Expression => Expression (Expr));
Set_Rounded_Result (Result, Rounded_Result_Set (Expr));
Set_Conversion_OK (Result, Conversion_OK (Expr));
Rcheck := Rcheck or Do_Range_Check (Expr);
-- For all other cases, a simple type conversion will work
else
Result :=
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
Expression => Expr);
Set_Float_Truncate (Result, Trunc);
end if;
-- Set Conversion_OK if either result or expression type is a
-- fixed-point type, since from a semantic point of view, we are
-- treating fixed-point values as integers at this stage.
if Is_Fixed_Point_Type (Typ)
or else Is_Fixed_Point_Type (Etype (Expression (Result)))
then
Set_Conversion_OK (Result);
end if;
-- Set Do_Range_Check if either it was requested by the caller,
-- or if an eliminated inner conversion had a range check.
if Rcheck then
Enable_Range_Check (Result);
else
Set_Do_Range_Check (Result, False);
end if;
end if;
Set_Etype (Result, Typ);
return Result;
end Build_Conversion;
------------------
-- Build_Divide --
------------------
function Build_Divide (N : Node_Id; L, R : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
Left_Type : constant Entity_Id := Base_Type (Etype (L));
Right_Type : constant Entity_Id := Base_Type (Etype (R));
Left_Size : Int;
Right_Size : Int;
Result_Type : Entity_Id;
Rnode : Node_Id;
begin
-- Deal with floating-point case first
if Is_Floating_Point_Type (Left_Type) then
pragma Assert (Left_Type = Universal_Real);
pragma Assert (Right_Type = Universal_Real);
Rnode := Make_Op_Divide (Loc, L, R);
Result_Type := Universal_Real;
-- Integer and fixed-point cases
else
-- An optimization. If the right operand is the literal 1, then we
-- can just return the left hand operand. Putting the optimization
-- here allows us to omit the check at the call site.
if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
return L;
end if;
-- Otherwise we need to figure out the correct result type size
-- First figure out the effective sizes of the operands. Normally
-- the effective size of an operand is the RM_Size of the operand.
-- But a special case arises with operands whose size is known at
-- compile time. In this case, we can use the actual value of the
-- operand to get a size if it would fit in a small signed integer.
Left_Size := UI_To_Int (RM_Size (Left_Type));
if Compile_Time_Known_Value (L) then
declare
Siz : constant Int :=
Get_Size_For_Value (UI_Abs (Expr_Value (L)));
begin
if Siz < Left_Size then
Left_Size := Siz;
end if;
end;
end if;
Right_Size := UI_To_Int (RM_Size (Right_Type));
if Compile_Time_Known_Value (R) then
declare
Siz : constant Int :=
Get_Size_For_Value (UI_Abs (Expr_Value (R)));
begin
if Siz < Right_Size then
Right_Size := Siz;
end if;
end;
end if;
-- Do the operation using the longer of the two sizes
Result_Type :=
Get_Type_For_Size (Int'Max (Left_Size, Right_Size), Force => True);
Rnode :=
Make_Op_Divide (Loc,
Left_Opnd => Build_Conversion (N, Result_Type, L),
Right_Opnd => Build_Conversion (N, Result_Type, R));
end if;
-- We now have a divide node built with Result_Type set. First
-- set Etype of result, as required for all Build_xxx routines
Set_Etype (Rnode, Base_Type (Result_Type));
-- The result is rounded if the target of the operation is decimal
-- and Rounded_Result is set, or if the target of the operation
-- is an integer type, as determined by Rounded_Result_Set.
Set_Rounded_Result (Rnode, Rounded_Result_Set (N));
-- One more check. We did the divide operation using the longer of
-- the two sizes, which is reasonable. However, in the case where the
-- two types have unequal sizes, it is impossible for the result of
-- a divide operation to be larger than the dividend, so we can put
-- a conversion round the result to keep the evolving operation size
-- as small as possible.
if not Is_Floating_Point_Type (Left_Type) then
Rnode := Build_Conversion (N, Left_Type, Rnode);
end if;
return Rnode;
end Build_Divide;
-------------------------
-- Build_Double_Divide --
-------------------------
function Build_Double_Divide
(N : Node_Id;
X, Y, Z : Node_Id) return Node_Id
is
X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X)));
Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y)));
Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z)));
D_Size : constant Nat := Y_Size + Z_Size;
M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size));
Expr : Node_Id;
begin
-- If the denominator fits in Max_Integer_Size bits, we can build the
-- operations directly without causing any intermediate overflow. But
-- for backward compatibility reasons, we use a 128-bit divide only
-- if one of the operands is already larger than 64 bits.
if D_Size <= System_Max_Integer_Size
and then (D_Size <= 64 or else M_Size > 64)
then
return Build_Divide (N, X, Build_Multiply (N, Y, Z));
-- Otherwise we use the runtime routine
-- [Qnn : Interfaces.Integer_{64|128};
-- Rnn : Interfaces.Integer_{64|128};
-- Double_Divide{64|128} (X, Y, Z, Qnn, Rnn, Round);
-- Qnn]
else
declare
Loc : constant Source_Ptr := Sloc (N);
Qnn : Entity_Id;
Rnn : Entity_Id;
Code : List_Id;
pragma Warnings (Off, Rnn);
begin
Build_Double_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
Insert_Actions (N, Code);
Expr := New_Occurrence_Of (Qnn, Loc);
-- Set type of result in case used elsewhere (see note at start)
Set_Etype (Expr, Etype (Qnn));
-- Set result as analyzed (see note at start on build routines)
return Expr;
end;
end if;
end Build_Double_Divide;
------------------------------
-- Build_Double_Divide_Code --
------------------------------
-- If the denominator can be computed in Max_Integer_Size bits, we build
-- [Nnn : constant typ := typ (X);
-- Dnn : constant typ := typ (Y) * typ (Z)
-- Qnn : constant typ := Nnn / Dnn;
-- Rnn : constant typ := Nnn rem Dnn;
-- If the denominator cannot be computed in Max_Integer_Size bits, we build
-- [Qnn : Interfaces.Integer_{64|128};
-- Rnn : Interfaces.Integer_{64|128};
-- Double_Divide{64|128} (X, Y, Z, Qnn, Rnn, Round);]
procedure Build_Double_Divide_Code
(N : Node_Id;
X, Y, Z : Node_Id;
Qnn, Rnn : out Entity_Id;
Code : out List_Id)
is
Loc : constant Source_Ptr := Sloc (N);
X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X)));
Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y)));
Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z)));
M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size));
QR_Id : RE_Id;
QR_Siz : Nat;
QR_Typ : Entity_Id;
Nnn : Entity_Id;
Dnn : Entity_Id;
Quo : Node_Id;
Rnd : Entity_Id;
begin
-- Find type that will allow computation of denominator
QR_Siz := Nat'Max (X_Size, Y_Size + Z_Size);
if QR_Siz <= 16 then
QR_Typ := Standard_Integer_16;
QR_Id := RE_Null;
elsif QR_Siz <= 32 then
QR_Typ := Standard_Integer_32;
QR_Id := RE_Null;
elsif QR_Siz <= 64 then
QR_Typ := Standard_Integer_64;
QR_Id := RE_Null;
-- For backward compatibility reasons, we use a 128-bit divide only
-- if one of the operands is already larger than 64 bits.
elsif System_Max_Integer_Size < 128 or else M_Size <= 64 then
QR_Typ := RTE (RE_Integer_64);
QR_Id := RE_Double_Divide64;
elsif QR_Siz <= 128 then
QR_Typ := Standard_Integer_128;
QR_Id := RE_Null;
else
QR_Typ := RTE (RE_Integer_128);
QR_Id := RE_Double_Divide128;
end if;
-- Define quotient and remainder, and set their Etypes, so
-- that they can be picked up by Build_xxx routines.
Qnn := Make_Temporary (Loc, 'S');
Rnn := Make_Temporary (Loc, 'R');
Set_Etype (Qnn, QR_Typ);
Set_Etype (Rnn, QR_Typ);
-- Case where we can compute the denominator in Max_Integer_Size bits
if QR_Id = RE_Null then
-- Create temporaries for numerator and denominator and set Etypes,
-- so that New_Occurrence_Of picks them up for Build_xxx calls.
