1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ S T R M --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Exp_Util; use Exp_Util;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Rtsfind; use Rtsfind;
with Sem_Aux; use Sem_Aux;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Snames; use Snames;
with Stand; use Stand;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
package body Exp_Strm is
-----------------------
-- Local Subprograms --
-----------------------
procedure Build_Array_Read_Write_Procedure
(Typ : Entity_Id;
Decl : out Node_Id;
Pnam : Entity_Id;
Nam : Name_Id);
-- Common routine shared to build either an array Read procedure or an
-- array Write procedure, Nam is Name_Read or Name_Write to select which.
-- Pnam is the defining identifier for the constructed procedure. The
-- other parameters are as for Build_Array_Read_Procedure.
procedure Build_Record_Read_Write_Procedure
(Typ : Entity_Id;
Decl : out Node_Id;
Pnam : Entity_Id;
Nam : Name_Id);
-- Common routine shared to build a record Read Write procedure, Nam
-- is Name_Read or Name_Write to select which. Pnam is the defining
-- identifier for the constructed procedure. The other parameters are
-- as for Build_Record_Read_Procedure.
procedure Build_Stream_Function
(Typ : Entity_Id;
Decl : out Node_Id;
Fnam : Entity_Id;
Decls : List_Id;
Stms : List_Id);
-- Called to build an array or record stream function. The first three
-- arguments are the same as Build_Record_Or_Elementary_Input_Function.
-- Decls and Stms are the declarations and statements for the body and
-- The parameter Fnam is the name of the constructed function.
function Has_Stream_Standard_Rep (U_Type : Entity_Id) return Boolean;
-- This function is used to test the type U_Type, to determine if it has
-- a standard representation from a streaming point of view. Standard means
-- that it has a standard representation (e.g. no enumeration rep clause),
-- and the size of the root type is the same as the streaming size (which
-- is defined as value specified by a Stream_Size clause if present, or
-- the Esize of U_Type if not).
function Make_Stream_Subprogram_Name
(Loc : Source_Ptr;
Typ : Entity_Id;
Nam : TSS_Name_Type) return Entity_Id;
-- Return the entity that identifies the stream subprogram for type Typ
-- that is identified by the given Nam. This procedure deals with the
-- difference between tagged types (where a single subprogram associated
-- with the type is generated) and all other cases (where a subprogram
-- is generated at the point of the stream attribute reference). The
-- Loc parameter is used as the Sloc of the created entity.
function Stream_Base_Type (E : Entity_Id) return Entity_Id;
-- Stream attributes work on the basis of the base type except for the
-- array case. For the array case, we do not go to the base type, but
-- to the first subtype if it is constrained. This avoids problems with
-- incorrect conversions in the packed array case. Stream_Base_Type is
-- exactly this function (returns the base type, unless we have an array
-- type whose first subtype is constrained, in which case it returns the
-- first subtype).
--------------------------------
-- Build_Array_Input_Function --
--------------------------------
-- The function we build looks like
-- function typSI[_nnn] (S : access RST) return Typ is
-- L1 : constant Index_Type_1 := Index_Type_1'Input (S);
-- H1 : constant Index_Type_1 := Index_Type_1'Input (S);
-- L2 : constant Index_Type_2 := Index_Type_2'Input (S);
-- H2 : constant Index_Type_2 := Index_Type_2'Input (S);
-- ..
-- Ln : constant Index_Type_n := Index_Type_n'Input (S);
-- Hn : constant Index_Type_n := Index_Type_n'Input (S);
--
-- V : Typ'Base (L1 .. H1, L2 .. H2, ... Ln .. Hn)
-- begin
-- Typ'Read (S, V);
-- return V;
-- end typSI[_nnn]
-- Note: the suffix [_nnn] is present for untagged types, where we generate
-- a local subprogram at the point of the occurrence of the attribute
-- reference, so the name must be unique.
procedure Build_Array_Input_Function
(Typ : Entity_Id;
Decl : out Node_Id;
Fnam : out Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Typ);
Dim : constant Pos := Number_Dimensions (Typ);
Lnam : Name_Id;
Hnam : Name_Id;
Decls : List_Id;
Ranges : List_Id;
Stms : List_Id;
Rstmt : Node_Id;
Indx : Node_Id;
Odecl : Node_Id;
begin
Decls := New_List;
Ranges := New_List;
Indx := First_Index (Typ);
for J in 1 .. Dim loop
Lnam := New_External_Name ('L', J);
Hnam := New_External_Name ('H', J);
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Lnam),
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Etype (Indx), Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
Attribute_Name => Name_Input,
Expressions => New_List (Make_Identifier (Loc, Name_S)))));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Hnam),
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
Attribute_Name => Name_Input,
Expressions => New_List (Make_Identifier (Loc, Name_S)))));
Append_To (Ranges,
Make_Range (Loc,
Low_Bound => Make_Identifier (Loc, Lnam),
High_Bound => Make_Identifier (Loc, Hnam)));
Next_Index (Indx);
end loop;
-- If the type is constrained, use it directly. Otherwise build a
-- subtype indication with the proper bounds.
if Is_Constrained (Typ) then
Odecl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
Object_Definition => New_Occurrence_Of (Typ, Loc));
else
Odecl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Occurrence_Of (Stream_Base_Type (Typ), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc, Ranges)));
end if;
Rstmt :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Read,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Identifier (Loc, Name_V)));
Stms := New_List (
Make_Extended_Return_Statement (Loc,
Return_Object_Declarations => New_List (Odecl),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc, New_List (Rstmt))));
Fnam :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Input));
Build_Stream_Function (Typ, Decl, Fnam, Decls, Stms);
end Build_Array_Input_Function;
----------------------------------
-- Build_Array_Output_Procedure --
----------------------------------
procedure Build_Array_Output_Procedure
(Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Typ);
Stms : List_Id;
Indx : Node_Id;
begin
-- Build series of statements to output bounds
Indx := First_Index (Typ);
Stms := New_List;
for J in 1 .. Number_Dimensions (Typ) loop
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
Attribute_Name => Name_Write,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, J))))));
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Stream_Base_Type (Etype (Indx)), Loc),
Attribute_Name => Name_Write,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, J))))));
Next_Index (Indx);
end loop;
-- Append Write attribute to write array elements
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Write,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Identifier (Loc, Name_V))));
Pnam :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Output));
Build_Stream_Procedure (Typ, Decl, Pnam, Stms, Outp => False);
end Build_Array_Output_Procedure;
--------------------------------
-- Build_Array_Read_Procedure --
--------------------------------
procedure Build_Array_Read_Procedure
(Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Typ);
begin
Pnam :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Read));
Build_Array_Read_Write_Procedure (Typ, Decl, Pnam, Name_Read);
end Build_Array_Read_Procedure;
--------------------------------------
-- Build_Array_Read_Write_Procedure --
--------------------------------------
-- The form of the array read/write procedure is as follows:
-- procedure pnam (S : access RST, V : [out] Typ) is
-- begin
-- for L1 in V'Range (1) loop
-- for L2 in V'Range (2) loop
-- ...
