1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ U T I L --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Casing; use Casing;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Aggr; use Exp_Aggr;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch7; use Exp_Ch7;
with Exp_Ch11; use Exp_Ch11;
with Freeze; use Freeze;
with Ghost; use Ghost;
with Inline; use Inline;
with Itypes; use Itypes;
with Lib; use Lib;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch12; use Sem_Ch12;
with Sem_Ch13; use Sem_Ch13;
with Sem_Disp; use Sem_Disp;
with Sem_Elab; use Sem_Elab;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sinfo.Utils; use Sinfo.Utils;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Validsw; use Validsw;
with Warnsw; use Warnsw;
with GNAT.HTable;
package body Exp_Util is
---------------------------------------------------------
-- Handling of inherited class-wide pre/postconditions --
---------------------------------------------------------
-- Following AI12-0113, the expression for a class-wide condition is
-- transformed for a subprogram that inherits it, by replacing calls
-- to primitive operations of the original controlling type into the
-- corresponding overriding operations of the derived type. The following
-- hash table manages this mapping, and is expanded on demand whenever
-- such inherited expression needs to be constructed.
-- The mapping is also used to check whether an inherited operation has
-- a condition that depends on overridden operations. For such an
-- operation we must create a wrapper that is then treated as a normal
-- overriding. In SPARK mode such operations are illegal.
-- For a given root type there may be several type extensions with their
-- own overriding operations, so at various times a given operation of
-- the root will be mapped into different overridings. The root type is
-- also mapped into the current type extension to indicate that its
-- operations are mapped into the overriding operations of that current
-- type extension.
-- The contents of the map are as follows:
-- Key Value
-- Discriminant (Entity_Id) Discriminant (Entity_Id)
-- Discriminant (Entity_Id) Non-discriminant name (Entity_Id)
-- Discriminant (Entity_Id) Expression (Node_Id)
-- Primitive subprogram (Entity_Id) Primitive subprogram (Entity_Id)
-- Type (Entity_Id) Type (Entity_Id)
Type_Map_Size : constant := 511;
subtype Type_Map_Header is Integer range 0 .. Type_Map_Size - 1;
function Type_Map_Hash (Id : Entity_Id) return Type_Map_Header;
package Type_Map is new GNAT.HTable.Simple_HTable
(Header_Num => Type_Map_Header,
Key => Entity_Id,
Element => Node_Or_Entity_Id,
No_Element => Empty,
Hash => Type_Map_Hash,
Equal => "=");
-----------------------
-- Local Subprograms --
-----------------------
function Build_Task_Array_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
Dyn : Boolean := False) return Node_Id;
-- Build function to generate the image string for a task that is an array
-- component, concatenating the images of each index. To avoid storage
-- leaks, the string is built with successive slice assignments. The flag
-- Dyn indicates whether this is called for the initialization procedure of
-- an array of tasks, or for the name of a dynamically created task that is
-- assigned to an indexed component.
function Build_Task_Image_Function
(Loc : Source_Ptr;
Decls : List_Id;
Stats : List_Id;
Res : Entity_Id) return Node_Id;
-- Common processing for Task_Array_Image and Task_Record_Image. Build
-- function body that computes image.
procedure Build_Task_Image_Prefix
(Loc : Source_Ptr;
Len : out Entity_Id;
Res : out Entity_Id;
Pos : out Entity_Id;
Prefix : Entity_Id;
Sum : Node_Id;
Decls : List_Id;
Stats : List_Id);
-- Common processing for Task_Array_Image and Task_Record_Image. Create
-- local variables and assign prefix of name to result string.
function Build_Task_Record_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
Dyn : Boolean := False) return Node_Id;
-- Build function to generate the image string for a task that is a record
-- component. Concatenate name of variable with that of selector. The flag
-- Dyn indicates whether this is called for the initialization procedure of
-- record with task components, or for a dynamically created task that is
-- assigned to a selected component.
procedure Evaluate_Slice_Bounds (Slice : Node_Id);
-- Force evaluation of bounds of a slice, which may be given by a range
-- or by a subtype indication with or without a constraint.
function Is_Uninitialized_Aggregate
(Exp : Node_Id;
T : Entity_Id) return Boolean;
-- Determine whether an array aggregate used in an object declaration
-- is uninitialized, when the aggregate is declared with a box and
-- the component type has no default value. Such an aggregate can be
-- optimized away to prevent the copying of uninitialized data, and
-- the bounds of the aggregate can be propagated directly to the
-- object declaration.
function Is_Verifiable_DIC_Pragma (Prag : Node_Id) return Boolean;
-- Determine whether pragma Default_Initial_Condition denoted by Prag has
-- an assertion expression that should be verified at run time.
function Make_CW_Equivalent_Type
(T : Entity_Id;
E : Node_Id) return Entity_Id;
-- T is a class-wide type entity, E is the initial expression node that
-- constrains T in case such as: " X: T := E" or "new T'(E)". This function
-- returns the entity of the Equivalent type and inserts on the fly the
-- necessary declaration such as:
--
-- type anon is record
-- _parent : Root_Type (T); constrained with E discriminants (if any)
-- Extension : String (1 .. expr to match size of E);
-- end record;
--
-- This record is compatible with any object of the class of T thanks to
-- the first field and has the same size as E thanks to the second.
function Make_Literal_Range
(Loc : Source_Ptr;
Literal_Typ : Entity_Id) return Node_Id;
-- Produce a Range node whose bounds are:
-- Low_Bound (Literal_Type) ..
-- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
-- this is used for expanding declarations like X : String := "sdfgdfg";
--
-- If the index type of the target array is not integer, we generate:
-- Low_Bound (Literal_Type) ..
-- Literal_Type'Val
-- (Literal_Type'Pos (Low_Bound (Literal_Type))
-- + (Length (Literal_Typ) -1))
function Make_Non_Empty_Check
(Loc : Source_Ptr;
N : Node_Id) return Node_Id;
-- Produce a boolean expression checking that the unidimensional array
-- node N is not empty.
function New_Class_Wide_Subtype
(CW_Typ : Entity_Id;
N : Node_Id) return Entity_Id;
-- Create an implicit subtype of CW_Typ attached to node N
function Requires_Cleanup_Actions
(L : List_Id;
Lib_Level : Boolean;
Nested_Constructs : Boolean) return Boolean;
-- Given a list L, determine whether it contains one of the following:
--
-- 1) controlled objects
-- 2) library-level tagged types
--
-- Lib_Level is True when the list comes from a construct at the library
-- level, and False otherwise. Nested_Constructs is True when any nested
-- packages declared in L must be processed, and False otherwise.
function Side_Effect_Free_Attribute (Name : Name_Id) return Boolean;
-- Return True if the evaluation of the given attribute is considered
-- side-effect-free, independently of its prefix and expressions.
-------------------------------------
-- Activate_Atomic_Synchronization --
-------------------------------------
procedure Activate_Atomic_Synchronization (N : Node_Id) is
Msg_Node : Node_Id;
begin
case Nkind (Parent (N)) is
-- Check for cases of appearing in the prefix of a construct where we
-- don't need atomic synchronization for this kind of usage.
when
-- Nothing to do if we are the prefix of an attribute, since we
-- do not want an atomic sync operation for things like 'Size.
N_Attribute_Reference
-- The N_Reference node is like an attribute
| N_Reference
-- Nothing to do for a reference to a component (or components)
-- of a composite object. Only reads and updates of the object
-- as a whole require atomic synchronization (RM C.6 (15)).
| N_Indexed_Component
| N_Selected_Component
| N_Slice
=>
-- For all the above cases, nothing to do if we are the prefix
if Prefix (Parent (N)) = N then
return;
end if;
when others =>
null;
end case;
-- Nothing to do for the identifier in an object renaming declaration,
-- the renaming itself does not need atomic synchronization.
if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
return;
end if;
-- Go ahead and set the flag
Set_Atomic_Sync_Required (N);
-- Generate info message if requested
if Warn_On_Atomic_Synchronization then
case Nkind (N) is
when N_Identifier =>
Msg_Node := N;
when N_Expanded_Name
| N_Selected_Component
=>
Msg_Node := Selector_Name (N);
when N_Explicit_Dereference
| N_Indexed_Component
=>
Msg_Node := Empty;
when others =>
pragma Assert (False);
return;
end case;
if Present (Msg_Node) then
Error_Msg_N
("info: atomic synchronization set for &?.n?", Msg_Node);
else
Error_Msg_N
("info: atomic synchronization set?.n?", N);
end if;
end if;
end Activate_Atomic_Synchronization;
----------------------
-- Adjust_Condition --
----------------------
procedure Adjust_Condition (N : Node_Id) is
function Is_Hardbool_Type (T : Entity_Id) return Boolean;
-- Return True iff T is a type annotated with the
-- Machine_Attribute pragma "hardbool".
----------------------
-- Is_Hardbool_Type --
----------------------
function Is_Hardbool_Type (T : Entity_Id) return Boolean is
function Find_Hardbool_Pragma
(Id : Entity_Id) return Node_Id;
-- Return a Rep_Item associated with entity Id that
-- corresponds to the Hardbool Machine_Attribute pragma, if
-- any, or Empty otherwise.
function Pragma_Arg_To_String (Item : Node_Id) return String is
(To_String (Strval (Expr_Value_S (Item))));
-- Return the pragma argument Item as a String
function Hardbool_Pragma_P (Item : Node_Id) return Boolean is
(Nkind (Item) = N_Pragma
and then
Pragma_Name (Item) = Name_Machine_Attribute
and then
Pragma_Arg_To_String
(Get_Pragma_Arg
(Next (First (Pragma_Argument_Associations (Item)))))
= "hardbool");
-- Return True iff representation Item is a "hardbool"
-- Machine_Attribute pragma.
--------------------------
-- Find_Hardbool_Pragma --
--------------------------
function Find_Hardbool_Pragma
(Id : Entity_Id) return Node_Id
is
Item : Node_Id;
begin
if not Has_Gigi_Rep_Item (Id) then
return Empty;
end if;
Item := First_Rep_Item (Id);
while Present (Item) loop
if Hardbool_Pragma_P (Item) then
return Item;
end if;
Item := Next_Rep_Item (Item);
end loop;
return Empty;
end Find_Hardbool_Pragma;
-- Start of processing for Is_Hardbool_Type
begin
return Present (Find_Hardbool_Pragma (T));
end Is_Hardbool_Type;
-- Start of processing for Adjust_Condition
begin
if No (N) then
return;
end if;
declare
Loc : constant Source_Ptr := Sloc (N);
T : constant Entity_Id := Etype (N);
begin
-- Defend against a call where the argument has no type, or has a
-- type that is not Boolean. This can occur because of prior errors.
if No (T) or else not Is_Boolean_Type (T) then
return;
end if;
-- Apply validity checking if needed
if Validity_Checks_On
and then
(Validity_Check_Tests or else Is_Hardbool_Type (T))
then
Ensure_Valid (N);
end if;
-- Immediate return if standard boolean, the most common case,
-- where nothing needs to be done.
if Base_Type (T) = Standard_Boolean then
return;
end if;
-- Case of zero/nonzero semantics or nonstandard enumeration
-- representation. In each case, we rewrite the node as:
-- ityp!(N) /= False'Enum_Rep
-- where ityp is an integer type with large enough size to hold any
-- value of type T.
if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
Rewrite (N,
Make_Op_Ne (Loc,
Left_Opnd =>
Unchecked_Convert_To
(Integer_Type_For (Esize (T), Uns => False), N),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Enum_Rep,
Prefix =>
New_Occurrence_Of (First_Literal (T), Loc))));
Analyze_And_Resolve (N, Standard_Boolean);
else
Rewrite (N, Convert_To (Standard_Boolean, N));
Analyze_And_Resolve (N, Standard_Boolean);
end if;
end;
end Adjust_Condition;
------------------------
-- Adjust_Result_Type --
------------------------
procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
begin
-- Ignore call if current type is not Standard.Boolean
if Etype (N) /= Standard_Boolean then
return;
end if;
-- If result is already of correct type, nothing to do. Note that
-- this will get the most common case where everything has a type
-- of Standard.Boolean.
if Base_Type (T) = Standard_Boolean then
return;
else
declare
KP : constant Node_Kind := Nkind (Parent (N));
begin
-- If result is to be used as a Condition in the syntax, no need
-- to convert it back, since if it was changed to Standard.Boolean
-- using Adjust_Condition, that is just fine for this usage.
if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
return;
-- If result is an operand of another logical operation, no need
-- to reset its type, since Standard.Boolean is just fine, and
-- such operations always do Adjust_Condition on their operands.
elsif KP in N_Op_Boolean
or else KP in N_Short_Circuit
or else KP = N_Op_Not
or else (KP in N_Type_Conversion
| N_Unchecked_Type_Conversion
and then Is_Boolean_Type (Etype (Parent (N))))
then
return;
-- Otherwise we perform a conversion from the current type, which
-- must be Standard.Boolean, to the desired type. Use the base
-- type to prevent spurious constraint checks that are extraneous
-- to the transformation. The type and its base have the same
-- representation, standard or otherwise.
else
Set_Analyzed (N);
Rewrite (N, Convert_To (Base_Type (T), N));
Analyze_And_Resolve (N, Base_Type (T));
end if;
end;
end if;
end Adjust_Result_Type;
--------------------------
-- Append_Freeze_Action --
--------------------------
procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
Fnode : Node_Id;
begin
Ensure_Freeze_Node (T);
Fnode := Freeze_Node (T);
if No (Actions (Fnode)) then
Set_Actions (Fnode, New_List (N));
else
Append (N, Actions (Fnode));
end if;
end Append_Freeze_Action;
---------------------------
-- Append_Freeze_Actions --
---------------------------
procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
Fnode : Node_Id;
begin
if No (L) then
return;
end if;
Ensure_Freeze_Node (T);
Fnode := Freeze_Node (T);
if No (Actions (Fnode)) then
Set_Actions (Fnode, L);
else
Append_List (L, Actions (Fnode));
end if;
end Append_Freeze_Actions;
----------------------------------------
-- Attribute_Constrained_Static_Value --
----------------------------------------
function Attribute_Constrained_Static_Value (Pref : Node_Id) return Boolean
is
Ptyp : constant Entity_Id := Etype (Pref);
Formal_Ent : constant Entity_Id := Param_Entity (Pref);
function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean;
-- Ada 2005 (AI-363): Returns True if the object name Obj denotes a
-- view of an aliased object whose subtype is constrained.
---------------------------------
-- Is_Constrained_Aliased_View --
---------------------------------
function Is_Constrained_Aliased_View (Obj : Node_Id) return Boolean is
E : Entity_Id;
begin
if Is_Entity_Name (Obj) then
E := Entity (Obj);
if Present (Renamed_Object (E)) then
return Is_Constrained_Aliased_View (Renamed_Object (E));
else
return Is_Aliased (E) and then Is_Constrained (Etype (E));
end if;
else
return Is_Aliased_View (Obj)
and then
(Is_Constrained (Etype (Obj))
or else
(Nkind (Obj) = N_Explicit_Dereference
and then
not Object_Type_Has_Constrained_Partial_View
(Typ => Base_Type (Etype (Obj)),
Scop => Current_Scope)));
end if;
end Is_Constrained_Aliased_View;
-- Start of processing for Attribute_Constrained_Static_Value
begin
-- We are in a case where the attribute is known statically, and
-- implicit dereferences have been rewritten.
pragma Assert
(not (Present (Formal_Ent)
and then Ekind (Formal_Ent) /= E_Constant
and then Present (Extra_Constrained (Formal_Ent)))
and then
not (Is_Access_Type (Etype (Pref))
and then (not Is_Entity_Name (Pref)
or else Is_Object (Entity (Pref))))
and then
not (Nkind (Pref) = N_Identifier
and then Ekind (Entity (Pref)) = E_Variable
and then Present (Extra_Constrained (Entity (Pref)))));
if Is_Entity_Name (Pref) then
declare
Ent : constant Entity_Id := Entity (Pref);
Res : Boolean;
begin
-- (RM J.4) obsolescent cases
if Is_Type (Ent) then
-- Private type
if Is_Private_Type (Ent) then
Res := not Has_Discriminants (Ent)
or else Is_Constrained (Ent);
-- It not a private type, must be a generic actual type
-- that corresponded to a private type. We know that this
-- correspondence holds, since otherwise the reference
-- within the generic template would have been illegal.
else
if Is_Composite_Type (Underlying_Type (Ent)) then
Res := Is_Constrained (Ent);
else
Res := True;
end if;
end if;
else
-- If the prefix is not a variable or is aliased, then
-- definitely true; if it's a formal parameter without an
-- associated extra formal, then treat it as constrained.
-- Ada 2005 (AI-363): An aliased prefix must be known to be
-- constrained in order to set the attribute to True.
if not Is_Variable (Pref)
or else Present (Formal_Ent)
or else (Ada_Version < Ada_2005
and then Is_Aliased_View (Pref))
or else (Ada_Version >= Ada_2005
and then Is_Constrained_Aliased_View (Pref))
then
Res := True;
-- Variable case, look at type to see if it is constrained.
-- Note that the one case where this is not accurate (the
-- procedure formal case), has been handled above.
-- We use the Underlying_Type here (and below) in case the
-- type is private without discriminants, but the full type
-- has discriminants. This case is illegal, but we generate
-- it internally for passing to the Extra_Constrained
-- parameter.
else
-- In Ada 2012, test for case of a limited tagged type,
-- in which case the attribute is always required to
-- return True. The underlying type is tested, to make
-- sure we also return True for cases where there is an
-- unconstrained object with an untagged limited partial
-- view which has defaulted discriminants (such objects
-- always produce a False in earlier versions of
-- Ada). (Ada 2012: AI05-0214)
Res :=
Is_Constrained (Underlying_Type (Etype (Ent)))
or else
(Ada_Version >= Ada_2012
and then Is_Tagged_Type (Underlying_Type (Ptyp))
and then Is_Limited_Type (Ptyp));
end if;
end if;
return Res;
end;
-- Prefix is not an entity name. These are also cases where we can
-- always tell at compile time by looking at the form and type of the
-- prefix. If an explicit dereference of an object with constrained
-- partial view, this is unconstrained (Ada 2005: AI95-0363). If the
-- underlying type is a limited tagged type, then Constrained is
-- required to always return True (Ada 2012: AI05-0214).
else
return not Is_Variable (Pref)
or else
(Nkind (Pref) = N_Explicit_Dereference
and then
not Object_Type_Has_Constrained_Partial_View
(Typ => Base_Type (Ptyp),
Scop => Current_Scope))
or else Is_Constrained (Underlying_Type (Ptyp))
or else (Ada_Version >= Ada_2012
and then Is_Tagged_Type (Underlying_Type (Ptyp))
and then Is_Limited_Type (Ptyp));
end if;
end Attribute_Constrained_Static_Value;
------------------------------------
-- Build_Allocate_Deallocate_Proc --
------------------------------------
procedure Build_Allocate_Deallocate_Proc
(N : Node_Id;
Is_Allocate : Boolean)
is
function Find_Object (E : Node_Id) return Node_Id;
-- Given an arbitrary expression of an allocator, try to find an object
-- reference in it, otherwise return the original expression.
function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean;
-- Determine whether subprogram Subp denotes a custom allocate or
-- deallocate.
-----------------
-- Find_Object --
-----------------
function Find_Object (E : Node_Id) return Node_Id is
Expr : Node_Id;
begin
pragma Assert (Is_Allocate);
Expr := E;
loop
if Nkind (Expr) = N_Explicit_Dereference then
Expr := Prefix (Expr);
elsif Nkind (Expr) = N_Qualified_Expression then
Expr := Expression (Expr);
elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
-- When interface class-wide types are involved in allocation,
-- the expander introduces several levels of address arithmetic
-- to perform dispatch table displacement. In this scenario the
-- object appears as:
-- Tag_Ptr (Base_Address (<object>'Address))
-- Detect this case and utilize the whole expression as the
-- "object" since it now points to the proper dispatch table.
if Is_RTE (Etype (Expr), RE_Tag_Ptr) then
exit;
-- Continue to strip the object
else
Expr := Expression (Expr);
end if;
else
exit;
end if;
end loop;
return Expr;
end Find_Object;
---------------------------------
-- Is_Allocate_Deallocate_Proc --
---------------------------------
function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean is
begin
-- Look for a subprogram body with only one statement which is a
-- call to Allocate_Any_Controlled / Deallocate_Any_Controlled.
if Ekind (Subp) = E_Procedure
and then Nkind (Parent (Parent (Subp))) = N_Subprogram_Body
then
declare
HSS : constant Node_Id :=
Handled_Statement_Sequence (Parent (Parent (Subp)));
Proc : Entity_Id;
begin
if Present (Statements (HSS))
and then Nkind (First (Statements (HSS))) =
N_Procedure_Call_Statement
then
Proc := Entity (Name (First (Statements (HSS))));
return
Is_RTE (Proc, RE_Allocate_Any_Controlled)
or else Is_RTE (Proc, RE_Deallocate_Any_Controlled);
end if;
end;
end if;
return False;
end Is_Allocate_Deallocate_Proc;
-- Local variables
Desig_Typ : Entity_Id;
Expr : Node_Id;
Needs_Fin : Boolean;
Pool_Id : Entity_Id;
Proc_To_Call : Node_Id := Empty;
Ptr_Typ : Entity_Id;
Use_Secondary_Stack_Pool : Boolean;
-- Start of processing for Build_Allocate_Deallocate_Proc
begin
-- Obtain the attributes of the allocation / deallocation
if Nkind (N) = N_Free_Statement then
Expr := Expression (N);
Ptr_Typ := Base_Type (Etype (Expr));
Proc_To_Call := Procedure_To_Call (N);
else
if Nkind (N) = N_Object_Declaration then
Expr := Expression (N);
else
Expr := N;
end if;
-- In certain cases an allocator with a qualified expression may
-- be relocated and used as the initialization expression of a
-- temporary:
-- before:
-- Obj : Ptr_Typ := new Desig_Typ'(...);
-- after:
-- Tmp : Ptr_Typ := new Desig_Typ'(...);
-- Obj : Ptr_Typ := Tmp;
-- Since the allocator is always marked as analyzed to avoid infinite
-- expansion, it will never be processed by this routine given that
-- the designated type needs finalization actions. Detect this case
-- and complete the expansion of the allocator.
if Nkind (Expr) = N_Identifier
and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
and then Nkind (Expression (Parent (Entity (Expr)))) = N_Allocator
then
Build_Allocate_Deallocate_Proc (Parent (Entity (Expr)), True);
return;
end if;
-- The allocator may have been rewritten into something else in which
-- case the expansion performed by this routine does not apply.
if Nkind (Expr) /= N_Allocator then
return;
end if;
Ptr_Typ := Base_Type (Etype (Expr));
Proc_To_Call := Procedure_To_Call (Expr);
end if;
Pool_Id := Associated_Storage_Pool (Ptr_Typ);
Desig_Typ := Available_View (Designated_Type (Ptr_Typ));
-- Handle concurrent types
if Is_Concurrent_Type (Desig_Typ)
and then Present (Corresponding_Record_Type (Desig_Typ))
then
Desig_Typ := Corresponding_Record_Type (Desig_Typ);
end if;
Use_Secondary_Stack_Pool :=
Is_RTE (Pool_Id, RE_SS_Pool)
or else (Nkind (Expr) = N_Allocator
and then Is_RTE (Storage_Pool (Expr), RE_SS_Pool));
-- Do not process allocations / deallocations without a pool
if No (Pool_Id) then
return;
-- Do not process allocations from the return stack
elsif Is_RTE (Pool_Id, RE_RS_Pool) then
return;
-- Do not process allocations on / deallocations from the secondary
-- stack, except for access types used to implement indirect temps.
elsif Use_Secondary_Stack_Pool
and then not Old_Attr_Util.Indirect_Temps
.Is_Access_Type_For_Indirect_Temp (Ptr_Typ)
then
return;
-- Optimize the case where we are using the default Global_Pool_Object,
-- and we don't need the heavy finalization machinery.
elsif Is_RTE (Pool_Id, RE_Global_Pool_Object)
and then not Needs_Finalization (Desig_Typ)
then
return;
-- Do not replicate the machinery if the allocator / free has already
-- been expanded and has a custom Allocate / Deallocate.
elsif Present (Proc_To_Call)
and then Is_Allocate_Deallocate_Proc (Proc_To_Call)
then
return;
end if;
-- Finalization actions are required when the object to be allocated or
-- deallocated needs these actions and the associated access type is not
-- subject to pragma No_Heap_Finalization.
Needs_Fin :=
Needs_Finalization (Desig_Typ)
and then not No_Heap_Finalization (Ptr_Typ);
-- The allocation/deallocation of a controlled object must be associated
-- with an attachment to/detachment from a finalization master, but the
-- implementation cannot guarantee this property for every anonymous
-- access tyoe, see Build_Anonymous_Collection.
if Needs_Fin and then No (Finalization_Master (Ptr_Typ)) then
pragma Assert (Ekind (Ptr_Typ) = E_Anonymous_Access_Type);
Needs_Fin := False;
end if;
if Needs_Fin then
-- Do nothing if the access type may never allocate / deallocate
-- objects.
if No_Pool_Assigned (Ptr_Typ) then
return;
end if;
-- The only other kind of allocation / deallocation supported by this
-- routine is on / from a subpool.
elsif Nkind (Expr) = N_Allocator
and then No (Subpool_Handle_Name (Expr))
then
return;
end if;
declare
Loc : constant Source_Ptr := Sloc (N);
Addr_Id : constant Entity_Id := Make_Temporary (Loc, 'A');
Alig_Id : constant Entity_Id := Make_Temporary (Loc, 'L');
Proc_Id : constant Entity_Id := Make_Temporary (Loc, 'P');
Size_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
Actuals : List_Id;
Alloc_Nod : Node_Id := Empty;
Alloc_Expr : Node_Id := Empty;
Fin_Addr_Id : Entity_Id;
Fin_Mas_Act : Node_Id;
Fin_Mas_Id : Entity_Id;
Proc_To_Call : Entity_Id;
Subpool : Node_Id := Empty;
begin
-- When we are building an allocator procedure, extract the allocator
-- node for later processing and calculation of alignment.
if Is_Allocate then
if Nkind (Expr) = N_Allocator then
Alloc_Nod := Expr;
-- When Expr is an object declaration we have to examine its
-- expression.
elsif Nkind (Expr) = N_Object_Declaration
and then Nkind (Expression (Expr)) = N_Allocator
then
Alloc_Nod := Expression (Expr);
-- Otherwise, we raise an error because we should have found one
else
raise Program_Error;
end if;
-- Extract the qualified expression if there is one from the
-- allocator.
if Nkind (Expression (Alloc_Nod)) = N_Qualified_Expression then
Alloc_Expr := Expression (Alloc_Nod);
end if;
end if;
-- Step 1: Construct all the actuals for the call to library routine
-- Allocate_Any_Controlled / Deallocate_Any_Controlled.
-- a) Storage pool
Actuals := New_List (New_Occurrence_Of (Pool_Id, Loc));
if Is_Allocate then
-- b) Subpool
if Nkind (Expr) = N_Allocator then
Subpool := Subpool_Handle_Name (Expr);
end if;
-- If a subpool is present it can be an arbitrary name, so make
-- the actual by copying the tree.
if Present (Subpool) then
Append_To (Actuals, New_Copy_Tree (Subpool, New_Sloc => Loc));
else
Append_To (Actuals, Make_Null (Loc));
end if;
-- c) Finalization master
if Needs_Fin then
Fin_Mas_Id := Finalization_Master (Ptr_Typ);
Fin_Mas_Act := New_Occurrence_Of (Fin_Mas_Id, Loc);
-- Handle the case where the master is actually a pointer to a
-- master. This case arises in build-in-place functions.
if Is_Access_Type (Etype (Fin_Mas_Id)) then
Append_To (Actuals, Fin_Mas_Act);
else
Append_To (Actuals,
Make_Attribute_Reference (Loc,
Prefix => Fin_Mas_Act,
Attribute_Name => Name_Unrestricted_Access));
end if;
else
Append_To (Actuals, Make_Null (Loc));
end if;
-- d) Finalize_Address
-- Primitive Finalize_Address is never generated in CodePeer mode
-- since it contains an Unchecked_Conversion.
if Needs_Fin and then not CodePeer_Mode then
Fin_Addr_Id := Finalize_Address (Desig_Typ);
pragma Assert (Present (Fin_Addr_Id));
Append_To (Actuals,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Fin_Addr_Id, Loc),
Attribute_Name => Name_Unrestricted_Access));
else
Append_To (Actuals, Make_Null (Loc));
end if;
end if;
-- e) Address
-- f) Storage_Size
-- g) Alignment
Append_To (Actuals, New_Occurrence_Of (Addr_Id, Loc));
Append_To (Actuals, New_Occurrence_Of (Size_Id, Loc));
-- Class-wide allocations without expressions and non-class-wide
-- allocations can be performed without getting the alignment from
-- the type's Type Specific Record.
if ((Is_Allocate and then No (Alloc_Expr))
or else
not Is_Class_Wide_Type (Desig_Typ))
and then not Use_Secondary_Stack_Pool
then
Append_To (Actuals, New_Occurrence_Of (Alig_Id, Loc));
-- For operations on class-wide types we obtain the value of
-- alignment from the Type Specific Record of the relevant object.
-- This is needed because the frontend expansion of class-wide types
-- into equivalent types confuses the back end.
else
-- Generate:
-- Obj.all'Alignment
-- or
-- Alloc_Expr'Alignment
-- ... because 'Alignment applied to class-wide types is expanded
-- into the code that reads the value of alignment from the TSD
-- (see Expand_N_Attribute_Reference)
-- In the Use_Secondary_Stack_Pool case, Alig_Id is not
-- passed in and therefore must not be referenced.
Append_To (Actuals,
Unchecked_Convert_To (RTE (RE_Storage_Offset),
Make_Attribute_Reference (Loc,
Prefix =>
(if No (Alloc_Expr) then
Make_Explicit_Dereference (Loc, Relocate_Node (Expr))
else
Relocate_Node (Expression (Alloc_Expr))),
Attribute_Name => Name_Alignment)));
end if;
-- h) Is_Controlled
if Needs_Fin then
Is_Controlled : declare
Flag_Id : constant Entity_Id := Make_Temporary (Loc, 'F');
Flag_Expr : Node_Id;
Param : Node_Id;
Pref : Node_Id;
Temp : Node_Id;
begin
if Is_Allocate then
Temp := Find_Object (Expression (Expr));
else
Temp := Expr;
end if;
-- Processing for allocations where the expression is a subtype
-- indication.
if Is_Allocate
and then Is_Entity_Name (Temp)
and then Is_Type (Entity (Temp))
then
Flag_Expr :=
New_Occurrence_Of
(Boolean_Literals
(Needs_Finalization (Entity (Temp))), Loc);
-- The allocation / deallocation of a class-wide object relies
-- on a runtime check to determine whether the object is truly
-- controlled or not. Depending on this check, the finalization
-- machinery will request or reclaim extra storage reserved for
-- a list header.
elsif Is_Class_Wide_Type (Desig_Typ) then
-- Detect a special case where interface class-wide types
-- are involved as the object appears as:
-- Tag_Ptr (Base_Address (<object>'Address))
-- The expression already yields the proper tag, generate:
-- Temp.all
if Is_RTE (Etype (Temp), RE_Tag_Ptr) then
Param :=
Make_Explicit_Dereference (Loc,
Prefix => Relocate_Node (Temp));
-- In the default case, obtain the tag of the object about
-- to be allocated / deallocated. Generate:
-- Temp'Tag
-- If the object is an unchecked conversion (typically to
-- an access to class-wide type), we must preserve the
-- conversion to ensure that the object is seen as tagged
-- in the code that follows.
else
Pref := Temp;
if Nkind (Parent (Pref)) = N_Unchecked_Type_Conversion
then
Pref := Parent (Pref);
end if;
Param :=
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Pref),
Attribute_Name => Name_Tag);
end if;
-- Generate:
-- Needs_Finalization (<Param>)
Flag_Expr :=
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
Parameter_Associations => New_List (Param));
-- Processing for generic actuals
elsif Is_Generic_Actual_Type (Desig_Typ) then
Flag_Expr :=
New_Occurrence_Of (Boolean_Literals
(Needs_Finalization (Base_Type (Desig_Typ))), Loc);
-- The object does not require any specialized checks, it is
-- known to be controlled.
else
Flag_Expr := New_Occurrence_Of (Standard_True, Loc);
end if;
-- Create the temporary which represents the finalization state
-- of the expression. Generate:
--
-- F : constant Boolean := <Flag_Expr>;
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Flag_Id,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc),
Expression => Flag_Expr));
Append_To (Actuals, New_Occurrence_Of (Flag_Id, Loc));
end Is_Controlled;
-- The object is not controlled
else
Append_To (Actuals, New_Occurrence_Of (Standard_False, Loc));
end if;
-- i) On_Subpool
if Is_Allocate then
Append_To (Actuals,
New_Occurrence_Of (Boolean_Literals (Present (Subpool)), Loc));
end if;
-- Step 2: Build a wrapper Allocate / Deallocate which internally
-- calls Allocate_Any_Controlled / Deallocate_Any_Controlled.
-- Select the proper routine to call
if Is_Allocate then
Proc_To_Call := RTE (RE_Allocate_Any_Controlled);
else
Proc_To_Call := RTE (RE_Deallocate_Any_Controlled);
end if;
-- Create a custom Allocate / Deallocate routine which has identical
-- profile to that of System.Storage_Pools.
declare
-- P : Root_Storage_Pool
function Pool_Param return Node_Id is (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Temporary (Loc, 'P'),
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc)));
-- A : [out] Address
function Address_Param return Node_Id is (
Make_Parameter_Specification (Loc,
Defining_Identifier => Addr_Id,
Out_Present => Is_Allocate,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Address), Loc)));
-- S : Storage_Count
function Size_Param return Node_Id is (
Make_Parameter_Specification (Loc,
Defining_Identifier => Size_Id,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Storage_Count), Loc)));
-- L : Storage_Count
function Alignment_Param return Node_Id is (
Make_Parameter_Specification (Loc,
Defining_Identifier => Alig_Id,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Storage_Count), Loc)));
Formal_Params : List_Id;
begin
if Use_Secondary_Stack_Pool then
-- Gigi expects a different profile in the Secondary_Stack_Pool
-- case. There must be no uses of the two missing formals
-- (i.e., Pool_Param and Alignment_Param) in this case.
Formal_Params := New_List
(Address_Param, Size_Param, Alignment_Param);
else
Formal_Params := New_List (
Pool_Param, Address_Param, Size_Param, Alignment_Param);
end if;
Insert_Action (N,
Make_Subprogram_Body (Loc,
Specification =>
-- procedure Pnn
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => Formal_Params),
Declarations => No_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (Proc_To_Call, Loc),
Parameter_Associations => Actuals)))),
Suppress => All_Checks);
end;
-- The newly generated Allocate / Deallocate becomes the default
-- procedure to call when the back end processes the allocation /
-- deallocation.
if Is_Allocate then
Set_Procedure_To_Call (Expr, Proc_Id);
else
Set_Procedure_To_Call (N, Proc_Id);
end if;
end;
end Build_Allocate_Deallocate_Proc;
-------------------------------
-- Build_Abort_Undefer_Block --
-------------------------------
function Build_Abort_Undefer_Block
(Loc : Source_Ptr;
Stmts : List_Id;
Context : Node_Id) return Node_Id
is
Exceptions_OK : constant Boolean :=
not Restriction_Active (No_Exception_Propagation);
AUD : Entity_Id;
Blk : Node_Id;
Blk_Id : Entity_Id;
HSS : Node_Id;
begin
-- The block should be generated only when undeferring abort in the
-- context of a potential exception.
pragma Assert (Abort_Allowed and Exceptions_OK);
-- Generate:
-- begin
-- <Stmts>
-- at end
-- Abort_Undefer_Direct;
-- end;
AUD := RTE (RE_Abort_Undefer_Direct);
HSS :=
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts,
At_End_Proc => New_Occurrence_Of (AUD, Loc));
Blk :=
Make_Block_Statement (Loc,
Handled_Statement_Sequence => HSS);
Set_Is_Abort_Block (Blk);
Add_Block_Identifier (Blk, Blk_Id);
Expand_At_End_Handler (HSS, Blk_Id);
-- Present the Abort_Undefer_Direct function to the back end to inline
-- the call to the routine.
Add_Inlined_Body (AUD, Context);
return Blk;
end Build_Abort_Undefer_Block;
---------------------------------
-- Build_Class_Wide_Expression --
---------------------------------
procedure Build_Class_Wide_Expression
(Pragma_Or_Expr : Node_Id;
Subp : Entity_Id;
Par_Subp : Entity_Id;
Adjust_Sloc : Boolean)
is
function Replace_Entity (N : Node_Id) return Traverse_Result;
-- Replace reference to formal of inherited operation or to primitive
-- operation of root type, with corresponding entity for derived type,
-- when constructing the class-wide condition of an overriding
-- subprogram.
--------------------
-- Replace_Entity --
--------------------
function Replace_Entity (N : Node_Id) return Traverse_Result is
New_E : Entity_Id;
begin
if Adjust_Sloc then
Adjust_Inherited_Pragma_Sloc (N);
end if;
if Nkind (N) in N_Identifier | N_Expanded_Name | N_Operator_Symbol
and then Present (Entity (N))
and then
(Is_Formal (Entity (N)) or else Is_Subprogram (Entity (N)))
and then
(Nkind (Parent (N)) /= N_Attribute_Reference
or else Attribute_Name (Parent (N)) /= Name_Class)
then
-- The replacement does not apply to dispatching calls within the
-- condition, but only to calls whose static tag is that of the
-- parent type.
if Is_Subprogram (Entity (N))
and then Nkind (Parent (N)) = N_Function_Call
and then Present (Controlling_Argument (Parent (N)))
then
return OK;
end if;
-- Determine whether entity has a renaming
New_E := Type_Map.Get (Entity (N));
if Present (New_E) then
Rewrite (N, New_Occurrence_Of (New_E, Sloc (N)));
end if;
-- Update type of function call node, which should be the same as
-- the function's return type.
if Is_Subprogram (Entity (N))
and then Nkind (Parent (N)) = N_Function_Call
then
Set_Etype (Parent (N), Etype (Entity (N)));
end if;
-- The whole expression will be reanalyzed
elsif Nkind (N) in N_Has_Etype then
Set_Analyzed (N, False);
end if;
return OK;
end Replace_Entity;
procedure Replace_Condition_Entities is
new Traverse_Proc (Replace_Entity);
-- Local variables
Par_Typ : constant Entity_Id := Find_Dispatching_Type (Par_Subp);
Subp_Typ : constant Entity_Id := Find_Dispatching_Type (Subp);
-- Start of processing for Build_Class_Wide_Expression
begin
pragma Assert (Par_Typ /= Subp_Typ);
Update_Primitives_Mapping (Par_Subp, Subp);
Map_Formals (Par_Subp, Subp);
Replace_Condition_Entities (Pragma_Or_Expr);
end Build_Class_Wide_Expression;
--------------------
-- Build_DIC_Call --
--------------------
function Build_DIC_Call
(Loc : Source_Ptr;
Obj_Name : Node_Id;
Typ : Entity_Id) return Node_Id
is
Proc_Id : constant Entity_Id := DIC_Procedure (Typ);
Formal_Typ : constant Entity_Id := Etype (First_Formal (Proc_Id));
begin
-- The DIC procedure has a null body if assertions are disabled or
-- Assertion_Policy Ignore is in effect. In that case, it would be
-- nice to generate a null statement instead of a call to the DIC
-- procedure, but doing that seems to interfere with the determination
-- of ECRs (early call regions) in SPARK. ???
return
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Id, Loc),
Parameter_Associations => New_List (
Unchecked_Convert_To (Formal_Typ, Obj_Name)));
end Build_DIC_Call;
------------------------------
-- Build_DIC_Procedure_Body --
------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Build_DIC_Procedure_Body
(Typ : Entity_Id;
Partial_DIC : Boolean := False)
is
Pragmas_Seen : Elist_Id := No_Elist;
-- This list contains all DIC pragmas processed so far. The list is used
-- to avoid redundant Default_Initial_Condition checks.
procedure Add_DIC_Check
(DIC_Prag : Node_Id;
DIC_Expr : Node_Id;
Stmts : in out List_Id);
-- Subsidiary to all Add_xxx_DIC routines. Add a runtime check to verify
-- assertion expression DIC_Expr of pragma DIC_Prag. All generated code
-- is added to list Stmts.
procedure Add_Inherited_DIC
(DIC_Prag : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Stmts : in out List_Id);
-- Add a runtime check to verify the assertion expression of inherited
-- pragma DIC_Prag. Par_Typ is parent type, which is also the owner of
-- the DIC pragma. Deriv_Typ is the derived type inheriting the DIC
-- pragma. All generated code is added to list Stmts.
procedure Add_Inherited_Tagged_DIC
(DIC_Prag : Node_Id;
Expr : Node_Id;
Stmts : in out List_Id);
-- Add a runtime check to verify assertion expression DIC_Expr of
-- inherited pragma DIC_Prag. This routine applies class-wide pre-
-- and postcondition-like runtime semantics to the check. Expr is
-- the assertion expression after substitution has been performed
-- (via Replace_References). All generated code is added to list Stmts.
procedure Add_Inherited_DICs
(T : Entity_Id;
Priv_Typ : Entity_Id;
Full_Typ : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id);
-- Generate a DIC check for each inherited Default_Initial_Condition
-- coming from all parent types of type T. Priv_Typ and Full_Typ denote
-- the partial and full view of the parent type. Obj_Id denotes the
-- entity of the _object formal parameter of the DIC procedure. All
-- created checks are added to list Checks.
procedure Add_Own_DIC
(DIC_Prag : Node_Id;
DIC_Typ : Entity_Id;
Obj_Id : Entity_Id;
Stmts : in out List_Id);
-- Add a runtime check to verify the assertion expression of pragma
-- DIC_Prag. DIC_Typ is the owner of the DIC pragma. Obj_Id is the
-- object to substitute in the assertion expression for any references
-- to the current instance of the type All generated code is added to
-- list Stmts.
procedure Add_Parent_DICs
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id);
-- Generate a Default_Initial_Condition check for each inherited DIC
-- aspect coming from all parent types of type T. Obj_Id denotes the
-- entity of the _object formal parameter of the DIC procedure. All
-- created checks are added to list Checks.
-------------------
-- Add_DIC_Check --
-------------------
procedure Add_DIC_Check
(DIC_Prag : Node_Id;
DIC_Expr : Node_Id;
Stmts : in out List_Id)
is
Loc : constant Source_Ptr := Sloc (DIC_Prag);
Nam : constant Name_Id := Original_Aspect_Pragma_Name (DIC_Prag);
begin
-- The DIC pragma is ignored, nothing left to do
if Is_Ignored (DIC_Prag) then
null;
-- Otherwise the DIC expression must be checked at run time.
-- Generate:
-- pragma Check (<Nam>, <DIC_Expr>);
else
Append_New_To (Stmts,
Make_Pragma (Loc,
Pragma_Identifier =>
Make_Identifier (Loc, Name_Check),
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Nam)),
Make_Pragma_Argument_Association (Loc,
Expression => DIC_Expr))));
end if;
-- Add the pragma to the list of processed pragmas
Append_New_Elmt (DIC_Prag, Pragmas_Seen);
end Add_DIC_Check;
-----------------------
-- Add_Inherited_DIC --
-----------------------
procedure Add_Inherited_DIC
(DIC_Prag : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Stmts : in out List_Id)
is
Deriv_Proc : constant Entity_Id := DIC_Procedure (Deriv_Typ);
Deriv_Obj : constant Entity_Id := First_Entity (Deriv_Proc);
Par_Proc : constant Entity_Id := DIC_Procedure (Par_Typ);
Par_Obj : constant Entity_Id := First_Entity (Par_Proc);
Loc : constant Source_Ptr := Sloc (DIC_Prag);
begin
pragma Assert (Present (Deriv_Proc) and then Present (Par_Proc));
-- Verify the inherited DIC assertion expression by calling the DIC
-- procedure of the parent type.
-- Generate:
-- <Par_Typ>DIC (Par_Typ (_object));
Append_New_To (Stmts,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Par_Proc, Loc),
Parameter_Associations => New_List (
Convert_To
(Typ => Etype (Par_Obj),
Expr => New_Occurrence_Of (Deriv_Obj, Loc)))));
end Add_Inherited_DIC;
------------------------------
-- Add_Inherited_Tagged_DIC --
------------------------------
procedure Add_Inherited_Tagged_DIC
(DIC_Prag : Node_Id;
Expr : Node_Id;
Stmts : in out List_Id)
is
begin
-- Once the DIC assertion expression is fully processed, add a check
-- to the statements of the DIC procedure.
Add_DIC_Check
(DIC_Prag => DIC_Prag,
DIC_Expr => Expr,
Stmts => Stmts);
end Add_Inherited_Tagged_DIC;
------------------------
-- Add_Inherited_DICs --
------------------------
procedure Add_Inherited_DICs
(T : Entity_Id;
Priv_Typ : Entity_Id;
Full_Typ : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id)
is
Deriv_Typ : Entity_Id;
Expr : Node_Id;
Prag : Node_Id;
Prag_Expr : Node_Id;
Prag_Expr_Arg : Node_Id;
Prag_Typ : Node_Id;
Prag_Typ_Arg : Node_Id;
Par_Proc : Entity_Id;
-- The "partial" invariant procedure of Par_Typ
Par_Typ : Entity_Id;
-- The suitable view of the parent type used in the substitution of
-- type attributes.
begin
if No (Priv_Typ) and then No (Full_Typ) then
return;
end if;
-- When the type inheriting the class-wide invariant is a concurrent
-- type, use the corresponding record type because it contains all
-- primitive operations of the concurrent type and allows for proper
-- substitution.
if Is_Concurrent_Type (T) then
Deriv_Typ := Corresponding_Record_Type (T);
else
Deriv_Typ := T;
end if;
pragma Assert (Present (Deriv_Typ));
-- Determine which rep item chain to use. Precedence is given to that
-- of the parent type's partial view since it usually carries all the
-- class-wide invariants.
if Present (Priv_Typ) then
Prag := First_Rep_Item (Priv_Typ);
else
Prag := First_Rep_Item (Full_Typ);
end if;
while Present (Prag) loop
if Nkind (Prag) = N_Pragma
and then Pragma_Name (Prag) = Name_Default_Initial_Condition
then
-- Nothing to do if the pragma was already processed
if Contains (Pragmas_Seen, Prag) then
return;
end if;
-- Extract arguments of the Default_Initial_Condition pragma
Prag_Expr_Arg := First (Pragma_Argument_Associations (Prag));
Prag_Expr := Expression_Copy (Prag_Expr_Arg);
-- Pick up the implicit second argument of the pragma, which
-- indicates the type that the pragma applies to.