Nnn := Make_Temporary (Loc, 'N');
Dnn := Make_Temporary (Loc, 'D');
Set_Etype (Nnn, QR_Typ);
Set_Etype (Dnn, QR_Typ);
Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Nnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Build_Conversion (N, QR_Typ, X)),
Make_Object_Declaration (Loc,
Defining_Identifier => Dnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Build_Multiply (N, Y, Z)));
Quo :=
Build_Divide (N,
New_Occurrence_Of (Nnn, Loc),
New_Occurrence_Of (Dnn, Loc));
Set_Rounded_Result (Quo, Rounded_Result_Set (N));
Append_To (Code,
Make_Object_Declaration (Loc,
Defining_Identifier => Qnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Quo));
Append_To (Code,
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression =>
Build_Rem (N,
New_Occurrence_Of (Nnn, Loc),
New_Occurrence_Of (Dnn, Loc))));
-- Case where denominator does not fit in Max_Integer_Size bits, we have
-- to call the runtime routine to compute the quotient and remainder.
else
Rnd := Boolean_Literals (Rounded_Result_Set (N));
Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Qnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (QR_Id), Loc),
Parameter_Associations => New_List (
Build_Conversion (N, QR_Typ, X),
Build_Conversion (N, QR_Typ, Y),
Build_Conversion (N, QR_Typ, Z),
New_Occurrence_Of (Qnn, Loc),
New_Occurrence_Of (Rnn, Loc),
New_Occurrence_Of (Rnd, Loc))));
end if;
end Build_Double_Divide_Code;
--------------------
-- Build_Multiply --
--------------------
function Build_Multiply (N : Node_Id; L, R : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
Left_Type : constant Entity_Id := Etype (L);
Right_Type : constant Entity_Id := Etype (R);
Left_Size : Int;
Right_Size : Int;
Result_Type : Entity_Id;
Rnode : Node_Id;
begin
-- Deal with floating-point case first
if Is_Floating_Point_Type (Left_Type) then
pragma Assert (Left_Type = Universal_Real);
pragma Assert (Right_Type = Universal_Real);
Result_Type := Universal_Real;
Rnode := Make_Op_Multiply (Loc, L, R);
-- Integer and fixed-point cases
else
-- An optimization. If the right operand is the literal 1, then we
-- can just return the left hand operand. Putting the optimization
-- here allows us to omit the check at the call site. Similarly, if
-- the left operand is the integer 1 we can return the right operand.
if Nkind (R) = N_Integer_Literal and then Intval (R) = 1 then
return L;
elsif Nkind (L) = N_Integer_Literal and then Intval (L) = 1 then
return R;
end if;
-- Otherwise we need to figure out the correct result type size
-- First figure out the effective sizes of the operands. Normally
-- the effective size of an operand is the RM_Size of the operand.
-- But a special case arises with operands whose size is known at
-- compile time. In this case, we can use the actual value of the
-- operand to get a size if it would fit in a small signed integer.
Left_Size := UI_To_Int (RM_Size (Left_Type));
if Compile_Time_Known_Value (L) then
declare
Siz : constant Int :=
Get_Size_For_Value (UI_Abs (Expr_Value (L)));
begin
if Siz < Left_Size then
Left_Size := Siz;
end if;
end;
end if;
Right_Size := UI_To_Int (RM_Size (Right_Type));
if Compile_Time_Known_Value (R) then
declare
Siz : constant Int :=
Get_Size_For_Value (UI_Abs (Expr_Value (R)));
begin
if Siz < Right_Size then
Right_Size := Siz;
end if;
end;
end if;
-- Now the result size must be at least the sum of the two sizes,
-- to accommodate all possible results.
Result_Type :=
Get_Type_For_Size (Left_Size + Right_Size, Force => True);
Rnode :=
Make_Op_Multiply (Loc,
Left_Opnd => Build_Conversion (N, Result_Type, L),
Right_Opnd => Build_Conversion (N, Result_Type, R));
end if;
-- We now have a multiply node built with Result_Type set. First
-- set Etype of result, as required for all Build_xxx routines
Set_Etype (Rnode, Base_Type (Result_Type));
return Rnode;
end Build_Multiply;
---------------
-- Build_Rem --
---------------
function Build_Rem (N : Node_Id; L, R : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
Left_Type : constant Entity_Id := Etype (L);
Right_Type : constant Entity_Id := Etype (R);
Result_Type : Entity_Id;
Rnode : Node_Id;
begin
if Left_Type = Right_Type then
Result_Type := Left_Type;
Rnode :=
Make_Op_Rem (Loc,
Left_Opnd => L,
Right_Opnd => R);
-- If left size is larger, we do the remainder operation using the
-- size of the left type (i.e. the larger of the two integer types).
elsif Esize (Left_Type) >= Esize (Right_Type) then
Result_Type := Left_Type;
Rnode :=
Make_Op_Rem (Loc,
Left_Opnd => L,
Right_Opnd => Build_Conversion (N, Left_Type, R));
-- Similarly, if the right size is larger, we do the remainder
-- operation using the right type.
else
Result_Type := Right_Type;
Rnode :=
Make_Op_Rem (Loc,
Left_Opnd => Build_Conversion (N, Right_Type, L),
Right_Opnd => R);
end if;
-- We now have an N_Op_Rem node built with Result_Type set. First
-- set Etype of result, as required for all Build_xxx routines
Set_Etype (Rnode, Base_Type (Result_Type));
-- One more check. We did the rem operation using the larger of the
-- two types, which is reasonable. However, in the case where the
-- two types have unequal sizes, it is impossible for the result of
-- a remainder operation to be larger than the smaller of the two
-- types, so we can put a conversion round the result to keep the
-- evolving operation size as small as possible.
if Esize (Left_Type) >= Esize (Right_Type) then
Rnode := Build_Conversion (N, Right_Type, Rnode);
elsif Esize (Right_Type) >= Esize (Left_Type) then
Rnode := Build_Conversion (N, Left_Type, Rnode);
end if;
return Rnode;
end Build_Rem;
-------------------------
-- Build_Scaled_Divide --
-------------------------
function Build_Scaled_Divide
(N : Node_Id;
X, Y, Z : Node_Id) return Node_Id
is
X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X)));
Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y)));
Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z)));
N_Size : constant Nat := X_Size + Y_Size;
M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size));
Expr : Node_Id;
begin
-- If the numerator fits in Max_Integer_Size bits, we can build the
-- operations directly without causing any intermediate overflow. But
-- for backward compatibility reasons, we use a 128-bit divide only
-- if one of the operands is already larger than 64 bits.