-- for Ln in V'Range (n) loop
-- Component_Type'Read/Write (S, V (L1, L2, .. Ln));
-- end loop;
-- ..
-- end loop;
-- end loop
-- end pnam;
-- The out keyword for V is supplied in the Read case
procedure Build_Array_Read_Write_Procedure
(Typ : Entity_Id;
Decl : out Node_Id;
Pnam : Entity_Id;
Nam : Name_Id)
is
Loc : constant Source_Ptr := Sloc (Typ);
Ndim : constant Pos := Number_Dimensions (Typ);
Ctyp : constant Entity_Id := Component_Type (Typ);
Stm : Node_Id;
Exl : List_Id;
RW : Entity_Id;
begin
-- First build the inner attribute call
Exl := New_List;
for J in 1 .. Ndim loop
Append_To (Exl, Make_Identifier (Loc, New_External_Name ('L', J)));
end loop;
Stm :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Stream_Base_Type (Ctyp), Loc),
Attribute_Name => Nam,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Indexed_Component (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Expressions => Exl)));
-- The corresponding stream attribute for the component type of the
-- array may be user-defined, and be frozen after the type for which
-- we are generating the stream subprogram. In that case, freeze the
-- stream attribute of the component type, whose declaration could not
-- generate any additional freezing actions in any case.
if Nam = Name_Read then
RW := TSS (Base_Type (Ctyp), TSS_Stream_Read);
else
RW := TSS (Base_Type (Ctyp), TSS_Stream_Write);
end if;
if Present (RW)
and then not Is_Frozen (RW)
then
Set_Is_Frozen (RW);
end if;
-- Now this is the big loop to wrap that statement up in a sequence
-- of loops. The first time around, Stm is the attribute call. The
-- second and subsequent times, Stm is an inner loop.
for J in 1 .. Ndim loop
Stm :=
Make_Implicit_Loop_Statement (Typ,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc,
Chars => New_External_Name ('L', Ndim - J + 1)),
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Attribute_Name => Name_Range,
Expressions => New_List (
Make_Integer_Literal (Loc, Ndim - J + 1))))),
Statements => New_List (Stm));
end loop;
Build_Stream_Procedure
(Typ, Decl, Pnam, New_List (Stm), Outp => Nam = Name_Read);
end Build_Array_Read_Write_Procedure;
---------------------------------
-- Build_Array_Write_Procedure --
---------------------------------
procedure Build_Array_Write_Procedure
(Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Typ);
begin
Pnam :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Write));
Build_Array_Read_Write_Procedure (Typ, Decl, Pnam, Name_Write);
end Build_Array_Write_Procedure;
---------------------------------
-- Build_Elementary_Input_Call --
---------------------------------
function Build_Elementary_Input_Call (N : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
P_Type : constant Entity_Id := Entity (Prefix (N));
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Rt_Type : constant Entity_Id := Root_Type (U_Type);
FST : constant Entity_Id := First_Subtype (U_Type);
Strm : constant Node_Id := First (Expressions (N));
Targ : constant Node_Id := Next (Strm);
P_Size : constant Uint := Get_Stream_Size (FST);
Res : Node_Id;
Lib_RE : RE_Id;
begin
-- Check first for Boolean and Character. These are enumeration types,
-- but we treat them specially, since they may require special handling
-- in the transfer protocol. However, this special handling only applies
-- if they have standard representation, otherwise they are treated like
-- any other enumeration type.
if Rt_Type = Standard_Boolean
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_I_B;
elsif Rt_Type = Standard_Character
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_I_C;
elsif Rt_Type = Standard_Wide_Character
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_I_WC;
elsif Rt_Type = Standard_Wide_Wide_Character
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_I_WWC;
-- Floating point types
elsif Is_Floating_Point_Type (U_Type) then
-- Question: should we use P_Size or Rt_Type to distinguish between
-- possible floating point types? If a non-standard size or a stream
-- size is specified, then we should certainly use the size. But if
-- we have two types the same (notably Short_Float_Size = Float_Size
-- which is close to universally true, and Long_Long_Float_Size =
-- Long_Float_Size, true on most targets except the x86), then we
-- would really rather use the root type, so that if people want to
-- fiddle with System.Stream_Attributes to get inter-target portable
-- streams, they get the size they expect. Consider in particular the
-- case of a stream written on an x86, with 96-bit Long_Long_Float
-- being read into a non-x86 target with 64 bit Long_Long_Float. A
-- special version of System.Stream_Attributes can deal with this
-- provided the proper type is always used.
-- To deal with these two requirements we add the special checks
-- on equal sizes and use the root type to distinguish.
if P_Size <= Standard_Short_Float_Size
and then (Standard_Short_Float_Size /= Standard_Float_Size
or else Rt_Type = Standard_Short_Float)
then
Lib_RE := RE_I_SF;
elsif P_Size <= Standard_Float_Size then
Lib_RE := RE_I_F;
elsif P_Size <= Standard_Long_Float_Size
and then (Standard_Long_Float_Size /= Standard_Long_Long_Float_Size
or else Rt_Type = Standard_Long_Float)
then
Lib_RE := RE_I_LF;
else
Lib_RE := RE_I_LLF;
end if;
-- Signed integer types. Also includes signed fixed-point types and
-- enumeration types with a signed representation.
