1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863
|
/****************************************************************************
* *
* GNAT COMPILER COMPONENTS *
* *
* D E C L *
* *
* C Implementation File *
* *
* Copyright (C) 1992-2024, Free Software Foundation, Inc. *
* *
* GNAT is free software; you can redistribute it and/or modify it under *
* terms of the GNU General Public License as published by the Free Soft- *
* ware Foundation; either version 3, or (at your option) any later ver- *
* sion. GNAT is distributed in the hope that it will be useful, but WITH- *
* OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
* for more details. You should have received a copy of the GNU General *
* Public License along with GCC; see the file COPYING3. If not see *
* <http://www.gnu.org/licenses/>. *
* *
* GNAT was originally developed by the GNAT team at New York University. *
* Extensive contributions were provided by Ada Core Technologies Inc. *
* *
****************************************************************************/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "target.h"
#include "tree.h"
#include "gimple-expr.h"
#include "stringpool.h"
#include "diagnostic-core.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "tree-inline.h"
#include "demangle.h"
#include "ada.h"
#include "types.h"
#include "atree.h"
#include "elists.h"
#include "namet.h"
#include "nlists.h"
#include "repinfo.h"
#include "snames.h"
#include "uintp.h"
#include "urealp.h"
#include "fe.h"
#include "sinfo.h"
#include "einfo.h"
#include "ada-tree.h"
#include "gigi.h"
/* The "stdcall" convention is really supported on 32-bit x86/Windows only.
The following macro is a helper to avoid having to check for a Windows
specific attribute throughout this unit. */
#if TARGET_DLLIMPORT_DECL_ATTRIBUTES
#ifdef TARGET_64BIT
#define Has_Stdcall_Convention(E) \
(!TARGET_64BIT && Convention (E) == Convention_Stdcall)
#else
#define Has_Stdcall_Convention(E) (Convention (E) == Convention_Stdcall)
#endif
#else
#define Has_Stdcall_Convention(E) 0
#endif
#define STDCALL_PREFIX "_imp__"
/* Stack realignment is necessary for functions with foreign conventions when
the ABI doesn't mandate as much as what the compiler assumes - that is, up
to PREFERRED_STACK_BOUNDARY.
Such realignment can be requested with a dedicated function type attribute
on the targets that support it. We define FOREIGN_FORCE_REALIGN_STACK to
characterize the situations where the attribute should be set. We rely on
compiler configuration settings for 'main' to decide. */
#ifdef MAIN_STACK_BOUNDARY
#define FOREIGN_FORCE_REALIGN_STACK \
(MAIN_STACK_BOUNDARY < PREFERRED_STACK_BOUNDARY)
#else
#define FOREIGN_FORCE_REALIGN_STACK 0
#endif
/* The largest TYPE_ARRAY_MAX_SIZE value we set on an array type.
It's an artibrary limit (256 MB) above which we consider that
the allocation is essentially unbounded. */
#define TYPE_ARRAY_SIZE_LIMIT (1 << 28)
struct incomplete
{
struct incomplete *next;
tree old_type;
Entity_Id full_type;
};
/* These variables are used to defer recursively expanding incomplete types
while we are processing a record, an array or a subprogram type. */
static int defer_incomplete_level = 0;
static struct incomplete *defer_incomplete_list;
/* This variable is used to delay expanding types coming from a limited with
clause and completed Taft Amendment types until the end of the spec. */
static struct incomplete *defer_limited_with_list;
typedef struct subst_pair_d {
tree discriminant;
tree replacement;
} subst_pair;
typedef struct variant_desc_d {
/* The type of the variant. */
tree type;
/* The associated field. */
tree field;
/* The value of the qualifier. */
tree qual;
/* The type of the variant after transformation. */
tree new_type;
/* The auxiliary data. */
tree aux;
} variant_desc;
/* A map used to cache the result of annotate_value. */
struct value_annotation_hasher : ggc_cache_ptr_hash<tree_int_map>
{
static inline hashval_t
hash (tree_int_map *m)
{
return htab_hash_pointer (m->base.from);
}
static inline bool
equal (tree_int_map *a, tree_int_map *b)
{
return a->base.from == b->base.from;
}
static int
keep_cache_entry (tree_int_map *&m)
{
return ggc_marked_p (m->base.from);
}
};
static GTY ((cache)) hash_table<value_annotation_hasher> *annotate_value_cache;
/* A map used to associate a dummy type with a list of subprogram entities. */
struct GTY((for_user)) tree_entity_vec_map
{
struct tree_map_base base;
vec<Entity_Id, va_gc_atomic> *to;
};
struct dummy_type_hasher : ggc_cache_ptr_hash<tree_entity_vec_map>
{
static inline hashval_t
hash (tree_entity_vec_map *m)
{
return htab_hash_pointer (m->base.from);
}
static inline bool
equal (tree_entity_vec_map *a, tree_entity_vec_map *b)
{
return a->base.from == b->base.from;
}
static int
keep_cache_entry (tree_entity_vec_map *&m)
{
return ggc_marked_p (m->base.from);
}
};
static GTY ((cache)) hash_table<dummy_type_hasher> *dummy_to_subprog_map;
static void prepend_one_attribute (struct attrib **,
enum attrib_type, tree, tree, Node_Id);
static void prepend_one_attribute_pragma (struct attrib **, Node_Id);
static void prepend_attributes (struct attrib **, Entity_Id);
static tree elaborate_expression (Node_Id, Entity_Id, const char *, bool, bool,
bool);
static tree elaborate_expression_1 (tree, Entity_Id, const char *, bool, bool);
static tree elaborate_expression_2 (tree, Entity_Id, const char *, bool, bool,
unsigned int);
static tree elaborate_reference (tree, Entity_Id, bool, tree *);
static tree gnat_to_gnu_component_type (Entity_Id, bool, bool);
static tree gnat_to_gnu_subprog_type (Entity_Id, bool, bool, tree *);
static int adjust_packed (tree, tree, int);
static tree gnat_to_gnu_field (Entity_Id, tree, int, bool, bool);
static enum inline_status_t inline_status_for_subprog (Entity_Id);
static Entity_Id Gigi_Cloned_Subtype (Entity_Id);
static tree gnu_ext_name_for_subprog (Entity_Id, tree);
static void set_nonaliased_component_on_array_type (tree);
static void set_reverse_storage_order_on_array_type (tree);
static bool same_discriminant_p (Entity_Id, Entity_Id);
static bool array_type_has_nonaliased_component (tree, Entity_Id);
static bool compile_time_known_address_p (Node_Id);
static bool flb_cannot_be_superflat (Node_Id);
static bool range_cannot_be_superflat (Node_Id);
static bool constructor_address_p (tree);
static bool allocatable_size_p (tree, bool);
static bool initial_value_needs_conversion (tree, tree);
static tree update_n_elem (tree, tree, tree);
static int compare_field_bitpos (const void *, const void *);
static bool components_to_record (Node_Id, Entity_Id, tree, tree, int, bool,
bool, bool, bool, bool, bool, bool, tree,
tree *);
static Uint annotate_value (tree);
static void annotate_rep (Entity_Id, tree);
static tree build_position_list (tree, bool, tree, tree, unsigned int, tree);
static vec<subst_pair> build_subst_list (Entity_Id, Entity_Id, bool);
static vec<variant_desc> build_variant_list (tree, Node_Id, vec<subst_pair>,
vec<variant_desc>);
static tree maybe_saturate_size (tree, unsigned int align);
static tree validate_size (Uint, tree, Entity_Id, enum tree_code, bool, bool,
const char *, const char *);
static void set_rm_size (Uint, tree, Entity_Id);
static unsigned int validate_alignment (Uint, Entity_Id, unsigned int);
static unsigned int promote_object_alignment (tree, tree, Entity_Id);
static void check_ok_for_atomic_type (tree, Entity_Id, bool);
static bool type_for_atomic_builtin_p (tree);
static tree resolve_atomic_builtin (enum built_in_function, tree);
static tree create_field_decl_from (tree, tree, tree, tree, tree,
vec<subst_pair>);
static tree create_rep_part (tree, tree, tree);
static tree get_rep_part (tree);
static tree create_variant_part_from (tree, vec<variant_desc>, tree,
tree, vec<subst_pair>, bool);
static void copy_and_substitute_in_size (tree, tree, vec<subst_pair>);
static void copy_and_substitute_in_layout (Entity_Id, Entity_Id, tree, tree,
vec<subst_pair>, bool);
static tree associate_original_type_to_packed_array (tree, Entity_Id);
static const char *get_entity_char (Entity_Id);
/* The relevant constituents of a subprogram binding to a GCC builtin. Used
to pass around calls performing profile compatibility checks. */
typedef struct {
Entity_Id gnat_entity; /* The Ada subprogram entity. */
tree ada_fntype; /* The corresponding GCC type node. */
tree btin_fntype; /* The GCC builtin function type node. */
} intrin_binding_t;
static bool intrin_profiles_compatible_p (const intrin_binding_t *);
/* Given GNAT_ENTITY, a GNAT defining identifier node, which denotes some Ada
entity, return the equivalent GCC tree for that entity (a ..._DECL node)
and associate the ..._DECL node with the input GNAT defining identifier.
If GNAT_ENTITY is a variable or a constant declaration, GNU_EXPR gives its
initial value (in GCC tree form). This is optional for a variable. For
a renamed entity, GNU_EXPR gives the object being renamed.
DEFINITION is true if this call is intended for a definition. This is used
for separate compilation where it is necessary to know whether an external
declaration or a definition must be created if the GCC equivalent was not
created previously. */
tree
gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, bool definition)
{
/* The construct that declared the entity. */
const Node_Id gnat_decl = Declaration_Node (gnat_entity);
/* The object that the entity renames, if any. */
const Entity_Id gnat_renamed_obj = Renamed_Object (gnat_entity);
/* The kind of the entity. */
const Entity_Kind kind = Ekind (gnat_entity);
/* True if this is a type. */
const bool is_type = IN (kind, Type_Kind);
/* True if this is an artificial entity. */
const bool artificial_p = !Comes_From_Source (gnat_entity);
/* True if debug info is requested for this entity. */
const bool debug_info_p = Needs_Debug_Info (gnat_entity);
/* True if this entity is to be considered as imported. */
const bool imported_p
= (Is_Imported (gnat_entity) && No (Address_Clause (gnat_entity)));
/* True if this entity has a foreign convention. */
const bool foreign = Has_Foreign_Convention (gnat_entity);
/* For a type, contains the equivalent GNAT node to be used in gigi. */
Entity_Id gnat_equiv_type = Empty;
/* For a subtype, contains the GNAT node to be used as cloned subtype. */
Entity_Id gnat_cloned_subtype = Empty;
/* Temporary used to walk the GNAT tree. */
Entity_Id gnat_temp;
/* Contains the GCC DECL node which is equivalent to the input GNAT node.
This node will be associated with the GNAT node by calling at the end
of the `switch' statement. */
tree gnu_decl = NULL_TREE;
/* Contains the GCC type to be used for the GCC node. */
tree gnu_type = NULL_TREE;
/* Contains the GCC size tree to be used for the GCC node. */
tree gnu_size = NULL_TREE;
/* Contains the GCC name to be used for the GCC node. */
tree gnu_entity_name;
/* True if we have already saved gnu_decl as a GNAT association. This can
also be used to purposely avoid making such an association but this use
case ought not to be applied to types because it can break the deferral
mechanism implemented for access types. */
bool saved = false;
/* True if we incremented defer_incomplete_level. */
bool this_deferred = false;
/* True if we incremented force_global. */
bool this_global = false;
/* True if we should check to see if elaborated during processing. */
bool maybe_present = false;
/* True if we made GNU_DECL and its type here. */
bool this_made_decl = false;
/* Size and alignment of the GCC node, if meaningful. */
unsigned int esize = 0, align = 0;
/* Contains the list of attributes directly attached to the entity. */
struct attrib *attr_list = NULL;
/* Since a use of an itype is a definition, process it as such if it is in
the main unit, except for E_Access_Subtype because it's actually a use
of its base type, and for E_Class_Wide_Subtype with an Equivalent_Type
because it's actually a use of the latter type. */
if (!definition
&& is_type
&& Is_Itype (gnat_entity)
&& Ekind (gnat_entity) != E_Access_Subtype
&& !(Ekind (gnat_entity) == E_Class_Wide_Subtype
&& Present (Equivalent_Type (gnat_entity)))
&& !present_gnu_tree (gnat_entity)
&& In_Extended_Main_Code_Unit (gnat_entity))
{
/* Unless it's for an anonymous access type, whose scope is irrelevant,
ensure that we are in a subprogram mentioned in the Scope chain of
this entity, our current scope is global, or we encountered a task
or entry (where we can't currently accurately check scoping). */
if (Ekind (gnat_entity) == E_Anonymous_Access_Type
|| !current_function_decl
|| DECL_ELABORATION_PROC_P (current_function_decl))
{
process_type (gnat_entity);
return get_gnu_tree (gnat_entity);
}
for (gnat_temp = Scope (gnat_entity);
Present (gnat_temp);
gnat_temp = Scope (gnat_temp))
{
if (Is_Type (gnat_temp))
gnat_temp = Underlying_Type (gnat_temp);
if (Is_Subprogram (gnat_temp)
&& Present (Protected_Body_Subprogram (gnat_temp)))
gnat_temp = Protected_Body_Subprogram (gnat_temp);
if (Ekind (gnat_temp) == E_Entry
|| Ekind (gnat_temp) == E_Entry_Family
|| Ekind (gnat_temp) == E_Task_Type
|| (Is_Subprogram (gnat_temp)
&& present_gnu_tree (gnat_temp)
&& (current_function_decl
== gnat_to_gnu_entity (gnat_temp, NULL_TREE, false))))
{
process_type (gnat_entity);
return get_gnu_tree (gnat_entity);
}
}
/* This abort means the itype has an incorrect scope, i.e. that its
scope does not correspond to the subprogram it is first used in. */
gcc_unreachable ();
}
/* If we've already processed this entity, return what we got last time.
If we are defining the node, we should not have already processed it.
In that case, we will abort below when we try to save a new GCC tree
for this object. We also need to handle the case of getting a dummy
type when a Full_View exists but be careful so as not to trigger its
premature elaboration. Likewise for a cloned subtype without its own
freeze node, which typically happens when a generic gets instantiated
on an incomplete or private type. */
if ((!definition || (is_type && imported_p))
&& present_gnu_tree (gnat_entity))
{
gnu_decl = get_gnu_tree (gnat_entity);
if (TREE_CODE (gnu_decl) == TYPE_DECL
&& TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))
&& IN (kind, Incomplete_Or_Private_Kind)
&& Present (Full_View (gnat_entity))
&& (present_gnu_tree (Full_View (gnat_entity))
|| No (Freeze_Node (Full_View (gnat_entity)))))
{
gnu_decl
= gnat_to_gnu_entity (Full_View (gnat_entity), NULL_TREE,
false);
save_gnu_tree (gnat_entity, NULL_TREE, false);
save_gnu_tree (gnat_entity, gnu_decl, false);
}
if (TREE_CODE (gnu_decl) == TYPE_DECL
&& TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl))
&& Ekind (gnat_entity) == E_Record_Subtype
&& No (Freeze_Node (gnat_entity))
&& Present (Cloned_Subtype (gnat_entity))
&& (present_gnu_tree (Cloned_Subtype (gnat_entity))
|| No (Freeze_Node (Cloned_Subtype (gnat_entity)))))
{
gnu_decl
= gnat_to_gnu_entity (Cloned_Subtype (gnat_entity), NULL_TREE,
false);
save_gnu_tree (gnat_entity, NULL_TREE, false);
save_gnu_tree (gnat_entity, gnu_decl, false);
}
return gnu_decl;
}
/* If this is a numeric or enumeral type, or an access type, a nonzero Esize
must be specified unless it was specified by the programmer. Exceptions
are for access-to-protected-subprogram types and all access subtypes, as
another GNAT type is used to lay out the GCC type for them, as well as
access-to-subprogram types if front-end unnesting is enabled. */
gcc_assert (!is_type
|| Known_Esize (gnat_entity)
|| Has_Size_Clause (gnat_entity)
|| (!Is_In_Numeric_Kind (kind)
&& !IN (kind, Enumeration_Kind)
&& (!IN (kind, Access_Kind)
|| kind == E_Access_Protected_Subprogram_Type
|| kind == E_Anonymous_Access_Protected_Subprogram_Type
|| ((kind == E_Access_Subprogram_Type
|| kind == E_Anonymous_Access_Subprogram_Type)
&& Unnest_Subprogram_Mode)
|| kind == E_Access_Subtype
|| type_annotate_only)));
/* The RM size must be specified for all discrete and fixed-point types. */
gcc_assert (!(Is_In_Discrete_Or_Fixed_Point_Kind (kind)
&& !Known_RM_Size (gnat_entity)));
/* If we get here, it means we have not yet done anything with this entity.
If we are not defining it, it must be a type or an entity that is defined
elsewhere or externally, otherwise we should have defined it already.
In other words, the failure of this assertion typically arises when a
reference to an entity (type or object) is made before its declaration,
either directly or by means of a freeze node which is incorrectly placed.
This can also happen for an entity referenced out of context, for example
a parameter outside of the subprogram where it is declared. GNAT_ENTITY
is the N_Defining_Identifier of the entity, the problematic N_Identifier
being the argument passed to Identifier_to_gnu in the parent frame.
One exception is for an entity, typically an inherited operation, which is
a local alias for the parent's operation. It is neither defined, since it
is an inherited operation, nor public, since it is declared in the current
compilation unit, so we test Is_Public on the Alias entity instead. */
gcc_assert (definition
|| is_type
|| kind == E_Discriminant
|| kind == E_Component
|| kind == E_Label
|| (kind == E_Constant && Present (Full_View (gnat_entity)))
|| Is_Public (gnat_entity)
|| (Present (Alias (gnat_entity))
&& Is_Public (Alias (gnat_entity)))
|| type_annotate_only);
/* Get the name of the entity and set up the line number and filename of
the original definition for use in any decl we make. Make sure we do
not inherit another source location. */
gnu_entity_name = get_entity_name (gnat_entity);
if (!renaming_from_instantiation_p (gnat_entity))
Sloc_to_locus (Sloc (gnat_entity), &input_location);
/* For cases when we are not defining (i.e., we are referencing from
another compilation unit) public entities, show we are at global level
for the purpose of computing scopes. Don't do this for components or
discriminants since the relevant test is whether or not the record is
being defined. */
if (!definition
&& kind != E_Component
&& kind != E_Discriminant
&& Is_Public (gnat_entity)
&& !Is_Statically_Allocated (gnat_entity))
force_global++, this_global = true;
/* Handle any attributes directly attached to the entity. */
if (Has_Gigi_Rep_Item (gnat_entity))
prepend_attributes (&attr_list, gnat_entity);
/* Do some common processing for types. */
if (is_type)
{
/* Compute the equivalent type to be used in gigi. */
gnat_equiv_type = Gigi_Equivalent_Type (gnat_entity);
/* Machine_Attributes on types are expected to be propagated to
subtypes. The corresponding Gigi_Rep_Items are only attached
to the first subtype though, so we handle the propagation here. */
if (Base_Type (gnat_entity) != gnat_entity
&& !Is_First_Subtype (gnat_entity)
&& Has_Gigi_Rep_Item (First_Subtype (Base_Type (gnat_entity))))
prepend_attributes (&attr_list,
First_Subtype (Base_Type (gnat_entity)));
/* Compute a default value for the size of an elementary type. */
if (Known_Esize (gnat_entity) && Is_Elementary_Type (gnat_entity))
{
unsigned int max_esize;
gcc_assert (UI_Is_In_Int_Range (Esize (gnat_entity)));
esize = UI_To_Int (Esize (gnat_entity));
if (IN (kind, Float_Kind))
max_esize = fp_prec_to_size (LONG_DOUBLE_TYPE_SIZE);
else if (IN (kind, Access_Kind))
max_esize = POINTER_SIZE * 2;
else
max_esize = Enable_128bit_Types ? 128 : LONG_LONG_TYPE_SIZE;
if (esize > max_esize)
esize = max_esize;
}
}
switch (kind)
{
case E_Component:
case E_Discriminant:
{
/* The GNAT record where the component was defined. */
Entity_Id gnat_record = Underlying_Type (Scope (gnat_entity));
/* If the entity is a discriminant of an extended tagged type used to
rename a discriminant of the parent type, return the latter. */
if (kind == E_Discriminant
&& Present (Corresponding_Discriminant (gnat_entity))
&& Is_Tagged_Type (gnat_record))
{
gnu_decl
= gnat_to_gnu_entity (Corresponding_Discriminant (gnat_entity),
gnu_expr, definition);
saved = true;
break;
}
/* If the entity is an inherited component (in the case of extended
tagged record types), just return the original entity, which must
be a FIELD_DECL. Likewise for discriminants. If the entity is a
non-stored discriminant (in the case of derived untagged record
types), return the stored discriminant it renames. */
if (Present (Original_Record_Component (gnat_entity))
&& Original_Record_Component (gnat_entity) != gnat_entity)
{
gnu_decl
= gnat_to_gnu_entity (Original_Record_Component (gnat_entity),
gnu_expr, definition);
/* GNU_DECL contains a PLACEHOLDER_EXPR for discriminants. */
if (kind == E_Discriminant)
saved = true;
break;
}
/* Otherwise, if we are not defining this and we have no GCC type
for the containing record, make one for it. Then we should
have made our own equivalent. */
if (!definition && !present_gnu_tree (gnat_record))
{
/* ??? If this is in a record whose scope is a protected
type and we have an Original_Record_Component, use it.
This is a workaround for major problems in protected type
handling. */
Entity_Id Scop = Scope (Scope (gnat_entity));
if (Is_Protected_Type (Underlying_Type (Scop))
&& Present (Original_Record_Component (gnat_entity)))
{
gnu_decl
= gnat_to_gnu_entity (Original_Record_Component
(gnat_entity),
gnu_expr, false);
}
else
{
gnat_to_gnu_entity (Scope (gnat_entity), NULL_TREE, false);
gnu_decl = get_gnu_tree (gnat_entity);
}
saved = true;
break;
}
/* Here we have no GCC type and this is a reference rather than a
definition. This should never happen. Most likely the cause is
reference before declaration in the GNAT tree for gnat_entity. */
gcc_unreachable ();
}
case E_Named_Integer:
case E_Named_Real:
{
tree gnu_ext_name = NULL_TREE;
if (Is_Public (gnat_entity))
gnu_ext_name = create_concat_name (gnat_entity, NULL);
/* All references are supposed to be folded in the front-end. */
gcc_assert (definition && gnu_expr);
gnu_type = gnat_to_gnu_type (Etype (gnat_entity));
gnu_expr = convert (gnu_type, gnu_expr);
/* Build a CONST_DECL for debugging purposes exclusively. */
gnu_decl
= create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
gnu_expr, true, Is_Public (gnat_entity),
false, false, false, artificial_p,
debug_info_p, NULL, gnat_entity);
}
break;
case E_Constant:
/* Ignore constant definitions already marked with the error node. See
the N_Object_Declaration case of gnat_to_gnu for the rationale. */
if (definition
&& present_gnu_tree (gnat_entity)
&& get_gnu_tree (gnat_entity) == error_mark_node)
{
maybe_present = true;
break;
}
/* Ignore deferred constant definitions without address clause since
they are processed fully in the front-end. If No_Initialization
is set, this is not a deferred constant but a constant whose value
is built manually. And constants that are renamings are handled
like variables. */
if (definition
&& !gnu_expr
&& !No_Initialization (gnat_decl)
&& No (Address_Clause (gnat_entity))
&& No (gnat_renamed_obj))
{
gnu_decl = error_mark_node;
saved = true;
break;
}
/* If this is a use of a deferred constant without address clause,
get its full definition. */
if (!definition
&& No (Address_Clause (gnat_entity))
&& Present (Full_View (gnat_entity)))
{
gnu_decl
= gnat_to_gnu_entity (Full_View (gnat_entity), gnu_expr, false);
saved = true;
break;
}
/* If we have a constant that we are not defining, get the expression it
was defined to represent. This is necessary to avoid generating dumb
elaboration code in simple cases, and we may throw it away later if it
is not a constant. But do not do it for dispatch tables because they
are only referenced indirectly and we need to have a consistent view
of the exported and of the imported declarations of the tables from
external units for them to be properly merged in LTO mode. Moreover
simply do not retrieve the expression if it is an allocator because
the designated type might still be dummy at this point. Note that we
invoke gnat_to_gnu_external and not gnat_to_gnu because the expression
may contain N_Expression_With_Actions nodes and thus declarations of
objects from other units that we need to discard. Note also that we
need to do it even if we are only annotating types, so as to be able
to validate representation clauses using constants. */
if (!definition
&& !No_Initialization (gnat_decl)
&& !Is_Dispatch_Table_Entity (gnat_entity)
&& Present (gnat_temp = Expression (gnat_decl))
&& Nkind (gnat_temp) != N_Allocator
&& (Is_Elementary_Type (Etype (gnat_entity)) || !type_annotate_only))
gnu_expr = gnat_to_gnu_external (gnat_temp);
/* ... fall through ... */
case E_Exception:
case E_Loop_Parameter:
case E_Out_Parameter:
case E_Variable:
{
const Entity_Id gnat_type = Etype (gnat_entity);
const Entity_Id gnat_und_type = Underlying_Type (gnat_type);
/* Always create a variable for volatile objects and variables seen
constant but with a Linker_Section pragma. */
bool const_flag
= ((kind == E_Constant || kind == E_Variable)
&& Is_True_Constant (gnat_entity)
&& !(kind == E_Variable
&& Present (Linker_Section_Pragma (gnat_entity)))
&& !Treat_As_Volatile (gnat_entity)
&& (((Nkind (gnat_decl) == N_Object_Declaration)
&& Present (Expression (gnat_decl)))
|| Present (gnat_renamed_obj)
|| imported_p));
bool inner_const_flag = const_flag;
bool static_flag = Is_Statically_Allocated (gnat_entity);
/* We implement RM 13.3(19) for exported and imported (non-constant)
objects by making them volatile. */
bool volatile_flag
= (Treat_As_Volatile (gnat_entity)
|| (!const_flag && (Is_Exported (gnat_entity) || imported_p)));
bool mutable_p = false;
bool used_by_ref = false;
tree gnu_ext_name = NULL_TREE;
tree gnu_ada_size = NULL_TREE;
/* We need to translate the renamed object even though we are only
referencing the renaming. But it may contain a call for which
we'll generate a temporary to hold the return value and which
is part of the definition of the renaming, so discard it. */
if (Present (gnat_renamed_obj) && !definition)
{
if (kind == E_Exception)
gnu_expr = gnat_to_gnu_entity (Renamed_Entity (gnat_entity),
NULL_TREE, false);
else
gnu_expr = gnat_to_gnu_external (gnat_renamed_obj);
}
/* Get the type after elaborating the renamed object. */
if (foreign && Is_Descendant_Of_Address (gnat_und_type))
gnu_type = ptr_type_node;
else
gnu_type = gnat_to_gnu_type (gnat_type);
/* For a debug renaming declaration, build a debug-only entity. */
if (Present (Debug_Renaming_Link (gnat_entity)))
{
/* Force a non-null value to make sure the symbol is retained. */
tree value = build1 (INDIRECT_REF, gnu_type,
build1 (NOP_EXPR,
build_pointer_type (gnu_type),
integer_minus_one_node));
gnu_decl = build_decl (input_location,
VAR_DECL, gnu_entity_name, gnu_type);
SET_DECL_VALUE_EXPR (gnu_decl, value);
DECL_HAS_VALUE_EXPR_P (gnu_decl) = 1;
TREE_STATIC (gnu_decl) = global_bindings_p ();
gnat_pushdecl (gnu_decl, gnat_entity);
break;
}
/* If this is a loop variable, its type should be the base type.
This is because the code for processing a loop determines whether
a normal loop end test can be done by comparing the bounds of the
loop against those of the base type, which is presumed to be the
size used for computation. But this is not correct when the size
of the subtype is smaller than the type. */
if (kind == E_Loop_Parameter)
gnu_type = get_base_type (gnu_type);
/* If this is a simple constant, strip the qualifiers from its type,
since the constant represents only its value. */
else if (simple_constant_p (gnat_entity))
gnu_type = TYPE_MAIN_VARIANT (gnu_type);
/* Reject non-renamed objects whose type is an unconstrained array or
any object whose type is a dummy type or void. */
if ((TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
&& No (gnat_renamed_obj))
|| TYPE_IS_DUMMY_P (gnu_type)
|| VOID_TYPE_P (gnu_type))
{
gcc_assert (type_annotate_only);
if (this_global)
force_global--;
return error_mark_node;
}
/* If an alignment is specified, use it if valid. Note that exceptions
are objects but don't have an alignment and there is also no point in
setting it for an address clause, since the final type of the object
will be a reference type. */
if (Known_Alignment (gnat_entity)
&& kind != E_Exception
&& No (Address_Clause (gnat_entity)))
align = validate_alignment (Alignment (gnat_entity), gnat_entity,
TYPE_ALIGN (gnu_type));
/* Likewise, if a size is specified, use it if valid. */
if (Known_Esize (gnat_entity))
gnu_size
= validate_size (Esize (gnat_entity), gnu_type, gnat_entity,
VAR_DECL, false, Has_Size_Clause (gnat_entity),
NULL, NULL);
if (gnu_size)
{
gnu_type
= make_type_from_size (gnu_type, gnu_size,
Has_Biased_Representation (gnat_entity));
if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0))
gnu_size = NULL_TREE;
}
/* If this object has self-referential size, it must be a record with
a default discriminant. We are supposed to allocate an object of
the maximum size in this case, unless it is a constant with an
initializing expression, in which case we can get the size from
that. Note that the resulting size may still be a variable, so
this may end up with an indirect allocation. */
if (No (gnat_renamed_obj)
&& CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
{
if (gnu_expr && kind == E_Constant)
{
gnu_size = TYPE_SIZE (TREE_TYPE (gnu_expr));
gnu_ada_size = TYPE_ADA_SIZE (TREE_TYPE (gnu_expr));
if (CONTAINS_PLACEHOLDER_P (gnu_size))
{
/* If the initializing expression is itself a constant,
despite having a nominal type with self-referential
size, we can get the size directly from it. */
if (TREE_CODE (gnu_expr) == COMPONENT_REF
&& TYPE_IS_PADDING_P
(TREE_TYPE (TREE_OPERAND (gnu_expr, 0)))
&& VAR_P (TREE_OPERAND (gnu_expr, 0))
&& (TREE_READONLY (TREE_OPERAND (gnu_expr, 0))
|| DECL_READONLY_ONCE_ELAB
(TREE_OPERAND (gnu_expr, 0))))
{
gnu_size = DECL_SIZE (TREE_OPERAND (gnu_expr, 0));
gnu_ada_size = gnu_size;
}
else
{
gnu_size
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_size,
gnu_expr);
gnu_ada_size
= SUBSTITUTE_PLACEHOLDER_IN_EXPR (gnu_ada_size,
gnu_expr);
}
}
}
/* We may have no GNU_EXPR because No_Initialization is
set even though there's an Expression. */
else if (kind == E_Constant
&& Nkind (gnat_decl) == N_Object_Declaration
&& Present (Expression (gnat_decl)))
{
tree gnu_expr_type
= gnat_to_gnu_type (Etype (Expression (gnat_decl)));
gnu_size = TYPE_SIZE (gnu_expr_type);
gnu_ada_size = TYPE_ADA_SIZE (gnu_expr_type);
}
else
{
gnu_size = max_size (TYPE_SIZE (gnu_type), true);
/* We can be called on unconstrained arrays in this mode. */
if (!type_annotate_only)
gnu_ada_size = max_size (TYPE_ADA_SIZE (gnu_type), true);
mutable_p = true;
}
/* If the size isn't constant and we are at global level, call
elaborate_expression_1 to make a variable for it rather than
calculating it each time. */
if (!TREE_CONSTANT (gnu_size) && global_bindings_p ())
gnu_size = elaborate_expression_1 (gnu_size, gnat_entity,
"SIZE", definition, false);
}
/* If the size is zero byte, make it one byte since some linkers have
troubles with zero-sized objects. If the object will have a
template, that will make it nonzero so don't bother. Also avoid
doing that for an object renaming or an object with an address
clause, as we would lose useful information on the view size
(e.g. for null array slices) and we are not allocating the object
here anyway. */
if (((gnu_size
&& integer_zerop (gnu_size)
&& !TREE_OVERFLOW (gnu_size))
|| (TYPE_SIZE (gnu_type)
&& integer_zerop (TYPE_SIZE (gnu_type))
&& !TREE_OVERFLOW (TYPE_SIZE (gnu_type))))
&& !Is_Constr_Array_Subt_With_Bounds (gnat_type)
&& No (gnat_renamed_obj)
&& No (Address_Clause (gnat_entity)))
gnu_size = bitsize_unit_node;
/* If this is an object with no specified size and alignment, and
if either it is full access or we are not optimizing alignment for
space and it is composite and not an exception, an Out parameter
or a reference to another object, and the size of its type is a
constant, set the alignment to the smallest one which is not
smaller than the size, with an appropriate cap. */
if (!Known_Esize (gnat_entity)
&& !Known_Alignment (gnat_entity)
&& (Is_Full_Access (gnat_entity)
|| (!Optimize_Alignment_Space (gnat_entity)
&& kind != E_Exception
&& kind != E_Out_Parameter
&& Is_Composite_Type (gnat_type)
&& !Is_Constr_Array_Subt_With_Bounds (gnat_type)
&& !Is_Exported (gnat_entity)
&& !imported_p
&& No (gnat_renamed_obj)
&& No (Address_Clause (gnat_entity))))
&& (TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST || gnu_size))
align = promote_object_alignment (gnu_type, gnu_size, gnat_entity);
/* If the object is set to have atomic components, find the component
type and validate it.