if N_Size <= System_Max_Integer_Size
and then (N_Size <= 64 or else M_Size > 64)
then
return Build_Divide (N, Build_Multiply (N, X, Y), Z);
-- Otherwise we use the runtime routine
-- [Qnn : Integer_{64|128},
-- Rnn : Integer_{64|128};
-- Scaled_Divide{64|128} (X, Y, Z, Qnn, Rnn, Round);
-- Qnn]
else
declare
Loc : constant Source_Ptr := Sloc (N);
Qnn : Entity_Id;
Rnn : Entity_Id;
Code : List_Id;
pragma Warnings (Off, Rnn);
begin
Build_Scaled_Divide_Code (N, X, Y, Z, Qnn, Rnn, Code);
Insert_Actions (N, Code);
Expr := New_Occurrence_Of (Qnn, Loc);
-- Set type of result in case used elsewhere (see note at start)
Set_Etype (Expr, Etype (Qnn));
return Expr;
end;
end if;
end Build_Scaled_Divide;
------------------------------
-- Build_Scaled_Divide_Code --
------------------------------
-- If the numerator can be computed in Max_Integer_Size bits, we build
-- [Nnn : constant typ := typ (X) * typ (Y);
-- Dnn : constant typ := typ (Z)
-- Qnn : constant typ := Nnn / Dnn;
-- Rnn : constant typ := Nnn rem Dnn;
-- If the numerator cannot be computed in Max_Integer_Size bits, we build
-- [Qnn : Interfaces.Integer_{64|128};
-- Rnn : Interfaces.Integer_{64|128};
-- Scaled_Divide_{64|128} (X, Y, Z, Qnn, Rnn, Round);]
procedure Build_Scaled_Divide_Code
(N : Node_Id;
X, Y, Z : Node_Id;
Qnn, Rnn : out Entity_Id;
Code : out List_Id)
is
Loc : constant Source_Ptr := Sloc (N);
X_Size : constant Nat := UI_To_Int (RM_Size (Etype (X)));
Y_Size : constant Nat := UI_To_Int (RM_Size (Etype (Y)));
Z_Size : constant Nat := UI_To_Int (RM_Size (Etype (Z)));
M_Size : constant Nat := Nat'Max (X_Size, Nat'Max (Y_Size, Z_Size));
QR_Id : RE_Id;
QR_Siz : Nat;
QR_Typ : Entity_Id;
Nnn : Entity_Id;
Dnn : Entity_Id;
Quo : Node_Id;
Rnd : Entity_Id;
begin
-- Find type that will allow computation of numerator
QR_Siz := Nat'Max (X_Size + Y_Size, Z_Size);
if QR_Siz <= 16 then
QR_Typ := Standard_Integer_16;
QR_Id := RE_Null;
elsif QR_Siz <= 32 then
QR_Typ := Standard_Integer_32;
QR_Id := RE_Null;
elsif QR_Siz <= 64 then
QR_Typ := Standard_Integer_64;
QR_Id := RE_Null;
-- For backward compatibility reasons, we use a 128-bit divide only
-- if one of the operands is already larger than 64 bits.
elsif System_Max_Integer_Size < 128 or else M_Size <= 64 then
QR_Typ := RTE (RE_Integer_64);
QR_Id := RE_Scaled_Divide64;
elsif QR_Siz <= 128 then
QR_Typ := Standard_Integer_128;
QR_Id := RE_Null;
else
QR_Typ := RTE (RE_Integer_128);
QR_Id := RE_Scaled_Divide128;
end if;
-- Define quotient and remainder, and set their Etypes, so
-- that they can be picked up by Build_xxx routines.
Qnn := Make_Temporary (Loc, 'S');
Rnn := Make_Temporary (Loc, 'R');
Set_Etype (Qnn, QR_Typ);
Set_Etype (Rnn, QR_Typ);
-- Case where we can compute the numerator in Max_Integer_Size bits
if QR_Id = RE_Null then
Nnn := Make_Temporary (Loc, 'N');
Dnn := Make_Temporary (Loc, 'D');
-- Set Etypes, so that they can be picked up by New_Occurrence_Of
Set_Etype (Nnn, QR_Typ);
Set_Etype (Dnn, QR_Typ);
Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Nnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Build_Multiply (N, X, Y)),
Make_Object_Declaration (Loc,
Defining_Identifier => Dnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Build_Conversion (N, QR_Typ, Z)));
Quo :=
Build_Divide (N,
New_Occurrence_Of (Nnn, Loc),
New_Occurrence_Of (Dnn, Loc));
Append_To (Code,
Make_Object_Declaration (Loc,
Defining_Identifier => Qnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression => Quo));
Append_To (Code,
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc),
Constant_Present => True,
Expression =>
Build_Rem (N,
New_Occurrence_Of (Nnn, Loc),
New_Occurrence_Of (Dnn, Loc))));
-- Case where numerator does not fit in Max_Integer_Size bits, we have
-- to call the runtime routine to compute the quotient and remainder.
else
Rnd := Boolean_Literals (Rounded_Result_Set (N));
Code := New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Qnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
Make_Object_Declaration (Loc,
Defining_Identifier => Rnn,
Object_Definition => New_Occurrence_Of (QR_Typ, Loc)),
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (QR_Id), Loc),
Parameter_Associations => New_List (
Build_Conversion (N, QR_Typ, X),
Build_Conversion (N, QR_Typ, Y),
Build_Conversion (N, QR_Typ, Z),
New_Occurrence_Of (Qnn, Loc),
New_Occurrence_Of (Rnn, Loc),
New_Occurrence_Of (Rnd, Loc))));
end if;
-- Set type of result, for use in caller
Set_Etype (Qnn, QR_Typ);
end Build_Scaled_Divide_Code;
---------------------------
-- Do_Divide_Fixed_Fixed --
---------------------------
-- We have:
-- (Result_Value * Result_Small) =
-- (Left_Value * Left_Small) / (Right_Value * Right_Small)
-- Result_Value = (Left_Value / Right_Value) *
-- (Left_Small / (Right_Small * Result_Small));
-- we can do the operation in integer arithmetic if this fraction is an
-- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
-- Otherwise the result is in the close result set and our approach is to
-- use floating-point to compute this close result.
procedure Do_Divide_Fixed_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Right_Type : constant Entity_Id := Etype (Right);
Result_Type : constant Entity_Id := Etype (N);
Right_Small : constant Ureal := Small_Value (Right_Type);
Left_Small : constant Ureal := Small_Value (Left_Type);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_Int : Node_Id;
begin
-- Rounding is required if the result is integral
if Is_Integer_Type (Result_Type) then
Set_Rounded_Result (N);
end if;
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Get small ratio
Frac := Left_Small / (Right_Small * Result_Small);
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- If the fraction is an integer, then we get the result by multiplying
-- the left operand by the integer, and then dividing by the right
-- operand (the order is important, if we did the divide first, we
-- would lose precision).
if Frac_Den = 1 then
Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
if Present (Lit_Int) then
Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Right));
return;
end if;
-- If the fraction is the reciprocal of an integer, then we get the
-- result by first multiplying the divisor by the integer, and then
-- doing the division with the adjusted divisor.
-- Note: this is much better than doing two divisions: multiplications
-- are much faster than divisions (and certainly faster than rounded
-- divisions), and we don't get inaccuracies from double rounding.
elsif Frac_Num = 1 then
Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
if Present (Lit_Int) then
Set_Result (N, Build_Double_Divide (N, Left, Right, Lit_Int));
return;
end if;
end if;
-- If we fall through, we use floating-point to compute the result
Set_Result (N,
Build_Multiply (N,
Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
Real_Literal (N, Frac)));
end Do_Divide_Fixed_Fixed;
-------------------------------
-- Do_Divide_Fixed_Universal --
-------------------------------
-- We have:
-- (Result_Value * Result_Small) = (Left_Value * Left_Small) / Lit_Value;
-- Result_Value = Left_Value * Left_Small /(Lit_Value * Result_Small);
-- The result is required to be in the perfect result set if the literal
-- can be factored so that the resulting small ratio is an integer or the
-- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
-- analysis of these RM requirements:
-- We must factor the literal, finding an integer K:
-- Lit_Value = K * Right_Small
-- Right_Small = Lit_Value / K
-- such that the small ratio:
-- Left_Small
-- ------------------------------
-- (Lit_Value / K) * Result_Small
-- Left_Small
-- = ------------------------ * K
-- Lit_Value * Result_Small
-- is an integer or the reciprocal of an integer, and for
-- implementation efficiency we need the smallest such K.
-- First we reduce the left fraction to lowest terms
-- If numerator = 1, then for K = 1, the small ratio is the reciprocal
-- of an integer, and this is clearly the minimum K case, so set K = 1,
-- Right_Small = Lit_Value.