-- Note on signed integer types. We do not consider types as signed for
-- this purpose if they have no negative numbers, or if they have biased
-- representation. The reason is that the value in either case basically
-- represents an unsigned value.
-- For example, consider:
-- type W is range 0 .. 2**32 - 1;
-- for W'Size use 32;
-- This is a signed type, but the representation is unsigned, and may
-- be outside the range of a 32-bit signed integer, so this must be
-- treated as 32-bit unsigned.
-- Similarly, if we have
-- type W is range -1 .. +254;
-- for W'Size use 8;
-- then the representation is unsigned
elsif not Is_Unsigned_Type (FST)
-- The following set of tests gets repeated many times, we should
-- have an abstraction defined ???
and then
(Is_Fixed_Point_Type (U_Type)
or else
Is_Enumeration_Type (U_Type)
or else
(Is_Signed_Integer_Type (U_Type)
and then not Has_Biased_Representation (FST)))
then
if P_Size <= Standard_Short_Short_Integer_Size then
Lib_RE := RE_I_SSI;
elsif P_Size <= Standard_Short_Integer_Size then
Lib_RE := RE_I_SI;
elsif P_Size = 24 then
Lib_RE := RE_I_I24;
elsif P_Size <= Standard_Integer_Size then
Lib_RE := RE_I_I;
elsif P_Size <= Standard_Long_Integer_Size then
Lib_RE := RE_I_LI;
elsif P_Size <= Standard_Long_Long_Integer_Size then
Lib_RE := RE_I_LLI;
else
Lib_RE := RE_I_LLLI;
end if;
-- Unsigned integer types, also includes unsigned fixed-point types
-- and enumeration types with an unsigned representation (note that
-- we know they are unsigned because we already tested for signed).
-- Also includes signed integer types that are unsigned in the sense
-- that they do not include negative numbers. See above for details.
elsif Is_Modular_Integer_Type (U_Type)
or else Is_Fixed_Point_Type (U_Type)
or else Is_Enumeration_Type (U_Type)
or else Is_Signed_Integer_Type (U_Type)
then
if P_Size <= Standard_Short_Short_Integer_Size then
Lib_RE := RE_I_SSU;
elsif P_Size <= Standard_Short_Integer_Size then
Lib_RE := RE_I_SU;
elsif P_Size = 24 then
Lib_RE := RE_I_U24;
elsif P_Size <= Standard_Integer_Size then
Lib_RE := RE_I_U;
elsif P_Size <= Standard_Long_Integer_Size then
Lib_RE := RE_I_LU;
elsif P_Size <= Standard_Long_Long_Integer_Size then
Lib_RE := RE_I_LLU;
else
Lib_RE := RE_I_LLLU;
end if;
else pragma Assert (Is_Access_Type (U_Type));
if Present (P_Size) and then P_Size > System_Address_Size then
Lib_RE := RE_I_AD;
else
Lib_RE := RE_I_AS;
end if;
end if;
-- Call the function, and do an unchecked conversion of the result
-- to the actual type of the prefix. If the target is a discriminant,
-- and we are in the body of the default implementation of a 'Read
-- attribute, set target type to force a constraint check (13.13.2(35)).
-- If the type of the discriminant is currently private, add another
-- unchecked conversion from the full view.
if Nkind (Targ) = N_Identifier
and then Is_Internal_Name (Chars (Targ))
and then Is_TSS (Scope (Entity (Targ)), TSS_Stream_Read)
then
Res :=
Unchecked_Convert_To (Base_Type (U_Type),
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Lib_RE), Loc),
Parameter_Associations => New_List (
Relocate_Node (Strm))));
Set_Do_Range_Check (Res);
if Base_Type (P_Type) /= Base_Type (U_Type) then
Res := Unchecked_Convert_To (Base_Type (P_Type), Res);
end if;
return Res;
else
Res :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (Lib_RE), Loc),
Parameter_Associations => New_List (
Relocate_Node (Strm)));
-- Now convert to the base type if we do not have a biased type. Note
-- that we did not do this in some older versions, and the result was
-- losing a required range check in the case where 'Input is being
-- called from 'Read.
if not Has_Biased_Representation (P_Type) then
return Unchecked_Convert_To (Base_Type (P_Type), Res);
-- For the biased case, the conversion to the base type loses the
-- biasing, so just convert to Ptype. This is not quite right, and
-- for example may lose a corner case CE test, but it is such a
-- rare case that for now we ignore it ???
else
return Unchecked_Convert_To (P_Type, Res);
end if;
end if;
end Build_Elementary_Input_Call;
---------------------------------
-- Build_Elementary_Write_Call --
---------------------------------
function Build_Elementary_Write_Call (N : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (N);
P_Type : constant Entity_Id := Entity (Prefix (N));
U_Type : constant Entity_Id := Underlying_Type (P_Type);
Rt_Type : constant Entity_Id := Root_Type (U_Type);
FST : constant Entity_Id := First_Subtype (U_Type);
Strm : constant Node_Id := First (Expressions (N));
Item : constant Node_Id := Next (Strm);
P_Size : Uint;
Lib_RE : RE_Id;
Libent : Entity_Id;
begin
-- Compute the size of the stream element. This is either the size of
-- the first subtype or if given the size of the Stream_Size attribute.
if Has_Stream_Size_Clause (FST) then
P_Size := Static_Integer (Expression (Stream_Size_Clause (FST)));
else
P_Size := Esize (FST);
end if;
-- Find the routine to be called
-- Check for First Boolean and Character. These are enumeration types,
-- but we treat them specially, since they may require special handling
-- in the transfer protocol. However, this special handling only applies
-- if they have standard representation, otherwise they are treated like
-- any other enumeration type.