??? Note that we ignore Has_Volatile_Components on objects; it's
not at all clear what to do in that case. */
if (Has_Atomic_Components (gnat_entity))
{
tree gnu_inner = (TREE_CODE (gnu_type) == ARRAY_TYPE
? TREE_TYPE (gnu_type) : gnu_type);
while (TREE_CODE (gnu_inner) == ARRAY_TYPE
&& TYPE_MULTI_ARRAY_P (gnu_inner))
gnu_inner = TREE_TYPE (gnu_inner);
check_ok_for_atomic_type (gnu_inner, gnat_entity, true);
}
/* If this is an array allocated with its bounds, make a type that
includes the template. We will either allocate it or create a
variable of that type, see below. */
if (Is_Constr_Array_Subt_With_Bounds (gnat_type)
&& !type_annotate_only)
{
tree gnu_array = gnat_to_gnu_type (Base_Type (gnat_type));
gnu_type
= build_unc_object_type_from_ptr (TREE_TYPE (gnu_array),
gnu_type,
concat_name (gnu_entity_name,
"UNC"),
debug_info_p);
}
/* ??? If this is an object of CW type initialized to a value, try to
ensure that the object is sufficient aligned for this value, but
without pessimizing the allocation. This is a kludge necessary
because we don't support dynamic alignment. */
if (align == 0
&& Ekind (gnat_type) == E_Class_Wide_Subtype
&& No (gnat_renamed_obj)
&& No (Address_Clause (gnat_entity)))
align = get_target_system_allocator_alignment () * BITS_PER_UNIT;
#ifdef MINIMUM_ATOMIC_ALIGNMENT
/* If the size is a constant and no alignment is specified, force
the alignment to be the minimum valid atomic alignment. The
restriction on constant size avoids problems with variable-size
temporaries; if the size is variable, there's no issue with
atomic access. Also don't do this for a constant, since it isn't
necessary and can interfere with constant replacement. Finally,
do not do it for Out parameters since that creates an
size inconsistency with In parameters. */
if (align == 0
&& MINIMUM_ATOMIC_ALIGNMENT > TYPE_ALIGN (gnu_type)
&& !FLOAT_TYPE_P (gnu_type)
&& !const_flag && No (gnat_renamed_obj)
&& !imported_p && No (Address_Clause (gnat_entity))
&& kind != E_Out_Parameter
&& (gnu_size ? TREE_CODE (gnu_size) == INTEGER_CST
: TREE_CODE (TYPE_SIZE (gnu_type)) == INTEGER_CST))
align = MINIMUM_ATOMIC_ALIGNMENT;
#endif
/* Do not take into account aliased adjustments or alignment promotions
to compute the size of the object. */
tree gnu_object_size = gnu_size ? gnu_size : TYPE_SIZE (gnu_type);
/* If the object is aliased, of a constrained nominal subtype and its
size might be zero at run time, we force at least the unit size. */
if (Is_Aliased (gnat_entity)
&& Is_Constrained (gnat_type)
&& !Is_Constr_Array_Subt_With_Bounds (gnat_type)
&& Is_Array_Type (gnat_und_type)
&& !TREE_CONSTANT (gnu_object_size))
gnu_size = size_binop (MAX_EXPR, gnu_object_size, bitsize_unit_node);
/* Make a new type with the desired size and alignment, if needed. */
if (gnu_size || align > 0)
{
tree orig_type = gnu_type;
gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity,
false, definition, true);
/* If the nominal subtype of the object is unconstrained and its
size is not fixed, compute the Ada size from the Ada size of
the subtype and/or the expression; this will make it possible
for gnat_type_max_size to easily compute a maximum size. */
if (gnu_ada_size && gnu_size && !TREE_CONSTANT (gnu_size))
SET_TYPE_ADA_SIZE (gnu_type, gnu_ada_size);
/* If a padding record was made, declare it now since it will
never be declared otherwise. This is necessary to ensure
that its subtrees are properly marked. */
if (gnu_type != orig_type && !DECL_P (TYPE_NAME (gnu_type)))
create_type_decl (TYPE_NAME (gnu_type), gnu_type, true,
debug_info_p, gnat_entity);
}
/* Now check if the type of the object allows atomic access. */
if (Is_Full_Access (gnat_entity))
check_ok_for_atomic_type (gnu_type, gnat_entity, false);
/* If this is a renaming, avoid as much as possible to create a new
object. However, in some cases, creating it is required because
renaming can be applied to objects that are not names in Ada.
This processing needs to be applied to the raw expression so as
to make it more likely to rename the underlying object. */
if (Present (gnat_renamed_obj))
{
/* If the renamed object had padding, strip off the reference to
the inner object and reset our type. */
if ((TREE_CODE (gnu_expr) == COMPONENT_REF
&& TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (gnu_expr, 0))))
/* Strip useless conversions around the object. */
|| gnat_useless_type_conversion (gnu_expr))
{
gnu_expr = TREE_OPERAND (gnu_expr, 0);
gnu_type = TREE_TYPE (gnu_expr);
}
/* Or else, if the renamed object has an unconstrained type with
default discriminant, use the padded type. */
else if (type_is_padding_self_referential (TREE_TYPE (gnu_expr)))
gnu_type = TREE_TYPE (gnu_expr);
/* If this is a constant renaming stemming from a function call,
treat it as a normal object whose initial value is what is being
renamed. RM 3.3 says that the result of evaluating a function
call is a constant object. Therefore, it can be the inner
object of a constant renaming and the renaming must be fully
instantiated, i.e. it cannot be a reference to (part of) an
existing object. And treat other rvalues the same way. */
tree inner = gnu_expr;
while (handled_component_p (inner) || CONVERT_EXPR_P (inner))
inner = TREE_OPERAND (inner, 0);
/* Expand_Dispatching_Call can prepend a comparison of the tags
before the call to "=". */
if (TREE_CODE (inner) == TRUTH_ANDIF_EXPR
|| TREE_CODE (inner) == COMPOUND_EXPR)
inner = TREE_OPERAND (inner, 1);
if ((TREE_CODE (inner) == CALL_EXPR
&& !call_is_atomic_load (inner))
|| TREE_CODE (inner) == CONSTRUCTOR
|| CONSTANT_CLASS_P (inner)
|| COMPARISON_CLASS_P (inner)
|| BINARY_CLASS_P (inner)
|| EXPRESSION_CLASS_P (inner)
/* We need to detect the case where a temporary is created to
hold the return value, since we cannot safely rename it at
top level because it lives only in the elaboration routine.
But, at a lower level, an object initialized by a function
call may be (implicitly) renamed as this temporary by the
front-end and, in this case, we cannot make a copy. */
|| (VAR_P (inner)
&& DECL_RETURN_VALUE_P (inner)
&& global_bindings_p ())
/* We also need to detect the case where the front-end creates
a dangling 'reference to a function call at top level and
substitutes it in the renaming, for example:
q__b : boolean renames r__f.e (1);
can be rewritten into:
q__R1s : constant q__A2s := r__f'reference;
[...]
q__b : boolean renames q__R1s.all.e (1);
We cannot safely rename the rewritten expression since the
underlying object lives only in the elaboration routine but,
as above, this cannot be done at a lower level. */
|| (INDIRECT_REF_P (inner)
&& (inner
= remove_conversions (TREE_OPERAND (inner, 0), true))
&& VAR_P (inner)
&& DECL_RETURN_VALUE_P (inner)
&& global_bindings_p ()))
;
/* Otherwise, this is an lvalue being renamed, so it needs to be
elaborated as a reference and substituted for the entity. But
this means that we must evaluate the address of the renaming
in the definition case to instantiate the SAVE_EXPRs. */
else
{
tree gnu_init = NULL_TREE;
if (type_annotate_only && TREE_CODE (gnu_expr) == ERROR_MARK)
break;
gnu_expr
= elaborate_reference (gnu_expr, gnat_entity, definition,
&gnu_init);
/* No DECL_EXPR might be created so the expression needs to be
marked manually because it will likely be shared. */
if (global_bindings_p ())
MARK_VISITED (gnu_expr);
/* This assertion will fail if the renamed object isn't aligned
enough as to make it possible to honor the alignment set on
the renaming. */
if (align)
{
const unsigned int ralign
= DECL_P (gnu_expr)
? DECL_ALIGN (gnu_expr)
: TYPE_ALIGN (TREE_TYPE (gnu_expr));
gcc_assert (ralign >= align);
}
/* The expression might not be a DECL so save it manually. */
gnu_decl = gnu_expr;
save_gnu_tree (gnat_entity, gnu_decl, true);
saved = true;
annotate_object (gnat_entity, gnu_type, NULL_TREE, false);
/* If this is only a reference to the entity, we are done. */
if (!definition)
break;
/* Otherwise, emit the initialization statement, if any. */
if (gnu_init)
add_stmt (gnu_init);
/* If it needs to be materialized for debugging purposes, build
the entity as indirect reference to the renamed object. */
if (Materialize_Entity (gnat_entity))
{
/* If this is an array allocated with its bounds, we make
its type a thin reference, the reference counterpart of
a thin pointer, exactly as we would have done in the
non-renaming case below. */
if (Is_Constr_Array_Subt_With_Bounds (gnat_type)
&& !type_annotate_only)
{
tree gnu_array
= gnat_to_gnu_type (Base_Type (gnat_type));
gnu_type = TYPE_OBJECT_RECORD_TYPE (gnu_array);
}
gnu_type = build_reference_type (gnu_type);
const_flag = true;
volatile_flag = false;
gnu_expr = build_unary_op (ADDR_EXPR, gnu_type, gnu_expr);
create_var_decl (gnu_entity_name, NULL_TREE,
TREE_TYPE (gnu_expr), gnu_expr,
const_flag, Is_Public (gnat_entity),
imported_p, static_flag, volatile_flag,
artificial_p, debug_info_p, attr_list,
gnat_entity, false);
}
/* Otherwise, instantiate the SAVE_EXPRs if needed. */
else if (TREE_SIDE_EFFECTS (gnu_expr))
add_stmt (build_unary_op (ADDR_EXPR, NULL_TREE, gnu_expr));
break;
}
}
/* If we are defining an aliased object whose nominal subtype is
unconstrained, the object is a record that contains both the
template and the object. If there is an initializer, it will
have already been converted to the right type, but we need to
create the template if there is no initializer. */
if (definition
&& !gnu_expr
&& TREE_CODE (gnu_type) == RECORD_TYPE
&& (TYPE_CONTAINS_TEMPLATE_P (gnu_type)
/* Beware that padding might have been introduced above. */
|| (TYPE_PADDING_P (gnu_type)
&& TREE_CODE (TREE_TYPE (TYPE_FIELDS (gnu_type)))
== RECORD_TYPE
&& TYPE_CONTAINS_TEMPLATE_P
(TREE_TYPE (TYPE_FIELDS (gnu_type))))))
{
tree template_field
= TYPE_PADDING_P (gnu_type)
? TYPE_FIELDS (TREE_TYPE (TYPE_FIELDS (gnu_type)))
: TYPE_FIELDS (gnu_type);
vec<constructor_elt, va_gc> *v;
vec_alloc (v, 1);
tree t = build_template (TREE_TYPE (template_field),
TREE_TYPE (DECL_CHAIN (template_field)),
NULL_TREE);
CONSTRUCTOR_APPEND_ELT (v, template_field, t);
gnu_expr = gnat_build_constructor (gnu_type, v);
}
/* Convert the expression to the type of the object if need be. */
if (gnu_expr && initial_value_needs_conversion (gnu_type, gnu_expr))
gnu_expr = convert (gnu_type, gnu_expr);
/* If this is a pointer that doesn't have an initializing expression,
initialize it to NULL, unless the object is declared imported as
per RM B.1(24). */
if (definition
&& (POINTER_TYPE_P (gnu_type) || TYPE_IS_FAT_POINTER_P (gnu_type))
&& !gnu_expr
&& !Is_Imported (gnat_entity))
gnu_expr = null_pointer_node;
/* If we are defining the object and it has an Address clause, we must
either get the address expression from the saved GCC tree for the
object if it has a Freeze node, or elaborate the address expression
here since the front-end has guaranteed that the elaboration has no
effects in this case. */
if (definition && Present (Address_Clause (gnat_entity)))
{
const Node_Id gnat_clause = Address_Clause (gnat_entity);
const Node_Id gnat_address = Expression (gnat_clause);
tree gnu_address = present_gnu_tree (gnat_entity)
? TREE_OPERAND (get_gnu_tree (gnat_entity), 0)
: gnat_to_gnu (gnat_address);
save_gnu_tree (gnat_entity, NULL_TREE, false);
/* Convert the type of the object to a reference type that can
alias everything as per RM 13.3(19). */
if (volatile_flag && !TYPE_VOLATILE (gnu_type))
gnu_type = change_qualified_type (gnu_type, TYPE_QUAL_VOLATILE);
gnu_type
= build_reference_type_for_mode (gnu_type, ptr_mode, true);
gnu_address = convert (gnu_type, gnu_address);
used_by_ref = true;
const_flag
= (!Is_Public (gnat_entity)
|| compile_time_known_address_p (gnat_address));
volatile_flag = false;
gnu_size = NULL_TREE;
/* If this is an aliased object with an unconstrained array nominal
subtype, then it can overlay only another aliased object with an
unconstrained array nominal subtype and compatible template. */
if (Is_Constr_Array_Subt_With_Bounds (gnat_type)
&& !type_annotate_only)
{
tree rec_type = TREE_TYPE (gnu_type);
tree off = byte_position (DECL_CHAIN (TYPE_FIELDS (rec_type)));
/* This is the pattern built for a regular object. */
if (TREE_CODE (gnu_address) == POINTER_PLUS_EXPR
&& TREE_OPERAND (gnu_address, 1) == off)
gnu_address = TREE_OPERAND (gnu_address, 0);
/* This is the pattern built for an overaligned object. */
else if (TREE_CODE (gnu_address) == POINTER_PLUS_EXPR
&& TREE_CODE (TREE_OPERAND (gnu_address, 1))
== PLUS_EXPR
&& TREE_OPERAND (TREE_OPERAND (gnu_address, 1), 1)
== off)
gnu_address
= build2 (POINTER_PLUS_EXPR, gnu_type,
TREE_OPERAND (gnu_address, 0),
TREE_OPERAND (TREE_OPERAND (gnu_address, 1), 0));
/* We make an exception for an absolute address but we warn
that there is a descriptor at the start of the object. */
else if (TREE_CODE (gnu_address) == INTEGER_CST)
{
post_error_ne ("??aliased object& with unconstrained "
"array nominal subtype", gnat_clause,
gnat_entity);
post_error ("\\starts with a descriptor whose size is "
"given by ''Descriptor_Size", gnat_clause);
}
else
{
post_error_ne ("aliased object& with unconstrained array "
"nominal subtype", gnat_clause,
gnat_entity);
post_error ("\\can overlay only aliased object with "
"compatible subtype", gnat_clause);
}
}
/* If we don't have an initializing expression for the underlying
variable, the initializing expression for the pointer is the
specified address. Otherwise, we have to make a COMPOUND_EXPR
to assign both the address and the initial value. */
if (!gnu_expr)
gnu_expr = gnu_address;
else
gnu_expr
= build2 (COMPOUND_EXPR, gnu_type,
build_binary_op (INIT_EXPR, NULL_TREE,
build_unary_op (INDIRECT_REF,
NULL_TREE,
gnu_address),
gnu_expr),
gnu_address);
}
/* If it has an address clause and we are not defining it, mark it
as an indirect object. Likewise for Stdcall objects that are
imported. */
if ((!definition && Present (Address_Clause (gnat_entity)))
|| (imported_p && Has_Stdcall_Convention (gnat_entity)))
{
/* Convert the type of the object to a reference type that can
alias everything as per RM 13.3(19). */
if (volatile_flag && !TYPE_VOLATILE (gnu_type))
gnu_type = change_qualified_type (gnu_type, TYPE_QUAL_VOLATILE);
gnu_type
= build_reference_type_for_mode (gnu_type, ptr_mode, true);
used_by_ref = true;
const_flag = false;
volatile_flag = false;
gnu_size = NULL_TREE;
/* No point in taking the address of an initializing expression
that isn't going to be used. */
gnu_expr = NULL_TREE;
/* If it has an address clause whose value is known at compile
time, make the object a CONST_DECL. This will avoid a
useless dereference. */
if (Present (Address_Clause (gnat_entity)))
{
Node_Id gnat_address
= Expression (Address_Clause (gnat_entity));
if (compile_time_known_address_p (gnat_address))
{
gnu_expr = gnat_to_gnu (gnat_address);
const_flag = true;
}
}
}
/* If we are at top level and this object is of variable size,
make the actual type a hidden pointer to the real type and
make the initializer be a memory allocation and initialization.
Likewise for objects we aren't defining (presumed to be
external references from other packages), but there we do
not set up an initialization.
If the object's size overflows, make an allocator too, so that
Storage_Error gets raised. Note that we will never free
such memory, so we presume it never will get allocated. */
if (!allocatable_size_p (TYPE_SIZE_UNIT (gnu_type),
global_bindings_p ()
|| !definition
|| static_flag)
|| (gnu_size
&& !allocatable_size_p (convert (sizetype,
size_binop
(EXACT_DIV_EXPR, gnu_size,
bitsize_unit_node)),
global_bindings_p ()
|| !definition
|| static_flag)))
{
if (volatile_flag && !TYPE_VOLATILE (gnu_type))
gnu_type = change_qualified_type (gnu_type, TYPE_QUAL_VOLATILE);
gnu_type = build_reference_type (gnu_type);
used_by_ref = true;
const_flag = true;
volatile_flag = false;
gnu_size = NULL_TREE;
/* In case this was a aliased object whose nominal subtype is
unconstrained, the pointer above will be a thin pointer and
build_allocator will automatically make the template.
If we have a template initializer only (that we made above),
pretend there is none and rely on what build_allocator creates
again anyway. Otherwise (if we have a full initializer), get
the data part and feed that to build_allocator.
If we are elaborating a mutable object, tell build_allocator to
ignore a possibly simpler size from the initializer, if any, as
we must allocate the maximum possible size in this case. */
if (definition && !imported_p)
{
tree gnu_alloc_type = TREE_TYPE (gnu_type);
if (TREE_CODE (gnu_alloc_type) == RECORD_TYPE
&& TYPE_CONTAINS_TEMPLATE_P (gnu_alloc_type))
{
gnu_alloc_type
= TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (gnu_alloc_type)));
if (TREE_CODE (gnu_expr) == CONSTRUCTOR
&& CONSTRUCTOR_NELTS (gnu_expr) == 1)
gnu_expr = NULL_TREE;
else
gnu_expr
= build_component_ref
(gnu_expr,
DECL_CHAIN (TYPE_FIELDS (TREE_TYPE (gnu_expr))),
false);
}
if (TREE_CODE (TYPE_SIZE_UNIT (gnu_alloc_type)) == INTEGER_CST
&& !valid_constant_size_p (TYPE_SIZE_UNIT (gnu_alloc_type)))
post_error ("??Storage_Error will be raised at run time!",
gnat_entity);
gnu_expr
= build_allocator (gnu_alloc_type, gnu_expr, gnu_type,
Empty, Empty, gnat_entity, mutable_p);
}
else
gnu_expr = NULL_TREE;
}
/* If this object would go into the stack and has an alignment larger
than the largest stack alignment the back-end can honor, resort to
a variable of "aligning type". */
if (definition
&& TYPE_ALIGN (gnu_type) > BIGGEST_ALIGNMENT
&& !imported_p
&& !static_flag
&& !global_bindings_p ())
{
/* Create the new variable. No need for extra room before the
aligned field as this is in automatic storage. */
tree gnu_new_type
= make_aligning_type (gnu_type, TYPE_ALIGN (gnu_type),
TYPE_SIZE_UNIT (gnu_type),
BIGGEST_ALIGNMENT, 0, gnat_entity);
tree gnu_new_var
= create_var_decl (create_concat_name (gnat_entity, "ALIGN"),
NULL_TREE, gnu_new_type, NULL_TREE,
false, false, false, false, false,
true, debug_info_p && definition, NULL,
gnat_entity);
/* Initialize the aligned field if we have an initializer. */
if (gnu_expr)
add_stmt_with_node
(build_binary_op (INIT_EXPR, NULL_TREE,
build_component_ref
(gnu_new_var, TYPE_FIELDS (gnu_new_type),
false),
gnu_expr),
gnat_entity);
/* And setup this entity as a reference to the aligned field. */
gnu_type = build_reference_type (gnu_type);
gnu_expr
= build_unary_op
(ADDR_EXPR, NULL_TREE,
build_component_ref (gnu_new_var, TYPE_FIELDS (gnu_new_type),
false));
TREE_CONSTANT (gnu_expr) = 1;
used_by_ref = true;
const_flag = true;
volatile_flag = false;
gnu_size = NULL_TREE;
}
/* If this is an aggregate constant initialized to a constant, force it
to be statically allocated. This saves an initialization copy. */
if (!static_flag
&& const_flag
&& gnu_expr
&& TREE_CONSTANT (gnu_expr)
&& AGGREGATE_TYPE_P (gnu_type)
&& tree_fits_uhwi_p (TYPE_SIZE_UNIT (gnu_type))
&& !(TYPE_IS_PADDING_P (gnu_type)
&& !tree_fits_uhwi_p (TYPE_SIZE_UNIT
(TREE_TYPE (TYPE_FIELDS (gnu_type))))))
static_flag = true;
/* If this is an array allocated with its bounds, we make its type a
thin reference, i.e. the reference counterpart of a thin pointer,
so that it points to the array part. This is aimed at making it
easier for the debugger to decode the object. Note that we have
to do it this late because of the couple of allocation adjustments
that might be made above. */
if (Is_Constr_Array_Subt_With_Bounds (gnat_type)
&& !type_annotate_only)
{
/* In case the object with the template has already been allocated
just above, we have nothing to do here. */
if (!TYPE_IS_THIN_POINTER_P (gnu_type))
{
/* This variable is a GNAT encoding used by Workbench: let it
go through the debugging information but mark it as
artificial: users are not interested in it. */
tree gnu_unc_var
= create_var_decl (concat_name (gnu_entity_name, "UNC"),
NULL_TREE, gnu_type, gnu_expr,
const_flag, Is_Public (gnat_entity),
imported_p || !definition, static_flag,
volatile_flag, true,
debug_info_p && definition,
NULL, gnat_entity);
gnu_expr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_unc_var);
TREE_CONSTANT (gnu_expr) = 1;
used_by_ref = true;
const_flag = true;
volatile_flag = false;
inner_const_flag = TREE_READONLY (gnu_unc_var);
gnu_size = NULL_TREE;
}
tree gnu_array = gnat_to_gnu_type (Base_Type (gnat_type));
gnu_type
= build_reference_type (TYPE_OBJECT_RECORD_TYPE (gnu_array));
}
/* Convert the expression to the type of the object if need be. */
if (gnu_expr && initial_value_needs_conversion (gnu_type, gnu_expr))
gnu_expr = convert (gnu_type, gnu_expr);
/* If this name is external or a name was specified, use it, but don't
use the Interface_Name with an address clause (see cd30005). */
if ((Is_Public (gnat_entity) && !imported_p)
|| (Present (Interface_Name (gnat_entity))
&& No (Address_Clause (gnat_entity))))
gnu_ext_name = create_concat_name (gnat_entity, NULL);
/* Deal with a pragma Linker_Section on a constant or variable. */
if ((kind == E_Constant || kind == E_Variable)
&& Present (Linker_Section_Pragma (gnat_entity)))
prepend_one_attribute_pragma (&attr_list,
Linker_Section_Pragma (gnat_entity));
/* Now create the variable or the constant and set various flags. */
gnu_decl
= create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
gnu_expr, const_flag, Is_Public (gnat_entity),
imported_p || !definition, static_flag,
volatile_flag, artificial_p,
debug_info_p && definition, attr_list,
gnat_entity);
DECL_BY_REF_P (gnu_decl) = used_by_ref;
DECL_POINTS_TO_READONLY_P (gnu_decl) = used_by_ref && inner_const_flag;
DECL_CAN_NEVER_BE_NULL_P (gnu_decl) = Can_Never_Be_Null (gnat_entity);
/* If we are defining an Out parameter and optimization isn't enabled,
create a fake PARM_DECL for debugging purposes and make it point to
the VAR_DECL. Suppress debug info for the latter but make sure it
will live in memory so that it can be accessed from within the
debugger through the PARM_DECL. */
if (kind == E_Out_Parameter
&& definition
&& debug_info_p
&& !optimize
&& !flag_generate_lto)
{
tree param = create_param_decl (gnu_entity_name, gnu_type);
gnat_pushdecl (param, gnat_entity);
SET_DECL_VALUE_EXPR (param, gnu_decl);
DECL_HAS_VALUE_EXPR_P (param) = 1;
DECL_IGNORED_P (gnu_decl) = 1;
TREE_ADDRESSABLE (gnu_decl) = 1;
}
/* If this is a loop parameter, set the corresponding flag. */
else if (kind == E_Loop_Parameter)
DECL_LOOP_PARM_P (gnu_decl) = 1;
/* If this is a constant and we are defining it or it generates a real
symbol at the object level and we are referencing it, we may want
or need to have a true variable to represent it:
- if the constant is public and not overlaid on something else,
- if its address is taken,
- if it is aliased,
- if optimization isn't enabled, for debugging purposes. */
if (TREE_CODE (gnu_decl) == CONST_DECL
&& (definition || Sloc (gnat_entity) > Standard_Location)
&& ((Is_Public (gnat_entity) && No (Address_Clause (gnat_entity)))
|| Address_Taken (gnat_entity)
|| Is_Aliased (gnat_entity)
|| (!optimize && debug_info_p)))
{
tree gnu_corr_var
= create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
gnu_expr, true, Is_Public (gnat_entity),
!definition, static_flag, volatile_flag,
artificial_p, debug_info_p && definition,
attr_list, gnat_entity, false);
SET_DECL_CONST_CORRESPONDING_VAR (gnu_decl, gnu_corr_var);
DECL_IGNORED_P (gnu_decl) = 1;
}
/* If this is a constant, even if we don't need a true variable, we
may need to avoid returning the initializer in every case. That
can happen for the address of a (constant) constructor because,
upon dereferencing it, the constructor will be reinjected in the
tree, which may not be valid in every case; see lvalue_required_p
for more details. */
if (TREE_CODE (gnu_decl) == CONST_DECL)
DECL_CONST_ADDRESS_P (gnu_decl) = constructor_address_p (gnu_expr);
/* If this is a local variable with non-BLKmode and aggregate type,
and optimization isn't enabled, then force it in memory so that
a register won't be allocated to it with possible subparts left
uninitialized and reaching the register allocator. */
else if (VAR_P (gnu_decl)
&& !DECL_EXTERNAL (gnu_decl)
&& !TREE_STATIC (gnu_decl)
&& DECL_MODE (gnu_decl) != BLKmode
&& AGGREGATE_TYPE_P (TREE_TYPE (gnu_decl))
&& !TYPE_IS_FAT_POINTER_P (TREE_TYPE (gnu_decl))
&& !optimize)
TREE_ADDRESSABLE (gnu_decl) = 1;
/* Back-annotate Esize and Alignment of the object if not already
known. Note that we pick the values of the type, not those of
the object, to shield ourselves from low-level platform-dependent
adjustments like alignment promotion. This is both consistent with
all the treatment above, where alignment and size are set on the
type of the object and not on the object directly, and makes it
possible to support all confirming representation clauses. */
annotate_object (gnat_entity, TREE_TYPE (gnu_decl), gnu_object_size,
used_by_ref);
}
break;
case E_Void:
/* Return a TYPE_DECL for "void" that we previously made. */
gnu_decl = TYPE_NAME (void_type_node);
break;
case E_Enumeration_Type:
/* A special case: for the types Character and Wide_Character in
Standard, we do not list all the literals. So if the literals
are not specified, make this an integer type. */
if (No (First_Literal (gnat_entity)))
{
if (esize == CHAR_TYPE_SIZE && flag_signed_char)
gnu_type = make_signed_type (CHAR_TYPE_SIZE);
else
gnu_type = make_unsigned_type (esize);
TYPE_NAME (gnu_type) = gnu_entity_name;
/* Set TYPE_STRING_FLAG for Character and Wide_Character types.
This is needed by the DWARF-2 back-end to distinguish between
unsigned integer types and character types. */
TYPE_STRING_FLAG (gnu_type) = 1;
/* This flag is needed by the call just below. */
TYPE_ARTIFICIAL (gnu_type) = artificial_p;
finish_character_type (gnu_type);
}
else
{
/* We have a list of enumeral constants in First_Literal. We make a
CONST_DECL for each one and build into GNU_LITERAL_LIST the list
to be placed into TYPE_FIELDS. Each node is itself a TREE_LIST
whose TREE_VALUE is the literal name and whose TREE_PURPOSE is the
value of the literal. But when we have a regular boolean type, we
simplify this a little by using a BOOLEAN_TYPE. */
const bool is_boolean = Is_Boolean_Type (gnat_entity)
&& !Has_Non_Standard_Rep (gnat_entity);
const bool is_unsigned = Is_Unsigned_Type (gnat_entity);
tree gnu_list = NULL_TREE;
Entity_Id gnat_literal;
/* Boolean types with foreign convention have precision 1. */
if (is_boolean && foreign)
esize = 1;
gnu_type = make_node (is_boolean ? BOOLEAN_TYPE : ENUMERAL_TYPE);
TYPE_PRECISION (gnu_type) = esize;
TYPE_UNSIGNED (gnu_type) = is_unsigned;
set_min_and_max_values_for_integral_type (gnu_type, esize,
TYPE_SIGN (gnu_type));
process_attributes (&gnu_type, &attr_list, true, gnat_entity);
layout_type (gnu_type);
for (gnat_literal = First_Literal (gnat_entity);
Present (gnat_literal);
gnat_literal = Next_Literal (gnat_literal))
{
tree gnu_value
= UI_To_gnu (Enumeration_Rep (gnat_literal), gnu_type);
/* Do not generate debug info for individual enumerators. */
tree gnu_literal
= create_var_decl (get_entity_name (gnat_literal), NULL_TREE,
gnu_type, gnu_value, true, false, false,
false, false, artificial_p, false,
NULL, gnat_literal);
save_gnu_tree (gnat_literal, gnu_literal, false);
gnu_list
= tree_cons (DECL_NAME (gnu_literal), gnu_value, gnu_list);
}
if (!is_boolean)
TYPE_VALUES (gnu_type) = nreverse (gnu_list);
/* Note that the bounds are updated at the end of this function
to avoid an infinite recursion since they refer to the type. */
goto discrete_type;
}
break;
case E_Signed_Integer_Type:
/* For integer types, just make a signed type the appropriate number
of bits. */
gnu_type = make_signed_type (esize);
goto discrete_type;
case E_Ordinary_Fixed_Point_Type:
case E_Decimal_Fixed_Point_Type:
{
/* Small_Value is the scale factor. */
const Ureal gnat_small_value = Small_Value (gnat_entity);
tree scale_factor = NULL_TREE;
gnu_type = make_signed_type (esize);
/* When encoded as 1/2**N or 1/10**N, describe the scale factor as a
binary or decimal scale: it is easier to read for humans. */
if (UI_Eq (Numerator (gnat_small_value), Uint_1)
&& (Rbase (gnat_small_value) == 2
|| Rbase (gnat_small_value) == 10))
{
tree base
= build_int_cst (integer_type_node, Rbase (gnat_small_value));
tree exponent
= build_int_cst (integer_type_node,
UI_To_Int (Denominator (gnat_small_value)));
scale_factor
= build2 (RDIV_EXPR, integer_type_node,
integer_one_node,
build2 (POWER_EXPR, integer_type_node,
base, exponent));
}
/* Use the arbitrary scale factor description. Note that we support
a Small_Value whose magnitude is larger than 64-bit even on 32-bit
platforms, so we unconditionally use a (dummy) 128-bit type. */
else
{
const Uint gnat_num = Norm_Num (gnat_small_value);
const Uint gnat_den = Norm_Den (gnat_small_value);
tree gnu_small_type = make_unsigned_type (128);
tree gnu_num = UI_To_gnu (gnat_num, gnu_small_type);
tree gnu_den = UI_To_gnu (gnat_den, gnu_small_type);
scale_factor
= build2 (RDIV_EXPR, gnu_small_type, gnu_num, gnu_den);
}
TYPE_FIXED_POINT_P (gnu_type) = 1;
SET_TYPE_SCALE_FACTOR (gnu_type, scale_factor);
}
goto discrete_type;
case E_Modular_Integer_Type:
{
/* Packed Array Impl. Types are supposed to be subtypes only. */
gcc_assert (!Is_Packed_Array_Impl_Type (gnat_entity));
/* For modular types, make the unsigned type of the proper number
of bits and then set up the modulus, if required. */
gnu_type = make_unsigned_type (esize);
/* Get the modulus in this type. If the modulus overflows, assume
that this is because it was equal to 2**Esize. Note that there
is no overflow checking done on unsigned types, so we detect the
overflow by looking for a modulus of zero, which is invalid. */
tree gnu_modulus = UI_To_gnu (Modulus (gnat_entity), gnu_type);
/* If the modulus is not 2**Esize, then this also means that the upper
bound of the type, i.e. modulus - 1, is not maximal, so we create an
extra subtype to carry it and set the modulus on the base type. */
if (!integer_zerop (gnu_modulus))
{
TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "UMT");
TYPE_MODULAR_P (gnu_type) = 1;
SET_TYPE_MODULUS (gnu_type, gnu_modulus);
tree gnu_high = fold_build2 (MINUS_EXPR, gnu_type, gnu_modulus,
build_int_cst (gnu_type, 1));
gnu_type
= create_extra_subtype (gnu_type, TYPE_MIN_VALUE (gnu_type),
gnu_high);
}
}
goto discrete_type;
case E_Signed_Integer_Subtype:
case E_Enumeration_Subtype:
case E_Modular_Integer_Subtype:
case E_Ordinary_Fixed_Point_Subtype:
case E_Decimal_Fixed_Point_Subtype:
gnat_cloned_subtype = Gigi_Cloned_Subtype (gnat_entity);
if (Present (gnat_cloned_subtype))
break;
/* For integral subtypes, we make a new INTEGER_TYPE. Note that we do
not want to call create_range_type since we would like each subtype
node to be distinct. ??? Historically this was in preparation for
when memory aliasing is implemented, but that's obsolete now given
the call to relate_alias_sets below.
The TREE_TYPE field of the INTEGER_TYPE points to the base type;
this fact is used by the arithmetic conversion functions.