Prag_Typ_Arg := Next (Prag_Expr_Arg);
if Present (Prag_Typ_Arg) then
Prag_Typ := Get_Pragma_Arg (Prag_Typ_Arg);
else
Prag_Typ := Empty;
end if;
-- The pragma applies to the partial view of the parent type
if Present (Priv_Typ)
and then Present (Prag_Typ)
and then Entity (Prag_Typ) = Priv_Typ
then
Par_Typ := Priv_Typ;
-- The pragma applies to the full view of the parent type
elsif Present (Full_Typ)
and then Present (Prag_Typ)
and then Entity (Prag_Typ) = Full_Typ
then
Par_Typ := Full_Typ;
-- Otherwise the pragma does not belong to the parent type and
-- should not be considered.
else
return;
end if;
-- Substitute references in the DIC expression that are related
-- to the partial type with corresponding references related to
-- the derived type (call to Replace_References below).
Expr := New_Copy_Tree (Prag_Expr);
Par_Proc := Partial_DIC_Procedure (Par_Typ);
-- If there's not a partial DIC procedure (such as when a
-- full type doesn't have its own DIC, but is inherited from
-- a type with DIC), get the full DIC procedure.
if No (Par_Proc) then
Par_Proc := DIC_Procedure (Par_Typ);
end if;
Replace_References
(Expr => Expr,
Par_Typ => Par_Typ,
Deriv_Typ => Deriv_Typ,
Par_Obj => First_Formal (Par_Proc),
Deriv_Obj => Obj_Id);
-- Why are there different actions depending on whether T is
-- tagged? Can these be unified? ???
if Is_Tagged_Type (T) then
Add_Inherited_Tagged_DIC
(DIC_Prag => Prag,
Expr => Expr,
Stmts => Checks);
else
Add_Inherited_DIC
(DIC_Prag => Prag,
Par_Typ => Par_Typ,
Deriv_Typ => Deriv_Typ,
Stmts => Checks);
end if;
-- Leave as soon as we get a DIC pragma, since we'll visit
-- the pragmas of the parents, so will get to any "inherited"
-- pragmas that way.
return;
end if;
Next_Rep_Item (Prag);
end loop;
end Add_Inherited_DICs;
-----------------
-- Add_Own_DIC --
-----------------
procedure Add_Own_DIC
(DIC_Prag : Node_Id;
DIC_Typ : Entity_Id;
Obj_Id : Entity_Id;
Stmts : in out List_Id)
is
DIC_Args : constant List_Id :=
Pragma_Argument_Associations (DIC_Prag);
DIC_Arg : constant Node_Id := First (DIC_Args);
DIC_Asp : constant Node_Id := Corresponding_Aspect (DIC_Prag);
DIC_Expr : constant Node_Id := Get_Pragma_Arg (DIC_Arg);
-- Local variables
Typ_Decl : constant Node_Id := Declaration_Node (DIC_Typ);
Expr : Node_Id;
-- Start of processing for Add_Own_DIC
begin
pragma Assert (Present (DIC_Expr));
-- We need to preanalyze the expression itself inside a generic to
-- be able to capture global references present in it.
if Inside_A_Generic then
Expr := DIC_Expr;
else
Expr := New_Copy_Tree (DIC_Expr);
end if;
-- Perform the following substitution:
-- * Replace the current instance of DIC_Typ with a reference to
-- the _object formal parameter of the DIC procedure.
Replace_Type_References
(Expr => Expr,
Typ => DIC_Typ,
Obj_Id => Obj_Id);
-- Preanalyze the DIC expression to detect errors and at the same
-- time capture the visibility of the proper package part.
Set_Parent (Expr, Typ_Decl);
Preanalyze_Assert_Expression (Expr, Any_Boolean);
-- Save a copy of the expression with all replacements and analysis
-- already taken place in case a derived type inherits the pragma.
-- The copy will be used as the foundation of the derived type's own
-- version of the DIC assertion expression.
if Is_Tagged_Type (DIC_Typ) then
Set_Expression_Copy (DIC_Arg, New_Copy_Tree (Expr));
end if;
-- If the pragma comes from an aspect specification, replace the
-- saved expression because all type references must be substituted
-- for the call to Preanalyze_Spec_Expression in Check_Aspect_At_xxx
-- routines.
if Present (DIC_Asp) then
Set_Expression_Copy (DIC_Asp, New_Copy_Tree (Expr));
end if;
-- Once the DIC assertion expression is fully processed, add a check
-- to the statements of the DIC procedure (unless the type is an
-- abstract type, in which case we don't want the possibility of
-- generating a call to an abstract function of the type; such DIC
-- procedures can never be called in any case, so not generating the
-- check at all is OK).
if not Is_Abstract_Type (DIC_Typ) or else GNATprove_Mode then
Add_DIC_Check
(DIC_Prag => DIC_Prag,
DIC_Expr => Expr,
Stmts => Stmts);
end if;
end Add_Own_DIC;
---------------------
-- Add_Parent_DICs --
---------------------
procedure Add_Parent_DICs
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id)
is
Dummy_1 : Entity_Id;
Dummy_2 : Entity_Id;
Curr_Typ : Entity_Id;
-- The entity of the current type being examined
Full_Typ : Entity_Id;
-- The full view of Par_Typ
Par_Typ : Entity_Id;
-- The entity of the parent type
Priv_Typ : Entity_Id;
-- The partial view of Par_Typ
Op_Node : Elmt_Id;
Par_Prim : Entity_Id;
Prim : Entity_Id;
begin
-- Map the overridden primitive to the overriding one; required by
-- Replace_References (called by Add_Inherited_DICs) to handle calls
-- to parent primitives.
Op_Node := First_Elmt (Primitive_Operations (T));
while Present (Op_Node) loop
Prim := Node (Op_Node);
if Present (Overridden_Operation (Prim))
and then Comes_From_Source (Prim)
then
Par_Prim := Overridden_Operation (Prim);
-- Create a mapping of the form:
-- parent type primitive -> derived type primitive
Type_Map.Set (Par_Prim, Prim);
end if;
Next_Elmt (Op_Node);
end loop;
-- Climb the parent type chain
Curr_Typ := T;
loop
-- Do not consider subtypes, as they inherit the DICs from their
-- base types.
Par_Typ := Base_Type (Etype (Base_Type (Curr_Typ)));
-- Stop the climb once the root of the parent chain is
-- reached.
exit when Curr_Typ = Par_Typ;
-- Process the DICs of the parent type
Get_Views (Par_Typ, Priv_Typ, Full_Typ, Dummy_1, Dummy_2);
-- Only try to inherit a DIC pragma from the parent type Par_Typ
-- if it Has_Own_DIC pragma. The loop will proceed up the parent
-- chain to find all types that have their own DIC.
if Has_Own_DIC (Par_Typ) then
Add_Inherited_DICs
(T => T,
Priv_Typ => Priv_Typ,
Full_Typ => Full_Typ,
Obj_Id => Obj_Id,
Checks => Checks);
end if;
Curr_Typ := Par_Typ;
end loop;
end Add_Parent_DICs;
-- Local variables
Loc : constant Source_Ptr := Sloc (Typ);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
DIC_Prag : Node_Id;
DIC_Typ : Entity_Id;
Dummy_1 : Entity_Id;
Dummy_2 : Entity_Id;
Proc_Body : Node_Id;
Proc_Body_Id : Entity_Id;
Proc_Decl : Node_Id;
Proc_Id : Entity_Id;
Stmts : List_Id := No_List;
CRec_Typ : Entity_Id := Empty;
-- The corresponding record type of Full_Typ
Full_Typ : Entity_Id := Empty;
-- The full view of the working type
Obj_Id : Entity_Id := Empty;
-- The _object formal parameter of the invariant procedure
Part_Proc : Entity_Id := Empty;
-- The entity of the "partial" invariant procedure
Priv_Typ : Entity_Id := Empty;
-- The partial view of the working type
Work_Typ : Entity_Id;
-- The working type
-- Start of processing for Build_DIC_Procedure_Body
begin
Work_Typ := Base_Type (Typ);
-- Do not process class-wide types as these are Itypes, but lack a first
-- subtype (see below).
if Is_Class_Wide_Type (Work_Typ) then
return;
-- Do not process the underlying full view of a private type. There is
-- no way to get back to the partial view, plus the body will be built
-- by the full view or the base type.
elsif Is_Underlying_Full_View (Work_Typ) then
return;
-- Use the first subtype when dealing with implicit base types
elsif Is_Itype (Work_Typ) then
Work_Typ := First_Subtype (Work_Typ);
-- The input denotes the corresponding record type of a protected or a
-- task type. Work with the concurrent type because the corresponding
-- record type may not be visible to clients of the type.
elsif Ekind (Work_Typ) = E_Record_Type
and then Is_Concurrent_Record_Type (Work_Typ)
then
Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
end if;
-- The working type may be subject to pragma Ghost. Set the mode now to
-- ensure that the DIC procedure is properly marked as Ghost.
Set_Ghost_Mode (Work_Typ);
-- The working type must be either define a DIC pragma of its own or
-- inherit one from a parent type.
pragma Assert (Has_DIC (Work_Typ));
-- Recover the type which defines the DIC pragma. This is either the
-- working type itself or a parent type when the pragma is inherited.
DIC_Typ := Find_DIC_Type (Work_Typ);
pragma Assert (Present (DIC_Typ));
DIC_Prag := Get_Pragma (DIC_Typ, Pragma_Default_Initial_Condition);
pragma Assert (Present (DIC_Prag));
-- Nothing to do if pragma DIC appears without an argument or its sole
-- argument is "null".
if not Is_Verifiable_DIC_Pragma (DIC_Prag) then
goto Leave;
end if;
-- Obtain both views of the type
Get_Views (Work_Typ, Priv_Typ, Full_Typ, Dummy_1, CRec_Typ);
-- The caller requests a body for the partial DIC procedure
if Partial_DIC then
Proc_Id := Partial_DIC_Procedure (Work_Typ);
-- The "full" DIC procedure body was already created
-- Create a declaration for the "partial" DIC procedure if it
-- is not available.
if No (Proc_Id) then
Build_DIC_Procedure_Declaration
(Typ => Work_Typ,
Partial_DIC => True);
Proc_Id := Partial_DIC_Procedure (Work_Typ);
end if;
-- The caller requests a body for the "full" DIC procedure
else
Proc_Id := DIC_Procedure (Work_Typ);
Part_Proc := Partial_DIC_Procedure (Work_Typ);
-- Create a declaration for the "full" DIC procedure if it is
-- not available.
if No (Proc_Id) then
Build_DIC_Procedure_Declaration (Work_Typ);
Proc_Id := DIC_Procedure (Work_Typ);
end if;
end if;
-- At this point there should be a DIC procedure declaration
pragma Assert (Present (Proc_Id));
Proc_Decl := Unit_Declaration_Node (Proc_Id);
-- Nothing to do if the DIC procedure already has a body
if Present (Corresponding_Body (Proc_Decl)) then
goto Leave;
end if;
-- Emulate the environment of the DIC procedure by installing its scope
-- and formal parameters.
Push_Scope (Proc_Id);
Install_Formals (Proc_Id);
Obj_Id := First_Formal (Proc_Id);
pragma Assert (Present (Obj_Id));
-- The "partial" DIC procedure verifies the DICs of the partial view
-- only.
if Partial_DIC then
pragma Assert (Present (Priv_Typ));
if Has_Own_DIC (Work_Typ) then -- If we're testing this then maybe
Add_Own_DIC -- we shouldn't be calling Find_DIC_Typ above???
(DIC_Prag => DIC_Prag,
DIC_Typ => DIC_Typ, -- Should this just be Work_Typ???
Obj_Id => Obj_Id,
Stmts => Stmts);
end if;
-- Otherwise, the "full" DIC procedure verifies the DICs inherited from
-- parent types, as well as indirectly verifying the DICs of the partial
-- view by calling the "partial" DIC procedure.
else
-- Check the DIC of the partial view by calling the "partial" DIC
-- procedure, unless the partial DIC body is empty. Generate:
-- <Work_Typ>Partial_DIC (_object);
if Present (Part_Proc) and then not Has_Null_Body (Part_Proc) then
Append_New_To (Stmts,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Part_Proc, Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Obj_Id, Loc))));
end if;
-- Process inherited Default_Initial_Conditions for all parent types
Add_Parent_DICs (Work_Typ, Obj_Id, Stmts);
end if;
End_Scope;
-- Produce an empty completing body in the following cases:
-- * Assertions are disabled
-- * The DIC Assertion_Policy is Ignore
if No (Stmts) then
Stmts := New_List (Make_Null_Statement (Loc));
end if;
-- Generate:
-- procedure <Work_Typ>DIC (_object : <Work_Typ>) is
-- begin
-- <Stmts>
-- end <Work_Typ>DIC;
Proc_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Copy_Subprogram_Spec (Parent (Proc_Id)),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts));
Proc_Body_Id := Defining_Entity (Proc_Body);
-- Perform minor decoration in case the body is not analyzed
Mutate_Ekind (Proc_Body_Id, E_Subprogram_Body);
Set_Etype (Proc_Body_Id, Standard_Void_Type);
Set_Scope (Proc_Body_Id, Current_Scope);
Set_SPARK_Pragma (Proc_Body_Id, SPARK_Pragma (Proc_Id));
Set_SPARK_Pragma_Inherited
(Proc_Body_Id, SPARK_Pragma_Inherited (Proc_Id));
-- Link both spec and body to avoid generating duplicates
Set_Corresponding_Body (Proc_Decl, Proc_Body_Id);
Set_Corresponding_Spec (Proc_Body, Proc_Id);
-- The body should not be inserted into the tree when the context
-- is a generic unit because it is not part of the template.
-- Note that the body must still be generated in order to resolve the
-- DIC assertion expression.
if Inside_A_Generic then
null;
-- Semi-insert the body into the tree for GNATprove by setting its
-- Parent field. This allows for proper upstream tree traversals.
elsif GNATprove_Mode then
Set_Parent (Proc_Body, Parent (Declaration_Node (Work_Typ)));
-- Otherwise the body is part of the freezing actions of the working
-- type.
else
Append_Freeze_Action (Work_Typ, Proc_Body);
end if;
<<Leave>>
Restore_Ghost_Region (Saved_GM, Saved_IGR);
end Build_DIC_Procedure_Body;
-------------------------------------
-- Build_DIC_Procedure_Declaration --
-------------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Build_DIC_Procedure_Declaration
(Typ : Entity_Id;
Partial_DIC : Boolean := False)
is
Loc : constant Source_Ptr := Sloc (Typ);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
DIC_Prag : Node_Id;
DIC_Typ : Entity_Id;
Proc_Decl : Node_Id;
Proc_Id : Entity_Id;
Proc_Nam : Name_Id;
Typ_Decl : Node_Id;
CRec_Typ : Entity_Id;
-- The corresponding record type of Full_Typ
Full_Typ : Entity_Id;
-- The full view of working type
Obj_Id : Entity_Id;
-- The _object formal parameter of the DIC procedure
Priv_Typ : Entity_Id;
-- The partial view of working type
UFull_Typ : Entity_Id;
-- The underlying full view of Full_Typ
Work_Typ : Entity_Id;
-- The working type
begin
Work_Typ := Base_Type (Typ);
-- Do not process class-wide types as these are Itypes, but lack a first
-- subtype (see below).
if Is_Class_Wide_Type (Work_Typ) then
return;
-- Do not process the underlying full view of a private type. There is
-- no way to get back to the partial view, plus the body will be built
-- by the full view or the base type.
elsif Is_Underlying_Full_View (Work_Typ) then
return;
-- Use the first subtype when dealing with various base types
elsif Is_Itype (Work_Typ) then
Work_Typ := First_Subtype (Work_Typ);
-- The input denotes the corresponding record type of a protected or a
-- task type. Work with the concurrent type because the corresponding
-- record type may not be visible to clients of the type.
elsif Ekind (Work_Typ) = E_Record_Type
and then Is_Concurrent_Record_Type (Work_Typ)
then
Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
end if;
-- The working type may be subject to pragma Ghost. Set the mode now to
-- ensure that the DIC procedure is properly marked as Ghost.
Set_Ghost_Mode (Work_Typ);
-- The type must be either subject to a DIC pragma or inherit one from a
-- parent type.
pragma Assert (Has_DIC (Work_Typ));
-- Recover the type which defines the DIC pragma. This is either the
-- working type itself or a parent type when the pragma is inherited.
DIC_Typ := Find_DIC_Type (Work_Typ);
pragma Assert (Present (DIC_Typ));
DIC_Prag := Get_Pragma (DIC_Typ, Pragma_Default_Initial_Condition);
pragma Assert (Present (DIC_Prag));
-- Nothing to do if pragma DIC appears without an argument or its sole
-- argument is "null".
if not Is_Verifiable_DIC_Pragma (DIC_Prag) then
goto Leave;
end if;
-- Nothing to do if the type already has a "partial" DIC procedure
if Partial_DIC then
if Present (Partial_DIC_Procedure (Work_Typ)) then
goto Leave;
end if;
-- Nothing to do if the type already has a "full" DIC procedure
elsif Present (DIC_Procedure (Work_Typ)) then
goto Leave;
end if;
-- The caller requests the declaration of the "partial" DIC procedure
if Partial_DIC then
Proc_Nam := New_External_Name (Chars (Work_Typ), "Partial_DIC");
-- Otherwise the caller requests the declaration of the "full" DIC
-- procedure.
else
Proc_Nam := New_External_Name (Chars (Work_Typ), "DIC");
end if;
Proc_Id :=
Make_Defining_Identifier (Loc, Chars => Proc_Nam);
-- Perform minor decoration in case the declaration is not analyzed
Mutate_Ekind (Proc_Id, E_Procedure);
Set_Etype (Proc_Id, Standard_Void_Type);
Set_Is_DIC_Procedure (Proc_Id);
Set_Scope (Proc_Id, Current_Scope);
Set_SPARK_Pragma (Proc_Id, SPARK_Mode_Pragma);
Set_SPARK_Pragma_Inherited (Proc_Id);
Set_DIC_Procedure (Work_Typ, Proc_Id);
-- The DIC procedure requires debug info when the assertion expression
-- is subject to Source Coverage Obligations.
if Generate_SCO then
Set_Debug_Info_Needed (Proc_Id);
end if;
-- Obtain all views of the input type
Get_Views (Work_Typ, Priv_Typ, Full_Typ, UFull_Typ, CRec_Typ);
-- Associate the DIC procedure and various flags with all views
Propagate_DIC_Attributes (Priv_Typ, From_Typ => Work_Typ);
Propagate_DIC_Attributes (Full_Typ, From_Typ => Work_Typ);
Propagate_DIC_Attributes (UFull_Typ, From_Typ => Work_Typ);
Propagate_DIC_Attributes (CRec_Typ, From_Typ => Work_Typ);
-- The declaration of the DIC procedure must be inserted after the
-- declaration of the partial view as this allows for proper external
-- visibility.
if Present (Priv_Typ) then
Typ_Decl := Declaration_Node (Priv_Typ);
-- Derived types with the full view as parent do not have a partial
-- view. Insert the DIC procedure after the derived type.
else
Typ_Decl := Declaration_Node (Full_Typ);
end if;
-- The type should have a declarative node
pragma Assert (Present (Typ_Decl));
-- Create the formal parameter which emulates the variable-like behavior
-- of the type's current instance.
Obj_Id := Make_Defining_Identifier (Loc, Chars => Name_uObject);
-- Perform minor decoration in case the declaration is not analyzed
Mutate_Ekind (Obj_Id, E_In_Parameter);
Set_Etype (Obj_Id, Work_Typ);
Set_Scope (Obj_Id, Proc_Id);
Set_First_Entity (Proc_Id, Obj_Id);
Set_Last_Entity (Proc_Id, Obj_Id);
-- Generate:
-- procedure <Work_Typ>DIC (_object : <Work_Typ>);
Proc_Decl :=
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Obj_Id,
Parameter_Type =>
New_Occurrence_Of (Work_Typ, Loc)))));
-- The declaration should not be inserted into the tree when the context
-- is a generic unit because it is not part of the template.
if Inside_A_Generic then
null;
-- Semi-insert the declaration into the tree for GNATprove by setting
-- its Parent field. This allows for proper upstream tree traversals.
elsif GNATprove_Mode then
Set_Parent (Proc_Decl, Parent (Typ_Decl));
-- Otherwise insert the declaration
else
Insert_After_And_Analyze (Typ_Decl, Proc_Decl);
end if;
<<Leave>>
Restore_Ghost_Region (Saved_GM, Saved_IGR);
end Build_DIC_Procedure_Declaration;
------------------------------------
-- Build_Invariant_Procedure_Body --
------------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Build_Invariant_Procedure_Body
(Typ : Entity_Id;
Partial_Invariant : Boolean := False)
is
Loc : constant Source_Ptr := Sloc (Typ);
Pragmas_Seen : Elist_Id := No_Elist;
-- This list contains all invariant pragmas processed so far. The list
-- is used to avoid generating redundant invariant checks.
Produced_Check : Boolean := False;
-- This flag tracks whether the type has produced at least one invariant
-- check. The flag is used as a sanity check at the end of the routine.
-- NOTE: most of the routines in Build_Invariant_Procedure_Body are
-- intentionally unnested to avoid deep indentation of code.
-- NOTE: all Add_xxx_Invariants routines are reactive. In other words
-- they emit checks, loops (for arrays) and case statements (for record
-- variant parts) only when there are invariants to verify. This keeps
-- the body of the invariant procedure free of useless code.
procedure Add_Array_Component_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id);
-- Generate an invariant check for each component of array type T.
-- Obj_Id denotes the entity of the _object formal parameter of the
-- invariant procedure. All created checks are added to list Checks.
procedure Add_Inherited_Invariants
(T : Entity_Id;
Priv_Typ : Entity_Id;
Full_Typ : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id);
-- Generate an invariant check for each inherited class-wide invariant
-- coming from all parent types of type T. Priv_Typ and Full_Typ denote
-- the partial and full view of the parent type. Obj_Id denotes the
-- entity of the _object formal parameter of the invariant procedure.
-- All created checks are added to list Checks.
procedure Add_Interface_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id);
-- Generate an invariant check for each inherited class-wide invariant
-- coming from all interfaces implemented by type T. Obj_Id denotes the
-- entity of the _object formal parameter of the invariant procedure.
-- All created checks are added to list Checks.
procedure Add_Invariant_Check
(Prag : Node_Id;
Expr : Node_Id;
Checks : in out List_Id;
Inherited : Boolean := False);
-- Subsidiary to all Add_xxx_Invariant routines. Add a runtime check to
-- verify assertion expression Expr of pragma Prag. All generated code
-- is added to list Checks. Flag Inherited should be set when the pragma
-- is inherited from a parent or interface type.
procedure Add_Own_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id;
Priv_Item : Node_Id := Empty);
-- Generate an invariant check for each invariant found for type T.
-- Obj_Id denotes the entity of the _object formal parameter of the
-- invariant procedure. All created checks are added to list Checks.
-- Priv_Item denotes the first rep item of the private type.
procedure Add_Parent_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id);
-- Generate an invariant check for each inherited class-wide invariant
-- coming from all parent types of type T. Obj_Id denotes the entity of
-- the _object formal parameter of the invariant procedure. All created
-- checks are added to list Checks.
procedure Add_Record_Component_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id);
-- Generate an invariant check for each component of record type T.
-- Obj_Id denotes the entity of the _object formal parameter of the
-- invariant procedure. All created checks are added to list Checks.
------------------------------------
-- Add_Array_Component_Invariants --
------------------------------------
procedure Add_Array_Component_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id)
is
Comp_Typ : constant Entity_Id := Component_Type (T);
Dims : constant Pos := Number_Dimensions (T);
procedure Process_Array_Component
(Indices : List_Id;
Comp_Checks : in out List_Id);
-- Generate an invariant check for an array component identified by
-- the indices in list Indices. All created checks are added to list
-- Comp_Checks.
procedure Process_One_Dimension
(Dim : Pos;
Indices : List_Id;
Dim_Checks : in out List_Id);
-- Generate a loop over the Nth dimension Dim of an array type. List
-- Indices contains all array indices for the dimension. All created
-- checks are added to list Dim_Checks.
-----------------------------
-- Process_Array_Component --
-----------------------------
procedure Process_Array_Component
(Indices : List_Id;
Comp_Checks : in out List_Id)
is
Proc_Id : Entity_Id;
begin
if Has_Invariants (Comp_Typ) then
-- In GNATprove mode, the component invariants are checked by
-- other means. They should not be added to the array type
-- invariant procedure, so that the procedure can be used to
-- check the array type invariants if any.
if GNATprove_Mode then
null;
else
Proc_Id := Invariant_Procedure (Base_Type (Comp_Typ));
-- The component type should have an invariant procedure
-- if it has invariants of its own or inherits class-wide
-- invariants from parent or interface types.
pragma Assert (Present (Proc_Id));
-- Generate:
-- <Comp_Typ>Invariant (_object (<Indices>));
-- The invariant procedure has a null body if assertions are
-- disabled or Assertion_Policy Ignore is in effect.
if not Has_Null_Body (Proc_Id) then
Append_New_To (Comp_Checks,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (Proc_Id, Loc),
Parameter_Associations => New_List (
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Obj_Id, Loc),
Expressions => New_Copy_List (Indices)))));
end if;
end if;
Produced_Check := True;
end if;
end Process_Array_Component;
---------------------------
-- Process_One_Dimension --
---------------------------
procedure Process_One_Dimension
(Dim : Pos;
Indices : List_Id;
Dim_Checks : in out List_Id)
is
Comp_Checks : List_Id := No_List;
Index : Entity_Id;
begin
-- Generate the invariant checks for the array component after all
-- dimensions have produced their respective loops.
if Dim > Dims then
Process_Array_Component
(Indices => Indices,
Comp_Checks => Dim_Checks);
-- Otherwise create a loop for the current dimension
else
-- Create a new loop variable for each dimension
Index :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name ('I', Dim));
Append_To (Indices, New_Occurrence_Of (Index, Loc));
Process_One_Dimension
(Dim => Dim + 1,
Indices => Indices,
Dim_Checks => Comp_Checks);
-- Generate:
-- for I<Dim> in _object'Range (<Dim>) loop
-- <Comp_Checks>
-- end loop;
-- Note that the invariant procedure may have a null body if
-- assertions are disabled or Assertion_Policy Ignore is in
-- effect.
if Present (Comp_Checks) then
Append_New_To (Dim_Checks,
Make_Implicit_Loop_Statement (T,
Identifier => Empty,
Iteration_Scheme =>
Make_Iteration_Scheme (Loc,
Loop_Parameter_Specification =>
Make_Loop_Parameter_Specification (Loc,
Defining_Identifier => Index,
Discrete_Subtype_Definition =>
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Obj_Id, Loc),
Attribute_Name => Name_Range,
Expressions => New_List (
Make_Integer_Literal (Loc, Dim))))),
Statements => Comp_Checks));
end if;
end if;
end Process_One_Dimension;
-- Start of processing for Add_Array_Component_Invariants
begin
Process_One_Dimension
(Dim => 1,
Indices => New_List,
Dim_Checks => Checks);
end Add_Array_Component_Invariants;
------------------------------
-- Add_Inherited_Invariants --
------------------------------
procedure Add_Inherited_Invariants
(T : Entity_Id;
Priv_Typ : Entity_Id;
Full_Typ : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id)
is
Deriv_Typ : Entity_Id;
Expr : Node_Id;
Prag : Node_Id;
Prag_Expr : Node_Id;
Prag_Expr_Arg : Node_Id;
Prag_Typ : Node_Id;
Prag_Typ_Arg : Node_Id;
Par_Proc : Entity_Id;
-- The "partial" invariant procedure of Par_Typ
Par_Typ : Entity_Id;
-- The suitable view of the parent type used in the substitution of
-- type attributes.
begin
if No (Priv_Typ) and then No (Full_Typ) then
return;
end if;
-- When the type inheriting the class-wide invariant is a concurrent
-- type, use the corresponding record type because it contains all
-- primitive operations of the concurrent type and allows for proper
-- substitution.
if Is_Concurrent_Type (T) then
Deriv_Typ := Corresponding_Record_Type (T);
else
Deriv_Typ := T;
end if;
pragma Assert (Present (Deriv_Typ));
-- Determine which rep item chain to use. Precedence is given to that
-- of the parent type's partial view since it usually carries all the
-- class-wide invariants.
if Present (Priv_Typ) then
Prag := First_Rep_Item (Priv_Typ);
else
Prag := First_Rep_Item (Full_Typ);
end if;
while Present (Prag) loop
if Nkind (Prag) = N_Pragma
and then Pragma_Name (Prag) = Name_Invariant
then
-- Nothing to do if the pragma was already processed
if Contains (Pragmas_Seen, Prag) then
return;
-- Nothing to do when the caller requests the processing of all
-- inherited class-wide invariants, but the pragma does not
-- fall in this category.
elsif not Class_Present (Prag) then
return;
end if;
-- Extract the arguments of the invariant pragma
Prag_Typ_Arg := First (Pragma_Argument_Associations (Prag));
Prag_Expr_Arg := Next (Prag_Typ_Arg);
Prag_Expr := Expression_Copy (Prag_Expr_Arg);
Prag_Typ := Get_Pragma_Arg (Prag_Typ_Arg);
-- The pragma applies to the partial view of the parent type
if Present (Priv_Typ)
and then Entity (Prag_Typ) = Priv_Typ
then
Par_Typ := Priv_Typ;
-- The pragma applies to the full view of the parent type
elsif Present (Full_Typ)
and then Entity (Prag_Typ) = Full_Typ
then
Par_Typ := Full_Typ;
-- Otherwise the pragma does not belong to the parent type and
-- should not be considered.
else
return;
end if;
-- Perform the following substitutions:
-- * Replace a reference to the _object parameter of the
-- parent type's partial invariant procedure with a
-- reference to the _object parameter of the derived
-- type's full invariant procedure.
-- * Replace a reference to a discriminant of the parent type
-- with a suitable value from the point of view of the
-- derived type.
-- * Replace a call to an overridden parent primitive with a
-- call to the overriding derived type primitive.
-- * Replace a call to an inherited parent primitive with a
-- call to the internally-generated inherited derived type
-- primitive.
Expr := New_Copy_Tree (Prag_Expr);
-- The parent type must have a "partial" invariant procedure
-- because class-wide invariants are captured exclusively by
-- it.
Par_Proc := Partial_Invariant_Procedure (Par_Typ);
pragma Assert (Present (Par_Proc));
Replace_References
(Expr => Expr,
Par_Typ => Par_Typ,
Deriv_Typ => Deriv_Typ,
Par_Obj => First_Formal (Par_Proc),
Deriv_Obj => Obj_Id);
Add_Invariant_Check (Prag, Expr, Checks, Inherited => True);
end if;
Next_Rep_Item (Prag);
end loop;
end Add_Inherited_Invariants;
------------------------------
-- Add_Interface_Invariants --
------------------------------
procedure Add_Interface_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id)
is
Iface_Elmt : Elmt_Id;
Ifaces : Elist_Id;
begin
-- Generate an invariant check for each class-wide invariant coming
-- from all interfaces implemented by type T.
if Is_Tagged_Type (T) then
Collect_Interfaces (T, Ifaces);
-- Process the class-wide invariants of all implemented interfaces
Iface_Elmt := First_Elmt (Ifaces);
while Present (Iface_Elmt) loop
-- The Full_Typ parameter is intentionally left Empty because
-- interfaces are treated as the partial view of a private type
-- in order to achieve uniformity with the general case.
Add_Inherited_Invariants
(T => T,
Priv_Typ => Node (Iface_Elmt),
Full_Typ => Empty,
Obj_Id => Obj_Id,
Checks => Checks);
Next_Elmt (Iface_Elmt);
end loop;
end if;
end Add_Interface_Invariants;
-------------------------
-- Add_Invariant_Check --
-------------------------
procedure Add_Invariant_Check
(Prag : Node_Id;
Expr : Node_Id;
Checks : in out List_Id;
Inherited : Boolean := False)
is
Args : constant List_Id := Pragma_Argument_Associations (Prag);
Nam : constant Name_Id := Original_Aspect_Pragma_Name (Prag);
Ploc : constant Source_Ptr := Sloc (Prag);
Str_Arg : constant Node_Id := Next (Next (First (Args)));
Assoc : List_Id;
Str : String_Id;
begin
-- The invariant is ignored, nothing left to do
if Is_Ignored (Prag) then
null;
-- Otherwise the invariant is checked. Build a pragma Check to verify
-- the expression at run time.
else
Assoc := New_List (
Make_Pragma_Argument_Association (Ploc,
Expression => Make_Identifier (Ploc, Nam)),
Make_Pragma_Argument_Association (Ploc,
Expression => Expr));
-- Handle the String argument (if any)
if Present (Str_Arg) then
Str := Strval (Get_Pragma_Arg (Str_Arg));
-- When inheriting an invariant, modify the message from
-- "failed invariant" to "failed inherited invariant".
if Inherited then
String_To_Name_Buffer (Str);
if Name_Buffer (1 .. 16) = "failed invariant" then
Insert_Str_In_Name_Buffer ("inherited ", 8);
Str := String_From_Name_Buffer;
end if;
end if;
Append_To (Assoc,
Make_Pragma_Argument_Association (Ploc,
Expression => Make_String_Literal (Ploc, Str)));
end if;
-- Generate:
-- pragma Check (<Nam>, <Expr>, <Str>);
Append_New_To (Checks,
Make_Pragma (Ploc,
Chars => Name_Check,
Pragma_Argument_Associations => Assoc));
end if;
-- Output an info message when inheriting an invariant and the
-- listing option is enabled.
if Inherited and List_Inherited_Aspects then
Error_Msg_Sloc := Sloc (Prag);
Error_Msg_N
("info: & inherits `Invariant''Class` aspect from #?.l?", Typ);
end if;
-- Add the pragma to the list of processed pragmas
Append_New_Elmt (Prag, Pragmas_Seen);
Produced_Check := True;
end Add_Invariant_Check;
---------------------------
-- Add_Parent_Invariants --
---------------------------
procedure Add_Parent_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id)
is
Dummy_1 : Entity_Id;
Dummy_2 : Entity_Id;
Curr_Typ : Entity_Id;
-- The entity of the current type being examined
Full_Typ : Entity_Id;
-- The full view of Par_Typ
Par_Typ : Entity_Id;
-- The entity of the parent type
Priv_Typ : Entity_Id;
-- The partial view of Par_Typ
begin
-- Do not process array types because they cannot have true parent
-- types. This also prevents the generation of a duplicate invariant
-- check when the input type is an array base type because its Etype
-- denotes the first subtype, both of which share the same component
-- type.
if Is_Array_Type (T) then
return;
end if;
-- Climb the parent type chain
Curr_Typ := T;
loop
-- Do not consider subtypes as they inherit the invariants
-- from their base types.
Par_Typ := Base_Type (Etype (Curr_Typ));
-- Stop the climb once the root of the parent chain is
-- reached.
exit when Curr_Typ = Par_Typ;
-- Process the class-wide invariants of the parent type
Get_Views (Par_Typ, Priv_Typ, Full_Typ, Dummy_1, Dummy_2);
-- Process the elements of an array type
if Is_Array_Type (Full_Typ) then
Add_Array_Component_Invariants (Full_Typ, Obj_Id, Checks);
-- Process the components of a record type
elsif Ekind (Full_Typ) = E_Record_Type then
Add_Record_Component_Invariants (Full_Typ, Obj_Id, Checks);
end if;
Add_Inherited_Invariants
(T => T,
Priv_Typ => Priv_Typ,
Full_Typ => Full_Typ,
Obj_Id => Obj_Id,
Checks => Checks);
Curr_Typ := Par_Typ;
end loop;
end Add_Parent_Invariants;
------------------------
-- Add_Own_Invariants --
------------------------
procedure Add_Own_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id;
Priv_Item : Node_Id := Empty)
is
Expr : Node_Id;
Prag : Node_Id;
Prag_Asp : Node_Id;
Prag_Expr : Node_Id;
Prag_Expr_Arg : Node_Id;
Prag_Typ : Node_Id;
Prag_Typ_Arg : Node_Id;
begin
if No (T) then
return;
end if;
Prag := First_Rep_Item (T);
while Present (Prag) loop
if Nkind (Prag) = N_Pragma
and then Pragma_Name (Prag) = Name_Invariant
then
-- Stop the traversal of the rep item chain once a specific
-- item is encountered.
if Present (Priv_Item) and then Prag = Priv_Item then
exit;
end if;
-- Nothing to do if the pragma was already processed
if Contains (Pragmas_Seen, Prag) then
return;
end if;
-- Extract the arguments of the invariant pragma
Prag_Typ_Arg := First (Pragma_Argument_Associations (Prag));
Prag_Expr_Arg := Next (Prag_Typ_Arg);
Prag_Expr := Get_Pragma_Arg (Prag_Expr_Arg);
Prag_Typ := Get_Pragma_Arg (Prag_Typ_Arg);
Prag_Asp := Corresponding_Aspect (Prag);
-- Verify the pragma belongs to T, otherwise the pragma applies
-- to a parent type in which case it will be processed later by
-- Add_Parent_Invariants or Add_Interface_Invariants.
if Entity (Prag_Typ) /= T then
return;
end if;
-- We need to preanalyze the expression itself inside a generic
-- to be able to capture global references present in it.
if Inside_A_Generic then
Expr := Prag_Expr;
else
Expr := New_Copy_Tree (Prag_Expr);
end if;
-- Substitute all references to type T with references to the
-- _object formal parameter.
Replace_Type_References (Expr, T, Obj_Id);
-- Preanalyze the invariant expression to detect errors and at
-- the same time capture the visibility of the proper package
-- part.
Set_Parent (Expr, Parent (Prag_Expr));
Preanalyze_Assert_Expression (Expr, Any_Boolean);
-- Save a copy of the expression when T is tagged to detect
-- errors and capture the visibility of the proper package part
-- for the generation of inherited type invariants.
if Is_Tagged_Type (T) then
Set_Expression_Copy (Prag_Expr_Arg, New_Copy_Tree (Expr));
end if;
-- If the pragma comes from an aspect specification, replace
-- the saved expression because all type references must be
-- substituted for the call to Preanalyze_Spec_Expression in
-- Check_Aspect_At_xxx routines.
if Present (Prag_Asp) then
Set_Expression_Copy (Prag_Asp, New_Copy_Tree (Expr));
end if;
Add_Invariant_Check (Prag, Expr, Checks);
end if;
Next_Rep_Item (Prag);
end loop;
end Add_Own_Invariants;
-------------------------------------
-- Add_Record_Component_Invariants --
-------------------------------------
procedure Add_Record_Component_Invariants
(T : Entity_Id;
Obj_Id : Entity_Id;
Checks : in out List_Id)
is
procedure Process_Component_List
(Comp_List : Node_Id;
CL_Checks : in out List_Id);
-- Generate invariant checks for all record components found in
-- component list Comp_List, including variant parts. All created
-- checks are added to list CL_Checks.
procedure Process_Record_Component
(Comp_Id : Entity_Id;
Comp_Checks : in out List_Id);
-- Generate an invariant check for a record component identified by
-- Comp_Id. All created checks are added to list Comp_Checks.
----------------------------
-- Process_Component_List --
----------------------------
procedure Process_Component_List
(Comp_List : Node_Id;
CL_Checks : in out List_Id)
is
Comp : Node_Id;
Var : Node_Id;
Var_Alts : List_Id := No_List;
Var_Checks : List_Id := No_List;
Var_Stmts : List_Id;
Produced_Variant_Check : Boolean := False;
-- This flag tracks whether the component has produced at least
-- one invariant check.
begin
-- Traverse the component items
Comp := First (Component_Items (Comp_List));
while Present (Comp) loop
if Nkind (Comp) = N_Component_Declaration then
-- Generate the component invariant check
Process_Record_Component
(Comp_Id => Defining_Entity (Comp),
Comp_Checks => CL_Checks);
end if;
Next (Comp);
end loop;
-- Traverse the variant part
if Present (Variant_Part (Comp_List)) then
Var := First (Variants (Variant_Part (Comp_List)));
while Present (Var) loop
Var_Checks := No_List;
-- Generate invariant checks for all components and variant
-- parts that qualify.
Process_Component_List
(Comp_List => Component_List (Var),
CL_Checks => Var_Checks);
-- The components of the current variant produced at least
-- one invariant check.
if Present (Var_Checks) then
Var_Stmts := Var_Checks;
Produced_Variant_Check := True;
-- Otherwise there are either no components with invariants,
-- assertions are disabled, or Assertion_Policy Ignore is in
-- effect.
else
Var_Stmts := New_List (Make_Null_Statement (Loc));
end if;
Append_New_To (Var_Alts,
Make_Case_Statement_Alternative (Loc,
Discrete_Choices =>
New_Copy_List (Discrete_Choices (Var)),
Statements => Var_Stmts));
Next (Var);
end loop;
-- Create a case statement which verifies the invariant checks
-- of a particular component list depending on the discriminant
-- values only when there is at least one real invariant check.
if Produced_Variant_Check then
Append_New_To (CL_Checks,
Make_Case_Statement (Loc,
Expression =>
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Obj_Id, Loc),
Selector_Name =>
New_Occurrence_Of
(Entity (Name (Variant_Part (Comp_List))), Loc)),
Alternatives => Var_Alts));
end if;
end if;
end Process_Component_List;
------------------------------
-- Process_Record_Component --
------------------------------
procedure Process_Record_Component
(Comp_Id : Entity_Id;
Comp_Checks : in out List_Id)
is
Comp_Typ : constant Entity_Id := Etype (Comp_Id);
Proc_Id : Entity_Id;
Produced_Component_Check : Boolean := False;
-- This flag tracks whether the component has produced at least
-- one invariant check.
begin
-- Nothing to do for internal component _parent. Note that it is
-- not desirable to check whether the component comes from source
-- because protected type components are relocated to an internal
-- corresponding record, but still need processing.
if Chars (Comp_Id) = Name_uParent then
return;
end if;
-- Verify the invariant of the component. Note that an access
-- type may have an invariant when it acts as the full view of a
-- private type and the invariant appears on the partial view. In
-- this case verify the access value itself.
if Has_Invariants (Comp_Typ) then
-- In GNATprove mode, the component invariants are checked by
-- other means. They should not be added to the record type
-- invariant procedure, so that the procedure can be used to
-- check the record type invariants if any.
if GNATprove_Mode then
null;
else
Proc_Id := Invariant_Procedure (Base_Type (Comp_Typ));
-- The component type should have an invariant procedure
-- if it has invariants of its own or inherits class-wide
-- invariants from parent or interface types.
-- However, given that the invariant procedure is built by
-- the expander, it is not available compiling generic units
-- or when the sources have errors, since expansion is then
-- disabled.
pragma Assert (Present (Proc_Id)
or else not Expander_Active);
-- Generate:
-- <Comp_Typ>Invariant (T (_object).<Comp_Id>);
-- Note that the invariant procedure may have a null body if
-- assertions are disabled or Assertion_Policy Ignore is in
-- effect.
if Present (Proc_Id)
and then not Has_Null_Body (Proc_Id)
then
Append_New_To (Comp_Checks,
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (Proc_Id, Loc),
Parameter_Associations => New_List (
Make_Selected_Component (Loc,
Prefix =>
Unchecked_Convert_To
(T, New_Occurrence_Of (Obj_Id, Loc)),
Selector_Name =>
New_Occurrence_Of (Comp_Id, Loc)))));
end if;
end if;
Produced_Check := True;
Produced_Component_Check := True;
end if;
if Produced_Component_Check and then Has_Unchecked_Union (T) then
Error_Msg_NE
("invariants cannot be checked on components of "
& "unchecked_union type &??", Comp_Id, T);
end if;
end Process_Record_Component;
-- Local variables
Comps : Node_Id;
Def : Node_Id;
-- Start of processing for Add_Record_Component_Invariants
begin
-- An untagged derived type inherits the components of its parent
-- type. In order to avoid creating redundant invariant checks, do
-- not process the components now. Instead wait until the ultimate
-- parent of the untagged derivation chain is reached.
if not Is_Untagged_Derivation (T) then
Def := Type_Definition (Parent (T));
if Nkind (Def) = N_Derived_Type_Definition then
Def := Record_Extension_Part (Def);
end if;
pragma Assert (Nkind (Def) = N_Record_Definition);
Comps := Component_List (Def);
if Present (Comps) then
Process_Component_List
(Comp_List => Comps,
CL_Checks => Checks);
end if;
end if;
end Add_Record_Component_Invariants;
-- Local variables
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
Dummy : Entity_Id;
Priv_Item : Node_Id;
Proc_Body : Node_Id;
Proc_Body_Id : Entity_Id;
Proc_Decl : Node_Id;
Proc_Id : Entity_Id;
Stmts : List_Id := No_List;
CRec_Typ : Entity_Id := Empty;
-- The corresponding record type of Full_Typ
Full_Proc : Entity_Id := Empty;
-- The entity of the "full" invariant procedure
Full_Typ : Entity_Id := Empty;
-- The full view of the working type
Obj_Id : Entity_Id := Empty;
-- The _object formal parameter of the invariant procedure
Part_Proc : Entity_Id := Empty;
-- The entity of the "partial" invariant procedure
Priv_Typ : Entity_Id := Empty;
-- The partial view of the working type
Work_Typ : Entity_Id := Empty;
-- The working type
-- Start of processing for Build_Invariant_Procedure_Body
begin
Work_Typ := Typ;
-- Do not process the underlying full view of a private type. There is
-- no way to get back to the partial view, plus the body will be built
-- by the full view or the base type.
if Is_Underlying_Full_View (Work_Typ) then
return;
-- The input type denotes the implementation base type of a constrained
-- array type. Work with the first subtype as all invariant pragmas are
-- on its rep item chain.
elsif Ekind (Work_Typ) = E_Array_Type and then Is_Itype (Work_Typ) then
Work_Typ := First_Subtype (Work_Typ);
-- The input type denotes the corresponding record type of a protected
-- or task type. Work with the concurrent type because the corresponding
-- record type may not be visible to clients of the type.
elsif Ekind (Work_Typ) = E_Record_Type
and then Is_Concurrent_Record_Type (Work_Typ)
then
Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
end if;
-- The working type may be subject to pragma Ghost. Set the mode now to
-- ensure that the invariant procedure is properly marked as Ghost.