if Rt_Type = Standard_Boolean
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_W_B;
elsif Rt_Type = Standard_Character
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_W_C;
elsif Rt_Type = Standard_Wide_Character
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_W_WC;
elsif Rt_Type = Standard_Wide_Wide_Character
and then Has_Stream_Standard_Rep (U_Type)
then
Lib_RE := RE_W_WWC;
-- Floating point types
elsif Is_Floating_Point_Type (U_Type) then
-- Question: should we use P_Size or Rt_Type to distinguish between
-- possible floating point types? If a non-standard size or a stream
-- size is specified, then we should certainly use the size. But if
-- we have two types the same (notably Short_Float_Size = Float_Size
-- which is close to universally true, and Long_Long_Float_Size =
-- Long_Float_Size, true on most targets except the x86), then we
-- would really rather use the root type, so that if people want to
-- fiddle with System.Stream_Attributes to get inter-target portable
-- streams, they get the size they expect. Consider in particular the
-- case of a stream written on an x86, with 96-bit Long_Long_Float
-- being read into a non-x86 target with 64 bit Long_Long_Float. A
-- special version of System.Stream_Attributes can deal with this
-- provided the proper type is always used.
-- To deal with these two requirements we add the special checks
-- on equal sizes and use the root type to distinguish.
if P_Size <= Standard_Short_Float_Size
and then (Standard_Short_Float_Size /= Standard_Float_Size
or else Rt_Type = Standard_Short_Float)
then
Lib_RE := RE_W_SF;
elsif P_Size <= Standard_Float_Size then
Lib_RE := RE_W_F;
elsif P_Size <= Standard_Long_Float_Size
and then (Standard_Long_Float_Size /= Standard_Long_Long_Float_Size
or else Rt_Type = Standard_Long_Float)
then
Lib_RE := RE_W_LF;
else
Lib_RE := RE_W_LLF;
end if;
-- Signed integer types. Also includes signed fixed-point types and
-- signed enumeration types share this circuitry.
-- Note on signed integer types. We do not consider types as signed for
-- this purpose if they have no negative numbers, or if they have biased
-- representation. The reason is that the value in either case basically
-- represents an unsigned value.
-- For example, consider:
-- type W is range 0 .. 2**32 - 1;
-- for W'Size use 32;
-- This is a signed type, but the representation is unsigned, and may
-- be outside the range of a 32-bit signed integer, so this must be
-- treated as 32-bit unsigned.
-- Similarly, the representation is also unsigned if we have:
-- type W is range -1 .. +254;
-- for W'Size use 8;
-- forcing a biased and unsigned representation
elsif not Is_Unsigned_Type (FST)
and then
(Is_Fixed_Point_Type (U_Type)
or else
Is_Enumeration_Type (U_Type)
or else
(Is_Signed_Integer_Type (U_Type)
and then not Has_Biased_Representation (FST)))
then
if P_Size <= Standard_Short_Short_Integer_Size then
Lib_RE := RE_W_SSI;
elsif P_Size <= Standard_Short_Integer_Size then
Lib_RE := RE_W_SI;
elsif P_Size = 24 then
Lib_RE := RE_W_I24;
elsif P_Size <= Standard_Integer_Size then
Lib_RE := RE_W_I;
elsif P_Size <= Standard_Long_Integer_Size then
Lib_RE := RE_W_LI;
elsif P_Size <= Standard_Long_Long_Integer_Size then
Lib_RE := RE_W_LLI;
else
Lib_RE := RE_W_LLLI;
end if;
-- Unsigned integer types, also includes unsigned fixed-point types
-- and unsigned enumeration types (note we know they are unsigned
-- because we already tested for signed above).
-- Also includes signed integer types that are unsigned in the sense
-- that they do not include negative numbers. See above for details.
elsif Is_Modular_Integer_Type (U_Type)
or else Is_Fixed_Point_Type (U_Type)
or else Is_Enumeration_Type (U_Type)
or else Is_Signed_Integer_Type (U_Type)
then
if P_Size <= Standard_Short_Short_Integer_Size then
Lib_RE := RE_W_SSU;
elsif P_Size <= Standard_Short_Integer_Size then
Lib_RE := RE_W_SU;
elsif P_Size = 24 then
Lib_RE := RE_W_U24;
elsif P_Size <= Standard_Integer_Size then
Lib_RE := RE_W_U;
elsif P_Size <= Standard_Long_Integer_Size then
Lib_RE := RE_W_LU;
elsif P_Size <= Standard_Long_Long_Integer_Size then
Lib_RE := RE_W_LLU;
else
Lib_RE := RE_W_LLLU;
end if;
else pragma Assert (Is_Access_Type (U_Type));
if Present (P_Size) and then P_Size > System_Address_Size then
Lib_RE := RE_W_AD;
else
Lib_RE := RE_W_AS;
end if;
end if;
-- Unchecked-convert parameter to the required type (i.e. the type of
-- the corresponding parameter, and call the appropriate routine.
Libent := RTE (Lib_RE);
return
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Libent, Loc),
Parameter_Associations => New_List (
Relocate_Node (Strm),
Unchecked_Convert_To (Etype (Next_Formal (First_Formal (Libent))),
Relocate_Node (Item))));
end Build_Elementary_Write_Call;
-----------------------------------------
-- Build_Mutable_Record_Read_Procedure --
-----------------------------------------
procedure Build_Mutable_Record_Read_Procedure
(Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Typ);
Out_Formal : Node_Id;
-- Expression denoting the out formal parameter
Dcls : constant List_Id := New_List;
-- Declarations for the 'Read body
Stms : constant List_Id := New_List;
-- Statements for the 'Read body
Disc : Entity_Id;
-- Entity of the discriminant being processed
Tmp_For_Disc : Entity_Id;
-- Temporary object used to read the value of Disc
Tmps_For_Discs : constant List_Id := New_List;
-- List of object declarations for temporaries holding the read values
-- for the discriminants.
Cstr : constant List_Id := New_List;
-- List of constraints to be applied on temporary record
Discriminant_Checks : constant List_Id := New_List;
-- List of discriminant checks to be performed if the actual object
-- is constrained.
Tmp : constant Entity_Id := Make_Defining_Identifier (Loc, Name_V);
-- Temporary record must hide formal (assignments to components of the
-- record are always generated with V as the identifier for the record).