We elaborate the Ancestor_Subtype if it is not in the current unit
and one of our bounds is non-static. We do this to ensure consistent
naming in the case where several subtypes share the same bounds, by
elaborating the first such subtype first, thus using its name. */
if (!definition
&& Present (Ancestor_Subtype (gnat_entity))
&& !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
&& (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
|| !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), gnu_expr, false);
/* Set the precision to the Esize except for bit-packed arrays. */
if (Is_Packed_Array_Impl_Type (gnat_entity))
esize = UI_To_Int (RM_Size (gnat_entity));
/* Boolean types with foreign convention have precision 1. */
if (Is_Boolean_Type (gnat_entity) && foreign)
{
gnu_type = make_node (BOOLEAN_TYPE);
TYPE_PRECISION (gnu_type) = 1;
TYPE_UNSIGNED (gnu_type) = 1;
set_min_and_max_values_for_integral_type (gnu_type, 1, UNSIGNED);
layout_type (gnu_type);
}
/* First subtypes of Character are treated as Character; otherwise
this should be an unsigned type if the base type is unsigned or
if the lower bound is constant and non-negative or if the type
is biased. However, even if the lower bound is constant and
non-negative, we use a signed type for a subtype with the same
size as its signed base type, because this eliminates useless
conversions to it and gives more leeway to the optimizer; but
this means that we will need to explicitly test for this case
when we change the representation based on the RM size. */
else if (kind == E_Enumeration_Subtype
&& No (First_Literal (Etype (gnat_entity)))
&& Esize (gnat_entity) == RM_Size (gnat_entity)
&& esize == CHAR_TYPE_SIZE
&& flag_signed_char)
gnu_type = make_signed_type (CHAR_TYPE_SIZE);
else if (Is_Unsigned_Type (Underlying_Type (Etype (gnat_entity)))
|| (Esize (Etype (gnat_entity)) != Esize (gnat_entity)
&& Is_Unsigned_Type (gnat_entity))
|| Has_Biased_Representation (gnat_entity))
gnu_type = make_unsigned_type (esize);
else
gnu_type = make_signed_type (esize);
TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
SET_TYPE_RM_MIN_VALUE
(gnu_type, elaborate_expression (Type_Low_Bound (gnat_entity),
gnat_entity, "L", definition, true,
debug_info_p));
SET_TYPE_RM_MAX_VALUE
(gnu_type, elaborate_expression (Type_High_Bound (gnat_entity),
gnat_entity, "U", definition, true,
debug_info_p));
if (TREE_CODE (gnu_type) == INTEGER_TYPE)
TYPE_BIASED_REPRESENTATION_P (gnu_type)
= Has_Biased_Representation (gnat_entity);
/* Do the same processing for Character subtypes as for types. */
if (TREE_CODE (TREE_TYPE (gnu_type)) == INTEGER_TYPE
&& TYPE_STRING_FLAG (TREE_TYPE (gnu_type)))
{
TYPE_NAME (gnu_type) = gnu_entity_name;
TYPE_STRING_FLAG (gnu_type) = 1;
TYPE_ARTIFICIAL (gnu_type) = artificial_p;
finish_character_type (gnu_type);
}
/* Inherit our alias set from what we're a subtype of. Subtypes
are not different types and a pointer can designate any instance
within a subtype hierarchy. */
relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
/* One of the above calls might have caused us to be elaborated,
so don't blow up if so. */
if (present_gnu_tree (gnat_entity))
{
maybe_present = true;
break;
}
/* Attach the TYPE_STUB_DECL in case we have a parallel type. */
TYPE_STUB_DECL (gnu_type)
= create_type_stub_decl (gnu_entity_name, gnu_type);
discrete_type:
/* We have to handle clauses that under-align the type specially. */
if ((Present (Alignment_Clause (gnat_entity))
|| (Is_Packed_Array_Impl_Type (gnat_entity)
&& Present
(Alignment_Clause (Original_Array_Type (gnat_entity)))))
&& UI_Is_In_Int_Range (Alignment (gnat_entity)))
{
align = UI_To_Int (Alignment (gnat_entity)) * BITS_PER_UNIT;
if (align >= TYPE_ALIGN (gnu_type))
align = 0;
}
/* If the type we are dealing with represents a bit-packed array,
we need to have the bits left justified on big-endian targets
and right justified on little-endian targets. We also need to
ensure that when the value is read (e.g. for comparison of two
such values), we only get the good bits, since the unused bits
are uninitialized. Both goals are accomplished by wrapping up
the modular type in an enclosing record type. */
if (Is_Packed_Array_Impl_Type (gnat_entity))
{
tree gnu_field_type, gnu_field, t;
gcc_assert (Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)));
TYPE_BIT_PACKED_ARRAY_TYPE_P (gnu_type) = 1;
/* Make the original array type a parallel/debug type. */
if (debug_info_p)
{
tree gnu_name
= associate_original_type_to_packed_array (gnu_type,
gnat_entity);
if (gnu_name)
gnu_entity_name = gnu_name;
}
/* Set the RM size before wrapping up the original type. */
SET_TYPE_RM_SIZE (gnu_type,
UI_To_gnu (RM_Size (gnat_entity), bitsizetype));
/* Create a stripped-down declaration, mainly for debugging. */
t = create_type_decl (gnu_entity_name, gnu_type, true, debug_info_p,
gnat_entity);
/* Now save it and build the enclosing record type. */
gnu_field_type = gnu_type;
gnu_type = make_node (RECORD_TYPE);
TYPE_NAME (gnu_type) = create_concat_name (gnat_entity, "JM");
TYPE_PACKED (gnu_type) = 1;
TYPE_SIZE (gnu_type) = TYPE_SIZE (gnu_field_type);
TYPE_SIZE_UNIT (gnu_type) = TYPE_SIZE_UNIT (gnu_field_type);
SET_TYPE_ADA_SIZE (gnu_type, TYPE_RM_SIZE (gnu_field_type));
/* Propagate the alignment of the modular type to the record type,
unless there is an alignment clause that under-aligns the type.
This means that bit-packed arrays are given "ceil" alignment for
their size by default, which may seem counter-intuitive but makes
it possible to overlay them on modular types easily. */
SET_TYPE_ALIGN (gnu_type,
align > 0 ? align : TYPE_ALIGN (gnu_field_type));
/* Propagate the reverse storage order flag to the record type so
that the required byte swapping is performed when retrieving the
enclosed modular value. */
TYPE_REVERSE_STORAGE_ORDER (gnu_type)
= Reverse_Storage_Order (Original_Array_Type (gnat_entity));
relate_alias_sets (gnu_type, gnu_field_type, ALIAS_SET_COPY);
/* Don't declare the field as addressable since we won't be taking
its address and this would prevent create_field_decl from making
a bitfield. */
gnu_field
= create_field_decl (get_identifier ("OBJECT"), gnu_field_type,
gnu_type, NULL_TREE, bitsize_zero_node, 1, 0);
/* We will output additional debug info manually below. */
finish_record_type (gnu_type, gnu_field, 2, false);
TYPE_JUSTIFIED_MODULAR_P (gnu_type) = 1;
/* Make the original array type a parallel/debug type. Note that
gnat_get_array_descr_info needs a TYPE_IMPL_PACKED_ARRAY_P type
so we use an intermediate step for standard DWARF. */
if (debug_info_p)
{
if (gnat_encodings != DWARF_GNAT_ENCODINGS_ALL)
SET_TYPE_DEBUG_TYPE (gnu_type, gnu_field_type);
else if (DECL_PARALLEL_TYPE (t))
add_parallel_type (gnu_type, DECL_PARALLEL_TYPE (t));
}
}
/* If the type we are dealing with has got a smaller alignment than the
natural one, we need to wrap it up in a record type and misalign the
latter; we reuse the padding machinery for this purpose. */
else if (align > 0)
{
tree gnu_size = UI_To_gnu (RM_Size (gnat_entity), bitsizetype);
/* Set the RM size before wrapping the type. */
SET_TYPE_RM_SIZE (gnu_type, gnu_size);
/* Create a stripped-down declaration, mainly for debugging. */
create_type_decl (gnu_entity_name, gnu_type, true, debug_info_p,
gnat_entity);
gnu_type
= maybe_pad_type (gnu_type, TYPE_SIZE (gnu_type), align,
gnat_entity, false, definition, false);
TYPE_PACKED (gnu_type) = 1;
SET_TYPE_ADA_SIZE (gnu_type, gnu_size);
}
break;
case E_Floating_Point_Type:
/* The type of the Low and High bounds can be our type if this is
a type from Standard, so set them at the end of the function. */
gnu_type = make_node (REAL_TYPE);
TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
layout_type (gnu_type);
break;
case E_Floating_Point_Subtype:
gnat_cloned_subtype = Gigi_Cloned_Subtype (gnat_entity);
if (Present (gnat_cloned_subtype))
break;
/* See the E_Signed_Integer_Subtype case for the rationale. */
if (!definition
&& Present (Ancestor_Subtype (gnat_entity))
&& !In_Extended_Main_Code_Unit (Ancestor_Subtype (gnat_entity))
&& (!Compile_Time_Known_Value (Type_Low_Bound (gnat_entity))
|| !Compile_Time_Known_Value (Type_High_Bound (gnat_entity))))
gnat_to_gnu_entity (Ancestor_Subtype (gnat_entity), gnu_expr, false);
gnu_type = make_node (REAL_TYPE);
TREE_TYPE (gnu_type) = get_unpadded_type (Etype (gnat_entity));
TYPE_PRECISION (gnu_type) = fp_size_to_prec (esize);
TYPE_GCC_MIN_VALUE (gnu_type)
= TYPE_GCC_MIN_VALUE (TREE_TYPE (gnu_type));
TYPE_GCC_MAX_VALUE (gnu_type)
= TYPE_GCC_MAX_VALUE (TREE_TYPE (gnu_type));
layout_type (gnu_type);
SET_TYPE_RM_MIN_VALUE
(gnu_type, elaborate_expression (Type_Low_Bound (gnat_entity),
gnat_entity, "L", definition, true,
debug_info_p));
SET_TYPE_RM_MAX_VALUE
(gnu_type, elaborate_expression (Type_High_Bound (gnat_entity),
gnat_entity, "U", definition, true,
debug_info_p));
/* Inherit our alias set from what we're a subtype of, as for
integer subtypes. */
relate_alias_sets (gnu_type, TREE_TYPE (gnu_type), ALIAS_SET_COPY);
/* One of the above calls might have caused us to be elaborated,
so don't blow up if so. */
maybe_present = true;
break;
/* Array Types and Subtypes
In GNAT unconstrained array types are represented by E_Array_Type and
constrained array types are represented by E_Array_Subtype. They are
translated into UNCONSTRAINED_ARRAY_TYPE and ARRAY_TYPE respectively.
But there are no actual objects of an unconstrained array type; all we
have are pointers to that type. In addition to the type node itself,
4 other types associated with it are built in the process:
1. the array type (suffix XUA) containing the actual data,
2. the template type (suffix XUB) containng the bounds,
3. the fat pointer type (suffix XUP) representing a pointer or a
reference to the unconstrained array type:
XUP = struct { XUA *, XUB * }
4. the object record type (suffix XUT) containing bounds and data:
XUT = struct { XUB, XUA }
The bounds of the array type XUA (de)reference the XUB * field of a
PLACEHOLDER_EXPR for the fat pointer type XUP, so the array type XUA
is to be interpreted in the context of the fat pointer type XUB for
debug info purposes. */
case E_Array_Type:
{
const Entity_Id PAT = Packed_Array_Impl_Type (gnat_entity);
const bool convention_fortran_p
= (Convention (gnat_entity) == Convention_Fortran);
const int ndim = Number_Dimensions (gnat_entity);
tree gnu_fat_type, gnu_template_type, gnu_ptr_template;
tree gnu_template_reference, gnu_template_fields;
tree *gnu_index_types = XALLOCAVEC (tree, ndim);
tree *gnu_temp_fields = XALLOCAVEC (tree, ndim);
tree gnu_max_size = size_one_node;
tree comp_type, fld, tem, obj;
Entity_Id gnat_index;
alias_set_type ptr_set = -1;
int index;
/* Create the type for the component now, as it simplifies breaking
type reference loops. */
comp_type
= gnat_to_gnu_component_type (gnat_entity, definition, debug_info_p);
if (present_gnu_tree (gnat_entity))
{
/* As a side effect, the type may have been translated. */
maybe_present = true;
break;
}
/* We complete an existing dummy fat pointer type in place. This both
avoids further complex adjustments in update_pointer_to and yields
better debugging information in DWARF by leveraging the support for
incomplete declarations of "tagged" types in the DWARF back-end. */
gnu_type = get_dummy_type (gnat_entity);
if (gnu_type && TYPE_POINTER_TO (gnu_type))
{
gnu_fat_type = TYPE_MAIN_VARIANT (TYPE_POINTER_TO (gnu_type));
TYPE_NAME (gnu_fat_type) = NULL_TREE;
gnu_ptr_template =
TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (gnu_fat_type)));
gnu_template_type = TREE_TYPE (gnu_ptr_template);
/* Save the contents of the dummy type for update_pointer_to. */
TYPE_POINTER_TO (gnu_type) = copy_type (gnu_fat_type);
TYPE_FIELDS (TYPE_POINTER_TO (gnu_type))
= copy_node (TYPE_FIELDS (gnu_fat_type));
DECL_CHAIN (TYPE_FIELDS (TYPE_POINTER_TO (gnu_type)))
= copy_node (DECL_CHAIN (TYPE_FIELDS (gnu_fat_type)));
}
else
{
gnu_fat_type = make_node (RECORD_TYPE);
gnu_template_type = make_node (RECORD_TYPE);
gnu_ptr_template = build_pointer_type (gnu_template_type);
}
/* Make a node for the array. If we are not defining the array
suppress expanding incomplete types. */
gnu_type = make_node (UNCONSTRAINED_ARRAY_TYPE);
/* The component may refer to this type, so defer completion of any
incomplete types. */
if (!definition)
{
defer_incomplete_level++;
this_deferred = true;
}
/* Build the fat pointer type. Use a "void *" object instead of
a pointer to the array type since we don't have the array type
yet (it will reference the fat pointer via the bounds). Note
that we reuse the existing fields of a dummy type because for:
type Arr is array (Positive range <>) of Element_Type;
type Array_Ref is access Arr;
Var : Array_Ref := Null;
in a declarative part, Arr will be frozen only after Var, which
means that the fields used in the CONSTRUCTOR built for Null are
those of the dummy type, which in turn means that COMPONENT_REFs
of Var may be built with these fields. Now if COMPONENT_REFs of
Var are also built later with the fields of the final type, the
aliasing machinery may consider that the accesses are distinct
if the FIELD_DECLs are distinct as objects. */
if (COMPLETE_TYPE_P (gnu_fat_type))
{
fld = TYPE_FIELDS (gnu_fat_type);
if (TYPE_ALIAS_SET_KNOWN_P (TYPE_CANONICAL (TREE_TYPE (fld))))
ptr_set = TYPE_ALIAS_SET (TYPE_CANONICAL (TREE_TYPE (fld)));
TREE_TYPE (fld) = ptr_type_node;
TREE_TYPE (DECL_CHAIN (fld)) = gnu_ptr_template;
TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (gnu_fat_type)) = 0;
for (tree t = gnu_fat_type; t; t = TYPE_NEXT_VARIANT (t))
SET_TYPE_UNCONSTRAINED_ARRAY (t, gnu_type);
}
else
{
/* We make the fields addressable for the sake of compatibility
with languages for which the regular fields are addressable. */
fld
= create_field_decl (get_identifier ("P_ARRAY"),
ptr_type_node, gnu_fat_type,
NULL_TREE, NULL_TREE, 0, 1);
DECL_CHAIN (fld)
= create_field_decl (get_identifier ("P_BOUNDS"),
gnu_ptr_template, gnu_fat_type,
NULL_TREE, NULL_TREE, 0, 1);
finish_fat_pointer_type (gnu_fat_type, fld);
SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_type);
}
/* If the GNAT encodings are used, give the fat pointer type a name.
If this is a packed type implemented specially, tell the debugger
how to interpret the underlying bits by fetching the name of the
implementation type. But, in any case, mark it as artificial so
the debugger can skip it. */
const Entity_Id gnat_name
= Present (PAT) && gnat_encodings == DWARF_GNAT_ENCODINGS_ALL
? PAT
: gnat_entity;
tree xup_name
= gnat_encodings == DWARF_GNAT_ENCODINGS_ALL
? create_concat_name (gnat_name, "XUP")
: gnu_entity_name;
create_type_decl (xup_name, gnu_fat_type, true, debug_info_p,
gnat_entity);
/* Build a reference to the template from a PLACEHOLDER_EXPR that
is the fat pointer. This will be used to access the individual
fields once we build them. */
tem = build3 (COMPONENT_REF, gnu_ptr_template,
build0 (PLACEHOLDER_EXPR, gnu_fat_type),
DECL_CHAIN (fld), NULL_TREE);
gnu_template_reference
= build_unary_op (INDIRECT_REF, gnu_template_type, tem);
TREE_READONLY (gnu_template_reference) = 1;
TREE_THIS_NOTRAP (gnu_template_reference) = 1;
/* Now create the GCC type for each index and add the fields for that
index to the template. */
for (index = (convention_fortran_p ? ndim - 1 : 0),
gnat_index = First_Index (gnat_entity);
IN_RANGE (index, 0, ndim - 1);
index += (convention_fortran_p ? - 1 : 1),
gnat_index = Next_Index (gnat_index))
{
const Entity_Id gnat_index_type = Etype (gnat_index);
const bool is_flb
= Is_Fixed_Lower_Bound_Index_Subtype (gnat_index_type);
tree gnu_index_type = get_unpadded_type (gnat_index_type);
tree gnu_orig_min = TYPE_MIN_VALUE (gnu_index_type);
tree gnu_orig_max = TYPE_MAX_VALUE (gnu_index_type);
tree gnu_index_base_type = get_base_type (gnu_index_type);
tree gnu_lb_field, gnu_hb_field;
tree gnu_min, gnu_max, gnu_high;
char field_name[16];
/* Update the maximum size of the array in elements. */
if (gnu_max_size)
gnu_max_size
= update_n_elem (gnu_max_size, gnu_orig_min, gnu_orig_max);
/* Now build the self-referential bounds of the index type. */
gnu_index_type = maybe_character_type (gnu_index_type);
gnu_index_base_type = maybe_character_type (gnu_index_base_type);
/* Make the FIELD_DECLs for the low and high bounds of this
type and then make extractions of these fields from the
template. */
sprintf (field_name, "LB%d", index);
gnu_lb_field = create_field_decl (get_identifier (field_name),
gnu_index_type,
gnu_template_type, NULL_TREE,
NULL_TREE, 0, 0);
/* Mark the field specifically for INSTANTIATE_LOAD_IN_EXPR. */
DECL_DISCRIMINANT_NUMBER (gnu_lb_field) = integer_minus_one_node;
Sloc_to_locus (Sloc (gnat_entity),
&DECL_SOURCE_LOCATION (gnu_lb_field));
field_name[0] = 'U';
gnu_hb_field = create_field_decl (get_identifier (field_name),
gnu_index_type,
gnu_template_type, NULL_TREE,
NULL_TREE, 0, 0);
/* Mark the field specifically for INSTANTIATE_LOAD_IN_EXPR. */
DECL_DISCRIMINANT_NUMBER (gnu_hb_field) = integer_minus_one_node;
Sloc_to_locus (Sloc (gnat_entity),
&DECL_SOURCE_LOCATION (gnu_hb_field));
gnu_temp_fields[index] = chainon (gnu_lb_field, gnu_hb_field);
/* We can't use build_component_ref here since the template type
isn't complete yet. */
if (!is_flb)
{
gnu_orig_min = build3 (COMPONENT_REF, TREE_TYPE (gnu_lb_field),
gnu_template_reference, gnu_lb_field,
NULL_TREE);
TREE_READONLY (gnu_orig_min) = 1;
}
gnu_orig_max = build3 (COMPONENT_REF, TREE_TYPE (gnu_hb_field),
gnu_template_reference, gnu_hb_field,
NULL_TREE);
TREE_READONLY (gnu_orig_max) = 1;
gnu_min = convert (sizetype, gnu_orig_min);
gnu_max = convert (sizetype, gnu_orig_max);
/* Compute the size of this dimension. See the E_Array_Subtype
case below for the rationale. */
if (is_flb
&& Nkind (gnat_index) == N_Subtype_Indication
&& flb_cannot_be_superflat (gnat_index))
gnu_high = gnu_max;
else
gnu_high
= build3 (COND_EXPR, sizetype,
build2 (GE_EXPR, boolean_type_node,
gnu_orig_max, gnu_orig_min),
gnu_max,
TREE_CODE (gnu_min) == INTEGER_CST
? int_const_binop (MINUS_EXPR, gnu_min, size_one_node)
: size_binop (MINUS_EXPR, gnu_min, size_one_node));
/* Make a range type with the new range in the Ada base type.
Then make an index type with the size range in sizetype. */
gnu_index_types[index]
= create_index_type (gnu_min, gnu_high,
create_range_type (gnu_index_base_type,
gnu_orig_min,
gnu_orig_max),
gnat_entity);
TYPE_NAME (gnu_index_types[index])
= create_concat_name (gnat_entity, field_name);
}
/* Install all the fields into the template. */
TYPE_NAME (gnu_template_type)
= create_concat_name (gnat_entity, "XUB");
gnu_template_fields = NULL_TREE;
for (index = 0; index < ndim; index++)
gnu_template_fields
= chainon (gnu_template_fields, gnu_temp_fields[index]);
finish_record_type (gnu_template_type, gnu_template_fields, 0,
debug_info_p);
TYPE_CONTEXT (gnu_template_type) = current_function_decl;
/* If Component_Size is not already specified, annotate it with the
size of the component. */
if (!Known_Component_Size (gnat_entity))
Set_Component_Size (gnat_entity,
annotate_value (TYPE_SIZE (comp_type)));
/* Compute the maximum size of the array in units. */
if (gnu_max_size)
gnu_max_size
= size_binop (MULT_EXPR, gnu_max_size, TYPE_SIZE_UNIT (comp_type));
/* Now build the array type. */
tem = comp_type;
for (index = ndim - 1; index >= 0; index--)
{
tem = build_nonshared_array_type (tem, gnu_index_types[index]);
TYPE_MULTI_ARRAY_P (tem) = (index > 0);
TYPE_CONVENTION_FORTRAN_P (tem) = convention_fortran_p;
if (index == ndim - 1 && Reverse_Storage_Order (gnat_entity))
set_reverse_storage_order_on_array_type (tem);
if (array_type_has_nonaliased_component (tem, gnat_entity))
set_nonaliased_component_on_array_type (tem);
}
/* If this is a packed type implemented specially, then process the
implementation type so it is elaborated in the proper scope. */
if (Present (PAT))
gnat_to_gnu_entity (PAT, NULL_TREE, false);
/* Otherwise, if an alignment is specified, use it if valid and, if
the alignment was requested with an explicit clause, state so. */
else if (Known_Alignment (gnat_entity))
{
SET_TYPE_ALIGN (tem,
validate_alignment (Alignment (gnat_entity),
gnat_entity,
TYPE_ALIGN (tem)));
if (Present (Alignment_Clause (gnat_entity)))
TYPE_USER_ALIGN (tem) = 1;
}
/* Tag top-level ARRAY_TYPE nodes for packed arrays and their
implementation types as such so that the debug information back-end
can output the appropriate description for them. */
TYPE_PACKED (tem)
= (Is_Packed (gnat_entity)
|| Is_Packed_Array_Impl_Type (gnat_entity));
TYPE_BIT_PACKED_ARRAY_TYPE_P (tem)
= (Is_Packed_Array_Impl_Type (gnat_entity)
? Is_Bit_Packed_Array (Original_Array_Type (gnat_entity))
: Is_Bit_Packed_Array (gnat_entity));
if (Treat_As_Volatile (gnat_entity))
tem = change_qualified_type (tem, TYPE_QUAL_VOLATILE);
/* Adjust the type of the pointer-to-array field of the fat pointer
and preserve its existing alias set, if any. Note that calling
again record_component_aliases on the fat pointer is not enough
because this may leave dangling references to the existing alias
set from types containing a fat pointer component. If this is
a packed type implemented specially, then use a ref-all pointer
type since the implementation type may vary between constrained
subtypes and unconstrained base type. */
if (Present (PAT))
TREE_TYPE (fld) = build_pointer_type_for_mode (tem, ptr_mode, true);
else
TREE_TYPE (fld) = build_pointer_type (tem);
if (ptr_set != -1)
TYPE_ALIAS_SET (TYPE_CANONICAL (TREE_TYPE (fld))) = ptr_set;
/* If the maximum size doesn't overflow, use it. */
if (gnu_max_size
&& TREE_CODE (gnu_max_size) == INTEGER_CST
&& !TREE_OVERFLOW (gnu_max_size)
&& compare_tree_int (gnu_max_size, TYPE_ARRAY_SIZE_LIMIT) <= 0)
TYPE_ARRAY_MAX_SIZE (tem) = gnu_max_size;
/* See the above description for the rationale. */
create_type_decl (create_concat_name (gnat_entity, "XUA"), tem,
artificial_p, debug_info_p, gnat_entity);
TYPE_CONTEXT (tem) = gnu_fat_type;
TYPE_CONTEXT (TYPE_POINTER_TO (tem)) = gnu_fat_type;
/* Create the type to be designated by thin pointers: a record type for
the array and its template. We used to shift the fields to have the
template at a negative offset, but this was somewhat of a kludge; we
now shift thin pointer values explicitly but only those which have a
TYPE_UNCONSTRAINED_ARRAY attached to the designated RECORD_TYPE.
If the GNAT encodings are used, give it a name. */
tree xut_name
= (gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
? create_concat_name (gnat_name, "XUT")
: gnu_entity_name;
obj = build_unc_object_type (gnu_template_type, tem, xut_name,
debug_info_p);
SET_TYPE_UNCONSTRAINED_ARRAY (obj, gnu_type);
TYPE_OBJECT_RECORD_TYPE (gnu_type) = obj;
/* The result type is an UNCONSTRAINED_ARRAY_TYPE that indicates the
corresponding fat pointer. */
TREE_TYPE (gnu_type) = gnu_fat_type;
TYPE_POINTER_TO (gnu_type) = gnu_fat_type;
TYPE_REFERENCE_TO (gnu_type) = gnu_fat_type;
SET_TYPE_MODE (gnu_type, BLKmode);
SET_TYPE_ALIGN (gnu_type, TYPE_ALIGN (tem));
}
break;
case E_Array_Subtype:
gnat_cloned_subtype = Gigi_Cloned_Subtype (gnat_entity);
if (Present (gnat_cloned_subtype))
break;
/* This is the actual data type for array variables. Multidimensional
arrays are implemented as arrays of arrays. Note that arrays which
have sparse enumeration subtypes as index components create sparse
arrays, which is obviously space inefficient but so much easier to
code for now.
Also note that the subtype never refers to the unconstrained array
type, which is somewhat at variance with Ada semantics.
First check to see if this is simply a renaming of the array type.
If so, the result is the array type. */
gnu_type = TYPE_MAIN_VARIANT (gnat_to_gnu_type (Etype (gnat_entity)));
if (!Is_Constrained (gnat_entity))
;
else
{
const Entity_Id PAT = Packed_Array_Impl_Type (gnat_entity);
Entity_Id gnat_index, gnat_base_index;
const bool convention_fortran_p
= (Convention (gnat_entity) == Convention_Fortran);
const int ndim = Number_Dimensions (gnat_entity);
tree gnu_base_type = gnu_type;
tree *gnu_index_types = XALLOCAVEC (tree, ndim);
bool *gnu_null_ranges = XALLOCAVEC (bool, ndim);
tree gnu_max_size = size_one_node;
bool need_index_type_struct = false;
int index;
/* First create the GCC type for each index and find out whether
special types are needed for debugging information. */
for (index = (convention_fortran_p ? ndim - 1 : 0),
gnat_index = First_Index (gnat_entity),
gnat_base_index
= First_Index (Implementation_Base_Type (gnat_entity));
IN_RANGE (index, 0, ndim - 1);
index += (convention_fortran_p ? - 1 : 1),
gnat_index = Next_Index (gnat_index),
gnat_base_index = Next_Index (gnat_base_index))
{
const Entity_Id gnat_index_type = Etype (gnat_index);
tree gnu_index_type = get_unpadded_type (gnat_index_type);
tree gnu_orig_min = TYPE_MIN_VALUE (gnu_index_type);
tree gnu_orig_max = TYPE_MAX_VALUE (gnu_index_type);
tree gnu_index_base_type = get_base_type (gnu_index_type);
tree gnu_base_index_type
= get_unpadded_type (Etype (gnat_base_index));
tree gnu_base_orig_min = TYPE_MIN_VALUE (gnu_base_index_type);
tree gnu_base_orig_max = TYPE_MAX_VALUE (gnu_base_index_type);
tree gnu_min, gnu_max, gnu_high;
/* We try to create subtypes for discriminants used as bounds
that are more restrictive than those declared, by using the
bounds of the index type of the base array type. This will
make it possible to calculate the maximum size of the record
type more conservatively. This may have already been done by
the front-end (Exp_Ch3.Adjust_Discriminants), in which case
there will be a conversion that needs to be removed first. */
if (CONTAINS_PLACEHOLDER_P (gnu_orig_min)
&& TYPE_RM_SIZE (gnu_base_index_type)
&& tree_int_cst_lt (TYPE_RM_SIZE (gnu_base_index_type),
TYPE_RM_SIZE (gnu_index_type)))
{
gnu_orig_min = remove_conversions (gnu_orig_min, false);
TREE_TYPE (gnu_orig_min)
= create_extra_subtype (TREE_TYPE (gnu_orig_min),
gnu_base_orig_min,
gnu_base_orig_max);
}
if (CONTAINS_PLACEHOLDER_P (gnu_orig_max)
&& TYPE_RM_SIZE (gnu_base_index_type)
&& tree_int_cst_lt (TYPE_RM_SIZE (gnu_base_index_type),
TYPE_RM_SIZE (gnu_index_type)))
{
gnu_orig_max = remove_conversions (gnu_orig_max, false);
TREE_TYPE (gnu_orig_max)
= create_extra_subtype (TREE_TYPE (gnu_orig_max),
gnu_base_orig_min,
gnu_base_orig_max);
}
/* Update the maximum size of the array in elements. Here we
see if any constraint on the index type of the base type
can be used in the case of self-referential bounds on the
index type of the array type. We look for a non-"infinite"
and non-self-referential bound from any type involved and
handle each bound separately. */
if (gnu_max_size)
{
if (CONTAINS_PLACEHOLDER_P (gnu_orig_min))
gnu_min = gnu_base_orig_min;
else
gnu_min = gnu_orig_min;
if (DECL_P (gnu_min)
&& DECL_INITIAL (gnu_min) != NULL_TREE
&& (TREE_CODE (gnu_min) != INTEGER_CST
|| TREE_OVERFLOW (gnu_min)))
{
tree tmp = max_value (DECL_INITIAL(gnu_min), false);
if (TREE_CODE (tmp) == INTEGER_CST
&& !TREE_OVERFLOW (tmp))
gnu_min = tmp;
}
if (TREE_CODE (gnu_min) != INTEGER_CST
|| TREE_OVERFLOW (gnu_min))
gnu_min = TYPE_MIN_VALUE (TREE_TYPE (gnu_min));
if (CONTAINS_PLACEHOLDER_P (gnu_orig_max))
gnu_max = gnu_base_orig_max;
else
gnu_max = gnu_orig_max;
if (DECL_P (gnu_max)
&& DECL_INITIAL (gnu_max) != NULL_TREE
&& (TREE_CODE (gnu_max) != INTEGER_CST
|| TREE_OVERFLOW (gnu_max)))
{
tree tmp = max_value (DECL_INITIAL(gnu_max), true);
if (TREE_CODE (tmp) == INTEGER_CST
&& !TREE_OVERFLOW (tmp))
gnu_max = tmp;
}
if (TREE_CODE (gnu_max) != INTEGER_CST
|| TREE_OVERFLOW (gnu_max))
gnu_max = TYPE_MAX_VALUE (TREE_TYPE (gnu_max));
gnu_max_size
= update_n_elem (gnu_max_size, gnu_min, gnu_max);
}
/* Convert the bounds to the base type for consistency below. */
gnu_index_base_type = maybe_character_type (gnu_index_base_type);
gnu_orig_min = convert (gnu_index_base_type, gnu_orig_min);
gnu_orig_max = convert (gnu_index_base_type, gnu_orig_max);
gnu_min = convert (sizetype, gnu_orig_min);
gnu_max = convert (sizetype, gnu_orig_max);
/* See if the base array type is already flat. If it is, we
are probably compiling an ACATS test but it will cause the
code below to malfunction if we don't handle it specially. */
if (TREE_CODE (gnu_base_orig_min) == INTEGER_CST
&& TREE_CODE (gnu_base_orig_max) == INTEGER_CST
&& tree_int_cst_lt (gnu_base_orig_max, gnu_base_orig_min))
{
gnu_min = size_one_node;
gnu_max = size_zero_node;
gnu_high = gnu_max;
}
/* Similarly, if one of the values overflows in sizetype and the
range is null, use 1..0 for the sizetype bounds. */
else if (TREE_CODE (gnu_min) == INTEGER_CST
&& TREE_CODE (gnu_max) == INTEGER_CST
&& (TREE_OVERFLOW (gnu_min) || TREE_OVERFLOW (gnu_max))
&& tree_int_cst_lt (gnu_orig_max, gnu_orig_min))
{
gnu_min = size_one_node;
gnu_max = size_zero_node;
gnu_high = gnu_max;
}
/* If the minimum and maximum values both overflow in sizetype,
but the difference in the original type does not overflow in
sizetype, ignore the overflow indication. */
else if (TREE_CODE (gnu_min) == INTEGER_CST
&& TREE_CODE (gnu_max) == INTEGER_CST
&& TREE_OVERFLOW (gnu_min) && TREE_OVERFLOW (gnu_max)
&& !TREE_OVERFLOW
(convert (sizetype,
fold_build2 (MINUS_EXPR,
gnu_index_base_type,
gnu_orig_max,
gnu_orig_min))))
{
TREE_OVERFLOW (gnu_min) = 0;
TREE_OVERFLOW (gnu_max) = 0;
gnu_high = gnu_max;
}
/* Compute the size of this dimension in the general case. We
need to provide GCC with an upper bound to use but have to
deal with the "superflat" case. There are three ways to do
this. If we can prove that the array can never be superflat,
we can just use the high bound of the index type. */
else if ((Nkind (gnat_index) == N_Range
&& range_cannot_be_superflat (gnat_index))
/* Bit-Packed Array Impl. Types are never superflat. */
|| (Is_Packed_Array_Impl_Type (gnat_entity)
&& Is_Bit_Packed_Array
(Original_Array_Type (gnat_entity))))
gnu_high = gnu_max;
/* Otherwise, if the high bound is constant but the low bound is
not, we use the expression (hb >= lb) ? lb : hb + 1 for the
lower bound. Note that the comparison must be done in the
original type to avoid any overflow during the conversion. */
else if (TREE_CODE (gnu_max) == INTEGER_CST
&& TREE_CODE (gnu_min) != INTEGER_CST)
{
gnu_high = gnu_max;
gnu_min
= build_cond_expr (sizetype,
build_binary_op (GE_EXPR,
boolean_type_node,
gnu_orig_max,
gnu_orig_min),
gnu_min,
int_const_binop (PLUS_EXPR, gnu_max,
size_one_node));
}
/* Finally we use (hb >= lb) ? hb : lb - 1 for the upper bound
in all the other cases. Note that we use int_const_binop for
the shift by 1 if the bound is constant to avoid any unwanted
overflow. */
else
gnu_high
= build_cond_expr (sizetype,
build_binary_op (GE_EXPR,
boolean_type_node,
gnu_orig_max,
gnu_orig_min),
gnu_max,
TREE_CODE (gnu_min) == INTEGER_CST
? int_const_binop (MINUS_EXPR, gnu_min,
size_one_node)
: size_binop (MINUS_EXPR, gnu_min,
size_one_node));
/* Reuse the index type for the range type. Then make an index
type with the size range in sizetype. */
gnu_index_types[index]
= create_index_type (gnu_min, gnu_high, gnu_index_type,
gnat_entity);
/* Record whether the range is known to be null at compile time
to disambiguate it from too large ranges. */
const Entity_Id gnat_ui_type = Underlying_Type (gnat_index_type);
gnu_null_ranges[index]
= Is_Null_Range (Type_Low_Bound (gnat_ui_type),
Type_High_Bound (gnat_ui_type));
/* We need special types for debugging information to point to
the index types if they have variable bounds, are not integer
types, are biased or are wider than sizetype. These are GNAT
encodings, so we have to include them only when all encodings
are requested. */
if ((TREE_CODE (gnu_orig_min) != INTEGER_CST
|| TREE_CODE (gnu_orig_max) != INTEGER_CST
|| TREE_CODE (gnu_index_type) != INTEGER_TYPE
|| (TREE_TYPE (gnu_index_type)
&& TREE_CODE (TREE_TYPE (gnu_index_type))
!= INTEGER_TYPE)
|| TYPE_BIASED_REPRESENTATION_P (gnu_index_type))
&& gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
need_index_type_struct = true;
}
/* Then flatten: create the array of arrays. For an array type
used to implement a packed array, get the component type from
the original array type since the representation clauses that
can affect it are on the latter. */
if (Is_Packed_Array_Impl_Type (gnat_entity)
&& !Is_Bit_Packed_Array (Original_Array_Type (gnat_entity)))
{
gnu_type = gnat_to_gnu_type (Original_Array_Type (gnat_entity));
for (index = ndim - 1; index >= 0; index--)
gnu_type = TREE_TYPE (gnu_type);
/* One of the above calls might have caused us to be elaborated,
so don't blow up if so. */
if (present_gnu_tree (gnat_entity))
{
maybe_present = true;
break;
}
}
else
{
gnu_type = gnat_to_gnu_component_type (gnat_entity, definition,
debug_info_p);
/* One of the above calls might have caused us to be elaborated,
so don't blow up if so. */
if (present_gnu_tree (gnat_entity))
{
maybe_present = true;
break;
}
}
/* Compute the maximum size of the array in units. */
if (gnu_max_size)
gnu_max_size
= size_binop (MULT_EXPR, gnu_max_size, TYPE_SIZE_UNIT (gnu_type));
/* Now build the array type. */
for (index = ndim - 1; index >= 0; index --)
{
gnu_type = build_nonshared_array_type (gnu_type,
gnu_index_types[index]);
TYPE_MULTI_ARRAY_P (gnu_type) = (index > 0);
TYPE_CONVENTION_FORTRAN_P (gnu_type) = convention_fortran_p;
if (index == ndim - 1 && Reverse_Storage_Order (gnat_entity))
set_reverse_storage_order_on_array_type (gnu_type);
if (array_type_has_nonaliased_component (gnu_type, gnat_entity))
set_nonaliased_component_on_array_type (gnu_type);
/* Clear the TREE_OVERFLOW flag, if any, for null arrays. */
if (gnu_null_ranges[index])
{
TYPE_SIZE (gnu_type) = bitsize_zero_node;
TYPE_SIZE_UNIT (gnu_type) = size_zero_node;
}
/* Kludge to clear the TREE_OVERFLOW flag for the sake of LTO
on maximally-sized array types designed by access types. */
if (integer_zerop (TYPE_SIZE (gnu_type))
&& TREE_OVERFLOW (TYPE_SIZE (gnu_type))
&& Is_Itype (gnat_entity)
&& (gnat_temp = Associated_Node_For_Itype (gnat_entity))
&& IN (Nkind (gnat_temp), N_Declaration)
&& Is_Access_Type (Defining_Entity (gnat_temp))
&& Is_Entity_Name (First_Index (gnat_entity))
&& UI_To_Int (RM_Size (Entity (First_Index (gnat_entity))))
== BITS_PER_WORD)
{
TYPE_SIZE (gnu_type) = bitsize_zero_node;
TYPE_SIZE_UNIT (gnu_type) = size_zero_node;
}
}
/* Attach the TYPE_STUB_DECL in case we have a parallel type. */
TYPE_STUB_DECL (gnu_type)
= create_type_stub_decl (gnu_entity_name, gnu_type);
/* If this is a multi-dimensional array and we are at global level,
we need to make a variable corresponding to the stride of the
inner dimensions. */
if (ndim > 1 && global_bindings_p ())
{
tree gnu_arr_type;
for (gnu_arr_type = TREE_TYPE (gnu_type), index = 1;
TREE_CODE (gnu_arr_type) == ARRAY_TYPE;
gnu_arr_type = TREE_TYPE (gnu_arr_type), index++)
{
tree eltype = TREE_TYPE (gnu_arr_type);
char stride_name[32];
sprintf (stride_name, "ST%d", index);
TYPE_SIZE (gnu_arr_type)
= elaborate_expression_1 (TYPE_SIZE (gnu_arr_type),
gnat_entity, stride_name,
definition, false);
/* ??? For now, store the size as a multiple of the
alignment of the element type in bytes so that we
can see the alignment from the tree. */
sprintf (stride_name, "ST%d_A_UNIT", index);
TYPE_SIZE_UNIT (gnu_arr_type)
= elaborate_expression_2 (TYPE_SIZE_UNIT (gnu_arr_type),
gnat_entity, stride_name,
definition, false,
TYPE_ALIGN (eltype));
/* ??? create_type_decl is not invoked on the inner types so
the MULT_EXPR node built above will never be marked. */
MARK_VISITED (TYPE_SIZE_UNIT (gnu_arr_type));
}
}
/* Set the TYPE_PACKED flag on packed array types and also on their
implementation types, so that the DWARF back-end can output the
appropriate description for them. */
TYPE_PACKED (gnu_type)
= (Is_Packed (gnat_entity)
|| Is_Packed_Array_Impl_Type (gnat_entity));
TYPE_BIT_PACKED_ARRAY_TYPE_P (gnu_type)
= (Is_Packed_Array_Impl_Type (gnat_entity)
? Is_Bit_Packed_Array (Original_Array_Type (gnat_entity))
: Is_Bit_Packed_Array (gnat_entity));
/* If the maximum size doesn't overflow, use it. */
if (gnu_max_size
&& TREE_CODE (gnu_max_size) == INTEGER_CST
&& !TREE_OVERFLOW (gnu_max_size)
&& compare_tree_int (gnu_max_size, TYPE_ARRAY_SIZE_LIMIT) <= 0)
TYPE_ARRAY_MAX_SIZE (gnu_type) = gnu_max_size;
/* If we need to write out a record type giving the names of the
bounds for debugging purposes, do it now and make the record
type a parallel type. This is not needed for a packed array
since the bounds are conveyed by the original array type. */
if (need_index_type_struct
&& debug_info_p
&& !Is_Packed_Array_Impl_Type (gnat_entity))
{
tree gnu_bound_rec = make_node (RECORD_TYPE);
tree gnu_field_list = NULL_TREE;
tree gnu_field;
TYPE_NAME (gnu_bound_rec)
= create_concat_name (gnat_entity, "XA");
for (index = ndim - 1; index >= 0; index--)
{
tree gnu_index = TYPE_INDEX_TYPE (gnu_index_types[index]);
tree gnu_index_name = TYPE_IDENTIFIER (gnu_index);
/* Make sure to reference the types themselves, and not just
their names, as the debugger may fall back on them. */
gnu_field = create_field_decl (gnu_index_name, gnu_index,
gnu_bound_rec, NULL_TREE,
NULL_TREE, 0, 0);
DECL_CHAIN (gnu_field) = gnu_field_list;
gnu_field_list = gnu_field;
}
finish_record_type (gnu_bound_rec, gnu_field_list, 0, true);
add_parallel_type (gnu_type, gnu_bound_rec);
}
/* If this is a packed array type, make the original array type a
parallel/debug type. Otherwise, if GNAT encodings are used, do
it for the base array type if it is not artificial to make sure
that it is kept in the debug info. */
if (debug_info_p)
{
if (Is_Packed_Array_Impl_Type (gnat_entity))
{
tree gnu_name
= associate_original_type_to_packed_array (gnu_type,
gnat_entity);
if (gnu_name)
gnu_entity_name = gnu_name;
}
else if (gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
{
tree gnu_base_decl
= gnat_to_gnu_entity (Etype (gnat_entity), NULL_TREE,
false);
if (!DECL_ARTIFICIAL (gnu_base_decl))
add_parallel_type (gnu_type,
TREE_TYPE (TREE_TYPE (gnu_base_decl)));
}
}
/* Set our alias set to that of our base type. This gives all
array subtypes the same alias set. */
relate_alias_sets (gnu_type, gnu_base_type, ALIAS_SET_COPY);
/* If this is a packed type implemented specially, then replace our
type with the implementation type. */
if (Present (PAT))
{
/* First finish the type we had been making so that we output
debugging information for it. */
process_attributes (&gnu_type, &attr_list, false, gnat_entity);
if (Treat_As_Volatile (gnat_entity))
{
const int quals
= TYPE_QUAL_VOLATILE
| (Is_Full_Access (gnat_entity) ? TYPE_QUAL_ATOMIC : 0);
gnu_type = change_qualified_type (gnu_type, quals);
}
/* Make it artificial only if the base type was artificial too.