Set_Ghost_Mode (Work_Typ);
-- The type must either have invariants of its own, inherit class-wide
-- invariants from parent types or interfaces, or be an array or record
-- type whose components have invariants.
pragma Assert (Has_Invariants (Work_Typ));
-- Interfaces are treated as the partial view of a private type in order
-- to achieve uniformity with the general case.
if Is_Interface (Work_Typ) then
Priv_Typ := Work_Typ;
-- Otherwise obtain both views of the type
else
Get_Views (Work_Typ, Priv_Typ, Full_Typ, Dummy, CRec_Typ);
end if;
-- The caller requests a body for the partial invariant procedure
if Partial_Invariant then
Full_Proc := Invariant_Procedure (Work_Typ);
Proc_Id := Partial_Invariant_Procedure (Work_Typ);
-- The "full" invariant procedure body was already created
if Present (Full_Proc)
and then Present
(Corresponding_Body (Unit_Declaration_Node (Full_Proc)))
then
-- This scenario happens only when the type is an untagged
-- derivation from a private parent and the underlying full
-- view was processed before the partial view.
pragma Assert
(Is_Untagged_Private_Derivation (Priv_Typ, Full_Typ));
-- Nothing to do because the processing of the underlying full
-- view already checked the invariants of the partial view.
goto Leave;
end if;
-- Create a declaration for the "partial" invariant procedure if it
-- is not available.
if No (Proc_Id) then
Build_Invariant_Procedure_Declaration
(Typ => Work_Typ,
Partial_Invariant => True);
Proc_Id := Partial_Invariant_Procedure (Work_Typ);
end if;
-- The caller requests a body for the "full" invariant procedure
else
Proc_Id := Invariant_Procedure (Work_Typ);
Part_Proc := Partial_Invariant_Procedure (Work_Typ);
-- Create a declaration for the "full" invariant procedure if it is
-- not available.
if No (Proc_Id) then
Build_Invariant_Procedure_Declaration (Work_Typ);
Proc_Id := Invariant_Procedure (Work_Typ);
end if;
end if;
-- At this point there should be an invariant procedure declaration
pragma Assert (Present (Proc_Id));
Proc_Decl := Unit_Declaration_Node (Proc_Id);
-- Nothing to do if the invariant procedure already has a body
if Present (Corresponding_Body (Proc_Decl)) then
goto Leave;
end if;
-- Emulate the environment of the invariant procedure by installing its
-- scope and formal parameters. Note that this is not needed, but having
-- the scope installed helps with the detection of invariant-related
-- errors.
Push_Scope (Proc_Id);
Install_Formals (Proc_Id);
Obj_Id := First_Formal (Proc_Id);
pragma Assert (Present (Obj_Id));
-- The "partial" invariant procedure verifies the invariants of the
-- partial view only.
if Partial_Invariant then
pragma Assert (Present (Priv_Typ));
Add_Own_Invariants
(T => Priv_Typ,
Obj_Id => Obj_Id,
Checks => Stmts);
-- Otherwise the "full" invariant procedure verifies the invariants of
-- the full view, all array or record components, as well as class-wide
-- invariants inherited from parent types or interfaces. In addition, it
-- indirectly verifies the invariants of the partial view by calling the
-- "partial" invariant procedure.
else
pragma Assert (Present (Full_Typ));
-- Check the invariants of the partial view by calling the "partial"
-- invariant procedure. Generate:
-- <Work_Typ>Partial_Invariant (_object);
if Present (Part_Proc) then
Append_New_To (Stmts,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Part_Proc, Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Obj_Id, Loc))));
Produced_Check := True;
end if;
Priv_Item := Empty;
-- Derived subtypes do not have a partial view
if Present (Priv_Typ) then
-- The processing of the "full" invariant procedure intentionally
-- skips the partial view because a) this may result in changes of
-- visibility and b) lead to duplicate checks. However, when the
-- full view is the underlying full view of an untagged derived
-- type whose parent type is private, partial invariants appear on
-- the rep item chain of the partial view only.
-- package Pack_1 is
-- type Root ... is private;
-- private
-- <full view of Root>
-- end Pack_1;
-- with Pack_1;
-- package Pack_2 is
-- type Child is new Pack_1.Root with Type_Invariant => ...;
-- <underlying full view of Child>
-- end Pack_2;
-- As a result, the processing of the full view must also consider
-- all invariants of the partial view.
if Is_Untagged_Private_Derivation (Priv_Typ, Full_Typ) then
null;
-- Otherwise the invariants of the partial view are ignored
else
-- Note that the rep item chain is shared between the partial
-- and full views of a type. To avoid processing the invariants
-- of the partial view, signal the logic to stop when the first
-- rep item of the partial view has been reached.
Priv_Item := First_Rep_Item (Priv_Typ);
-- Ignore the invariants of the partial view by eliminating the
-- view.
Priv_Typ := Empty;
end if;
end if;
-- Process the invariants of the full view and in certain cases those
-- of the partial view. This also handles any invariants on array or
-- record components.
Add_Own_Invariants
(T => Priv_Typ,
Obj_Id => Obj_Id,
Checks => Stmts,
Priv_Item => Priv_Item);
Add_Own_Invariants
(T => Full_Typ,
Obj_Id => Obj_Id,
Checks => Stmts,
Priv_Item => Priv_Item);
-- Process the elements of an array type
if Is_Array_Type (Full_Typ) then
Add_Array_Component_Invariants (Full_Typ, Obj_Id, Stmts);
-- Process the components of a record type
elsif Ekind (Full_Typ) = E_Record_Type then
Add_Record_Component_Invariants (Full_Typ, Obj_Id, Stmts);
-- Process the components of a corresponding record
elsif Present (CRec_Typ) then
Add_Record_Component_Invariants (CRec_Typ, Obj_Id, Stmts);
end if;
-- Process the inherited class-wide invariants of all parent types.
-- This also handles any invariants on record components.
Add_Parent_Invariants (Full_Typ, Obj_Id, Stmts);
-- Process the inherited class-wide invariants of all implemented
-- interface types.
Add_Interface_Invariants (Full_Typ, Obj_Id, Stmts);
end if;
End_Scope;
-- At this point there should be at least one invariant check. If this
-- is not the case, then the invariant-related flags were not properly
-- set, or there is a missing invariant procedure on one of the array
-- or record components.
pragma Assert (Produced_Check);
-- Account for the case where assertions are disabled or all invariant
-- checks are subject to Assertion_Policy Ignore. Produce a completing
-- empty body.
if No (Stmts) then
Stmts := New_List (Make_Null_Statement (Loc));
end if;
-- Generate:
-- procedure <Work_Typ>[Partial_]Invariant (_object : <Obj_Typ>) is
-- begin
-- <Stmts>
-- end <Work_Typ>[Partial_]Invariant;
Proc_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Copy_Subprogram_Spec (Parent (Proc_Id)),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts));
Proc_Body_Id := Defining_Entity (Proc_Body);
-- Perform minor decoration in case the body is not analyzed
Mutate_Ekind (Proc_Body_Id, E_Subprogram_Body);
Set_Etype (Proc_Body_Id, Standard_Void_Type);
Set_Scope (Proc_Body_Id, Current_Scope);
-- Link both spec and body to avoid generating duplicates
Set_Corresponding_Body (Proc_Decl, Proc_Body_Id);
Set_Corresponding_Spec (Proc_Body, Proc_Id);
-- The body should not be inserted into the tree when the context is
-- a generic unit because it is not part of the template. Note
-- that the body must still be generated in order to resolve the
-- invariants.
if Inside_A_Generic then
null;
-- Semi-insert the body into the tree for GNATprove by setting its
-- Parent field. This allows for proper upstream tree traversals.
elsif GNATprove_Mode then
Set_Parent (Proc_Body, Parent (Declaration_Node (Work_Typ)));
-- Otherwise the body is part of the freezing actions of the type
else
Append_Freeze_Action (Work_Typ, Proc_Body);
end if;
<<Leave>>
Restore_Ghost_Region (Saved_GM, Saved_IGR);
end Build_Invariant_Procedure_Body;
-------------------------------------------
-- Build_Invariant_Procedure_Declaration --
-------------------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Build_Invariant_Procedure_Declaration
(Typ : Entity_Id;
Partial_Invariant : Boolean := False)
is
Loc : constant Source_Ptr := Sloc (Typ);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
Proc_Decl : Node_Id;
Proc_Id : Entity_Id;
Proc_Nam : Name_Id;
Typ_Decl : Node_Id;
CRec_Typ : Entity_Id;
-- The corresponding record type of Full_Typ
Full_Typ : Entity_Id;
-- The full view of working type
Obj_Id : Entity_Id;
-- The _object formal parameter of the invariant procedure
Obj_Typ : Entity_Id;
-- The type of the _object formal parameter
Priv_Typ : Entity_Id;
-- The partial view of working type
UFull_Typ : Entity_Id;
-- The underlying full view of Full_Typ
Work_Typ : Entity_Id;
-- The working type
begin
Work_Typ := Typ;
-- The input type denotes the implementation base type of a constrained
-- array type. Work with the first subtype as all invariant pragmas are
-- on its rep item chain.
if Ekind (Work_Typ) = E_Array_Type and then Is_Itype (Work_Typ) then
Work_Typ := First_Subtype (Work_Typ);
-- The input denotes the corresponding record type of a protected or a
-- task type. Work with the concurrent type because the corresponding
-- record type may not be visible to clients of the type.
elsif Ekind (Work_Typ) = E_Record_Type
and then Is_Concurrent_Record_Type (Work_Typ)
then
Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
end if;
-- The working type may be subject to pragma Ghost. Set the mode now to
-- ensure that the invariant procedure is properly marked as Ghost.
Set_Ghost_Mode (Work_Typ);
-- The type must either have invariants of its own, inherit class-wide
-- invariants from parent or interface types, or be an array or record
-- type whose components have invariants.
pragma Assert (Has_Invariants (Work_Typ));
-- Nothing to do if the type already has a "partial" invariant procedure
if Partial_Invariant then
if Present (Partial_Invariant_Procedure (Work_Typ)) then
goto Leave;
end if;
-- Nothing to do if the type already has a "full" invariant procedure
elsif Present (Invariant_Procedure (Work_Typ)) then
goto Leave;
end if;
-- The caller requests the declaration of the "partial" invariant
-- procedure.
if Partial_Invariant then
Proc_Nam := New_External_Name (Chars (Work_Typ), "Partial_Invariant");
-- Otherwise the caller requests the declaration of the "full" invariant
-- procedure.
else
Proc_Nam := New_External_Name (Chars (Work_Typ), "Invariant");
end if;
Proc_Id := Make_Defining_Identifier (Loc, Chars => Proc_Nam);
-- Perform minor decoration in case the declaration is not analyzed
Mutate_Ekind (Proc_Id, E_Procedure);
Set_Etype (Proc_Id, Standard_Void_Type);
Set_Scope (Proc_Id, Current_Scope);
if Partial_Invariant then
Set_Is_Partial_Invariant_Procedure (Proc_Id);
Set_Partial_Invariant_Procedure (Work_Typ, Proc_Id);
else
Set_Is_Invariant_Procedure (Proc_Id);
Set_Invariant_Procedure (Work_Typ, Proc_Id);
end if;
-- The invariant procedure requires debug info when the invariants are
-- subject to Source Coverage Obligations.
if Generate_SCO then
Set_Debug_Info_Needed (Proc_Id);
end if;
-- Obtain all views of the input type
Get_Views (Work_Typ, Priv_Typ, Full_Typ, UFull_Typ, CRec_Typ);
-- Associate the invariant procedure and various flags with all views
Propagate_Invariant_Attributes (Priv_Typ, From_Typ => Work_Typ);
Propagate_Invariant_Attributes (Full_Typ, From_Typ => Work_Typ);
Propagate_Invariant_Attributes (UFull_Typ, From_Typ => Work_Typ);
Propagate_Invariant_Attributes (CRec_Typ, From_Typ => Work_Typ);
-- The declaration of the invariant procedure is inserted after the
-- declaration of the partial view as this allows for proper external
-- visibility.
if Present (Priv_Typ) then
Typ_Decl := Declaration_Node (Priv_Typ);
-- Anonymous arrays in object declarations have no explicit declaration
-- so use the related object declaration as the insertion point.
elsif Is_Itype (Work_Typ) and then Is_Array_Type (Work_Typ) then
Typ_Decl := Associated_Node_For_Itype (Work_Typ);
-- Derived types with the full view as parent do not have a partial
-- view. Insert the invariant procedure after the derived type.
else
Typ_Decl := Declaration_Node (Full_Typ);
end if;
-- The type should have a declarative node
pragma Assert (Present (Typ_Decl));
-- Create the formal parameter which emulates the variable-like behavior
-- of the current type instance.
Obj_Id := Make_Defining_Identifier (Loc, Chars => Name_uObject);
-- When generating an invariant procedure declaration for an abstract
-- type (including interfaces), use the class-wide type as the _object
-- type. This has several desirable effects:
-- * The invariant procedure does not become a primitive of the type.
-- This eliminates the need to either special case the treatment of
-- invariant procedures, or to make it a predefined primitive and
-- force every derived type to potentially provide an empty body.
-- * The invariant procedure does not need to be declared as abstract.
-- This allows for a proper body, which in turn avoids redundant
-- processing of the same invariants for types with multiple views.
-- * The class-wide type allows for calls to abstract primitives
-- within a nonabstract subprogram. The calls are treated as
-- dispatching and require additional processing when they are
-- remapped to call primitives of derived types. See routine
-- Replace_References for details.
if Is_Abstract_Type (Work_Typ) then
Obj_Typ := Class_Wide_Type (Work_Typ);
else
Obj_Typ := Work_Typ;
end if;
-- Perform minor decoration in case the declaration is not analyzed
Mutate_Ekind (Obj_Id, E_In_Parameter);
Set_Etype (Obj_Id, Obj_Typ);
Set_Scope (Obj_Id, Proc_Id);
Set_First_Entity (Proc_Id, Obj_Id);
Set_Last_Entity (Proc_Id, Obj_Id);
-- Generate:
-- procedure <Work_Typ>[Partial_]Invariant (_object : <Obj_Typ>);
Proc_Decl :=
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Obj_Id,
Parameter_Type => New_Occurrence_Of (Obj_Typ, Loc)))));
-- The declaration should not be inserted into the tree when the context
-- is a generic unit because it is not part of the template.
if Inside_A_Generic then
null;
-- Semi-insert the declaration into the tree for GNATprove by setting
-- its Parent field. This allows for proper upstream tree traversals.
elsif GNATprove_Mode then
Set_Parent (Proc_Decl, Parent (Typ_Decl));
-- Otherwise insert the declaration
else
pragma Assert (Present (Typ_Decl));
Insert_After_And_Analyze (Typ_Decl, Proc_Decl);
end if;
<<Leave>>
Restore_Ghost_Region (Saved_GM, Saved_IGR);
end Build_Invariant_Procedure_Declaration;
--------------------------
-- Build_Procedure_Form --
--------------------------
procedure Build_Procedure_Form (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Subp : constant Entity_Id := Defining_Entity (N);
Func_Formal : Entity_Id;
Proc_Formals : List_Id;
Proc_Decl : Node_Id;
begin
-- No action needed if this transformation was already done, or in case
-- of subprogram renaming declarations.
if Nkind (Specification (N)) = N_Procedure_Specification
or else Nkind (N) = N_Subprogram_Renaming_Declaration
then
return;
end if;
-- Ditto when dealing with an expression function, where both the
-- original expression and the generated declaration end up being
-- expanded here.
if Rewritten_For_C (Subp) then
return;
end if;
Proc_Formals := New_List;
-- Create a list of formal parameters with the same types as the
-- function.
Func_Formal := First_Formal (Subp);
while Present (Func_Formal) loop
Append_To (Proc_Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Chars (Func_Formal)),
Parameter_Type =>
New_Occurrence_Of (Etype (Func_Formal), Loc)));
Next_Formal (Func_Formal);
end loop;
-- Add an extra out parameter to carry the function result
Append_To (Proc_Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_UP_RESULT),
Out_Present => True,
Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc)));
-- The new procedure declaration is inserted before the function
-- declaration. The processing in Build_Procedure_Body_Form relies on
-- this order. Note that we insert before because in the case of a
-- function body with no separate spec, we do not want to insert the
-- new spec after the body which will later get rewritten.
Proc_Decl :=
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Loc, Chars (Subp)),
Parameter_Specifications => Proc_Formals));
Insert_Before_And_Analyze (Unit_Declaration_Node (Subp), Proc_Decl);
-- Entity of procedure must remain invisible so that it does not
-- overload subsequent references to the original function.
Set_Is_Immediately_Visible (Defining_Entity (Proc_Decl), False);
-- Mark the function as having a procedure form and link the function
-- and its internally built procedure.
Set_Rewritten_For_C (Subp);
Set_Corresponding_Procedure (Subp, Defining_Entity (Proc_Decl));
Set_Corresponding_Function (Defining_Entity (Proc_Decl), Subp);
end Build_Procedure_Form;
------------------------
-- Build_Runtime_Call --
------------------------
function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
begin
-- If entity is not available, we can skip making the call (this avoids
-- junk duplicated error messages in a number of cases).
if not RTE_Available (RE) then
return Make_Null_Statement (Loc);
else
return
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (RE), Loc));
end if;
end Build_Runtime_Call;
------------------------
-- Build_SS_Mark_Call --
------------------------
function Build_SS_Mark_Call
(Loc : Source_Ptr;
Mark : Entity_Id) return Node_Id
is
begin
-- Generate:
-- Mark : constant Mark_Id := SS_Mark;
return
Make_Object_Declaration (Loc,
Defining_Identifier => Mark,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Mark_Id), Loc),
Expression =>
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_SS_Mark), Loc)));
end Build_SS_Mark_Call;
---------------------------
-- Build_SS_Release_Call --
---------------------------
function Build_SS_Release_Call
(Loc : Source_Ptr;
Mark : Entity_Id) return Node_Id
is
begin
-- Generate:
-- SS_Release (Mark);
return
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_SS_Release), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Mark, Loc)));
end Build_SS_Release_Call;
----------------------------
-- Build_Task_Array_Image --
----------------------------
-- This function generates the body for a function that constructs the
-- image string for a task that is an array component. The function is
-- local to the init proc for the array type, and is called for each one
-- of the components. The constructed image has the form of an indexed
-- component, whose prefix is the outer variable of the array type.
-- The n-dimensional array type has known indexes Index, Index2...
-- Id_Ref is an indexed component form created by the enclosing init proc.
-- Its successive indexes are Val1, Val2, ... which are the loop variables
-- in the loops that call the individual task init proc on each component.
-- The generated function has the following structure:
-- function F return String is
-- Pref : String renames Task_Name;
-- T1 : constant String := Index1'Image (Val1);
-- ...
-- Tn : constant String := Indexn'Image (Valn);
-- Len : constant Integer :=
-- Pref'Length + T1'Length + ... + Tn'Length + n + 1;
-- -- Len includes commas and the end parentheses
--
-- Res : String (1 .. Len);
-- Pos : Integer := Pref'Length;
--
-- begin
-- Res (1 .. Pos) := Pref;
-- Pos := Pos + 1;
-- Res (Pos) := '(';
-- Pos := Pos + 1;
-- Res (Pos .. Pos + T1'Length - 1) := T1;
-- Pos := Pos + T1'Length;
-- Res (Pos) := '.';
-- Pos := Pos + 1;
-- ...
-- Res (Pos .. Pos + Tn'Length - 1) := Tn;
-- Res (Len) := ')';
--
-- return Res;
-- end F;
--
-- Needless to say, multidimensional arrays of tasks are rare enough that
-- the bulkiness of this code is not really a concern.
function Build_Task_Array_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
Dyn : Boolean := False) return Node_Id
is
Dims : constant Nat := Number_Dimensions (A_Type);
-- Number of dimensions for array of tasks
Temps : array (1 .. Dims) of Entity_Id;
-- Array of temporaries to hold string for each index
Indx : Node_Id;
-- Index expression
Len : Entity_Id;
-- Total length of generated name
Pos : Entity_Id;
-- Running index for substring assignments
Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
-- Name of enclosing variable, prefix of resulting name
Res : Entity_Id;
-- String to hold result
Val : Node_Id;
-- Value of successive indexes
Sum : Node_Id;
-- Expression to compute total size of string
T : Entity_Id;
-- Entity for name at one index position
Decls : constant List_Id := New_List;
Stats : constant List_Id := New_List;
begin
-- For a dynamic task, the name comes from the target variable. For a
-- static one it is a formal of the enclosing init proc.
if Dyn then
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pref,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pref,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Name => Make_Identifier (Loc, Name_uTask_Name)));
end if;
Indx := First_Index (A_Type);
Val := First (Expressions (Id_Ref));
for J in 1 .. Dims loop
T := Make_Temporary (Loc, 'T');
Temps (J) := T;
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => T,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Constant_Present => True,
Expression =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Image,
Prefix => New_Occurrence_Of (Etype (Indx), Loc),
Expressions => New_List (New_Copy_Tree (Val)))));
Next_Index (Indx);
Next (Val);
end loop;
Sum := Make_Integer_Literal (Loc, Dims + 1);
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Pref, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
for J in 1 .. Dims loop
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Temps (J), Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
end loop;
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
Set_Character_Literal_Name (Get_Char_Code ('('));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value => UI_From_CC (Get_Char_Code ('(')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
for J in 1 .. Dims loop
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name =>
Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => New_Occurrence_Of (Pos, Loc),
High_Bound =>
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Temps (J), Loc),
Expressions =>
New_List (Make_Integer_Literal (Loc, 1)))),
Right_Opnd => Make_Integer_Literal (Loc, 1)))),
Expression => New_Occurrence_Of (Temps (J), Loc)));
if J < Dims then
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Temps (J), Loc),
Expressions =>
New_List (Make_Integer_Literal (Loc, 1))))));
Set_Character_Literal_Name (Get_Char_Code (','));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value => UI_From_CC (Get_Char_Code (',')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
end if;
end loop;
Set_Character_Literal_Name (Get_Char_Code (')'));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Len, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value => UI_From_CC (Get_Char_Code (')')))));
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
end Build_Task_Array_Image;
----------------------------
-- Build_Task_Image_Decls --
----------------------------
function Build_Task_Image_Decls
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
In_Init_Proc : Boolean := False) return List_Id
is
Decls : constant List_Id := New_List;
T_Id : Entity_Id := Empty;
Decl : Node_Id;
Expr : Node_Id := Empty;
Fun : Node_Id := Empty;
Is_Dyn : constant Boolean :=
Nkind (Parent (Id_Ref)) = N_Assignment_Statement
and then
Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
Component_Suffix_Index : constant Int :=
(if In_Init_Proc then -1 else 0);
-- If an init proc calls Build_Task_Image_Decls twice for its
-- _Parent component (to split early/late initialization), we don't
-- want two decls with the same name. Hence, the -1 suffix.
begin
-- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
-- generate a dummy declaration only.
if Restriction_Active (No_Implicit_Heap_Allocations)
or else Global_Discard_Names
then
T_Id := Make_Temporary (Loc, 'J');
Name_Len := 0;
return
New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => T_Id,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
if Nkind (Id_Ref) = N_Identifier
or else Nkind (Id_Ref) = N_Defining_Identifier
then
-- For a simple variable, the image of the task is built from
-- the name of the variable. To avoid possible conflict with the
-- anonymous type created for a single protected object, add a
-- numeric suffix.
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Id_Ref), 'T', 1));
Get_Name_String (Chars (Id_Ref));
Expr :=
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer);
elsif Nkind (Id_Ref) = N_Selected_Component then
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Selector_Name (Id_Ref)), 'T',
Suffix_Index => Component_Suffix_Index));
Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
elsif Nkind (Id_Ref) = N_Indexed_Component then
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (A_Type), 'N'));
Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
end if;
end if;
if Present (Fun) then
Append (Fun, Decls);
Expr := Make_Function_Call (Loc,
Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
if not In_Init_Proc then
Set_Uses_Sec_Stack (Defining_Entity (Fun));
end if;
end if;
Decl := Make_Object_Declaration (Loc,
Defining_Identifier => T_Id,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Constant_Present => True,
Expression => Expr);
Append (Decl, Decls);
return Decls;
end Build_Task_Image_Decls;
-------------------------------
-- Build_Task_Image_Function --
-------------------------------
function Build_Task_Image_Function
(Loc : Source_Ptr;
Decls : List_Id;
Stats : List_Id;
Res : Entity_Id) return Node_Id
is
Spec : Node_Id;
begin
Append_To (Stats,
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Res, Loc)));
Spec := Make_Function_Specification (Loc,
Defining_Unit_Name => Make_Temporary (Loc, 'F'),
Result_Definition => New_Occurrence_Of (Standard_String, Loc));
-- Calls to 'Image use the secondary stack, which must be cleaned up
-- after the task name is built.
return Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
end Build_Task_Image_Function;
-----------------------------
-- Build_Task_Image_Prefix --
-----------------------------
procedure Build_Task_Image_Prefix
(Loc : Source_Ptr;
Len : out Entity_Id;
Res : out Entity_Id;
Pos : out Entity_Id;
Prefix : Entity_Id;
Sum : Node_Id;
Decls : List_Id;
Stats : List_Id)
is
begin
Len := Make_Temporary (Loc, 'L', Sum);
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Len,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
Expression => Sum));
Res := Make_Temporary (Loc, 'R');
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Res,
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints =>
New_List (
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound => New_Occurrence_Of (Len, Loc)))))));
-- Indicate that the result is an internal temporary, so it does not
-- receive a bogus initialization when declaration is expanded. This
-- is both efficient, and prevents anomalies in the handling of
-- dynamic objects on the secondary stack.
Set_Is_Internal (Res);
Pos := Make_Temporary (Loc, 'P');
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pos,
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
-- Pos := Prefix'Length;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Prefix, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1)))));
-- Res (1 .. Pos) := Prefix;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name =>
Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound => New_Occurrence_Of (Pos, Loc))),
Expression => New_Occurrence_Of (Prefix, Loc)));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
end Build_Task_Image_Prefix;
-----------------------------
-- Build_Task_Record_Image --
-----------------------------
function Build_Task_Record_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
Dyn : Boolean := False) return Node_Id
is
Len : Entity_Id;
-- Total length of generated name
Pos : Entity_Id;
-- Index into result
Res : Entity_Id;
-- String to hold result
Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
-- Name of enclosing variable, prefix of resulting name
Sum : Node_Id;
-- Expression to compute total size of string
Sel : Entity_Id;
-- Entity for selector name
Decls : constant List_Id := New_List;
Stats : constant List_Id := New_List;
begin
-- For a dynamic task, the name comes from the target variable. For a
-- static one it is a formal of the enclosing init proc.
if Dyn then
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pref,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pref,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Name => Make_Identifier (Loc, Name_uTask_Name)));
end if;
Sel := Make_Temporary (Loc, 'S');
Get_Name_String (Chars (Selector_Name (Id_Ref)));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Sel,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Pref, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
Set_Character_Literal_Name (Get_Char_Code ('.'));
-- Res (Pos) := '.';
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value =>
UI_From_CC (Get_Char_Code ('.')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
-- Res (Pos .. Len) := Selector;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => New_Occurrence_Of (Pos, Loc),
High_Bound => New_Occurrence_Of (Len, Loc))),
Expression => New_Occurrence_Of (Sel, Loc)));
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
end Build_Task_Record_Image;
----------------------------------------
-- Build_Temporary_On_Secondary_Stack --
----------------------------------------
function Build_Temporary_On_Secondary_Stack
(Loc : Source_Ptr;
Typ : Entity_Id;
Code : List_Id) return Entity_Id
is
Acc_Typ : Entity_Id;
Alloc : Node_Id;
Alloc_Obj : Entity_Id;
begin
pragma Assert (RTE_Available (RE_SS_Pool)
and then not Needs_Finalization (Typ));
Acc_Typ := Make_Temporary (Loc, 'A');
Mutate_Ekind (Acc_Typ, E_Access_Type);
Set_Associated_Storage_Pool (Acc_Typ, RTE (RE_SS_Pool));
Append_To (Code,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Acc_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Occurrence_Of (Typ, Loc))));
Alloc :=
Make_Allocator (Loc, Expression => New_Occurrence_Of (Typ, Loc));
Set_No_Initialization (Alloc);
Alloc_Obj := Make_Temporary (Loc, 'R');
Append_To (Code,
Make_Object_Declaration (Loc,
Defining_Identifier => Alloc_Obj,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Acc_Typ, Loc),
Expression => Alloc));
Set_Uses_Sec_Stack (Current_Scope);
return Alloc_Obj;
end Build_Temporary_On_Secondary_Stack;
---------------------------------------
-- Build_Transient_Object_Statements --
---------------------------------------
procedure Build_Transient_Object_Statements
(Obj_Decl : Node_Id;
Fin_Call : out Node_Id;
Hook_Assign : out Node_Id;
Hook_Clear : out Node_Id;
Hook_Decl : out Node_Id;
Ptr_Decl : out Node_Id;
Finalize_Obj : Boolean := True)
is
Loc : constant Source_Ptr := Sloc (Obj_Decl);
Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
Desig_Typ : Entity_Id;
Hook_Expr : Node_Id;
Hook_Id : Entity_Id;
Obj_Ref : Node_Id;
Ptr_Typ : Entity_Id;
begin
-- Recover the type of the object
Desig_Typ := Obj_Typ;
if Is_Access_Type (Desig_Typ) then
Desig_Typ := Available_View (Designated_Type (Desig_Typ));
end if;
-- Create an access type which provides a reference to the transient
-- object. Generate:
-- type Ptr_Typ is access all Desig_Typ;
Ptr_Typ := Make_Temporary (Loc, 'A');
Mutate_Ekind (Ptr_Typ, E_General_Access_Type);
Set_Directly_Designated_Type (Ptr_Typ, Desig_Typ);
Ptr_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ptr_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication => New_Occurrence_Of (Desig_Typ, Loc)));
-- Create a temporary check which acts as a hook to the transient
-- object. Generate:
-- Hook : Ptr_Typ := null;
Hook_Id := Make_Temporary (Loc, 'T');
Mutate_Ekind (Hook_Id, E_Variable);
Set_Etype (Hook_Id, Ptr_Typ);
Hook_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Hook_Id,
Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
Expression => Make_Null (Loc));
-- Mark the temporary as a hook. This signals the machinery in
-- Build_Finalizer to recognize this special case.
Set_Status_Flag_Or_Transient_Decl (Hook_Id, Obj_Decl);
-- Hook the transient object to the temporary. Generate:
-- Hook := Ptr_Typ (Obj_Id);
-- <or>
-- Hool := Obj_Id'Unrestricted_Access;
if Is_Access_Type (Obj_Typ) then
Hook_Expr :=
Unchecked_Convert_To (Ptr_Typ, New_Occurrence_Of (Obj_Id, Loc));
else
Hook_Expr :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Obj_Id, Loc),
Attribute_Name => Name_Unrestricted_Access);
end if;
Hook_Assign :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Hook_Id, Loc),
Expression => Hook_Expr);
-- Crear the hook prior to finalizing the object. Generate:
-- Hook := null;
Hook_Clear :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Hook_Id, Loc),
Expression => Make_Null (Loc));
-- Finalize the object. Generate:
-- [Deep_]Finalize (Obj_Ref[.all]);
if Finalize_Obj then
Obj_Ref := New_Occurrence_Of (Obj_Id, Loc);
if Is_Access_Type (Obj_Typ) then
Obj_Ref := Make_Explicit_Dereference (Loc, Obj_Ref);
Set_Etype (Obj_Ref, Desig_Typ);
end if;
Fin_Call :=
Make_Final_Call
(Obj_Ref => Obj_Ref,
Typ => Desig_Typ);
-- Otherwise finalize the hook. Generate:
-- [Deep_]Finalize (Hook.all);
else
Fin_Call :=
Make_Final_Call (
Obj_Ref =>
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Hook_Id, Loc)),
Typ => Desig_Typ);
end if;
end Build_Transient_Object_Statements;
-----------------------------
-- Check_Float_Op_Overflow --
-----------------------------
procedure Check_Float_Op_Overflow (N : Node_Id) is
begin
-- Return if no check needed
if not Is_Floating_Point_Type (Etype (N))
or else not (Do_Overflow_Check (N) and then Check_Float_Overflow)
-- In CodePeer_Mode, rely on the overflow check flag being set instead
-- and do not expand the code for float overflow checking.
or else CodePeer_Mode
then
return;
end if;
-- Otherwise we replace the expression by
-- do Tnn : constant ftype := expression;
-- constraint_error when not Tnn'Valid;
-- in Tnn;
declare
Loc : constant Source_Ptr := Sloc (N);
Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
Typ : constant Entity_Id := Etype (N);
begin
-- Turn off the Do_Overflow_Check flag, since we are doing that work
-- right here. We also set the node as analyzed to prevent infinite
-- recursion from repeating the operation in the expansion.
Set_Do_Overflow_Check (N, False);
Set_Analyzed (N, True);
-- Do the rewrite to include the check
Rewrite (N,
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Tnn,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Constant_Present => True,
Expression => Relocate_Node (N)),
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Not (Loc,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Tnn, Loc),
Attribute_Name => Name_Valid)),
Reason => CE_Overflow_Check_Failed)),
Expression => New_Occurrence_Of (Tnn, Loc)));
Analyze_And_Resolve (N, Typ);
end;
end Check_Float_Op_Overflow;
----------------------------------
-- Component_May_Be_Bit_Aligned --
----------------------------------
function Component_May_Be_Bit_Aligned
(Comp : Entity_Id;
For_Slice : Boolean := False) return Boolean
is
UT : Entity_Id;
begin
-- If no component clause, then everything is fine, since the back end
-- never misaligns from byte boundaries by default, even if there is a
-- pragma Pack for the record.
if No (Comp) or else No (Component_Clause (Comp)) then
return False;
end if;
UT := Underlying_Type (Etype (Comp));
-- It is only array and record types that cause trouble
if not Is_Record_Type (UT) and then not Is_Array_Type (UT) then
return False;
-- If we know that we have a small (at most the maximum integer size)
-- bit-packed array or record without variant part, then everything is
-- fine, since the back end can handle these cases correctly, except if
-- a slice is involved.
elsif Known_Esize (Comp)
and then Esize (Comp) <= System_Max_Integer_Size
and then (Is_Bit_Packed_Array (UT)
or else (Is_Record_Type (UT)
and then not Has_Variant_Part (UT)))
and then not For_Slice
then
return False;
elsif not Known_Normalized_First_Bit (Comp) then
return True;
-- Otherwise if the component is not byte aligned, we know we have the
-- nasty unaligned case.
elsif Normalized_First_Bit (Comp) /= Uint_0
or else Esize (Comp) mod System_Storage_Unit /= Uint_0
then
return True;
-- If we are large and byte aligned, then OK at this level
else
return False;
end if;
end Component_May_Be_Bit_Aligned;
-------------------------------
-- Convert_To_Actual_Subtype --
-------------------------------
procedure Convert_To_Actual_Subtype (Exp : Node_Id) is
Act_ST : Entity_Id;
begin
Act_ST := Get_Actual_Subtype (Exp);
if Act_ST = Etype (Exp) then
return;
else
Rewrite (Exp, Convert_To (Act_ST, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Act_ST);
end if;
end Convert_To_Actual_Subtype;
-----------------------------------
-- Corresponding_Runtime_Package --
-----------------------------------
function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
function Has_One_Entry_And_No_Queue (T : Entity_Id) return Boolean;
-- Return True if protected type T has one entry and the maximum queue
-- length is one.
--------------------------------
-- Has_One_Entry_And_No_Queue --
--------------------------------
function Has_One_Entry_And_No_Queue (T : Entity_Id) return Boolean is
Item : Entity_Id;
Is_First : Boolean := True;
begin
Item := First_Entity (T);
while Present (Item) loop
if Is_Entry (Item) then
-- The protected type has more than one entry
if not Is_First then
return False;
end if;
-- The queue length is not one
if not Restriction_Active (No_Entry_Queue)
and then Get_Max_Queue_Length (Item) /= Uint_1
then
return False;
end if;
Is_First := False;
end if;
Next_Entity (Item);
end loop;
return True;
end Has_One_Entry_And_No_Queue;
-- Local variables
Pkg_Id : RTU_Id := RTU_Null;
-- Start of processing for Corresponding_Runtime_Package
begin
pragma Assert (Is_Concurrent_Type (Typ));
if Is_Protected_Type (Typ) then
if Has_Entries (Typ)
-- A protected type without entries that covers an interface and
-- overrides the abstract routines with protected procedures is
-- considered equivalent to a protected type with entries in the
-- context of dispatching select statements. It is sufficient to
-- check for the presence of an interface list in the declaration
-- node to recognize this case.
or else Present (Interface_List (Parent (Typ)))
-- Protected types with interrupt handlers (when not using a
-- restricted profile) are also considered equivalent to
-- protected types with entries. The types which are used
-- (Static_Interrupt_Protection and Dynamic_Interrupt_Protection)
-- are derived from Protection_Entries.
or else (Has_Attach_Handler (Typ) and then not Restricted_Profile)
or else Has_Interrupt_Handler (Typ)
then
if Abort_Allowed
or else Restriction_Active (No_Select_Statements) = False
or else not Has_One_Entry_And_No_Queue (Typ)
or else (Has_Attach_Handler (Typ)
and then not Restricted_Profile)
then
Pkg_Id := System_Tasking_Protected_Objects_Entries;
else
Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
end if;
else
Pkg_Id := System_Tasking_Protected_Objects;
end if;
end if;
return Pkg_Id;
end Corresponding_Runtime_Package;
-----------------------------------
-- Current_Sem_Unit_Declarations --
-----------------------------------
function Current_Sem_Unit_Declarations return List_Id is
U : Node_Id := Unit (Cunit (Current_Sem_Unit));
Decls : List_Id;
begin
-- If the current unit is a package body, locate the visible
-- declarations of the package spec.
if Nkind (U) = N_Package_Body then
U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
end if;
if Nkind (U) = N_Package_Declaration then
U := Specification (U);
Decls := Visible_Declarations (U);
if No (Decls) then
Decls := New_List;
Set_Visible_Declarations (U, Decls);
end if;
else
Decls := Declarations (U);
if No (Decls) then
Decls := New_List;
Set_Declarations (U, Decls);
end if;
end if;
return Decls;
end Current_Sem_Unit_Declarations;
-----------------------
-- Duplicate_Subexpr --
-----------------------
function Duplicate_Subexpr
(Exp : Node_Id;
Name_Req : Boolean := False;
Renaming_Req : Boolean := False) return Node_Id
is
begin
Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
return New_Copy_Tree (Exp);
end Duplicate_Subexpr;
---------------------------------
-- Duplicate_Subexpr_No_Checks --
---------------------------------
function Duplicate_Subexpr_No_Checks
(Exp : Node_Id;
Name_Req : Boolean := False;
Renaming_Req : Boolean := False;
Related_Id : Entity_Id := Empty;
Is_Low_Bound : Boolean := False;
Is_High_Bound : Boolean := False) return Node_Id
is
New_Exp : Node_Id;
begin
Remove_Side_Effects
(Exp => Exp,
Name_Req => Name_Req,
Renaming_Req => Renaming_Req,
Related_Id => Related_Id,
Is_Low_Bound => Is_Low_Bound,
Is_High_Bound => Is_High_Bound);
New_Exp := New_Copy_Tree (Exp);
Remove_Checks (New_Exp);
return New_Exp;
end Duplicate_Subexpr_No_Checks;
-----------------------------------
-- Duplicate_Subexpr_Move_Checks --
-----------------------------------
function Duplicate_Subexpr_Move_Checks
(Exp : Node_Id;
Name_Req : Boolean := False;
Renaming_Req : Boolean := False) return Node_Id
is
New_Exp : Node_Id;
begin
Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
New_Exp := New_Copy_Tree (Exp);
Remove_Checks (Exp);
return New_Exp;
end Duplicate_Subexpr_Move_Checks;
-------------------------
-- Enclosing_Init_Proc --
-------------------------
function Enclosing_Init_Proc return Entity_Id is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Is_Init_Proc (S) then
return S;
else
S := Scope (S);
end if;
end loop;
return Empty;
end Enclosing_Init_Proc;
--------------------
-- Ensure_Defined --
--------------------
procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
IR : Node_Id;
begin
-- An itype reference must only be created if this is a local itype, so
-- that gigi can elaborate it on the proper objstack.
if Is_Itype (Typ) and then Scope (Typ) = Current_Scope then
IR := Make_Itype_Reference (Sloc (N));
Set_Itype (IR, Typ);
Insert_Action (N, IR);
end if;
end Ensure_Defined;
-------------------
-- Evaluate_Name --
-------------------
procedure Evaluate_Name (Nam : Node_Id) is
begin
case Nkind (Nam) is
-- For an aggregate, force its evaluation
when N_Aggregate =>
Force_Evaluation (Nam);
-- For an attribute reference or an indexed component, evaluate the
-- prefix, which is itself a name, recursively, and then force the
-- evaluation of all the subscripts (or attribute expressions).
when N_Attribute_Reference
| N_Indexed_Component
=>
Evaluate_Name (Prefix (Nam));
declare
E : Node_Id;
begin
E := First (Expressions (Nam));
while Present (E) loop
Force_Evaluation (E);
if Is_Rewrite_Substitution (E) then
Set_Do_Range_Check
(E, Do_Range_Check (Original_Node (E)));
end if;
Next (E);
end loop;
end;
-- For an explicit dereference, we simply force the evaluation of
-- the name expression. The dereference provides a value that is the
-- address for the renamed object, and it is precisely this value
-- that we want to preserve.
when N_Explicit_Dereference =>
Force_Evaluation (Prefix (Nam));
-- For a function call, we evaluate the call; same for an operator
when N_Function_Call
| N_Op
=>
Force_Evaluation (Nam);
-- For a qualified expression, we evaluate the expression
when N_Qualified_Expression =>
Evaluate_Name (Expression (Nam));
-- For a selected component, we simply evaluate the prefix
when N_Selected_Component =>
Evaluate_Name (Prefix (Nam));
-- For a slice, we evaluate the prefix, as for the indexed component
-- case and then, if there is a range present, either directly or as
-- the constraint of a discrete subtype indication, we evaluate the
-- two bounds of this range.
when N_Slice =>
Evaluate_Name (Prefix (Nam));
Evaluate_Slice_Bounds (Nam);
-- For a type conversion, the expression of the conversion must be
-- the name of an object, and we simply need to evaluate this name.
when N_Type_Conversion =>
Evaluate_Name (Expression (Nam));
-- The remaining cases are direct name and character literal. In all
-- these cases, we do nothing, since we want to reevaluate each time
-- the renamed object is used. ??? There are more remaining cases, at
-- least in the GNATprove_Mode, where this routine is called in more
-- contexts than in GNAT.
when others =>
null;
end case;
end Evaluate_Name;
---------------------------
-- Evaluate_Slice_Bounds --
---------------------------
procedure Evaluate_Slice_Bounds (Slice : Node_Id) is
DR : constant Node_Id := Discrete_Range (Slice);
Constr : Node_Id;
Rexpr : Node_Id;
begin
if Nkind (DR) = N_Range then
Force_Evaluation (Low_Bound (DR));
Force_Evaluation (High_Bound (DR));
elsif Nkind (DR) = N_Subtype_Indication then
Constr := Constraint (DR);
if Nkind (Constr) = N_Range_Constraint then
Rexpr := Range_Expression (Constr);
Force_Evaluation (Low_Bound (Rexpr));
Force_Evaluation (High_Bound (Rexpr));
end if;
end if;
end Evaluate_Slice_Bounds;
---------------------
-- Evolve_And_Then --
---------------------
procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
begin
if No (Cond) then
Cond := Cond1;
else
Cond :=
Make_And_Then (Sloc (Cond1),
Left_Opnd => Cond,
Right_Opnd => Cond1);
end if;
end Evolve_And_Then;
--------------------
-- Evolve_Or_Else --
--------------------
procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
begin
if No (Cond) then
Cond := Cond1;
else
Cond :=
Make_Or_Else (Sloc (Cond1),
Left_Opnd => Cond,
Right_Opnd => Cond1);
end if;
end Evolve_Or_Else;
-------------------------------
-- Expand_Sliding_Conversion --
-------------------------------
procedure Expand_Sliding_Conversion (N : Node_Id; Arr_Typ : Entity_Id) is
pragma Assert (Is_Array_Type (Arr_Typ)
and then not Is_Constrained (Arr_Typ)
and then Is_Fixed_Lower_Bound_Array_Subtype (Arr_Typ));
Constraints : List_Id;
Index : Node_Id := First_Index (Arr_Typ);
Loc : constant Source_Ptr := Sloc (N);
Subt_Decl : Node_Id;
Subt : Entity_Id;
Subt_Low : Node_Id;
Subt_High : Node_Id;
Act_Subt : Entity_Id;
Act_Index : Node_Id;
Act_Low : Node_Id;
Act_High : Node_Id;
Adjust_Incr : Node_Id;
Dimension : Int := 0;
All_FLBs_Match : Boolean := True;
begin
-- This procedure is called during semantic analysis, and we only expand
-- a sliding conversion when Expander_Active, to avoid doing it during
-- preanalysis (which can lead to problems with the target subtype not
-- getting properly expanded during later full analysis). Also, sliding
-- should never be needed for string literals, because their bounds are
-- determined directly based on the fixed lower bound of Arr_Typ and
-- their length.
if Expander_Active and then Nkind (N) /= N_String_Literal then
Constraints := New_List;
Act_Subt := Get_Actual_Subtype (N);
Act_Index := First_Index (Act_Subt);
-- Loop over the indexes of the fixed-lower-bound array type or
-- subtype to build up an index constraint for constructing the
-- subtype that will be the target of a conversion of the array
-- object that may need a sliding conversion.
while Present (Index) loop
pragma Assert (Present (Act_Index));
Dimension := Dimension + 1;
Get_Index_Bounds (Act_Index, Act_Low, Act_High);
-- If Index defines a normal unconstrained range (range <>),
-- then we will simply use the bounds of the actual subtype's
-- corresponding index range.
if not Is_Fixed_Lower_Bound_Index_Subtype (Etype (Index)) then
Subt_Low := Act_Low;
Subt_High := Act_High;
-- Otherwise, a range will be created with a low bound given by
-- the fixed lower bound of the array subtype's index, and with
-- high bound given by (Actual'Length + fixed lower bound - 1).
else
if Nkind (Index) = N_Subtype_Indication then
Subt_Low :=
New_Copy_Tree
(Low_Bound (Range_Expression (Constraint (Index))));
else
pragma Assert (Nkind (Index) = N_Range);
Subt_Low := New_Copy_Tree (Low_Bound (Index));
end if;
-- If either we have a nonstatic lower bound, or the target and
-- source subtypes are statically known to have unequal lower
-- bounds, then we will need to make a subtype conversion to
-- slide the bounds. However, if all of the indexes' lower
-- bounds are static and known to be equal (the common case),
-- then no conversion will be needed, and we'll end up not
-- creating the subtype or the conversion (though we still
-- build up the index constraint, which will simply be unused).
if not (Compile_Time_Known_Value (Subt_Low)
and then Compile_Time_Known_Value (Act_Low))
or else Expr_Value (Subt_Low) /= Expr_Value (Act_Low)
then
All_FLBs_Match := False;
end if;
-- Apply 'Pos to lower bound, which may be of an enumeration
-- type, before subtracting.