Constrained_Stms : List_Id := New_List;
-- Statements within the block where we have the constrained temporary
begin
-- A mutable type cannot be a tagged type, so we generate a new name
-- for the stream procedure.
Pnam :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Read));
if Is_Unchecked_Union (Typ) then
-- If this is an unchecked union, the stream procedure is erroneous,
-- because there are no discriminants to read.
-- This should generate a warning ???
Append_To (Stms,
Make_Raise_Program_Error (Loc,
Reason => PE_Unchecked_Union_Restriction));
Build_Stream_Procedure (Typ, Decl, Pnam, Stms, Outp => True);
return;
end if;
Disc := First_Discriminant (Typ);
Out_Formal :=
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Pnam, Loc),
Selector_Name => Make_Identifier (Loc, Name_V));
-- Generate Reads for the discriminants of the type. The discriminants
-- need to be read before the rest of the components, so that variants
-- are initialized correctly. The discriminants must be read into temp
-- variables so an incomplete Read (interrupted by an exception, for
-- example) does not alter the passed object.
while Present (Disc) loop
Tmp_For_Disc := Make_Defining_Identifier (Loc,
New_External_Name (Chars (Disc), "D"));
Append_To (Tmps_For_Discs,
Make_Object_Declaration (Loc,
Defining_Identifier => Tmp_For_Disc,
Object_Definition => New_Occurrence_Of (Etype (Disc), Loc)));
Set_No_Initialization (Last (Tmps_For_Discs));
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Etype (Disc), Loc),
Attribute_Name => Name_Read,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
New_Occurrence_Of (Tmp_For_Disc, Loc))));
Append_To (Cstr,
Make_Discriminant_Association (Loc,
Selector_Names => New_List (New_Occurrence_Of (Disc, Loc)),
Expression => New_Occurrence_Of (Tmp_For_Disc, Loc)));
Append_To (Discriminant_Checks,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Ne (Loc,
Left_Opnd => New_Occurrence_Of (Tmp_For_Disc, Loc),
Right_Opnd =>
Make_Selected_Component (Loc,
Prefix => New_Copy_Tree (Out_Formal),
Selector_Name => New_Occurrence_Of (Disc, Loc))),
Reason => CE_Discriminant_Check_Failed));
Next_Discriminant (Disc);
end loop;
-- Generate reads for the components of the record (including those
-- that depend on discriminants).
Build_Record_Read_Write_Procedure (Typ, Decl, Pnam, Name_Read);
-- Save original statement sequence for component assignments, and
-- replace it with Stms.
Constrained_Stms := Statements (Handled_Statement_Sequence (Decl));
Set_Handled_Statement_Sequence (Decl,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stms));
-- If Typ has controlled components (i.e. if it is classwide or
-- Has_Controlled), or components constrained using the discriminants
-- of Typ, then we need to ensure that all component assignments are
-- performed on an object that has been appropriately constrained
-- prior to being initialized. To this effect, we wrap the component
-- assignments in a block where V is a constrained temporary.
Append_To (Dcls,
Make_Object_Declaration (Loc,
Defining_Identifier => Tmp,
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Base_Type (Typ), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Cstr))));
-- AI05-023-1: Insert discriminant check prior to initialization of the
-- constrained temporary.
Append_To (Stms,
Make_Implicit_If_Statement (Pnam,
Condition =>
Make_Attribute_Reference (Loc,
Prefix => New_Copy_Tree (Out_Formal),
Attribute_Name => Name_Constrained),
Then_Statements => Discriminant_Checks));
-- Now insert back original component assignments, wrapped in a block
-- in which V is the constrained temporary.
Append_To (Stms,
Make_Block_Statement (Loc,
Declarations => Dcls,
Handled_Statement_Sequence => Parent (Constrained_Stms)));
Append_To (Constrained_Stms,
Make_Assignment_Statement (Loc,
Name => Out_Formal,
Expression => Make_Identifier (Loc, Name_V)));
Set_Declarations (Decl, Tmps_For_Discs);
end Build_Mutable_Record_Read_Procedure;
------------------------------------------
-- Build_Mutable_Record_Write_Procedure --
------------------------------------------
procedure Build_Mutable_Record_Write_Procedure
(Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Typ);
Stms : List_Id;
Disc : Entity_Id;
D_Ref : Node_Id;
begin
Stms := New_List;
Disc := First_Discriminant (Typ);
-- Generate Writes for the discriminants of the type
-- If the type is an unchecked union, use the default values of
-- the discriminants, because they are not stored.
while Present (Disc) loop
if Is_Unchecked_Union (Typ) then
D_Ref :=
New_Copy_Tree (Discriminant_Default_Value (Disc));
else
D_Ref :=
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Selector_Name => New_Occurrence_Of (Disc, Loc));
end if;
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Etype (Disc), Loc),
Attribute_Name => Name_Write,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
D_Ref)));
Next_Discriminant (Disc);
end loop;
-- A mutable type cannot be a tagged type, so we generate a new name
-- for the stream procedure.
Pnam :=
Make_Defining_Identifier (Loc,
Chars => Make_TSS_Name_Local (Typ, TSS_Stream_Write));
Build_Record_Read_Write_Procedure (Typ, Decl, Pnam, Name_Write);
-- Write the discriminants before the rest of the components, so
-- that discriminant values are properly set of variants, etc.
if Is_Non_Empty_List (
Statements (Handled_Statement_Sequence (Decl)))
then
Insert_List_Before
(First (Statements (Handled_Statement_Sequence (Decl))), Stms);
else
Set_Statements (Handled_Statement_Sequence (Decl), Stms);
end if;
end Build_Mutable_Record_Write_Procedure;
-----------------------------------------------
-- Build_Record_Or_Elementary_Input_Function --
-----------------------------------------------
-- The function we build looks like
-- function InputN (S : access RST) return Typ is
-- C1 : constant Disc_Type_1;
-- Discr_Type_1'Read (S, C1);
-- C2 : constant Disc_Type_2;
-- Discr_Type_2'Read (S, C2);
-- ...