That's sort of "morally" true and will make it possible for
the debugger to look it up by name in DWARF, which is needed
in order to decode the packed array type. */
tree gnu_tmp_decl
= create_type_decl (gnu_entity_name, gnu_type,
!Comes_From_Source (Etype (gnat_entity))
&& artificial_p, debug_info_p,
gnat_entity);
/* Save it as our equivalent in case the call below elaborates
this type again. */
save_gnu_tree (gnat_entity, gnu_tmp_decl, false);
gnu_type = gnat_to_gnu_type (PAT);
save_gnu_tree (gnat_entity, NULL_TREE, false);
/* Set the ___XP suffix for GNAT encodings. */
if (gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
gnu_entity_name = DECL_NAME (TYPE_NAME (gnu_type));
tree gnu_inner = gnu_type;
while (TREE_CODE (gnu_inner) == RECORD_TYPE
&& (TYPE_JUSTIFIED_MODULAR_P (gnu_inner)
|| TYPE_PADDING_P (gnu_inner)))
gnu_inner = TREE_TYPE (TYPE_FIELDS (gnu_inner));
/* We need to attach the index type to the type we just made so
that the actual bounds can later be put into a template. */
if ((TREE_CODE (gnu_inner) == ARRAY_TYPE
&& !TYPE_ACTUAL_BOUNDS (gnu_inner))
|| (TREE_CODE (gnu_inner) == INTEGER_TYPE
&& !TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner)))
{
if (TREE_CODE (gnu_inner) == INTEGER_TYPE)
{
/* The TYPE_ACTUAL_BOUNDS field is overloaded with the
TYPE_MODULUS for modular types so we make an extra
subtype if necessary. */
if (TYPE_MODULAR_P (gnu_inner))
gnu_inner
= create_extra_subtype (gnu_inner,
TYPE_MIN_VALUE (gnu_inner),
TYPE_MAX_VALUE (gnu_inner));
TYPE_HAS_ACTUAL_BOUNDS_P (gnu_inner) = 1;
/* Check for other cases of overloading. */
gcc_checking_assert (!TYPE_ACTUAL_BOUNDS (gnu_inner));
}
for (Entity_Id gnat_index = First_Index (gnat_entity);
Present (gnat_index);
gnat_index = Next_Index (gnat_index))
SET_TYPE_ACTUAL_BOUNDS
(gnu_inner,
tree_cons (NULL_TREE,
get_unpadded_type (Etype (gnat_index)),
TYPE_ACTUAL_BOUNDS (gnu_inner)));
if (Convention (gnat_entity) != Convention_Fortran)
SET_TYPE_ACTUAL_BOUNDS
(gnu_inner, nreverse (TYPE_ACTUAL_BOUNDS (gnu_inner)));
if (TREE_CODE (gnu_type) == RECORD_TYPE
&& TYPE_JUSTIFIED_MODULAR_P (gnu_type))
TREE_TYPE (TYPE_FIELDS (gnu_type)) = gnu_inner;
}
}
/* Otherwise, if an alignment is specified, use it if valid and, if
the alignment was requested with an explicit clause, state so. */
else if (Known_Alignment (gnat_entity))
{
SET_TYPE_ALIGN (gnu_type,
validate_alignment (Alignment (gnat_entity),
gnat_entity,
TYPE_ALIGN (gnu_type)));
if (Present (Alignment_Clause (gnat_entity)))
TYPE_USER_ALIGN (gnu_type) = 1;
}
}
break;
case E_String_Literal_Subtype:
/* Create the type for a string literal. */
{
Entity_Id gnat_full_type
= (Is_Private_Type (Etype (gnat_entity))
&& Present (Full_View (Etype (gnat_entity)))
? Full_View (Etype (gnat_entity)) : Etype (gnat_entity));
tree gnu_string_type = get_unpadded_type (gnat_full_type);
tree gnu_string_array_type
= TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_string_type))));
tree gnu_string_index_type
= get_base_type (TREE_TYPE (TYPE_INDEX_TYPE
(TYPE_DOMAIN (gnu_string_array_type))));
tree gnu_lower_bound
= convert (gnu_string_index_type,
gnat_to_gnu (String_Literal_Low_Bound (gnat_entity)));
tree gnu_length
= UI_To_gnu (String_Literal_Length (gnat_entity),
gnu_string_index_type);
tree gnu_upper_bound
= build_binary_op (PLUS_EXPR, gnu_string_index_type,
gnu_lower_bound,
int_const_binop (MINUS_EXPR, gnu_length,
convert (gnu_string_index_type,
integer_one_node)));
tree gnu_index_type
= create_index_type (convert (sizetype, gnu_lower_bound),
convert (sizetype, gnu_upper_bound),
create_range_type (gnu_string_index_type,
gnu_lower_bound,
gnu_upper_bound),
gnat_entity);
gnu_type
= build_nonshared_array_type (gnat_to_gnu_type
(Component_Type (gnat_entity)),
gnu_index_type);
if (array_type_has_nonaliased_component (gnu_type, gnat_entity))
set_nonaliased_component_on_array_type (gnu_type);
relate_alias_sets (gnu_type, gnu_string_type, ALIAS_SET_COPY);
}
break;
/* Record Types and Subtypes
A record type definition is transformed into the equivalent of a C
struct definition. The fields that are the discriminants which are
found in the Full_Type_Declaration node and the elements of the
Component_List found in the Record_Type_Definition node. The
Component_List can be a recursive structure since each Variant of
the Variant_Part of the Component_List has a Component_List.
Processing of a record type definition comprises starting the list of
field declarations here from the discriminants and the calling the
function components_to_record to add the rest of the fields from the
component list and return the gnu type node. The function
components_to_record will call itself recursively as it traverses
the tree. */
case E_Record_Type:
{
Node_Id record_definition = Type_Definition (gnat_decl);
if (Has_Complex_Representation (gnat_entity))
{
const Node_Id first_component
= First (Component_Items (Component_List (record_definition)));
tree gnu_component_type
= get_unpadded_type (Etype (Defining_Entity (first_component)));
gnu_type = build_complex_type (gnu_component_type);
break;
}
Node_Id gnat_constr;
Entity_Id gnat_field, gnat_parent_type;
tree gnu_field, gnu_field_list = NULL_TREE;
tree gnu_get_parent;
/* Set PACKED in keeping with gnat_to_gnu_field. */
const int packed
= Is_Packed (gnat_entity)
? 1
: Component_Alignment (gnat_entity) == Calign_Storage_Unit
? -1
: 0;
const bool has_align = Known_Alignment (gnat_entity);
const bool has_discr = Has_Discriminants (gnat_entity);
const bool is_extension
= (Is_Tagged_Type (gnat_entity)
&& Nkind (record_definition) == N_Derived_Type_Definition);
const bool has_rep
= is_extension
? Has_Record_Rep_Clause (gnat_entity)
: Has_Specified_Layout (gnat_entity);
const bool is_unchecked_union = Is_Unchecked_Union (gnat_entity);
bool all_rep = has_rep;
/* See if all fields have a rep clause. Stop when we find one
that doesn't. */
if (all_rep)
for (gnat_field = First_Entity (gnat_entity);
Present (gnat_field);
gnat_field = Next_Entity (gnat_field))
if ((Ekind (gnat_field) == E_Component
|| (Ekind (gnat_field) == E_Discriminant
&& !is_unchecked_union))
&& No (Component_Clause (gnat_field)))
{
all_rep = false;
break;
}
/* If this is a record extension, go a level further to find the
record definition. Also, verify we have a Parent_Subtype. */
if (is_extension)
{
if (!type_annotate_only
|| Present (Record_Extension_Part (record_definition)))
record_definition = Record_Extension_Part (record_definition);
gcc_assert (Present (Parent_Subtype (gnat_entity))
|| type_annotate_only);
}
/* Make a node for the record type. */
gnu_type = make_node (tree_code_for_record_type (gnat_entity));
TYPE_NAME (gnu_type) = gnu_entity_name;
TYPE_PACKED (gnu_type) = (packed != 0) || has_align || has_rep;
TYPE_REVERSE_STORAGE_ORDER (gnu_type)
= Reverse_Storage_Order (gnat_entity);
/* If the record type has discriminants, pointers to it may also point
to constrained subtypes of it, so mark it as may_alias for LTO. */
if (has_discr)
prepend_one_attribute
(&attr_list, ATTR_MACHINE_ATTRIBUTE,
get_identifier ("may_alias"), NULL_TREE,
gnat_entity);
process_attributes (&gnu_type, &attr_list, true, gnat_entity);
/* Some component may refer to this type, so defer completion of any
incomplete types. */
if (!definition)
{
defer_incomplete_level++;
this_deferred = true;
}
/* If both a size and rep clause were specified, put the size on
the record type now so that it can get the proper layout. */
if (has_rep && Known_RM_Size (gnat_entity))
TYPE_SIZE (gnu_type)
= UI_To_gnu (RM_Size (gnat_entity), bitsizetype);
/* Always set the alignment on the record type here so that it can
get the proper layout. */
if (has_align)
SET_TYPE_ALIGN (gnu_type,
validate_alignment (Alignment (gnat_entity),
gnat_entity, 0));
else
{
SET_TYPE_ALIGN (gnu_type, 0);
/* If a type needs strict alignment, then its type size will also
be the RM size (see below). Cap the alignment if needed, lest
it may cause this type size to become too large. */
if (Strict_Alignment (gnat_entity) && Known_RM_Size (gnat_entity))
{
unsigned int max_size = UI_To_Int (RM_Size (gnat_entity));
unsigned int max_align = max_size & -max_size;
if (max_align < BIGGEST_ALIGNMENT)
TYPE_MAX_ALIGN (gnu_type) = max_align;
}
/* Similarly if an Object_Size clause has been specified. */
else if (Known_Esize (gnat_entity))
{
unsigned int max_size = UI_To_Int (Esize (gnat_entity));
unsigned int max_align = max_size & -max_size;
if (max_align < BIGGEST_ALIGNMENT)
TYPE_MAX_ALIGN (gnu_type) = max_align;
}
}
/* If we have a Parent_Subtype, make a field for the parent. If
this record has rep clauses, force the position to zero. */
if (Present (Parent_Subtype (gnat_entity)))
{
Entity_Id gnat_parent = Parent_Subtype (gnat_entity);
tree gnu_dummy_parent_type = make_node (RECORD_TYPE);
tree gnu_parent;
int parent_packed = 0;
/* A major complexity here is that the parent subtype will
reference our discriminants in its Stored_Constraint list.
But those must reference the parent component of this record
which is precisely of the parent subtype we have not built yet!
To break the circle we first build a dummy COMPONENT_REF which
represents the "get to the parent" operation and initialize
each of those discriminants to a COMPONENT_REF of the above
dummy parent referencing the corresponding discriminant of the
base type of the parent subtype. */
gnu_get_parent = build3 (COMPONENT_REF, gnu_dummy_parent_type,
build0 (PLACEHOLDER_EXPR, gnu_type),
build_decl (input_location,
FIELD_DECL, NULL_TREE,
gnu_dummy_parent_type),
NULL_TREE);
if (has_discr)
for (gnat_field = First_Stored_Discriminant (gnat_entity);
Present (gnat_field);
gnat_field = Next_Stored_Discriminant (gnat_field))
if (Present (Corresponding_Discriminant (gnat_field)))
{
tree gnu_field
= gnat_to_gnu_field_decl (Corresponding_Discriminant
(gnat_field));
save_gnu_tree
(gnat_field,
build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
gnu_get_parent, gnu_field, NULL_TREE),
true);
}
/* Then we build the parent subtype. If it has discriminants but
the type itself has unknown discriminants, this means that it
doesn't contain information about how the discriminants are
derived from those of the ancestor type, so it cannot be used
directly. Instead it is built by cloning the parent subtype
of the underlying record view of the type, for which the above
derivation of discriminants has been made explicit. */
if (Has_Discriminants (gnat_parent)
&& Has_Unknown_Discriminants (gnat_entity))
{
Entity_Id gnat_uview = Underlying_Record_View (gnat_entity);
/* If we are defining the type, the underlying record
view must already have been elaborated at this point.
Otherwise do it now as its parent subtype cannot be
technically elaborated on its own. */
if (definition)
gcc_assert (present_gnu_tree (gnat_uview));
else
gnat_to_gnu_entity (gnat_uview, NULL_TREE, false);
gnu_parent = gnat_to_gnu_type (Parent_Subtype (gnat_uview));
/* Substitute the "get to the parent" of the type for that
of its underlying record view in the cloned type. */
for (gnat_field = First_Stored_Discriminant (gnat_uview);
Present (gnat_field);
gnat_field = Next_Stored_Discriminant (gnat_field))
if (Present (Corresponding_Discriminant (gnat_field)))
{
tree gnu_field = gnat_to_gnu_field_decl (gnat_field);
tree gnu_ref
= build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
gnu_get_parent, gnu_field, NULL_TREE);
gnu_parent
= substitute_in_type (gnu_parent, gnu_field, gnu_ref);
}
}
else
gnu_parent = gnat_to_gnu_type (gnat_parent);
/* The parent field needs strict alignment so, if it is to
be created with a component clause below, then we need
to apply the same adjustment as in gnat_to_gnu_field. */
if (has_rep && TYPE_ALIGN (gnu_type) < TYPE_ALIGN (gnu_parent))
{
/* ??? For historical reasons, we do it on strict-alignment
platforms only, where it is really required. This means
that a confirming representation clause will change the
behavior of the compiler on the other platforms. */
if (STRICT_ALIGNMENT)
SET_TYPE_ALIGN (gnu_type, TYPE_ALIGN (gnu_parent));
else
parent_packed
= adjust_packed (gnu_parent, gnu_type, parent_packed);
}
/* Finally we fix up both kinds of twisted COMPONENT_REF we have
initially built. The discriminants must reference the fields
of the parent subtype and not those of its base type for the
placeholder machinery to properly work. */
if (has_discr)
{
/* The actual parent subtype is the full view. */
if (Is_Private_Type (gnat_parent))
{
if (Present (Full_View (gnat_parent)))
gnat_parent = Full_View (gnat_parent);
else
gnat_parent = Underlying_Full_View (gnat_parent);
}
for (gnat_field = First_Stored_Discriminant (gnat_entity);
Present (gnat_field);
gnat_field = Next_Stored_Discriminant (gnat_field))
if (Present (Corresponding_Discriminant (gnat_field)))
{
Entity_Id field;
for (field = First_Stored_Discriminant (gnat_parent);
Present (field);
field = Next_Stored_Discriminant (field))
if (same_discriminant_p (gnat_field, field))
break;
gcc_assert (Present (field));
TREE_OPERAND (get_gnu_tree (gnat_field), 1)
= gnat_to_gnu_field_decl (field);
}
}
/* The "get to the parent" COMPONENT_REF must be given its
proper type... */
TREE_TYPE (gnu_get_parent) = gnu_parent;
/* ...and reference the _Parent field of this record. */
gnu_field
= create_field_decl (parent_name_id,
gnu_parent, gnu_type,
has_rep
? TYPE_SIZE (gnu_parent) : NULL_TREE,
has_rep
? bitsize_zero_node : NULL_TREE,
parent_packed, 1);
DECL_INTERNAL_P (gnu_field) = 1;
TREE_OPERAND (gnu_get_parent, 1) = gnu_field;
TYPE_FIELDS (gnu_type) = gnu_field;
}
/* Make the fields for the discriminants and put them into the record
unless it's an Unchecked_Union. */
if (has_discr)
for (gnat_field = First_Stored_Discriminant (gnat_entity);
Present (gnat_field);
gnat_field = Next_Stored_Discriminant (gnat_field))
{
/* If this is a record extension and this discriminant is the
renaming of another discriminant, we've handled it above. */
if (is_extension
&& Present (Corresponding_Discriminant (gnat_field)))
continue;
gnu_field
= gnat_to_gnu_field (gnat_field, gnu_type, packed, definition,
debug_info_p);
/* Make an expression using a PLACEHOLDER_EXPR from the
FIELD_DECL node just created and link that with the
corresponding GNAT defining identifier. */
save_gnu_tree (gnat_field,
build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
build0 (PLACEHOLDER_EXPR, gnu_type),
gnu_field, NULL_TREE),
true);
if (!is_unchecked_union)
{
DECL_CHAIN (gnu_field) = gnu_field_list;
gnu_field_list = gnu_field;
}
}
/* If we have a derived untagged type that renames discriminants in
the parent type, the (stored) discriminants are just a copy of the
discriminants of the parent type. This means that any constraints
added by the renaming in the derivation are disregarded as far as
the layout of the derived type is concerned. To rescue them, we
change the type of the (stored) discriminants to a subtype with
the bounds of the type of the visible discriminants. */
if (has_discr
&& !is_extension
&& Stored_Constraint (gnat_entity) != No_Elist)
for (gnat_constr = First_Elmt (Stored_Constraint (gnat_entity));
gnat_constr != No_Elmt;
gnat_constr = Next_Elmt (gnat_constr))
if (Nkind (Node (gnat_constr)) == N_Identifier
/* Ignore access discriminants. */
&& !Is_Access_Type (Etype (Node (gnat_constr)))
&& Ekind (Entity (Node (gnat_constr))) == E_Discriminant)
{
const Entity_Id gnat_discr = Entity (Node (gnat_constr));
tree gnu_discr_type = gnat_to_gnu_type (Etype (gnat_discr));
tree gnu_ref
= gnat_to_gnu_entity (Original_Record_Component (gnat_discr),
NULL_TREE, false);
/* GNU_REF must be an expression using a PLACEHOLDER_EXPR built
just above for one of the stored discriminants. */
gcc_assert (TREE_TYPE (TREE_OPERAND (gnu_ref, 0)) == gnu_type);
if (gnu_discr_type != TREE_TYPE (gnu_ref))
TREE_TYPE (gnu_ref)
= create_extra_subtype (TREE_TYPE (gnu_ref),
TYPE_MIN_VALUE (gnu_discr_type),
TYPE_MAX_VALUE (gnu_discr_type));
}
/* If this is a derived type with discriminants and these discriminants
affect the initial shape it has inherited, factor them in. */
if (has_discr
&& !is_extension
&& !Has_Record_Rep_Clause (gnat_entity)
&& Stored_Constraint (gnat_entity) != No_Elist
&& (gnat_parent_type = Underlying_Type (Etype (gnat_entity)))
&& Is_Record_Type (gnat_parent_type)
&& Is_Unchecked_Union (gnat_entity)
== Is_Unchecked_Union (gnat_parent_type)
&& No_Reordering (gnat_entity) == No_Reordering (gnat_parent_type))
{
tree gnu_parent_type
= TYPE_MAIN_VARIANT (gnat_to_gnu_type (gnat_parent_type));
if (TYPE_IS_PADDING_P (gnu_parent_type))
gnu_parent_type = TREE_TYPE (TYPE_FIELDS (gnu_parent_type));
vec<subst_pair> gnu_subst_list
= build_subst_list (gnat_entity, gnat_parent_type, definition);
/* Set the layout of the type to match that of the parent type,
doing required substitutions. Note that, if we do not use the
GNAT encodings, we don't need debug info for the inner record
types, as they will be part of the embedding variant record's
debug info. */
copy_and_substitute_in_layout
(gnat_entity, gnat_parent_type, gnu_type, gnu_parent_type,
gnu_subst_list,
debug_info_p && gnat_encodings == DWARF_GNAT_ENCODINGS_ALL);
}
else
{
/* Add the fields into the record type and finish it up. */
components_to_record (Component_List (record_definition),
gnat_entity, gnu_field_list, gnu_type,
packed, definition, false, all_rep,
is_unchecked_union, artificial_p,
debug_info_p, false,
all_rep ? NULL_TREE : bitsize_zero_node,
NULL);
/* Empty classes have the size of a storage unit in C++. */
if (TYPE_SIZE (gnu_type) == bitsize_zero_node
&& Convention (gnat_entity) == Convention_CPP)
{
TYPE_SIZE (gnu_type) = bitsize_unit_node;
TYPE_SIZE_UNIT (gnu_type) = size_one_node;
compute_record_mode (gnu_type);
}
/* If the type needs strict alignment, then no object of the type
may have a size smaller than the natural size, which means that
the RM size of the type is equal to the type size. */
if (Strict_Alignment (gnat_entity))
SET_TYPE_ADA_SIZE (gnu_type, TYPE_SIZE (gnu_type));
/* If there are entities in the chain corresponding to components
that we did not elaborate, ensure we elaborate their types if
they are itypes. */
for (gnat_temp = First_Entity (gnat_entity);
Present (gnat_temp);
gnat_temp = Next_Entity (gnat_temp))
if ((Ekind (gnat_temp) == E_Component
|| Ekind (gnat_temp) == E_Discriminant)
&& Is_Itype (Etype (gnat_temp))
&& !present_gnu_tree (gnat_temp))
gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, false);
}
/* Fill in locations of fields. */
annotate_rep (gnat_entity, gnu_type);
}
break;
case E_Class_Wide_Subtype:
/* If an equivalent type is present, that is what we should use.
Otherwise, fall through to handle this like a record subtype
since it may have constraints. */
if (gnat_equiv_type != gnat_entity)
{
gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, false);
maybe_present = true;
break;
}
/* ... fall through ... */
case E_Record_Subtype:
gnat_cloned_subtype = Gigi_Cloned_Subtype (gnat_entity);
if (Present (gnat_cloned_subtype))
break;
/* Otherwise, first ensure the base type is elaborated. Then, if we are
changing the type, make a new type with each field having the type of
the field in the new subtype but the position computed by transforming
every discriminant reference according to the constraints. We don't
see any difference between private and non-private type here since
derivations from types should have been deferred until the completion
of the private type. */
else
{
Entity_Id gnat_base_type = Implementation_Base_Type (gnat_entity);
/* Some component may refer to this type, so defer completion of any
incomplete types. We also need to do it for the special subtypes
designated by access subtypes in case they are recursive, see the
E_Access_Subtype case below. */
if (!definition
|| (Is_Itype (gnat_entity)
&& Is_Frozen (gnat_entity)
&& No (Freeze_Node (gnat_entity))))
{
defer_incomplete_level++;
this_deferred = true;
}
tree gnu_base_type
= TYPE_MAIN_VARIANT (gnat_to_gnu_type (gnat_base_type));
if (present_gnu_tree (gnat_entity))
{
maybe_present = true;
break;
}
/* When the subtype has discriminants and these discriminants affect
the initial shape it has inherited, factor them in. But for an
Unchecked_Union (it must be an itype), just return the type. */
if (Has_Discriminants (gnat_entity)
&& Stored_Constraint (gnat_entity) != No_Elist
&& Is_Record_Type (gnat_base_type)
&& !Is_Unchecked_Union (gnat_base_type))
{
vec<subst_pair> gnu_subst_list
= build_subst_list (gnat_entity, gnat_base_type, definition);
tree gnu_unpad_base_type;
gnu_type = make_node (RECORD_TYPE);
TYPE_NAME (gnu_type) = gnu_entity_name;
TYPE_PACKED (gnu_type) = TYPE_PACKED (gnu_base_type);
TYPE_REVERSE_STORAGE_ORDER (gnu_type)
= Reverse_Storage_Order (gnat_entity);
process_attributes (&gnu_type, &attr_list, true, gnat_entity);
/* Set the size, alignment and alias set of the type to match
those of the base type, doing required substitutions. */
copy_and_substitute_in_size (gnu_type, gnu_base_type,
gnu_subst_list);
if (TYPE_IS_PADDING_P (gnu_base_type))
gnu_unpad_base_type = TREE_TYPE (TYPE_FIELDS (gnu_base_type));
else
gnu_unpad_base_type = gnu_base_type;
/* Set the layout of the type to match that of the base type,
doing required substitutions. We will output debug info
manually below so pass false as last argument. */
copy_and_substitute_in_layout (gnat_entity, gnat_base_type,
gnu_type, gnu_unpad_base_type,
gnu_subst_list, false);
/* Fill in locations of fields. */
annotate_rep (gnat_entity, gnu_type);
/* If debugging information is being written for the type and if
we are asked to output GNAT encodings, write a record that
shows what we are a subtype of and also make a variable that
indicates our size, if still variable. */
if (debug_info_p
&& gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
{
tree gnu_subtype_marker = make_node (RECORD_TYPE);
tree gnu_unpad_base_name
= TYPE_IDENTIFIER (gnu_unpad_base_type);
tree gnu_size_unit = TYPE_SIZE_UNIT (gnu_type);
TYPE_NAME (gnu_subtype_marker)
= create_concat_name (gnat_entity, "XVS");
finish_record_type (gnu_subtype_marker,
create_field_decl (gnu_unpad_base_name,
build_reference_type
(gnu_unpad_base_type),
gnu_subtype_marker,
NULL_TREE, NULL_TREE,
0, 0),
0, true);
add_parallel_type (gnu_type, gnu_subtype_marker);
if (definition
&& TREE_CODE (gnu_size_unit) != INTEGER_CST
&& !CONTAINS_PLACEHOLDER_P (gnu_size_unit))
TYPE_SIZE_UNIT (gnu_subtype_marker)
= create_var_decl (create_concat_name (gnat_entity,
"XVZ"),
NULL_TREE, sizetype, gnu_size_unit,
true, false, false, false, false,
true, true, NULL, gnat_entity, false);
}
/* Or else, if the subtype is artificial and GNAT encodings are
not used, use the base record type as the debug type. */
else if (debug_info_p
&& artificial_p
&& gnat_encodings != DWARF_GNAT_ENCODINGS_ALL)
SET_TYPE_DEBUG_TYPE (gnu_type, gnu_unpad_base_type);
}
/* Otherwise, go down all the components in the new type and make
them equivalent to those in the base type. */
else
{
gnu_type = gnu_base_type;
for (gnat_temp = First_Entity (gnat_entity);
Present (gnat_temp);
gnat_temp = Next_Entity (gnat_temp))
if ((Ekind (gnat_temp) == E_Discriminant
&& !Is_Unchecked_Union (gnat_base_type))
|| Ekind (gnat_temp) == E_Component)
save_gnu_tree (gnat_temp,
gnat_to_gnu_field_decl
(Original_Record_Component (gnat_temp)),
false);
}
}
break;
case E_Access_Subprogram_Type:
case E_Anonymous_Access_Subprogram_Type:
/* Use the special descriptor type for dispatch tables if needed,
that is to say for the Prim_Ptr of a-tags.ads and its clones.