Adjust_Incr :=
Make_Op_Subtract (Loc,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Etype (Act_Index), Loc),
Attribute_Name =>
Name_Pos,
Expressions =>
New_List (New_Copy_Tree (Subt_Low))),
Make_Integer_Literal (Loc, 1));
-- Apply 'Val to the result of adding the increment to the
-- length, to handle indexes of enumeration types.
Subt_High :=
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Etype (Act_Index), Loc),
Attribute_Name =>
Name_Val,
Expressions =>
New_List (Make_Op_Add (Loc,
Make_Attribute_Reference (Loc,
Prefix =>
New_Occurrence_Of (Act_Subt, Loc),
Attribute_Name =>
Name_Length,
Expressions =>
New_List
(Make_Integer_Literal
(Loc, Dimension))),
Adjust_Incr)));
end if;
Append (Make_Range (Loc, Subt_Low, Subt_High), Constraints);
Next (Index);
Next (Act_Index);
end loop;
-- If for each index with a fixed lower bound (FLB), the lower bound
-- of the corresponding index of the actual subtype is statically
-- known be equal to the FLB, then a sliding conversion isn't needed
-- at all, so just return without building a subtype or conversion.
if All_FLBs_Match then
return;
end if;
-- A sliding conversion is needed, so create the target subtype using
-- the index constraint created above, and rewrite the expression
-- as a conversion to that subtype.
Subt := Make_Temporary (Loc, 'S', Related_Node => N);
Set_Is_Internal (Subt);
Subt_Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Subt,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark =>
New_Occurrence_Of (Arr_Typ, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => Constraints)));
Mark_Rewrite_Insertion (Subt_Decl);
-- The actual subtype is an Itype, so we analyze the declaration,
-- but do not attach it to the tree.
Set_Parent (Subt_Decl, N);
Set_Is_Itype (Subt);
Analyze (Subt_Decl, Suppress => All_Checks);
Set_Associated_Node_For_Itype (Subt, N);
Set_Has_Delayed_Freeze (Subt, False);
-- We need to freeze the actual subtype immediately. This is needed
-- because otherwise this Itype will not get frozen at all, and it is
-- always safe to freeze on creation because any associated types
-- must be frozen at this point.
Freeze_Itype (Subt, N);
Rewrite (N,
Make_Type_Conversion (Loc,
Subtype_Mark =>
New_Occurrence_Of (Subt, Loc),
Expression => Relocate_Node (N)));
Analyze (N);
end if;
end Expand_Sliding_Conversion;
-----------------------------------------
-- Expand_Static_Predicates_In_Choices --
-----------------------------------------
procedure Expand_Static_Predicates_In_Choices (N : Node_Id) is
pragma Assert (Nkind (N) in N_Case_Statement_Alternative | N_Variant);
Choices : List_Id := Discrete_Choices (N);
Choice : Node_Id;
Next_C : Node_Id;
P : Node_Id;
C : Node_Id;
begin
-- If this is an "others" alternative, we need to process any static
-- predicates in its Others_Discrete_Choices.
if Nkind (First (Choices)) = N_Others_Choice then
Choices := Others_Discrete_Choices (First (Choices));
end if;
Choice := First (Choices);
while Present (Choice) loop
Next_C := Next (Choice);
-- Check for name of subtype with static predicate
if Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
and then Has_Predicates (Entity (Choice))
then
-- Loop through entries in predicate list, converting to choices
-- and inserting in the list before the current choice. Note that
-- if the list is empty, corresponding to a False predicate, then
-- no choices are inserted.
P := First (Static_Discrete_Predicate (Entity (Choice)));
while Present (P) loop
-- If low bound and high bounds are equal, copy simple choice
if Expr_Value (Low_Bound (P)) = Expr_Value (High_Bound (P)) then
C := New_Copy (Low_Bound (P));
-- Otherwise copy a range
else
C := New_Copy (P);
end if;
-- Change Sloc to referencing choice (rather than the Sloc of
-- the predicate declaration element itself).
Set_Sloc (C, Sloc (Choice));
Insert_Before (Choice, C);
Next (P);
end loop;
-- Delete the predicated entry
Remove (Choice);
end if;
-- Move to next choice to check
Choice := Next_C;
end loop;
Set_Has_SP_Choice (N, False);
end Expand_Static_Predicates_In_Choices;
------------------------------
-- Expand_Subtype_From_Expr --
------------------------------
-- This function is applicable for both static and dynamic allocation of
-- objects which are constrained by an initial expression. Basically it
-- transforms an unconstrained subtype indication into a constrained one.
-- The expression may also be transformed in certain cases in order to
-- avoid multiple evaluation. In the static allocation case, the general
-- scheme is:
-- Val : T := Expr;
-- is transformed into
-- Val : Constrained_Subtype_Of_T := Maybe_Modified_Expr;
--
-- Here are the main cases :
--
-- <if Expr is a Slice>
-- Val : T ([Index_Subtype (Expr)]) := Expr;
--
-- <elsif Expr is a String Literal>
-- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
--
-- <elsif Expr is Constrained>
-- subtype T is Type_Of_Expr
-- Val : T := Expr;
--
-- <elsif Expr is an entity_name>
-- Val : T (constraints taken from Expr) := Expr;
--
-- <else>
-- type Axxx is access all T;
-- Rval : Axxx := Expr'ref;
-- Val : T (constraints taken from Rval) := Rval.all;
-- ??? note: when the Expression is allocated in the secondary stack
-- we could use it directly instead of copying it by declaring
-- Val : T (...) renames Rval.all
procedure Expand_Subtype_From_Expr
(N : Node_Id;
Unc_Type : Entity_Id;
Subtype_Indic : Node_Id;
Exp : Node_Id;
Related_Id : Entity_Id := Empty)
is
Loc : constant Source_Ptr := Sloc (N);
Exp_Typ : constant Entity_Id := Etype (Exp);
T : Entity_Id;
begin
-- In general we cannot build the subtype if expansion is disabled,
-- because internal entities may not have been defined. However, to
-- avoid some cascaded errors, we try to continue when the expression is
-- an array (or string), because it is safe to compute the bounds. It is
-- in fact required to do so even in a generic context, because there
-- may be constants that depend on the bounds of a string literal, both
-- standard string types and more generally arrays of characters.
-- In GNATprove mode, these extra subtypes are not needed, unless Exp is
-- a static expression. In that case, the subtype will be constrained
-- while the original type might be unconstrained, so expanding the type
-- is necessary both for passing legality checks in GNAT and for precise
-- analysis in GNATprove.
if GNATprove_Mode and then not Is_Static_Expression (Exp) then
return;
end if;
if not Expander_Active
and then (No (Etype (Exp)) or else not Is_String_Type (Etype (Exp)))
then
return;
end if;
if Nkind (Exp) = N_Slice then
declare
Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
begin
Rewrite (Subtype_Indic,
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List
(New_Occurrence_Of (Slice_Type, Loc)))));
-- This subtype indication may be used later for constraint checks
-- we better make sure that if a variable was used as a bound of
-- the original slice, its value is frozen.
Evaluate_Slice_Bounds (Exp);
end;
elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
Rewrite (Subtype_Indic,
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List (
Make_Literal_Range (Loc,
Literal_Typ => Exp_Typ)))));
-- If the type of the expression is an internally generated type it
-- may not be necessary to create a new subtype. However there are two
-- exceptions: references to the current instances, and aliased array
-- object declarations for which the back end has to create a template.
elsif Is_Constrained (Exp_Typ)
and then not Is_Class_Wide_Type (Unc_Type)
and then
(Nkind (N) /= N_Object_Declaration
or else not Is_Entity_Name (Expression (N))
or else not Comes_From_Source (Entity (Expression (N)))
or else not Is_Array_Type (Exp_Typ)
or else not Aliased_Present (N))
then
if Is_Itype (Exp_Typ)
-- When this is for an object declaration, the caller may want to
-- set Is_Constr_Subt_For_U_Nominal on the subtype, so we must make
-- sure that either the subtype has been built for the expression,
-- typically for an aggregate, or the flag is already set on it;
-- otherwise it could end up being set on the nominal constrained
-- subtype of an object and thus later cause the failure to detect
-- non-statically-matching subtypes on 'Access of this object.
and then (Nkind (N) /= N_Object_Declaration
or else Nkind (Original_Node (Exp)) = N_Aggregate
or else Is_Constr_Subt_For_U_Nominal (Exp_Typ))
then
-- Within an initialization procedure, a selected component
-- denotes a component of the enclosing record, and it appears as
-- an actual in a call to its own initialization procedure. If
-- this component depends on the outer discriminant, we must
-- generate the proper actual subtype for it.
if Nkind (Exp) = N_Selected_Component
and then Within_Init_Proc
then
declare
Decl : constant Node_Id :=
Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
begin
if Present (Decl) then
Insert_Action (N, Decl);
T := Defining_Identifier (Decl);
else
T := Exp_Typ;
end if;
end;
-- No need to generate a new subtype
else
T := Exp_Typ;
end if;
else
T := Make_Temporary (Loc, 'T');
Insert_Action (N,
Make_Subtype_Declaration (Loc,
Defining_Identifier => T,
Subtype_Indication => New_Occurrence_Of (Exp_Typ, Loc)));
-- This type is marked as an itype even though it has an explicit
-- declaration since otherwise Is_Generic_Actual_Type can get
-- set, resulting in the generation of spurious errors. (See
-- sem_ch8.Analyze_Package_Renaming and Sem_Type.Covers.)
Set_Is_Itype (T);
Set_Associated_Node_For_Itype (T, Exp);
end if;
Rewrite (Subtype_Indic, New_Occurrence_Of (T, Loc));
-- Nothing needs to be done for private types with unknown discriminants
-- if the underlying type is not an unconstrained composite type or it
-- is an unchecked union.
elsif Is_Private_Type (Unc_Type)
and then Has_Unknown_Discriminants (Unc_Type)
and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
or else Is_Constrained (Underlying_Type (Unc_Type))
or else Is_Unchecked_Union (Underlying_Type (Unc_Type)))
then
null;
-- Case of derived type with unknown discriminants where the parent type
-- also has unknown discriminants.
elsif Is_Record_Type (Unc_Type)
and then not Is_Class_Wide_Type (Unc_Type)
and then Has_Unknown_Discriminants (Unc_Type)
and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
then
-- Nothing to be done if no underlying record view available
-- If this is a limited type derived from a type with unknown
-- discriminants, do not expand either, so that subsequent expansion
-- of the call can add build-in-place parameters to call.
if No (Underlying_Record_View (Unc_Type))
or else Is_Limited_Type (Unc_Type)
then
null;
-- Otherwise use the Underlying_Record_View to create the proper
-- constrained subtype for an object of a derived type with unknown
-- discriminants.
else
Rewrite (Subtype_Indic,
Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type)));
end if;
-- Renamings of class-wide interface types require no equivalent
-- constrained type declarations because we only need to reference
-- the tag component associated with the interface. The same is
-- presumably true for class-wide types in general, so this test
-- is broadened to include all class-wide renamings, which also
-- avoids cases of unbounded recursion in Remove_Side_Effects.
-- (Is this really correct, or are there some cases of class-wide
-- renamings that require action in this procedure???)
elsif Present (N)
and then Nkind (N) = N_Object_Renaming_Declaration
and then Is_Class_Wide_Type (Unc_Type)
then
null;
-- In Ada 95 nothing to be done if the type of the expression is limited
-- because in this case the expression cannot be copied, and its use can
-- only be by reference.
-- In Ada 2005 the context can be an object declaration whose expression
-- is a function that returns in place. If the nominal subtype has
-- unknown discriminants, the call still provides constraints on the
-- object, and we have to create an actual subtype from it.
-- If the type is class-wide, the expression is dynamically tagged and
-- we do not create an actual subtype either. Ditto for an interface.
-- For now this applies only if the type is immutably limited, and the
-- function being called is build-in-place. This will have to be revised
-- when build-in-place functions are generalized to other types.
elsif Is_Inherently_Limited_Type (Exp_Typ)
and then
(Is_Class_Wide_Type (Exp_Typ)
or else Is_Interface (Exp_Typ)
or else not Has_Unknown_Discriminants (Exp_Typ)
or else not Is_Composite_Type (Unc_Type))
then
null;
-- For limited objects initialized with build-in-place function calls,
-- nothing to be done; otherwise we prematurely introduce an N_Reference
-- node in the expression initializing the object, which breaks the
-- circuitry that detects and adds the additional arguments to the
-- called function.
elsif Is_Build_In_Place_Function_Call (Exp) then
null;
-- If the expression is an uninitialized aggregate, no need to build
-- a subtype from the expression, because this may require the use of
-- dynamic memory to create the object.
elsif Is_Uninitialized_Aggregate (Exp, Exp_Typ) then
Rewrite (Subtype_Indic, New_Occurrence_Of (Etype (Exp), Sloc (N)));
if Nkind (N) = N_Object_Declaration then
Set_Expression (N, Empty);
Set_No_Initialization (N);
end if;
else
Rewrite (Subtype_Indic,
Make_Subtype_From_Expr (Exp, Unc_Type, Related_Id));
end if;
end Expand_Subtype_From_Expr;
---------------------------------------------
-- Expression_Contains_Primitives_Calls_Of --
---------------------------------------------
function Expression_Contains_Primitives_Calls_Of
(Expr : Node_Id;
Typ : Entity_Id) return Boolean
is
U_Typ : constant Entity_Id := Unique_Entity (Typ);
Calls_OK : Boolean := False;
-- This flag is set to True when expression Expr contains at least one
-- call to a nondispatching primitive function of Typ.
function Search_Primitive_Calls (N : Node_Id) return Traverse_Result;
-- Search for nondispatching calls to primitive functions of type Typ
----------------------------
-- Search_Primitive_Calls --
----------------------------
function Search_Primitive_Calls (N : Node_Id) return Traverse_Result is
Disp_Typ : Entity_Id;
Subp : Entity_Id;
begin
-- Detect a function call that could denote a nondispatching
-- primitive of the input type.
if Nkind (N) = N_Function_Call
and then Is_Entity_Name (Name (N))
then
Subp := Entity (Name (N));
-- Do not consider function calls with a controlling argument, as
-- those are always dispatching calls.
if Is_Dispatching_Operation (Subp)
and then No (Controlling_Argument (N))
then
Disp_Typ := Find_Dispatching_Type (Subp);
-- To qualify as a suitable primitive, the dispatching type of
-- the function must be the input type.
if Present (Disp_Typ)
and then Unique_Entity (Disp_Typ) = U_Typ
then
Calls_OK := True;
-- There is no need to continue the traversal, as one such
-- call suffices.
return Abandon;
end if;
end if;
end if;
return OK;
end Search_Primitive_Calls;
procedure Search_Calls is new Traverse_Proc (Search_Primitive_Calls);
-- Start of processing for Expression_Contains_Primitives_Calls_Of_Type
begin
Search_Calls (Expr);
return Calls_OK;
end Expression_Contains_Primitives_Calls_Of;
----------------------
-- Finalize_Address --
----------------------
function Finalize_Address (Typ : Entity_Id) return Entity_Id is
Btyp : constant Entity_Id := Base_Type (Typ);
Utyp : Entity_Id := Typ;
begin
-- Handle protected class-wide or task class-wide types
if Is_Class_Wide_Type (Utyp) then
if Is_Concurrent_Type (Root_Type (Utyp)) then
Utyp := Root_Type (Utyp);
elsif Is_Private_Type (Root_Type (Utyp))
and then Present (Full_View (Root_Type (Utyp)))
and then Is_Concurrent_Type (Full_View (Root_Type (Utyp)))
then
Utyp := Full_View (Root_Type (Utyp));
end if;
end if;
-- Handle private types
if Is_Private_Type (Utyp) and then Present (Full_View (Utyp)) then
Utyp := Full_View (Utyp);
end if;
-- Handle protected and task types
if Is_Concurrent_Type (Utyp)
and then Present (Corresponding_Record_Type (Utyp))
then
Utyp := Corresponding_Record_Type (Utyp);
end if;
Utyp := Underlying_Type (Base_Type (Utyp));
-- Handle incomplete types
if No (Utyp) then
return Empty;
end if;
-- Deal with untagged derivation of private views. If the parent is
-- now known to be protected, the finalization routine is the one
-- defined on the corresponding record of the ancestor (corresponding
-- records do not automatically inherit operations, but maybe they
-- should???)
if Is_Untagged_Derivation (Btyp) then
if Is_Protected_Type (Btyp) then
Utyp := Corresponding_Record_Type (Root_Type (Btyp));
else
Utyp := Underlying_Type (Root_Type (Btyp));
if Is_Protected_Type (Utyp) then
Utyp := Corresponding_Record_Type (Utyp);
end if;
end if;
end if;
-- If the underlying_type is a subtype, we are dealing with the
-- completion of a private type. We need to access the base type and
-- generate a conversion to it.
if Utyp /= Base_Type (Utyp) then
pragma Assert (Is_Private_Type (Typ));
Utyp := Base_Type (Utyp);
end if;
-- When dealing with an internally built full view for a type with
-- unknown discriminants, use the original record type.
if Is_Underlying_Record_View (Utyp) then
Utyp := Etype (Utyp);
end if;
return TSS (Utyp, TSS_Finalize_Address);
end Finalize_Address;
------------------------
-- Find_Interface_ADT --
------------------------
function Find_Interface_ADT
(T : Entity_Id;
Iface : Entity_Id) return Elmt_Id
is
ADT : Elmt_Id;
Typ : Entity_Id := T;
begin
pragma Assert (Is_Interface (Iface));
-- Handle private types
if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
Typ := Full_View (Typ);
end if;
-- Handle access types
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
end if;
-- Handle task and protected types implementing interfaces
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
pragma Assert
(not Is_Class_Wide_Type (Typ)
and then Ekind (Typ) /= E_Incomplete_Type);
if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
return First_Elmt (Access_Disp_Table (Typ));
else
ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
while Present (ADT)
and then Present (Related_Type (Node (ADT)))
and then Related_Type (Node (ADT)) /= Iface
and then not Is_Ancestor (Iface, Related_Type (Node (ADT)),
Use_Full_View => True)
loop
Next_Elmt (ADT);
end loop;
pragma Assert (Present (Related_Type (Node (ADT))));
return ADT;
end if;
end Find_Interface_ADT;
------------------------
-- Find_Interface_Tag --
------------------------
function Find_Interface_Tag
(T : Entity_Id;
Iface : Entity_Id) return Entity_Id
is
AI_Tag : Entity_Id := Empty;
Found : Boolean := False;
Typ : Entity_Id := T;
procedure Find_Tag (Typ : Entity_Id);
-- Internal subprogram used to recursively climb to the ancestors
--------------
-- Find_Tag --
--------------
procedure Find_Tag (Typ : Entity_Id) is
AI_Elmt : Elmt_Id;
AI : Node_Id;
begin
-- This routine does not handle the case in which the interface is an
-- ancestor of Typ. That case is handled by the enclosing subprogram.
pragma Assert (Typ /= Iface);
-- Climb to the root type handling private types
if Present (Full_View (Etype (Typ))) then
if Full_View (Etype (Typ)) /= Typ then
Find_Tag (Full_View (Etype (Typ)));
end if;
elsif Etype (Typ) /= Typ then
Find_Tag (Etype (Typ));
end if;
-- Traverse the list of interfaces implemented by the type
if not Found
and then Present (Interfaces (Typ))
and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
then
-- Skip the tag associated with the primary table
AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
pragma Assert (Present (AI_Tag));
AI_Elmt := First_Elmt (Interfaces (Typ));
while Present (AI_Elmt) loop
AI := Node (AI_Elmt);
if AI = Iface
or else Is_Ancestor (Iface, AI, Use_Full_View => True)
then
Found := True;
return;
end if;
AI_Tag := Next_Tag_Component (AI_Tag);
Next_Elmt (AI_Elmt);
end loop;
end if;
end Find_Tag;
-- Start of processing for Find_Interface_Tag
begin
pragma Assert (Is_Interface (Iface));
-- Handle access types
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
end if;
-- Handle class-wide types
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
-- Handle private types
if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
Typ := Full_View (Typ);
end if;
-- Handle entities from the limited view
if Ekind (Typ) = E_Incomplete_Type then
pragma Assert (Present (Non_Limited_View (Typ)));
Typ := Non_Limited_View (Typ);
end if;
-- Handle task and protected types implementing interfaces
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
-- If the interface is an ancestor of the type, then it shared the
-- primary dispatch table.
if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
return First_Tag_Component (Typ);
-- Otherwise we need to search for its associated tag component
else
Find_Tag (Typ);
return AI_Tag;
end if;
end Find_Interface_Tag;
---------------------------
-- Find_Optional_Prim_Op --
---------------------------
function Find_Optional_Prim_Op
(T : Entity_Id; Name : Name_Id) return Entity_Id
is
Prim : Elmt_Id;
Typ : Entity_Id := T;
Op : Entity_Id;
begin
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
Typ := Underlying_Type (Typ);
-- We cannot find the operation if there is no full view available
if No (Typ) then
return Empty;
end if;
-- Loop through primitive operations
Prim := First_Elmt (Primitive_Operations (Typ));
while Present (Prim) loop
Op := Node (Prim);
-- We can retrieve primitive operations by name if it is an internal
-- name. For equality we must check that both of its operands have
-- the same type, to avoid confusion with user-defined equalities
-- than may have a asymmetric signature.
exit when Chars (Op) = Name
and then
(Name /= Name_Op_Eq
or else Etype (First_Formal (Op)) = Etype (Last_Formal (Op)));
Next_Elmt (Prim);
end loop;
return Node (Prim); -- Empty if not found
end Find_Optional_Prim_Op;
---------------------------
-- Find_Optional_Prim_Op --
---------------------------
function Find_Optional_Prim_Op
(T : Entity_Id;
Name : TSS_Name_Type) return Entity_Id
is
Inher_Op : Entity_Id := Empty;
Own_Op : Entity_Id := Empty;
Prim_Elmt : Elmt_Id;
Prim_Id : Entity_Id;
Typ : Entity_Id := T;
begin
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
Typ := Underlying_Type (Typ);
-- This search is based on the assertion that the dispatching version
-- of the TSS routine always precedes the real primitive.
Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
while Present (Prim_Elmt) loop
Prim_Id := Node (Prim_Elmt);
if Is_TSS (Prim_Id, Name) then
if Present (Alias (Prim_Id)) then
Inher_Op := Prim_Id;
else
Own_Op := Prim_Id;
end if;
end if;
Next_Elmt (Prim_Elmt);
end loop;
if Present (Own_Op) then
return Own_Op;
elsif Present (Inher_Op) then
return Inher_Op;
else
return Empty;
end if;
end Find_Optional_Prim_Op;
------------------
-- Find_Prim_Op --
------------------
function Find_Prim_Op
(T : Entity_Id; Name : Name_Id) return Entity_Id
is
Result : constant Entity_Id := Find_Optional_Prim_Op (T, Name);
begin
if No (Result) then
raise Program_Error;
end if;
return Result;
end Find_Prim_Op;
------------------
-- Find_Prim_Op --
------------------
function Find_Prim_Op
(T : Entity_Id;
Name : TSS_Name_Type) return Entity_Id
is
Result : constant Entity_Id := Find_Optional_Prim_Op (T, Name);
begin
if No (Result) then
raise Program_Error;
end if;
return Result;
end Find_Prim_Op;
----------------------------
-- Find_Protection_Object --
----------------------------
function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
S : Entity_Id;
begin
S := Scop;
while Present (S) loop
if Ekind (S) in E_Entry | E_Entry_Family | E_Function | E_Procedure
and then Present (Protection_Object (S))
then
return Protection_Object (S);
end if;
S := Scope (S);
end loop;
-- If we do not find a Protection object in the scope chain, then
-- something has gone wrong, most likely the object was never created.
raise Program_Error;
end Find_Protection_Object;
--------------------------
-- Find_Protection_Type --
--------------------------
function Find_Protection_Type (Conc_Typ : Entity_Id) return Entity_Id is
Comp : Entity_Id;
Typ : Entity_Id := Conc_Typ;
begin
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
-- Since restriction violations are not considered serious errors, the
-- expander remains active, but may leave the corresponding record type
-- malformed. In such cases, component _object is not available so do
-- not look for it.
if not Analyzed (Typ) then
return Empty;
end if;
Comp := First_Component (Typ);
while Present (Comp) loop
if Chars (Comp) = Name_uObject then
return Base_Type (Etype (Comp));
end if;
Next_Component (Comp);
end loop;
-- The corresponding record of a protected type should always have an
-- _object field.
raise Program_Error;
end Find_Protection_Type;
function Find_Storage_Op
(Typ : Entity_Id;
Nam : Name_Id) return Entity_Id
is
use Sem_Util.Storage_Model_Support;
begin
if Has_Storage_Model_Type_Aspect (Typ) then
return Get_Storage_Model_Type_Entity (Typ, Nam);
-- Otherwise we assume that Typ is a descendant of Root_Storage_Pool
else
return Find_Prim_Op (Typ, Nam);
end if;
end Find_Storage_Op;
-----------------------
-- Find_Hook_Context --
-----------------------
function Find_Hook_Context (N : Node_Id) return Node_Id is
Par : Node_Id;
Top : Node_Id;
Wrapped_Node : Node_Id;
-- Note: if we are in a transient scope, we want to reuse it as
-- the context for actions insertion, if possible. But if N is itself
-- part of the stored actions for the current transient scope,
-- then we need to insert at the appropriate (inner) location in
-- the not as an action on Node_To_Be_Wrapped.
In_Cond_Expr : constant Boolean := Within_Case_Or_If_Expression (N);
begin
-- When the node is inside a case/if expression, the lifetime of any
-- temporary controlled object is extended. Find a suitable insertion
-- node by locating the topmost case or if expressions.
if In_Cond_Expr then
Par := N;
Top := N;
while Present (Par) loop
if Nkind (Original_Node (Par)) in
N_Case_Expression | N_If_Expression
then
Top := Par;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
-- The topmost case or if expression is now recovered, but it may
-- still not be the correct place to add generated code. Climb to
-- find a parent that is part of a declarative or statement list,
-- and is not a list of actuals in a call.
Par := Top;
while Present (Par) loop
if Is_List_Member (Par)
and then Nkind (Par) not in N_Component_Association
| N_Discriminant_Association
| N_Parameter_Association
| N_Pragma_Argument_Association
| N_Aggregate
| N_Delta_Aggregate
| N_Extension_Aggregate
| N_Elsif_Part
and then Nkind (Parent (Par)) not in N_Function_Call
| N_Procedure_Call_Statement
| N_Entry_Call_Statement
then
return Par;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
return Par;
else
Par := N;
while Present (Par) loop
-- Keep climbing past various operators
if Nkind (Parent (Par)) in N_Op
or else Nkind (Parent (Par)) in N_And_Then | N_Or_Else
then
Par := Parent (Par);
else
exit;
end if;
end loop;
Top := Par;
-- The node may be located in a pragma in which case return the
-- pragma itself:
-- pragma Precondition (... and then Ctrl_Func_Call ...);
-- Similar case occurs when the node is related to an object
-- declaration or assignment:
-- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
-- Another case to consider is when the node is part of a return
-- statement:
-- return ... and then Ctrl_Func_Call ...;
-- Another case is when the node acts as a formal in a procedure
-- call statement:
-- Proc (... and then Ctrl_Func_Call ...);
if Scope_Is_Transient then
Wrapped_Node := Node_To_Be_Wrapped;
else
Wrapped_Node := Empty;
end if;
while Present (Par) loop
if Par = Wrapped_Node
or else Nkind (Par) in N_Assignment_Statement
| N_Object_Declaration
| N_Pragma
| N_Procedure_Call_Statement
| N_Simple_Return_Statement
then
return Par;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
-- Return the topmost short circuit operator
return Top;
end if;
end Find_Hook_Context;
------------------------------
-- Following_Address_Clause --
------------------------------
function Following_Address_Clause (D : Node_Id) return Node_Id is
Id : constant Entity_Id := Defining_Identifier (D);
Result : Node_Id;
Par : Node_Id;
function Check_Decls (D : Node_Id) return Node_Id;
-- This internal function differs from the main function in that it
-- gets called to deal with a following package private part, and
-- it checks declarations starting with D (the main function checks
-- declarations following D). If D is Empty, then Empty is returned.
-----------------
-- Check_Decls --
-----------------
function Check_Decls (D : Node_Id) return Node_Id is
Decl : Node_Id;
begin
Decl := D;
while Present (Decl) loop
if Nkind (Decl) = N_At_Clause
and then Chars (Identifier (Decl)) = Chars (Id)
then
return Decl;
elsif Nkind (Decl) = N_Attribute_Definition_Clause
and then Chars (Decl) = Name_Address
and then Chars (Name (Decl)) = Chars (Id)
then
return Decl;
end if;
Next (Decl);
end loop;
-- Otherwise not found, return Empty
return Empty;
end Check_Decls;
-- Start of processing for Following_Address_Clause
begin
-- If parser detected no address clause for the identifier in question,
-- then the answer is a quick NO, without the need for a search.
if not Get_Name_Table_Boolean1 (Chars (Id)) then
return Empty;
end if;
-- Otherwise search current declarative unit
Result := Check_Decls (Next (D));
if Present (Result) then
return Result;
end if;
-- Check for possible package private part following
Par := Parent (D);
if Nkind (Par) = N_Package_Specification
and then Visible_Declarations (Par) = List_Containing (D)
and then Present (Private_Declarations (Par))
then
-- Private part present, check declarations there
return Check_Decls (First (Private_Declarations (Par)));
else
-- No private part, clause not found, return Empty
return Empty;
end if;
end Following_Address_Clause;
----------------------
-- Force_Evaluation --
----------------------
procedure Force_Evaluation
(Exp : Node_Id;
Name_Req : Boolean := False;
Related_Id : Entity_Id := Empty;
Is_Low_Bound : Boolean := False;
Is_High_Bound : Boolean := False;
Discr_Number : Int := 0;
Mode : Force_Evaluation_Mode := Relaxed)
is
begin
Remove_Side_Effects
(Exp => Exp,
Name_Req => Name_Req,
Variable_Ref => True,
Renaming_Req => False,
Related_Id => Related_Id,
Is_Low_Bound => Is_Low_Bound,
Is_High_Bound => Is_High_Bound,
Discr_Number => Discr_Number,
Check_Side_Effects =>
Is_Static_Expression (Exp)
or else Mode = Relaxed);
end Force_Evaluation;
---------------------------------
-- Fully_Qualified_Name_String --
---------------------------------
function Fully_Qualified_Name_String
(E : Entity_Id;
Append_NUL : Boolean := True) return String_Id
is
procedure Internal_Full_Qualified_Name (E : Entity_Id);
-- Compute recursively the qualified name without NUL at the end, adding
-- it to the currently started string being generated
----------------------------------
-- Internal_Full_Qualified_Name --
----------------------------------
procedure Internal_Full_Qualified_Name (E : Entity_Id) is
Ent : Entity_Id;
begin
-- Deal properly with child units
if Nkind (E) = N_Defining_Program_Unit_Name then
Ent := Defining_Identifier (E);
else
Ent := E;
end if;
-- Compute qualification recursively (only "Standard" has no scope)
if Present (Scope (Scope (Ent))) then
Internal_Full_Qualified_Name (Scope (Ent));
Store_String_Char (Get_Char_Code ('.'));
end if;
-- Every entity should have a name except some expanded blocks
-- don't bother about those.
if Chars (Ent) = No_Name then
return;
end if;
-- Generates the entity name in upper case
Get_Decoded_Name_String (Chars (Ent));
Set_Casing (All_Upper_Case);
Store_String_Chars (Name_Buffer (1 .. Name_Len));
return;
end Internal_Full_Qualified_Name;
-- Start of processing for Full_Qualified_Name
begin
Start_String;
Internal_Full_Qualified_Name (E);
if Append_NUL then
Store_String_Char (Get_Char_Code (ASCII.NUL));
end if;
return End_String;
end Fully_Qualified_Name_String;
---------------------------------
-- Get_Current_Value_Condition --
---------------------------------
-- Note: the implementation of this procedure is very closely tied to the
-- implementation of Set_Current_Value_Condition. In the Get procedure, we
-- interpret Current_Value fields set by the Set procedure, so the two
-- procedures need to be closely coordinated.
procedure Get_Current_Value_Condition
(Var : Node_Id;
Op : out Node_Kind;
Val : out Node_Id)
is
Loc : constant Source_Ptr := Sloc (Var);
Ent : constant Entity_Id := Entity (Var);
procedure Process_Current_Value_Condition (N : Node_Id; S : Boolean);
-- N is an expression which holds either True (S = True) or False (S =
-- False) in the condition. This procedure digs out the expression and
-- if it refers to Ent, sets Op and Val appropriately.
-------------------------------------
-- Process_Current_Value_Condition --
-------------------------------------
procedure Process_Current_Value_Condition
(N : Node_Id;
S : Boolean)
is
Cond : Node_Id;
Prev_Cond : Node_Id;
Sens : Boolean;
begin
Cond := N;
Sens := S;
loop
Prev_Cond := Cond;
-- Deal with NOT operators, inverting sense
while Nkind (Cond) = N_Op_Not loop
Cond := Right_Opnd (Cond);
Sens := not Sens;
end loop;
-- Deal with conversions, qualifications, and expressions with
-- actions.
while Nkind (Cond) in N_Type_Conversion
| N_Qualified_Expression
| N_Expression_With_Actions
loop
Cond := Expression (Cond);
end loop;
exit when Cond = Prev_Cond;
end loop;
-- Deal with AND THEN and AND cases
if Nkind (Cond) in N_And_Then | N_Op_And then
-- Don't ever try to invert a condition that is of the form of an
-- AND or AND THEN (since we are not doing sufficiently general
-- processing to allow this).
if Sens = False then
Op := N_Empty;
Val := Empty;
return;
end if;
-- Recursively process AND and AND THEN branches
Process_Current_Value_Condition (Left_Opnd (Cond), True);
pragma Assert (Op'Valid);
if Op /= N_Empty then
return;
end if;
Process_Current_Value_Condition (Right_Opnd (Cond), True);
return;
-- Case of relational operator
elsif Nkind (Cond) in N_Op_Compare then
Op := Nkind (Cond);
-- Invert sense of test if inverted test
if Sens = False then
case Op is
when N_Op_Eq => Op := N_Op_Ne;
when N_Op_Ne => Op := N_Op_Eq;
when N_Op_Lt => Op := N_Op_Ge;
when N_Op_Gt => Op := N_Op_Le;
when N_Op_Le => Op := N_Op_Gt;
when N_Op_Ge => Op := N_Op_Lt;
when others => raise Program_Error;
end case;
end if;
-- Case of entity op value
if Is_Entity_Name (Left_Opnd (Cond))
and then Ent = Entity (Left_Opnd (Cond))
and then Compile_Time_Known_Value (Right_Opnd (Cond))
then
Val := Right_Opnd (Cond);
-- Case of value op entity
elsif Is_Entity_Name (Right_Opnd (Cond))
and then Ent = Entity (Right_Opnd (Cond))
and then Compile_Time_Known_Value (Left_Opnd (Cond))
then
Val := Left_Opnd (Cond);
-- We are effectively swapping operands
case Op is
when N_Op_Eq => null;
when N_Op_Ne => null;
when N_Op_Lt => Op := N_Op_Gt;
when N_Op_Gt => Op := N_Op_Lt;
when N_Op_Le => Op := N_Op_Ge;
when N_Op_Ge => Op := N_Op_Le;
when others => raise Program_Error;
end case;
else
Op := N_Empty;
end if;
return;
elsif Nkind (Cond) in N_Type_Conversion
| N_Qualified_Expression
| N_Expression_With_Actions
then
Cond := Expression (Cond);
-- Case of Boolean variable reference, return as though the
-- reference had said var = True.
else
if Is_Entity_Name (Cond) and then Ent = Entity (Cond) then
Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
if Sens = False then
Op := N_Op_Ne;
else
Op := N_Op_Eq;
end if;
end if;
end if;
end Process_Current_Value_Condition;
-- Start of processing for Get_Current_Value_Condition
begin
Op := N_Empty;
Val := Empty;
-- Immediate return, nothing doing, if this is not an object
if not Is_Object (Ent) then
return;
end if;
-- In GNATprove mode we don't want to use current value optimizer, in
-- particular for loop invariant expressions and other assertions that
-- act as cut points for proof. The optimizer often folds expressions
-- into True/False where they trivially follow from the previous
-- assignments, but this deprives proof from the information needed to
-- discharge checks that are beyond the scope of the value optimizer.
if GNATprove_Mode then
return;
end if;
-- Otherwise examine current value
declare
CV : constant Node_Id := Current_Value (Ent);
Sens : Boolean;
Stm : Node_Id;
begin
-- If statement. Condition is known true in THEN section, known False
-- in any ELSIF or ELSE part, and unknown outside the IF statement.
if Nkind (CV) = N_If_Statement then
-- Before start of IF statement
if Loc < Sloc (CV) then
return;
-- In condition of IF statement
elsif In_Subtree (N => Var, Root => Condition (CV)) then
return;
-- After end of IF statement
elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
return;
end if;
-- At this stage we know that we are within the IF statement, but
-- unfortunately, the tree does not record the SLOC of the ELSE so
-- we cannot use a simple SLOC comparison to distinguish between
-- the then/else statements, so we have to climb the tree.
declare
N : Node_Id;
begin
N := Parent (Var);
while Parent (N) /= CV loop
N := Parent (N);
-- If we fall off the top of the tree, then that's odd, but
-- perhaps it could occur in some error situation, and the
-- safest response is simply to assume that the outcome of
-- the condition is unknown. No point in bombing during an
-- attempt to optimize things.
if No (N) then
return;
end if;
end loop;
-- Now we have N pointing to a node whose parent is the IF
-- statement in question, so now we can tell if we are within
-- the THEN statements.
if Is_List_Member (N)
and then List_Containing (N) = Then_Statements (CV)
then
Sens := True;
-- If the variable reference does not come from source, we
-- cannot reliably tell whether it appears in the else part.
-- In particular, if it appears in generated code for a node
-- that requires finalization, it may be attached to a list
-- that has not been yet inserted into the code. For now,
-- treat it as unknown.
elsif not Comes_From_Source (N) then
return;
-- Otherwise we must be in ELSIF or ELSE part
else
Sens := False;
end if;
end;
-- ELSIF part. Condition is known true within the referenced
-- ELSIF, known False in any subsequent ELSIF or ELSE part,
-- and unknown before the ELSE part or after the IF statement.
elsif Nkind (CV) = N_Elsif_Part then
-- if the Elsif_Part had condition_actions, the elsif has been
-- rewritten as a nested if, and the original elsif_part is
-- detached from the tree, so there is no way to obtain useful
-- information on the current value of the variable.
-- Can this be improved ???
if No (Parent (CV)) then
return;
end if;
Stm := Parent (CV);
-- If the tree has been otherwise rewritten there is nothing
-- else to be done either.
if Nkind (Stm) /= N_If_Statement then
return;
end if;
-- Before start of ELSIF part
if Loc < Sloc (CV) then
return;
-- In condition of ELSIF part
elsif In_Subtree (N => Var, Root => Condition (CV)) then
return;
-- After end of IF statement
elsif Loc >= Sloc (Stm) +
Text_Ptr (UI_To_Int (End_Span (Stm)))
then
return;
end if;
-- Again we lack the SLOC of the ELSE, so we need to climb the
-- tree to see if we are within the ELSIF part in question.
declare
N : Node_Id;
begin
N := Parent (Var);
while Parent (N) /= Stm loop
N := Parent (N);
-- If we fall off the top of the tree, then that's odd, but
-- perhaps it could occur in some error situation, and the
-- safest response is simply to assume that the outcome of
-- the condition is unknown. No point in bombing during an
-- attempt to optimize things.
if No (N) then
return;
end if;
end loop;
-- Now we have N pointing to a node whose parent is the IF
-- statement in question, so see if is the ELSIF part we want.
-- the THEN statements.
if N = CV then
Sens := True;
-- Otherwise we must be in subsequent ELSIF or ELSE part
else
Sens := False;
end if;
end;
-- Iteration scheme of while loop. The condition is known to be
-- true within the body of the loop.
elsif Nkind (CV) = N_Iteration_Scheme then
declare
Loop_Stmt : constant Node_Id := Parent (CV);
begin
-- Before start of body of loop
if Loc < Sloc (Loop_Stmt) then
return;
-- In condition of while loop
elsif In_Subtree (N => Var, Root => Condition (CV)) then
return;
-- After end of LOOP statement
elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
return;
-- We are within the body of the loop
else
Sens := True;
end if;
end;
-- All other cases of Current_Value settings
else
return;
end if;
-- If we fall through here, then we have a reportable condition, Sens
-- is True if the condition is true and False if it needs inverting.
Process_Current_Value_Condition (Condition (CV), Sens);
end;
end Get_Current_Value_Condition;
-----------------------
-- Get_Index_Subtype --
-----------------------
function Get_Index_Subtype (N : Node_Id) return Entity_Id is
P_Type : Entity_Id := Etype (Prefix (N));
Indx : Node_Id;
J : Int;
begin
if Is_Access_Type (P_Type) then
P_Type := Designated_Type (P_Type);
end if;
if No (Expressions (N)) then
J := 1;
else
J := UI_To_Int (Expr_Value (First (Expressions (N))));
end if;
Indx := First_Index (P_Type);
while J > 1 loop
Next_Index (Indx);
J := J - 1;
end loop;
return Etype (Indx);
end Get_Index_Subtype;
-----------------------
-- Get_Mapped_Entity --
-----------------------
function Get_Mapped_Entity (E : Entity_Id) return Entity_Id is
begin
return Type_Map.Get (E);
end Get_Mapped_Entity;
---------------------
-- Get_Stream_Size --
---------------------
function Get_Stream_Size (E : Entity_Id) return Uint is
begin
-- If we have a Stream_Size clause for this type use it
if Has_Stream_Size_Clause (E) then
return Static_Integer (Expression (Stream_Size_Clause (E)));
-- Otherwise the Stream_Size is the size of the type
else
return Esize (E);
end if;
end Get_Stream_Size;
---------------------------
-- Has_Access_Constraint --
---------------------------
function Has_Access_Constraint (E : Entity_Id) return Boolean is
Disc : Entity_Id;
T : constant Entity_Id := Etype (E);
begin
if Has_Per_Object_Constraint (E) and then Has_Discriminants (T) then
Disc := First_Discriminant (T);
while Present (Disc) loop
if Is_Access_Type (Etype (Disc)) then
return True;
end if;
Next_Discriminant (Disc);
end loop;
return False;
else
return False;
end if;
end Has_Access_Constraint;
---------------------
-- Has_Tag_Of_Type --
---------------------
function Has_Tag_Of_Type (Exp : Node_Id) return Boolean is
Typ : constant Entity_Id := Etype (Exp);
begin
pragma Assert (Is_Tagged_Type (Typ));
-- The tag of an object of a class-wide type is that of its
-- initialization expression.
if Is_Class_Wide_Type (Typ) then
return False;
end if;
-- The tag of a stand-alone object of a specific tagged type T
-- identifies T.
if Is_Entity_Name (Exp)
and then Ekind (Entity (Exp)) in E_Constant | E_Variable
then
return True;
else
case Nkind (Exp) is
-- The tag of a component or an aggregate of a specific tagged
-- type T identifies T.
when N_Indexed_Component
| N_Selected_Component
| N_Aggregate
| N_Extension_Aggregate
=>
return True;
-- The tag of the result returned by a function whose result
-- type is a specific tagged type T identifies T.
when N_Function_Call =>
return True;
when N_Explicit_Dereference =>
return Is_Captured_Function_Call (Exp);
-- For a tagged type, the operand of a qualified expression
-- shall resolve to be of the type of the expression.
when N_Qualified_Expression =>
return Has_Tag_Of_Type (Expression (Exp));
when others =>
return False;
end case;
end if;
end Has_Tag_Of_Type;
--------------------
-- Homonym_Number --
--------------------
function Homonym_Number (Subp : Entity_Id) return Pos is
Hom : Entity_Id := Homonym (Subp);
Count : Pos := 1;
begin
while Present (Hom) loop
if Scope (Hom) = Scope (Subp) then
Count := Count + 1;
end if;
Hom := Homonym (Hom);
end loop;
return Count;
end Homonym_Number;
-----------------------------------
-- In_Library_Level_Package_Body --
-----------------------------------
function In_Library_Level_Package_Body (Id : Entity_Id) return Boolean is
begin
-- First determine whether the entity appears at the library level, then
-- look at the containing unit.
if Is_Library_Level_Entity (Id) then
declare
Container : constant Node_Id := Cunit (Get_Source_Unit (Id));
begin
return Nkind (Unit (Container)) = N_Package_Body;
end;
end if;
return False;
end In_Library_Level_Package_Body;
------------------------------
-- In_Unconditional_Context --
------------------------------
function In_Unconditional_Context (Node : Node_Id) return Boolean is
P : Node_Id;
begin
P := Node;
while Present (P) loop
case Nkind (P) is
when N_Subprogram_Body => return True;
when N_If_Statement => return False;
when N_Loop_Statement => return False;
when N_Case_Statement => return False;
when others => P := Parent (P);
end case;
end loop;
return False;
end In_Unconditional_Context;
-------------------
-- Insert_Action --
-------------------
procedure Insert_Action
(Assoc_Node : Node_Id;
Ins_Action : Node_Id;
Spec_Expr_OK : Boolean := False)
is
begin
if Present (Ins_Action) then
Insert_Actions
(Assoc_Node => Assoc_Node,
Ins_Actions => New_List (Ins_Action),
Spec_Expr_OK => Spec_Expr_OK);
end if;
end Insert_Action;
-- Version with check(s) suppressed
procedure Insert_Action
(Assoc_Node : Node_Id;
Ins_Action : Node_Id;
Suppress : Check_Id;
Spec_Expr_OK : Boolean := False)
is
begin
Insert_Actions
(Assoc_Node => Assoc_Node,
Ins_Actions => New_List (Ins_Action),
Suppress => Suppress,
Spec_Expr_OK => Spec_Expr_OK);
end Insert_Action;
-------------------------
-- Insert_Action_After --
-------------------------
procedure Insert_Action_After
(Assoc_Node : Node_Id;
Ins_Action : Node_Id)
is
begin
Insert_Actions_After (Assoc_Node, New_List (Ins_Action));
end Insert_Action_After;
--------------------
-- Insert_Actions --
--------------------
procedure Insert_Actions
(Assoc_Node : Node_Id;
Ins_Actions : List_Id;
Spec_Expr_OK : Boolean := False)
is
N : Node_Id;
P : Node_Id;
Wrapped_Node : Node_Id := Empty;
begin
if Is_Empty_List (Ins_Actions) then
return;
end if;
-- Insert the action when the context is "Handling of Default and Per-
-- Object Expressions" only when requested by the caller.
if Spec_Expr_OK then
null;
-- Ignore insert of actions from inside default expression (or other
-- similar "spec expression") in the special spec-expression analyze
-- mode. Any insertions at this point have no relevance, since we are
-- only doing the analyze to freeze the types of any static expressions.