-- Cn : constant Disc_Type_n;
-- Discr_Type_n'Read (S, Cn);
-- V : Typ (C1, C2, .. Cn)
-- begin
-- Typ'Read (S, V);
-- return V;
-- end InputN
-- The discriminants are of course only present in the case of a record
-- with discriminants. In the case of a record with no discriminants, or
-- an elementary type, then no Cn constants are defined.
procedure Build_Record_Or_Elementary_Input_Function
(Typ : Entity_Id;
Decl : out Node_Id;
Fnam : out Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Typ);
B_Typ : constant Entity_Id := Underlying_Type (Base_Type (Typ));
Cn : Name_Id;
Constr : List_Id;
Decls : List_Id;
Discr : Entity_Id;
Discr_Elmt : Elmt_Id := No_Elmt;
J : Pos;
Obj_Decl : Node_Id;
Odef : Node_Id;
Stms : List_Id;
begin
Decls := New_List;
Constr := New_List;
J := 1;
-- In the presence of multiple instantiations (as in uses of the Booch
-- components) the base type may be private, and the underlying type
-- already constrained, in which case there's no discriminant constraint
-- to construct.
if Has_Discriminants (Typ)
and then No (Discriminant_Default_Value (First_Discriminant (Typ)))
and then not Is_Constrained (Underlying_Type (B_Typ))
then
Discr := First_Discriminant (B_Typ);
-- If the prefix subtype is constrained, then retrieve the first
-- element of its constraint.
if Is_Constrained (Typ) then
Discr_Elmt := First_Elmt (Discriminant_Constraint (Typ));
end if;
while Present (Discr) loop
Cn := New_External_Name ('C', J);
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Cn),
Object_Definition =>
New_Occurrence_Of (Etype (Discr), Loc));
-- If this is an access discriminant, do not perform default
-- initialization. The discriminant is about to get its value
-- from Read, and if the type is null excluding we do not want
-- spurious warnings on an initial null value.
if Is_Access_Type (Etype (Discr)) then
Set_No_Initialization (Decl);
end if;
Append_To (Decls, Decl);
Append_To (Decls,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Etype (Discr), Loc),
Attribute_Name => Name_Read,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Identifier (Loc, Cn))));
Append_To (Constr, Make_Identifier (Loc, Cn));
-- If the prefix subtype imposes a discriminant constraint, then
-- check that each discriminant value equals the value read.
if Present (Discr_Elmt) then
Append_To (Decls,
Make_Raise_Constraint_Error (Loc,
Condition => Make_Op_Ne (Loc,
Left_Opnd =>
New_Occurrence_Of
(Defining_Identifier (Decl), Loc),
Right_Opnd =>
New_Copy_Tree (Node (Discr_Elmt))),
Reason => CE_Discriminant_Check_Failed));
Next_Elmt (Discr_Elmt);
end if;
Next_Discriminant (Discr);
J := J + 1;
end loop;
Odef :=
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (B_Typ, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Constr));
-- If no discriminants, then just use the type with no constraint
else
Odef := New_Occurrence_Of (B_Typ, Loc);
end if;
-- Create an extended return statement encapsulating the result object
-- and 'Read call, which is needed in general for proper handling of
-- build-in-place results (such as when the result type is inherently
-- limited).
Obj_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
Object_Definition => Odef);
-- If the type is an access type, do not perform default initialization.
-- The object is about to get its value from Read, and if the type is
-- null excluding we do not want spurious warnings on an initial null.
if Is_Access_Type (B_Typ) then
Set_No_Initialization (Obj_Decl);
end if;
Stms := New_List (
Make_Extended_Return_Statement (Loc,
Return_Object_Declarations => New_List (Obj_Decl),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (B_Typ, Loc),
Attribute_Name => Name_Read,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Identifier (Loc, Name_V)))))));
Fnam := Make_Stream_Subprogram_Name (Loc, B_Typ, TSS_Stream_Input);
Build_Stream_Function (B_Typ, Decl, Fnam, Decls, Stms);
end Build_Record_Or_Elementary_Input_Function;
-------------------------------------------------
-- Build_Record_Or_Elementary_Output_Procedure --
-------------------------------------------------
procedure Build_Record_Or_Elementary_Output_Procedure
(Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Typ);
Stms : List_Id;
Disc : Entity_Id;
Disc_Ref : Node_Id;
begin
Stms := New_List;
-- Note that of course there will be no discriminants for the elementary
-- type case, so Has_Discriminants will be False. Note that the language
-- rules do not allow writing the discriminants in the defaulted case,
-- because those are written by 'Write.
if Has_Discriminants (Typ)
and then No (Discriminant_Default_Value (First_Discriminant (Typ)))
then
Disc := First_Discriminant (Typ);
while Present (Disc) loop
-- If the type is an unchecked union, it must have default
-- discriminants (this is checked earlier), and those defaults
-- are written out to the stream.
if Is_Unchecked_Union (Typ) then
Disc_Ref := New_Copy_Tree (Discriminant_Default_Value (Disc));
else
Disc_Ref :=
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Selector_Name => New_Occurrence_Of (Disc, Loc));
end if;
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Stream_Base_Type (Etype (Disc)), Loc),
Attribute_Name => Name_Write,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Disc_Ref)));
Next_Discriminant (Disc);
end loop;
end if;
Append_To (Stms,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Typ, Loc),
Attribute_Name => Name_Write,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Identifier (Loc, Name_V))));
Pnam := Make_Stream_Subprogram_Name (Loc, Typ, TSS_Stream_Output);
Build_Stream_Procedure (Typ, Decl, Pnam, Stms, Outp => False);
end Build_Record_Or_Elementary_Output_Procedure;
---------------------------------
-- Build_Record_Read_Procedure --
---------------------------------
procedure Build_Record_Read_Procedure
(Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Typ);
begin
Pnam := Make_Stream_Subprogram_Name (Loc, Typ, TSS_Stream_Read);
Build_Record_Read_Write_Procedure (Typ, Decl, Pnam, Name_Read);
end Build_Record_Read_Procedure;
---------------------------------------
-- Build_Record_Read_Write_Procedure --
---------------------------------------
-- The form of the record read/write procedure is as shown by the
-- following example for a case with one discriminant case variant:
-- procedure pnam (S : access RST, V : [out] Typ) is
-- begin
-- Component_Type'Read/Write (S, V.component);
-- Component_Type'Read/Write (S, V.component);
-- ...