-- If numerator > 1, then set K to the denominator of the fraction so
-- that the resulting small ratio is an integer (the numerator value).
procedure Do_Divide_Fixed_Universal (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Result_Type : constant Entity_Id := Etype (N);
Left_Small : constant Ureal := Small_Value (Left_Type);
Lit_Value : constant Ureal := Realval (Right);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_K : Node_Id;
Lit_Int : Node_Id;
begin
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Determine if literal can be rewritten successfully
Frac := Left_Small / (Lit_Value * Result_Small);
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- Case where fraction is the reciprocal of an integer (K = 1, integer
-- = denominator). If this integer is not too large, this is the case
-- where the result can be obtained by dividing by this integer value.
if Frac_Num = 1 then
Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
if Present (Lit_Int) then
Set_Result (N, Build_Divide (N, Left, Lit_Int));
return;
end if;
-- Case where we choose K to make fraction an integer (K = denominator
-- of fraction, integer = numerator of fraction). If both K and the
-- numerator are small enough, this is the case where the result can
-- be obtained by first multiplying by the integer value and then
-- dividing by K (the order is important, if we divided first, we
-- would lose precision).
else
Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
Lit_K := Integer_Literal (N, Frac_Den, False);
if Present (Lit_Int) and then Present (Lit_K) then
Set_Result (N, Build_Scaled_Divide (N, Left, Lit_Int, Lit_K));
return;
end if;
end if;
-- Fall through if the literal cannot be successfully rewritten, or if
-- the small ratio is out of range of integer arithmetic. In the former
-- case it is fine to use floating-point to get the close result set,
-- and in the latter case, it means that the result is zero or raises
-- constraint error, and we can do that accurately in floating-point.
-- If we end up using floating-point, then we take the right integer
-- to be one, and its small to be the value of the original right real
-- literal. That way, we need only one floating-point multiplication.
Set_Result (N,
Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
end Do_Divide_Fixed_Universal;
-------------------------------
-- Do_Divide_Universal_Fixed --
-------------------------------
-- We have:
-- (Result_Value * Result_Small) =
-- Lit_Value / (Right_Value * Right_Small)
-- Result_Value =
-- (Lit_Value / (Right_Small * Result_Small)) / Right_Value
-- The result is required to be in the perfect result set if the literal
-- can be factored so that the resulting small ratio is an integer or the
-- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
-- analysis of these RM requirements:
-- We must factor the literal, finding an integer K:
-- Lit_Value = K * Left_Small
-- Left_Small = Lit_Value / K
-- such that the small ratio:
-- (Lit_Value / K)
-- --------------------------
-- Right_Small * Result_Small
-- Lit_Value 1
-- = -------------------------- * -
-- Right_Small * Result_Small K
-- is an integer or the reciprocal of an integer, and for
-- implementation efficiency we need the smallest such K.
-- First we reduce the left fraction to lowest terms
-- If denominator = 1, then for K = 1, the small ratio is an integer
-- (the numerator) and this is clearly the minimum K case, so set K = 1,
-- and Left_Small = Lit_Value.
-- If denominator > 1, then set K to the numerator of the fraction so
-- that the resulting small ratio is the reciprocal of an integer (the
-- numerator value).
procedure Do_Divide_Universal_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Right_Type : constant Entity_Id := Etype (Right);
Result_Type : constant Entity_Id := Etype (N);
Right_Small : constant Ureal := Small_Value (Right_Type);
Lit_Value : constant Ureal := Realval (Left);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_K : Node_Id;
Lit_Int : Node_Id;
begin
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Determine if literal can be rewritten successfully
Frac := Lit_Value / (Right_Small * Result_Small);
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- Case where fraction is an integer (K = 1, integer = numerator). If
-- this integer is not too large, this is the case where the result
-- can be obtained by dividing this integer by the right operand.
if Frac_Den = 1 then
Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
if Present (Lit_Int) then
Set_Result (N, Build_Divide (N, Lit_Int, Right));
return;
end if;
-- Case where we choose K to make the fraction the reciprocal of an
-- integer (K = numerator of fraction, integer = numerator of fraction).
-- If both K and the integer are small enough, this is the case where
-- the result can be obtained by multiplying the right operand by K
-- and then dividing by the integer value. The order of the operations
-- is important (if we divided first, we would lose precision).
else
Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
Lit_K := Integer_Literal (N, Frac_Num, False);
if Present (Lit_Int) and then Present (Lit_K) then
Set_Result (N, Build_Double_Divide (N, Lit_K, Right, Lit_Int));
return;
end if;
end if;
-- Fall through if the literal cannot be successfully rewritten, or if
-- the small ratio is out of range of integer arithmetic. In the former
-- case it is fine to use floating-point to get the close result set,
-- and in the latter case, it means that the result is zero or raises
-- constraint error, and we can do that accurately in floating-point.
-- If we end up using floating-point, then we take the right integer
-- to be one, and its small to be the value of the original right real
-- literal. That way, we need only one floating-point division.
Set_Result (N,
Build_Divide (N, Real_Literal (N, Frac), Fpt_Value (Right)));
end Do_Divide_Universal_Fixed;
-----------------------------
-- Do_Multiply_Fixed_Fixed --
-----------------------------
-- We have:
-- (Result_Value * Result_Small) =
-- (Left_Value * Left_Small) * (Right_Value * Right_Small)
-- Result_Value = (Left_Value * Right_Value) *
-- (Left_Small * Right_Small) / Result_Small;
-- we can do the operation in integer arithmetic if this fraction is an
-- integer or the reciprocal of an integer, as detailed in (RM G.2.3(21)).
-- Otherwise the result is in the close result set and our approach is to
-- use floating-point to compute this close result.
procedure Do_Multiply_Fixed_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Right_Type : constant Entity_Id := Etype (Right);
Result_Type : constant Entity_Id := Etype (N);
Right_Small : constant Ureal := Small_Value (Right_Type);
Left_Small : constant Ureal := Small_Value (Left_Type);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_Int : Node_Id;
begin
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Get small ratio
Frac := (Left_Small * Right_Small) / Result_Small;
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- If the fraction is an integer, then we get the result by multiplying
-- the operands, and then multiplying the result by the integer value.
if Frac_Den = 1 then
Lit_Int := Integer_Literal (N, Frac_Num); -- always positive
if Present (Lit_Int) then
Set_Result (N,
Build_Multiply (N, Build_Multiply (N, Left, Right), Lit_Int));
return;
end if;
-- If the fraction is the reciprocal of an integer, then we get the
-- result by multiplying the operands, and then dividing the result by
-- the integer value. The order of the operations is important, if we
-- divided first, we would lose precision.
elsif Frac_Num = 1 then
Lit_Int := Integer_Literal (N, Frac_Den); -- always positive
if Present (Lit_Int) then
Set_Result (N, Build_Scaled_Divide (N, Left, Right, Lit_Int));
return;
end if;
end if;
-- If we fall through, we use floating-point to compute the result
Set_Result (N,
Build_Multiply (N,
Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
Real_Literal (N, Frac)));
end Do_Multiply_Fixed_Fixed;
---------------------------------
-- Do_Multiply_Fixed_Universal --
---------------------------------
-- We have:
-- (Result_Value * Result_Small) = (Left_Value * Left_Small) * Lit_Value;
-- Result_Value = Left_Value * (Left_Small * Lit_Value) / Result_Small;
-- The result is required to be in the perfect result set if the literal
-- can be factored so that the resulting small ratio is an integer or the
-- reciprocal of an integer (RM G.2.3(21-22)). We now give a detailed
-- analysis of these RM requirements:
-- We must factor the literal, finding an integer K:
-- Lit_Value = K * Right_Small
-- Right_Small = Lit_Value / K
-- such that the small ratio:
-- Left_Small * (Lit_Value / K)
-- ----------------------------
-- Result_Small
-- Left_Small * Lit_Value 1
-- = ---------------------- * -
-- Result_Small K
-- is an integer or the reciprocal of an integer, and for
-- implementation efficiency we need the smallest such K.