-- See section "Handling of Default and Per-Object Expressions" in the
-- spec of package Sem for further details.
elsif In_Spec_Expression then
return;
end if;
-- If the action derives from stuff inside a record, then the actions
-- are attached to the current scope, to be inserted and analyzed on
-- exit from the scope. The reason for this is that we may also be
-- generating freeze actions at the same time, and they must eventually
-- be elaborated in the correct order.
if Is_Record_Type (Current_Scope)
and then not Is_Frozen (Current_Scope)
then
if No (Scope_Stack.Table
(Scope_Stack.Last).Pending_Freeze_Actions)
then
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
Ins_Actions;
else
Append_List
(Ins_Actions,
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
end if;
return;
end if;
-- We now intend to climb up the tree to find the right point to
-- insert the actions. We start at Assoc_Node, unless this node is a
-- subexpression in which case we start with its parent. We do this for
-- two reasons. First it speeds things up. Second, if Assoc_Node is
-- itself one of the special nodes like N_And_Then, then we assume that
-- an initial request to insert actions for such a node does not expect
-- the actions to get deposited in the node for later handling when the
-- node is expanded, since clearly the node is being dealt with by the
-- caller. Note that in the subexpression case, N is always the child we
-- came from.
-- N_Raise_xxx_Error is an annoying special case, it is a statement
-- if it has type Standard_Void_Type, and a subexpression otherwise.
-- Procedure calls, and similarly procedure attribute references, are
-- also statements.
if Nkind (Assoc_Node) in N_Subexpr
and then (Nkind (Assoc_Node) not in N_Raise_xxx_Error
or else Etype (Assoc_Node) /= Standard_Void_Type)
and then Nkind (Assoc_Node) /= N_Procedure_Call_Statement
and then (Nkind (Assoc_Node) /= N_Attribute_Reference
or else not Is_Procedure_Attribute_Name
(Attribute_Name (Assoc_Node)))
then
N := Assoc_Node;
P := Parent (Assoc_Node);
-- Nonsubexpression case. Note that N is initially Empty in this case
-- (N is only guaranteed non-Empty in the subexpr case).
else
N := Empty;
P := Assoc_Node;
end if;
-- Capture root of the transient scope
if Scope_Is_Transient then
Wrapped_Node := Node_To_Be_Wrapped;
end if;
loop
pragma Assert (Present (P));
-- Make sure that inserted actions stay in the transient scope
if Present (Wrapped_Node) and then N = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
return;
end if;
case Nkind (P) is
-- Case of right operand of AND THEN or OR ELSE. Put the actions
-- in the Actions field of the right operand. They will be moved
-- out further when the AND THEN or OR ELSE operator is expanded.
-- Nothing special needs to be done for the left operand since
-- in that case the actions are executed unconditionally.
when N_Short_Circuit =>
if N = Right_Opnd (P) then
-- We are now going to either append the actions to the
-- actions field of the short-circuit operation. We will
-- also analyze the actions now.
-- This analysis is really too early, the proper thing would
-- be to just park them there now, and only analyze them if
-- we find we really need them, and to it at the proper
-- final insertion point. However attempting to this proved
-- tricky, so for now we just kill current values before and
-- after the analyze call to make sure we avoid peculiar
-- optimizations from this out of order insertion.
Kill_Current_Values;
-- If P has already been expanded, we can't park new actions
-- on it, so we need to expand them immediately, introducing
-- an Expression_With_Actions. N can't be an expression
-- with actions, or else then the actions would have been
-- inserted at an inner level.
if Analyzed (P) then
pragma Assert (Nkind (N) /= N_Expression_With_Actions);
Rewrite (N,
Make_Expression_With_Actions (Sloc (N),
Actions => Ins_Actions,
Expression => Relocate_Node (N)));
Analyze_And_Resolve (N);
elsif Present (Actions (P)) then
Insert_List_After_And_Analyze
(Last (Actions (P)), Ins_Actions);
else
Set_Actions (P, Ins_Actions);
Analyze_List (Actions (P));
end if;
Kill_Current_Values;
return;
end if;
-- Then or Else dependent expression of an if expression. Add
-- actions to Then_Actions or Else_Actions field as appropriate.
-- The actions will be moved further out when the if is expanded.
when N_If_Expression =>
declare
ThenX : constant Node_Id := Next (First (Expressions (P)));
ElseX : constant Node_Id := Next (ThenX);
begin
-- If the enclosing expression is already analyzed, as
-- is the case for nested elaboration checks, insert the
-- conditional further out.
if Analyzed (P) then
null;
-- Actions belong to the then expression, temporarily place
-- them as Then_Actions of the if expression. They will be
-- moved to the proper place later when the if expression is
-- expanded.
elsif N = ThenX then
if Present (Then_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Then_Actions (P)), Ins_Actions);
else
Set_Then_Actions (P, Ins_Actions);
Analyze_List (Then_Actions (P));
end if;
return;
-- Else_Actions is treated the same as Then_Actions above
elsif N = ElseX then
if Present (Else_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Else_Actions (P)), Ins_Actions);
else
Set_Else_Actions (P, Ins_Actions);
Analyze_List (Else_Actions (P));
end if;
return;
-- Actions belong to the condition. In this case they are
-- unconditionally executed, and so we can continue the
-- search for the proper insert point.
else
null;
end if;
end;
-- Alternative of case expression, we place the action in the
-- Actions field of the case expression alternative, this will
-- be handled when the case expression is expanded.
when N_Case_Expression_Alternative =>
if Present (Actions (P)) then
Insert_List_After_And_Analyze
(Last (Actions (P)), Ins_Actions);
else
Set_Actions (P, Ins_Actions);
Analyze_List (Actions (P));
end if;
return;
-- Case of appearing within an Expressions_With_Actions node. When
-- the new actions come from the expression of the expression with
-- actions, they must be added to the existing actions. The other
-- alternative is when the new actions are related to one of the
-- existing actions of the expression with actions, and should
-- never reach here: if actions are inserted on a statement
-- within the Actions of an expression with actions, or on some
-- subexpression of such a statement, then the outermost proper
-- insertion point is right before the statement, and we should
-- never climb up as far as the N_Expression_With_Actions itself.
when N_Expression_With_Actions =>
if N = Expression (P) then
if Is_Empty_List (Actions (P)) then
Append_List_To (Actions (P), Ins_Actions);
Analyze_List (Actions (P));
else
Insert_List_After_And_Analyze
(Last (Actions (P)), Ins_Actions);
end if;
return;
else
raise Program_Error;
end if;
-- Case of appearing in the condition of a while expression or
-- elsif. We insert the actions into the Condition_Actions field.
-- They will be moved further out when the while loop or elsif
-- is analyzed.
when N_Elsif_Part
| N_Iteration_Scheme
=>
if Present (Condition (P)) and then N = Condition (P) then
if Present (Condition_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Condition_Actions (P)), Ins_Actions);
else
Set_Condition_Actions (P, Ins_Actions);
-- Set the parent of the insert actions explicitly. This
-- is not a syntactic field, but we need the parent field
-- set, in particular so that freeze can understand that
-- it is dealing with condition actions, and properly
-- insert the freezing actions.
Set_Parent (Ins_Actions, P);
Analyze_List (Condition_Actions (P));
end if;
return;
end if;
-- Statements, declarations, pragmas, representation clauses
when
-- Statements
N_Procedure_Call_Statement
| N_Statement_Other_Than_Procedure_Call
-- Pragmas
| N_Pragma
-- Representation_Clause
| N_At_Clause
| N_Attribute_Definition_Clause
| N_Enumeration_Representation_Clause
| N_Record_Representation_Clause
-- Declarations
| N_Abstract_Subprogram_Declaration
| N_Entry_Body
| N_Exception_Declaration
| N_Exception_Renaming_Declaration
| N_Expression_Function
| N_Formal_Abstract_Subprogram_Declaration
| N_Formal_Concrete_Subprogram_Declaration
| N_Formal_Object_Declaration
| N_Formal_Type_Declaration
| N_Full_Type_Declaration
| N_Function_Instantiation
| N_Generic_Function_Renaming_Declaration
| N_Generic_Package_Declaration
| N_Generic_Package_Renaming_Declaration
| N_Generic_Procedure_Renaming_Declaration
| N_Generic_Subprogram_Declaration
| N_Implicit_Label_Declaration
| N_Incomplete_Type_Declaration
| N_Number_Declaration
| N_Object_Declaration
| N_Object_Renaming_Declaration
| N_Package_Body
| N_Package_Body_Stub
| N_Package_Declaration
| N_Package_Instantiation
| N_Package_Renaming_Declaration
| N_Private_Extension_Declaration
| N_Private_Type_Declaration
| N_Procedure_Instantiation
| N_Protected_Body
| N_Protected_Body_Stub
| N_Single_Task_Declaration
| N_Subprogram_Body
| N_Subprogram_Body_Stub
| N_Subprogram_Declaration
| N_Subprogram_Renaming_Declaration
| N_Subtype_Declaration
| N_Task_Body
| N_Task_Body_Stub
-- Use clauses can appear in lists of declarations
| N_Use_Package_Clause
| N_Use_Type_Clause
-- Freeze entity behaves like a declaration or statement
| N_Freeze_Entity
| N_Freeze_Generic_Entity
=>
-- Do not insert here if the item is not a list member (this
-- happens for example with a triggering statement, and the
-- proper approach is to insert before the entire select).
if not Is_List_Member (P) then
null;
-- Do not insert if parent of P is an N_Component_Association
-- node (i.e. we are in the context of an N_Aggregate or
-- N_Extension_Aggregate node. In this case we want to insert
-- before the entire aggregate.
elsif Nkind (Parent (P)) = N_Component_Association then
null;
-- Do not insert if the parent of P is either an N_Variant node
-- or an N_Record_Definition node, meaning in either case that
-- P is a member of a component list, and that therefore the
-- actions should be inserted outside the complete record
-- declaration.
elsif Nkind (Parent (P)) in N_Variant | N_Record_Definition then
null;
-- Do not insert freeze nodes within the loop generated for
-- an aggregate, because they may be elaborated too late for
-- subsequent use in the back end: within a package spec the
-- loop is part of the elaboration procedure and is only
-- elaborated during the second pass.
-- If the loop comes from source, or the entity is local to the
-- loop itself it must remain within.
elsif Nkind (Parent (P)) = N_Loop_Statement
and then not Comes_From_Source (Parent (P))
and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
and then
Scope (Entity (First (Ins_Actions))) /= Current_Scope
then
null;
-- Otherwise we can go ahead and do the insertion
elsif P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
return;
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
return;
end if;
-- the expansion of Task and protected type declarations can
-- create declarations for temporaries which, like other actions
-- are inserted and analyzed before the current declaraation.
-- However, the current scope is the synchronized type, and
-- for unnesting it is critical that the proper scope for these
-- generated entities be the enclosing one.
when N_Task_Type_Declaration
| N_Protected_Type_Declaration =>
Push_Scope (Scope (Current_Scope));
Insert_List_Before_And_Analyze (P, Ins_Actions);
Pop_Scope;
return;
-- A special case, N_Raise_xxx_Error can act either as a statement
-- or a subexpression. We tell the difference by looking at the
-- Etype. It is set to Standard_Void_Type in the statement case.
when N_Raise_xxx_Error =>
if Etype (P) = Standard_Void_Type then
if P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
end if;
return;
-- In the subexpression case, keep climbing
else
null;
end if;
-- If a component association appears within a loop created for
-- an array aggregate, attach the actions to the association so
-- they can be subsequently inserted within the loop. For other
-- component associations insert outside of the aggregate. For
-- an association that will generate a loop, its Loop_Actions
-- attribute is already initialized (see exp_aggr.adb).
-- The list of Loop_Actions can in turn generate additional ones,
-- that are inserted before the associated node. If the associated
-- node is outside the aggregate, the new actions are collected
-- at the end of the Loop_Actions, to respect the order in which
-- they are to be elaborated.
when N_Component_Association
| N_Iterated_Component_Association
| N_Iterated_Element_Association
=>
if Nkind (Parent (P)) in N_Aggregate | N_Delta_Aggregate
-- We must not climb up out of an N_Iterated_xxx_Association
-- because the actions might contain references to the loop
-- parameter, except if we come from the Discrete_Choices of
-- N_Iterated_Component_Association which cannot contain any.
-- But it turns out that setting the Loop_Actions field in
-- the case of an N_Component_Association when the field was
-- not already set can lead to gigi assertion failures that
-- are presumably due to malformed trees, so don't do that.
and then (Nkind (P) /= N_Iterated_Component_Association
or else not Is_List_Member (N)
or else
List_Containing (N) /= Discrete_Choices (P))
and then (Nkind (P) /= N_Component_Association
or else Present (Loop_Actions (P)))
then
if Is_Empty_List (Loop_Actions (P)) then
Set_Loop_Actions (P, Ins_Actions);
Analyze_List (Ins_Actions);
else
declare
Decl : Node_Id;
begin
-- Check whether these actions were generated by a
-- declaration that is part of the Loop_Actions for
-- the component_association.
Decl := Assoc_Node;
while Present (Decl) loop
exit when Parent (Decl) = P
and then Is_List_Member (Decl)
and then
List_Containing (Decl) = Loop_Actions (P);
Decl := Parent (Decl);
end loop;
if Present (Decl) then
Insert_List_Before_And_Analyze
(Decl, Ins_Actions);
else
Insert_List_After_And_Analyze
(Last (Loop_Actions (P)), Ins_Actions);
end if;
end;
end if;
return;
else
null;
end if;
-- Special case: an attribute denoting a procedure call
when N_Attribute_Reference =>
if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
if P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
end if;
return;
-- In the subexpression case, keep climbing
else
null;
end if;
-- Special case: a marker
when N_Call_Marker
| N_Variable_Reference_Marker
=>
if Is_List_Member (P) then
Insert_List_Before_And_Analyze (P, Ins_Actions);
return;
end if;
-- A contract node should not belong to the tree
when N_Contract =>
raise Program_Error;
-- For all other node types, keep climbing tree
when N_Abortable_Part
| N_Accept_Alternative
| N_Access_Definition
| N_Access_Function_Definition
| N_Access_Procedure_Definition
| N_Access_To_Object_Definition
| N_Aggregate
| N_Allocator
| N_Aspect_Specification
| N_Case_Expression
| N_Case_Statement_Alternative
| N_Character_Literal
| N_Compilation_Unit
| N_Compilation_Unit_Aux
| N_Component_Clause
| N_Component_Declaration
| N_Component_Definition
| N_Component_List
| N_Constrained_Array_Definition
| N_Decimal_Fixed_Point_Definition
| N_Defining_Character_Literal
| N_Defining_Identifier
| N_Defining_Operator_Symbol
| N_Defining_Program_Unit_Name
| N_Delay_Alternative
| N_Delta_Aggregate
| N_Delta_Constraint
| N_Derived_Type_Definition
| N_Designator
| N_Digits_Constraint
| N_Discriminant_Association
| N_Discriminant_Specification
| N_Empty
| N_Entry_Body_Formal_Part
| N_Entry_Call_Alternative
| N_Entry_Declaration
| N_Entry_Index_Specification
| N_Enumeration_Type_Definition
| N_Error
| N_Exception_Handler
| N_Expanded_Name
| N_Explicit_Dereference
| N_Extension_Aggregate
| N_Floating_Point_Definition
| N_Formal_Decimal_Fixed_Point_Definition
| N_Formal_Derived_Type_Definition
| N_Formal_Discrete_Type_Definition
| N_Formal_Floating_Point_Definition
| N_Formal_Modular_Type_Definition
| N_Formal_Ordinary_Fixed_Point_Definition
| N_Formal_Package_Declaration
| N_Formal_Private_Type_Definition
| N_Formal_Incomplete_Type_Definition
| N_Formal_Signed_Integer_Type_Definition
| N_Function_Call
| N_Function_Specification
| N_Generic_Association
| N_Handled_Sequence_Of_Statements
| N_Identifier
| N_In
| N_Index_Or_Discriminant_Constraint
| N_Indexed_Component
| N_Integer_Literal
| N_Iterator_Specification
| N_Interpolated_String_Literal
| N_Itype_Reference
| N_Label
| N_Loop_Parameter_Specification
| N_Mod_Clause
| N_Modular_Type_Definition
| N_Not_In
| N_Null
| N_Op_Abs
| N_Op_Add
| N_Op_And
| N_Op_Concat
| N_Op_Divide
| N_Op_Eq
| N_Op_Expon
| N_Op_Ge
| N_Op_Gt
| N_Op_Le
| N_Op_Lt
| N_Op_Minus
| N_Op_Mod
| N_Op_Multiply
| N_Op_Ne
| N_Op_Not
| N_Op_Or
| N_Op_Plus
| N_Op_Rem
| N_Op_Rotate_Left
| N_Op_Rotate_Right
| N_Op_Shift_Left
| N_Op_Shift_Right
| N_Op_Shift_Right_Arithmetic
| N_Op_Subtract
| N_Op_Xor
| N_Operator_Symbol
| N_Ordinary_Fixed_Point_Definition
| N_Others_Choice
| N_Package_Specification
| N_Parameter_Association
| N_Parameter_Specification
| N_Pop_Constraint_Error_Label
| N_Pop_Program_Error_Label
| N_Pop_Storage_Error_Label
| N_Pragma_Argument_Association
| N_Procedure_Specification
| N_Protected_Definition
| N_Push_Constraint_Error_Label
| N_Push_Program_Error_Label
| N_Push_Storage_Error_Label
| N_Qualified_Expression
| N_Quantified_Expression
| N_Raise_Expression
| N_Range
| N_Range_Constraint
| N_Real_Literal
| N_Real_Range_Specification
| N_Record_Definition
| N_Reference
| N_SCIL_Dispatch_Table_Tag_Init
| N_SCIL_Dispatching_Call
| N_SCIL_Membership_Test
| N_Selected_Component
| N_Signed_Integer_Type_Definition
| N_Single_Protected_Declaration
| N_Slice
| N_String_Literal
| N_Subtype_Indication
| N_Subunit
| N_Target_Name
| N_Task_Definition
| N_Terminate_Alternative
| N_Triggering_Alternative
| N_Type_Conversion
| N_Unchecked_Expression
| N_Unchecked_Type_Conversion
| N_Unconstrained_Array_Definition
| N_Unused_At_End
| N_Unused_At_Start
| N_Variant
| N_Variant_Part
| N_Validate_Unchecked_Conversion
| N_With_Clause
=>
null;
end case;
-- If we fall through above tests, keep climbing tree
N := P;
if Nkind (Parent (N)) = N_Subunit then
-- This is the proper body corresponding to a stub. Insertion must
-- be done at the point of the stub, which is in the declarative
-- part of the parent unit.
P := Corresponding_Stub (Parent (N));
else
P := Parent (N);
end if;
end loop;
end Insert_Actions;
-- Version with check(s) suppressed
procedure Insert_Actions
(Assoc_Node : Node_Id;
Ins_Actions : List_Id;
Suppress : Check_Id;
Spec_Expr_OK : Boolean := False)
is
begin
if Suppress = All_Checks then
declare
Sva : constant Suppress_Array := Scope_Suppress.Suppress;
begin
Scope_Suppress.Suppress := (others => True);
Insert_Actions (Assoc_Node, Ins_Actions, Spec_Expr_OK);
Scope_Suppress.Suppress := Sva;
end;
else
declare
Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
begin
Scope_Suppress.Suppress (Suppress) := True;
Insert_Actions (Assoc_Node, Ins_Actions, Spec_Expr_OK);
Scope_Suppress.Suppress (Suppress) := Svg;
end;
end if;
end Insert_Actions;
--------------------------
-- Insert_Actions_After --
--------------------------
procedure Insert_Actions_After
(Assoc_Node : Node_Id;
Ins_Actions : List_Id)
is
begin
if Scope_Is_Transient and then Assoc_Node = Node_To_Be_Wrapped then
Store_After_Actions_In_Scope (Ins_Actions);
else
Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
end if;
end Insert_Actions_After;
---------------------------------
-- Insert_Library_Level_Action --
---------------------------------
procedure Insert_Library_Level_Action (N : Node_Id) is
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
begin
Push_Scope (Cunit_Entity (Current_Sem_Unit));
-- And not Main_Unit as previously. If the main unit is a body,
-- the scope needed to analyze the actions is the entity of the
-- corresponding declaration.
if No (Actions (Aux)) then
Set_Actions (Aux, New_List (N));
else
Append (N, Actions (Aux));
end if;
Analyze (N);
Pop_Scope;
end Insert_Library_Level_Action;
----------------------------------
-- Insert_Library_Level_Actions --
----------------------------------
procedure Insert_Library_Level_Actions (L : List_Id) is
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
begin
if Is_Non_Empty_List (L) then
Push_Scope (Cunit_Entity (Main_Unit));
-- ??? should this be Current_Sem_Unit instead of Main_Unit?
if No (Actions (Aux)) then
Set_Actions (Aux, L);
Analyze_List (L);
else
Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
end if;
Pop_Scope;
end if;
end Insert_Library_Level_Actions;
----------------------
-- Inside_Init_Proc --
----------------------
function Inside_Init_Proc return Boolean is
begin
return Present (Enclosing_Init_Proc);
end Inside_Init_Proc;
----------------------
-- Integer_Type_For --
----------------------
function Integer_Type_For (S : Uint; Uns : Boolean) return Entity_Id is
begin
pragma Assert
(Standard_Long_Integer_Size in
Standard_Integer_Size | Standard_Long_Long_Integer_Size);
-- So we don't need to check for Standard_Long_Integer_Size below
pragma Assert (S <= System_Max_Integer_Size);
-- This is the canonical 32-bit type
if S <= Standard_Integer_Size then
if Uns then
return Standard_Unsigned;
else
return Standard_Integer;
end if;
-- This is the canonical 64-bit type
elsif S <= Standard_Long_Long_Integer_Size then
if Uns then
return Standard_Long_Long_Unsigned;
else
return Standard_Long_Long_Integer;
end if;
-- This is the canonical 128-bit type
elsif S <= Standard_Long_Long_Long_Integer_Size then
if Uns then
return Standard_Long_Long_Long_Unsigned;
else
return Standard_Long_Long_Long_Integer;
end if;
else
raise Program_Error;
end if;
end Integer_Type_For;
-------------------------------
-- Is_Captured_Function_Call --
-------------------------------
function Is_Captured_Function_Call (N : Node_Id) return Boolean is
begin
if Nkind (N) = N_Explicit_Dereference
and then Is_Entity_Name (Prefix (N))
and then Ekind (Entity (Prefix (N))) = E_Constant
then
declare
Value : constant Node_Id := Constant_Value (Entity (Prefix (N)));
begin
return Present (Value)
and then Nkind (Value) = N_Reference
and then Nkind (Prefix (Value)) = N_Function_Call;
end;
else
return False;
end if;
end Is_Captured_Function_Call;
------------------------------
-- Is_Finalizable_Transient --
------------------------------
function Is_Finalizable_Transient
(Decl : Node_Id;
Rel_Node : Node_Id) return Boolean
is
Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean;
-- Determine whether transient object Trans_Id is initialized either
-- by a function call which returns an access type or simply renames
-- another pointer.
function Initialized_By_Aliased_BIP_Func_Call
(Trans_Id : Entity_Id) return Boolean;
-- Determine whether transient object Trans_Id is initialized by a
-- build-in-place function call where the BIPalloc parameter either
-- does not exist or is Caller_Allocation, and BIPaccess is not null.
-- This case creates an aliasing between the returned value and the
-- value denoted by BIPaccess.
function Is_Aliased
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean;
-- Determine whether transient object Trans_Id has been renamed or
-- aliased through 'reference in the statement list starting from
-- First_Stmt.
function Is_Allocated (Trans_Id : Entity_Id) return Boolean;
-- Determine whether transient object Trans_Id is allocated on the heap
function Is_Indexed_Container
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean;
-- Determine whether transient object Trans_Id denotes a container which
-- is in the process of being indexed in the statement list starting
-- from First_Stmt.
function Is_Iterated_Container
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean;
-- Determine whether transient object Trans_Id denotes a container which
-- is in the process of being iterated in the statement list starting
-- from First_Stmt.
function Is_Part_Of_BIP_Return_Statement (N : Node_Id) return Boolean;
-- Return True if N is directly part of a build-in-place return
-- statement.
---------------------------
-- Initialized_By_Access --
---------------------------
function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean is
Expr : constant Node_Id := Expression (Parent (Trans_Id));
begin
return
Present (Expr)
and then Nkind (Expr) /= N_Reference
and then Is_Access_Type (Etype (Expr));
end Initialized_By_Access;
------------------------------------------
-- Initialized_By_Aliased_BIP_Func_Call --
------------------------------------------
function Initialized_By_Aliased_BIP_Func_Call
(Trans_Id : Entity_Id) return Boolean
is
Call : Node_Id := Expression (Parent (Trans_Id));
begin
-- Build-in-place calls usually appear in 'reference format
if Nkind (Call) = N_Reference then
Call := Prefix (Call);
end if;
Call := Unqual_Conv (Call);
-- We search for a formal with a matching suffix. We can't search
-- for the full name, because of the code at the end of Sem_Ch6.-
-- Create_Extra_Formals, which copies the Extra_Formals over to
-- the Alias of an instance, which will cause the formals to have
-- "incorrect" names. See also Exp_Ch6.Build_In_Place_Formal.
if Is_Build_In_Place_Function_Call (Call) then
declare
Caller_Allocation_Val : constant Uint :=
UI_From_Int (BIP_Allocation_Form'Pos (Caller_Allocation));
Access_Suffix : constant String :=
BIP_Formal_Suffix (BIP_Object_Access);
Alloc_Suffix : constant String :=
BIP_Formal_Suffix (BIP_Alloc_Form);
function Has_Suffix (Name, Suffix : String) return Boolean;
-- Return True if Name has suffix Suffix
----------------
-- Has_Suffix --
----------------
function Has_Suffix (Name, Suffix : String) return Boolean is
Len : constant Natural := Suffix'Length;
begin
return Name'Length > Len
and then Name (Name'Last - Len + 1 .. Name'Last) = Suffix;
end Has_Suffix;
Access_OK : Boolean := False;
Alloc_OK : Boolean := True;
Param : Node_Id;
begin
-- Examine all parameter associations of the function call
Param := First (Parameter_Associations (Call));
while Present (Param) loop
if Nkind (Param) = N_Parameter_Association
and then Nkind (Selector_Name (Param)) = N_Identifier
then
declare
Actual : constant Node_Id
:= Explicit_Actual_Parameter (Param);
Formal : constant Node_Id
:= Selector_Name (Param);
Name : constant String
:= Get_Name_String (Chars (Formal));
begin
-- A nonnull BIPaccess has been found
if Has_Suffix (Name, Access_Suffix)
and then Nkind (Actual) /= N_Null
then
Access_OK := True;
-- A BIPalloc has been found
elsif Has_Suffix (Name, Alloc_Suffix)
and then Nkind (Actual) = N_Integer_Literal
then
Alloc_OK := Intval (Actual) = Caller_Allocation_Val;
end if;
end;
end if;
Next (Param);
end loop;
return Access_OK and Alloc_OK;
end;
end if;
return False;
end Initialized_By_Aliased_BIP_Func_Call;
----------------
-- Is_Aliased --
----------------
function Is_Aliased
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean
is
function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id;
-- Given an object renaming declaration, retrieve the entity of the
-- renamed name. Return Empty if the renamed name is anything other
-- than a variable or a constant.
-------------------------
-- Find_Renamed_Object --
-------------------------
function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id is
Ren_Obj : Node_Id := Empty;
function Find_Object (N : Node_Id) return Traverse_Result;
-- Try to detect an object which is either a constant or a
-- variable.
-----------------
-- Find_Object --
-----------------
function Find_Object (N : Node_Id) return Traverse_Result is
begin
-- Stop the search once a constant or a variable has been
-- detected.
if Nkind (N) = N_Identifier
and then Present (Entity (N))
and then Ekind (Entity (N)) in E_Constant | E_Variable
then
Ren_Obj := Entity (N);
return Abandon;
end if;
return OK;
end Find_Object;
procedure Search is new Traverse_Proc (Find_Object);
-- Local variables
Typ : constant Entity_Id := Etype (Defining_Identifier (Ren_Decl));
-- Start of processing for Find_Renamed_Object
begin
-- Actions related to dispatching calls may appear as renamings of
-- tags. Do not process this type of renaming because it does not
-- use the actual value of the object.
if not Is_RTE (Typ, RE_Tag_Ptr) then
Search (Name (Ren_Decl));
end if;
-- For renamings generated by Expand_N_Object_Declaration to deal
-- with (class-wide) interface objects, there is an intermediate
-- temporary of an anonymous access type used to hold the result
-- of the displacement of the address of the renamed object.
if Present (Ren_Obj)
and then Ekind (Ren_Obj) = E_Constant
and then Is_Itype (Etype (Ren_Obj))
and then Ekind (Etype (Ren_Obj)) = E_Anonymous_Access_Type
and then
Is_Class_Wide_Type (Directly_Designated_Type (Etype (Ren_Obj)))
and then
Is_Interface (Directly_Designated_Type (Etype (Ren_Obj)))
then
Search (Constant_Value (Ren_Obj));
end if;
return Ren_Obj;
end Find_Renamed_Object;
-- Local variables
Expr : Node_Id;
Ren_Obj : Entity_Id;
Stmt : Node_Id;
-- Start of processing for Is_Aliased
begin
-- A controlled transient object is not considered aliased when it
-- appears inside an expression_with_actions node even when there are
-- explicit aliases of it:
-- do
-- Trans_Id : Ctrl_Typ ...; -- transient object
-- Alias : ... := Trans_Id; -- object is aliased
-- Val : constant Boolean :=
-- ... Alias ...; -- aliasing ends
-- <finalize Trans_Id> -- object safe to finalize
-- in Val end;
-- Expansion ensures that all aliases are encapsulated in the actions
-- list and do not leak to the expression by forcing the evaluation
-- of the expression.
if Nkind (Rel_Node) = N_Expression_With_Actions then
return False;
-- Otherwise examine the statements after the controlled transient
-- object and look for various forms of aliasing.
else
Stmt := First_Stmt;
while Present (Stmt) loop
if Nkind (Stmt) = N_Object_Declaration then
Expr := Expression (Stmt);
-- Aliasing of the form:
-- Obj : ... := Trans_Id'reference;
if Present (Expr)
and then Nkind (Expr) = N_Reference
and then Nkind (Prefix (Expr)) = N_Identifier
and then Entity (Prefix (Expr)) = Trans_Id
then
return True;
end if;
elsif Nkind (Stmt) = N_Object_Renaming_Declaration then
Ren_Obj := Find_Renamed_Object (Stmt);
-- Aliasing of the form:
-- Obj : ... renames ... Trans_Id ...;
if Present (Ren_Obj) and then Ren_Obj = Trans_Id then
return True;
end if;
end if;
Next (Stmt);
end loop;
return False;
end if;
end Is_Aliased;
------------------
-- Is_Allocated --
------------------
function Is_Allocated (Trans_Id : Entity_Id) return Boolean is
Expr : constant Node_Id := Expression (Parent (Trans_Id));
begin
return
Is_Access_Type (Etype (Trans_Id))
and then Present (Expr)
and then Nkind (Expr) = N_Allocator;
end Is_Allocated;
--------------------------
-- Is_Indexed_Container --
--------------------------
function Is_Indexed_Container
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean
is
Aspect : Node_Id;
Call : Node_Id;
Index : Entity_Id;
Param : Node_Id;
Stmt : Node_Id;
Typ : Entity_Id;
begin
-- It is not possible to iterate over containers in non-Ada 2012 code
if Ada_Version < Ada_2012 then
return False;
end if;
Typ := Etype (Trans_Id);
-- Handle access type created for the reference below
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
end if;
-- Look for aspect Constant_Indexing. It may be part of a type
-- declaration for a container, or inherited from a base type
-- or parent type.
Aspect := Find_Value_Of_Aspect (Typ, Aspect_Constant_Indexing);
if Present (Aspect) then
Index := Entity (Aspect);
-- Examine the statements following the container object and
-- look for a call to the default indexing routine where the
-- first parameter is the transient. Such a call appears as:
-- It : Access_To_Constant_Reference_Type :=
-- Constant_Indexing (Trans_Id.all, ...)'reference;
Stmt := First_Stmt;
while Present (Stmt) loop
-- Detect an object declaration which is initialized by a
-- controlled function call.
if Nkind (Stmt) = N_Object_Declaration
and then Present (Expression (Stmt))
and then Nkind (Expression (Stmt)) = N_Reference
and then Nkind (Prefix (Expression (Stmt))) = N_Function_Call
then
Call := Prefix (Expression (Stmt));
-- The call must invoke the default indexing routine of
-- the container and the transient object must appear as
-- the first actual parameter. Skip any calls whose names
-- are not entities.
if Is_Entity_Name (Name (Call))
and then Entity (Name (Call)) = Index
and then Present (Parameter_Associations (Call))
then
Param := First (Parameter_Associations (Call));
if Nkind (Param) = N_Explicit_Dereference
and then Entity (Prefix (Param)) = Trans_Id
then
return True;
end if;
end if;
end if;
Next (Stmt);
end loop;
end if;
return False;
end Is_Indexed_Container;
---------------------------
-- Is_Iterated_Container --
---------------------------
function Is_Iterated_Container
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean
is
Aspect : Node_Id;
Call : Node_Id;
Iter : Entity_Id;
Param : Node_Id;
Stmt : Node_Id;
Typ : Entity_Id;
begin
-- It is not possible to iterate over containers in non-Ada 2012 code
if Ada_Version < Ada_2012 then
return False;
end if;
Typ := Etype (Trans_Id);
-- Handle access type created for the reference below
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
end if;
-- Look for aspect Default_Iterator. It may be part of a type
-- declaration for a container, or inherited from a base type
-- or parent type.
Aspect := Find_Value_Of_Aspect (Typ, Aspect_Default_Iterator);
if Present (Aspect) then
Iter := Entity (Aspect);
-- Examine the statements following the container object and
-- look for a call to the default iterate routine where the
-- first parameter is the transient. Such a call appears as:
-- It : Access_To_CW_Iterator :=
-- Iterate (Trans_Id.all, ...)'reference;
Stmt := First_Stmt;
while Present (Stmt) loop
-- Detect an object declaration which is initialized by a
-- controlled function call.
if Nkind (Stmt) = N_Object_Declaration
and then Present (Expression (Stmt))
and then Nkind (Expression (Stmt)) = N_Reference
and then Nkind (Prefix (Expression (Stmt))) = N_Function_Call
then
Call := Prefix (Expression (Stmt));
-- The call must invoke the default iterate routine of
-- the container and the transient object must appear as
-- the first actual parameter. Skip any calls whose names
-- are not entities.
if Is_Entity_Name (Name (Call))
and then Entity (Name (Call)) = Iter
and then Present (Parameter_Associations (Call))
then
Param := First (Parameter_Associations (Call));
if Nkind (Param) = N_Explicit_Dereference
and then Entity (Prefix (Param)) = Trans_Id
then
return True;
end if;
end if;
end if;
Next (Stmt);
end loop;
end if;
return False;
end Is_Iterated_Container;
-------------------------------------
-- Is_Part_Of_BIP_Return_Statement --
-------------------------------------
function Is_Part_Of_BIP_Return_Statement (N : Node_Id) return Boolean is
Subp : constant Entity_Id := Current_Subprogram;
Context : Node_Id;
begin
-- First check if N is part of a BIP function
if No (Subp)
or else not Is_Build_In_Place_Function (Subp)
then
return False;
end if;
-- Then check whether N is a complete part of a return statement
-- Should we consider other node kinds to go up the tree???
Context := N;
loop
case Nkind (Context) is
when N_Expression_With_Actions => Context := Parent (Context);
when N_Simple_Return_Statement => return True;
when others => return False;
end case;
end loop;
end Is_Part_Of_BIP_Return_Statement;
-- Local variables
Desig : Entity_Id := Obj_Typ;
-- Start of processing for Is_Finalizable_Transient
begin
-- Handle access types
if Is_Access_Type (Desig) then
Desig := Available_View (Designated_Type (Desig));
end if;
return
Ekind (Obj_Id) in E_Constant | E_Variable
and then Needs_Finalization (Desig)
and then Nkind (Rel_Node) /= N_Simple_Return_Statement
and then not Is_Part_Of_BIP_Return_Statement (Rel_Node)
-- Do not consider a transient object that was already processed
and then not Is_Finalized_Transient (Obj_Id)
-- Do not consider renamed or 'reference-d transient objects because
-- the act of renaming extends the object's lifetime.
and then not Is_Aliased (Obj_Id, Decl)
-- Do not consider transient objects allocated on the heap since
-- they are attached to a finalization master.
and then not Is_Allocated (Obj_Id)
-- If the transient object is a pointer, check that it is not
-- initialized by a function that returns a pointer or acts as a
-- renaming of another pointer.
and then not
(Is_Access_Type (Obj_Typ) and then Initialized_By_Access (Obj_Id))
-- Do not consider transient objects which act as indirect aliases
-- of build-in-place function results.
and then not Initialized_By_Aliased_BIP_Func_Call (Obj_Id)
-- Do not consider iterators because those are treated as normal
-- controlled objects and are processed by the usual finalization
-- machinery. This avoids the double finalization of an iterator.
and then not Is_Iterator (Desig)
-- Do not consider containers in the context of iterator loops. Such
-- transient objects must exist for as long as the loop is around,
-- otherwise any operation carried out by the iterator will fail.
and then not Is_Iterated_Container (Obj_Id, Decl)
-- Likewise for indexed containers in the context of iterator loops
and then not Is_Indexed_Container (Obj_Id, Decl);
end Is_Finalizable_Transient;
---------------------------------
-- Is_Fully_Repped_Tagged_Type --
---------------------------------
function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is
U : constant Entity_Id := Underlying_Type (T);
Comp : Entity_Id;
begin
if No (U) or else not Is_Tagged_Type (U) then
return False;
elsif Has_Discriminants (U) then
return False;
elsif not Has_Specified_Layout (U) then
return False;
end if;
-- Here we have a tagged type, see if it has any component (other than
-- tag and parent) with no component_clause. If so, we return False.
Comp := First_Component (U);
while Present (Comp) loop
if not Is_Tag (Comp)
and then Chars (Comp) /= Name_uParent
and then No (Component_Clause (Comp))
then
return False;
else
Next_Component (Comp);
end if;
end loop;
-- All components have clauses
return True;
end Is_Fully_Repped_Tagged_Type;
----------------------------------
-- Is_Library_Level_Tagged_Type --
----------------------------------
function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
begin
return Is_Tagged_Type (Typ) and then Is_Library_Level_Entity (Typ);
end Is_Library_Level_Tagged_Type;
--------------------------
-- Is_Non_BIP_Func_Call --
--------------------------
function Is_Non_BIP_Func_Call (Expr : Node_Id) return Boolean is
begin
-- The expected call is of the format
--
-- Func_Call'reference
return
Nkind (Expr) = N_Reference
and then Nkind (Prefix (Expr)) = N_Function_Call
and then not Is_Build_In_Place_Function_Call (Prefix (Expr));
end Is_Non_BIP_Func_Call;
----------------------------------
-- Is_Possibly_Unaligned_Object --
----------------------------------
function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
T : constant Entity_Id := Etype (N);
begin
-- If renamed object, apply test to underlying object
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
end if;
-- Tagged and controlled types and aliased types are always aligned, as
-- are concurrent types.
if Is_Aliased (T)
or else Has_Controlled_Component (T)
or else Is_Concurrent_Type (T)
or else Is_Tagged_Type (T)
or else Is_Controlled (T)
then
return False;
end if;
-- If this is an element of a packed array, may be unaligned
if Is_Ref_To_Bit_Packed_Array (N) then
return True;
end if;
-- Case of indexed component reference: test whether prefix is unaligned
if Nkind (N) = N_Indexed_Component then
return Is_Possibly_Unaligned_Object (Prefix (N));
-- Case of selected component reference
elsif Nkind (N) = N_Selected_Component then
declare
P : constant Node_Id := Prefix (N);
C : constant Entity_Id := Entity (Selector_Name (N));
M : Nat;
S : Nat;
begin
-- If component reference is for an array with nonstatic bounds,
-- then it is always aligned: we can only process unaligned arrays
-- with static bounds (more precisely compile time known bounds).
if Is_Array_Type (T)
and then not Compile_Time_Known_Bounds (T)
then
return False;
end if;
-- If component is aliased, it is definitely properly aligned
if Is_Aliased (C) then
return False;
end if;
-- If component is for a type implemented as a scalar, and the
-- record is packed, and the component is other than the first
-- component of the record, then the component may be unaligned.
if Is_Packed (Etype (P))
and then Represented_As_Scalar (Etype (C))
and then First_Entity (Scope (C)) /= C
then
return True;
end if;
-- Compute maximum possible alignment for T
-- If alignment is known, then that settles things
if Known_Alignment (T) then
M := UI_To_Int (Alignment (T));
-- If alignment is not known, tentatively set max alignment
else
M := Ttypes.Maximum_Alignment;
-- We can reduce this if the Esize is known since the default
-- alignment will never be more than the smallest power of 2
-- that does not exceed this Esize value.
if Known_Esize (T) then
S := UI_To_Int (Esize (T));
while (M / 2) >= S loop
M := M / 2;
end loop;
end if;
end if;
-- Case of component clause present which may specify an
-- unaligned position.
if Present (Component_Clause (C)) then
-- Otherwise we can do a test to make sure that the actual
-- start position in the record, and the length, are both
-- consistent with the required alignment. If not, we know
-- that we are unaligned.
declare
Align_In_Bits : constant Nat := M * System_Storage_Unit;
Comp : Entity_Id;
begin
Comp := C;
-- For a component inherited in a record extension, the
-- clause is inherited but position and size are not set.
if Is_Base_Type (Etype (P))
and then Is_Tagged_Type (Etype (P))
and then Present (Original_Record_Component (Comp))
then
Comp := Original_Record_Component (Comp);
end if;
if Component_Bit_Offset (Comp) mod Align_In_Bits /= 0
or else Esize (Comp) mod Align_In_Bits /= 0
then
return True;
end if;
end;
end if;
-- Otherwise, for a component reference, test prefix
return Is_Possibly_Unaligned_Object (P);
end;
-- If not a component reference, must be aligned
else
return False;
end if;
end Is_Possibly_Unaligned_Object;
---------------------------------
-- Is_Possibly_Unaligned_Slice --
---------------------------------
function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
begin
-- Go to renamed object
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
end if;
-- The reference must be a slice
if Nkind (N) /= N_Slice then
return False;
end if;
-- If it is a slice, then look at the array type being sliced
declare
Sarr : constant Node_Id := Prefix (N);
-- Prefix of the slice, i.e. the array being sliced
Styp : constant Entity_Id := Etype (Prefix (N));
-- Type of the array being sliced
Pref : Node_Id;
Ptyp : Entity_Id;
begin
-- The problems arise if the array object that is being sliced
-- is a component of a record or array, and we cannot guarantee
-- the alignment of the array within its containing object.
-- To investigate this, we look at successive prefixes to see
-- if we have a worrisome indexed or selected component.
Pref := Sarr;
loop
-- Case of array is part of an indexed component reference
if Nkind (Pref) = N_Indexed_Component then
Ptyp := Etype (Prefix (Pref));
-- The only problematic case is when the array is packed, in
-- which case we really know nothing about the alignment of
-- individual components.
if Is_Bit_Packed_Array (Ptyp) then
return True;
end if;
-- Case of array is part of a selected component reference
elsif Nkind (Pref) = N_Selected_Component then
Ptyp := Etype (Prefix (Pref));
-- We are definitely in trouble if the record in question
-- has an alignment, and either we know this alignment is
-- inconsistent with the alignment of the slice, or we don't
-- know what the alignment of the slice should be. But this
-- really matters only if the target has strict alignment.
if Target_Strict_Alignment
and then Known_Alignment (Ptyp)
and then (not Known_Alignment (Styp)
or else Alignment (Styp) > Alignment (Ptyp))
then
return True;
end if;
-- We are in potential trouble if the record type is packed.
-- We could special case when we know that the array is the
-- first component, but that's not such a simple case ???
if Is_Packed (Ptyp) then
return True;
end if;
-- We are in trouble if there is a component clause, and
-- either we do not know the alignment of the slice, or
-- the alignment of the slice is inconsistent with the
-- bit position specified by the component clause.
declare
Field : constant Entity_Id := Entity (Selector_Name (Pref));
begin
if Present (Component_Clause (Field))
and then
(not Known_Alignment (Styp)
or else
(Component_Bit_Offset (Field) mod
(System_Storage_Unit * Alignment (Styp))) /= 0)
then
return True;
end if;
end;
-- For cases other than selected or indexed components we know we
-- are OK, since no issues arise over alignment.
else
return False;
end if;
-- We processed an indexed component or selected component
-- reference that looked safe, so keep checking prefixes.