-- Component_Type'Read/Write (S, V.component);
--
-- case V.discriminant is
-- when choices =>
-- Component_Type'Read/Write (S, V.component);
-- Component_Type'Read/Write (S, V.component);
-- ...
-- Component_Type'Read/Write (S, V.component);
--
-- when choices =>
-- Component_Type'Read/Write (S, V.component);
-- Component_Type'Read/Write (S, V.component);
-- ...
-- Component_Type'Read/Write (S, V.component);
-- ...
-- end case;
-- end pnam;
-- The out keyword for V is supplied in the Read case
procedure Build_Record_Read_Write_Procedure
(Typ : Entity_Id;
Decl : out Node_Id;
Pnam : Entity_Id;
Nam : Name_Id)
is
Loc : constant Source_Ptr := Sloc (Typ);
Rdef : Node_Id;
Stms : List_Id;
Typt : Entity_Id;
In_Limited_Extension : Boolean := False;
-- Set to True while processing the record extension definition
-- for an extension of a limited type (for which an ancestor type
-- has an explicit Nam attribute definition).
function Make_Component_List_Attributes (CL : Node_Id) return List_Id;
-- Returns a sequence of attributes to process the components that
-- are referenced in the given component list.
function Make_Field_Attribute (C : Entity_Id) return Node_Id;
-- Given C, the entity for a discriminant or component, build
-- an attribute for the corresponding field values.
function Make_Field_Attributes (Clist : List_Id) return List_Id;
-- Given Clist, a component items list, construct series of attributes
-- for fieldwise processing of the corresponding components.
------------------------------------
-- Make_Component_List_Attributes --
------------------------------------
function Make_Component_List_Attributes (CL : Node_Id) return List_Id is
CI : constant List_Id := Component_Items (CL);
VP : constant Node_Id := Variant_Part (CL);
Result : List_Id;
Alts : List_Id;
V : Node_Id;
DC : Node_Id;
DCH : List_Id;
D_Ref : Node_Id;
begin
Result := Make_Field_Attributes (CI);
if Present (VP) then
Alts := New_List;
V := First_Non_Pragma (Variants (VP));
while Present (V) loop
DCH := New_List;
DC := First (Discrete_Choices (V));
while Present (DC) loop
Append_To (DCH, New_Copy_Tree (DC));
Next (DC);
end loop;
Append_To (Alts,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices => DCH,
Statements =>
Make_Component_List_Attributes (Component_List (V))));
Next_Non_Pragma (V);
end loop;
-- Note: in the following, we make sure that we use new occurrence
-- of for the selector, since there are cases in which we make a
-- reference to a hidden discriminant that is not visible.
-- If the enclosing record is an unchecked_union, we use the
-- default expressions for the discriminant (it must exist)
-- because we cannot generate a reference to it, given that
-- it is not stored.
if Is_Unchecked_Union (Scope (Entity (Name (VP)))) then
D_Ref :=
New_Copy_Tree
(Discriminant_Default_Value (Entity (Name (VP))));
else
D_Ref :=
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Selector_Name =>
New_Occurrence_Of (Entity (Name (VP)), Loc));
end if;
Append_To (Result,
Make_Case_Statement (Loc,
Expression => D_Ref,
Alternatives => Alts));
end if;
return Result;
end Make_Component_List_Attributes;
--------------------------
-- Make_Field_Attribute --
--------------------------
function Make_Field_Attribute (C : Entity_Id) return Node_Id is
Field_Typ : constant Entity_Id := Stream_Base_Type (Etype (C));
TSS_Names : constant array (Name_Input .. Name_Write) of
TSS_Name_Type :=
(Name_Read => TSS_Stream_Read,
Name_Write => TSS_Stream_Write,
Name_Input => TSS_Stream_Input,
Name_Output => TSS_Stream_Output,
others => TSS_Null);
pragma Assert (TSS_Names (Nam) /= TSS_Null);
begin
if In_Limited_Extension
and then Is_Limited_Type (Field_Typ)
and then No (Find_Inherited_TSS (Field_Typ, TSS_Names (Nam)))
then
-- The declaration is illegal per 13.13.2(9/1), and this is
-- enforced in Exp_Ch3.Check_Stream_Attributes. Keep the caller
-- happy by returning a null statement.
return Make_Null_Statement (Loc);
end if;
return
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Field_Typ, Loc),
Attribute_Name => Nam,
Expressions => New_List (
Make_Identifier (Loc, Name_S),
Make_Selected_Component (Loc,
Prefix => Make_Identifier (Loc, Name_V),
Selector_Name => New_Occurrence_Of (C, Loc))));
end Make_Field_Attribute;
---------------------------
-- Make_Field_Attributes --
---------------------------
function Make_Field_Attributes (Clist : List_Id) return List_Id is
Item : Node_Id;
Result : constant List_Id := New_List;
begin
-- Loop through components, skipping all internal components, which
-- are not part of the value (e.g. _Tag), except that we don't skip
-- the _Parent, since we do want to process that recursively. If
-- _Parent is an interface type, being abstract with no components
-- there is no need to handle it.
Item := First (Clist);
while Present (Item) loop
if Nkind (Item) = N_Component_Declaration
and then
((Chars (Defining_Identifier (Item)) = Name_uParent
and then not Is_Interface
(Etype (Defining_Identifier (Item))))
or else
not Is_Internal_Name (Chars (Defining_Identifier (Item))))
then
Append_To
(Result,
Make_Field_Attribute (Defining_Identifier (Item)));
end if;
Next (Item);
end loop;
return Result;
end Make_Field_Attributes;
-- Start of processing for Build_Record_Read_Write_Procedure
begin
-- For the protected type case, use corresponding record
if Is_Protected_Type (Typ) then
Typt := Corresponding_Record_Type (Typ);
else
Typt := Typ;
end if;
-- Note that we do nothing with the discriminants, since Read and
-- Write do not read or write the discriminant values. All handling
-- of discriminants occurs in the Input and Output subprograms.