-- First we reduce the left fraction to lowest terms
-- If denominator = 1, then for K = 1, the small ratio is an integer, and
-- this is clearly the minimum K case, so set
-- K = 1, Right_Small = Lit_Value
-- If denominator > 1, then set K to the numerator of the fraction, so
-- that the resulting small ratio is the reciprocal of the integer (the
-- denominator value).
procedure Do_Multiply_Fixed_Universal
(N : Node_Id;
Left, Right : Node_Id)
is
Left_Type : constant Entity_Id := Etype (Left);
Result_Type : constant Entity_Id := Etype (N);
Left_Small : constant Ureal := Small_Value (Left_Type);
Lit_Value : constant Ureal := Realval (Right);
Result_Small : Ureal;
Frac : Ureal;
Frac_Num : Uint;
Frac_Den : Uint;
Lit_K : Node_Id;
Lit_Int : Node_Id;
begin
-- Get result small. If the result is an integer, treat it as though
-- it had a small of 1.0, all other processing is identical.
if Is_Integer_Type (Result_Type) then
Result_Small := Ureal_1;
else
Result_Small := Small_Value (Result_Type);
end if;
-- Determine if literal can be rewritten successfully
Frac := (Left_Small * Lit_Value) / Result_Small;
Frac_Num := Norm_Num (Frac);
Frac_Den := Norm_Den (Frac);
-- Case where fraction is an integer (K = 1, integer = numerator). If
-- this integer is not too large, this is the case where the result can
-- be obtained by multiplying by this integer value.
if Frac_Den = 1 then
Lit_Int := Integer_Literal (N, Frac_Num, UR_Is_Negative (Frac));
if Present (Lit_Int) then
Set_Result (N, Build_Multiply (N, Left, Lit_Int));
return;
end if;
-- Case where we choose K to make fraction the reciprocal of an integer
-- (K = numerator of fraction, integer = denominator of fraction). If
-- both K and the denominator are small enough, this is the case where
-- the result can be obtained by first multiplying by K, and then
-- dividing by the integer value.
else
Lit_Int := Integer_Literal (N, Frac_Den, UR_Is_Negative (Frac));
Lit_K := Integer_Literal (N, Frac_Num, False);
if Present (Lit_Int) and then Present (Lit_K) then
Set_Result (N, Build_Scaled_Divide (N, Left, Lit_K, Lit_Int));
return;
end if;
end if;
-- Fall through if the literal cannot be successfully rewritten, or if
-- the small ratio is out of range of integer arithmetic. In the former
-- case it is fine to use floating-point to get the close result set,
-- and in the latter case, it means that the result is zero or raises
-- constraint error, and we can do that accurately in floating-point.
-- If we end up using floating-point, then we take the right integer
-- to be one, and its small to be the value of the original right real
-- literal. That way, we need only one floating-point multiplication.
Set_Result (N,
Build_Multiply (N, Fpt_Value (Left), Real_Literal (N, Frac)));
end Do_Multiply_Fixed_Universal;
---------------------------------
-- Expand_Convert_Fixed_Static --
---------------------------------
procedure Expand_Convert_Fixed_Static (N : Node_Id) is
begin
Rewrite (N,
Convert_To (Etype (N),
Make_Real_Literal (Sloc (N), Expr_Value_R (Expression (N)))));
Analyze_And_Resolve (N);
end Expand_Convert_Fixed_Static;
-----------------------------------
-- Expand_Convert_Fixed_To_Fixed --
-----------------------------------
-- We have:
-- Result_Value * Result_Small = Source_Value * Source_Small
-- Result_Value = Source_Value * (Source_Small / Result_Small)
-- If the small ratio (Source_Small / Result_Small) is a sufficiently small
-- integer, then the perfect result set is obtained by a single integer
-- multiplication.
-- If the small ratio is the reciprocal of a sufficiently small integer,
-- then the perfect result set is obtained by a single integer division.
-- If the numerator and denominator of the small ratio are sufficiently
-- small integers, then the perfect result set is obtained by a scaled
-- divide operation.
-- In other cases, we obtain the close result set by calculating the
-- result in floating-point.
procedure Expand_Convert_Fixed_To_Fixed (N : Node_Id) is
Rng_Check : constant Boolean := Do_Range_Check (N);
Expr : constant Node_Id := Expression (N);
Result_Type : constant Entity_Id := Etype (N);
Source_Type : constant Entity_Id := Etype (Expr);
Small_Ratio : Ureal;
Ratio_Num : Uint;
Ratio_Den : Uint;
Lit_Num : Node_Id;
Lit_Den : Node_Id;
begin
if Is_OK_Static_Expression (Expr) then
Expand_Convert_Fixed_Static (N);
return;
end if;
Small_Ratio := Small_Value (Source_Type) / Small_Value (Result_Type);
Ratio_Num := Norm_Num (Small_Ratio);
Ratio_Den := Norm_Den (Small_Ratio);
if Ratio_Den = 1 then
if Ratio_Num = 1 then
Set_Result (N, Expr);
return;
else
Lit_Num := Integer_Literal (N, Ratio_Num);
if Present (Lit_Num) then
Set_Result (N, Build_Multiply (N, Expr, Lit_Num));
return;
end if;
end if;
elsif Ratio_Num = 1 then
Lit_Den := Integer_Literal (N, Ratio_Den);
if Present (Lit_Den) then
Set_Result (N, Build_Divide (N, Expr, Lit_Den), Rng_Check);
return;
end if;
else
Lit_Num := Integer_Literal (N, Ratio_Num);
Lit_Den := Integer_Literal (N, Ratio_Den);
if Present (Lit_Num) and then Present (Lit_Den) then
Set_Result
(N, Build_Scaled_Divide (N, Expr, Lit_Num, Lit_Den), Rng_Check);
return;
end if;
end if;
-- Fall through to use floating-point for the close result set case,
-- as a result of the numerator or denominator of the small ratio not
-- being sufficiently small. See also Expand_Convert_Float_To_Fixed.
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Expr),
Real_Literal (N, Small_Ratio)),
Rng_Check,
Trunc => not Rounded_Result (N));
end Expand_Convert_Fixed_To_Fixed;
-----------------------------------
-- Expand_Convert_Fixed_To_Float --
-----------------------------------
-- If the small of the fixed type is 1.0, then we simply convert the
-- integer value directly to the target floating-point type, otherwise
-- we first have to multiply by the small, in Universal_Real, and then
-- convert the result to the target floating-point type.
procedure Expand_Convert_Fixed_To_Float (N : Node_Id) is
Rng_Check : constant Boolean := Do_Range_Check (N);
Expr : constant Node_Id := Expression (N);
Source_Type : constant Entity_Id := Etype (Expr);
Small : constant Ureal := Small_Value (Source_Type);
begin
if Is_OK_Static_Expression (Expr) then
Expand_Convert_Fixed_Static (N);
return;
end if;
if Small = Ureal_1 then
Set_Result (N, Expr);
else
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Expr),
Real_Literal (N, Small)),
Rng_Check);
end if;
end Expand_Convert_Fixed_To_Float;
-------------------------------------
-- Expand_Convert_Fixed_To_Integer --
-------------------------------------
-- We have:
-- Result_Value = Source_Value * Source_Small
-- If the small value is a sufficiently small integer, then the perfect
-- result set is obtained by a single integer multiplication.
-- If the small value is the reciprocal of a sufficiently small integer,
-- then the perfect result set is obtained by a single integer division.
-- If the numerator and denominator of the small value are sufficiently
-- small integers, then the perfect result set is obtained by a scaled
-- divide operation.
-- In other cases, we obtain the close result set by calculating the
-- result in floating-point.
procedure Expand_Convert_Fixed_To_Integer (N : Node_Id) is
Rng_Check : constant Boolean := Do_Range_Check (N);
Expr : constant Node_Id := Expression (N);
Source_Type : constant Entity_Id := Etype (Expr);
Small : constant Ureal := Small_Value (Source_Type);
Small_Num : constant Uint := Norm_Num (Small);
Small_Den : constant Uint := Norm_Den (Small);
Lit_Num : Node_Id;
Lit_Den : Node_Id;
begin
if Is_OK_Static_Expression (Expr) then
Expand_Convert_Fixed_Static (N);
return;
end if;
if Small_Den = 1 then
Lit_Num := Integer_Literal (N, Small_Num);
if Present (Lit_Num) then
Set_Result (N, Build_Multiply (N, Expr, Lit_Num), Rng_Check);
return;
end if;
elsif Small_Num = 1 then
Lit_Den := Integer_Literal (N, Small_Den);
if Present (Lit_Den) then
Set_Result (N, Build_Divide (N, Expr, Lit_Den), Rng_Check);
return;
end if;
else
Lit_Num := Integer_Literal (N, Small_Num);
Lit_Den := Integer_Literal (N, Small_Den);
if Present (Lit_Num) and then Present (Lit_Den) then
Set_Result
(N, Build_Scaled_Divide (N, Expr, Lit_Num, Lit_Den), Rng_Check);
return;
end if;
end if;
-- Fall through to use floating-point for the close result set case,
-- as a result of the numerator or denominator of the small value not
-- being a sufficiently small integer.