Note that we are only required to do so for static tables in
order to be compatible with the C++ ABI, but Ada 2005 allows
to extend library level tagged types at the local level so
we do it in the non-static case as well. */
if (TARGET_VTABLE_USES_DESCRIPTORS
&& Is_Dispatch_Table_Entity (gnat_entity))
{
gnu_type = fdesc_type_node;
gnu_size = TYPE_SIZE (gnu_type);
break;
}
/* ... fall through ... */
case E_Allocator_Type:
case E_Access_Type:
case E_Access_Attribute_Type:
case E_Anonymous_Access_Type:
case E_General_Access_Type:
{
/* The designated type and its equivalent type for gigi. */
Entity_Id gnat_desig_type = Directly_Designated_Type (gnat_entity);
Entity_Id gnat_desig_equiv = Gigi_Equivalent_Type (gnat_desig_type);
/* Whether it comes from a limited with. */
const bool is_from_limited_with
= (Is_Incomplete_Type (gnat_desig_equiv)
&& From_Limited_With (gnat_desig_equiv));
/* Whether it is a completed Taft Amendment type. Such a type is to
be treated as coming from a limited with clause if it is not in
the main unit, i.e. we break potential circularities here in case
the body of an external unit is loaded for inter-unit inlining. */
const bool is_completed_taft_type
= (Is_Incomplete_Type (gnat_desig_equiv)
&& Has_Completion_In_Body (gnat_desig_equiv)
&& Present (Full_View (gnat_desig_equiv)));
/* The "full view" of the designated type. If this is an incomplete
entity from a limited with, treat its non-limited view as the full
view. Otherwise, if this is an incomplete or private type, use the
full view. In the former case, we might point to a private type,
in which case, we need its full view. Also, we want to look at the
actual type used for the representation, so this takes a total of
three steps. */
Entity_Id gnat_desig_full_direct_first
= (is_from_limited_with
? Non_Limited_View (gnat_desig_equiv)
: (Is_Incomplete_Or_Private_Type (gnat_desig_equiv)
? Full_View (gnat_desig_equiv) : Empty));
Entity_Id gnat_desig_full_direct
= ((is_from_limited_with
&& Present (gnat_desig_full_direct_first)
&& Is_Private_Type (gnat_desig_full_direct_first))
? Full_View (gnat_desig_full_direct_first)
: gnat_desig_full_direct_first);
Entity_Id gnat_desig_full
= Gigi_Equivalent_Type (gnat_desig_full_direct);
/* The type actually used to represent the designated type, either
gnat_desig_full or gnat_desig_equiv. */
Entity_Id gnat_desig_rep;
/* We want to know if we'll be seeing the freeze node for any
incomplete type we may be pointing to. */
const bool in_main_unit
= (Present (gnat_desig_full)
? In_Extended_Main_Code_Unit (gnat_desig_full)
: In_Extended_Main_Code_Unit (gnat_desig_type));
/* True if we make a dummy type here. */
bool made_dummy = false;
/* The mode to be used for the pointer type. */
scalar_int_mode p_mode;
/* The GCC type used for the designated type. */
tree gnu_desig_type = NULL_TREE;
if (!int_mode_for_size (esize, 0).exists (&p_mode)
|| !targetm.valid_pointer_mode (p_mode))
p_mode = ptr_mode;
/* If either the designated type or its full view is an unconstrained
array subtype, replace it with the type it's a subtype of. This
avoids problems with multiple copies of unconstrained array types.
Likewise, if the designated type is a subtype of an incomplete
record type, use the parent type to avoid order of elaboration
issues. This can lose some code efficiency, but there is no
alternative. */
if (Ekind (gnat_desig_equiv) == E_Array_Subtype
&& !Is_Constrained (gnat_desig_equiv))
gnat_desig_equiv = Etype (gnat_desig_equiv);
if (Present (gnat_desig_full)
&& ((Ekind (gnat_desig_full) == E_Array_Subtype
&& !Is_Constrained (gnat_desig_full))
|| (Ekind (gnat_desig_full) == E_Record_Subtype
&& Ekind (Etype (gnat_desig_full)) == E_Record_Type)))
gnat_desig_full = Etype (gnat_desig_full);
/* Set the type that's the representation of the designated type. */
gnat_desig_rep
= Present (gnat_desig_full) ? gnat_desig_full : gnat_desig_equiv;
/* If we already know what the full type is, use it. */
if (Present (gnat_desig_full) && present_gnu_tree (gnat_desig_full))
gnu_desig_type = TREE_TYPE (get_gnu_tree (gnat_desig_full));
/* Get the type of the thing we are to point to and build a pointer to
it. If it is a reference to an incomplete or private type with a
full view that is a record, an array or an access, make a dummy type
and get the actual type later when we have verified it is safe. */
else if ((!in_main_unit
&& !present_gnu_tree (gnat_desig_equiv)
&& Present (gnat_desig_full)
&& (Is_Record_Type (gnat_desig_full)
|| Is_Array_Type (gnat_desig_full)
|| Is_Access_Type (gnat_desig_full)))
/* Likewise if this is a reference to a record, an array or a
subprogram type and we are to defer elaborating incomplete
types. We do this because this access type may be the full
view of a private type. */
|| ((!in_main_unit || imported_p)
&& defer_incomplete_level != 0
&& !present_gnu_tree (gnat_desig_equiv)
&& (Is_Record_Type (gnat_desig_rep)
|| Is_Array_Type (gnat_desig_rep)
|| Ekind (gnat_desig_rep) == E_Subprogram_Type))
/* If this is a reference from a limited_with type back to our
main unit and there's a freeze node for it, either we have
already processed the declaration and made the dummy type,
in which case we just reuse the latter, or we have not yet,
in which case we make the dummy type and it will be reused
when the declaration is finally processed. In both cases,
the pointer eventually created below will be automatically
adjusted when the freeze node is processed. */
|| (in_main_unit
&& is_from_limited_with
&& Present (Freeze_Node (gnat_desig_rep))))
{
gnu_desig_type = make_dummy_type (gnat_desig_equiv);
made_dummy = true;
}
/* Otherwise handle the case of a pointer to itself. */
else if (gnat_desig_equiv == gnat_entity)
{
gnu_type
= build_pointer_type_for_mode (void_type_node, p_mode,
No_Strict_Aliasing (gnat_entity));
TREE_TYPE (gnu_type) = TYPE_POINTER_TO (gnu_type) = gnu_type;
}
/* If expansion is disabled, the equivalent type of a concurrent type
is absent, so we use the void pointer type. */
else if (type_annotate_only && No (gnat_desig_equiv))
gnu_type = ptr_type_node;
/* If the ultimately designated type is an incomplete type with no full
view, we use the void pointer type in LTO mode to avoid emitting a
dummy type in the GIMPLE IR. We cannot do that in regular mode as
the name of the dummy type in used by GDB for a global lookup. */
else if (Ekind (gnat_desig_rep) == E_Incomplete_Type
&& No (Full_View (gnat_desig_rep))
&& flag_generate_lto)
gnu_type = ptr_type_node;
/* Finally, handle the default case where we can just elaborate our
designated type. */
else
gnu_desig_type = gnat_to_gnu_type (gnat_desig_equiv);
/* It is possible that a call to gnat_to_gnu_type above resolved our
type. If so, just return it. */
if (present_gnu_tree (gnat_entity))
{
maybe_present = true;
break;
}
/* Access-to-unconstrained-array types need a special treatment. */
if (Is_Array_Type (gnat_desig_rep) && !Is_Constrained (gnat_desig_rep))
{
/* If the processing above got something that has a pointer, then
we are done. This could have happened either because the type
was elaborated or because somebody else executed the code. */
if (!TYPE_POINTER_TO (gnu_desig_type))
build_dummy_unc_pointer_types (gnat_desig_equiv, gnu_desig_type);
gnu_type = TYPE_POINTER_TO (gnu_desig_type);
}
/* If we haven't done it yet, build the pointer type the usual way. */
else if (!gnu_type)
{
/* Modify the designated type if we are pointing only to constant
objects, but don't do it for a dummy type. */
if (Is_Access_Constant (gnat_entity)
&& !TYPE_IS_DUMMY_P (gnu_desig_type))
gnu_desig_type
= change_qualified_type (gnu_desig_type, TYPE_QUAL_CONST);
gnu_type
= build_pointer_type_for_mode (gnu_desig_type, p_mode,
No_Strict_Aliasing (gnat_entity));
}
/* If the designated type is not declared in the main unit and we made
a dummy node for it, save our definition, elaborate the actual type
and replace the dummy type we made with the actual one. But if we
are to defer actually looking up the actual type, make an entry in
the deferred list instead. If this is from a limited with, we may
have to defer until the end of the current unit. */
if (!in_main_unit && made_dummy)
{
if (TYPE_IS_FAT_POINTER_P (gnu_type) && esize == POINTER_SIZE)
gnu_type
= build_pointer_type (TYPE_OBJECT_RECORD_TYPE (gnu_desig_type));
process_attributes (&gnu_type, &attr_list, false, gnat_entity);
gnu_decl = create_type_decl (gnu_entity_name, gnu_type,
artificial_p, debug_info_p,
gnat_entity);
this_made_decl = true;
gnu_type = TREE_TYPE (gnu_decl);
save_gnu_tree (gnat_entity, gnu_decl, false);
saved = true;
if (defer_incomplete_level == 0
&& !is_from_limited_with
&& !is_completed_taft_type)
{
update_pointer_to (TYPE_MAIN_VARIANT (gnu_desig_type),
gnat_to_gnu_type (gnat_desig_equiv));
}
else
{
struct incomplete *p = XNEW (struct incomplete);
struct incomplete **head
= (is_from_limited_with || is_completed_taft_type
? &defer_limited_with_list : &defer_incomplete_list);
p->old_type = gnu_desig_type;
p->full_type = gnat_desig_equiv;
p->next = *head;
*head = p;
}
}
}
break;
case E_Access_Protected_Subprogram_Type:
case E_Anonymous_Access_Protected_Subprogram_Type:
/* If we are just annotating types and have no equivalent record type,
just use the void pointer type. */
if (type_annotate_only && gnat_equiv_type == gnat_entity)
gnu_type = ptr_type_node;
/* The run-time representation is the equivalent type. */
else
{
gnu_type = gnat_to_gnu_type (gnat_equiv_type);
maybe_present = true;
}
/* The designated subtype must be elaborated as well, if it does
not have its own freeze node. */
if (Is_Itype (Directly_Designated_Type (gnat_entity))
&& !present_gnu_tree (Directly_Designated_Type (gnat_entity))
&& No (Freeze_Node (Directly_Designated_Type (gnat_entity)))
&& !Is_Record_Type (Scope (Directly_Designated_Type (gnat_entity))))
gnat_to_gnu_entity (Directly_Designated_Type (gnat_entity),
NULL_TREE, false);
break;
case E_Access_Subtype:
gnat_cloned_subtype = Gigi_Cloned_Subtype (gnat_entity);
if (Present (gnat_cloned_subtype))
break;
/* We treat this as identical to its base type; any constraint is
meaningful only to the front-end. */
gnu_type = gnat_to_gnu_type (gnat_equiv_type);
maybe_present = true;
/* The designated subtype must be elaborated as well, if it does
not have its own freeze node. */
if (Is_Itype (Directly_Designated_Type (gnat_entity))
&& !present_gnu_tree (Directly_Designated_Type (gnat_entity))
&& Is_Frozen (Directly_Designated_Type (gnat_entity))
&& No (Freeze_Node (Directly_Designated_Type (gnat_entity))))
{
tree gnu_design_base_type
= TYPE_IS_FAT_POINTER_P (gnu_type)
? TREE_TYPE (TREE_TYPE (TYPE_FIELDS (gnu_type)))
: TREE_TYPE (gnu_type);
/* If we are to defer elaborating incomplete types, make a dummy
type node and elaborate it later. */
if (defer_incomplete_level != 0)
{
struct incomplete *p = XNEW (struct incomplete);
p->old_type
= make_dummy_type (Directly_Designated_Type (gnat_entity));
p->full_type = Directly_Designated_Type (gnat_entity);
p->next = defer_incomplete_list;
defer_incomplete_list = p;
}
/* Otherwise elaborate the designated subtype only if its base type
has already been elaborated. */
else if (!TYPE_IS_DUMMY_P (gnu_design_base_type))
gnat_to_gnu_entity (Directly_Designated_Type (gnat_entity),
NULL_TREE, false);
}
break;
/* Subprogram Entities
The following access functions are defined for subprograms:
Etype Return type or Standard_Void_Type.
First_Formal The first formal parameter.
Is_Imported Indicates that the subprogram has appeared in
an INTERFACE or IMPORT pragma. For now we
assume that the external language is C.
Is_Exported Likewise but for an EXPORT pragma.
Is_Inlined True if the subprogram is to be inlined.
Each parameter is first checked by calling must_pass_by_ref on its
type to determine if it is passed by reference. For parameters which
are copied in, if they are Ada In Out or Out parameters, their return
value becomes part of a record which becomes the return type of the
function (C function - note that this applies only to Ada procedures
so there is no Ada return type). Additional code to store back the
parameters will be generated on the caller side. This transformation
is done here, not in the front-end.
The intended result of the transformation can be seen from the
equivalent source rewritings that follow:
struct temp {int a,b};
procedure P (A,B: In Out ...) is temp P (int A,B)
begin {
.. ..
end P; return {A,B};
}
temp t;
P(X,Y); t = P(X,Y);
X = t.a , Y = t.b;
For subprogram types we need to perform mainly the same conversions to
GCC form that are needed for procedures and function declarations. The
only difference is that at the end, we make a type declaration instead
of a function declaration. */
case E_Subprogram_Type:
case E_Function:
case E_Procedure:
{
tree gnu_ext_name
= gnu_ext_name_for_subprog (gnat_entity, gnu_entity_name);
const enum inline_status_t inline_status
= inline_status_for_subprog (gnat_entity);
/* Subprograms marked both Intrinsic and Always_Inline need not
have a body of their own. */
const bool extern_flag
= ((Is_Public (gnat_entity) && !definition)
|| imported_p
|| (Is_Intrinsic_Subprogram (gnat_entity)
&& Has_Pragma_Inline_Always (gnat_entity)));
tree gnu_param_list;
/* A parameter may refer to this type, so defer completion of any
incomplete types. */
if (kind == E_Subprogram_Type && !definition)
{
defer_incomplete_level++;
this_deferred = true;
}
/* If the subprogram has an alias, it is probably inherited, so
we can use the original one. If the original "subprogram"
is actually an enumeration literal, it may be the first use
of its type, so we must elaborate that type now. */
if (Present (Alias (gnat_entity)))
{
const Entity_Id gnat_alias = Alias (gnat_entity);
if (Ekind (gnat_alias) == E_Enumeration_Literal)
gnat_to_gnu_entity (Etype (gnat_alias), NULL_TREE, false);
gnu_decl = gnat_to_gnu_entity (gnat_alias, gnu_expr, false);
/* Elaborate any itypes in the parameters of this entity. */
for (gnat_temp = First_Formal_With_Extras (gnat_entity);
Present (gnat_temp);
gnat_temp = Next_Formal_With_Extras (gnat_temp))
if (Is_Itype (Etype (gnat_temp)))
gnat_to_gnu_entity (Etype (gnat_temp), NULL_TREE, false);
/* Materialize renamed subprograms in the debugging information
when the renamed object is known at compile time; we consider
such renamings as imported declarations.
Because the parameters in generic instantiations are generally
materialized as renamings, we often end up having both the
renamed subprogram and the renaming in the same context and with
the same name; in this case, renaming is both useless debug-wise
and potentially harmful as name resolution in the debugger could
return twice the same entity! So avoid this case. */
if (debug_info_p
&& !artificial_p
&& (Ekind (gnat_alias) == E_Function
|| Ekind (gnat_alias) == E_Procedure)
&& !(get_debug_scope (gnat_entity, NULL)
== get_debug_scope (gnat_alias, NULL)
&& Name_Equals (Chars (gnat_entity), Chars (gnat_alias)))
&& TREE_CODE (gnu_decl) == FUNCTION_DECL)
{
tree decl = build_decl (input_location, IMPORTED_DECL,
gnu_entity_name, void_type_node);
IMPORTED_DECL_ASSOCIATED_DECL (decl) = gnu_decl;
gnat_pushdecl (decl, gnat_entity);
}
break;
}
/* Get the GCC tree for the (underlying) subprogram type. If the
entity is an actual subprogram, also get the parameter list. */
gnu_type
= gnat_to_gnu_subprog_type (gnat_entity, definition, debug_info_p,
&gnu_param_list);
if (DECL_P (gnu_type))
{
gnu_decl = gnu_type;
gnu_type = TREE_TYPE (gnu_decl);
process_attributes (&gnu_decl, &attr_list, true, gnat_entity);
break;
}
/* Deal with platform-specific calling conventions. */
if (Has_Stdcall_Convention (gnat_entity))
prepend_one_attribute
(&attr_list, ATTR_MACHINE_ATTRIBUTE,
get_identifier ("stdcall"), NULL_TREE,
gnat_entity);
/* If we should request stack realignment for a foreign convention
subprogram, do so. Note that this applies to task entry points
in particular. */
if (FOREIGN_FORCE_REALIGN_STACK && foreign)
prepend_one_attribute
(&attr_list, ATTR_MACHINE_ATTRIBUTE,
get_identifier ("force_align_arg_pointer"), NULL_TREE,
gnat_entity);
/* Deal with a pragma Linker_Section on a subprogram. */
if ((kind == E_Function || kind == E_Procedure)
&& Present (Linker_Section_Pragma (gnat_entity)))
prepend_one_attribute_pragma (&attr_list,
Linker_Section_Pragma (gnat_entity));
/* If we are defining the subprogram and it has an Address clause
we must get the address expression from the saved GCC tree for the
subprogram if it has a Freeze_Node. Otherwise, we elaborate
the address expression here since the front-end has guaranteed
in that case that the elaboration has no effects. If there is
an Address clause and we are not defining the object, just
make it a constant. */
if (Present (Address_Clause (gnat_entity)))
{
tree gnu_address = NULL_TREE;
if (definition)
gnu_address
= (present_gnu_tree (gnat_entity)
? get_gnu_tree (gnat_entity)
: gnat_to_gnu (Expression (Address_Clause (gnat_entity))));
save_gnu_tree (gnat_entity, NULL_TREE, false);
/* Convert the type of the object to a reference type that can
alias everything as per RM 13.3(19). */
gnu_type
= build_reference_type_for_mode (gnu_type, ptr_mode, true);
if (gnu_address)
gnu_address = convert (gnu_type, gnu_address);
gnu_decl
= create_var_decl (gnu_entity_name, gnu_ext_name, gnu_type,
gnu_address, false, Is_Public (gnat_entity),
extern_flag, false, false, artificial_p,
debug_info_p, NULL, gnat_entity);
DECL_BY_REF_P (gnu_decl) = 1;
}
/* If this is a mere subprogram type, just create the declaration. */
else if (kind == E_Subprogram_Type)
{
process_attributes (&gnu_type, &attr_list, false, gnat_entity);
gnu_decl
= create_type_decl (gnu_entity_name, gnu_type, artificial_p,
debug_info_p, gnat_entity);
}
/* Otherwise create the subprogram declaration with the external name,
the type and the parameter list. However, if this a reference to
the allocation routines, reuse the canonical declaration nodes as
they come with special properties. */
else
{
if (extern_flag && gnu_ext_name == DECL_NAME (malloc_decl))
gnu_decl = malloc_decl;
else if (extern_flag && gnu_ext_name == DECL_NAME (realloc_decl))
gnu_decl = realloc_decl;
else
gnu_decl
= create_subprog_decl (gnu_entity_name, gnu_ext_name,
gnu_type, gnu_param_list, inline_status,
Is_Public (gnat_entity) || imported_p,
extern_flag, artificial_p, debug_info_p,
definition && imported_p, attr_list,
gnat_entity);
}
}
break;
case E_Incomplete_Type:
case E_Incomplete_Subtype:
case E_Private_Type:
case E_Private_Subtype:
case E_Limited_Private_Type:
case E_Limited_Private_Subtype:
case E_Record_Type_With_Private:
case E_Record_Subtype_With_Private:
{
const bool is_from_limited_with
= (IN (kind, Incomplete_Kind) && From_Limited_With (gnat_entity));
/* Get the "full view" of this entity. If this is an incomplete
entity from a limited with, treat its non-limited view as the
full view. Otherwise, use either the full view or the underlying
full view, whichever is present. This is used in all the tests
below. */
const Entity_Id full_view
= is_from_limited_with
? Non_Limited_View (gnat_entity)
: Present (Full_View (gnat_entity))
? Full_View (gnat_entity)
: IN (kind, Private_Kind)
? Underlying_Full_View (gnat_entity)
: Empty;
/* If this is an incomplete type with no full view, it must be a Taft
Amendment type or an incomplete type coming from a limited context,
in which cases we return a dummy type. Otherwise, we just get the
type from its Etype. */
if (No (full_view))
{
if (kind == E_Incomplete_Type)
{
gnu_type = make_dummy_type (gnat_entity);
gnu_decl = TYPE_STUB_DECL (gnu_type);
}
else
{
gnu_decl
= gnat_to_gnu_entity (Etype (gnat_entity), NULL_TREE, false);
maybe_present = true;
}
}
/* Or else, if we already made a type for the full view, reuse it. */
else if (present_gnu_tree (full_view))
gnu_decl = get_gnu_tree (full_view);
/* Or else, if we are not defining the type or there is no freeze
node on it, get the type for the full view. Likewise if this is
a limited_with'ed type not declared in the main unit, which can
happen for incomplete formal types instantiated on a type coming
from a limited_with clause. */
else if (!definition
|| No (Freeze_Node (full_view))
|| (is_from_limited_with
&& !In_Extended_Main_Code_Unit (full_view)))
{
gnu_decl = gnat_to_gnu_entity (full_view, NULL_TREE, false);
maybe_present = true;
}
/* Otherwise, make a dummy type entry which will be replaced later.
Save it as the full declaration's type so we can do any needed
updates when we see it. */
else
{
gnu_type = make_dummy_type (gnat_entity);
gnu_decl = TYPE_STUB_DECL (gnu_type);
if (Has_Completion_In_Body (gnat_entity))
DECL_TAFT_TYPE_P (gnu_decl) = 1;
save_gnu_tree (full_view, gnu_decl, false);
}
}
break;
case E_Class_Wide_Type:
/* Class-wide types are always transformed into their root type. */
gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, false);
maybe_present = true;
break;
case E_Protected_Type:
case E_Protected_Subtype:
case E_Task_Type:
case E_Task_Subtype:
/* If we are just annotating types and have no equivalent record type,
just return void_type, except for root types that have discriminants
because the discriminants will very likely be used in the declarative
part of the associated body so they need to be translated. */
if (type_annotate_only && gnat_equiv_type == gnat_entity)
{
if (definition
&& Has_Discriminants (gnat_entity)
&& Root_Type (gnat_entity) == gnat_entity)
{
tree gnu_field_list = NULL_TREE;
Entity_Id gnat_field;
/* This is a minimal version of the E_Record_Type handling. */
gnu_type = make_node (RECORD_TYPE);
TYPE_NAME (gnu_type) = gnu_entity_name;
for (gnat_field = First_Stored_Discriminant (gnat_entity);
Present (gnat_field);
gnat_field = Next_Stored_Discriminant (gnat_field))
{
tree gnu_field
= gnat_to_gnu_field (gnat_field, gnu_type, false,
definition, debug_info_p);
save_gnu_tree (gnat_field,
build3 (COMPONENT_REF, TREE_TYPE (gnu_field),
build0 (PLACEHOLDER_EXPR, gnu_type),
gnu_field, NULL_TREE),
true);
DECL_CHAIN (gnu_field) = gnu_field_list;
gnu_field_list = gnu_field;
}
finish_record_type (gnu_type, nreverse (gnu_field_list), 0,
false);
}
else
gnu_type = void_type_node;
}
/* Concurrent types are always transformed into their record type. */
else
gnu_decl = gnat_to_gnu_entity (gnat_equiv_type, NULL_TREE, false);
maybe_present = true;
break;
case E_Label:
gnu_decl = create_label_decl (gnu_entity_name, gnat_entity);
break;
case E_Block:
case E_Loop:
/* Nothing at all to do here, so just return an ERROR_MARK and claim
we've already saved it, so we don't try to. */
gnu_decl = error_mark_node;
saved = true;
break;
case E_Abstract_State:
/* This is a SPARK annotation that only reaches here when compiling in
ASIS mode. */
gcc_assert (type_annotate_only);
gnu_decl = error_mark_node;
saved = true;
break;
default:
gcc_unreachable ();
}
/* If this is the clone of a subtype, just reuse the cloned subtype; another
approach would be to set the cloned subtype as the DECL_ORIGINAL_TYPE of
the entity, which would generate a DW_TAG_typedef in the debug info, but
at the cost of the duplication of the GCC type and, more annoyingly, of
the need to update the copy if the cloned subtype is not complete yet. */
if (Present (gnat_cloned_subtype))
{
gnu_decl = gnat_to_gnu_entity (gnat_cloned_subtype, NULL_TREE, false);
maybe_present = true;
if (!TYPE_IS_DUMMY_P (TREE_TYPE (gnu_decl)))
{
if (!Known_Alignment (gnat_entity))
Copy_Alignment (gnat_entity, gnat_cloned_subtype);
if (!Known_Esize (gnat_entity))
Copy_Esize (gnat_entity, gnat_cloned_subtype);
if (!Known_RM_Size (gnat_entity))
Copy_RM_Size (gnat_entity, gnat_cloned_subtype);
}
}
/* If we had a case where we evaluated another type and it might have
defined this one, handle it here. */
if (maybe_present && present_gnu_tree (gnat_entity))
{
gnu_decl = get_gnu_tree (gnat_entity);
saved = true;
}
/* If we are processing a type and there is either no DECL for it or
we just made one, do some common processing for the type, such as
handling alignment and possible padding. */
if (is_type && (!gnu_decl || this_made_decl))
{
const bool is_by_ref = Is_By_Reference_Type (gnat_entity);
gcc_assert (!TYPE_IS_DUMMY_P (gnu_type));
/* Process the attributes, if not already done. Note that the type is
already defined so we cannot pass true for IN_PLACE here. */
process_attributes (&gnu_type, &attr_list, false, gnat_entity);
/* See if a size was specified, by means of either an Object_Size or
a regular Size clause, and validate it if so.
??? Don't set the size for a String_Literal since it is either
confirming or we don't handle it properly (if the low bound is
non-constant). */
if (!gnu_size && kind != E_String_Literal_Subtype)
{
const char *size_s = "size for %s too small{, minimum allowed is ^}";
const char *type_s = is_by_ref ? "by-reference type &" : "&";
if (Known_Esize (gnat_entity))
gnu_size
= validate_size (Esize (gnat_entity), gnu_type, gnat_entity,
VAR_DECL, false, false, size_s, type_s);
/* ??? The test on Has_Size_Clause must be removed when "unknown" is
no longer represented as Uint_0 (i.e. Use_New_Unknown_Rep). */
else if (Known_RM_Size (gnat_entity)
|| Has_Size_Clause (gnat_entity))
gnu_size
= validate_size (RM_Size (gnat_entity), gnu_type, gnat_entity,
TYPE_DECL, false, Has_Size_Clause (gnat_entity),
size_s, type_s);
}
/* If a size was specified, see if we can make a new type of that size
by rearranging the type, for example from a fat to a thin pointer. */
if (gnu_size)
{
gnu_type
= make_type_from_size (gnu_type, gnu_size,
Has_Biased_Representation (gnat_entity));
if (operand_equal_p (TYPE_SIZE (gnu_type), gnu_size, 0)
&& operand_equal_p (rm_size (gnu_type), gnu_size, 0))
gnu_size = NULL_TREE;
}
/* If the alignment has not already been processed and this is not
an unconstrained array type, see if an alignment is specified.
If not, we pick a default alignment for atomic objects. */
if (align > 0 || TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE)
;
else if (Known_Alignment (gnat_entity))
{
align = validate_alignment (Alignment (gnat_entity), gnat_entity,
TYPE_ALIGN (gnu_type));
/* Warn on suspiciously large alignments. This should catch
errors about the (alignment,byte)/(size,bit) discrepancy. */
if (align > BIGGEST_ALIGNMENT && Has_Alignment_Clause (gnat_entity))
{
tree size;
/* If a size was specified, take it into account. Otherwise
use the RM size for records or unions as the type size has
already been adjusted to the alignment. */
if (gnu_size)
size = gnu_size;
else if (RECORD_OR_UNION_TYPE_P (gnu_type)
&& !TYPE_FAT_POINTER_P (gnu_type))
size = rm_size (gnu_type);
else
size = TYPE_SIZE (gnu_type);
/* Consider an alignment as suspicious if the alignment/size
ratio is greater or equal to the byte/bit ratio. */
if (tree_fits_uhwi_p (size)
&& align >= tree_to_uhwi (size) * BITS_PER_UNIT)
post_error_ne ("??suspiciously large alignment specified for&",
Expression (Alignment_Clause (gnat_entity)),
gnat_entity);
}
}
else if (Is_Full_Access (gnat_entity) && !gnu_size
&& tree_fits_uhwi_p (TYPE_SIZE (gnu_type))
&& integer_pow2p (TYPE_SIZE (gnu_type)))
align = MIN (BIGGEST_ALIGNMENT,
tree_to_uhwi (TYPE_SIZE (gnu_type)));
else if (Is_Full_Access (gnat_entity) && gnu_size
&& tree_fits_uhwi_p (gnu_size)
&& integer_pow2p (gnu_size))
align = MIN (BIGGEST_ALIGNMENT, tree_to_uhwi (gnu_size));
/* See if we need to pad the type. If we did and built a new type,
then create a stripped-down declaration for the original type,
mainly for debugging, unless there was already one. */
if (gnu_size || align > 0)
{
tree orig_type = gnu_type;
gnu_type = maybe_pad_type (gnu_type, gnu_size, align, gnat_entity,
false, definition, false);
if (gnu_type != orig_type && !gnu_decl)
create_type_decl (gnu_entity_name, orig_type, true, debug_info_p,
gnat_entity);
}
/* Now set the RM size of the type. We cannot do it before padding
because we need to accept arbitrary RM sizes on integral types. */
if (Known_RM_Size (gnat_entity))
set_rm_size (RM_Size (gnat_entity), gnu_type, gnat_entity);
/* Back-annotate the alignment of the type if not already set. */
if (!Known_Alignment (gnat_entity))
{
unsigned int double_align, align;
bool is_capped_double, align_clause;
/* If the default alignment of "double" or larger scalar types is
specifically capped and this is not an array with an alignment
clause on the component type, return the cap. */
if ((double_align = double_float_alignment) > 0)
is_capped_double
= is_double_float_or_array (gnat_entity, &align_clause);
else if ((double_align = double_scalar_alignment) > 0)
is_capped_double
= is_double_scalar_or_array (gnat_entity, &align_clause);
else
is_capped_double = align_clause = false;
if (is_capped_double && !align_clause)
align = double_align;
else
align = TYPE_ALIGN (gnu_type) / BITS_PER_UNIT;
Set_Alignment (gnat_entity, UI_From_Int (align));
}
/* Likewise for the size, if any. */
if (!Known_Esize (gnat_entity) && TYPE_SIZE (gnu_type))
{
tree size = TYPE_SIZE (gnu_type);
/* If the size is self-referential, annotate the maximum value
after saturating it, if need be, to avoid a No_Uint value.