Rdef := Type_Definition
(Declaration_Node (Base_Type (Underlying_Type (Typt))));
Stms := Empty_List;
-- In record extension case, the fields we want, including the _Parent
-- field representing the parent type, are to be found in the extension.
-- Note that we will naturally process the _Parent field using the type
-- of the parent, and hence its stream attributes, which is appropriate.
if Nkind (Rdef) = N_Derived_Type_Definition then
Rdef := Record_Extension_Part (Rdef);
if Is_Limited_Type (Typt) then
In_Limited_Extension := True;
end if;
end if;
if Present (Component_List (Rdef)) then
Append_List_To (Stms,
Make_Component_List_Attributes (Component_List (Rdef)));
end if;
Build_Stream_Procedure
(Typ, Decl, Pnam, Stms, Outp => Nam = Name_Read);
end Build_Record_Read_Write_Procedure;
----------------------------------
-- Build_Record_Write_Procedure --
----------------------------------
procedure Build_Record_Write_Procedure
(Typ : Entity_Id;
Decl : out Node_Id;
Pnam : out Entity_Id)
is
Loc : constant Source_Ptr := Sloc (Typ);
begin
Pnam := Make_Stream_Subprogram_Name (Loc, Typ, TSS_Stream_Write);
Build_Record_Read_Write_Procedure (Typ, Decl, Pnam, Name_Write);
end Build_Record_Write_Procedure;
-------------------------------
-- Build_Stream_Attr_Profile --
-------------------------------
function Build_Stream_Attr_Profile
(Loc : Source_Ptr;
Typ : Entity_Id;
Nam : TSS_Name_Type) return List_Id
is
Profile : List_Id;
begin
-- (Ada 2005: AI-441): Set the null-excluding attribute because it has
-- no semantic meaning in Ada 95 but it is a requirement in Ada 2005.
Profile := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_S),
Parameter_Type =>
Make_Access_Definition (Loc,
Null_Exclusion_Present => True,
Subtype_Mark => New_Occurrence_Of (
Class_Wide_Type (RTE (RE_Root_Stream_Type)), Loc))));
if Nam /= TSS_Stream_Input then
Append_To (Profile,
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
Out_Present => (Nam = TSS_Stream_Read),
Parameter_Type => New_Occurrence_Of (Typ, Loc)));
end if;
return Profile;
end Build_Stream_Attr_Profile;
---------------------------
-- Build_Stream_Function --
---------------------------
procedure Build_Stream_Function
(Typ : Entity_Id;
Decl : out Node_Id;
Fnam : Entity_Id;
Decls : List_Id;
Stms : List_Id)
is
Loc : constant Source_Ptr := Sloc (Typ);
Spec : Node_Id;
begin
-- Construct function specification
-- (Ada 2005: AI-441): Set the null-excluding attribute because it has
-- no semantic meaning in Ada 95 but it is a requirement in Ada 2005.
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => Fnam,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_S),
Parameter_Type =>
Make_Access_Definition (Loc,
Null_Exclusion_Present => True,
Subtype_Mark =>
New_Occurrence_Of
(Class_Wide_Type (RTE (RE_Root_Stream_Type)), Loc)))),
Result_Definition => New_Occurrence_Of (Typ, Loc));
Decl :=
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stms));
end Build_Stream_Function;
----------------------------
-- Build_Stream_Procedure --
----------------------------
procedure Build_Stream_Procedure
(Typ : Entity_Id;
Decl : out Node_Id;
Pnam : Entity_Id;
Stms : List_Id;
Outp : Boolean)
is
Loc : constant Source_Ptr := Sloc (Typ);
Spec : Node_Id;
begin
-- Construct procedure specification
-- (Ada 2005: AI-441): Set the null-excluding attribute because it has
-- no semantic meaning in Ada 95 but it is a requirement in Ada 2005.
Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Pnam,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_S),
Parameter_Type =>
Make_Access_Definition (Loc,
Null_Exclusion_Present => True,
Subtype_Mark =>
New_Occurrence_Of
(Class_Wide_Type (RTE (RE_Root_Stream_Type)), Loc))),
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
Out_Present => Outp,
Parameter_Type => New_Occurrence_Of (Typ, Loc))));
Decl :=
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stms));
end Build_Stream_Procedure;
-----------------------------
-- Has_Stream_Standard_Rep --
-----------------------------
function Has_Stream_Standard_Rep (U_Type : Entity_Id) return Boolean is
Siz : Uint;
begin
if Has_Non_Standard_Rep (U_Type) then
return False;
end if;
if Has_Stream_Size_Clause (U_Type) then
Siz := Static_Integer (Expression (Stream_Size_Clause (U_Type)));
else
Siz := Esize (First_Subtype (U_Type));
end if;
return Siz = Esize (Root_Type (U_Type));
end Has_Stream_Standard_Rep;
---------------------------------
-- Make_Stream_Subprogram_Name --
---------------------------------
function Make_Stream_Subprogram_Name
(Loc : Source_Ptr;
Typ : Entity_Id;
Nam : TSS_Name_Type) return Entity_Id
is
Sname : Name_Id;
begin
-- For tagged types, we are dealing with a TSS associated with the
-- declaration, so we use the standard primitive function name. For
-- other types, generate a local TSS name since we are generating
-- the subprogram at the point of use.
if Is_Tagged_Type (Typ) then
Sname := Make_TSS_Name (Typ, Nam);
else
Sname := Make_TSS_Name_Local (Typ, Nam);
end if;
return Make_Defining_Identifier (Loc, Sname);
end Make_Stream_Subprogram_Name;
----------------------
-- Stream_Base_Type --
----------------------
function Stream_Base_Type (E : Entity_Id) return Entity_Id is
begin
if Is_Array_Type (E)
and then Is_First_Subtype (E)
then
return E;
else
return Base_Type (E);
end if;
end Stream_Base_Type;
end Exp_Strm;
|