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Expr),
Real_Literal (N, Small)),
Rng_Check);
end Expand_Convert_Fixed_To_Integer;
-----------------------------------
-- Expand_Convert_Float_To_Fixed --
-----------------------------------
-- We have
-- Result_Value * Result_Small = Operand_Value
-- so compute:
-- Result_Value = Operand_Value * (1.0 / Result_Small)
-- We do the small scaling in floating-point, and we do a multiplication
-- rather than a division, since it is accurate enough for the perfect
-- result cases, and faster.
procedure Expand_Convert_Float_To_Fixed (N : Node_Id) is
Expr : constant Node_Id := Expression (N);
Result_Type : constant Entity_Id := Etype (N);
Rng_Check : constant Boolean := Do_Range_Check (N);
Small : constant Ureal := Small_Value (Result_Type);
begin
-- Optimize small = 1, where we can avoid the multiply completely
if Small = Ureal_1 then
Set_Result (N, Expr, Rng_Check, Trunc => True);
-- Normal case where multiply is required. The conversion is truncating
-- for fixed-point types, see RM 4.6(29), except if the conversion comes
-- from an attribute reference 'Round (RM 3.5.10 (14)): the attribute is
-- implemented by means of a conversion that needs to round. However, if
-- the switch -gnatd.N is specified, we use rounding for ordinary fixed-
-- point types, for compatibility with earlier versions of the compiler.
else
Set_Result (N,
Build_Multiply (N,
L => Fpt_Value (Expr),
R => Real_Literal (N, Ureal_1 / Small)),
Rchk => Rng_Check,
Trunc => not Rounded_Result (N)
and then not
(Debug_Flag_Dot_NN
and then Is_Ordinary_Fixed_Point_Type (Result_Type)));
end if;
end Expand_Convert_Float_To_Fixed;
-------------------------------------
-- Expand_Convert_Integer_To_Fixed --
-------------------------------------
-- We have
-- Result_Value * Result_Small = Operand_Value
-- Result_Value = Operand_Value / Result_Small
-- If the small value is a sufficiently small integer, then the perfect
-- result set is obtained by a single integer division.
-- If the small value is the reciprocal of a sufficiently small integer,
-- the perfect result set is obtained by a single integer multiplication.
-- If the numerator and denominator of the small value are sufficiently
-- small integers, then the perfect result set is obtained by a scaled
-- divide operation.
-- In other cases, we obtain the close result set by calculating the
-- result in floating-point using a multiplication by the reciprocal
-- of the Result_Small.
procedure Expand_Convert_Integer_To_Fixed (N : Node_Id) is
Rng_Check : constant Boolean := Do_Range_Check (N);
Expr : constant Node_Id := Expression (N);
Result_Type : constant Entity_Id := Etype (N);
Small : constant Ureal := Small_Value (Result_Type);
Small_Num : constant Uint := Norm_Num (Small);
Small_Den : constant Uint := Norm_Den (Small);
Lit_Num : Node_Id;
Lit_Den : Node_Id;
begin
if Small_Den = 1 then
Lit_Num := Integer_Literal (N, Small_Num);
if Present (Lit_Num) then
Set_Result (N, Build_Divide (N, Expr, Lit_Num), Rng_Check);
return;
end if;
elsif Small_Num = 1 then
Lit_Den := Integer_Literal (N, Small_Den);
if Present (Lit_Den) then
Set_Result (N, Build_Multiply (N, Expr, Lit_Den), Rng_Check);
return;
end if;
else
Lit_Num := Integer_Literal (N, Small_Num);
Lit_Den := Integer_Literal (N, Small_Den);
if Present (Lit_Num) and then Present (Lit_Den) then
Set_Result
(N, Build_Scaled_Divide (N, Expr, Lit_Den, Lit_Num), Rng_Check);
return;
end if;
end if;
-- Fall through to use floating-point for the close result set case,
-- as a result of the numerator or denominator of the small value not
-- being sufficiently small. See also Expand_Convert_Float_To_Fixed.
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Expr),
Real_Literal (N, Ureal_1 / Small)),
Rng_Check,
Trunc => not Rounded_Result (N));
end Expand_Convert_Integer_To_Fixed;
--------------------------------
-- Expand_Decimal_Divide_Call --
--------------------------------
-- We have four operands
-- Dividend
-- Divisor
-- Quotient
-- Remainder
-- All of which are decimal types, and which thus have associated
-- decimal scales.
-- Computing the quotient is a similar problem to that faced by the
-- normal fixed-point division, except that it is simpler, because
-- we always have compatible smalls.
-- Quotient = (Dividend / Divisor) * 10**q
-- where 10 ** q = Dividend'Small / (Divisor'Small * Quotient'Small)
-- so q = Divisor'Scale + Quotient'Scale - Dividend'Scale
-- For q >= 0, we compute
-- Numerator := Dividend * 10 ** q
-- Denominator := Divisor
-- Quotient := Numerator / Denominator
-- For q < 0, we compute
-- Numerator := Dividend
-- Denominator := Divisor * 10 ** q
-- Quotient := Numerator / Denominator
-- Both these divisions are done in truncated mode, and the remainder
-- from these divisions is used to compute the result Remainder. This
-- remainder has the effective scale of the numerator of the division,
-- For q >= 0, the remainder scale is Dividend'Scale + q
-- For q < 0, the remainder scale is Dividend'Scale
-- The result Remainder is then computed by a normal truncating decimal
-- conversion from this scale to the scale of the remainder, i.e. by a
-- division or multiplication by the appropriate power of 10.
procedure Expand_Decimal_Divide_Call (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Dividend : Node_Id := First_Actual (N);
Divisor : Node_Id := Next_Actual (Dividend);
Quotient : Node_Id := Next_Actual (Divisor);
Remainder : Node_Id := Next_Actual (Quotient);
Dividend_Type : constant Entity_Id := Etype (Dividend);
Divisor_Type : constant Entity_Id := Etype (Divisor);
Quotient_Type : constant Entity_Id := Etype (Quotient);
Remainder_Type : constant Entity_Id := Etype (Remainder);
Dividend_Scale : constant Uint := Scale_Value (Dividend_Type);
Divisor_Scale : constant Uint := Scale_Value (Divisor_Type);
Quotient_Scale : constant Uint := Scale_Value (Quotient_Type);
Remainder_Scale : constant Uint := Scale_Value (Remainder_Type);
Q : Uint;
Numerator_Scale : Uint;
Stmts : List_Id;
Qnn : Entity_Id;
Rnn : Entity_Id;
Computed_Remainder : Node_Id;
Adjusted_Remainder : Node_Id;
Scale_Adjust : Uint;
begin
-- Relocate the operands, since they are now list elements, and we
-- need to reference them separately as operands in the expanded code.