Pref := Prefix (Pref);
end loop;
end;
end Is_Possibly_Unaligned_Slice;
-------------------------------
-- Is_Related_To_Func_Return --
-------------------------------
function Is_Related_To_Func_Return (Id : Entity_Id) return Boolean is
Expr : constant Node_Id := Related_Expression (Id);
begin
-- In the case of a function with a class-wide result that returns
-- a call to a function with a specific result, we introduce a
-- type conversion for the return expression. We do not want that
-- type conversion to influence the result of this function.
return
Present (Expr)
and then Nkind (Unqual_Conv (Expr)) = N_Explicit_Dereference
and then (Nkind (Parent (Expr)) = N_Simple_Return_Statement
or else
(Nkind (Parent (Expr)) in N_Object_Declaration
| N_Object_Renaming_Declaration
and then
Is_Return_Object (Defining_Entity (Parent (Expr)))));
end Is_Related_To_Func_Return;
--------------------------------
-- Is_Ref_To_Bit_Packed_Array --
--------------------------------
function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
Result : Boolean;
Expr : Node_Id;
begin
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
end if;
if Nkind (N) in N_Indexed_Component | N_Selected_Component then
if Is_Bit_Packed_Array (Etype (Prefix (N))) then
Result := True;
else
Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
end if;
if Result and then Nkind (N) = N_Indexed_Component then
Expr := First (Expressions (N));
while Present (Expr) loop
Force_Evaluation (Expr);
Next (Expr);
end loop;
end if;
return Result;
else
return False;
end if;
end Is_Ref_To_Bit_Packed_Array;
--------------------------------
-- Is_Ref_To_Bit_Packed_Slice --
--------------------------------
function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
begin
if Nkind (N) = N_Type_Conversion then
return Is_Ref_To_Bit_Packed_Slice (Expression (N));
elsif Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
elsif Nkind (N) = N_Slice
and then Is_Bit_Packed_Array (Etype (Prefix (N)))
then
return True;
elsif Nkind (N) in N_Indexed_Component | N_Selected_Component then
return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
else
return False;
end if;
end Is_Ref_To_Bit_Packed_Slice;
-----------------------
-- Is_Renamed_Object --
-----------------------
function Is_Renamed_Object (N : Node_Id) return Boolean is
Pnod : constant Node_Id := Parent (N);
Kind : constant Node_Kind := Nkind (Pnod);
begin
if Kind = N_Object_Renaming_Declaration then
return True;
elsif Kind in N_Indexed_Component | N_Selected_Component then
return Is_Renamed_Object (Pnod);
else
return False;
end if;
end Is_Renamed_Object;
--------------------------------------
-- Is_Secondary_Stack_BIP_Func_Call --
--------------------------------------
function Is_Secondary_Stack_BIP_Func_Call (Expr : Node_Id) return Boolean is
Actual : Node_Id;
Call : Node_Id := Expr;
Formal : Node_Id;
Param : Node_Id;
begin
-- Build-in-place calls usually appear in 'reference format. Note that
-- the accessibility check machinery may add an extra 'reference due to
-- side-effect removal.
while Nkind (Call) = N_Reference loop
Call := Prefix (Call);
end loop;
Call := Unqual_Conv (Call);
if Is_Build_In_Place_Function_Call (Call) then
-- Examine all parameter associations of the function call
Param := First (Parameter_Associations (Call));
while Present (Param) loop
if Nkind (Param) = N_Parameter_Association then
Formal := Selector_Name (Param);
Actual := Explicit_Actual_Parameter (Param);
-- A match for BIPalloc => 2 has been found
if Is_Build_In_Place_Entity (Formal)
and then BIP_Suffix_Kind (Formal) = BIP_Alloc_Form
and then Nkind (Actual) = N_Integer_Literal
and then Intval (Actual) = Uint_2
then
return True;
end if;
end if;
Next (Param);
end loop;
end if;
return False;
end Is_Secondary_Stack_BIP_Func_Call;
------------------------------
-- Is_Secondary_Stack_Thunk --
------------------------------
function Is_Secondary_Stack_Thunk (Id : Entity_Id) return Boolean is
begin
return Ekind (Id) = E_Function
and then Is_Thunk (Id)
and then Has_Controlling_Result (Id);
end Is_Secondary_Stack_Thunk;
----------------------------
-- Is_Statically_Disabled --
----------------------------
function Is_Statically_Disabled
(N : Node_Id;
Value : Boolean;
Include_Valid : Boolean)
return Boolean
is
function Is_Discrete_Literal (N : Node_Id) return Boolean;
-- Returns whether N is an integer, character or enumeration literal
-------------------------
-- Is_Discrete_Literal --
-------------------------
function Is_Discrete_Literal (N : Node_Id) return Boolean is
(Nkind (N) in N_Integer_Literal | N_Character_Literal
or else (Nkind (N) in N_Identifier | N_Expanded_Name
and then Ekind (Entity (N)) = E_Enumeration_Literal));
Expr_N : constant Node_Id :=
(if Is_Static_Expression (N)
and then Entity (N) in Standard_True | Standard_False
and then Is_Rewrite_Substitution (N)
then Original_Node (N)
else N);
-- Start of processing for Is_Statically_Disabled
begin
-- A "statically disabled" condition which evaluates to Value is either:
case Nkind (Expr_N) is
-- an AND or AND THEN operator when:
-- - Value is True and both operands are statically disabled
-- conditions evaluated to True.
-- - Value is False and at least one operand is a statically disabled
-- condition evaluated to False.
when N_Op_And | N_And_Then =>
return
(if Value then
(Is_Statically_Disabled
(Left_Opnd (Expr_N), Value, Include_Valid)
and then Is_Statically_Disabled
(Right_Opnd (Expr_N), Value, Include_Valid))
else
(Is_Statically_Disabled
(Left_Opnd (Expr_N), Value, Include_Valid)
or else Is_Statically_Disabled
(Right_Opnd (Expr_N), Value, Include_Valid)));
-- an OR or OR ELSE operator when:
-- - Value is True and at least one operand is a statically disabled
-- condition evaluated to True.
-- - Value is False and both operands are statically disabled
-- conditions evaluated to False.
when N_Op_Or | N_Or_Else =>
return
(if Value then
(Is_Statically_Disabled
(Left_Opnd (Expr_N), Value, Include_Valid)
or else Is_Statically_Disabled
(Right_Opnd (Expr_N), Value, Include_Valid))
else
(Is_Statically_Disabled
(Left_Opnd (Expr_N), Value, Include_Valid)
and then Is_Statically_Disabled
(Right_Opnd (Expr_N), Value, Include_Valid)));
-- a NOT operator when the right operand is a statically disabled
-- condition evaluated to the negation of Value.
when N_Op_Not =>
return Is_Statically_Disabled
(Right_Opnd (Expr_N), not Value, Include_Valid);
-- a static constant when it is of a boolean type with aspect
-- Warnings Off.
when N_Identifier | N_Expanded_Name =>
return Is_Static_Expression (Expr_N)
and then Value = Is_True (Expr_Value (Expr_N))
and then Ekind (Entity (Expr_N)) = E_Constant
and then Has_Warnings_Off (Entity (Expr_N));
-- a relational_operator where one operand is a static constant with
-- aspect Warnings Off and the other operand is a literal of the
-- corresponding type.
when N_Op_Compare =>
declare
Left : constant Node_Id := Left_Opnd (Expr_N);
Right : constant Node_Id := Right_Opnd (Expr_N);
begin
return
Is_Static_Expression (N)
and then Value = Is_True (Expr_Value (N))
and then
((Is_Discrete_Literal (Right)
and then Nkind (Left) in N_Identifier
| N_Expanded_Name
and then Ekind (Entity (Left)) = E_Constant
and then Has_Warnings_Off (Entity (Left)))
or else
(Is_Discrete_Literal (Left)
and then Nkind (Right) in N_Identifier
| N_Expanded_Name
and then Ekind (Entity (Right)) = E_Constant
and then Has_Warnings_Off (Entity (Right))));
end;
-- a reference to 'Valid or 'Valid_Scalar if Include_Valid is True
when N_Attribute_Reference =>
return Include_Valid
and then Get_Attribute_Id (Attribute_Name (Expr_N)) in
Attribute_Valid | Attribute_Valid_Scalars
and then Value;
when others =>
return False;
end case;
end Is_Statically_Disabled;
--------------------------------
-- Is_Uninitialized_Aggregate --
--------------------------------
function Is_Uninitialized_Aggregate
(Exp : Node_Id;
T : Entity_Id) return Boolean
is
Comp : Node_Id;
Comp_Type : Entity_Id;
Typ : Entity_Id;
begin
if Nkind (Exp) /= N_Aggregate then
return False;
end if;
Preanalyze_And_Resolve (Exp, T);
Typ := Etype (Exp);
if No (Typ)
or else Ekind (Typ) /= E_Array_Subtype
or else Present (Expressions (Exp))
or else No (Component_Associations (Exp))
then
return False;
else
Comp_Type := Component_Type (Typ);
Comp := First (Component_Associations (Exp));
if not Box_Present (Comp)
or else Present (Next (Comp))
then
return False;
end if;
return Is_Scalar_Type (Comp_Type)
and then No (Default_Aspect_Component_Value (Typ));
end if;
end Is_Uninitialized_Aggregate;
----------------------------
-- Is_Untagged_Derivation --
----------------------------
function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
begin
return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
or else
(Is_Private_Type (T) and then Present (Full_View (T))
and then not Is_Tagged_Type (Full_View (T))
and then Is_Derived_Type (Full_View (T))
and then Etype (Full_View (T)) /= T);
end Is_Untagged_Derivation;
------------------------------------
-- Is_Untagged_Private_Derivation --
------------------------------------
function Is_Untagged_Private_Derivation
(Priv_Typ : Entity_Id;
Full_Typ : Entity_Id) return Boolean
is
begin
return
Present (Priv_Typ)
and then Is_Untagged_Derivation (Priv_Typ)
and then Is_Private_Type (Etype (Priv_Typ))
and then Present (Full_Typ)
and then Is_Itype (Full_Typ);
end Is_Untagged_Private_Derivation;
------------------------------
-- Is_Verifiable_DIC_Pragma --
------------------------------
function Is_Verifiable_DIC_Pragma (Prag : Node_Id) return Boolean is
Args : constant List_Id := Pragma_Argument_Associations (Prag);
begin
-- To qualify as verifiable, a DIC pragma must have a non-null argument
return
Present (Args)
-- If there are args, but the first arg is Empty, then treat the
-- pragma the same as having no args (there may be a second arg that
-- is an implicitly added type arg, and Empty is a placeholder).
and then Present (Get_Pragma_Arg (First (Args)))
and then Nkind (Get_Pragma_Arg (First (Args))) /= N_Null;
end Is_Verifiable_DIC_Pragma;
---------------------------
-- Is_Volatile_Reference --
---------------------------
function Is_Volatile_Reference (N : Node_Id) return Boolean is
begin
-- Only source references are to be treated as volatile, internally
-- generated stuff cannot have volatile external effects.
if not Comes_From_Source (N) then
return False;
-- Never true for reference to a type
elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
return False;
-- Never true for a compile time known constant
elsif Compile_Time_Known_Value (N) then
return False;
-- True if object reference with volatile type
elsif Is_Volatile_Object_Ref (N) then
return True;
-- True if reference to volatile entity
elsif Is_Entity_Name (N) then
return Treat_As_Volatile (Entity (N));
-- True for slice of volatile array
elsif Nkind (N) = N_Slice then
return Is_Volatile_Reference (Prefix (N));
-- True if volatile component
elsif Nkind (N) in N_Indexed_Component | N_Selected_Component then
if (Is_Entity_Name (Prefix (N))
and then Has_Volatile_Components (Entity (Prefix (N))))
or else (Present (Etype (Prefix (N)))
and then Has_Volatile_Components (Etype (Prefix (N))))
then
return True;
else
return Is_Volatile_Reference (Prefix (N));
end if;
-- Otherwise false
else
return False;
end if;
end Is_Volatile_Reference;
--------------------
-- Kill_Dead_Code --
--------------------
procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
W : Boolean := Warn;
-- Set False if warnings suppressed
begin
if Present (N) then
Remove_Warning_Messages (N);
-- Update the internal structures of the ABE mechanism in case the
-- dead node is an elaboration scenario.
Kill_Elaboration_Scenario (N);
-- Generate warning if appropriate
if W then
-- We suppress the warning if this code is under control of an
-- if/case statement and either
-- a) we are in an instance and the condition/selector
-- has a statically known value; or
-- b) the selector of a case statement is a simple identifier
-- and warnings off is set for this identifier; or
-- c) the condition of an if statement is a "statically
-- disabled" condition which evaluates to False as described
-- in section 7.3.2 of SPARK User's Guide.
-- Dead code is common and reasonable in instances, so we don't
-- want a warning in that case.
declare
C : Node_Id := Empty;
begin
if Nkind (Parent (N)) = N_If_Statement then
C := Condition (Parent (N));
if Is_Statically_Disabled
(C, Value => False, Include_Valid => False)
then
W := False;
end if;
elsif Nkind (Parent (N)) = N_Case_Statement_Alternative then
C := Expression (Parent (Parent (N)));
if Nkind (C) = N_Identifier
and then Present (Entity (C))
and then Has_Warnings_Off (Entity (C))
then
W := False;
end if;
end if;
if Present (C)
and then (In_Instance and Compile_Time_Known_Value (C))
then
W := False;
end if;
end;
-- Generate warning if not suppressed
if W then
Error_Msg_F
("?t?this code can never be executed and has been deleted!",
N);
end if;
end if;
-- Recurse into block statements and bodies to process declarations
-- and statements.
if Nkind (N) = N_Block_Statement
or else Nkind (N) = N_Subprogram_Body
or else Nkind (N) = N_Package_Body
then
Kill_Dead_Code (Declarations (N), False);
Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
if Nkind (N) = N_Subprogram_Body then
Set_Is_Eliminated (Defining_Entity (N));
end if;
elsif Nkind (N) = N_Package_Declaration then
Kill_Dead_Code (Visible_Declarations (Specification (N)));
Kill_Dead_Code (Private_Declarations (Specification (N)));
-- ??? After this point, Delete_Tree has been called on all
-- declarations in Specification (N), so references to entities
-- therein look suspicious.
declare
E : Entity_Id := First_Entity (Defining_Entity (N));
begin
while Present (E) loop
if Ekind (E) = E_Operator then
Set_Is_Eliminated (E);
end if;
Next_Entity (E);
end loop;
end;
-- Recurse into composite statement to kill individual statements in
-- particular instantiations.
elsif Nkind (N) = N_If_Statement then
Kill_Dead_Code (Then_Statements (N));
Kill_Dead_Code (Elsif_Parts (N));
Kill_Dead_Code (Else_Statements (N));
elsif Nkind (N) = N_Loop_Statement then
Kill_Dead_Code (Statements (N));
elsif Nkind (N) = N_Case_Statement then
declare
Alt : Node_Id;
begin
Alt := First (Alternatives (N));
while Present (Alt) loop
Kill_Dead_Code (Statements (Alt));
Next (Alt);
end loop;
end;
elsif Nkind (N) = N_Case_Statement_Alternative then
Kill_Dead_Code (Statements (N));
-- Deal with dead instances caused by deleting instantiations
elsif Nkind (N) in N_Generic_Instantiation then
Remove_Dead_Instance (N);
end if;
end if;
end Kill_Dead_Code;
-- Case where argument is a list of nodes to be killed
procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
N : Node_Id;
W : Boolean;
begin
W := Warn;
N := First (L);
while Present (N) loop
Kill_Dead_Code (N, W);
W := False;
Next (N);
end loop;
end Kill_Dead_Code;
-----------------------------
-- Make_CW_Equivalent_Type --
-----------------------------
-- Create a record type used as an equivalent of any member of the class
-- which takes its size from exp.
-- Generate the following code:
-- type Equiv_T is record
-- _parent : T (List of discriminant constraints taken from Exp);
-- Cnn : Storage_Array (1 .. (Exp'size - Typ'object_size)/Storage_Unit);
-- end Equiv_T;
--
-- Note that this type does not guarantee same alignment as all derived
-- types.
--
-- Note: for the freezing circuitry, this looks like a record extension,
-- and so we need to make sure that the scalar storage order is the same
-- as that of the parent type. (This does not change anything for the
-- representation of the extension part.)
function Make_CW_Equivalent_Type
(T : Entity_Id;
E : Node_Id) return Entity_Id
is
Loc : constant Source_Ptr := Sloc (E);
Root_Typ : constant Entity_Id := Root_Type (T);
Root_Utyp : constant Entity_Id := Underlying_Type (Root_Typ);
List_Def : constant List_Id := Empty_List;
Comp_List : constant List_Id := New_List;
Equiv_Type : Entity_Id;
Range_Type : Entity_Id;
Str_Type : Entity_Id;
Constr_Root : Entity_Id;
Size_Attr : Node_Id;
Size_Expr : Node_Id;
begin
-- If the root type is already constrained, there are no discriminants
-- in the expression.
if not Has_Discriminants (Root_Typ)
or else Is_Constrained (Root_Typ)
then
Constr_Root := Root_Typ;
-- At this point in the expansion, nonlimited view of the type
-- must be available, otherwise the error will be reported later.
if From_Limited_With (Constr_Root)
and then Present (Non_Limited_View (Constr_Root))
then
Constr_Root := Non_Limited_View (Constr_Root);
end if;
else
Constr_Root := Make_Temporary (Loc, 'R');
-- subtype cstr__n is T (List of discr constraints taken from Exp)
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Constr_Root,
Subtype_Indication => Make_Subtype_From_Expr (E, Root_Typ)));
end if;
-- Generate the range subtype declaration
Range_Type := Make_Temporary (Loc, 'G');
-- If the expression is known to have the tag of its type, then we can
-- use it directly for the prefix of the Size attribute; otherwise we
-- need to convert it first to the class-wide type to force a call to
-- the _Size primitive operation.
if Has_Tag_Of_Type (E) then
if not Has_Discriminants (Etype (E))
or else Is_Constrained (Etype (E))
then
Size_Attr :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Etype (E), Loc),
Attribute_Name => Name_Object_Size);
else
Size_Attr :=
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Attribute_Name => Name_Size);
end if;
else
Size_Attr :=
Make_Attribute_Reference (Loc,
Prefix => OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
Attribute_Name => Name_Size);
end if;
if not Is_Interface (Root_Typ) then
-- subtype rg__xx is
-- Storage_Offset range 1 .. (Exp'size - Typ'object_size)
-- / Storage_Unit
Size_Expr :=
Make_Op_Subtract (Loc,
Left_Opnd => Size_Attr,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Constr_Root, Loc),
Attribute_Name => Name_Object_Size));
else
-- subtype rg__xx is
-- Storage_Offset range 1 .. (Exp'size - Ada.Tags.Tag'object_size)
-- / Storage_Unit
Size_Expr :=
Make_Op_Subtract (Loc,
Left_Opnd => Size_Attr,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (RTE (RE_Tag), Loc),
Attribute_Name => Name_Object_Size));
end if;
Set_Paren_Count (Size_Expr, 1);
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Range_Type,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Offset), Loc),
Constraint => Make_Range_Constraint (Loc,
Range_Expression =>
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound =>
Make_Op_Divide (Loc,
Left_Opnd => Size_Expr,
Right_Opnd => Make_Integer_Literal (Loc,
Intval => System_Storage_Unit)))))));
-- subtype str__nn is Storage_Array (rg__x);
Str_Type := Make_Temporary (Loc, 'S');
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Str_Type,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Array), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints =>
New_List (New_Occurrence_Of (Range_Type, Loc))))));
-- type Equiv_T is record
-- _Parent : Snn; -- not interface
-- _Tag : Ada.Tags.Tag -- interface
-- Cnn : Str_Type;
-- end Equiv_T;
Equiv_Type := Make_Temporary (Loc, 'T');
Mutate_Ekind (Equiv_Type, E_Record_Type);
if not Is_Interface (Root_Typ) then
Set_Parent_Subtype (Equiv_Type, Constr_Root);
end if;
-- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
-- treatment for this type. In particular, even though _parent's type
-- is a controlled type or contains controlled components, we do not
-- want to set Has_Controlled_Component on it to avoid making it gain
-- an unwanted _controller component.
Set_Is_Class_Wide_Equivalent_Type (Equiv_Type);
-- A class-wide equivalent type does not require initialization
Set_Suppress_Initialization (Equiv_Type);
if not Is_Interface (Root_Typ) then
Append_To (Comp_List,
Make_Component_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uParent),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Occurrence_Of (Constr_Root, Loc))));
Set_Reverse_Storage_Order
(Equiv_Type, Reverse_Storage_Order (Base_Type (Root_Utyp)));
Set_Reverse_Bit_Order
(Equiv_Type, Reverse_Bit_Order (Base_Type (Root_Utyp)));
else
Append_To (Comp_List,
Make_Component_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uTag),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication =>
New_Occurrence_Of (RTE (RE_Tag), Loc))));
end if;
Append_To (Comp_List,
Make_Component_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'C'),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Occurrence_Of (Str_Type, Loc))));
Append_To (List_Def,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Equiv_Type,
Type_Definition =>
Make_Record_Definition (Loc,
Component_List =>
Make_Component_List (Loc,
Component_Items => Comp_List,
Variant_Part => Empty))));
-- Suppress all checks during the analysis of the expanded code to avoid
-- the generation of spurious warnings under ZFP run-time.
Insert_Actions (E, List_Def, Suppress => All_Checks);
-- In the case of an interface type mark the tag for First_Tag_Component
if Is_Interface (Root_Typ) then
Set_Is_Tag (First_Entity (Equiv_Type));
end if;
return Equiv_Type;
end Make_CW_Equivalent_Type;
-------------------------
-- Make_Invariant_Call --
-------------------------
function Make_Invariant_Call (Expr : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (Expr);
Typ : constant Entity_Id := Base_Type (Etype (Expr));
pragma Assert (Has_Invariants (Typ));
Proc_Id : constant Entity_Id := Invariant_Procedure (Typ);
pragma Assert (Present (Proc_Id));
Inv_Typ : constant Entity_Id
:= Base_Type (Etype (First_Formal (Proc_Id)));
Arg : Node_Id;
begin
-- The invariant procedure has a null body if assertions are disabled or
-- Assertion_Policy Ignore is in effect. In that case, generate a null
-- statement instead of a call to the invariant procedure.
if Has_Null_Body (Proc_Id) then
return Make_Null_Statement (Loc);
else
-- As done elsewhere, for example in Build_Initialization_Call, we
-- may need to bridge the gap between views of the type.
if Inv_Typ /= Typ then
Arg := OK_Convert_To (Inv_Typ, Expr);
else
Arg := Relocate_Node (Expr);
end if;
return
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Id, Loc),
Parameter_Associations => New_List (Arg));
end if;
end Make_Invariant_Call;
------------------------
-- Make_Literal_Range --
------------------------
function Make_Literal_Range
(Loc : Source_Ptr;
Literal_Typ : Entity_Id) return Node_Id
is
Lo : constant Node_Id :=
New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
Index : constant Entity_Id := Etype (Lo);
Length_Expr : constant Node_Id :=
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Intval => String_Literal_Length (Literal_Typ)),
Right_Opnd => Make_Integer_Literal (Loc, 1));
Hi : Node_Id;
begin
Set_Analyzed (Lo, False);
if Is_Integer_Type (Index) then
Hi :=
Make_Op_Add (Loc,
Left_Opnd => New_Copy_Tree (Lo),
Right_Opnd => Length_Expr);
else
Hi :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Val,
Prefix => New_Occurrence_Of (Index, Loc),
Expressions => New_List (
Make_Op_Add (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Pos,
Prefix => New_Occurrence_Of (Index, Loc),
Expressions => New_List (New_Copy_Tree (Lo))),
Right_Opnd => Length_Expr)));
end if;
return
Make_Range (Loc,
Low_Bound => Lo,
High_Bound => Hi);
end Make_Literal_Range;
--------------------------
-- Make_Non_Empty_Check --
--------------------------
function Make_Non_Empty_Check
(Loc : Source_Ptr;
N : Node_Id) return Node_Id
is
begin
return
Make_Op_Ne (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
Right_Opnd =>
Make_Integer_Literal (Loc, 0));
end Make_Non_Empty_Check;
-------------------------
-- Make_Predicate_Call --
-------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
function Make_Predicate_Call
(Typ : Entity_Id;
Expr : Node_Id;
Static_Mem : Boolean := False;
Dynamic_Mem : Node_Id := Empty) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Expr);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
Call : Node_Id;
Func_Id : Entity_Id;
Param_Assocs : List_Id;
begin
Func_Id := Predicate_Function (Typ);
pragma Assert (Present (Func_Id));
-- The related type may be subject to pragma Ghost. Set the mode now to
-- ensure that the call is properly marked as Ghost.
Set_Ghost_Mode (Typ);
-- Case of calling normal predicate function
-- If the type is tagged, the expression may be class-wide, in which
-- case it has to be converted to its root type, given that the
-- generated predicate function is not dispatching. The conversion is
-- type-safe and does not need validation, which matters when private
-- extensions are involved.
if Is_Tagged_Type (Typ) then
Param_Assocs := New_List (OK_Convert_To (Typ, Relocate_Node (Expr)));
else
Param_Assocs := New_List (Relocate_Node (Expr));
end if;
if Predicate_Function_Needs_Membership_Parameter (Typ) then
-- Pass in parameter indicating whether this call is for a
-- membership test.
Append ((if Present (Dynamic_Mem)
then Dynamic_Mem
else New_Occurrence_Of
(Boolean_Literals (Static_Mem), Loc)),
Param_Assocs);
end if;
Call :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Id, Loc),
Parameter_Associations => Param_Assocs);
Restore_Ghost_Region (Saved_GM, Saved_IGR);
return Call;
end Make_Predicate_Call;
--------------------------
-- Make_Predicate_Check --
--------------------------
function Make_Predicate_Check
(Typ : Entity_Id;
Expr : Node_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Expr);
-- Local variables
Args : List_Id;
Nam : Name_Id;
-- Start of processing for Make_Predicate_Check
begin
-- If predicate checks are suppressed, then return a null statement. For
-- this call, we check only the scope setting. If the caller wants to
-- check a specific entity's setting, they must do it manually.
if Predicate_Checks_Suppressed (Empty) then
return Make_Null_Statement (Loc);
end if;
-- Do not generate a check within stream functions and the like.
if not Predicate_Check_In_Scope (Expr) then
return Make_Null_Statement (Loc);
end if;
-- Compute proper name to use, we need to get this right so that the
-- right set of check policies apply to the Check pragma we are making.
-- The presence or not of a Ghost_Predicate does not influence the
-- choice of the applicable check policy.
if Has_Dynamic_Predicate_Aspect (Typ) then
Nam := Name_Dynamic_Predicate;
elsif Has_Static_Predicate_Aspect (Typ) then
Nam := Name_Static_Predicate;
else
Nam := Name_Predicate;
end if;
Args := New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Nam)),
Make_Pragma_Argument_Association (Loc,
Expression => Make_Predicate_Call (Typ, Expr)));
-- If the subtype is subject to pragma Predicate_Failure, add the
-- failure expression as an additional parameter.
return
Make_Pragma (Loc,
Chars => Name_Check,
Pragma_Argument_Associations => Args);
end Make_Predicate_Check;
----------------------------
-- Make_Subtype_From_Expr --
----------------------------
-- 1. If Expr is an unconstrained array expression, creates
-- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
-- 2. If Expr is a unconstrained discriminated type expression, creates
-- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
-- 3. If Expr is class-wide, creates an implicit class-wide subtype
function Make_Subtype_From_Expr
(E : Node_Id;
Unc_Typ : Entity_Id;
Related_Id : Entity_Id := Empty) return Node_Id
is
List_Constr : constant List_Id := New_List;
Loc : constant Source_Ptr := Sloc (E);
D : Entity_Id;
Full_Exp : Node_Id;
Full_Subtyp : Entity_Id;
High_Bound : Entity_Id;
Index_Typ : Entity_Id;
Low_Bound : Entity_Id;
Priv_Subtyp : Entity_Id;
Utyp : Entity_Id;
begin
if Is_Private_Type (Unc_Typ)
and then Has_Unknown_Discriminants (Unc_Typ)
then
-- The caller requests a unique external name for both the private
-- and the full subtype.
if Present (Related_Id) then
Full_Subtyp :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Related_Id), 'C'));
Priv_Subtyp :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Related_Id), 'P'));
else
Full_Subtyp := Make_Temporary (Loc, 'C');
Priv_Subtyp := Make_Temporary (Loc, 'P');
end if;
-- Prepare the subtype completion. Use the base type to find the
-- underlying type because the type may be a generic actual or an
-- explicit subtype.
Utyp := Underlying_Type (Base_Type (Unc_Typ));
Full_Exp :=
Unchecked_Convert_To (Utyp, Duplicate_Subexpr_No_Checks (E));
Set_Parent (Full_Exp, Parent (E));
Insert_Action (E,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Full_Subtyp,
Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
-- Define the dummy private subtype
Mutate_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
Set_Scope (Priv_Subtyp, Full_Subtyp);
Set_Is_Constrained (Priv_Subtyp);
Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
Set_Is_Itype (Priv_Subtyp);
Set_Associated_Node_For_Itype (Priv_Subtyp, E);
if Is_Tagged_Type (Priv_Subtyp) then
Set_Class_Wide_Type
(Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
Set_Direct_Primitive_Operations (Priv_Subtyp,
Direct_Primitive_Operations (Unc_Typ));
end if;
Set_Full_View (Priv_Subtyp, Full_Subtyp);
return New_Occurrence_Of (Priv_Subtyp, Loc);
elsif Is_Array_Type (Unc_Typ) then
Index_Typ := First_Index (Unc_Typ);
for J in 1 .. Number_Dimensions (Unc_Typ) loop
-- Capture the bounds of each index constraint in case the context
-- is an object declaration of an unconstrained type initialized
-- by a function call:
-- Obj : Unconstr_Typ := Func_Call;
-- This scenario requires secondary scope management and the index
-- constraint cannot depend on the temporary used to capture the
-- result of the function call.
-- SS_Mark;
-- Temp : Unconstr_Typ_Ptr := Func_Call'reference;
-- subtype S is Unconstr_Typ (Temp.all'First .. Temp.all'Last);
-- Obj : S := Temp.all;
-- SS_Release; -- Temp is gone at this point, bounds of S are
-- -- non existent.
-- Generate:
-- Low_Bound : constant Base_Type (Index_Typ) := E'First (J);
Low_Bound := Make_Temporary (Loc, 'B');
Insert_Action (E,
Make_Object_Declaration (Loc,
Defining_Identifier => Low_Bound,
Object_Definition =>
New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
Constant_Present => True,
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, J)))));
-- Generate:
-- High_Bound : constant Base_Type (Index_Typ) := E'Last (J);
High_Bound := Make_Temporary (Loc, 'B');
Insert_Action (E,
Make_Object_Declaration (Loc,
Defining_Identifier => High_Bound,
Object_Definition =>
New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
Constant_Present => True,
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, J)))));
Append_To (List_Constr,
Make_Range (Loc,
Low_Bound => New_Occurrence_Of (Low_Bound, Loc),
High_Bound => New_Occurrence_Of (High_Bound, Loc)));
Next_Index (Index_Typ);
end loop;
elsif Is_Class_Wide_Type (Unc_Typ) then
declare
CW_Subtype : constant Entity_Id :=
New_Class_Wide_Subtype (Unc_Typ, E);
begin
-- A class-wide equivalent type is not needed on VM targets
-- because the VM back-ends handle the class-wide object
-- initialization itself (and doesn't need or want the
-- additional intermediate type to handle the assignment).
if Expander_Active and then Tagged_Type_Expansion then
-- If this is the class-wide type of a completion that is a
-- record subtype, set the type of the class-wide type to be
-- the full base type, for use in the expanded code for the
-- equivalent type. Should this be done earlier when the
-- completion is analyzed ???
if Is_Private_Type (Etype (Unc_Typ))
and then
Ekind (Full_View (Etype (Unc_Typ))) = E_Record_Subtype
then
Set_Etype (Unc_Typ, Base_Type (Full_View (Etype (Unc_Typ))));
end if;
Set_Equivalent_Type
(CW_Subtype, Make_CW_Equivalent_Type (Unc_Typ, E));
end if;
Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
return New_Occurrence_Of (CW_Subtype, Loc);
end;
-- Indefinite record type with discriminants
else
D := First_Discriminant (Unc_Typ);
while Present (D) loop
Append_To (List_Constr,
Make_Selected_Component (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Selector_Name => New_Occurrence_Of (D, Loc)));
Next_Discriminant (D);
end loop;
end if;
return
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Unc_Typ, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => List_Constr));
end Make_Subtype_From_Expr;
-----------------------------------
-- Make_Tag_Assignment_From_Type --
-----------------------------------
function Make_Tag_Assignment_From_Type
(Loc : Source_Ptr;
Target : Node_Id;
Typ : Entity_Id) return Node_Id
is
Nam : constant Node_Id :=
Make_Selected_Component (Loc,
Prefix => Target,
Selector_Name =>
New_Occurrence_Of (First_Tag_Component (Typ), Loc));
begin
Set_Assignment_OK (Nam);
return
Make_Assignment_Statement (Loc,
Name => Nam,
Expression =>
Unchecked_Convert_To (RTE (RE_Tag),
New_Occurrence_Of
(Node (First_Elmt (Access_Disp_Table (Typ))), Loc)));
end Make_Tag_Assignment_From_Type;
-----------------------------
-- Make_Variant_Comparison --
-----------------------------
function Make_Variant_Comparison
(Loc : Source_Ptr;
Typ : Entity_Id;
Mode : Name_Id;
Curr_Val : Node_Id;
Old_Val : Node_Id) return Node_Id
is
function Big_Integer_Lt return Entity_Id;
-- Returns the entity of the predefined "<" function from
-- Ada.Numerics.Big_Numbers.Big_Integers.
--------------------
-- Big_Integer_Lt --
--------------------
function Big_Integer_Lt return Entity_Id is
Big_Integers : constant Entity_Id :=
RTU_Entity (Ada_Numerics_Big_Numbers_Big_Integers);
E : Entity_Id := First_Entity (Big_Integers);
begin
while Present (E) loop
if Chars (E) = Name_Op_Lt then
return E;
end if;
Next_Entity (E);
end loop;
raise Program_Error;
end Big_Integer_Lt;
-- Start of processing for Make_Variant_Comparison
begin
if Mode = Name_Increases then
return Make_Op_Gt (Loc, Curr_Val, Old_Val);
else pragma Assert (Mode = Name_Decreases);
-- For discrete expressions use the "<" operator
if Is_Discrete_Type (Typ) then
return Make_Op_Lt (Loc, Curr_Val, Old_Val);
-- For Big_Integer expressions use the "<" function, because the
-- operator on private type might not be visible and won't be
-- resolved.
else pragma Assert (Is_RTE (Base_Type (Typ), RE_Big_Integer));
return
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (Big_Integer_Lt, Loc),
Parameter_Associations =>
New_List (Curr_Val, Old_Val));
end if;
end if;
end Make_Variant_Comparison;
-----------------
-- Map_Formals --
-----------------
procedure Map_Formals
(Parent_Subp : Entity_Id;
Derived_Subp : Entity_Id;
Force_Update : Boolean := False)
is
Par_Formal : Entity_Id := First_Formal (Parent_Subp);
Subp_Formal : Entity_Id := First_Formal (Derived_Subp);
begin
if Force_Update then
Type_Map.Set (Parent_Subp, Derived_Subp);
end if;
-- At this stage either we are under regular processing and the caller
-- has previously ensured that these primitives are already mapped (by
-- means of calling previously to Update_Primitives_Mapping), or we are
-- processing a late-overriding primitive and Force_Update updated above
-- the mapping of these primitives.
while Present (Par_Formal) and then Present (Subp_Formal) loop
Type_Map.Set (Par_Formal, Subp_Formal);
Next_Formal (Par_Formal);
Next_Formal (Subp_Formal);
end loop;
end Map_Formals;
---------------
-- Map_Types --
---------------
procedure Map_Types (Parent_Type : Entity_Id; Derived_Type : Entity_Id) is
-- NOTE: Most of the routines in Map_Types are intentionally unnested to
-- avoid deep indentation of code.
-- NOTE: Routines which deal with discriminant mapping operate on the
-- [underlying/record] full view of various types because those views
-- contain all discriminants and stored constraints.
procedure Add_Primitive (Prim : Entity_Id; Par_Typ : Entity_Id);
-- Subsidiary to Map_Primitives. Find a primitive in the inheritance or
-- overriding chain starting from Prim whose dispatching type is parent
-- type Par_Typ and add a mapping between the result and primitive Prim.
function Ancestor_Primitive (Subp : Entity_Id) return Entity_Id;
-- Subsidiary to Map_Primitives. Return the next ancestor primitive in
-- the inheritance or overriding chain of subprogram Subp. Return Empty
-- if no such primitive is available.
function Build_Chain
(Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id) return Elist_Id;
-- Subsidiary to Map_Discriminants. Recreate the derivation chain from
-- parent type Par_Typ leading down towards derived type Deriv_Typ. The
-- list has the form:
--
-- head tail
-- v v
-- <Ancestor_N> -> <Ancestor_N-1> -> <Ancestor_1> -> Deriv_Typ
--
-- Note that Par_Typ is not part of the resulting derivation chain
function Discriminated_View (Typ : Entity_Id) return Entity_Id;
-- Return the view of type Typ which could potentially contains either
-- the discriminants or stored constraints of the type.
function Find_Discriminant_Value
(Discr : Entity_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Typ_Elmt : Elmt_Id) return Node_Or_Entity_Id;
-- Subsidiary to Map_Discriminants. Find the value of discriminant Discr
-- in the derivation chain starting from parent type Par_Typ leading to
-- derived type Deriv_Typ. The returned value is one of the following:
--
-- * An entity which is either a discriminant or a nondiscriminant
-- name, and renames/constraints Discr.
--
-- * An expression which constraints Discr
--
-- Typ_Elmt is an element of the derivation chain created by routine
-- Build_Chain and denotes the current ancestor being examined.
procedure Map_Discriminants
(Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id);
-- Map each discriminant of type Par_Typ to a meaningful constraint
-- from the point of view of type Deriv_Typ.
procedure Map_Primitives (Par_Typ : Entity_Id; Deriv_Typ : Entity_Id);
-- Map each primitive of type Par_Typ to a corresponding primitive of
-- type Deriv_Typ.
-------------------
-- Add_Primitive --
-------------------
procedure Add_Primitive (Prim : Entity_Id; Par_Typ : Entity_Id) is
Par_Prim : Entity_Id;
begin
-- Inspect the inheritance chain through the Alias attribute and the
-- overriding chain through the Overridden_Operation looking for an
-- ancestor primitive with the appropriate dispatching type.
Par_Prim := Prim;
while Present (Par_Prim) loop
exit when Find_Dispatching_Type (Par_Prim) = Par_Typ;
Par_Prim := Ancestor_Primitive (Par_Prim);
end loop;
-- Create a mapping of the form:
-- parent type primitive -> derived type primitive
if Present (Par_Prim) then
Type_Map.Set (Par_Prim, Prim);
end if;
end Add_Primitive;
------------------------
-- Ancestor_Primitive --
------------------------
function Ancestor_Primitive (Subp : Entity_Id) return Entity_Id is
Inher_Prim : constant Entity_Id := Alias (Subp);
Over_Prim : constant Entity_Id := Overridden_Operation (Subp);
begin
-- The current subprogram overrides an ancestor primitive
if Present (Over_Prim) then
return Over_Prim;
-- The current subprogram is an internally generated alias of an
-- inherited ancestor primitive.
elsif Present (Inher_Prim) then
-- It is possible that an internally generated alias could be
-- set to a subprogram which overrides the same aliased primitive,
-- so return Empty in this case.
if Ancestor_Primitive (Inher_Prim) = Subp then
return Empty;
end if;
return Inher_Prim;
-- Otherwise the current subprogram is the root of the inheritance or
-- overriding chain.
else
return Empty;
end if;
end Ancestor_Primitive;
-----------------
-- Build_Chain --
-----------------
function Build_Chain
(Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id) return Elist_Id
is
Anc_Typ : Entity_Id;
Chain : Elist_Id;
Curr_Typ : Entity_Id;
begin
Chain := New_Elmt_List;
-- Add the derived type to the derivation chain
Prepend_Elmt (Deriv_Typ, Chain);
-- Examine all ancestors starting from the derived type climbing
-- towards parent type Par_Typ.
Curr_Typ := Deriv_Typ;
loop
-- Handle the case where the current type is a record which
-- derives from a subtype.
-- subtype Sub_Typ is Par_Typ ...
-- type Deriv_Typ is Sub_Typ ...
if Ekind (Curr_Typ) = E_Record_Type
and then Present (Parent_Subtype (Curr_Typ))
then
Anc_Typ := Parent_Subtype (Curr_Typ);
-- Handle the case where the current type is a record subtype of
-- another subtype.
-- subtype Sub_Typ1 is Par_Typ ...
-- subtype Sub_Typ2 is Sub_Typ1 ...
elsif Ekind (Curr_Typ) = E_Record_Subtype
and then Present (Cloned_Subtype (Curr_Typ))
then
Anc_Typ := Cloned_Subtype (Curr_Typ);
-- Otherwise use the direct parent type
else
Anc_Typ := Etype (Curr_Typ);
end if;
-- Use the first subtype when dealing with itypes
if Is_Itype (Anc_Typ) then
Anc_Typ := First_Subtype (Anc_Typ);
end if;
-- Work with the view which contains the discriminants and stored
-- constraints.
Anc_Typ := Discriminated_View (Anc_Typ);
-- Stop the climb when either the parent type has been reached or
-- there are no more ancestors left to examine.
exit when Anc_Typ = Curr_Typ or else Anc_Typ = Par_Typ;
Prepend_Unique_Elmt (Anc_Typ, Chain);
Curr_Typ := Anc_Typ;
end loop;
return Chain;
end Build_Chain;
------------------------
-- Discriminated_View --
------------------------
function Discriminated_View (Typ : Entity_Id) return Entity_Id is
T : Entity_Id;
begin
T := Typ;
-- Use the [underlying] full view when dealing with private types
-- because the view contains all inherited discriminants or stored
-- constraints.
if Is_Private_Type (T) then
if Present (Underlying_Full_View (T)) then
T := Underlying_Full_View (T);
elsif Present (Full_View (T)) then
T := Full_View (T);
end if;
end if;
-- Use the underlying record view when the type is an extenstion of
-- a parent type with unknown discriminants because the view contains
-- all inherited discriminants or stored constraints.
if Ekind (T) = E_Record_Type
and then Present (Underlying_Record_View (T))
then
T := Underlying_Record_View (T);
end if;
return T;
end Discriminated_View;
-----------------------------
-- Find_Discriminant_Value --
-----------------------------
function Find_Discriminant_Value
(Discr : Entity_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Typ_Elmt : Elmt_Id) return Node_Or_Entity_Id
is
Discr_Pos : constant Uint := Discriminant_Number (Discr);
Typ : constant Entity_Id := Node (Typ_Elmt);
function Find_Constraint_Value
(Constr : Node_Or_Entity_Id) return Node_Or_Entity_Id;
-- Given constraint Constr, find what it denotes. This is either:
--
-- * An entity which is either a discriminant or a name
--
-- * An expression
---------------------------
-- Find_Constraint_Value --
---------------------------
function Find_Constraint_Value
(Constr : Node_Or_Entity_Id) return Node_Or_Entity_Id
is
begin
if Nkind (Constr) in N_Entity then
-- The constraint denotes a discriminant of the curren type
-- which renames the ancestor discriminant:
-- vv
-- type Typ (D1 : ...; DN : ...) is
-- new Anc (Discr => D1) with ...
-- ^^
if Ekind (Constr) = E_Discriminant then
-- The discriminant belongs to derived type Deriv_Typ. This
-- is the final value for the ancestor discriminant as the
-- derivations chain has been fully exhausted.
if Typ = Deriv_Typ then
return Constr;
-- Otherwise the discriminant may be renamed or constrained
-- at a lower level. Continue looking down the derivation
-- chain.
else
return
Find_Discriminant_Value
(Discr => Constr,
Par_Typ => Par_Typ,
Deriv_Typ => Deriv_Typ,
Typ_Elmt => Next_Elmt (Typ_Elmt));
end if;
-- Otherwise the constraint denotes a reference to some name
-- which results in a Stored discriminant:
-- vvvv
-- Name : ...;
-- type Typ (D1 : ...; DN : ...) is
-- new Anc (Discr => Name) with ...
-- ^^^^
-- Return the name as this is the proper constraint of the
-- discriminant.
else
return Constr;
end if;
-- The constraint denotes a reference to a name
elsif Is_Entity_Name (Constr) then
return Find_Constraint_Value (Entity (Constr));
-- Otherwise the current constraint is an expression which yields
-- a Stored discriminant:
-- type Typ (D1 : ...; DN : ...) is
-- new Anc (Discr => <expression>) with ...
-- ^^^^^^^^^^
-- Return the expression as this is the proper constraint of the
-- discriminant.
else
return Constr;
end if;
end Find_Constraint_Value;
-- Local variables
Constrs : constant Elist_Id := Stored_Constraint (Typ);
Constr_Elmt : Elmt_Id;
Pos : Uint;
Typ_Discr : Entity_Id;
-- Start of processing for Find_Discriminant_Value
begin
-- The algorithm for finding the value of a discriminant works as
-- follows. First, it recreates the derivation chain from Par_Typ
-- to Deriv_Typ as a list:
-- Par_Typ (shown for completeness)
-- v
-- Ancestor_N <-- head of chain
-- v
-- Ancestor_1
-- v
-- Deriv_Typ <-- tail of chain
-- The algorithm then traces the fate of a parent discriminant down
-- the derivation chain. At each derivation level, the discriminant
-- may be either inherited or constrained.
-- 1) Discriminant is inherited: there are two cases, depending on
-- which type is inheriting.
-- 1.1) Deriv_Typ is inheriting:
-- type Ancestor (D_1 : ...) is tagged ...
-- type Deriv_Typ is new Ancestor ...
-- In this case the inherited discriminant is the final value of
-- the parent discriminant because the end of the derivation chain
-- has been reached.
-- 1.2) Some other type is inheriting:
-- type Ancestor_1 (D_1 : ...) is tagged ...
-- type Ancestor_2 is new Ancestor_1 ...
-- In this case the algorithm continues to trace the fate of the
-- inherited discriminant down the derivation chain because it may
-- be further inherited or constrained.
-- 2) Discriminant is constrained: there are three cases, depending
-- on what the constraint is.
-- 2.1) The constraint is another discriminant (aka renaming):
-- type Ancestor_1 (D_1 : ...) is tagged ...
-- type Ancestor_2 (D_2 : ...) is new Ancestor_1 (D_1 => D_2) ...
-- In this case the constraining discriminant becomes the one to
-- track down the derivation chain. The algorithm already knows
-- that D_2 constrains D_1, therefore if the algorithm finds the
-- value of D_2, then this would also be the value for D_1.