But do not do it for cases where Analyze_Object_Declaration
in Sem_Ch3 would build a default subtype for objects. */
if (CONTAINS_PLACEHOLDER_P (size)
&& !Is_Limited_Record (gnat_entity)
&& !Is_Concurrent_Type (gnat_entity))
{
const unsigned int align
= UI_To_Int (Alignment (gnat_entity)) * BITS_PER_UNIT;
size = maybe_saturate_size (max_size (size, true), align);
}
/* If we are just annotating types and the type is tagged, the tag
and the parent components are not generated by the front-end so
alignment and sizes must be adjusted. */
if (type_annotate_only && Is_Tagged_Type (gnat_entity))
{
const bool derived_p = Is_Derived_Type (gnat_entity);
const Entity_Id gnat_parent
= derived_p ? Etype (Base_Type (gnat_entity)) : Empty;
/* The following test for Known_Alignment preserves the old behavior,
but is probably wrong. */
const unsigned int inherited_align
= derived_p
? (Known_Alignment (gnat_parent)
? UI_To_Int (Alignment (gnat_parent)) * BITS_PER_UNIT
: 0)
: POINTER_SIZE;
const unsigned int align
= MAX (TYPE_ALIGN (gnu_type), inherited_align);
Set_Alignment (gnat_entity, UI_From_Int (align / BITS_PER_UNIT));
/* If there is neither size clause nor representation clause, the
sizes need to be adjusted. */
if (!Known_RM_Size (gnat_entity)
&& !VOID_TYPE_P (gnu_type)
&& (!TYPE_FIELDS (gnu_type)
|| integer_zerop (bit_position (TYPE_FIELDS (gnu_type)))))
{
tree offset
= derived_p
? UI_To_gnu (Esize (gnat_parent), bitsizetype)
: bitsize_int (POINTER_SIZE);
if (TYPE_FIELDS (gnu_type))
offset
= round_up (offset, DECL_ALIGN (TYPE_FIELDS (gnu_type)));
size = size_binop (PLUS_EXPR, size, offset);
}
size = maybe_saturate_size (round_up (size, align), align);
Set_Esize (gnat_entity, annotate_value (size));
/* Tagged types are Strict_Alignment so RM_Size = Esize. */
if (!Known_RM_Size (gnat_entity))
Set_RM_Size (gnat_entity, Esize (gnat_entity));
}
/* Otherwise no adjustment is needed. */
else
Set_Esize (gnat_entity, No_Uint_To_0 (annotate_value (size)));
}
/* Likewise for the RM size, if any. */
if (!Known_RM_Size (gnat_entity) && TYPE_SIZE (gnu_type))
Set_RM_Size (gnat_entity,
annotate_value (rm_size (gnu_type)));
/* If we are at global level, GCC applied variable_size to the size but
this has done nothing. So, if it's not constant or self-referential,
call elaborate_expression_1 to make a variable for it rather than
calculating it each time. */
if (TYPE_SIZE (gnu_type)
&& !TREE_CONSTANT (TYPE_SIZE (gnu_type))
&& !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type))
&& global_bindings_p ())
{
tree orig_size = TYPE_SIZE (gnu_type);
TYPE_SIZE (gnu_type)
= elaborate_expression_1 (TYPE_SIZE (gnu_type), gnat_entity,
"SIZE", definition, false);
/* ??? For now, store the size as a multiple of the alignment in
bytes so that we can see the alignment from the tree. */
TYPE_SIZE_UNIT (gnu_type)
= elaborate_expression_2 (TYPE_SIZE_UNIT (gnu_type), gnat_entity,
"SIZE_A_UNIT", definition, false,
TYPE_ALIGN (gnu_type));
/* ??? gnu_type may come from an existing type so the MULT_EXPR node
may not be marked by the call to create_type_decl below. */
MARK_VISITED (TYPE_SIZE_UNIT (gnu_type));
/* For a record type, deal with the variant part, if any, and handle
the Ada size as well. */
if (RECORD_OR_UNION_TYPE_P (gnu_type))
{
tree variant_part = get_variant_part (gnu_type);
tree ada_size = TYPE_ADA_SIZE (gnu_type);
if (variant_part)
{
tree union_type = TREE_TYPE (variant_part);
tree offset = DECL_FIELD_OFFSET (variant_part);
/* If the position of the variant part is constant, subtract
it from the size of the type of the parent to get the new
size. This manual CSE reduces the data size. */
if (TREE_CODE (offset) == INTEGER_CST)
{
tree bitpos = DECL_FIELD_BIT_OFFSET (variant_part);
TYPE_SIZE (union_type)
= size_binop (MINUS_EXPR, TYPE_SIZE (gnu_type),
bit_from_pos (offset, bitpos));
TYPE_SIZE_UNIT (union_type)
= size_binop (MINUS_EXPR, TYPE_SIZE_UNIT (gnu_type),
byte_from_pos (offset, bitpos));
}
else
{
TYPE_SIZE (union_type)
= elaborate_expression_1 (TYPE_SIZE (union_type),
gnat_entity, "VSIZE",
definition, false);
/* ??? For now, store the size as a multiple of the
alignment in bytes so that we can see the alignment
from the tree. */
TYPE_SIZE_UNIT (union_type)
= elaborate_expression_2 (TYPE_SIZE_UNIT (union_type),
gnat_entity, "VSIZE_A_UNIT",
definition, false,
TYPE_ALIGN (union_type));
/* ??? For now, store the offset as a multiple of the
alignment in bytes so that we can see the alignment
from the tree. */
DECL_FIELD_OFFSET (variant_part)
= elaborate_expression_2 (offset, gnat_entity,
"VOFFSET", definition, false,
DECL_OFFSET_ALIGN
(variant_part));
}
DECL_SIZE (variant_part) = TYPE_SIZE (union_type);
DECL_SIZE_UNIT (variant_part) = TYPE_SIZE_UNIT (union_type);
}
if (operand_equal_p (ada_size, orig_size, 0))
ada_size = TYPE_SIZE (gnu_type);
else
ada_size
= elaborate_expression_1 (ada_size, gnat_entity, "RM_SIZE",
definition, false);
SET_TYPE_ADA_SIZE (gnu_type, ada_size);
}
}
/* Similarly, if this is a record type or subtype at global level, call
elaborate_expression_2 on any field position. Skip any fields that
we haven't made trees for to avoid problems with class-wide types. */
if (Is_In_Record_Kind (kind) && global_bindings_p ())
for (gnat_temp = First_Entity (gnat_entity); Present (gnat_temp);
gnat_temp = Next_Entity (gnat_temp))
if (Ekind (gnat_temp) == E_Component && present_gnu_tree (gnat_temp))
{
tree gnu_field = get_gnu_tree (gnat_temp);
/* ??? For now, store the offset as a multiple of the alignment
in bytes so that we can see the alignment from the tree. */
if (!TREE_CONSTANT (DECL_FIELD_OFFSET (gnu_field))
&& !CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (gnu_field)))
{
DECL_FIELD_OFFSET (gnu_field)
= elaborate_expression_2 (DECL_FIELD_OFFSET (gnu_field),
gnat_temp, "OFFSET", definition,
false,
DECL_OFFSET_ALIGN (gnu_field));
/* ??? The context of gnu_field is not necessarily gnu_type
so the MULT_EXPR node built above may not be marked by
the call to create_type_decl below. */
MARK_VISITED (DECL_FIELD_OFFSET (gnu_field));
}
}
/* Now check if the type allows atomic access. */
if (Is_Full_Access (gnat_entity))
check_ok_for_atomic_type (gnu_type, gnat_entity, false);
/* If this is not an unconstrained array type, set some flags. */
if (TREE_CODE (gnu_type) != UNCONSTRAINED_ARRAY_TYPE)
{
bool align_clause;
/* Record the property that objects of tagged types are guaranteed to
be properly aligned. This is necessary because conversions to the
class-wide type are translated into conversions to the root type,
which can be less aligned than some of its derived types. */
if (Is_Tagged_Type (gnat_entity)
|| Is_Class_Wide_Equivalent_Type (gnat_entity))
TYPE_ALIGN_OK (gnu_type) = 1;
/* Record whether the type is passed by reference. */
if (is_by_ref && !VOID_TYPE_P (gnu_type))
TYPE_BY_REFERENCE_P (gnu_type) = 1;
/* Record whether an alignment clause was specified. At this point
scalar types with a non-confirming clause have been wrapped into
a record type, so only scalar types with a confirming clause are
left untouched; we do not set the flag on them except if they are
types whose default alignment is specifically capped in order not
to lose the specified alignment. */
if ((AGGREGATE_TYPE_P (gnu_type)
&& Present (Alignment_Clause (gnat_entity)))
|| (double_float_alignment > 0
&& is_double_float_or_array (gnat_entity, &align_clause)
&& align_clause)
|| (double_scalar_alignment > 0
&& is_double_scalar_or_array (gnat_entity, &align_clause)
&& align_clause))
TYPE_USER_ALIGN (gnu_type) = 1;
/* Record whether a pragma Universal_Aliasing was specified. */
if (Universal_Aliasing (gnat_entity) && !TYPE_IS_DUMMY_P (gnu_type))
TYPE_UNIVERSAL_ALIASING_P (gnu_type) = 1;
/* If it is passed by reference, force BLKmode to ensure that
objects of this type will always be put in memory. */
if (AGGREGATE_TYPE_P (gnu_type) && TYPE_BY_REFERENCE_P (gnu_type))
SET_TYPE_MODE (gnu_type, BLKmode);
}
/* If this is a derived type, relate its alias set to that of its parent
to avoid troubles when a call to an inherited primitive is inlined in
a context where a derived object is accessed. The inlined code works
on the parent view so the resulting code may access the same object
using both the parent and the derived alias sets, which thus have to
conflict. As the same issue arises with component references, the
parent alias set also has to conflict with composite types enclosing
derived components. For instance, if we have:
type D is new T;
type R is record
Component : D;
end record;
we want T to conflict with both D and R, in addition to R being a
superset of D by record/component construction.
One way to achieve this is to perform an alias set copy from the
parent to the derived type. This is not quite appropriate, though,
as we don't want separate derived types to conflict with each other:
type I1 is new Integer;
type I2 is new Integer;
We want I1 and I2 to both conflict with Integer but we do not want
I1 to conflict with I2, and an alias set copy on derivation would
have that effect.
The option chosen is to make the alias set of the derived type a
superset of that of its parent type. It trivially fulfills the
simple requirement for the Integer derivation example above, and
the component case as well by superset transitivity:
superset superset
R ----------> D ----------> T
However, for composite types, conversions between derived types are
translated into VIEW_CONVERT_EXPRs so a sequence like:
type Comp1 is new Comp;
type Comp2 is new Comp;
procedure Proc (C : Comp1);
C : Comp2;
Proc (Comp1 (C));
is translated into:
C : Comp2;
Proc ((Comp1 &) &VIEW_CONVERT_EXPR <Comp1> (C));
and gimplified into:
C : Comp2;
Comp1 *C.0;
C.0 = (Comp1 *) &C;
Proc (C.0);
i.e. generates code involving type punning. Therefore, Comp1 needs
to conflict with Comp2 and an alias set copy is required.
The language rules ensure the parent type is already frozen here. */
if (kind != E_Subprogram_Type
&& Is_Derived_Type (gnat_entity)
&& !type_annotate_only)
{
Entity_Id gnat_parent_type = Underlying_Type (Etype (gnat_entity));
/* For constrained packed array subtypes, the implementation type is
used instead of the nominal type. */
if (kind == E_Array_Subtype
&& Is_Constrained (gnat_entity)
&& Present (Packed_Array_Impl_Type (gnat_parent_type)))
gnat_parent_type = Packed_Array_Impl_Type (gnat_parent_type);
relate_alias_sets (gnu_type, gnat_to_gnu_type (gnat_parent_type),
Is_Composite_Type (gnat_entity)
? ALIAS_SET_COPY : ALIAS_SET_SUPERSET);
}
/* Finally get to the appropriate variant, except for the implementation
type of a packed array because the GNU type might be further adjusted
when the original array type is itself processed. */
if (Treat_As_Volatile (gnat_entity)
&& !Is_Packed_Array_Impl_Type (gnat_entity))
{
const int quals
= TYPE_QUAL_VOLATILE
| (Is_Full_Access (gnat_entity) ? TYPE_QUAL_ATOMIC : 0);
/* This is required by free_lang_data_in_type to disable the ODR. */
if (TREE_CODE (gnu_type) == ENUMERAL_TYPE)
TYPE_STUB_DECL (gnu_type)
= create_type_stub_decl (TYPE_NAME (gnu_type), gnu_type);
gnu_type = change_qualified_type (gnu_type, quals);
}
/* If we already made a decl, just set the type, otherwise create it. */
if (gnu_decl)
{
TREE_TYPE (gnu_decl) = gnu_type;
TYPE_STUB_DECL (gnu_type) = gnu_decl;
}
else
gnu_decl = create_type_decl (gnu_entity_name, gnu_type, artificial_p,
debug_info_p, gnat_entity);
}
/* If we haven't already, associate the ..._DECL node that we just made with
the input GNAT entity node. */
if (!saved)
save_gnu_tree (gnat_entity, gnu_decl, false);
/* Now we are sure gnat_entity has a corresponding ..._DECL node,
eliminate as many deferred computations as possible. */
process_deferred_decl_context (false);
/* If this is an enumeration or floating-point type, we were not able to set
the bounds since they refer to the type. These are always static. */
if ((kind == E_Enumeration_Type && Present (First_Literal (gnat_entity)))
|| (kind == E_Floating_Point_Type))
{
tree gnu_scalar_type = gnu_type;
tree gnu_low_bound, gnu_high_bound;
/* If this is a padded type, we need to use the underlying type. */
if (TYPE_IS_PADDING_P (gnu_scalar_type))
gnu_scalar_type = TREE_TYPE (TYPE_FIELDS (gnu_scalar_type));
/* If this is a floating point type and we haven't set a floating
point type yet, use this in the evaluation of the bounds. */
if (!longest_float_type_node && kind == E_Floating_Point_Type)
longest_float_type_node = gnu_scalar_type;
gnu_low_bound = gnat_to_gnu (Type_Low_Bound (gnat_entity));
gnu_high_bound = gnat_to_gnu (Type_High_Bound (gnat_entity));
if (kind == E_Enumeration_Type)
{
/* Enumeration types have specific RM bounds. */
SET_TYPE_RM_MIN_VALUE (gnu_scalar_type, gnu_low_bound);
SET_TYPE_RM_MAX_VALUE (gnu_scalar_type, gnu_high_bound);
}
else
{
/* Floating-point types don't have specific RM bounds. */
TYPE_GCC_MIN_VALUE (gnu_scalar_type) = gnu_low_bound;
TYPE_GCC_MAX_VALUE (gnu_scalar_type) = gnu_high_bound;
}
}
/* If we deferred processing of incomplete types, re-enable it. If there
were no other disables and we have deferred types to process, do so. */
if (this_deferred
&& --defer_incomplete_level == 0
&& defer_incomplete_list)
{
struct incomplete *p, *next;
/* We are back to level 0 for the deferring of incomplete types.
But processing these incomplete types below may itself require
deferring, so preserve what we have and restart from scratch. */
p = defer_incomplete_list;
defer_incomplete_list = NULL;
for (; p; p = next)
{
next = p->next;
if (p->old_type)
update_pointer_to (TYPE_MAIN_VARIANT (p->old_type),
gnat_to_gnu_type (p->full_type));
free (p);
}
}
/* If we are not defining this type, see if it's on one of the lists of
incomplete types. If so, handle the list entry now. */
if (is_type && !definition)
{
struct incomplete *p;
for (p = defer_incomplete_list; p; p = p->next)
if (p->old_type && p->full_type == gnat_entity)
{
update_pointer_to (TYPE_MAIN_VARIANT (p->old_type),
TREE_TYPE (gnu_decl));
p->old_type = NULL_TREE;
}
for (p = defer_limited_with_list; p; p = p->next)
if (p->old_type
&& (Non_Limited_View (p->full_type) == gnat_entity
|| Full_View (p->full_type) == gnat_entity))
{
update_pointer_to (TYPE_MAIN_VARIANT (p->old_type),
TREE_TYPE (gnu_decl));
if (TYPE_DUMMY_IN_PROFILE_P (p->old_type))
update_profiles_with (p->old_type);
p->old_type = NULL_TREE;
}
}
if (this_global)
force_global--;
/* If this is a packed array type whose original array type is itself
an itype without freeze node, make sure the latter is processed. */
if (Is_Packed_Array_Impl_Type (gnat_entity)
&& Is_Itype (Original_Array_Type (gnat_entity))
&& No (Freeze_Node (Original_Array_Type (gnat_entity)))
&& !present_gnu_tree (Original_Array_Type (gnat_entity)))
gnat_to_gnu_entity (Original_Array_Type (gnat_entity), NULL_TREE, false);
return gnu_decl;
}
/* Similar, but if the returned value is a COMPONENT_REF, return the
FIELD_DECL. */
tree
gnat_to_gnu_field_decl (Entity_Id gnat_entity)
{
tree gnu_field = gnat_to_gnu_entity (gnat_entity, NULL_TREE, false);
if (TREE_CODE (gnu_field) == COMPONENT_REF)
gnu_field = TREE_OPERAND (gnu_field, 1);
return gnu_field;
}
/* Similar, but GNAT_ENTITY is assumed to refer to a GNAT type. Return
the GCC type corresponding to that entity. */
tree
gnat_to_gnu_type (Entity_Id gnat_entity)
{
tree gnu_decl;
/* The back end never attempts to annotate generic types. */
if (Is_Generic_Type (gnat_entity) && type_annotate_only)
return void_type_node;
gnu_decl = gnat_to_gnu_entity (gnat_entity, NULL_TREE, false);
gcc_assert (TREE_CODE (gnu_decl) == TYPE_DECL);
return TREE_TYPE (gnu_decl);
}
/* Similar, but GNAT_ENTITY is assumed to refer to a GNAT type. Return
the unpadded version of the GCC type corresponding to that entity. */
tree
get_unpadded_type (Entity_Id gnat_entity)
{
tree type = gnat_to_gnu_type (gnat_entity);
if (TYPE_IS_PADDING_P (type))
type = TREE_TYPE (TYPE_FIELDS (type));
return type;
}
/* Return whether the E_Subprogram_Type/E_Function/E_Procedure GNAT_ENTITY is
a C++ imported method or equivalent.
We use the predicate to find out whether we need to use METHOD_TYPE instead
of FUNCTION_TYPE for GNAT_ENTITY for the sake compatibility with C++. This
in turn determines whether the "thiscall" calling convention is used by the
back-end for GNAT_ENTITY on 32-bit x86/Windows. */
static bool
is_cplusplus_method (Entity_Id gnat_entity)
{
/* A constructor is a method on the C++ side. We deal with it now because
it is declared without the 'this' parameter in the sources and, although
the front-end will create a version with the 'this' parameter for code
generation purposes, we want to return true for both versions. */
if (Is_Constructor (gnat_entity))
return true;
/* Check that the subprogram has C++ convention. */
if (Convention (gnat_entity) != Convention_CPP)
return false;
/* And that the type of the first parameter (indirectly) has it too, but
we make an exception for Interfaces because they need not be imported. */
Entity_Id gnat_first = First_Formal (gnat_entity);
if (No (gnat_first))
return false;
Entity_Id gnat_type = Etype (gnat_first);
if (Is_Access_Type (gnat_type))
gnat_type = Directly_Designated_Type (gnat_type);
if (Convention (gnat_type) != Convention_CPP && !Is_Interface (gnat_type))
return false;
/* This is the main case: a C++ virtual method imported as a primitive
operation of a tagged type. */
if (Is_Dispatching_Operation (gnat_entity))
return true;
/* This is set on the E_Subprogram_Type built for a dispatching call. */
if (Is_Dispatch_Table_Entity (gnat_entity))
return true;
/* A thunk needs to be handled like its associated primitive operation. */
if (Is_Subprogram (gnat_entity) && Is_Thunk (gnat_entity))
return true;
/* Now on to the annoying case: a C++ non-virtual method, imported either
as a non-primitive operation of a tagged type or as a primitive operation
of an untagged type. We cannot reliably differentiate these cases from
their static member or regular function equivalents in Ada, so we ask
the C++ side through the mangled name of the function, as the implicit
'this' parameter is not encoded in the mangled name of a method. */
if (Is_Subprogram (gnat_entity) && Present (Interface_Name (gnat_entity)))
{
String_Template temp = { 0, 0 };
String_Pointer sp = { "", &temp };
Get_External_Name (gnat_entity, false, sp);
void *mem;
struct demangle_component *cmp
= cplus_demangle_v3_components (Name_Buffer,
DMGL_GNU_V3
| DMGL_TYPES
| DMGL_PARAMS
| DMGL_RET_DROP,
&mem);
if (!cmp)
return false;
/* We need to release MEM once we have a successful demangling. */
bool ret = false;
if (cmp->type == DEMANGLE_COMPONENT_TYPED_NAME
&& cmp->u.s_binary.right->type == DEMANGLE_COMPONENT_FUNCTION_TYPE
&& (cmp = cmp->u.s_binary.right->u.s_binary.right) != NULL
&& cmp->type == DEMANGLE_COMPONENT_ARGLIST)
{
/* Make sure there is at least one parameter in C++ too. */
if (cmp->u.s_binary.left)
{
unsigned int n_ada_args = 0;
do {
n_ada_args++;
gnat_first = Next_Formal (gnat_first);
} while (Present (gnat_first));
unsigned int n_cpp_args = 0;
do {
n_cpp_args++;
cmp = cmp->u.s_binary.right;
} while (cmp);
if (n_cpp_args < n_ada_args)
ret = true;
}
else
ret = true;
}
free (mem);
return ret;
}
return false;
}
/* Return the inlining status of the GNAT subprogram SUBPROG. */
static enum inline_status_t
inline_status_for_subprog (Entity_Id subprog)
{
if (Has_Pragma_No_Inline (subprog))
return is_suppressed;
if (Has_Pragma_Inline_Always (subprog))
return is_required;
if (Is_Inlined (subprog))
{
tree gnu_type;
/* This is a kludge to work around a pass ordering issue: for small
record types with many components, i.e. typically bitfields, the
initialization routine can contain many assignments that will be
merged by the GIMPLE store merging pass. But this pass runs very
late in the pipeline, in particular after the inlining decisions
are made, so the inlining heuristics cannot take its outcome into
account. Therefore, we optimistically override the heuristics for
the initialization routine in this case. */
if (Is_Init_Proc (subprog)
&& flag_store_merging
&& Is_Record_Type (Etype (First_Formal (subprog)))
&& (gnu_type = gnat_to_gnu_type (Etype (First_Formal (subprog))))
&& !TYPE_IS_BY_REFERENCE_P (gnu_type)
&& tree_fits_uhwi_p (TYPE_SIZE (gnu_type))
&& compare_tree_int (TYPE_SIZE (gnu_type), MAX_FIXED_MODE_SIZE) <= 0)
return is_prescribed;
/* If this is an expression function and we're not optimizing for size,
override the heuristics, unless -gnatd.8 is specified. */
if (Is_Expression_Function (subprog)
&& !optimize_size
&& !Debug_Flag_Dot_8)
return is_prescribed;
return is_requested;
}
return is_default;
}
/* Finalize the processing of From_Limited_With incomplete types. */
void
finalize_from_limited_with (void)
{
struct incomplete *p, *next;
p = defer_limited_with_list;
defer_limited_with_list = NULL;
for (; p; p = next)
{
next = p->next;
if (p->old_type)
{
update_pointer_to (TYPE_MAIN_VARIANT (p->old_type),
gnat_to_gnu_type (p->full_type));
if (TYPE_DUMMY_IN_PROFILE_P (p->old_type))
update_profiles_with (p->old_type);
}
free (p);
}
}
/* Return the cloned subtype to be used for GNAT_ENTITY, if the latter is a
kind of subtype that needs to be considered as a clone by Gigi, otherwise
return Empty. */
static Entity_Id
Gigi_Cloned_Subtype (Entity_Id gnat_entity)
{
Node_Id gnat_decl;
switch (Ekind (gnat_entity))
{
case E_Class_Wide_Subtype:
if (Present (Equivalent_Type (gnat_entity)))
return Empty;
/* ... fall through ... */
case E_Record_Subtype:
/* If Cloned_Subtype is Present, this means that this record subtype has
the same layout as that of the specified (sub)type, and also that the
front-end guarantees that the component list is shared. */
return Cloned_Subtype (gnat_entity);
case E_Access_Subtype:
case E_Array_Subtype:
case E_Signed_Integer_Subtype:
case E_Enumeration_Subtype:
case E_Modular_Integer_Subtype:
case E_Ordinary_Fixed_Point_Subtype:
case E_Decimal_Fixed_Point_Subtype:
case E_Floating_Point_Subtype:
if (Sloc (gnat_entity) == Standard_Location)
break;
/* We return true for the subtypes generated for the actuals of formal
private types in instantiations, so that these actuals are the types
of the instantiated objects in the debug info. */
gnat_decl = Declaration_Node (gnat_entity);
if (Present (gnat_decl)
&& Nkind (gnat_decl) == N_Subtype_Declaration
&& Present (Generic_Parent_Type (gnat_decl))
&& Is_Entity_Name (Subtype_Indication (gnat_decl)))
return Entity (Subtype_Indication (gnat_decl));
/* Likewise for the full view of such subtypes when they are private. */
if (Is_Itype (gnat_entity))
{
gnat_decl = Associated_Node_For_Itype (gnat_entity);
if (Present (gnat_decl)
&& Nkind (gnat_decl) == N_Subtype_Declaration
&& Is_Private_Type (Defining_Identifier (gnat_decl))
&& Full_View (Defining_Identifier (gnat_decl)) == gnat_entity
&& Present (Generic_Parent_Type (gnat_decl))
&& Is_Entity_Name (Subtype_Indication (gnat_decl)))
return Entity (Subtype_Indication (gnat_decl));
}
break;
default:
break;
}
return Empty;
}
/* Return the equivalent type to be used for GNAT_ENTITY, if it's a kind
of type (such E_Task_Type) that has a different type which Gigi uses
for its representation. If the type does not have a special type for
its representation, return GNAT_ENTITY. */
Entity_Id
Gigi_Equivalent_Type (Entity_Id gnat_entity)
{
Entity_Id gnat_equiv = gnat_entity;
if (No (gnat_entity))
return gnat_entity;
switch (Ekind (gnat_entity))
{
case E_Class_Wide_Subtype:
if (Present (Equivalent_Type (gnat_entity)))
gnat_equiv = Equivalent_Type (gnat_entity);
break;
case E_Access_Protected_Subprogram_Type:
case E_Anonymous_Access_Protected_Subprogram_Type:
if (Present (Equivalent_Type (gnat_entity)))
gnat_equiv = Equivalent_Type (gnat_entity);
break;
case E_Access_Subtype:
gnat_equiv = Etype (gnat_entity);
break;
case E_Array_Subtype:
if (!Is_Constrained (gnat_entity))
gnat_equiv = Etype (gnat_entity);
break;
case E_Class_Wide_Type:
gnat_equiv = Root_Type (gnat_entity);
break;
case E_Protected_Type:
case E_Protected_Subtype:
case E_Task_Type:
case E_Task_Subtype:
if (Present (Corresponding_Record_Type (gnat_entity)))
gnat_equiv = Corresponding_Record_Type (gnat_entity);
break;
default:
break;
}
return gnat_equiv;
}
/* Return a GCC tree for a type corresponding to the component type of the
array type or subtype GNAT_ARRAY. DEFINITION is true if this component
is for an array being defined. DEBUG_INFO_P is true if we need to write
debug information for other types that we may create in the process. */
static tree
gnat_to_gnu_component_type (Entity_Id gnat_array, bool definition,
bool debug_info_p)
{
const Entity_Id gnat_type = Component_Type (gnat_array);
const bool is_bit_packed = Is_Bit_Packed_Array (gnat_array);
tree gnu_type = gnat_to_gnu_type (gnat_type);
tree gnu_comp_size;
bool has_packed_components;
unsigned int max_align;
/* If an alignment is specified, use it as a cap on the component type
so that it can be honored for the whole type, but ignore it for the
original type of packed array types. */
if (No (Packed_Array_Impl_Type (gnat_array))
&& Known_Alignment (gnat_array))
max_align = validate_alignment (Alignment (gnat_array), gnat_array, 0);
else
max_align = 0;
/* Try to get a packable form of the component if needed. */
if ((Is_Packed (gnat_array) || Has_Component_Size_Clause (gnat_array))
&& !is_bit_packed
&& !Has_Aliased_Components (gnat_array)
&& !Strict_Alignment (gnat_type)
&& RECORD_OR_UNION_TYPE_P (gnu_type)
&& !TYPE_FAT_POINTER_P (gnu_type)
&& tree_fits_uhwi_p (TYPE_SIZE (gnu_type)))
{
gnu_type = make_packable_type (gnu_type, false, max_align);
has_packed_components = true;
}
else
has_packed_components = is_bit_packed;
/* Get and validate any specified Component_Size. */
gnu_comp_size
= validate_size (Component_Size (gnat_array), gnu_type, gnat_array,
has_packed_components ? TYPE_DECL : VAR_DECL, true,
Has_Component_Size_Clause (gnat_array), NULL, NULL);
/* If the component type is a RECORD_TYPE that has a self-referential size,
then use the maximum size for the component size. */
if (!gnu_comp_size
&& TREE_CODE (gnu_type) == RECORD_TYPE
&& CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
gnu_comp_size = max_size (TYPE_SIZE (gnu_type), true);
/* If the array has aliased components and the component size is zero, force
the unit size to ensure that the components have distinct addresses. */
if (!gnu_comp_size
&& Has_Aliased_Components (gnat_array)
&& integer_zerop (TYPE_SIZE (gnu_type)))
gnu_comp_size = bitsize_unit_node;
/* Honor the component size. This is not needed for bit-packed arrays. */
if (gnu_comp_size && !is_bit_packed)
{
tree orig_type = gnu_type;
unsigned int gnu_comp_align;
gnu_type = make_type_from_size (gnu_type, gnu_comp_size, false);
if (max_align > 0 && TYPE_ALIGN (gnu_type) > max_align)
gnu_type = orig_type;
else
orig_type = gnu_type;
/* We need to make sure that the size is a multiple of the alignment.
But we do not misalign the component type because of the alignment
of the array type here; this either must have been done earlier in
the packed case or should be rejected in the non-packed case. */
if (TREE_CODE (gnu_comp_size) == INTEGER_CST)
{
const unsigned HOST_WIDE_INT int_size = tree_to_uhwi (gnu_comp_size);
gnu_comp_align = int_size & -int_size;
if (gnu_comp_align > TYPE_ALIGN (gnu_type))
gnu_comp_align = 0;
}
else
gnu_comp_align = 0;
gnu_type = maybe_pad_type (gnu_type, gnu_comp_size, gnu_comp_align,
gnat_array, true, definition, true);
/* If a padding record was made, declare it now since it will never be
declared otherwise. This is necessary to ensure that its subtrees
are properly marked. */
if (gnu_type != orig_type && !DECL_P (TYPE_NAME (gnu_type)))
create_type_decl (TYPE_NAME (gnu_type), gnu_type, true, debug_info_p,
gnat_array);
}
/* This is a very special case where the array has aliased components and the
component size might be zero at run time. As explained above, we force at
least the unit size but we don't want to build a distinct padding type for
each invocation (they are not canonicalized if they have variable size) so
we cache this special padding type as TYPE_PADDING_FOR_COMPONENT. */
else if (Has_Aliased_Components (gnat_array)
&& TREE_CODE (gnu_type) == ARRAY_TYPE
&& !TREE_CONSTANT (TYPE_SIZE (gnu_type)))
{
if (TYPE_PADDING_FOR_COMPONENT (gnu_type))
gnu_type = TYPE_PADDING_FOR_COMPONENT (gnu_type);
else
{
gnu_comp_size
= size_binop (MAX_EXPR, TYPE_SIZE (gnu_type), bitsize_unit_node);
TYPE_PADDING_FOR_COMPONENT (gnu_type)
= maybe_pad_type (gnu_type, gnu_comp_size, 0, gnat_array,
true, definition, true);
gnu_type = TYPE_PADDING_FOR_COMPONENT (gnu_type);
create_type_decl (TYPE_NAME (gnu_type), gnu_type, true, debug_info_p,
gnat_array);
}
}
/* Now check if the type of the component allows atomic access. */
if (Has_Atomic_Components (gnat_array) || Is_Full_Access (gnat_type))
check_ok_for_atomic_type (gnu_type, gnat_array, true);
/* If the component type is a padded type made for a non-bit-packed array
of scalars with reverse storage order, we need to propagate the reverse
storage order to the padding type since it is the innermost enclosing
aggregate type around the scalar. */
if (TYPE_IS_PADDING_P (gnu_type)
&& !is_bit_packed
&& Reverse_Storage_Order (gnat_array)
&& Is_Scalar_Type (gnat_type))
gnu_type = set_reverse_storage_order_on_pad_type (gnu_type);
if (Has_Volatile_Components (gnat_array))
{
const int quals
= TYPE_QUAL_VOLATILE
| (Has_Atomic_Components (gnat_array) ? TYPE_QUAL_ATOMIC : 0);
gnu_type = change_qualified_type (gnu_type, quals);
}
return gnu_type;
}
/* Return whether TYPE requires that formal parameters of TYPE be initialized
when they are Out parameters passed by copy.
This just implements the set of conditions listed in RM 6.4.1(12). */
static bool
type_requires_init_of_formal (Entity_Id type)
{
type = Underlying_Type (type);
if (Is_Access_Type (type))
return true;
if (Is_Scalar_Type (type))
return Has_Default_Aspect (type);
if (Is_Array_Type (type))
return Has_Default_Aspect (type)
|| type_requires_init_of_formal (Component_Type (type));
if (Is_Record_Type (type))
for (Entity_Id field = First_Entity (type);
Present (field);
field = Next_Entity (field))
{
if (Ekind (field) == E_Discriminant && !Is_Unchecked_Union (type))
return true;
if (Ekind (field) == E_Component
&& (Present (Expression (Parent (field)))
|| type_requires_init_of_formal (Etype (field))))
return true;
}
return false;
}
/* Return a GCC tree for a parameter corresponding to GNAT_PARAM, to be placed
in the parameter list of GNAT_SUBPROG. GNU_PARAM_TYPE is the GCC tree for
the type of the parameter. FIRST is true if this is the first parameter in
the list of GNAT_SUBPROG. Also set CICO to true if the parameter must use
the copy-in copy-out implementation mechanism.
The returned tree is a PARM_DECL, except for the cases where no parameter
needs to be actually passed to the subprogram; the type of this "shadow"
parameter is then returned instead. */
static tree
gnat_to_gnu_param (Entity_Id gnat_param, tree gnu_param_type, bool first,
Entity_Id gnat_subprog, bool *cico)
{
Mechanism_Type mech = Mechanism (gnat_param);
tree gnu_param_name = get_entity_name (gnat_param);
bool foreign = Has_Foreign_Convention (gnat_subprog);
bool in_param = (Ekind (gnat_param) == E_In_Parameter);
/* The parameter can be indirectly modified if its address is taken. */
bool ro_param = in_param && !Address_Taken (gnat_param);
bool by_return = false, by_component_ptr = false;
bool by_ref = false;
bool forced_by_ref = false;
bool restricted_aliasing_p = false;
location_t saved_location = input_location;
tree gnu_param;
/* Make sure to use the proper SLOC for vector ABI warnings. */
if (VECTOR_TYPE_P (gnu_param_type))
Sloc_to_locus (Sloc (gnat_subprog), &input_location);
/* Builtins are expanded inline and there is no real call sequence involved.
So the type expected by the underlying expander is always the type of the
argument "as is". */
if (Is_Intrinsic_Subprogram (gnat_subprog)
&& Present (Interface_Name (gnat_subprog)))
mech = By_Copy;
/* Handle the first parameter of a valued procedure specially: it's a copy
mechanism for which the parameter is never allocated. */
else if (first && Is_Valued_Procedure (gnat_subprog))
{
gcc_assert (Ekind (gnat_param) == E_Out_Parameter);
mech = By_Copy;
by_return = true;
}
/* Or else, see if a Mechanism was supplied that forced this parameter
to be passed one way or another. */
else if (mech == Default || mech == By_Copy || mech == By_Reference)
forced_by_ref
= (mech == By_Reference
&& !foreign
&& !TYPE_IS_BY_REFERENCE_P (gnu_param_type)
&& !Is_Aliased (gnat_param));
/* Positive mechanism means by copy for sufficiently small parameters. */
else if (mech > 0)
{
if (TREE_CODE (gnu_param_type) == UNCONSTRAINED_ARRAY_TYPE
|| TREE_CODE (TYPE_SIZE (gnu_param_type)) != INTEGER_CST
|| compare_tree_int (TYPE_SIZE (gnu_param_type), mech) > 0)
mech = By_Reference;
else
mech = By_Copy;
}
/* Otherwise, it's an unsupported mechanism so error out. */
else
{
post_error ("unsupported mechanism for&", gnat_param);
mech = Default;
}
/* Either for foreign conventions, or if the underlying type is not passed
by reference and is as large and aligned as the original type, strip off
a possible padding type. */
if (TYPE_IS_PADDING_P (gnu_param_type))
{
tree inner_type = TREE_TYPE (TYPE_FIELDS (gnu_param_type));
if (foreign
|| (mech != By_Reference
&& !must_pass_by_ref (inner_type)
&& (mech == By_Copy || !default_pass_by_ref (inner_type))
&& ((TYPE_SIZE (inner_type) == TYPE_SIZE (gnu_param_type)
&& TYPE_ALIGN (inner_type) >= TYPE_ALIGN (gnu_param_type))
|| Is_Init_Proc (gnat_subprog))))
gnu_param_type = inner_type;
}
/* For foreign conventions, pass arrays as pointers to the element type.
First check for unconstrained array and get the underlying array. */
if (foreign && TREE_CODE (gnu_param_type) == UNCONSTRAINED_ARRAY_TYPE)
gnu_param_type
= TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_param_type))));
/* Arrays are passed as pointers to element type for foreign conventions. */
if (foreign && mech != By_Copy && TREE_CODE (gnu_param_type) == ARRAY_TYPE)
{
/* Strip off any multi-dimensional entries, then strip
off the last array to get the component type. */
while (TREE_CODE (TREE_TYPE (gnu_param_type)) == ARRAY_TYPE
&& TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_param_type)))
gnu_param_type = TREE_TYPE (gnu_param_type);
gnu_param_type = TREE_TYPE (gnu_param_type);
gnu_param_type = build_pointer_type (gnu_param_type);
by_component_ptr = true;
}
/* Fat pointers are passed as thin pointers for foreign conventions. */
else if (foreign && TYPE_IS_FAT_POINTER_P (gnu_param_type))
gnu_param_type
= make_type_from_size (gnu_param_type, size_int (POINTER_SIZE), 0);
/* Use a pointer type for the "this" pointer of C++ constructors. */
else if (Chars (gnat_param) == Name_uInit && Is_Constructor (gnat_subprog))
{
gcc_assert (mech == By_Reference);
gnu_param_type = build_pointer_type (gnu_param_type);
by_ref = true;
}
/* If we were requested or muss pass by reference, do so.