Dividend := Relocate_Node (Dividend);
Divisor := Relocate_Node (Divisor);
Quotient := Relocate_Node (Quotient);
Remainder := Relocate_Node (Remainder);
-- Now compute Q, the adjustment scale
Q := Divisor_Scale + Quotient_Scale - Dividend_Scale;
-- If Q is non-negative then we need a scaled divide
if Q >= 0 then
Build_Scaled_Divide_Code
(N,
Dividend,
Integer_Literal (N, Uint_10 ** Q),
Divisor,
Qnn, Rnn, Stmts);
Numerator_Scale := Dividend_Scale + Q;
-- If Q is negative, then we need a double divide
else
Build_Double_Divide_Code
(N,
Dividend,
Divisor,
Integer_Literal (N, Uint_10 ** (-Q)),
Qnn, Rnn, Stmts);
Numerator_Scale := Dividend_Scale;
end if;
-- Add statement to set quotient value
-- Quotient := quotient-type!(Qnn);
Append_To (Stmts,
Make_Assignment_Statement (Loc,
Name => Quotient,
Expression =>
Unchecked_Convert_To (Quotient_Type,
Build_Conversion (N, Quotient_Type,
New_Occurrence_Of (Qnn, Loc)))));
-- Now we need to deal with computing and setting the remainder. The
-- scale of the remainder is in Numerator_Scale, and the desired
-- scale is the scale of the given Remainder argument. There are
-- three cases:
-- Numerator_Scale > Remainder_Scale
-- in this case, there are extra digits in the computed remainder
-- which must be eliminated by an extra division:
-- computed-remainder := Numerator rem Denominator
-- scale_adjust = Numerator_Scale - Remainder_Scale
-- adjusted-remainder := computed-remainder / 10 ** scale_adjust
-- Numerator_Scale = Remainder_Scale
-- in this case, the we have the remainder we need
-- computed-remainder := Numerator rem Denominator
-- adjusted-remainder := computed-remainder
-- Numerator_Scale < Remainder_Scale
-- in this case, we have insufficient digits in the computed
-- remainder, which must be eliminated by an extra multiply
-- computed-remainder := Numerator rem Denominator
-- scale_adjust = Remainder_Scale - Numerator_Scale
-- adjusted-remainder := computed-remainder * 10 ** scale_adjust
-- Finally we assign the adjusted-remainder to the result Remainder
-- with conversions to get the proper fixed-point type representation.
Computed_Remainder := New_Occurrence_Of (Rnn, Loc);
if Numerator_Scale > Remainder_Scale then
Scale_Adjust := Numerator_Scale - Remainder_Scale;
Adjusted_Remainder :=
Build_Divide
(N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
elsif Numerator_Scale = Remainder_Scale then
Adjusted_Remainder := Computed_Remainder;
else -- Numerator_Scale < Remainder_Scale
Scale_Adjust := Remainder_Scale - Numerator_Scale;
Adjusted_Remainder :=
Build_Multiply
(N, Computed_Remainder, Integer_Literal (N, 10 ** Scale_Adjust));
end if;
-- Assignment of remainder result
Append_To (Stmts,
Make_Assignment_Statement (Loc,
Name => Remainder,
Expression =>
Unchecked_Convert_To (Remainder_Type, Adjusted_Remainder)));
-- Final step is to rewrite the call with a block containing the
-- above sequence of constructed statements for the divide operation.
Rewrite (N,
Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts)));
Analyze (N);
end Expand_Decimal_Divide_Call;
-----------------------------------------------
-- Expand_Divide_Fixed_By_Fixed_Giving_Fixed --
-----------------------------------------------
procedure Expand_Divide_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
begin
if Etype (Left) = Universal_Real then
Do_Divide_Universal_Fixed (N);
elsif Etype (Right) = Universal_Real then
Do_Divide_Fixed_Universal (N);
else
Do_Divide_Fixed_Fixed (N);
-- A focused optimization: if after constant folding the
-- expression is of the form: T ((Exp * D) / D), where D is
-- a static constant, return T (Exp). This form will show up
-- when D is the denominator of the static expression for the
-- 'small of fixed-point types involved. This transformation
-- removes a division that may be expensive on some targets.
if Nkind (N) = N_Type_Conversion
and then Nkind (Expression (N)) = N_Op_Divide
then
declare
Num : constant Node_Id := Left_Opnd (Expression (N));
Den : constant Node_Id := Right_Opnd (Expression (N));
begin
if Nkind (Den) = N_Integer_Literal
and then Nkind (Num) = N_Op_Multiply
and then Nkind (Right_Opnd (Num)) = N_Integer_Literal
and then Intval (Den) = Intval (Right_Opnd (Num))
then
Rewrite (Expression (N), Left_Opnd (Num));
end if;
end;
end if;
end if;
end Expand_Divide_Fixed_By_Fixed_Giving_Fixed;
-----------------------------------------------
-- Expand_Divide_Fixed_By_Fixed_Giving_Float --
-----------------------------------------------
-- The division is done in Universal_Real, and the result is multiplied
-- by the small ratio, which is Small (Right) / Small (Left). Special
-- treatment is required for universal operands, which represent their
-- own value and do not require conversion.
procedure Expand_Divide_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Right_Type : constant Entity_Id := Etype (Right);
begin
-- Case of left operand is universal real, the result we want is:
-- Left_Value / (Right_Value * Right_Small)
-- so we compute this as:
-- (Left_Value / Right_Small) / Right_Value
if Left_Type = Universal_Real then
Set_Result (N,
Build_Divide (N,
Real_Literal (N, Realval (Left) / Small_Value (Right_Type)),
Fpt_Value (Right)));
-- Case of right operand is universal real, the result we want is
-- (Left_Value * Left_Small) / Right_Value
-- so we compute this as:
-- Left_Value * (Left_Small / Right_Value)
-- Note we invert to a multiplication since usually floating-point
-- multiplication is much faster than floating-point division.
elsif Right_Type = Universal_Real then
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Left),
Real_Literal (N, Small_Value (Left_Type) / Realval (Right))));
-- Both operands are fixed, so the value we want is
-- (Left_Value * Left_Small) / (Right_Value * Right_Small)
-- which we compute as:
-- (Left_Value / Right_Value) * (Left_Small / Right_Small)
else
Set_Result (N,
Build_Multiply (N,
Build_Divide (N, Fpt_Value (Left), Fpt_Value (Right)),
Real_Literal (N,
Small_Value (Left_Type) / Small_Value (Right_Type))));
end if;
end Expand_Divide_Fixed_By_Fixed_Giving_Float;
-------------------------------------------------
-- Expand_Divide_Fixed_By_Fixed_Giving_Integer --
-------------------------------------------------
procedure Expand_Divide_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
begin
if Etype (Left) = Universal_Real then
Do_Divide_Universal_Fixed (N);
elsif Etype (Right) = Universal_Real then
Do_Divide_Fixed_Universal (N);
else
Do_Divide_Fixed_Fixed (N);
end if;
end Expand_Divide_Fixed_By_Fixed_Giving_Integer;
-------------------------------------------------
-- Expand_Divide_Fixed_By_Integer_Giving_Fixed --
-------------------------------------------------
-- Since the operand and result fixed-point type is the same, this is
-- a straight divide by the right operand, the small can be ignored.
procedure Expand_Divide_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
begin
Set_Result (N, Build_Divide (N, Left, Right));
end Expand_Divide_Fixed_By_Integer_Giving_Fixed;
-------------------------------------------------
-- Expand_Multiply_Fixed_By_Fixed_Giving_Fixed --
-------------------------------------------------
procedure Expand_Multiply_Fixed_By_Fixed_Giving_Fixed (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
procedure Rewrite_Non_Static_Universal (Opnd : Node_Id);
-- The operand may be a non-static universal value, such an
-- exponentiation with a non-static exponent. In that case, treat
-- as a fixed * fixed multiplication, and convert the argument to
-- the target fixed type.
----------------------------------
-- Rewrite_Non_Static_Universal --
----------------------------------
procedure Rewrite_Non_Static_Universal (Opnd : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
begin
Rewrite (Opnd,
Make_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Etype (N), Loc),
Expression => Expression (Opnd)));
Analyze_And_Resolve (Opnd, Etype (N));
end Rewrite_Non_Static_Universal;
-- Start of processing for Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
begin
if Etype (Left) = Universal_Real then
if Nkind (Left) = N_Real_Literal then
Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
elsif Nkind (Left) = N_Type_Conversion then
Rewrite_Non_Static_Universal (Left);
Do_Multiply_Fixed_Fixed (N);
end if;
elsif Etype (Right) = Universal_Real then
if Nkind (Right) = N_Real_Literal then
Do_Multiply_Fixed_Universal (N, Left, Right);
elsif Nkind (Right) = N_Type_Conversion then
Rewrite_Non_Static_Universal (Right);
Do_Multiply_Fixed_Fixed (N);
end if;
else
Do_Multiply_Fixed_Fixed (N);
end if;
end Expand_Multiply_Fixed_By_Fixed_Giving_Fixed;
-------------------------------------------------
-- Expand_Multiply_Fixed_By_Fixed_Giving_Float --
-------------------------------------------------
-- The multiply is done in Universal_Real, and the result is multiplied
-- by the adjustment for the smalls which is Small (Right) * Small (Left).