-- 2.2) The constraint is a name (aka Stored):
-- Name : ...
-- type Ancestor_1 (D_1 : ...) is tagged ...
-- type Ancestor_2 is new Ancestor_1 (D_1 => Name) ...
-- In this case the name is the final value of D_1 because the
-- discriminant cannot be further constrained.
-- 2.3) The constraint is an expression (aka Stored):
-- type Ancestor_1 (D_1 : ...) is tagged ...
-- type Ancestor_2 is new Ancestor_1 (D_1 => 1 + 2) ...
-- Similar to 2.2, the expression is the final value of D_1
Pos := Uint_1;
-- When a derived type constrains its parent type, all constaints
-- appear in the Stored_Constraint list. Examine the list looking
-- for a positional match.
if Present (Constrs) then
Constr_Elmt := First_Elmt (Constrs);
while Present (Constr_Elmt) loop
-- The position of the current constraint matches that of the
-- ancestor discriminant.
if Pos = Discr_Pos then
return Find_Constraint_Value (Node (Constr_Elmt));
end if;
Next_Elmt (Constr_Elmt);
Pos := Pos + 1;
end loop;
-- Otherwise the derived type does not constraint its parent type in
-- which case it inherits the parent discriminants.
else
Typ_Discr := First_Discriminant (Typ);
while Present (Typ_Discr) loop
-- The position of the current discriminant matches that of the
-- ancestor discriminant.
if Pos = Discr_Pos then
return Find_Constraint_Value (Typ_Discr);
end if;
Next_Discriminant (Typ_Discr);
Pos := Pos + 1;
end loop;
end if;
-- A discriminant must always have a corresponding value. This is
-- either another discriminant, a name, or an expression. If this
-- point is reached, them most likely the derivation chain employs
-- the wrong views of types.
pragma Assert (False);
return Empty;
end Find_Discriminant_Value;
-----------------------
-- Map_Discriminants --
-----------------------
procedure Map_Discriminants
(Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id)
is
Deriv_Chain : constant Elist_Id := Build_Chain (Par_Typ, Deriv_Typ);
Discr : Entity_Id;
Discr_Val : Node_Or_Entity_Id;
begin
-- Examine each discriminant of parent type Par_Typ and find a
-- suitable value for it from the point of view of derived type
-- Deriv_Typ.
if Has_Discriminants (Par_Typ) then
Discr := First_Discriminant (Par_Typ);
while Present (Discr) loop
Discr_Val :=
Find_Discriminant_Value
(Discr => Discr,
Par_Typ => Par_Typ,
Deriv_Typ => Deriv_Typ,
Typ_Elmt => First_Elmt (Deriv_Chain));
-- Create a mapping of the form:
-- parent type discriminant -> value
Type_Map.Set (Discr, Discr_Val);
Next_Discriminant (Discr);
end loop;
end if;
end Map_Discriminants;
--------------------
-- Map_Primitives --
--------------------
procedure Map_Primitives (Par_Typ : Entity_Id; Deriv_Typ : Entity_Id) is
Deriv_Prim : Entity_Id;
Par_Prim : Entity_Id;
Par_Prims : Elist_Id;
Prim_Elmt : Elmt_Id;
begin
-- Inspect the primitives of the derived type and determine whether
-- they relate to the primitives of the parent type. If there is a
-- meaningful relation, create a mapping of the form:
-- parent type primitive -> derived type primitive
if Present (Direct_Primitive_Operations (Deriv_Typ)) then
Prim_Elmt := First_Elmt (Direct_Primitive_Operations (Deriv_Typ));
while Present (Prim_Elmt) loop
Deriv_Prim := Node (Prim_Elmt);
if Is_Subprogram (Deriv_Prim)
and then Find_Dispatching_Type (Deriv_Prim) = Deriv_Typ
then
Add_Primitive (Deriv_Prim, Par_Typ);
end if;
Next_Elmt (Prim_Elmt);
end loop;
end if;
-- If the parent operation is an interface operation, the overriding
-- indicator is not present. Instead, we get from the interface
-- operation the primitive of the current type that implements it.
if Is_Interface (Par_Typ) then
Par_Prims := Collect_Primitive_Operations (Par_Typ);
if Present (Par_Prims) then
Prim_Elmt := First_Elmt (Par_Prims);
while Present (Prim_Elmt) loop
Par_Prim := Node (Prim_Elmt);
Deriv_Prim :=
Find_Primitive_Covering_Interface (Deriv_Typ, Par_Prim);
if Present (Deriv_Prim) then
Type_Map.Set (Par_Prim, Deriv_Prim);
end if;
Next_Elmt (Prim_Elmt);
end loop;
end if;
end if;
end Map_Primitives;
-- Start of processing for Map_Types
begin
-- Nothing to do if there are no types to work with
if No (Parent_Type) or else No (Derived_Type) then
return;
-- Nothing to do if the mapping already exists
elsif Type_Map.Get (Parent_Type) = Derived_Type then
return;
-- Nothing to do if both types are not tagged. Note that untagged types
-- do not have primitive operations and their discriminants are already
-- handled by gigi.
elsif not Is_Tagged_Type (Parent_Type)
or else not Is_Tagged_Type (Derived_Type)
then
return;
end if;
-- Create a mapping of the form
-- parent type -> derived type
-- to prevent any subsequent attempts to produce the same relations
Type_Map.Set (Parent_Type, Derived_Type);
-- Create mappings of the form
-- parent type discriminant -> derived type discriminant
-- <or>
-- parent type discriminant -> constraint
-- Note that mapping of discriminants breaks privacy because it needs to
-- work with those views which contains the discriminants and any stored
-- constraints.
Map_Discriminants
(Par_Typ => Discriminated_View (Parent_Type),
Deriv_Typ => Discriminated_View (Derived_Type));
-- Create mappings of the form
-- parent type primitive -> derived type primitive
Map_Primitives
(Par_Typ => Parent_Type,
Deriv_Typ => Derived_Type);
end Map_Types;
----------------------------
-- Matching_Standard_Type --
----------------------------
function Matching_Standard_Type (Typ : Entity_Id) return Entity_Id is
pragma Assert (Is_Scalar_Type (Typ));
Siz : constant Uint := Esize (Typ);
begin
-- Floating-point cases
if Is_Floating_Point_Type (Typ) then
if Siz <= Esize (Standard_Short_Float) then
return Standard_Short_Float;
elsif Siz <= Esize (Standard_Float) then
return Standard_Float;
elsif Siz <= Esize (Standard_Long_Float) then
return Standard_Long_Float;
elsif Siz <= Esize (Standard_Long_Long_Float) then
return Standard_Long_Long_Float;
else
raise Program_Error;
end if;
-- Integer cases (includes fixed-point types)
-- Unsigned integer cases (includes normal enumeration types)
else
return Small_Integer_Type_For (Siz, Is_Unsigned_Type (Typ));
end if;
end Matching_Standard_Type;
-----------------------------
-- May_Generate_Large_Temp --
-----------------------------
-- At the current time, the only types that we return False for (i.e. where
-- we decide we know they cannot generate large temps) are ones where we
-- know the size is 256 bits or less at compile time, and we are still not
-- doing a thorough job on arrays and records.
function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
begin
if not Size_Known_At_Compile_Time (Typ) then
return False;
end if;
if Known_Esize (Typ) and then Esize (Typ) <= 256 then
return False;
end if;
if Is_Array_Type (Typ)
and then Present (Packed_Array_Impl_Type (Typ))
then
return May_Generate_Large_Temp (Packed_Array_Impl_Type (Typ));
end if;
return True;
end May_Generate_Large_Temp;
--------------------------------------------
-- Needs_Conditional_Null_Excluding_Check --
--------------------------------------------
function Needs_Conditional_Null_Excluding_Check
(Typ : Entity_Id) return Boolean
is
begin
return
Is_Array_Type (Typ) and then Can_Never_Be_Null (Component_Type (Typ));
end Needs_Conditional_Null_Excluding_Check;
----------------------------
-- Needs_Constant_Address --
----------------------------
function Needs_Constant_Address
(Decl : Node_Id;
Typ : Entity_Id) return Boolean
is
begin
-- If we have no initialization of any kind, then we don't need to place
-- any restrictions on the address clause, because the object will be
-- elaborated after the address clause is evaluated. This happens if the
-- declaration has no initial expression, or the type has no implicit
-- initialization, or the object is imported.
-- The same holds for all initialized scalar types and all access types.
-- Packed bit array types of size up to the maximum integer size are
-- represented using a modular type with an initialization (to zero) and
-- can be processed like other initialized scalar types.
-- If the type is controlled, code to attach the object to a
-- finalization chain is generated at the point of declaration, and
-- therefore the elaboration of the object cannot be delayed: the
-- address expression must be a constant.
if No (Expression (Decl))
and then not Needs_Finalization (Typ)
and then
(not Has_Non_Null_Base_Init_Proc (Typ)
or else Is_Imported (Defining_Identifier (Decl)))
then
return False;
elsif (Present (Expression (Decl)) and then Is_Scalar_Type (Typ))
or else Is_Access_Type (Typ)
or else
(Is_Bit_Packed_Array (Typ)
and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)))
then
return False;
else
-- Otherwise, we require the address clause to be constant because
-- the call to the initialization procedure (or the attach code) has
-- to happen at the point of the declaration.
-- Actually the IP call has been moved to the freeze actions anyway,
-- so maybe we can relax this restriction???
return True;
end if;
end Needs_Constant_Address;
----------------------------
-- New_Class_Wide_Subtype --
----------------------------
function New_Class_Wide_Subtype
(CW_Typ : Entity_Id;
N : Node_Id) return Entity_Id
is
Res : constant Entity_Id := Create_Itype (E_Void, N);
-- Capture relevant attributes of the class-wide subtype which must be
-- restored after the copy.
Res_Chars : constant Name_Id := Chars (Res);
Res_Is_CGE : constant Boolean := Is_Checked_Ghost_Entity (Res);
Res_Is_IGE : constant Boolean := Is_Ignored_Ghost_Entity (Res);
Res_Is_IGN : constant Boolean := Is_Ignored_Ghost_Node (Res);
Res_Scope : constant Entity_Id := Scope (Res);
begin
Copy_Node (CW_Typ, Res);
-- Restore the relevant attributes of the class-wide subtype
Set_Chars (Res, Res_Chars);
Set_Is_Checked_Ghost_Entity (Res, Res_Is_CGE);
Set_Is_Ignored_Ghost_Entity (Res, Res_Is_IGE);
Set_Is_Ignored_Ghost_Node (Res, Res_Is_IGN);
Set_Scope (Res, Res_Scope);
-- Decorate the class-wide subtype
Set_Associated_Node_For_Itype (Res, N);
Set_Comes_From_Source (Res, False);
Mutate_Ekind (Res, E_Class_Wide_Subtype);
Set_Etype (Res, Base_Type (CW_Typ));
Set_Freeze_Node (Res, Empty);
Set_Is_Frozen (Res, False);
Set_Is_Itype (Res);
Set_Is_Public (Res, False);
Set_Next_Entity (Res, Empty);
Set_Prev_Entity (Res, Empty);
Set_Sloc (Res, Sloc (N));
Set_Public_Status (Res);
return Res;
end New_Class_Wide_Subtype;
-----------------------------------
-- OK_To_Do_Constant_Replacement --
-----------------------------------
function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
ES : constant Entity_Id := Scope (E);
CS : Entity_Id;
begin
-- Do not replace statically allocated objects, because they may be
-- modified outside the current scope.
if Is_Statically_Allocated (E) then
return False;
-- Do not replace aliased or volatile objects, since we don't know what
-- else might change the value.
elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
return False;
-- Debug flag -gnatdM disconnects this optimization
elsif Debug_Flag_MM then
return False;
-- Otherwise check scopes
else
CS := Current_Scope;
loop
-- If we are in right scope, replacement is safe
if CS = ES then
return True;
-- Packages do not affect the determination of safety
elsif Ekind (CS) = E_Package then
exit when CS = Standard_Standard;
CS := Scope (CS);
-- Blocks do not affect the determination of safety
elsif Ekind (CS) = E_Block then
CS := Scope (CS);
-- Loops do not affect the determination of safety. Note that we
-- kill all current values on entry to a loop, so we are just
-- talking about processing within a loop here.
elsif Ekind (CS) = E_Loop then
CS := Scope (CS);
-- Otherwise, the reference is dubious, and we cannot be sure that
-- it is safe to do the replacement.
else
exit;
end if;
end loop;
return False;
end if;
end OK_To_Do_Constant_Replacement;
------------------------------------
-- Possible_Bit_Aligned_Component --
------------------------------------
function Possible_Bit_Aligned_Component
(N : Node_Id;
For_Slice : Boolean := False) return Boolean
is
begin
-- Do not process an unanalyzed node because it is not yet decorated and
-- most checks performed below will fail.
if not Analyzed (N) then
return False;
end if;
-- There are never alignment issues in CodePeer mode
if CodePeer_Mode then
return False;
end if;
case Nkind (N) is
-- Case of indexed component
when N_Indexed_Component =>
declare
P : constant Node_Id := Prefix (N);
Ptyp : constant Entity_Id := Etype (P);
begin
-- If we know the component size and it is not larger than the
-- maximum integer size, then we are OK. The back end does the
-- assignment of small misaligned objects correctly.
if Known_Static_Component_Size (Ptyp)
and then Component_Size (Ptyp) <= System_Max_Integer_Size
then
return False;
-- Otherwise, we need to test the prefix, to see if we are
-- indexing from a possibly unaligned component.
else
return Possible_Bit_Aligned_Component (P, For_Slice);
end if;
end;
-- Case of selected component
when N_Selected_Component =>
declare
P : constant Node_Id := Prefix (N);
Comp : constant Entity_Id := Entity (Selector_Name (N));
begin
-- This is the crucial test: if the component itself causes
-- trouble, then we can stop and return True.
if Component_May_Be_Bit_Aligned (Comp, For_Slice) then
return True;
-- Otherwise, we need to test the prefix, to see if we are
-- selecting from a possibly unaligned component.
else
return Possible_Bit_Aligned_Component (P, For_Slice);
end if;
end;
-- For a slice, test the prefix, if that is possibly misaligned,
-- then for sure the slice is.
when N_Slice =>
return Possible_Bit_Aligned_Component (Prefix (N), True);
-- For an unchecked conversion, check whether the expression may
-- be bit aligned.
when N_Unchecked_Type_Conversion =>
return Possible_Bit_Aligned_Component (Expression (N), For_Slice);
-- If we have none of the above, it means that we have fallen off the
-- top testing prefixes recursively, and we now have a stand alone
-- object, where we don't have a problem, unless this is a renaming,
-- in which case we need to look into the renamed object.
when others =>
return Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
and then Possible_Bit_Aligned_Component
(Renamed_Object (Entity (N)), For_Slice);
end case;
end Possible_Bit_Aligned_Component;
-----------------------------------------------
-- Process_Statements_For_Controlled_Objects --
-----------------------------------------------
procedure Process_Statements_For_Controlled_Objects (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
function Are_Wrapped (L : List_Id) return Boolean;
-- Determine whether list L contains only one statement which is a block
function Wrap_Statements_In_Block
(L : List_Id;
Scop : Entity_Id := Current_Scope) return Node_Id;
-- Given a list of statements L, wrap it in a block statement and return
-- the generated node. Scop is either the current scope or the scope of
-- the context (if applicable).
-----------------
-- Are_Wrapped --
-----------------
function Are_Wrapped (L : List_Id) return Boolean is
Stmt : constant Node_Id := First (L);
begin
return
Present (Stmt)
and then No (Next (Stmt))
and then Nkind (Stmt) = N_Block_Statement;
end Are_Wrapped;
------------------------------
-- Wrap_Statements_In_Block --
------------------------------
function Wrap_Statements_In_Block
(L : List_Id;
Scop : Entity_Id := Current_Scope) return Node_Id
is
Block_Id : Entity_Id;
Block_Nod : Node_Id;
Iter_Loop : Entity_Id;
begin
Block_Nod :=
Make_Block_Statement (Loc,
Declarations => No_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => L));
-- Create a label for the block in case the block needs to manage the
-- secondary stack. A label allows for flag Uses_Sec_Stack to be set.
Add_Block_Identifier (Block_Nod, Block_Id, Scop);
-- When wrapping the statements of an iterator loop, check whether
-- the loop requires secondary stack management and if so, propagate
-- the appropriate flags to the block. This ensures that the cursor
-- is properly cleaned up at each iteration of the loop.
Iter_Loop := Find_Enclosing_Iterator_Loop (Scop);
if Present (Iter_Loop) then
Set_Uses_Sec_Stack (Block_Id, Uses_Sec_Stack (Iter_Loop));
-- Secondary stack reclamation is suppressed when the associated
-- iterator loop contains a return statement which uses the stack.
Set_Sec_Stack_Needed_For_Return
(Block_Id, Sec_Stack_Needed_For_Return (Iter_Loop));
end if;
return Block_Nod;
end Wrap_Statements_In_Block;
-- Local variables
Block : Node_Id;
-- Start of processing for Process_Statements_For_Controlled_Objects
begin
-- Whenever a non-handled statement list is wrapped in a block, the
-- block must be explicitly analyzed to redecorate all entities in the
-- list and ensure that a finalizer is properly built.
case Nkind (N) is
when N_Conditional_Entry_Call
| N_Elsif_Part
| N_If_Statement
| N_Selective_Accept
=>
-- Check the "then statements" for elsif parts and if statements
if Nkind (N) in N_Elsif_Part | N_If_Statement
and then not Is_Empty_List (Then_Statements (N))
and then not Are_Wrapped (Then_Statements (N))
and then Requires_Cleanup_Actions
(L => Then_Statements (N),
Lib_Level => False,
Nested_Constructs => False)
then
Block := Wrap_Statements_In_Block (Then_Statements (N));
Set_Then_Statements (N, New_List (Block));
Analyze (Block);
end if;
-- Check the "else statements" for conditional entry calls, if
-- statements and selective accepts.
if Nkind (N) in
N_Conditional_Entry_Call | N_If_Statement | N_Selective_Accept
and then not Is_Empty_List (Else_Statements (N))
and then not Are_Wrapped (Else_Statements (N))
and then Requires_Cleanup_Actions
(L => Else_Statements (N),
Lib_Level => False,
Nested_Constructs => False)
then
Block := Wrap_Statements_In_Block (Else_Statements (N));
Set_Else_Statements (N, New_List (Block));
Analyze (Block);
end if;
when N_Abortable_Part
| N_Accept_Alternative
| N_Case_Statement_Alternative
| N_Delay_Alternative
| N_Entry_Call_Alternative
| N_Exception_Handler
| N_Loop_Statement
| N_Triggering_Alternative
=>
if not Is_Empty_List (Statements (N))
and then not Are_Wrapped (Statements (N))
and then Requires_Cleanup_Actions
(L => Statements (N),
Lib_Level => False,
Nested_Constructs => False)
then
if Nkind (N) = N_Loop_Statement
and then Present (Identifier (N))
then
Block :=
Wrap_Statements_In_Block
(L => Statements (N),
Scop => Entity (Identifier (N)));
else
Block := Wrap_Statements_In_Block (Statements (N));
end if;
Set_Statements (N, New_List (Block));
Analyze (Block);
end if;
-- Could be e.g. a loop that was transformed into a block or null
-- statement. Do nothing for terminate alternatives.
when N_Block_Statement
| N_Null_Statement
| N_Terminate_Alternative
=>
null;
when others =>
raise Program_Error;
end case;
end Process_Statements_For_Controlled_Objects;
------------------
-- Power_Of_Two --
------------------
function Power_Of_Two (N : Node_Id) return Nat is
Typ : constant Entity_Id := Etype (N);
pragma Assert (Is_Integer_Type (Typ));
Siz : constant Nat := UI_To_Int (Esize (Typ));
Val : Uint;
begin
if not Compile_Time_Known_Value (N) then
return 0;
else
Val := Expr_Value (N);
for J in 1 .. Siz - 1 loop
if Val = Uint_2 ** J then
return J;
end if;
end loop;
return 0;
end if;
end Power_Of_Two;
----------------------
-- Remove_Init_Call --
----------------------
function Remove_Init_Call
(Var : Entity_Id;
Rep_Clause : Node_Id) return Node_Id
is
Par : constant Node_Id := Parent (Var);
Typ : constant Entity_Id := Etype (Var);
Init_Proc : Entity_Id;
-- Initialization procedure for Typ
function Find_Init_Call_In_List (From : Node_Id) return Node_Id;
-- Look for init call for Var starting at From and scanning the
-- enclosing list until Rep_Clause or the end of the list is reached.
----------------------------
-- Find_Init_Call_In_List --
----------------------------
function Find_Init_Call_In_List (From : Node_Id) return Node_Id is
Init_Call : Node_Id;
begin
Init_Call := From;
while Present (Init_Call) and then Init_Call /= Rep_Clause loop
if Nkind (Init_Call) = N_Procedure_Call_Statement
and then Is_Entity_Name (Name (Init_Call))
and then Entity (Name (Init_Call)) = Init_Proc
then
return Init_Call;
end if;
Next (Init_Call);
end loop;
return Empty;
end Find_Init_Call_In_List;
Init_Call : Node_Id;
-- Start of processing for Remove_Init_Call
begin
if Present (Initialization_Statements (Var)) then
Init_Call := Initialization_Statements (Var);
Set_Initialization_Statements (Var, Empty);
elsif not Has_Non_Null_Base_Init_Proc (Typ) then
-- No init proc for the type, so obviously no call to be found
return Empty;
else
-- We might be able to handle other cases below by just properly
-- setting Initialization_Statements at the point where the init proc
-- call is generated???
Init_Proc := Base_Init_Proc (Typ);
-- First scan the list containing the declaration of Var
Init_Call := Find_Init_Call_In_List (From => Next (Par));
-- If not found, also look on Var's freeze actions list, if any,
-- since the init call may have been moved there (case of an address
-- clause applying to Var).
if No (Init_Call) and then Present (Freeze_Node (Var)) then
Init_Call :=
Find_Init_Call_In_List (First (Actions (Freeze_Node (Var))));
end if;
-- If the initialization call has actuals that use the secondary
-- stack, the call may have been wrapped into a temporary block, in
-- which case the block itself has to be removed.
if No (Init_Call) and then Nkind (Next (Par)) = N_Block_Statement then
declare
Blk : constant Node_Id := Next (Par);
begin
if Present
(Find_Init_Call_In_List
(First (Statements (Handled_Statement_Sequence (Blk)))))
then
Init_Call := Blk;
end if;
end;
end if;
end if;
if Present (Init_Call) then
-- If restrictions have forbidden Aborts, the initialization call
-- for objects that require deep initialization has not been wrapped
-- into the following block (see Exp_Ch3, Default_Initialize_Object)
-- so if present remove it as well, and include the IP call in it,
-- in the rare case the caller may need to simply displace the
-- initialization, as is done for a later address specification.
if Nkind (Next (Init_Call)) = N_Block_Statement
and then Is_Initialization_Block (Next (Init_Call))
then
declare
IP_Call : constant Node_Id := Init_Call;
begin
Init_Call := Next (IP_Call);
Remove (IP_Call);
Prepend (IP_Call,
Statements (Handled_Statement_Sequence (Init_Call)));
end;
end if;
Remove (Init_Call);
end if;
return Init_Call;
end Remove_Init_Call;
-------------------------
-- Remove_Side_Effects --
-------------------------
procedure Remove_Side_Effects
(Exp : Node_Id;
Name_Req : Boolean := False;
Renaming_Req : Boolean := False;
Variable_Ref : Boolean := False;
Related_Id : Entity_Id := Empty;
Is_Low_Bound : Boolean := False;
Is_High_Bound : Boolean := False;
Discr_Number : Int := 0;
Check_Side_Effects : Boolean := True)
is
function Build_Temporary
(Loc : Source_Ptr;
Id : Character;
Related_Nod : Node_Id := Empty) return Entity_Id;
-- Create an external symbol of the form xxx_FIRST/_LAST if Related_Nod
-- is present (xxx is taken from the Chars field of Related_Nod),
-- otherwise it generates an internal temporary. The created temporary
-- entity is marked as internal.
function Possible_Side_Effect_In_SPARK (Exp : Node_Id) return Boolean;
-- Computes whether a side effect is possible in SPARK, which should
-- be handled by removing it from the expression for GNATprove. Note
-- that other side effects related to volatile variables are handled
-- separately.
---------------------
-- Build_Temporary --
---------------------
function Build_Temporary
(Loc : Source_Ptr;
Id : Character;
Related_Nod : Node_Id := Empty) return Entity_Id
is
Temp_Id : Entity_Id;
Temp_Nam : Name_Id;
Should_Set_Related_Expression : Boolean := False;
begin
-- The context requires an external symbol : expression is
-- the bound of an array, or a discriminant value. We create
-- a unique string using the related entity and an appropriate
-- suffix, rather than a numeric serial number (used for internal
-- entities) that may vary depending on compilation options, in
-- particular on the Assertions_Enabled mode. This avoids spurious
-- link errors.
if Present (Related_Id) then
if Is_Low_Bound then
Temp_Nam := New_External_Name (Chars (Related_Id), "_FIRST");
elsif Is_High_Bound then
Temp_Nam := New_External_Name (Chars (Related_Id), "_LAST");
else
pragma Assert (Discr_Number > 0);
-- We don't have any intelligible way of printing T_DISCR in
-- CodePeer. Thus, set a related expression in this case.
Should_Set_Related_Expression := True;
-- Use fully qualified name to avoid ambiguities.
Temp_Nam :=
New_External_Name
(Get_Qualified_Name (Related_Id), "_DISCR", Discr_Number);
end if;
Temp_Id := Make_Defining_Identifier (Loc, Temp_Nam);
if Should_Set_Related_Expression then
Set_Related_Expression (Temp_Id, Related_Nod);
end if;
-- Otherwise generate an internal temporary
else
Temp_Id := Make_Temporary (Loc, Id, Related_Nod);
end if;
Set_Is_Internal (Temp_Id);
return Temp_Id;
end Build_Temporary;
-----------------------------------
-- Possible_Side_Effect_In_SPARK --
-----------------------------------
function Possible_Side_Effect_In_SPARK (Exp : Node_Id) return Boolean is
begin
-- Side-effect removal in SPARK should only occur when not inside a
-- generic and not doing a preanalysis, inside an object renaming or
-- a type declaration or a for-loop iteration scheme.
if not Inside_A_Generic
and then Full_Analysis
then
case Nkind (Enclosing_Declaration (Exp)) is
when N_Component_Declaration
| N_Full_Type_Declaration
| N_Iterator_Specification
| N_Loop_Parameter_Specification
| N_Object_Renaming_Declaration
=>
return True;
-- If the expression belongs to an itype declaration, then
-- check if side effects are allowed in the original
-- associated node.
when N_Subtype_Declaration =>
declare
Subt : constant Entity_Id :=
Defining_Identifier (Enclosing_Declaration (Exp));
begin
if Is_Itype (Subt) then
-- When this routine is called while the itype
-- is being created, the entity might not yet be
-- decorated with the associated node, but should
-- have the related expression.
if Present (Associated_Node_For_Itype (Subt)) then
return
Possible_Side_Effect_In_SPARK
(Associated_Node_For_Itype (Subt));
elsif Present (Related_Expression (Subt)) then
return
Possible_Side_Effect_In_SPARK
(Related_Expression (Subt));
-- When the itype doesn't have any indication of its
-- origin (which currently only happens for packed
-- array types created by freezing that shouldn't
-- be picked by GNATprove anyway), then we can
-- conservatively assume that the expression can
-- be kept as it appears in the source code.
else
pragma Assert (Is_Packed_Array_Impl_Type (Subt));
return False;
end if;
else
return True;
end if;
end;
when others =>
return False;
end case;
else
return False;
end if;
end Possible_Side_Effect_In_SPARK;
-- Local variables
Loc : constant Source_Ptr := Sloc (Exp);
Exp_Type : constant Entity_Id := Etype (Exp);
Svg_Suppress : constant Suppress_Record := Scope_Suppress;
Def_Id : Entity_Id;
E : Node_Id;
New_Exp : Node_Id;
Ptr_Typ_Decl : Node_Id;
Ref_Type : Entity_Id;
Res : Node_Id;
-- Start of processing for Remove_Side_Effects
begin
-- Handle cases in which there is nothing to do. In GNATprove mode,
-- removal of side effects is useful for the light expansion of
-- renamings.
if not Expander_Active
and then not
(GNATprove_Mode and then Possible_Side_Effect_In_SPARK (Exp))
then
return;
-- Cannot generate temporaries if the invocation to remove side effects
-- was issued too early and the type of the expression is not resolved
-- (this happens because routines Duplicate_Subexpr_XX implicitly invoke
-- Remove_Side_Effects).
elsif No (Exp_Type)
or else Ekind (Exp_Type) = E_Access_Attribute_Type
then
return;
-- No action needed for side-effect-free expressions
elsif Check_Side_Effects
and then Side_Effect_Free (Exp, Name_Req, Variable_Ref)
then
return;
-- Generating C code we cannot remove side effect of function returning
-- class-wide types since there is no secondary stack (required to use
-- 'reference).
elsif Modify_Tree_For_C
and then Nkind (Exp) = N_Function_Call
and then Is_Class_Wide_Type (Etype (Exp))
then
return;
end if;
-- The remaining processing is done with all checks suppressed
-- Note: from now on, don't use return statements, instead do a goto
-- Leave, to ensure that we properly restore Scope_Suppress.Suppress.
Scope_Suppress.Suppress := (others => True);
-- If this is a side-effect-free attribute reference whose expressions
-- are also side-effect-free and whose prefix is not a name, remove the
-- side effects of the prefix. A copy of the prefix is required in this
-- case and it is better not to make an additional one for the attribute
-- itself, because the return type of many of them is universal integer,
-- which is a very large type for a temporary.
-- The prefix of an attribute reference Reduce may be syntactically an
-- aggregate, but will be expanded into a loop, so no need to remove
-- side effects.
if Nkind (Exp) = N_Attribute_Reference
and then Side_Effect_Free_Attribute (Attribute_Name (Exp))
and then Side_Effect_Free (Expressions (Exp), Name_Req, Variable_Ref)
and then (Attribute_Name (Exp) /= Name_Reduce
or else Nkind (Prefix (Exp)) /= N_Aggregate)
and then not Is_Name_Reference (Prefix (Exp))
then
Remove_Side_Effects (Prefix (Exp), Name_Req, Variable_Ref);
goto Leave;
-- If this is an elementary or a small not-by-reference record type, and
-- we need to capture the value, just make a constant; this is cheap and
-- objects of both kinds of types can be bit aligned, so it might not be
-- possible to generate a reference to them. Likewise if this is not a
-- name reference, except for a type conversion, because we would enter
-- an infinite recursion with Checks.Apply_Predicate_Check if the target
-- type has predicates (and type conversions need a specific treatment
-- anyway, see below). Also do it if we have a volatile reference and
-- Name_Req is not set (see comments for Side_Effect_Free).
elsif (Is_Elementary_Type (Exp_Type)
or else (Is_Record_Type (Exp_Type)
and then Known_Static_RM_Size (Exp_Type)
and then RM_Size (Exp_Type) <= System_Max_Integer_Size
and then not Has_Discriminants (Exp_Type)
and then not Is_By_Reference_Type (Exp_Type)))
and then (Variable_Ref
or else (not Is_Name_Reference (Exp)
and then Nkind (Exp) /= N_Type_Conversion)
or else (not Name_Req
and then Is_Volatile_Reference (Exp)))
then
Def_Id := Build_Temporary (Loc, 'R', Exp);
Set_Etype (Def_Id, Exp_Type);
Res := New_Occurrence_Of (Def_Id, Loc);
-- If the expression is a packed reference, it must be reanalyzed and
-- expanded, depending on context. This is the case for actuals where
-- a constraint check may capture the actual before expansion of the
-- call is complete.
if Nkind (Exp) = N_Indexed_Component
and then Is_Packed (Etype (Prefix (Exp)))
then
Set_Analyzed (Exp, False);
Set_Analyzed (Prefix (Exp), False);
end if;
-- Generate:
-- Rnn : Exp_Type renames Expr;
-- In GNATprove mode, we prefer to use renamings for intermediate
-- variables to definition of constants, due to the implicit move
-- operation that such a constant definition causes as part of the
-- support in GNATprove for ownership pointers. Hence, we generate
-- a renaming for a reference to an object of a nonscalar type.
if Renaming_Req
or else (GNATprove_Mode
and then Is_Object_Reference (Exp)
and then not Is_Scalar_Type (Exp_Type))
then
E :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
Name => Relocate_Node (Exp));
-- Generate:
-- Rnn : constant Exp_Type := Expr;
else
E :=
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Constant_Present => True,
Expression => Relocate_Node (Exp));
Set_Assignment_OK (E);
end if;
Insert_Action (Exp, E);
-- If the expression has the form v.all then we can just capture the
-- pointer, and then do an explicit dereference on the result, but
-- this is not right if this is a volatile reference.
elsif Nkind (Exp) = N_Explicit_Dereference
and then not Is_Volatile_Reference (Exp)
then
Def_Id := Build_Temporary (Loc, 'R', Exp);
Res :=
Make_Explicit_Dereference (Loc, New_Occurrence_Of (Def_Id, Loc));
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition =>
New_Occurrence_Of (Etype (Prefix (Exp)), Loc),
Constant_Present => True,
Expression => Relocate_Node (Prefix (Exp))));
-- Similar processing for an unchecked conversion of an expression of
-- the form v.all, where we want the same kind of treatment.
elsif Nkind (Exp) = N_Unchecked_Type_Conversion
and then Nkind (Expression (Exp)) = N_Explicit_Dereference
then
Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
goto Leave;
-- If this is a type conversion, leave the type conversion and remove
-- side effects in the expression, unless it is of universal integer,
-- which is a very large type for a temporary. This is important in
-- several circumstances: for change of representations and also when
-- this is a view conversion to a smaller object, where gigi can end
-- up creating its own temporary of the wrong size.
elsif Nkind (Exp) = N_Type_Conversion
and then Etype (Expression (Exp)) /= Universal_Integer
then
Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
-- Generating C code the type conversion of an access to constrained
-- array type into an access to unconstrained array type involves
-- initializing a fat pointer and the expression must be free of
-- side effects to safely compute its bounds.
if Modify_Tree_For_C
and then Is_Access_Type (Etype (Exp))
and then Is_Array_Type (Designated_Type (Etype (Exp)))
and then not Is_Constrained (Designated_Type (Etype (Exp)))
then
Def_Id := Build_Temporary (Loc, 'R', Exp);
Set_Etype (Def_Id, Exp_Type);
Res := New_Occurrence_Of (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Constant_Present => True,
Expression => Relocate_Node (Exp)));
else
goto Leave;
end if;
-- If this is an unchecked conversion that Gigi can't handle, make
-- a copy or a use a renaming to capture the value.
elsif Nkind (Exp) = N_Unchecked_Type_Conversion
and then not Safe_Unchecked_Type_Conversion (Exp)
then
if CW_Or_Needs_Finalization (Exp_Type) then
-- Use a renaming to capture the expression, rather than create
-- a controlled temporary.
Def_Id := Build_Temporary (Loc, 'R', Exp);
Res := New_Occurrence_Of (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
Name => Relocate_Node (Exp)));
else
Def_Id := Build_Temporary (Loc, 'R', Exp);
Set_Etype (Def_Id, Exp_Type);
Res := New_Occurrence_Of (Def_Id, Loc);
E :=
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Constant_Present => not Is_Variable (Exp),
Expression => Relocate_Node (Exp));
Set_Assignment_OK (E);
Insert_Action (Exp, E);
end if;
-- If this is a packed array component or a selected component with a
-- nonstandard representation, we cannot generate a reference because
-- the component may be unaligned, so we must use a renaming and this
-- renaming is handled by the front end, as the back end may balk at
-- the nonstandard representation (see Evaluation_Required in Exp_Ch8).
elsif (Nkind (Exp) in N_Indexed_Component | N_Selected_Component
and then Has_Non_Standard_Rep (Etype (Prefix (Exp))))
-- For an expression that denotes a name, we can use a renaming
-- scheme. This is needed for correctness in the case of a volatile
-- object of a nonvolatile type because the Make_Reference call of the
-- "default" approach would generate an illegal access value (an
-- access value cannot designate such an object - see
-- Analyze_Reference).
or else (Is_Name_Reference (Exp)
-- We skip using this scheme if we have an object of a volatile
-- type and we do not have Name_Req set true (see comments for
-- Side_Effect_Free).
and then (Name_Req or else not Treat_As_Volatile (Exp_Type)))
then
Def_Id := Build_Temporary (Loc, 'R', Exp);
Res := New_Occurrence_Of (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
Name => Relocate_Node (Exp)));
-- Avoid generating a variable-sized temporary, by generating the
-- reference just for the function call. The transformation could be
-- refined to apply only when the array component is constrained by a
-- discriminant???
elsif Nkind (Exp) = N_Selected_Component
and then Nkind (Prefix (Exp)) = N_Function_Call
and then Is_Array_Type (Exp_Type)
then
Remove_Side_Effects (Prefix (Exp), Name_Req, Variable_Ref);
goto Leave;
-- Otherwise we generate a reference to the expression
else
-- When generating C code we cannot consider side-effect-free object
-- declarations that have discriminants and are initialized by means
-- of a function call since on this target there is no secondary
-- stack to store the return value and the expander may generate an
-- extra call to the function to compute the discriminant value. In
-- addition, for targets that have secondary stack, the expansion of
-- functions with side effects involves the generation of an access
-- type to capture the return value stored in the secondary stack;
-- by contrast when generating C code such expansion generates an
-- internal object declaration (no access type involved) which must
-- be identified here to avoid entering into a never-ending loop
-- generating internal object declarations.
if Modify_Tree_For_C
and then Nkind (Parent (Exp)) = N_Object_Declaration
and then
(Nkind (Exp) /= N_Function_Call
or else not Has_Discriminants (Exp_Type)
or else Is_Internal_Name
(Chars (Defining_Identifier (Parent (Exp)))))
then
goto Leave;
end if;
-- Special processing for function calls that return a limited type.
-- We need to build a declaration that will enable build-in-place
-- expansion of the call. This is not done if the context is already
-- an object declaration, to prevent infinite recursion.
-- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
-- to accommodate functions returning limited objects by reference.
if Ada_Version >= Ada_2005
and then Nkind (Exp) = N_Function_Call
and then Is_Inherently_Limited_Type (Etype (Exp))
and then Nkind (Parent (Exp)) /= N_Object_Declaration
then
declare
Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp);
Decl : Node_Id;
begin
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Obj,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Expression => Relocate_Node (Exp));
Insert_Action (Exp, Decl);
Set_Etype (Obj, Exp_Type);
Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
goto Leave;
end;
end if;
Def_Id := Build_Temporary (Loc, 'R', Exp);
-- The regular expansion of functions with side effects involves the
-- generation of an access type to capture the return value found on
-- the secondary stack. Since SPARK (and why) cannot process access
-- types, use a different approach which ignores the secondary stack
-- and "copies" the returned object.
-- When generating C code, no need for a 'reference since the
-- secondary stack is not supported.
if GNATprove_Mode or Modify_Tree_For_C then
Res := New_Occurrence_Of (Def_Id, Loc);
Ref_Type := Exp_Type;
-- Regular expansion utilizing an access type and 'reference
else
Res :=
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Def_Id, Loc));
-- Generate:
-- type Ann is access all <Exp_Type>;
Ref_Type := Make_Temporary (Loc, 'A');
Ptr_Typ_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ref_Type,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Occurrence_Of (Exp_Type, Loc)));
Insert_Action (Exp, Ptr_Typ_Decl);
end if;
E := Exp;
if Nkind (E) = N_Explicit_Dereference then
New_Exp := Relocate_Node (Prefix (E));
else
E := Relocate_Node (E);
-- Do not generate a 'reference in SPARK mode or C generation
-- since the access type is not created in the first place.
if GNATprove_Mode or Modify_Tree_For_C then
New_Exp := E;
-- Otherwise generate reference, marking the value as non-null
-- since we know it cannot be null and we don't want a check.
else
New_Exp := Make_Reference (Loc, E);
Set_Is_Known_Non_Null (Def_Id);
end if;
end if;
if Is_Delayed_Aggregate (E) then
-- The expansion of nested aggregates is delayed until the
-- enclosing aggregate is expanded. As aggregates are often
-- qualified, the predicate applies to qualified expressions as
-- well, indicating that the enclosing aggregate has not been
-- expanded yet. At this point the aggregate is part of a
-- stand-alone declaration, and must be fully expanded.
if Nkind (E) = N_Qualified_Expression then
Set_Expansion_Delayed (Expression (E), False);
Set_Analyzed (Expression (E), False);
else
Set_Expansion_Delayed (E, False);
end if;
Set_Analyzed (E, False);
end if;
-- Generating C code of object declarations that have discriminants
-- and are initialized by means of a function call we propagate the
-- discriminants of the parent type to the internally built object.
-- This is needed to avoid generating an extra call to the called
-- function.
-- For example, if we generate here the following declaration, it
-- will be expanded later adding an extra call to evaluate the value
-- of the discriminant (needed to compute the size of the object).
--
-- type Rec (D : Integer) is ...
-- Obj : constant Rec := SomeFunc;
if Modify_Tree_For_C
and then Nkind (Parent (Exp)) = N_Object_Declaration
and then Has_Discriminants (Exp_Type)
and then Nkind (Exp) = N_Function_Call
then
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Copy_Tree
(Object_Definition (Parent (Exp))),
Constant_Present => True,
Expression => New_Exp));
else
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Occurrence_Of (Ref_Type, Loc),
Constant_Present => True,
Expression => New_Exp));
end if;
end if;
-- Preserve the Assignment_OK flag in all copies, since at least one
-- copy may be used in a context where this flag must be set (otherwise
-- why would the flag be set in the first place).
Set_Assignment_OK (Res, Assignment_OK (Exp));
-- Preserve the Do_Range_Check flag in all copies
Set_Do_Range_Check (Res, Do_Range_Check (Exp));
-- Finally rewrite the original expression and we are done
Rewrite (Exp, Res);
Analyze_And_Resolve (Exp, Exp_Type);
<<Leave>>
Scope_Suppress := Svg_Suppress;
end Remove_Side_Effects;
------------------------
-- Replace_References --
------------------------
procedure Replace_References
(Expr : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Par_Obj : Entity_Id := Empty;
Deriv_Obj : Entity_Id := Empty)
is
function Is_Deriv_Obj_Ref (Ref : Node_Id) return Boolean;
-- Determine whether node Ref denotes some component of Deriv_Obj
function Replace_Ref (Ref : Node_Id) return Traverse_Result;
-- Substitute a reference to an entity with the corresponding value
-- stored in table Type_Map.
function Type_Of_Formal
(Call : Node_Id;
Actual : Node_Id) return Entity_Id;
-- Find the type of the formal parameter which corresponds to actual
-- parameter Actual in subprogram call Call.
----------------------
-- Is_Deriv_Obj_Ref --
----------------------
function Is_Deriv_Obj_Ref (Ref : Node_Id) return Boolean is
Par : constant Node_Id := Parent (Ref);
begin
-- Detect the folowing selected component form:
-- Deriv_Obj.(something)
return
Nkind (Par) = N_Selected_Component
and then Is_Entity_Name (Prefix (Par))
and then Entity (Prefix (Par)) = Deriv_Obj;
end Is_Deriv_Obj_Ref;
-----------------
-- Replace_Ref --
-----------------
function Replace_Ref (Ref : Node_Id) return Traverse_Result is
procedure Remove_Controlling_Arguments (From_Arg : Node_Id);
-- Reset the Controlling_Argument of all function calls that
-- encapsulate node From_Arg.
----------------------------------
-- Remove_Controlling_Arguments --
----------------------------------
procedure Remove_Controlling_Arguments (From_Arg : Node_Id) is
Par : Node_Id;
begin
Par := From_Arg;
while Present (Par) loop
if Nkind (Par) = N_Function_Call
and then Present (Controlling_Argument (Par))
then
Set_Controlling_Argument (Par, Empty);
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
end Remove_Controlling_Arguments;
-- Local variables
Context : constant Node_Id :=
(if No (Ref) then Empty else Parent (Ref));
Loc : constant Source_Ptr := Sloc (Ref);
Ref_Id : Entity_Id;
Result : Traverse_Result;
New_Ref : Node_Id;
-- The new reference which is intended to substitute the old one
Old_Ref : Node_Id;
-- The reference designated for replacement. In certain cases this
-- may be a node other than Ref.
Val : Node_Or_Entity_Id;
-- The corresponding value of Ref from the type map
-- Start of processing for Replace_Ref
begin
-- Assume that the input reference is to be replaced and that the
-- traversal should examine the children of the reference.
Old_Ref := Ref;
Result := OK;
-- The input denotes a meaningful reference
if Nkind (Ref) in N_Has_Entity and then Present (Entity (Ref)) then
Ref_Id := Entity (Ref);
Val := Type_Map.Get (Ref_Id);
-- The reference has a corresponding value in the type map, a
-- substitution is possible.
if Present (Val) then
-- The reference denotes a discriminant
if Ekind (Ref_Id) = E_Discriminant then
if Nkind (Val) in N_Entity then
-- The value denotes another discriminant. Replace as
-- follows:
-- _object.Discr -> _object.Val
if Ekind (Val) = E_Discriminant then
New_Ref := New_Occurrence_Of (Val, Loc);
-- Otherwise the value denotes the entity of a name which
-- constraints the discriminant. Replace as follows:
-- _object.Discr -> Val
else
pragma Assert (Is_Deriv_Obj_Ref (Old_Ref));
New_Ref := New_Occurrence_Of (Val, Loc);
Old_Ref := Parent (Old_Ref);
end if;
-- Otherwise the value denotes an arbitrary expression which
-- constraints the discriminant. Replace as follows:
-- _object.Discr -> Val
else
pragma Assert (Is_Deriv_Obj_Ref (Old_Ref));
New_Ref := New_Copy_Tree (Val);
Old_Ref := Parent (Old_Ref);
end if;
-- Otherwise the reference denotes a primitive. Replace as
-- follows:
-- Primitive -> Val
else
pragma Assert (Nkind (Val) in N_Entity);
New_Ref := New_Occurrence_Of (Val, Loc);
end if;
-- The reference mentions the _object parameter of the parent
-- type's DIC or type invariant procedure. Replace as follows:
-- _object -> _object
elsif Present (Par_Obj)
and then Present (Deriv_Obj)
and then Ref_Id = Par_Obj
then
New_Ref := New_Occurrence_Of (Deriv_Obj, Loc);
-- The type of the _object parameter is class-wide when the
-- expression comes from an assertion pragma that applies to
-- an abstract parent type or an interface. The class-wide type
-- facilitates the preanalysis of the expression by treating
-- calls to abstract primitives that mention the current
-- instance of the type as dispatching. Once the calls are
-- remapped to invoke overriding or inherited primitives, the
-- calls no longer need to be dispatching. Examine all function
-- calls that encapsulate the _object parameter and reset their
-- Controlling_Argument attribute.
if Is_Class_Wide_Type (Etype (Par_Obj))
and then Is_Abstract_Type (Root_Type (Etype (Par_Obj)))
then
Remove_Controlling_Arguments (Old_Ref);
end if;
-- The reference to _object acts as an actual parameter in a
-- subprogram call which may be invoking a primitive of the
-- parent type:
-- Primitive (... _object ...);
-- The parent type primitive may not be overridden nor
-- inherited when it is declared after the derived type
-- definition:
-- type Parent is tagged private;
-- type Child is new Parent with private;
-- procedure Primitive (Obj : Parent);
-- In this scenario the _object parameter is converted to the
-- parent type. Due to complications with partial/full views
-- and view swaps, the parent type is taken from the formal
-- parameter of the subprogram being called.
if Nkind (Context) in N_Subprogram_Call
and then No (Type_Map.Get (Entity (Name (Context))))
then
declare
-- We need to use the Original_Node of the callee, in
-- case it was already modified. Note that we are using
-- Traverse_Proc to walk the tree, and it is defined to
-- walk subtrees in an arbitrary order.