If we were requested to pass by copy, do so.
Otherwise, for foreign conventions, pass In Out or Out parameters
or aggregates by reference. For COBOL and Fortran, pass all
integer and FP types that way too. For Convention Ada, use
the standard Ada default. */
else if (mech == By_Reference
|| must_pass_by_ref (gnu_param_type)
|| (mech != By_Copy
&& ((foreign
&& (!in_param || AGGREGATE_TYPE_P (gnu_param_type)))
|| (foreign
&& (Convention (gnat_subprog) == Convention_Fortran
|| Convention (gnat_subprog) == Convention_COBOL)
&& (INTEGRAL_TYPE_P (gnu_param_type)
|| FLOAT_TYPE_P (gnu_param_type)))
|| (!foreign
&& default_pass_by_ref (gnu_param_type)))))
{
/* We take advantage of 6.2(12) by considering that references built for
parameters whose type isn't by-ref and for which the mechanism hasn't
been forced to by-ref allow only a restricted form of aliasing. */
restricted_aliasing_p
= !TYPE_IS_BY_REFERENCE_P (gnu_param_type) && mech != By_Reference;
gnu_param_type = build_reference_type (gnu_param_type);
by_ref = true;
}
/* Pass In Out or Out parameters using copy-in copy-out mechanism. */
else if (!in_param)
*cico = true;
input_location = saved_location;
if (mech == By_Copy && (by_ref || by_component_ptr))
post_error ("??cannot pass & by copy", gnat_param);
/* If this is an Out parameter that isn't passed by reference and whose
type doesn't require the initialization of formals, we don't make a
PARM_DECL for it. Instead, it will be a VAR_DECL created when we
process the procedure, so just return its type here. Likewise for
the _Init parameter of an initialization procedure or the special
parameter of a valued procedure, never pass them in. */
if (Ekind (gnat_param) == E_Out_Parameter
&& !by_ref
&& !by_component_ptr
&& (!type_requires_init_of_formal (Etype (gnat_param))
|| Is_Init_Proc (gnat_subprog)
|| by_return))
{
Set_Mechanism (gnat_param, By_Copy);
return gnu_param_type;
}
gnu_param = create_param_decl (gnu_param_name, gnu_param_type);
TREE_READONLY (gnu_param) = ro_param || by_ref || by_component_ptr;
DECL_ARTIFICIAL (gnu_param) = !Comes_From_Source (gnat_param);
DECL_BY_REF_P (gnu_param) = by_ref;
DECL_FORCED_BY_REF_P (gnu_param) = forced_by_ref;
DECL_BY_COMPONENT_PTR_P (gnu_param) = by_component_ptr;
DECL_POINTS_TO_READONLY_P (gnu_param)
= (ro_param && (by_ref || by_component_ptr));
DECL_CAN_NEVER_BE_NULL_P (gnu_param) = Can_Never_Be_Null (gnat_param);
DECL_RESTRICTED_ALIASING_P (gnu_param) = restricted_aliasing_p;
Sloc_to_locus (Sloc (gnat_param), &DECL_SOURCE_LOCATION (gnu_param));
/* If no Mechanism was specified, indicate what we're using, then
back-annotate it. */
if (mech == Default)
mech = (by_ref || by_component_ptr) ? By_Reference : By_Copy;
Set_Mechanism (gnat_param, mech);
return gnu_param;
}
/* Associate GNAT_SUBPROG with GNU_TYPE, which must be a dummy type, so that
GNAT_SUBPROG is updated when GNU_TYPE is completed.
Ada 2012 (AI05-019) says that freezing a subprogram does not always freeze
the corresponding profile, which means that, by the time the freeze node
of the subprogram is encountered, types involved in its profile may still
be not yet frozen. That's why we need to update GNAT_SUBPROG when we see
the freeze node of types involved in its profile, either types of formal
parameters or the return type. */
static void
associate_subprog_with_dummy_type (Entity_Id gnat_subprog, tree gnu_type)
{
gcc_assert (TYPE_IS_DUMMY_P (gnu_type));
struct tree_entity_vec_map in;
in.base.from = gnu_type;
struct tree_entity_vec_map **slot
= dummy_to_subprog_map->find_slot (&in, INSERT);
if (!*slot)
{
tree_entity_vec_map *e = ggc_alloc<tree_entity_vec_map> ();
e->base.from = gnu_type;
e->to = NULL;
*slot = e;
}
/* Even if there is already a slot for GNU_TYPE, we need to set the flag
because the vector might have been just emptied by update_profiles_with.
This can happen when there are 2 freeze nodes associated with different
views of the same type; the type will be really complete only after the
second freeze node is encountered. */
TYPE_DUMMY_IN_PROFILE_P (gnu_type) = 1;
vec<Entity_Id, va_gc_atomic> *v = (*slot)->to;
/* Make sure GNAT_SUBPROG is not associated twice with the same dummy type,
since this would mean updating twice its profile. */
if (v)
{
const unsigned len = v->length ();
unsigned int l = 0, u = len;
/* Entity_Id is a simple integer so we can implement a stable order on
the vector with an ordered insertion scheme and binary search. */
while (l < u)
{
unsigned int m = (l + u) / 2;
int diff = (int) (*v)[m] - (int) gnat_subprog;
if (diff > 0)
u = m;
else if (diff < 0)
l = m + 1;
else
return;
}
/* l == u and therefore is the insertion point. */
vec_safe_insert (v, l, gnat_subprog);
}
else
vec_safe_push (v, gnat_subprog);
(*slot)->to = v;
}
/* Update the GCC tree previously built for the profile of GNAT_SUBPROG. */
static void
update_profile (Entity_Id gnat_subprog)
{
tree gnu_param_list;
tree gnu_type = gnat_to_gnu_subprog_type (gnat_subprog, true,
Needs_Debug_Info (gnat_subprog),
&gnu_param_list);
if (DECL_P (gnu_type))
{
/* Builtins cannot have their address taken so we can reset them. */
gcc_assert (fndecl_built_in_p (gnu_type));
save_gnu_tree (gnat_subprog, NULL_TREE, false);
save_gnu_tree (gnat_subprog, gnu_type, false);
return;
}
tree gnu_subprog = get_gnu_tree (gnat_subprog);
TREE_TYPE (gnu_subprog) = gnu_type;
/* If GNAT_SUBPROG is an actual subprogram, GNU_SUBPROG is a FUNCTION_DECL
and needs to be adjusted too. */
if (Ekind (gnat_subprog) != E_Subprogram_Type)
{
tree gnu_entity_name = get_entity_name (gnat_subprog);
tree gnu_ext_name
= gnu_ext_name_for_subprog (gnat_subprog, gnu_entity_name);
DECL_ARGUMENTS (gnu_subprog) = gnu_param_list;
finish_subprog_decl (gnu_subprog, gnu_ext_name, gnu_type);
}
}
/* Update the GCC trees previously built for the profiles involving GNU_TYPE,
a dummy type which appears in profiles. */
void
update_profiles_with (tree gnu_type)
{
struct tree_entity_vec_map in;
in.base.from = gnu_type;
struct tree_entity_vec_map *e = dummy_to_subprog_map->find (&in);
gcc_assert (e);
vec<Entity_Id, va_gc_atomic> *v = e->to;
e->to = NULL;
/* The flag needs to be reset before calling update_profile, in case
associate_subprog_with_dummy_type is again invoked on GNU_TYPE. */
TYPE_DUMMY_IN_PROFILE_P (gnu_type) = 0;
unsigned int i;
Entity_Id *iter;
FOR_EACH_VEC_ELT (*v, i, iter)
update_profile (*iter);
vec_free (v);
}
/* Return the GCC tree for GNAT_TYPE present in the profile of a subprogram.
Ada 2012 (AI05-0151) says that incomplete types coming from a limited
context may now appear as parameter and result types. As a consequence,
we may need to defer their translation until after a freeze node is seen
or to the end of the current unit. We also aim at handling temporarily
incomplete types created by the usual delayed elaboration scheme. */
static tree
gnat_to_gnu_profile_type (Entity_Id gnat_type)
{
/* This is the same logic as the E_Access_Type case of gnat_to_gnu_entity
so the rationale is exposed in that place. These processings probably
ought to be merged at some point. */
Entity_Id gnat_equiv = Gigi_Equivalent_Type (gnat_type);
const bool is_from_limited_with
= (Is_Incomplete_Type (gnat_equiv)
&& From_Limited_With (gnat_equiv));
Entity_Id gnat_full_direct_first
= (is_from_limited_with
? Non_Limited_View (gnat_equiv)
: (Is_Incomplete_Or_Private_Type (gnat_equiv)
? Full_View (gnat_equiv) : Empty));
Entity_Id gnat_full_direct
= ((is_from_limited_with
&& Present (gnat_full_direct_first)
&& Is_Private_Type (gnat_full_direct_first))
? Full_View (gnat_full_direct_first)
: gnat_full_direct_first);
Entity_Id gnat_full = Gigi_Equivalent_Type (gnat_full_direct);
Entity_Id gnat_rep = Present (gnat_full) ? gnat_full : gnat_equiv;
const bool in_main_unit = In_Extended_Main_Code_Unit (gnat_rep);
tree gnu_type;
if (Present (gnat_full) && present_gnu_tree (gnat_full))
gnu_type = TREE_TYPE (get_gnu_tree (gnat_full));
else if (is_from_limited_with
&& ((!in_main_unit
&& !present_gnu_tree (gnat_equiv)
&& Present (gnat_full)
&& (Is_Record_Type (gnat_full)
|| Is_Array_Type (gnat_full)
|| Is_Access_Type (gnat_full)))
|| (in_main_unit && Present (Freeze_Node (gnat_rep)))))
{
gnu_type = make_dummy_type (gnat_equiv);
if (!in_main_unit)
{
struct incomplete *p = XNEW (struct incomplete);
p->old_type = gnu_type;
p->full_type = gnat_equiv;
p->next = defer_limited_with_list;
defer_limited_with_list = p;
}
}
else if (type_annotate_only && No (gnat_equiv))
gnu_type = void_type_node;
else
gnu_type = gnat_to_gnu_type (gnat_equiv);
/* Access-to-unconstrained-array types need a special treatment. */
if (Is_Array_Type (gnat_rep) && !Is_Constrained (gnat_rep))
{
if (!TYPE_POINTER_TO (gnu_type))
build_dummy_unc_pointer_types (gnat_equiv, gnu_type);
}
return gnu_type;
}
/* Return true if TYPE contains only integral data, recursively if need be. */
static bool
type_contains_only_integral_data (tree type)
{
switch (TREE_CODE (type))
{
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
if (!type_contains_only_integral_data (TREE_TYPE (field)))
return false;
return true;
case ARRAY_TYPE:
case COMPLEX_TYPE:
return type_contains_only_integral_data (TREE_TYPE (type));
default:
return INTEGRAL_TYPE_P (type);
}
gcc_unreachable ();
}
/* Return a GCC tree for a subprogram type corresponding to GNAT_SUBPROG.
DEFINITION is true if this is for a subprogram being defined. DEBUG_INFO_P
is true if we need to write debug information for other types that we may
create in the process. Also set PARAM_LIST to the list of parameters.
If GNAT_SUBPROG is bound to a GCC builtin, return the DECL for the builtin
directly instead of its type. */
static tree
gnat_to_gnu_subprog_type (Entity_Id gnat_subprog, bool definition,
bool debug_info_p, tree *param_list)
{
const Entity_Kind kind = Ekind (gnat_subprog);
const Entity_Id gnat_return_type = Etype (gnat_subprog);
const bool method_p = is_cplusplus_method (gnat_subprog);
const bool variadic = IN (Convention (gnat_subprog), Convention_C_Variadic);
tree gnu_type = present_gnu_tree (gnat_subprog)
? TREE_TYPE (get_gnu_tree (gnat_subprog)) : NULL_TREE;
tree gnu_return_type;
tree gnu_param_type_list = NULL_TREE;
tree gnu_param_list = NULL_TREE;
/* Non-null for subprograms containing parameters passed by copy-in copy-out
(In Out or Out parameters not passed by reference), in which case it is
the list of nodes used to specify the values of the In Out/Out parameters
that are returned as a record upon procedure return. The TREE_PURPOSE of
an element of this list is a FIELD_DECL of the record and the TREE_VALUE
is the PARM_DECL corresponding to that field. This list will be saved in
the TYPE_CI_CO_LIST field of the FUNCTION_TYPE node we create. */
tree gnu_cico_list = NULL_TREE;
tree gnu_cico_return_type = NULL_TREE;
tree gnu_cico_field_list = NULL_TREE;
bool gnu_cico_only_integral_type = true;
/* Although the semantics of "pure" units in Ada essentially match those of
"const" in GNU C, the semantics of the Is_Pure flag in GNAT do not say
anything about access to global memory, that's why it needs to be mapped
to "pure" instead of "const" in GNU C. The property is orthogonal to the
"nothrow" property only if the EH circuitry is explicit in the internal
representation of the middle-end: if we are to completely hide the EH
circuitry from it, we need to declare that calls to pure Ada subprograms
that can throw have side effects, since they can trigger an "abnormal"
transfer of control; therefore they cannot be "pure" in the GCC sense. */
bool pure_flag = Is_Pure (gnat_subprog);
bool return_by_direct_ref_p = false;
bool return_by_invisi_ref_p = false;
bool incomplete_profile_p = false;
/* Look into the return type and get its associated GCC tree if it is not
void, and then compute various flags for the subprogram type. But make
sure not to do this processing multiple times. */
if (Ekind (gnat_return_type) == E_Void)
gnu_return_type = void_type_node;
else if (gnu_type
&& FUNC_OR_METHOD_TYPE_P (gnu_type)
&& !TYPE_IS_DUMMY_P (TREE_TYPE (gnu_type)))
{
gnu_return_type = TREE_TYPE (gnu_type);
return_by_direct_ref_p = TYPE_RETURN_BY_DIRECT_REF_P (gnu_type);
return_by_invisi_ref_p = TREE_ADDRESSABLE (gnu_type);
}
else
{
/* For foreign convention/intrinsic subprograms, return System.Address
as void * or equivalent; this comprises GCC builtins. */
if ((Has_Foreign_Convention (gnat_subprog)
|| Is_Intrinsic_Subprogram (gnat_subprog))
&& Is_Descendant_Of_Address (Underlying_Type (gnat_return_type)))
gnu_return_type = ptr_type_node;
else
gnu_return_type = gnat_to_gnu_profile_type (gnat_return_type);
/* If this function returns by reference or on the secondary stack, make
the actual return type the reference type and make a note of that. */
if (Returns_By_Ref (gnat_subprog)
|| Needs_Secondary_Stack (gnat_return_type)
|| Is_Secondary_Stack_Thunk (gnat_subprog))
{
gnu_return_type = build_reference_type (gnu_return_type);
return_by_direct_ref_p = true;
}
/* If the Mechanism is By_Reference, ensure this function uses the
target's by-invisible-reference mechanism, which may not be the
same as above (e.g. it might be passing an extra parameter). */
else if (kind == E_Function && Mechanism (gnat_subprog) == By_Reference)
return_by_invisi_ref_p = true;
/* Likewise, if the return type is itself By_Reference. */
else if (TYPE_IS_BY_REFERENCE_P (gnu_return_type))
return_by_invisi_ref_p = true;
/* If the type is a padded type and the underlying type would not be
passed by reference or the function has a foreign convention, return
the underlying type. */
else if (TYPE_IS_PADDING_P (gnu_return_type)
&& (!default_pass_by_ref
(TREE_TYPE (TYPE_FIELDS (gnu_return_type)))
|| Has_Foreign_Convention (gnat_subprog)))
gnu_return_type = TREE_TYPE (TYPE_FIELDS (gnu_return_type));
/* If the return type is unconstrained, it must have a maximum size.
Use the padded type as the effective return type. And ensure the
function uses the target's by-invisible-reference mechanism to
avoid copying too much data when it returns. */
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_return_type)))
{
tree orig_type = gnu_return_type;
tree max_return_size = max_size (TYPE_SIZE (gnu_return_type), true);
/* If the size overflows to 0, set it to an arbitrary positive
value so that assignments in the type are preserved. Their
actual size is independent of this positive value. */
if (TREE_CODE (max_return_size) == INTEGER_CST
&& TREE_OVERFLOW (max_return_size)
&& integer_zerop (max_return_size))
{
max_return_size = copy_node (bitsize_unit_node);
TREE_OVERFLOW (max_return_size) = 1;
}
gnu_return_type = maybe_pad_type (gnu_return_type, max_return_size,
0, gnat_subprog, false, definition,
true);
/* Declare it now since it will never be declared otherwise. This
is necessary to ensure that its subtrees are properly marked. */
if (gnu_return_type != orig_type
&& !DECL_P (TYPE_NAME (gnu_return_type)))
create_type_decl (TYPE_NAME (gnu_return_type), gnu_return_type,
true, debug_info_p, gnat_subprog);
return_by_invisi_ref_p = true;
}
/* If the return type has a size that overflows, we usually cannot have
a function that returns that type. This usage doesn't really make
sense anyway, so issue an error here. */
if (!return_by_invisi_ref_p
&& TYPE_SIZE_UNIT (gnu_return_type)
&& TREE_CODE (TYPE_SIZE_UNIT (gnu_return_type)) == INTEGER_CST
&& !valid_constant_size_p (TYPE_SIZE_UNIT (gnu_return_type)))
{
post_error ("cannot return type whose size overflows", gnat_subprog);
gnu_return_type = copy_type (gnu_return_type);
TYPE_SIZE (gnu_return_type) = bitsize_zero_node;
TYPE_SIZE_UNIT (gnu_return_type) = size_zero_node;
}
/* If the return type is incomplete, there are 2 cases: if the function
returns by reference, then the return type is only linked indirectly
in the profile, so the profile can be seen as complete since it need
not be further modified, only the reference types need be adjusted;
otherwise the profile is incomplete and need be adjusted too. */
if (TYPE_IS_DUMMY_P (gnu_return_type))
{
associate_subprog_with_dummy_type (gnat_subprog, gnu_return_type);
incomplete_profile_p = true;
}
if (kind == E_Function)
Set_Mechanism (gnat_subprog, return_by_direct_ref_p
|| return_by_invisi_ref_p
? By_Reference : By_Copy);
}
/* A procedure (something that doesn't return anything) shouldn't be
considered pure since there would be no reason for calling such a
subprogram. Note that procedures with Out (or In Out) parameters
have already been converted into a function with a return type.
Similarly, if the function returns an unconstrained type, then the
function will allocate the return value on the secondary stack and
thus calls to it cannot be CSE'ed, lest the stack be reclaimed. */
if (VOID_TYPE_P (gnu_return_type) || return_by_direct_ref_p)
pure_flag = false;
/* Loop over the parameters and get their associated GCC tree. While doing
this, build a copy-in copy-out structure if we need one. */
Entity_Id gnat_param;
int num;
for (gnat_param = First_Formal_With_Extras (gnat_subprog), num = 0;
Present (gnat_param);
gnat_param = Next_Formal_With_Extras (gnat_param), num++)
{
const bool mech_is_by_ref
= Mechanism (gnat_param) == By_Reference
&& !(num == 0 && Is_Valued_Procedure (gnat_subprog));
tree gnu_param_name = get_entity_name (gnat_param);
tree gnu_param, gnu_param_type;
bool cico = false;
/* For a variadic C function, do not build unnamed parameters. */
if (variadic
&& num == (Convention (gnat_subprog) - Convention_C_Variadic_0))
break;
/* Fetch an existing parameter with complete type and reuse it. But we
didn't save the CICO property so we can only do it for In parameters
or parameters passed by reference. */
if ((Ekind (gnat_param) == E_In_Parameter || mech_is_by_ref)
&& present_gnu_tree (gnat_param)
&& (gnu_param = get_gnu_tree (gnat_param))
&& !TYPE_IS_DUMMY_P (TREE_TYPE (gnu_param)))
{
DECL_CHAIN (gnu_param) = NULL_TREE;
gnu_param_type = TREE_TYPE (gnu_param);
}
/* Otherwise translate the parameter type and act accordingly. */
else
{
Entity_Id gnat_param_type = Etype (gnat_param);
/* For foreign convention/intrinsic subprograms, pass System.Address
as void * or equivalent; this comprises GCC builtins. */
if ((Has_Foreign_Convention (gnat_subprog)
|| Is_Intrinsic_Subprogram (gnat_subprog))
&& Is_Descendant_Of_Address (Underlying_Type (gnat_param_type)))
gnu_param_type = ptr_type_node;
else
gnu_param_type = gnat_to_gnu_profile_type (gnat_param_type);
/* If the parameter type is incomplete, there are 2 cases: if it is
passed by reference, then the type is only linked indirectly in
the profile, so the profile can be seen as complete since it need
not be further modified, only the reference type need be adjusted;
otherwise the profile is incomplete and need be adjusted too. */
if (TYPE_IS_DUMMY_P (gnu_param_type))
{
Node_Id gnat_decl;
if (mech_is_by_ref
|| (TYPE_REFERENCE_TO (gnu_param_type)
&& TYPE_IS_FAT_POINTER_P
(TYPE_REFERENCE_TO (gnu_param_type)))
|| TYPE_IS_BY_REFERENCE_P (gnu_param_type))
{
gnu_param_type = build_reference_type (gnu_param_type);
gnu_param
= create_param_decl (gnu_param_name, gnu_param_type);
TREE_READONLY (gnu_param) = 1;
DECL_BY_REF_P (gnu_param) = 1;
DECL_POINTS_TO_READONLY_P (gnu_param)
= (Ekind (gnat_param) == E_In_Parameter
&& !Address_Taken (gnat_param));
Set_Mechanism (gnat_param, By_Reference);
Sloc_to_locus (Sloc (gnat_param),
&DECL_SOURCE_LOCATION (gnu_param));
}
/* ??? This is a kludge to support null procedures in spec taking
a parameter with an untagged incomplete type coming from a
limited context. The front-end creates a body without knowing
anything about the non-limited view, which is illegal Ada and
cannot be supported. Create a parameter with a fake type. */
else if (kind == E_Procedure
&& (gnat_decl = Parent (gnat_subprog))
&& Nkind (gnat_decl) == N_Procedure_Specification
&& Null_Present (gnat_decl)
&& Is_Incomplete_Type (gnat_param_type))
gnu_param = create_param_decl (gnu_param_name, ptr_type_node);
else
{
/* Build a minimal PARM_DECL without DECL_ARG_TYPE so that
Call_to_gnu will stop if it encounters the PARM_DECL. */
gnu_param
= build_decl (input_location, PARM_DECL, gnu_param_name,
gnu_param_type);
associate_subprog_with_dummy_type (gnat_subprog,
gnu_param_type);
incomplete_profile_p = true;
}
}
/* Otherwise build the parameter declaration normally. */
else
{
gnu_param
= gnat_to_gnu_param (gnat_param, gnu_param_type, num == 0,
gnat_subprog, &cico);
/* We are returned either a PARM_DECL or a type if no parameter
needs to be passed; in either case, adjust the type. */
if (DECL_P (gnu_param))
gnu_param_type = TREE_TYPE (gnu_param);
else
{
gnu_param_type = gnu_param;
gnu_param = NULL_TREE;
}
}
}
/* If we have a GCC tree for the parameter, register it. */
save_gnu_tree (gnat_param, NULL_TREE, false);
if (gnu_param)
{
gnu_param_type_list
= tree_cons (NULL_TREE, gnu_param_type, gnu_param_type_list);
DECL_CHAIN (gnu_param) = gnu_param_list;
gnu_param_list = gnu_param;
save_gnu_tree (gnat_param, gnu_param, false);
/* A pure function in the Ada sense which takes an access parameter
may modify memory through it and thus cannot be considered pure
in the GCC sense, unless it's access-to-function. Likewise it if
takes a by-ref In Out or Out parameter. But if it takes a by-ref
In parameter, then it may only read memory through it and can be
considered pure in the GCC sense. */
if (pure_flag
&& ((POINTER_TYPE_P (gnu_param_type)
&& TREE_CODE (TREE_TYPE (gnu_param_type)) != FUNCTION_TYPE)
|| TYPE_IS_FAT_POINTER_P (gnu_param_type)))
pure_flag = DECL_POINTS_TO_READONLY_P (gnu_param);
}
/* If the parameter uses the copy-in copy-out mechanism, allocate a field
for it in the return type and register the association. */
if (cico && !incomplete_profile_p)
{
if (!gnu_cico_list)
{
gnu_cico_return_type = make_node (RECORD_TYPE);
/* If this is a function, we also need a field for the
return value to be placed. */
if (!VOID_TYPE_P (gnu_return_type))
{
tree gnu_field
= create_field_decl (get_identifier ("RETVAL"),
gnu_return_type,
gnu_cico_return_type, NULL_TREE,
NULL_TREE, 0, 0);
Sloc_to_locus (Sloc (gnat_subprog),
&DECL_SOURCE_LOCATION (gnu_field));
gnu_cico_field_list = gnu_field;
gnu_cico_list
= tree_cons (gnu_field, void_type_node, NULL_TREE);
if (!type_contains_only_integral_data (gnu_return_type))
gnu_cico_only_integral_type = false;
}
TYPE_NAME (gnu_cico_return_type) = get_identifier ("RETURN");
/* Set a default alignment to speed up accesses. But we should
not increase the size of the structure too much, lest it does
not fit in return registers anymore. */
SET_TYPE_ALIGN (gnu_cico_return_type,
get_mode_alignment (ptr_mode));
}
tree gnu_field
= create_field_decl (gnu_param_name, gnu_param_type,
gnu_cico_return_type, NULL_TREE, NULL_TREE,
0, 0);
Sloc_to_locus (Sloc (gnat_param),
&DECL_SOURCE_LOCATION (gnu_field));
DECL_CHAIN (gnu_field) = gnu_cico_field_list;
gnu_cico_field_list = gnu_field;
gnu_cico_list = tree_cons (gnu_field, gnu_param, gnu_cico_list);
if (!type_contains_only_integral_data (gnu_param_type))
gnu_cico_only_integral_type = false;
}
}
/* If the subprogram uses the copy-in copy-out mechanism, possibly adjust
and finish up the return type. */
if (gnu_cico_list && !incomplete_profile_p)
{
/* If we have a CICO list but it has only one entry, we convert
this function into a function that returns this object. */
if (list_length (gnu_cico_list) == 1)
gnu_cico_return_type = TREE_TYPE (TREE_PURPOSE (gnu_cico_list));
/* Do not finalize the return type if the subprogram is stubbed
since structures are incomplete for the back-end. */
else if (Convention (gnat_subprog) != Convention_Stubbed)
{
finish_record_type (gnu_cico_return_type,
nreverse (gnu_cico_field_list),
0, false);
/* Try to promote the mode if the return type is fully returned
in integer registers, again to speed up accesses. */
if (TYPE_MODE (gnu_cico_return_type) == BLKmode
&& gnu_cico_only_integral_type
&& !targetm.calls.return_in_memory (gnu_cico_return_type,
NULL_TREE))
{
unsigned int size
= TREE_INT_CST_LOW (TYPE_SIZE (gnu_cico_return_type));
unsigned int i = BITS_PER_UNIT;
scalar_int_mode mode;
while (i < size)
i <<= 1;
if (int_mode_for_size (i, 0).exists (&mode))
{
SET_TYPE_MODE (gnu_cico_return_type, mode);
SET_TYPE_ALIGN (gnu_cico_return_type,
GET_MODE_ALIGNMENT (mode));
TYPE_SIZE (gnu_cico_return_type)
= bitsize_int (GET_MODE_BITSIZE (mode));
TYPE_SIZE_UNIT (gnu_cico_return_type)
= size_int (GET_MODE_SIZE (mode));
}
}
/* But demote the mode if the return type is partly returned in FP
registers to avoid creating problematic paradoxical subregs.