-- Special treatment is required for universal operands.
procedure Expand_Multiply_Fixed_By_Fixed_Giving_Float (N : Node_Id) is
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
Left_Type : constant Entity_Id := Etype (Left);
Right_Type : constant Entity_Id := Etype (Right);
begin
-- Case of left operand is universal real, the result we want is
-- Left_Value * (Right_Value * Right_Small)
-- so we compute this as:
-- (Left_Value * Right_Small) * Right_Value;
if Left_Type = Universal_Real then
Set_Result (N,
Build_Multiply (N,
Real_Literal (N, Realval (Left) * Small_Value (Right_Type)),
Fpt_Value (Right)));
-- Case of right operand is universal real, the result we want is
-- (Left_Value * Left_Small) * Right_Value
-- so we compute this as:
-- Left_Value * (Left_Small * Right_Value)
elsif Right_Type = Universal_Real then
Set_Result (N,
Build_Multiply (N,
Fpt_Value (Left),
Real_Literal (N, Small_Value (Left_Type) * Realval (Right))));
-- Both operands are fixed, so the value we want is
-- (Left_Value * Left_Small) * (Right_Value * Right_Small)
-- which we compute as:
-- (Left_Value * Right_Value) * (Right_Small * Left_Small)
else
Set_Result (N,
Build_Multiply (N,
Build_Multiply (N, Fpt_Value (Left), Fpt_Value (Right)),
Real_Literal (N,
Small_Value (Right_Type) * Small_Value (Left_Type))));
end if;
end Expand_Multiply_Fixed_By_Fixed_Giving_Float;
---------------------------------------------------
-- Expand_Multiply_Fixed_By_Fixed_Giving_Integer --
---------------------------------------------------
procedure Expand_Multiply_Fixed_By_Fixed_Giving_Integer (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Left : constant Node_Id := Left_Opnd (N);
Right : constant Node_Id := Right_Opnd (N);
begin
if Etype (Left) = Universal_Real then
Do_Multiply_Fixed_Universal (N, Left => Right, Right => Left);
elsif Etype (Right) = Universal_Real then
Do_Multiply_Fixed_Universal (N, Left, Right);
-- If both types are equal and we need to avoid floating point
-- instructions, it's worth introducing a temporary with the
-- common type, because it may be evaluated more simply without
-- the need for run-time use of floating point.
elsif Etype (Right) = Etype (Left)
and then Restriction_Active (No_Floating_Point)
then
declare
Temp : constant Entity_Id := Make_Temporary (Loc, 'F');
Mult : constant Node_Id := Make_Op_Multiply (Loc, Left, Right);
Decl : constant Node_Id :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Etype (Right), Loc),
Expression => Mult);
begin
Insert_Action (N, Decl);
Rewrite (N,
OK_Convert_To (Etype (N), New_Occurrence_Of (Temp, Loc)));
Analyze_And_Resolve (N, Standard_Integer);
end;
else
Do_Multiply_Fixed_Fixed (N);
end if;
end Expand_Multiply_Fixed_By_Fixed_Giving_Integer;
---------------------------------------------------
-- Expand_Multiply_Fixed_By_Integer_Giving_Fixed --
---------------------------------------------------
-- Since the operand and result fixed-point type is the same, this is
-- a straight multiply by the right operand, the small can be ignored.
procedure Expand_Multiply_Fixed_By_Integer_Giving_Fixed (N : Node_Id) is
begin
Set_Result (N,
Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
end Expand_Multiply_Fixed_By_Integer_Giving_Fixed;
---------------------------------------------------
-- Expand_Multiply_Integer_By_Fixed_Giving_Fixed --
---------------------------------------------------
-- Since the operand and result fixed-point type is the same, this is
-- a straight multiply by the right operand, the small can be ignored.
procedure Expand_Multiply_Integer_By_Fixed_Giving_Fixed (N : Node_Id) is
begin
Set_Result (N,
Build_Multiply (N, Left_Opnd (N), Right_Opnd (N)));
end Expand_Multiply_Integer_By_Fixed_Giving_Fixed;
---------------
-- Fpt_Value --
---------------
function Fpt_Value (N : Node_Id) return Node_Id is
begin
return Build_Conversion (N, Universal_Real, N);
end Fpt_Value;
------------------------
-- Get_Size_For_Value --
------------------------
function Get_Size_For_Value (V : Uint) return Pos is
begin
pragma Assert (V >= Uint_0);
if V < Uint_2 ** 7 then
return 8;
elsif V < Uint_2 ** 15 then
return 16;
elsif V < Uint_2 ** 31 then
return 32;
elsif V < Uint_2 ** 63 then
return 64;
elsif V < Uint_2 ** 127 then
return 128;
else
return Pos'Last;
end if;
end Get_Size_For_Value;
-----------------------
-- Get_Type_For_Size --
-----------------------
function Get_Type_For_Size (Siz : Pos; Force : Boolean) return Entity_Id is
begin
if Siz <= 8 then
return Standard_Integer_8;
elsif Siz <= 16 then
return Standard_Integer_16;
elsif Siz <= 32 then
return Standard_Integer_32;
elsif Siz <= 64
or else (Force and then System_Max_Integer_Size < 128)
then
return Standard_Integer_64;
elsif (Siz <= 128 and then System_Max_Integer_Size = 128)
or else Force
then
return Standard_Integer_128;
else
return Empty;
end if;
end Get_Type_For_Size;
---------------------
-- Integer_Literal --
---------------------
function Integer_Literal
(N : Node_Id;
V : Uint;
Negative : Boolean := False) return Node_Id
is
T : Entity_Id;
L : Node_Id;
begin
T := Get_Type_For_Size (Get_Size_For_Value (V), Force => False);
if No (T) then
return Empty;
end if;
if Negative then
L := Make_Integer_Literal (Sloc (N), UI_Negate (V));
else
L := Make_Integer_Literal (Sloc (N), V);
end if;
-- Set type of result in case used elsewhere (see note at start)
Set_Etype (L, T);
Set_Is_Static_Expression (L);
-- We really need to set Analyzed here because we may be creating a
-- very strange beast, namely an integer literal typed as fixed-point
-- and the analyzer won't like that.
Set_Analyzed (L);
return L;
end Integer_Literal;
------------------
-- Real_Literal --
------------------
function Real_Literal (N : Node_Id; V : Ureal) return Node_Id is
L : Node_Id;
begin
L := Make_Real_Literal (Sloc (N), V);
-- Set type of result in case used elsewhere (see note at start)
Set_Etype (L, Universal_Real);
return L;
end Real_Literal;
------------------------
-- Rounded_Result_Set --
------------------------
function Rounded_Result_Set (N : Node_Id) return Boolean is
K : constant Node_Kind := Nkind (N);
begin
if (K = N_Type_Conversion or else
K = N_Op_Divide or else
K = N_Op_Multiply)
and then
(Rounded_Result (N) or else Is_Integer_Type (Etype (N)))
then
return True;
else
return False;
end if;
end Rounded_Result_Set;
----------------
-- Set_Result --
----------------
procedure Set_Result
(N : Node_Id;
Expr : Node_Id;
Rchk : Boolean := False;
Trunc : Boolean := False)
is
Cnode : Node_Id;
Expr_Type : constant Entity_Id := Etype (Expr);
Result_Type : constant Entity_Id := Etype (N);
begin
-- No conversion required if types match and no range check or truncate
if Result_Type = Expr_Type and then not (Rchk or Trunc) then
Cnode := Expr;
-- Else perform required conversion
else
Cnode := Build_Conversion (N, Result_Type, Expr, Rchk, Trunc);
end if;
Rewrite (N, Cnode);
Analyze_And_Resolve (N, Result_Type);
end Set_Result;
end Exp_Fixd;
|