Callee : constant Entity_Id :=
Entity (Original_Node (Name (Context)));
begin
if No (Type_Map.Get (Callee)) then
New_Ref :=
Convert_To
(Type_Of_Formal (Context, Old_Ref), New_Ref);
-- Do not process the generated type conversion
-- because both the parent type and the derived type
-- are in the Type_Map table. This will clobber the
-- type conversion by resetting its subtype mark.
Result := Skip;
end if;
end;
end if;
-- Otherwise there is nothing to replace
else
New_Ref := Empty;
end if;
if Present (New_Ref) then
Rewrite (Old_Ref, New_Ref);
-- Update the return type when the context of the reference
-- acts as the name of a function call. Note that the update
-- should not be performed when the reference appears as an
-- actual in the call.
if Nkind (Context) = N_Function_Call
and then Name (Context) = Old_Ref
then
Set_Etype (Context, Etype (Val));
end if;
end if;
end if;
-- Reanalyze the reference due to potential replacements
if Nkind (Old_Ref) in N_Has_Etype then
Set_Analyzed (Old_Ref, False);
end if;
return Result;
end Replace_Ref;
procedure Replace_Refs is new Traverse_Proc (Replace_Ref);
--------------------
-- Type_Of_Formal --
--------------------
function Type_Of_Formal
(Call : Node_Id;
Actual : Node_Id) return Entity_Id
is
A : Node_Id;
F : Entity_Id;
begin
-- Examine the list of actual and formal parameters in parallel
A := First (Parameter_Associations (Call));
F := First_Formal (Entity (Name (Call)));
while Present (A) and then Present (F) loop
if A = Actual then
return Etype (F);
end if;
Next (A);
Next_Formal (F);
end loop;
-- The actual parameter must always have a corresponding formal
pragma Assert (False);
return Empty;
end Type_Of_Formal;
-- Start of processing for Replace_References
begin
-- Map the attributes of the parent type to the proper corresponding
-- attributes of the derived type.
Map_Types
(Parent_Type => Par_Typ,
Derived_Type => Deriv_Typ);
-- Inspect the input expression and perform substitutions where
-- necessary.
Replace_Refs (Expr);
end Replace_References;
-----------------------------
-- Replace_Type_References --
-----------------------------
procedure Replace_Type_References
(Expr : Node_Id;
Typ : Entity_Id;
Obj_Id : Entity_Id)
is
procedure Replace_Type_Ref (N : Node_Id);
-- Substitute a single reference of the current instance of type Typ
-- with a reference to Obj_Id.
----------------------
-- Replace_Type_Ref --
----------------------
procedure Replace_Type_Ref (N : Node_Id) is
begin
-- Decorate the reference to Typ even though it may be rewritten
-- further down. This is done so that routines which examine
-- properties of the Original_Node have some semantic information.
if Nkind (N) = N_Identifier then
Set_Entity (N, Typ);
Set_Etype (N, Typ);
elsif Nkind (N) = N_Selected_Component then
Analyze (Prefix (N));
Set_Entity (Selector_Name (N), Typ);
Set_Etype (Selector_Name (N), Typ);
end if;
-- Perform the following substitution:
-- Typ --> _object
Rewrite (N, New_Occurrence_Of (Obj_Id, Sloc (N)));
Set_Comes_From_Source (N, True);
end Replace_Type_Ref;
procedure Replace_Type_Refs is
new Replace_Type_References_Generic (Replace_Type_Ref);
-- Start of processing for Replace_Type_References
begin
Replace_Type_Refs (Expr, Typ);
end Replace_Type_References;
---------------------------
-- Represented_As_Scalar --
---------------------------
function Represented_As_Scalar (T : Entity_Id) return Boolean is
UT : constant Entity_Id := Underlying_Type (T);
begin
return Is_Scalar_Type (UT)
or else (Is_Bit_Packed_Array (UT)
and then Is_Scalar_Type (Packed_Array_Impl_Type (UT)));
end Represented_As_Scalar;
------------------------------
-- Requires_Cleanup_Actions --
------------------------------
function Requires_Cleanup_Actions
(N : Node_Id;
Lib_Level : Boolean) return Boolean
is
At_Lib_Level : constant Boolean :=
Lib_Level
and then Nkind (N) in N_Package_Body | N_Package_Specification;
-- N is at the library level if the top-most context is a package and
-- the path taken to reach N does not include nonpackage constructs.
begin
case Nkind (N) is
when N_Accept_Statement
| N_Block_Statement
| N_Entry_Body
| N_Package_Body
| N_Subprogram_Body
| N_Task_Body
=>
return
Requires_Cleanup_Actions
(L => Declarations (N),
Lib_Level => At_Lib_Level,
Nested_Constructs => True)
or else
(Present (Handled_Statement_Sequence (N))
and then
Requires_Cleanup_Actions
(L =>
Statements (Handled_Statement_Sequence (N)),
Lib_Level => At_Lib_Level,
Nested_Constructs => True));
-- Extended return statements are the same as the above, except that
-- there is no Declarations field. We do not want to clean up the
-- Return_Object_Declarations.
when N_Extended_Return_Statement =>
return
Present (Handled_Statement_Sequence (N))
and then Requires_Cleanup_Actions
(L =>
Statements (Handled_Statement_Sequence (N)),
Lib_Level => At_Lib_Level,
Nested_Constructs => True);
when N_Package_Specification =>
return
Requires_Cleanup_Actions
(L => Visible_Declarations (N),
Lib_Level => At_Lib_Level,
Nested_Constructs => True)
or else
Requires_Cleanup_Actions
(L => Private_Declarations (N),
Lib_Level => At_Lib_Level,
Nested_Constructs => True);
when others =>
raise Program_Error;
end case;
end Requires_Cleanup_Actions;
------------------------------
-- Requires_Cleanup_Actions --
------------------------------
function Requires_Cleanup_Actions
(L : List_Id;
Lib_Level : Boolean;
Nested_Constructs : Boolean) return Boolean
is
Decl : Node_Id;
Expr : Node_Id;
Obj_Id : Entity_Id;
Obj_Typ : Entity_Id;
Pack_Id : Entity_Id;
Typ : Entity_Id;
begin
Decl := First (L);
while Present (Decl) loop
-- Library-level tagged types
if Nkind (Decl) = N_Full_Type_Declaration then
Typ := Defining_Identifier (Decl);
-- Ignored Ghost types do not need any cleanup actions because
-- they will not appear in the final tree.
if Is_Ignored_Ghost_Entity (Typ) then
null;
elsif Is_Tagged_Type (Typ)
and then Is_Library_Level_Entity (Typ)
and then Convention (Typ) = Convention_Ada
and then Present (Access_Disp_Table (Typ))
and then not Is_Abstract_Type (Typ)
and then not No_Run_Time_Mode
and then not Restriction_Active (No_Tagged_Type_Registration)
and then RTE_Available (RE_Unregister_Tag)
then
return True;
end if;
-- Regular object declarations
elsif Nkind (Decl) = N_Object_Declaration then
Obj_Id := Defining_Identifier (Decl);
Obj_Typ := Base_Type (Etype (Obj_Id));
Expr := Expression (Decl);
-- Bypass any form of processing for objects which have their
-- finalization disabled. This applies only to objects at the
-- library level.
if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
null;
-- Finalization of transient objects is treated separately in
-- order to handle sensitive cases. These include:
-- * Conditional expressions
-- * Expressions with actions
-- * Transient scopes
elsif Is_Finalized_Transient (Obj_Id) then
null;
-- Finalization of specific objects is also treated separately
elsif Is_Ignored_For_Finalization (Obj_Id) then
null;
-- Ignored Ghost objects do not need any cleanup actions because
-- they will not appear in the final tree.
elsif Is_Ignored_Ghost_Entity (Obj_Id) then
null;
-- The object is of the form:
-- Obj : [constant] Typ [:= Expr];
--
-- Do not process the incomplete view of a deferred constant.
-- Note that an object initialized by means of a BIP function
-- call may appear as a deferred constant after expansion
-- activities. These kinds of objects must be finalized.
elsif not Is_Imported (Obj_Id)
and then Needs_Finalization (Obj_Typ)
and then not (Ekind (Obj_Id) = E_Constant
and then not Has_Completion (Obj_Id)
and then No (BIP_Initialization_Call (Obj_Id)))
then
return True;
-- The object is of the form:
-- Obj : Access_Typ := Non_BIP_Function_Call'reference;
--
-- Obj : Access_Typ :=
-- BIP_Function_Call (BIPalloc => 2, ...)'reference;
elsif Is_Access_Type (Obj_Typ)
and then Needs_Finalization
(Available_View (Designated_Type (Obj_Typ)))
and then Present (Expr)
and then
(Is_Secondary_Stack_BIP_Func_Call (Expr)
or else
(Is_Non_BIP_Func_Call (Expr)
and then not Is_Related_To_Func_Return (Obj_Id)))
then
return True;
-- Processing for "hook" objects generated for transient objects
-- declared inside an Expression_With_Actions.
elsif Is_Access_Type (Obj_Typ)
and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
N_Object_Declaration
then
return True;
-- Processing for intermediate results of if expressions where
-- one of the alternatives uses a controlled function call.
elsif Is_Access_Type (Obj_Typ)
and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
N_Defining_Identifier
and then Present (Expr)
and then Nkind (Expr) = N_Null
then
return True;
-- Simple protected objects which use type System.Tasking.
-- Protected_Objects.Protection to manage their locks should be
-- treated as controlled since they require manual cleanup.
-- The only exception is illustrated in the following example:
-- package Pkg is
-- type Ctrl is new Controlled ...
-- procedure Finalize (Obj : in out Ctrl);
-- Lib_Obj : Ctrl;
-- end Pkg;
-- package body Pkg is
-- protected Prot is
-- procedure Do_Something (Obj : in out Ctrl);
-- end Prot;
-- protected body Prot is
-- procedure Do_Something (Obj : in out Ctrl) is ...
-- end Prot;
-- procedure Finalize (Obj : in out Ctrl) is
-- begin
-- Prot.Do_Something (Obj);
-- end Finalize;
-- end Pkg;
-- Since for the most part entities in package bodies depend on
-- those in package specs, Prot's lock should be cleaned up
-- first. The subsequent cleanup of the spec finalizes Lib_Obj.
-- This act however attempts to invoke Do_Something and fails
-- because the lock has disappeared.
elsif Ekind (Obj_Id) = E_Variable
and then not In_Library_Level_Package_Body (Obj_Id)
and then Has_Simple_Protected_Object (Obj_Typ)
then
return True;
end if;
-- Specific cases of object renamings
elsif Nkind (Decl) = N_Object_Renaming_Declaration then
Obj_Id := Defining_Identifier (Decl);
Obj_Typ := Base_Type (Etype (Obj_Id));
-- Bypass any form of processing for objects which have their
-- finalization disabled. This applies only to objects at the
-- library level.
if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
null;
-- Ignored Ghost object renamings do not need any cleanup actions
-- because they will not appear in the final tree.
elsif Is_Ignored_Ghost_Entity (Obj_Id) then
null;
-- Return object of extended return statements. This case is
-- recognized and marked by the expansion of extended return
-- statements (see Expand_N_Extended_Return_Statement).
elsif Needs_Finalization (Obj_Typ)
and then Is_Return_Object (Obj_Id)
and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
then
return True;
end if;
-- Inspect the freeze node of an access-to-controlled type and look
-- for a delayed finalization master. This case arises when the
-- freeze actions are inserted at a later time than the expansion of
-- the context. Since Build_Finalizer is never called on a single
-- construct twice, the master will be ultimately left out and never
-- finalized. This is also needed for freeze actions of designated
-- types themselves, since in some cases the finalization master is
-- associated with a designated type's freeze node rather than that
-- of the access type (see handling for freeze actions in
-- Build_Finalization_Master).
elsif Nkind (Decl) = N_Freeze_Entity
and then Present (Actions (Decl))
then
Typ := Entity (Decl);
-- Freeze nodes for ignored Ghost types do not need cleanup
-- actions because they will never appear in the final tree.
if Is_Ignored_Ghost_Entity (Typ) then
null;
elsif ((Is_Access_Object_Type (Typ)
and then Needs_Finalization
(Available_View (Designated_Type (Typ))))
or else (Is_Type (Typ) and then Needs_Finalization (Typ)))
and then Requires_Cleanup_Actions
(Actions (Decl), Lib_Level, Nested_Constructs)
then
return True;
end if;
-- Nested package declarations
elsif Nested_Constructs
and then Nkind (Decl) = N_Package_Declaration
then
Pack_Id := Defining_Entity (Decl);
-- Do not inspect an ignored Ghost package because all code found
-- within will not appear in the final tree.
if Is_Ignored_Ghost_Entity (Pack_Id) then
null;
elsif Ekind (Pack_Id) /= E_Generic_Package
and then Requires_Cleanup_Actions
(Specification (Decl), Lib_Level)
then
return True;
end if;
-- Nested package bodies
elsif Nested_Constructs and then Nkind (Decl) = N_Package_Body then
-- Do not inspect an ignored Ghost package body because all code
-- found within will not appear in the final tree.
if Is_Ignored_Ghost_Entity (Defining_Entity (Decl)) then
null;
elsif Ekind (Corresponding_Spec (Decl)) /= E_Generic_Package
and then Requires_Cleanup_Actions (Decl, Lib_Level)
then
return True;
end if;
end if;
Next (Decl);
end loop;
return False;
end Requires_Cleanup_Actions;
------------------------------------
-- Safe_Unchecked_Type_Conversion --
------------------------------------
-- Note: this function knows quite a bit about the exact requirements of
-- Gigi with respect to unchecked type conversions, and its code must be
-- coordinated with any changes in Gigi in this area.
-- The above requirements should be documented in Sinfo ???
function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
Otyp : Entity_Id;
Ityp : Entity_Id;
Oalign : Uint;
Ialign : Uint;
Pexp : constant Node_Id := Parent (Exp);
begin
-- If the expression is the RHS of an assignment or object declaration
-- we are always OK because there will always be a target.
-- Object renaming declarations, (generated for view conversions of
-- actuals in inlined calls), like object declarations, provide an
-- explicit type, and are safe as well.
if (Nkind (Pexp) = N_Assignment_Statement
and then Expression (Pexp) = Exp)
or else Nkind (Pexp)
in N_Object_Declaration | N_Object_Renaming_Declaration
then
return True;
-- If the expression is the prefix of an N_Selected_Component we should
-- also be OK because GCC knows to look inside the conversion except if
-- the type is discriminated. We assume that we are OK anyway if the
-- type is not set yet or if it is controlled since we can't afford to
-- introduce a temporary in this case.
elsif Nkind (Pexp) = N_Selected_Component
and then Prefix (Pexp) = Exp
then
return No (Etype (Pexp))
or else not Is_Type (Etype (Pexp))
or else not Has_Discriminants (Etype (Pexp))
or else Is_Constrained (Etype (Pexp));
end if;
-- Set the output type, this comes from Etype if it is set, otherwise we
-- take it from the subtype mark, which we assume was already fully
-- analyzed.
if Present (Etype (Exp)) then
Otyp := Etype (Exp);
else
Otyp := Entity (Subtype_Mark (Exp));
end if;
-- The input type always comes from the expression, and we assume this
-- is indeed always analyzed, so we can simply get the Etype.
Ityp := Etype (Expression (Exp));
-- Initialize alignments to unknown so far
Oalign := No_Uint;
Ialign := No_Uint;
-- Replace a concurrent type by its corresponding record type and each
-- type by its underlying type and do the tests on those. The original
-- type may be a private type whose completion is a concurrent type, so
-- find the underlying type first.
if Present (Underlying_Type (Otyp)) then
Otyp := Underlying_Type (Otyp);
end if;
if Present (Underlying_Type (Ityp)) then
Ityp := Underlying_Type (Ityp);
end if;
if Is_Concurrent_Type (Otyp) then
Otyp := Corresponding_Record_Type (Otyp);
end if;
if Is_Concurrent_Type (Ityp) then
Ityp := Corresponding_Record_Type (Ityp);
end if;
-- If the base types are the same, we know there is no problem since
-- this conversion will be a noop.
if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
return True;
-- Same if this is an upwards conversion of an untagged type, and there
-- are no constraints involved (could be more general???)
elsif Etype (Ityp) = Otyp
and then not Is_Tagged_Type (Ityp)
and then not Has_Discriminants (Ityp)
and then No (First_Rep_Item (Base_Type (Ityp)))
then
return True;
-- If the expression has an access type (object or subprogram) we assume
-- that the conversion is safe, because the size of the target is safe,
-- even if it is a record (which might be treated as having unknown size
-- at this point).
elsif Is_Access_Type (Ityp) then
return True;
-- If the size of output type is known at compile time, there is never
-- a problem. Note that unconstrained records are considered to be of
-- known size, but we can't consider them that way here, because we are
-- talking about the actual size of the object.
-- We also make sure that in addition to the size being known, we do not
-- have a case which might generate an embarrassingly large temp in
-- stack checking mode.
elsif Size_Known_At_Compile_Time (Otyp)
and then
(not Stack_Checking_Enabled
or else not May_Generate_Large_Temp (Otyp))
and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
then
return True;
-- If either type is tagged, then we know the alignment is OK so Gigi
-- will be able to use pointer punning.
elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
return True;
-- If either type is a limited record type, we cannot do a copy, so say
-- safe since there's nothing else we can do.
elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
return True;
-- Conversions to and from packed array types are always ignored and
-- hence are safe.
elsif Is_Packed_Array_Impl_Type (Otyp)
or else Is_Packed_Array_Impl_Type (Ityp)
then
return True;
end if;
-- The only other cases known to be safe is if the input type's
-- alignment is known to be at least the maximum alignment for the
-- target or if both alignments are known and the output type's
-- alignment is no stricter than the input's. We can use the component
-- type alignment for an array if a type is an unpacked array type.
if Present (Alignment_Clause (Otyp)) then
Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
elsif Is_Array_Type (Otyp)
and then Present (Alignment_Clause (Component_Type (Otyp)))
then
Oalign := Expr_Value (Expression (Alignment_Clause
(Component_Type (Otyp))));
end if;
if Present (Alignment_Clause (Ityp)) then
Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
elsif Is_Array_Type (Ityp)
and then Present (Alignment_Clause (Component_Type (Ityp)))
then
Ialign := Expr_Value (Expression (Alignment_Clause
(Component_Type (Ityp))));
end if;
if Present (Ialign) and then Ialign > Maximum_Alignment then
return True;
elsif Present (Ialign)
and then Present (Oalign)
and then Ialign <= Oalign
then
return True;
-- Otherwise, Gigi cannot handle this and we must make a temporary
else
return False;
end if;
end Safe_Unchecked_Type_Conversion;
---------------------------------
-- Set_Current_Value_Condition --
---------------------------------
-- Note: the implementation of this procedure is very closely tied to the
-- implementation of Get_Current_Value_Condition. Here we set required
-- Current_Value fields, and in Get_Current_Value_Condition, we interpret
-- them, so they must have a consistent view.
procedure Set_Current_Value_Condition (Cnode : Node_Id) is
procedure Set_Entity_Current_Value (N : Node_Id);
-- If N is an entity reference, where the entity is of an appropriate
-- kind, then set the current value of this entity to Cnode, unless
-- there is already a definite value set there.
procedure Set_Expression_Current_Value (N : Node_Id);
-- If N is of an appropriate form, sets an appropriate entry in current
-- value fields of relevant entities. Multiple entities can be affected
-- in the case of an AND or AND THEN.
------------------------------
-- Set_Entity_Current_Value --
------------------------------
procedure Set_Entity_Current_Value (N : Node_Id) is
begin
if Is_Entity_Name (N) then
declare
Ent : constant Entity_Id := Entity (N);
begin
-- Don't capture if not safe to do so
if not Safe_To_Capture_Value (N, Ent, Cond => True) then
return;
end if;
-- Here we have a case where the Current_Value field may need
-- to be set. We set it if it is not already set to a compile
-- time expression value.
-- Note that this represents a decision that one condition
-- blots out another previous one. That's certainly right if
-- they occur at the same level. If the second one is nested,
-- then the decision is neither right nor wrong (it would be
-- equally OK to leave the outer one in place, or take the new
-- inner one). Really we should record both, but our data
-- structures are not that elaborate.
if Nkind (Current_Value (Ent)) not in N_Subexpr then
Set_Current_Value (Ent, Cnode);
end if;
end;
end if;
end Set_Entity_Current_Value;
----------------------------------
-- Set_Expression_Current_Value --
----------------------------------
procedure Set_Expression_Current_Value (N : Node_Id) is
Cond : Node_Id;
begin
Cond := N;
-- Loop to deal with (ignore for now) any NOT operators present. The
-- presence of NOT operators will be handled properly when we call
-- Get_Current_Value_Condition.
while Nkind (Cond) = N_Op_Not loop
Cond := Right_Opnd (Cond);
end loop;
-- For an AND or AND THEN, recursively process operands
if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
Set_Expression_Current_Value (Left_Opnd (Cond));
Set_Expression_Current_Value (Right_Opnd (Cond));
return;
end if;
-- Check possible relational operator
if Nkind (Cond) in N_Op_Compare then
if Compile_Time_Known_Value (Right_Opnd (Cond)) then
Set_Entity_Current_Value (Left_Opnd (Cond));
elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
Set_Entity_Current_Value (Right_Opnd (Cond));
end if;
elsif Nkind (Cond) in N_Type_Conversion
| N_Qualified_Expression
| N_Expression_With_Actions
then
Set_Expression_Current_Value (Expression (Cond));
-- Check possible boolean variable reference
else
Set_Entity_Current_Value (Cond);
end if;
end Set_Expression_Current_Value;
-- Start of processing for Set_Current_Value_Condition
begin
Set_Expression_Current_Value (Condition (Cnode));
end Set_Current_Value_Condition;
--------------------------
-- Set_Elaboration_Flag --
--------------------------
procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
Asn : Node_Id;
begin
if Present (Ent) then
-- Nothing to do if at the compilation unit level, because in this
-- case the flag is set by the binder generated elaboration routine.
if Nkind (Parent (N)) = N_Compilation_Unit then
null;
-- Here we do need to generate an assignment statement
else
Check_Restriction (No_Elaboration_Code, N);
Asn :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Ent, Loc),
Expression => Make_Integer_Literal (Loc, Uint_1));
-- Mark the assignment statement as elaboration code. This allows
-- the early call region mechanism (see Sem_Elab) to properly
-- ignore such assignments even though they are nonpreelaborable
-- code.
Set_Is_Elaboration_Code (Asn);
if Nkind (Parent (N)) = N_Subunit then
Insert_After (Corresponding_Stub (Parent (N)), Asn);
else
Insert_After (N, Asn);
end if;
Analyze (Asn);
-- Kill current value indication. This is necessary because the
-- tests of this flag are inserted out of sequence and must not
-- pick up bogus indications of the wrong constant value.
Set_Current_Value (Ent, Empty);
-- If the subprogram is in the current declarative part and
-- 'access has been applied to it, generate an elaboration
-- check at the beginning of the declarations of the body.
if Nkind (N) = N_Subprogram_Body
and then Address_Taken (Spec_Id)
and then
Ekind (Scope (Spec_Id)) in E_Block | E_Procedure | E_Function
then
declare
Loc : constant Source_Ptr := Sloc (N);
Decls : constant List_Id := Declarations (N);
Chk : Node_Id;
begin
-- No need to generate this check if first entry in the
-- declaration list is a raise of Program_Error now.
if Present (Decls)
and then Nkind (First (Decls)) = N_Raise_Program_Error
then
return;
end if;
-- Otherwise generate the check
Chk :=
Make_Raise_Program_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (Ent, Loc),
Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
Reason => PE_Access_Before_Elaboration);
if No (Decls) then
Set_Declarations (N, New_List (Chk));
else
Prepend (Chk, Decls);
end if;
Analyze (Chk);
end;
end if;
end if;
end if;
end Set_Elaboration_Flag;
----------------------------
-- Set_Renamed_Subprogram --
----------------------------
procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
begin
-- If input node is an identifier, we can just reset it
if Nkind (N) = N_Identifier then
Set_Chars (N, Chars (E));
Set_Entity (N, E);
-- Otherwise we have to do a rewrite, preserving Comes_From_Source
else
declare
CS : constant Boolean := Comes_From_Source (N);
begin
Rewrite (N, Make_Identifier (Sloc (N), Chars (E)));
Set_Entity (N, E);
Set_Comes_From_Source (N, CS);
Set_Analyzed (N, True);
end;
end if;
end Set_Renamed_Subprogram;
----------------------
-- Side_Effect_Free --
----------------------
function Side_Effect_Free
(N : Node_Id;
Name_Req : Boolean := False;
Variable_Ref : Boolean := False) return Boolean
is
Typ : constant Entity_Id := Etype (N);
-- Result type of the expression
function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
-- The argument N is a construct where the Prefix is dereferenced if it
-- is an access type and the result is a variable. The call returns True
-- if the construct is side-effect-free (not considering side effects in
-- other than the prefix which are to be tested by the caller).
function Within_In_Parameter (N : Node_Id) return Boolean;
-- Determines if N is a subcomponent of a composite in-parameter. If so,
-- N is not side-effect-free when the actual is global and modifiable
-- indirectly from within a subprogram, because it may be passed by
-- reference. The front-end must be conservative here and assume that
-- this may happen with any array or record type. On the other hand, we
-- cannot create temporaries for all expressions for which this
-- condition is true, for various reasons that might require clearing up
-- ??? For example, discriminant references that appear out of place, or
-- spurious type errors with class-wide expressions. As a result, we
-- limit the transformation to loop bounds, which is so far the only
-- case that requires it.
-----------------------------
-- Safe_Prefixed_Reference --
-----------------------------
function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
begin
-- If prefix is not side-effect-free, definitely not safe
if not Side_Effect_Free (Prefix (N), Name_Req, Variable_Ref) then
return False;
-- If the prefix is of an access type that is not access-to-constant,
-- then this construct is a variable reference, which means it is to
-- be considered to have side effects if Variable_Ref is set True.
elsif Is_Access_Type (Etype (Prefix (N)))
and then not Is_Access_Constant (Etype (Prefix (N)))
and then Variable_Ref
then
-- Exception is a prefix that is the result of a previous removal
-- of side effects.
return Is_Entity_Name (Prefix (N))
and then not Comes_From_Source (Prefix (N))
and then Ekind (Entity (Prefix (N))) = E_Constant
and then Is_Internal_Name (Chars (Entity (Prefix (N))));
-- If the prefix is an explicit dereference then this construct is a
-- variable reference, which means it is to be considered to have
-- side effects if Variable_Ref is True.
-- We do NOT exclude dereferences of access-to-constant types because
-- we handle them as constant view of variables.
elsif Nkind (Prefix (N)) = N_Explicit_Dereference
and then Variable_Ref
then
return False;
-- Note: The following test is the simplest way of solving a complex
-- problem uncovered by the following test (Side effect on loop bound
-- that is a subcomponent of a global variable:
-- with Text_Io; use Text_Io;
-- procedure Tloop is
-- type X is
-- record
-- V : Natural := 4;
-- S : String (1..5) := (others => 'a');
-- end record;
-- X1 : X;
-- procedure Modi;
-- generic
-- with procedure Action;
-- procedure Loop_G (Arg : X; Msg : String)
-- procedure Loop_G (Arg : X; Msg : String) is
-- begin
-- Put_Line ("begin loop_g " & Msg & " will loop till: "
-- & Natural'Image (Arg.V));
-- for Index in 1 .. Arg.V loop
-- Text_Io.Put_Line
-- (Natural'Image (Index) & " " & Arg.S (Index));
-- if Index > 2 then
-- Modi;
-- end if;
-- end loop;
-- Put_Line ("end loop_g " & Msg);
-- end;
-- procedure Loop1 is new Loop_G (Modi);
-- procedure Modi is
-- begin
-- X1.V := 1;
-- Loop1 (X1, "from modi");
-- end;
--
-- begin
-- Loop1 (X1, "initial");
-- end;
-- The output of the above program should be:
-- begin loop_g initial will loop till: 4
-- 1 a
-- 2 a
-- 3 a
-- begin loop_g from modi will loop till: 1
-- 1 a
-- end loop_g from modi
-- 4 a
-- begin loop_g from modi will loop till: 1
-- 1 a
-- end loop_g from modi
-- end loop_g initial
-- If a loop bound is a subcomponent of a global variable, a
-- modification of that variable within the loop may incorrectly
-- affect the execution of the loop.
elsif Parent_Kind (Parent (N)) = N_Loop_Parameter_Specification
and then Within_In_Parameter (Prefix (N))
and then Variable_Ref
then
return False;
-- All other cases are side-effect-free
else
return True;
end if;
end Safe_Prefixed_Reference;
-------------------------
-- Within_In_Parameter --
-------------------------
function Within_In_Parameter (N : Node_Id) return Boolean is
begin
if not Comes_From_Source (N) then
return False;
elsif Is_Entity_Name (N) then
return Ekind (Entity (N)) = E_In_Parameter;
elsif Nkind (N) in N_Indexed_Component | N_Selected_Component then
return Within_In_Parameter (Prefix (N));
else
return False;
end if;
end Within_In_Parameter;
-- Start of processing for Side_Effect_Free
begin
-- If volatile reference, always consider it to have side effects
if Is_Volatile_Reference (N) then
return False;
end if;
-- Note on checks that could raise Constraint_Error. Strictly, if we
-- take advantage of 11.6, these checks do not count as side effects.
-- However, we would prefer to consider that they are side effects,
-- since the back end CSE does not work very well on expressions which
-- can raise Constraint_Error. On the other hand if we don't consider
-- them to be side-effect-free, then we get some awkward expansions
-- in -gnato mode, resulting in code insertions at a point where we
-- do not have a clear model for performing the insertions.
-- Special handling for entity names
if Is_Entity_Name (N) then
-- A type reference is always side-effect-free
if Is_Type (Entity (N)) then
return True;
-- Variables are considered to be a side effect if Variable_Ref
-- is set or if we have a volatile reference and Name_Req is off.
-- If Name_Req is True then we can't help returning a name which
-- effectively allows multiple references in any case.
elsif Is_Variable (N, Use_Original_Node => False) then
return not Variable_Ref
and then (not Is_Volatile_Reference (N) or else Name_Req);
-- Any other entity (e.g. a subtype name) is definitely side
-- effect free.
else
return True;
end if;
-- A value known at compile time is always side-effect-free
elsif Compile_Time_Known_Value (N) then
return True;
-- A variable renaming is not side-effect-free, because the renaming
-- will function like a macro in the front-end in some cases, and an
-- assignment can modify the component designated by N, so we need to
-- create a temporary for it.
-- The guard testing for Entity being present is needed at least in
-- the case of rewritten predicate expressions, and may well also be
-- appropriate elsewhere. Obviously we can't go testing the entity
-- field if it does not exist, so it's reasonable to say that this is
-- not the renaming case if it does not exist.
elsif Is_Entity_Name (Original_Node (N))
and then Present (Entity (Original_Node (N)))
and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
and then Ekind (Entity (Original_Node (N))) /= E_Constant
then
declare
RO : constant Node_Id :=
Renamed_Object (Entity (Original_Node (N)));
begin
-- If the renamed object is an indexed component, or an
-- explicit dereference, then the designated object could
-- be modified by an assignment.
if Nkind (RO) in N_Indexed_Component | N_Explicit_Dereference then
return False;
-- A selected component must have a safe prefix
elsif Nkind (RO) = N_Selected_Component then
return Safe_Prefixed_Reference (RO);
-- In all other cases, designated object cannot be changed so
-- we are side-effect-free.
else
return True;
end if;
end;
-- Remove_Side_Effects generates an object renaming declaration to
-- capture the expression of a class-wide expression. In VM targets
-- the frontend performs no expansion for dispatching calls to
-- class- wide types since they are handled by the VM. Hence, we must
-- locate here if this node corresponds to a previous invocation of
-- Remove_Side_Effects to avoid a never ending loop in the frontend.
elsif not Tagged_Type_Expansion
and then not Comes_From_Source (N)
and then Nkind (Parent (N)) = N_Object_Renaming_Declaration
and then Is_Class_Wide_Type (Typ)
then
return True;
-- Generating C the type conversion of an access to constrained array
-- type into an access to unconstrained array type involves initializing
-- a fat pointer and the expression cannot be assumed to be free of side
-- effects since it must referenced several times to compute its bounds.
elsif Modify_Tree_For_C
and then Nkind (N) = N_Type_Conversion
and then Is_Access_Type (Typ)
and then Is_Array_Type (Designated_Type (Typ))
and then not Is_Constrained (Designated_Type (Typ))
then
return False;
end if;
-- For other than entity names and compile time known values,
-- check the node kind for special processing.
case Nkind (N) is
-- An attribute reference is side-effect-free if its expressions
-- are side-effect-free and its prefix is side-effect-free or is
-- an entity reference.
when N_Attribute_Reference =>
return Side_Effect_Free_Attribute (Attribute_Name (N))
and then
Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
and then
(Is_Entity_Name (Prefix (N))
or else
Side_Effect_Free (Prefix (N), Name_Req, Variable_Ref));
-- A binary operator is side-effect-free if and both operands are
-- side-effect-free. For this purpose binary operators include
-- short circuit forms.
when N_Binary_Op
| N_Short_Circuit
=>
return Side_Effect_Free (Left_Opnd (N), Name_Req, Variable_Ref)
and then
Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
-- Membership tests may have either Right_Opnd or Alternatives set
when N_Membership_Test =>
return Side_Effect_Free (Left_Opnd (N), Name_Req, Variable_Ref)
and then
(if Present (Right_Opnd (N))
then Side_Effect_Free
(Right_Opnd (N), Name_Req, Variable_Ref)
else Side_Effect_Free
(Alternatives (N), Name_Req, Variable_Ref));
-- An explicit dereference is side-effect-free only if it is
-- a side-effect-free prefixed reference.
when N_Explicit_Dereference =>
return Safe_Prefixed_Reference (N);
-- An expression with action is side-effect-free if its expression
-- is side-effect-free and it has no actions.
when N_Expression_With_Actions =>
return
Is_Empty_List (Actions (N))
and then Side_Effect_Free
(Expression (N), Name_Req, Variable_Ref);
-- A call to _rep_to_pos is side-effect-free, since we generate
-- this pure function call ourselves. Moreover it is critically
-- important to make this exception, since otherwise we can have
-- discriminants in array components which don't look side-effect
-- free in the case of an array whose index type is an enumeration
-- type with an enumeration rep clause.
-- All other function calls are not side-effect-free
when N_Function_Call =>
return
Nkind (Name (N)) = N_Identifier
and then Is_TSS (Name (N), TSS_Rep_To_Pos)
and then Side_Effect_Free
(First (Parameter_Associations (N)),
Name_Req, Variable_Ref);
-- An IF expression is side-effect-free if it's of a scalar type, and
-- all its components are all side-effect-free (conditions and then
-- actions and else actions). We restrict to scalar types, since it
-- is annoying to deal with things like (if A then B else C)'First
-- where the type involved is a string type.
when N_If_Expression =>
return
Is_Scalar_Type (Typ)
and then Side_Effect_Free
(Expressions (N), Name_Req, Variable_Ref);
-- An indexed component is side-effect-free if it is a side
-- effect free prefixed reference and all the indexing
-- expressions are side-effect-free.
when N_Indexed_Component =>
return
Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
and then Safe_Prefixed_Reference (N);
-- A type qualification, type conversion, or unchecked expression is
-- side-effect-free if the expression is side-effect-free.
when N_Qualified_Expression
| N_Type_Conversion
| N_Unchecked_Expression
=>
return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
-- A selected component is side-effect-free only if it is a side
-- effect free prefixed reference.
when N_Selected_Component =>
return Safe_Prefixed_Reference (N);
-- A range is side-effect-free if the bounds are side-effect-free
when N_Range =>
return Side_Effect_Free (Low_Bound (N), Name_Req, Variable_Ref)
and then
Side_Effect_Free (High_Bound (N), Name_Req, Variable_Ref);
-- A slice is side-effect-free if it is a side-effect-free
-- prefixed reference and the bounds are side-effect-free.
when N_Slice =>
return
Side_Effect_Free (Discrete_Range (N), Name_Req, Variable_Ref)
and then Safe_Prefixed_Reference (N);
-- A unary operator is side-effect-free if the operand
-- is side-effect-free.
when N_Unary_Op =>
return Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
-- An unchecked type conversion is side-effect-free only if it
-- is safe and its argument is side-effect-free.
when N_Unchecked_Type_Conversion =>
return
Safe_Unchecked_Type_Conversion (N)
and then Side_Effect_Free
(Expression (N), Name_Req, Variable_Ref);
-- A literal is side-effect-free
when N_Character_Literal
| N_Integer_Literal
| N_Real_Literal
| N_String_Literal
=>
return True;
-- An aggregate is side-effect-free if all its values are compile
-- time known.
when N_Aggregate =>
return Compile_Time_Known_Aggregate (N);
-- We consider that anything else has side effects. This is a bit
-- crude, but we are pretty close for most common cases, and we
-- are certainly correct (i.e. we never return True when the
-- answer should be False).
when others =>
return False;
end case;
end Side_Effect_Free;
-- A list is side-effect-free if all elements of the list are side
-- effect free.
function Side_Effect_Free
(L : List_Id;
Name_Req : Boolean := False;
Variable_Ref : Boolean := False) return Boolean
is
N : Node_Id;
begin
if L = No_List or else L = Error_List then
return True;
else
N := First (L);
while Present (N) loop
if not Side_Effect_Free (N, Name_Req, Variable_Ref) then
return False;
else
Next (N);
end if;
end loop;
return True;
end if;
end Side_Effect_Free;
--------------------------------
-- Side_Effect_Free_Attribute --
--------------------------------
function Side_Effect_Free_Attribute (Name : Name_Id) return Boolean is
begin
case Name is
when Name_Input =>
return False;
when Name_Image
| Name_Img
| Name_Wide_Image
| Name_Wide_Wide_Image
=>
-- CodePeer doesn't want to see replicated copies of 'Image calls
return not CodePeer_Mode;
when others =>
return True;
end case;
end Side_Effect_Free_Attribute;
----------------------------------
-- Silly_Boolean_Array_Not_Test --
----------------------------------
-- This procedure implements an odd and silly test. We explicitly check
-- for the case where the 'First of the component type is equal to the
-- 'Last of this component type, and if this is the case, we make sure
-- that constraint error is raised. The reason is that the NOT is bound
-- to cause CE in this case, and we will not otherwise catch it.
-- No such check is required for AND and OR, since for both these cases
-- False op False = False, and True op True = True. For the XOR case,
-- see Silly_Boolean_Array_Xor_Test.
-- Believe it or not, this was reported as a bug. Note that nearly always,
-- the test will evaluate statically to False, so the code will be
-- statically removed, and no extra overhead caused.
procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
CT : constant Entity_Id := Component_Type (T);
begin
-- The check we install is
-- constraint_error when
-- component_type'first = component_type'last
-- and then array_type'Length /= 0)
-- We need the last guard because we don't want to raise CE for empty
-- arrays since no out of range values result. (Empty arrays with a
-- component type of True .. True -- very useful -- even the ACATS
-- does not test that marginal case).
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_First),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_Last)),
Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
Reason => CE_Range_Check_Failed));
end Silly_Boolean_Array_Not_Test;
----------------------------------
-- Silly_Boolean_Array_Xor_Test --
----------------------------------
-- This procedure implements an odd and silly test. We explicitly check
-- for the XOR case where the component type is True .. True, since this
-- will raise constraint error. A special check is required since CE
-- will not be generated otherwise (cf Expand_Packed_Not).
-- No such check is required for AND and OR, since for both these cases
-- False op False = False, and True op True = True, and no check is
-- required for the case of False .. False, since False xor False = False.
-- See also Silly_Boolean_Array_Not_Test
procedure Silly_Boolean_Array_Xor_Test
(N : Node_Id;
R : Node_Id;
T : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
CT : constant Entity_Id := Component_Type (T);
begin
-- The check we install is
-- constraint_error when
-- Boolean (component_type'First)
-- and then Boolean (component_type'Last)
-- and then array_type'Length /= 0)
-- We need the last guard because we don't want to raise CE for empty
-- arrays since no out of range values result (Empty arrays with a
-- component type of True .. True -- very useful -- even the ACATS
-- does not test that marginal case).
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_And_Then (Loc,
Left_Opnd =>
Make_And_Then (Loc,
Left_Opnd =>
Convert_To (Standard_Boolean,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_First)),
Right_Opnd =>
Convert_To (Standard_Boolean,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_Last))),
Right_Opnd => Make_Non_Empty_Check (Loc, R)),
Reason => CE_Range_Check_Failed));
end Silly_Boolean_Array_Xor_Test;
----------------------------
-- Small_Integer_Type_For --
----------------------------
function Small_Integer_Type_For (S : Uint; Uns : Boolean) return Entity_Id
is
begin
-- The only difference between this and Integer_Type_For is that this
-- can return small (8- or 16-bit) types.
if S <= Standard_Short_Short_Integer_Size then
if Uns then
return Standard_Short_Short_Unsigned;
else
return Standard_Short_Short_Integer;
end if;
elsif S <= Standard_Short_Integer_Size then
if Uns then
return Standard_Short_Unsigned;
else
return Standard_Short_Integer;
end if;
else
return Integer_Type_For (S, Uns);
end if;
end Small_Integer_Type_For;
------------------
-- Thunk_Target --
------------------
function Thunk_Target (Thunk : Entity_Id) return Entity_Id is
Target : Entity_Id := Thunk;
begin
pragma Assert (Is_Thunk (Thunk));
while Is_Thunk (Target) loop
Target := Thunk_Entity (Target);
end loop;
return Target;
end Thunk_Target;
-------------------
-- Type_Map_Hash --
-------------------
function Type_Map_Hash (Id : Entity_Id) return Type_Map_Header is
begin
return Type_Map_Header (Id mod Type_Map_Size);
end Type_Map_Hash;
------------------------------------------
-- Type_May_Have_Bit_Aligned_Components --
------------------------------------------
function Type_May_Have_Bit_Aligned_Components
(Typ : Entity_Id) return Boolean
is
begin
-- Array type, check component type
if Is_Array_Type (Typ) then
return
Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
-- Record type, check components
elsif Is_Record_Type (Typ) then
declare
E : Entity_Id;
begin
E := First_Component_Or_Discriminant (Typ);
while Present (E) loop
-- This is the crucial test: if the component itself causes
-- trouble, then we can stop and return True.
if Component_May_Be_Bit_Aligned (E) then
return True;
end if;
-- Otherwise, we need to test its type, to see if it may
-- itself contain a troublesome component.
if Type_May_Have_Bit_Aligned_Components (Etype (E)) then
return True;
end if;
Next_Component_Or_Discriminant (E);
end loop;
return False;
end;
-- Type other than array or record is always OK
else
return False;
end if;
end Type_May_Have_Bit_Aligned_Components;
-------------------------------
-- Update_Primitives_Mapping --
-------------------------------
procedure Update_Primitives_Mapping
(Inher_Id : Entity_Id;
Subp_Id : Entity_Id)
is
Parent_Type : constant Entity_Id := Find_Dispatching_Type (Inher_Id);
Derived_Type : constant Entity_Id := Find_Dispatching_Type (Subp_Id);
begin
pragma Assert (Parent_Type /= Derived_Type);
Map_Types (Parent_Type, Derived_Type);
end Update_Primitives_Mapping;
----------------------------------
-- Within_Case_Or_If_Expression --
----------------------------------
function Within_Case_Or_If_Expression (N : Node_Id) return Boolean is
Nod : Node_Id;
Par : Node_Id;
begin
-- Locate an enclosing case or if expression. Note that these constructs
-- can be expanded into Expression_With_Actions, hence the test of the
-- original node.
Nod := N;
Par := Parent (Nod);
while Present (Par) loop
if Nkind (Original_Node (Par)) = N_Case_Expression
and then Nod /= Expression (Original_Node (Par))
then
return True;
elsif Nkind (Original_Node (Par)) = N_If_Expression
and then Nod /= First (Expressions (Original_Node (Par)))
then
return True;
-- Stop at contexts where temporaries may be contained
elsif Nkind (Par) in N_Aggregate
| N_Delta_Aggregate
| N_Extension_Aggregate
| N_Block_Statement
| N_Loop_Statement
then
return False;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
return False;
end if;
Nod := Par;
Par := Parent (Nod);
end loop;
return False;
end Within_Case_Or_If_Expression;
------------------------------
-- Predicate_Check_In_Scope --
------------------------------
function Predicate_Check_In_Scope (N : Node_Id) return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then not Is_Subprogram (S) loop
S := Scope (S);
end loop;
if Present (S) then
-- Predicate checks should only be enabled in init procs for
-- expressions coming from source.
if Is_Init_Proc (S) then
return Comes_From_Source (N);
elsif Get_TSS_Name (S) /= TSS_Null
and then not Is_Predicate_Function (S)
then
return False;
end if;
end if;
return True;
end Predicate_Check_In_Scope;
end Exp_Util;
|