Note that we need to cater to historical 32-bit architectures
that incorrectly use the mode to select the return mechanism. */
else if (INTEGRAL_MODE_P (TYPE_MODE (gnu_cico_return_type))
&& !gnu_cico_only_integral_type
&& BITS_PER_WORD >= 64
&& !targetm.calls.return_in_memory (gnu_cico_return_type,
NULL_TREE))
SET_TYPE_MODE (gnu_cico_return_type, BLKmode);
if (debug_info_p)
rest_of_record_type_compilation (gnu_cico_return_type);
/* Declare it now since it will never be declared otherwise. This
is necessary to ensure that its subtrees are properly marked. */
create_type_decl (TYPE_NAME (gnu_cico_return_type),
gnu_cico_return_type,
true, debug_info_p, gnat_subprog);
}
gnu_return_type = gnu_cico_return_type;
}
/* The lists have been built in reverse. */
gnu_param_type_list = nreverse (gnu_param_type_list);
if (!variadic)
gnu_param_type_list = chainon (gnu_param_type_list, void_list_node);
gnu_param_list = nreverse (gnu_param_list);
gnu_cico_list = nreverse (gnu_cico_list);
/* Turn imported C++ constructors into their callable form as done in the
front-end, i.e. add the "this" pointer and void the return type. */
if (method_p
&& Is_Constructor (gnat_subprog)
&& !VOID_TYPE_P (gnu_return_type))
{
tree gnu_param_type
= build_pointer_type (gnat_to_gnu_profile_type (gnat_return_type));
tree gnu_param_name = get_identifier (Get_Name_String (Name_uInit));
tree gnu_param
= build_decl (input_location, PARM_DECL, gnu_param_name,
gnu_param_type);
gnu_param_type_list
= tree_cons (NULL_TREE, gnu_param_type, gnu_param_type_list);
DECL_CHAIN (gnu_param) = gnu_param_list;
gnu_param_list = gnu_param;
gnu_return_type = void_type_node;
}
/* If the profile is incomplete, we only set the (temporary) return and
parameter types; otherwise, we build the full type. In either case,
we reuse an already existing GCC tree that we built previously here. */
if (incomplete_profile_p)
{
if (gnu_type && FUNC_OR_METHOD_TYPE_P (gnu_type))
;
else
gnu_type = make_node (method_p ? METHOD_TYPE : FUNCTION_TYPE);
TREE_TYPE (gnu_type) = gnu_return_type;
TYPE_ARG_TYPES (gnu_type) = gnu_param_type_list;
TYPE_RETURN_BY_DIRECT_REF_P (gnu_type) = return_by_direct_ref_p;
TREE_ADDRESSABLE (gnu_type) = return_by_invisi_ref_p;
}
else
{
if (gnu_type && FUNC_OR_METHOD_TYPE_P (gnu_type))
{
TREE_TYPE (gnu_type) = gnu_return_type;
TYPE_ARG_TYPES (gnu_type) = gnu_param_type_list;
if (method_p)
{
tree gnu_basetype = TREE_TYPE (TREE_VALUE (gnu_param_type_list));
TYPE_METHOD_BASETYPE (gnu_type)
= TYPE_MAIN_VARIANT (gnu_basetype);
}
TYPE_CI_CO_LIST (gnu_type) = gnu_cico_list;
TYPE_RETURN_BY_DIRECT_REF_P (gnu_type) = return_by_direct_ref_p;
TREE_ADDRESSABLE (gnu_type) = return_by_invisi_ref_p;
TYPE_CANONICAL (gnu_type) = gnu_type;
layout_type (gnu_type);
}
else
{
if (method_p)
{
tree gnu_basetype = TREE_TYPE (TREE_VALUE (gnu_param_type_list));
gnu_type
= build_method_type_directly (gnu_basetype, gnu_return_type,
TREE_CHAIN (gnu_param_type_list));
}
else
gnu_type
= build_function_type (gnu_return_type, gnu_param_type_list);
/* GNU_TYPE may be shared since GCC hashes types. Unshare it if it
has a different TYPE_CI_CO_LIST or flags. */
if (!fntype_same_flags_p (gnu_type, gnu_cico_list,
return_by_direct_ref_p,
return_by_invisi_ref_p))
{
gnu_type = copy_type (gnu_type);
TYPE_CI_CO_LIST (gnu_type) = gnu_cico_list;
TYPE_RETURN_BY_DIRECT_REF_P (gnu_type) = return_by_direct_ref_p;
TREE_ADDRESSABLE (gnu_type) = return_by_invisi_ref_p;
}
}
if (pure_flag)
gnu_type = change_qualified_type (gnu_type, TYPE_QUAL_RESTRICT);
if (No_Return (gnat_subprog))
gnu_type = change_qualified_type (gnu_type, TYPE_QUAL_VOLATILE);
/* If this subprogram is expectedly bound to a GCC builtin, fetch the
corresponding DECL node and check the parameter association. */
if (Is_Intrinsic_Subprogram (gnat_subprog)
&& Present (Interface_Name (gnat_subprog)))
{
tree gnu_ext_name = create_concat_name (gnat_subprog, NULL);
tree gnu_builtin_decl = builtin_decl_for (gnu_ext_name);
/* If we have a builtin DECL for that function, use it. Check if
the profiles are compatible and warn if they are not. Note that
the checker is expected to post diagnostics in this case. */
if (gnu_builtin_decl)
{
if (fndecl_built_in_p (gnu_builtin_decl, BUILT_IN_NORMAL))
{
const enum built_in_function fncode
= DECL_FUNCTION_CODE (gnu_builtin_decl);
switch (fncode)
{
case BUILT_IN_SYNC_FETCH_AND_ADD_N:
case BUILT_IN_SYNC_FETCH_AND_SUB_N:
case BUILT_IN_SYNC_FETCH_AND_OR_N:
case BUILT_IN_SYNC_FETCH_AND_AND_N:
case BUILT_IN_SYNC_FETCH_AND_XOR_N:
case BUILT_IN_SYNC_FETCH_AND_NAND_N:
case BUILT_IN_SYNC_ADD_AND_FETCH_N:
case BUILT_IN_SYNC_SUB_AND_FETCH_N:
case BUILT_IN_SYNC_OR_AND_FETCH_N:
case BUILT_IN_SYNC_AND_AND_FETCH_N:
case BUILT_IN_SYNC_XOR_AND_FETCH_N:
case BUILT_IN_SYNC_NAND_AND_FETCH_N:
case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_N:
case BUILT_IN_SYNC_LOCK_TEST_AND_SET_N:
case BUILT_IN_ATOMIC_EXCHANGE_N:
case BUILT_IN_ATOMIC_LOAD_N:
case BUILT_IN_ATOMIC_ADD_FETCH_N:
case BUILT_IN_ATOMIC_SUB_FETCH_N:
case BUILT_IN_ATOMIC_AND_FETCH_N:
case BUILT_IN_ATOMIC_NAND_FETCH_N:
case BUILT_IN_ATOMIC_XOR_FETCH_N:
case BUILT_IN_ATOMIC_OR_FETCH_N:
case BUILT_IN_ATOMIC_FETCH_ADD_N:
case BUILT_IN_ATOMIC_FETCH_SUB_N:
case BUILT_IN_ATOMIC_FETCH_AND_N:
case BUILT_IN_ATOMIC_FETCH_NAND_N:
case BUILT_IN_ATOMIC_FETCH_XOR_N:
case BUILT_IN_ATOMIC_FETCH_OR_N:
/* This is a generic builtin overloaded on its return
type, so do type resolution based on it. */
if (!VOID_TYPE_P (gnu_return_type)
&& type_for_atomic_builtin_p (gnu_return_type))
gnu_builtin_decl
= resolve_atomic_builtin (fncode, gnu_return_type);
else
{
post_error
("??cannot import type-generic 'G'C'C builtin!",
gnat_subprog);
post_error
("\\?use a supported result type",
gnat_subprog);
gnu_builtin_decl = NULL_TREE;
}
break;
case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
case BUILT_IN_ATOMIC_STORE_N:
/* This is a generic builtin overloaded on its second
parameter type, so do type resolution based on it. */
if (list_length (gnu_param_type_list) >= 3
&& type_for_atomic_builtin_p
(list_second (gnu_param_type_list)))
gnu_builtin_decl
= resolve_atomic_builtin
(fncode, list_second (gnu_param_type_list));
else
{
post_error
("??cannot import type-generic 'G'C'C builtin!",
gnat_subprog);
post_error
("\\?use a supported second parameter type",
gnat_subprog);
gnu_builtin_decl = NULL_TREE;
}
break;
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
/* This is a generic builtin overloaded on its third
parameter type, so do type resolution based on it. */
if (list_length (gnu_param_type_list) >= 4
&& type_for_atomic_builtin_p
(list_third (gnu_param_type_list)))
gnu_builtin_decl
= resolve_atomic_builtin
(fncode, list_third (gnu_param_type_list));
else
{
post_error
("??cannot import type-generic 'G'C'C builtin!",
gnat_subprog);
post_error
("\\?use a supported third parameter type",
gnat_subprog);
gnu_builtin_decl = NULL_TREE;
}
break;
case BUILT_IN_SYNC_LOCK_RELEASE_N:
post_error
("??unsupported type-generic 'G'C'C builtin!",
gnat_subprog);
gnu_builtin_decl = NULL_TREE;
break;
default:
break;
}
}
if (gnu_builtin_decl)
{
const intrin_binding_t inb
= { gnat_subprog, gnu_type, TREE_TYPE (gnu_builtin_decl) };
if (!intrin_profiles_compatible_p (&inb))
post_error
("??profile of& doesn''t match the builtin it binds!",
gnat_subprog);
return gnu_builtin_decl;
}
}
/* Inability to find the builtin DECL most often indicates a genuine
mistake, but imports of unregistered intrinsics are sometimes used
on purpose to allow hooking in alternate bodies; we post a warning
conditioned on Wshadow in this case, to let developers be notified
on demand without risking false positives with common default sets
of options. */
if (warn_shadow)
post_error ("'G'C'C builtin not found for&!??", gnat_subprog);
}
}
*param_list = gnu_param_list;
return gnu_type;
}
/* Return the external name for GNAT_SUBPROG given its entity name. */
static tree
gnu_ext_name_for_subprog (Entity_Id gnat_subprog, tree gnu_entity_name)
{
tree gnu_ext_name = create_concat_name (gnat_subprog, NULL);
/* If there was no specified Interface_Name and the external and
internal names of the subprogram are the same, only use the
internal name to allow disambiguation of nested subprograms. */
if (No (Interface_Name (gnat_subprog)) && gnu_ext_name == gnu_entity_name)
gnu_ext_name = NULL_TREE;
return gnu_ext_name;
}
/* Set TYPE_NONALIASED_COMPONENT on an array type built by means of
build_nonshared_array_type. */
static void
set_nonaliased_component_on_array_type (tree type)
{
TYPE_NONALIASED_COMPONENT (type) = 1;
if (TYPE_CANONICAL (type))
TYPE_NONALIASED_COMPONENT (TYPE_CANONICAL (type)) = 1;
}
/* Set TYPE_REVERSE_STORAGE_ORDER on an array type built by means of
build_nonshared_array_type. */
static void
set_reverse_storage_order_on_array_type (tree type)
{
TYPE_REVERSE_STORAGE_ORDER (type) = 1;
if (TYPE_CANONICAL (type))
TYPE_REVERSE_STORAGE_ORDER (TYPE_CANONICAL (type)) = 1;
}
/* Return true if DISCR1 and DISCR2 represent the same discriminant. */
static bool
same_discriminant_p (Entity_Id discr1, Entity_Id discr2)
{
while (Present (Corresponding_Discriminant (discr1)))
discr1 = Corresponding_Discriminant (discr1);
while (Present (Corresponding_Discriminant (discr2)))
discr2 = Corresponding_Discriminant (discr2);
return
Original_Record_Component (discr1) == Original_Record_Component (discr2);
}
/* Return true if the array type GNU_TYPE, which represents a dimension of
GNAT_TYPE, has a non-aliased component in the back-end sense. */
static bool
array_type_has_nonaliased_component (tree gnu_type, Entity_Id gnat_type)
{
/* If the array type has an aliased component in the front-end sense,
then it also has an aliased component in the back-end sense. */
if (Has_Aliased_Components (gnat_type))
return false;
/* If this is a derived type, then it has a non-aliased component if
and only if its parent type also has one. */
if (Is_Derived_Type (gnat_type))
{
tree gnu_parent_type = gnat_to_gnu_type (Etype (gnat_type));
if (TREE_CODE (gnu_parent_type) == UNCONSTRAINED_ARRAY_TYPE)
gnu_parent_type
= TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_parent_type))));
return TYPE_NONALIASED_COMPONENT (gnu_parent_type);
}
/* For a multi-dimensional array type, find the component type. */
while (TREE_CODE (TREE_TYPE (gnu_type)) == ARRAY_TYPE
&& TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_type)))
gnu_type = TREE_TYPE (gnu_type);
/* Consider that an array of pointers has an aliased component, which is
sort of logical and helps with Taft Amendment types in LTO mode. */
if (POINTER_TYPE_P (TREE_TYPE (gnu_type)))
return false;
/* Otherwise, rely exclusively on properties of the element type. */
return type_for_nonaliased_component_p (TREE_TYPE (gnu_type));
}
/* Return true if GNAT_ADDRESS is a value known at compile-time. */
static bool
compile_time_known_address_p (Node_Id gnat_address)
{
/* Handle reference to a constant. */
if (Is_Entity_Name (gnat_address)
&& Ekind (Entity (gnat_address)) == E_Constant)
{
gnat_address = Constant_Value (Entity (gnat_address));
if (No (gnat_address))
return false;
}
/* Catch System'To_Address. */
if (Nkind (gnat_address) == N_Unchecked_Type_Conversion)
gnat_address = Expression (gnat_address);
return Compile_Time_Known_Value (gnat_address);
}
/* Return true if GNAT_INDIC, a N_Subtype_Indication node for the index of a
FLB, cannot yield superflat objects, i.e. if the inequality HB >= LB - 1
is true for these objects. LB and HB are the low and high bounds. */
static bool
flb_cannot_be_superflat (Node_Id gnat_indic)
{
const Entity_Id gnat_type = Entity (Subtype_Mark (gnat_indic));
const Entity_Id gnat_subtype = Etype (gnat_indic);
Node_Id gnat_scalar_range, gnat_lb, gnat_hb;
tree gnu_lb, gnu_hb, gnu_lb_minus_one;
/* This is a FLB so LB is fixed. */
if ((Ekind (gnat_subtype) == E_Signed_Integer_Subtype
|| Ekind (gnat_subtype) == E_Modular_Integer_Subtype)
&& (gnat_scalar_range = Scalar_Range (gnat_subtype)))
{
gnat_lb = Low_Bound (gnat_scalar_range);
gcc_assert (Nkind (gnat_lb) == N_Integer_Literal);
}
else
return false;
/* The low bound of the type is a lower bound for HB. */
if ((Ekind (gnat_type) == E_Signed_Integer_Subtype
|| Ekind (gnat_type) == E_Modular_Integer_Subtype)
&& (gnat_scalar_range = Scalar_Range (gnat_type)))
{
gnat_hb = Low_Bound (gnat_scalar_range);
gcc_assert (Nkind (gnat_hb) == N_Integer_Literal);
}
else
return false;
/* We need at least a signed 64-bit type to catch most cases. */
gnu_lb = UI_To_gnu (Intval (gnat_lb), sbitsizetype);
gnu_hb = UI_To_gnu (Intval (gnat_hb), sbitsizetype);
if (TREE_OVERFLOW (gnu_lb) || TREE_OVERFLOW (gnu_hb))
return false;
/* If the low bound is the smallest integer, nothing can be smaller. */
gnu_lb_minus_one = size_binop (MINUS_EXPR, gnu_lb, sbitsize_one_node);
if (TREE_OVERFLOW (gnu_lb_minus_one))
return true;
return !tree_int_cst_lt (gnu_hb, gnu_lb_minus_one);
}
/* Return true if GNAT_RANGE, a N_Range node, cannot be superflat, i.e. if the
inequality HB >= LB - 1 is true. LB and HB are the low and high bounds. */
static bool
range_cannot_be_superflat (Node_Id gnat_range)
{
Node_Id gnat_lb = Low_Bound (gnat_range), gnat_hb = High_Bound (gnat_range);
Node_Id gnat_scalar_range;
tree gnu_lb, gnu_hb, gnu_lb_minus_one;
/* This is the easy case. */
if (Cannot_Be_Superflat (gnat_range))
return true;
/* If the low bound is not constant, take the worst case by finding an upper
bound for its type, repeatedly if need be. */
while (Nkind (gnat_lb) != N_Integer_Literal
&& (Ekind (Etype (gnat_lb)) == E_Signed_Integer_Subtype
|| Ekind (Etype (gnat_lb)) == E_Modular_Integer_Subtype)
&& (gnat_scalar_range = Scalar_Range (Etype (gnat_lb)))
&& (Nkind (gnat_scalar_range) == N_Signed_Integer_Type_Definition
|| Nkind (gnat_scalar_range) == N_Range))
gnat_lb = High_Bound (gnat_scalar_range);
/* If the high bound is not constant, take the worst case by finding a lower
bound for its type, repeatedly if need be. */
while (Nkind (gnat_hb) != N_Integer_Literal
&& (Ekind (Etype (gnat_hb)) == E_Signed_Integer_Subtype
|| Ekind (Etype (gnat_hb)) == E_Modular_Integer_Subtype)
&& (gnat_scalar_range = Scalar_Range (Etype (gnat_hb)))
&& (Nkind (gnat_scalar_range) == N_Signed_Integer_Type_Definition
|| Nkind (gnat_scalar_range) == N_Range))
gnat_hb = Low_Bound (gnat_scalar_range);
/* If we have failed to find constant bounds, punt. */
if (Nkind (gnat_lb) != N_Integer_Literal
|| Nkind (gnat_hb) != N_Integer_Literal)
return false;
/* We need at least a signed 64-bit type to catch most cases. */
gnu_lb = UI_To_gnu (Intval (gnat_lb), sbitsizetype);
gnu_hb = UI_To_gnu (Intval (gnat_hb), sbitsizetype);
if (TREE_OVERFLOW (gnu_lb) || TREE_OVERFLOW (gnu_hb))
return false;
/* If the low bound is the smallest integer, nothing can be smaller. */
gnu_lb_minus_one = size_binop (MINUS_EXPR, gnu_lb, sbitsize_one_node);
if (TREE_OVERFLOW (gnu_lb_minus_one))
return true;
return !tree_int_cst_lt (gnu_hb, gnu_lb_minus_one);
}
/* Return true if GNU_EXPR is (essentially) the address of a CONSTRUCTOR. */
static bool
constructor_address_p (tree gnu_expr)
{
while (CONVERT_EXPR_P (gnu_expr)
|| TREE_CODE (gnu_expr) == NON_LVALUE_EXPR)
gnu_expr = TREE_OPERAND (gnu_expr, 0);
return (TREE_CODE (gnu_expr) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (gnu_expr, 0)) == CONSTRUCTOR);
}
/* Return true if the size in units represented by GNU_SIZE can be handled by
an allocation. If STATIC_P is true, consider only what can be done with a
static allocation. */
static bool
allocatable_size_p (tree gnu_size, bool static_p)
{
/* We can allocate a fixed size if it is a valid for the middle-end. */
if (TREE_CODE (gnu_size) == INTEGER_CST)
return valid_constant_size_p (gnu_size);
/* We can allocate a variable size if this isn't a static allocation. */
else
return !static_p;
}
/* Return true if GNU_EXPR needs a conversion to GNU_TYPE when used as the
initial value of an object of GNU_TYPE. */
static bool
initial_value_needs_conversion (tree gnu_type, tree gnu_expr)
{
/* Do not convert if the object's type is unconstrained because this would
generate useless evaluations of the CONSTRUCTOR to compute the size. */
if (TREE_CODE (gnu_type) == UNCONSTRAINED_ARRAY_TYPE
|| CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_type)))
return false;
/* Do not convert if the object's type is a padding record whose field is of
self-referential size because we want to copy only the actual data. */
if (type_is_padding_self_referential (gnu_type))
return false;
/* Do not convert a call to a function that returns with variable size since
we want to use the return slot optimization in this case. */
if (TREE_CODE (gnu_expr) == CALL_EXPR
&& return_type_with_variable_size_p (TREE_TYPE (gnu_expr)))
return false;
/* Do not convert to a record type with a variant part from a record type
without one, to keep the object simpler. */
if (TREE_CODE (gnu_type) == RECORD_TYPE
&& TREE_CODE (TREE_TYPE (gnu_expr)) == RECORD_TYPE
&& get_variant_part (gnu_type)
&& !get_variant_part (TREE_TYPE (gnu_expr)))
return false;
/* In all the other cases, convert the expression to the object's type. */
return true;
}
/* Add the contribution of [MIN, MAX] to the current number of elements N_ELEM
of an array type and return the result, or NULL_TREE if it overflowed. */
static tree
update_n_elem (tree n_elem, tree min, tree max)
{
/* First deal with the empty case. */
if (TREE_CODE (min) == INTEGER_CST
&& TREE_CODE (max) == INTEGER_CST
&& tree_int_cst_lt (max, min))
return size_zero_node;
min = convert (sizetype, min);
max = convert (sizetype, max);
/* Compute the number of elements in this dimension. */
tree this_n_elem
= size_binop (PLUS_EXPR, size_one_node, size_binop (MINUS_EXPR, max, min));
if (TREE_CODE (this_n_elem) == INTEGER_CST && TREE_OVERFLOW (this_n_elem))
return NULL_TREE;
/* Multiply the current number of elements by the result. */
n_elem = size_binop (MULT_EXPR, n_elem, this_n_elem);
if (TREE_CODE (n_elem) == INTEGER_CST && TREE_OVERFLOW (n_elem))
return NULL_TREE;
return n_elem;
}
/* Given GNAT_ENTITY, elaborate all expressions that are required to
be elaborated at the point of its definition, but do nothing else. */
void
elaborate_entity (Entity_Id gnat_entity)
{
switch (Ekind (gnat_entity))
{
case E_Signed_Integer_Subtype:
case E_Modular_Integer_Subtype:
case E_Enumeration_Subtype:
case E_Ordinary_Fixed_Point_Subtype:
case E_Decimal_Fixed_Point_Subtype:
case E_Floating_Point_Subtype:
{
Node_Id gnat_lb = Type_Low_Bound (gnat_entity);
Node_Id gnat_hb = Type_High_Bound (gnat_entity);
/* ??? Tests to avoid Constraint_Error in static expressions
are needed until after the front stops generating bogus
conversions on bounds of real types. */
if (!Raises_Constraint_Error (gnat_lb))
elaborate_expression (gnat_lb, gnat_entity, "L", true, false,
Needs_Debug_Info (gnat_entity));
if (!Raises_Constraint_Error (gnat_hb))
elaborate_expression (gnat_hb, gnat_entity, "U", true, false,
Needs_Debug_Info (gnat_entity));
break;
}
case E_Record_Subtype:
case E_Private_Subtype:
case E_Limited_Private_Subtype:
case E_Record_Subtype_With_Private:
if (Has_Discriminants (gnat_entity) && Is_Constrained (gnat_entity))
{
Node_Id gnat_discriminant_expr;
Entity_Id gnat_field;
for (gnat_field
= First_Discriminant (Implementation_Base_Type (gnat_entity)),
gnat_discriminant_expr
= First_Elmt (Discriminant_Constraint (gnat_entity));
Present (gnat_field);
gnat_field = Next_Discriminant (gnat_field),
gnat_discriminant_expr = Next_Elmt (gnat_discriminant_expr))
/* Ignore access discriminants. */
if (!Is_Access_Type (Etype (Node (gnat_discriminant_expr))))
elaborate_expression (Node (gnat_discriminant_expr),
gnat_entity, get_entity_char (gnat_field),
true, false, false);
}
break;
/* -Wswitch warning avoidance. */
default:
break;
}
}
/* Prepend to ATTR_LIST an entry for an attribute with provided TYPE,
NAME, ARGS and ERROR_POINT. */
static void
prepend_one_attribute (struct attrib **attr_list,
enum attrib_type attrib_type,
tree attr_name,
tree attr_args,
Node_Id attr_error_point)
{
struct attrib * attr = (struct attrib *) xmalloc (sizeof (struct attrib));
attr->type = attrib_type;
attr->name = attr_name;
attr->args = attr_args;
attr->error_point = attr_error_point;
attr->next = *attr_list;
*attr_list = attr;
}
/* Prepend to ATTR_LIST an entry for an attribute provided by GNAT_PRAGMA. */
static void
prepend_one_attribute_pragma (struct attrib **attr_list, Node_Id gnat_pragma)
{
const Node_Id gnat_arg = First (Pragma_Argument_Associations (gnat_pragma));
Node_Id gnat_next_arg = Next (gnat_arg);
tree gnu_arg1 = NULL_TREE, gnu_arg_list = NULL_TREE;
enum attrib_type etype;
/* Map the pragma at hand. Skip if this isn't one we know how to handle. */
switch (Get_Pragma_Id (Chars (Pragma_Identifier (gnat_pragma))))
{
case Pragma_Linker_Alias:
etype = ATTR_LINK_ALIAS;
break;
case Pragma_Linker_Constructor:
etype = ATTR_LINK_CONSTRUCTOR;
break;
case Pragma_Linker_Destructor:
etype = ATTR_LINK_DESTRUCTOR;
break;
case Pragma_Linker_Section:
etype = ATTR_LINK_SECTION;
break;
case Pragma_Machine_Attribute:
etype = ATTR_MACHINE_ATTRIBUTE;
break;
case Pragma_Thread_Local_Storage:
etype = ATTR_THREAD_LOCAL_STORAGE;
break;
case Pragma_Weak_External:
etype = ATTR_WEAK_EXTERNAL;
break;
default:
return;
}
/* See what arguments we have and turn them into GCC trees for attribute
handlers. The first one is always expected to be a string meant to be
turned into an identifier. The next ones are all static expressions,
among which strings meant to be turned into an identifier, except for
a couple of specific attributes that require raw strings. */
if (Present (gnat_next_arg))
{
gnu_arg1 = gnat_to_gnu (Expression (gnat_next_arg));
gcc_assert (TREE_CODE (gnu_arg1) == STRING_CST);
const char *const p = TREE_STRING_POINTER (gnu_arg1);
const bool string_args
= strcmp (p, "simd") == 0
|| strcmp (p, "target") == 0
|| strcmp (p, "target_clones") == 0;
gnu_arg1 = get_identifier (p);
if (IDENTIFIER_LENGTH (gnu_arg1) == 0)
return;
gnat_next_arg = Next (gnat_next_arg);
while (Present (gnat_next_arg))
{
tree gnu_arg = gnat_to_gnu (Expression (gnat_next_arg));
if (TREE_CODE (gnu_arg) == STRING_CST && !string_args)
gnu_arg = get_identifier (TREE_STRING_POINTER (gnu_arg));
gnu_arg_list
= chainon (gnu_arg_list, build_tree_list (NULL_TREE, gnu_arg));
gnat_next_arg = Next (gnat_next_arg);
}
}
prepend_one_attribute (attr_list, etype, gnu_arg1, gnu_arg_list,
Present (Next (gnat_arg))
? Expression (Next (gnat_arg)) : gnat_pragma);
}
/* Prepend to ATTR_LIST the list of attributes for GNAT_ENTITY, if any. */
static void
prepend_attributes (struct attrib **attr_list, Entity_Id gnat_entity)
{
Node_Id gnat_temp;
/* Attributes are stored as Representation Item pragmas. */
for (gnat_temp = First_Rep_Item (gnat_entity);
Present (gnat_temp);
gnat_temp = Next_Rep_Item (gnat_temp))
if (Nkind (gnat_temp) == N_Pragma)
prepend_one_attribute_pragma (attr_list, gnat_temp);
}
/* Given a GNAT tree GNAT_EXPR, for an expression which is a value within a
type definition (either a bound or a discriminant value) for GNAT_ENTITY,
return the GCC tree to use for that expression. S is the suffix to use
if a variable needs to be created and DEFINITION is true if this is done
for a definition of GNAT_ENTITY. If NEED_VALUE is true, we need a result;
otherwise, we are just elaborating the expression for side-effects. If
NEED_FOR_DEBUG is true, we need a variable for debugging purposes even
if it isn't needed for code generation. */
static tree
elaborate_expression (Node_Id gnat_expr, Entity_Id gnat_entity, const char *s,
bool definition, bool need_value, bool need_for_debug)
{
tree gnu_expr;
/* If we already elaborated this expression (e.g. it was involved
in the definition of a private type), use the old value. */
if (present_gnu_tree (gnat_expr))
return get_gnu_tree (gnat_expr);
/* If we don't need a value and this is static or a discriminant,
we don't need to do anything. */
if (!need_value
&& (Compile_Time_Known_Value (gnat_expr)
|| (Nkind (gnat_expr) == N_Identifier
&& Ekind (Entity (gnat_expr)) == E_Discriminant)))
return NULL_TREE;
/* If it's a static expression, we don't need a variable for debugging. */
if (need_for_debug && Compile_Time_Known_Value (gnat_expr))
need_for_debug = false;
/* Otherwise, convert this tree to its GCC equivalent and elaborate it. */
gnu_expr = elaborate_expression_1 (gnat_to_gnu (gnat_expr), gnat_entity, s,
definition, need_for_debug);
/* Save the expression in case we try to elaborate this entity again. Since
it's not a DECL, don't check it. Don't save if it's a discriminant. */
if (!CONTAINS_PLACEHOLDER_P (gnu_expr))
save_gnu_tree (gnat_expr, gnu_expr, true);
return need_value ? gnu_expr : error_mark_node;
}
/* Similar, but take a GNU expression and always return a result. */
static tree
elaborate_expression_1 (tree gnu_expr, Entity_Id gnat_entity, const char *s,
bool definition, bool need_for_debug)
{
const bool expr_public_p = Is_Public (gnat_entity);
const bool expr_global_p = expr_public_p || global_bindings_p ();
bool expr_variable_p, use_variable;
/* If GNU_EXPR contains a placeholder, just return it. We rely on the fact
that an expression cannot contain both a discriminant and a variable. */
if (CONTAINS_PLACEHOLDER_P (gnu_expr))
return gnu_expr;
/* If GNU_EXPR is neither a constant nor based on a read-only variable, make
a variable that is initialized to contain the expression when the package
containing the definition is elaborated. If this entity is defined at top
level, replace the expression by the variable; otherwise use a SAVE_EXPR
if this is necessary. */
if (TREE_CONSTANT (gnu_expr))
expr_variable_p = false;
else
{
/* Skip any conversions and simple constant arithmetics to see if the
expression is based on a read-only variable. */
tree inner = remove_conversions (gnu_expr, true);
inner = skip_simple_constant_arithmetic (inner);
if (handled_component_p (inner))
inner = get_inner_constant_reference (inner);
expr_variable_p
= !(inner
&& VAR_P (inner)
&& (TREE_READONLY (inner) || DECL_READONLY_ONCE_ELAB (inner)));
}
/* We only need to use the variable if we are in a global context since GCC
can do the right thing in the local case. However, when not optimizing,
use it for bounds of loop iteration scheme to avoid code duplication. */
use_variable = expr_variable_p
&& (expr_global_p
|| (!optimize
&& definition
&& Is_Itype (gnat_entity)
&& Nkind (Associated_Node_For_Itype (gnat_entity))
== N_Loop_Parameter_Specification));
/* If the GNAT encodings are not used, we don't need a variable for debug
info purposes if the expression is a constant or another variable, but
we must be careful because we do not generate debug info for external
variables so DECL_IGNORED_P is not stable across units. */
if (need_for_debug
&& gnat_encodings != DWARF_GNAT_ENCODINGS_ALL
&& (TREE_CONSTANT (gnu_expr)
|| (!expr_public_p
&& DECL_P (gnu_expr)
&& !DECL_IGNORED_P (gnu_expr))))
need_for_debug = false;
/* Now create it, possibly only for debugging purposes. */
if (use_variable || need_for_debug)
{
/* The following variable creation can happen when processing the body
of subprograms that are defined outside of the extended main unit and
inlined. In this case, we are not at the global scope, and thus the
new variable must not be tagged "external", as we used to do here as
soon as DEFINITION was false. And note that we test Needs_Debug_Info
here instead of NEED_FOR_DEBUG because, once the variable is created,
whether or not debug information is generated for it is orthogonal to
the reason why it was created in the first place. */
tree gnu_decl
= create_var_decl (create_concat_name (gnat_entity, s), NULL_TREE,
TREE_TYPE (gnu_expr), gnu_expr, true,
expr_public_p, !definition && expr_global_p,
expr_global_p, false, true,
Needs_Debug_Info (gnat_entity),
NULL, gnat_entity, false);
/* Using this variable for debug (if need_for_debug is true) requires
a proper location. The back-end will compute a location for this
variable only if the variable is used by the generated code.
Returning the variable ensures the caller will use it in generated
code. Note that there is no need for a location if the debug info
contains an integer constant. */
if (use_variable || (need_for_debug && !TREE_CONSTANT (gnu_expr)))
return gnu_decl;
}
return expr_variable_p ? gnat_save_expr (gnu_expr) : gnu_expr;
}
/* Similar, but take an alignment factor and make it explicit in the tree. */
static tree
elaborate_expression_2 (tree gnu_expr, Entity_Id gnat_entity, const char *s,
bool definition, bool need_for_debug, unsigned int align)
{
tree unit_align = size_int (align / BITS_PER_UNIT);
return
size_binop (MULT_EXPR,
elaborate_expression_1 (size_binop (EXACT_DIV_EXPR,
gnu_expr,
unit_align),
gnat_entity, s, definition,
need_for_debug),
unit_align);
}
/* Structure to hold internal data for elaborate_reference. */
struct er_data
{
Entity_Id entity;
bool definition;
unsigned int n;
};
/* Wrapper function around elaborate_expression_1 for elaborate_reference. */
static tree
elaborate_reference_1 (tree ref, void *data)
{
struct er_data *er = (struct er_data *)data;
char suffix[16];
/* This is what elaborate_expression_1 does if NEED_DEBUG is false. */
if (TREE_CONSTANT (ref))
return ref;
/* If this is a COMPONENT_REF of a fat pointer, elaborate the entire fat
pointer. This may be more efficient, but will also allow us to more
easily find the match for the PLACEHOLDER_EXPR. */
if (TREE_CODE (ref) == COMPONENT_REF
&& TYPE_IS_FAT_POINTER_P (TREE_TYPE (TREE_OPERAND (ref, 0))))
return build3 (COMPONENT_REF, TREE_TYPE (ref),
elaborate_reference_1 (TREE_OPERAND (ref, 0), data),
TREE_OPERAND (ref, 1), NULL_TREE);
/* If this is the displacement of a pointer, elaborate the pointer and then
displace the result. The actual purpose here is to drop the location on
the expression, which may be problematic if replicated on references. */
if (TREE_CODE (ref) == POINTER_PLUS_EXPR
&& TREE_CODE (TREE_OPERAND (ref, 1)) == INTEGER_CST)
return build2 (POINTER_PLUS_EXPR, TREE_TYPE (ref),
elaborate_reference_1 (TREE_OPERAND (ref, 0), data),
TREE_OPERAND (ref, 1));
sprintf (suffix, "EXP%d", ++er->n);
return
elaborate_expression_1 (ref, er->entity, suffix, er->definition, false);
}
/* Elaborate the reference REF to be used as renamed object for GNAT_ENTITY.
DEFINITION is true if this is done for a definition of GNAT_ENTITY and
INIT is set to the first arm of a COMPOUND_EXPR present in REF, if any. */
static tree
elaborate_reference (tree ref, Entity_Id gnat_entity, bool definition,
tree *init)
{
struct er_data er = { gnat_entity, definition, 0 };
return gnat_rewrite_reference (ref, elaborate_reference_1, &er, init);
}
/* Given a GNU tree and a GNAT list of choices, generate an expression to test
the value passed against the list of choices. */
static tree
choices_to_gnu (tree gnu_operand, Node_Id gnat_choices)
{
tree gnu_result = boolean_false_node, gnu_type;
gnu_operand = maybe_character_value (gnu_operand);
gnu_type = TREE_TYPE (gnu_operand);
for (Node_Id gnat_choice = First (gnat_choices);
Present (gnat_choice);
gnat_choice = Next (gnat_choice))
{
tree gnu_low = NULL_TREE, gnu_high = NULL_TREE;
tree gnu_test;
switch (Nkind (gnat_choice))
{
case N_Range:
gnu_low = gnat_to_gnu (Low_Bound (gnat_choice));
gnu_high = gnat_to_gnu (High_Bound (gnat_choice));
break;
case N_Subtype_Indication:
gnu_low = gnat_to_gnu (Low_Bound (Range_Expression
(Constraint (gnat_choice))));
gnu_high = gnat_to_gnu (High_Bound (Range_Expression
(Constraint (gnat_choice))));
break;
case N_Identifier:
case N_Expanded_Name:
/* This represents either a subtype range or a static value of
some kind; Ekind says which. */
if (Is_Type (Entity (gnat_choice)))
{
tree gnu_type = get_unpadded_type (Entity (gnat_choice));
gnu_low = TYPE_MIN_VALUE (gnu_type);
gnu_high = TYPE_MAX_VALUE (gnu_type);
break;
}
/* ... fall through ... */
case N_Character_Literal:
case N_Integer_Literal:
gnu_low = gnat_to_gnu (gnat_choice);
break;
case N_Others_Choice:
break;
default:
gcc_unreachable ();
}
/* Everything should be folded into constants at this point. */
gcc_assert (!gnu_low || TREE_CODE (gnu_low) == INTEGER_CST);
gcc_assert (!gnu_high || TREE_CODE (gnu_high) == INTEGER_CST);
if (gnu_low && TREE_TYPE (gnu_low) != gnu_type)
gnu_low = convert (gnu_type, gnu_low);
if (gnu_high && TREE_TYPE (gnu_high) != gnu_type)
gnu_high = convert (gnu_type, gnu_high);
if (gnu_low && gnu_high)
gnu_test
= build_binary_op (TRUTH_ANDIF_EXPR, boolean_type_node,
build_binary_op (GE_EXPR, boolean_type_node,
gnu_operand, gnu_low, true),
build_binary_op (LE_EXPR, boolean_type_node,
gnu_operand, gnu_high, true),
true);
else if (gnu_low == boolean_true_node
&& TREE_TYPE (gnu_operand) == boolean_type_node)
gnu_test = gnu_operand;
else if (gnu_low)
gnu_test
= build_binary_op (EQ_EXPR, boolean_type_node, gnu_operand, gnu_low,
true);
else
gnu_test = boolean_true_node;
if (gnu_result == boolean_false_node)
gnu_result = gnu_test;
else
gnu_result
= build_binary_op (TRUTH_ORIF_EXPR, boolean_type_node, gnu_result,
gnu_test, true);
}
return gnu_result;
}
/* Adjust PACKED setting as passed to gnat_to_gnu_field for a field of
type FIELD_TYPE to be placed in RECORD_TYPE. Return the result. */
static int
adjust_packed (tree field_type, tree record_type, int packed)
{
/* If the field is an array of variable size, we'd better not pack it because
this would misalign it and, therefore, probably cause large temporarie to
be created in case we need to take its address. See addressable_p and the
notes on the addressability issues for further details. */
if (TREE_CODE (field_type) == ARRAY_TYPE
&& type_has_variable_size (field_type))
return 0;
/* In the other cases, we can honor the packing. */
if (packed)
return packed;
/* If the alignment of the record is specified and the field type
is over-aligned, request Storage_Unit alignment for the field. */
if (TYPE_ALIGN (record_type)
&& TYPE_ALIGN (field_type) > TYPE_ALIGN (record_type))
return -1;
/* Likewise if the maximum alignment of the record is specified. */
if (TYPE_MAX_ALIGN (record_type)
&& TYPE_ALIGN (field_type) > TYPE_MAX_ALIGN (record_type))
return -1;
return 0;
}
/* Return a GCC tree for a field corresponding to GNAT_FIELD to be
placed in GNU_RECORD_TYPE.
PACKED is 1 if the enclosing record is packed or -1 if the enclosing
record has Component_Alignment of Storage_Unit.
DEFINITION is true if this field is for a record being defined.
DEBUG_INFO_P is true if we need to write debug information for types
that we may create in the process. */
static tree
gnat_to_gnu_field (Entity_Id gnat_field, tree gnu_record_type, int packed,
bool definition, bool debug_info_p)
{
const Node_Id gnat_clause = Component_Clause (gnat_field);
const Entity_Id gnat_record_type = Underlying_Type (Scope (gnat_field));
const Entity_Id gnat_field_type = Etype (gnat_field);
tree gnu_field_type = gnat_to_gnu_type (gnat_field_type);
tree gnu_field_id = get_entity_name (gnat_field);
const bool is_aliased = Is_Aliased (gnat_field);
const bool is_full_access
= (Is_Full_Access (gnat_field) || Is_Full_Access (gnat_field_type));
const bool is_independent
= (Is_Independent (gnat_field) || Is_Independent (gnat_field_type));
const bool is_volatile
= (Treat_As_Volatile (gnat_field) || Treat_As_Volatile (gnat_field_type));
const bool is_by_ref = TYPE_IS_BY_REFERENCE_P (gnu_field_type);
const bool is_strict_alignment = Strict_Alignment (gnat_field_type);
/* We used to consider that volatile fields also require strict alignment,
but that was an interpolation and would cause us to reject a pragma
volatile on a packed record type containing boolean components, while
there is no basis to do so in the RM. In such cases, the writes will
involve load-modify-store sequences, but that's OK for volatile. The
only constraint is the implementation advice whereby only the bits of
the components should be accessed if they both start and end on byte
boundaries, but that should be guaranteed by the GCC memory model.
Note that we have some redundancies (is_full_access => is_independent,
is_aliased => is_independent and is_by_ref => is_strict_alignment)
so the following formula is sufficient. */
const bool needs_strict_alignment = (is_independent || is_strict_alignment);
const char *field_s, *size_s;
tree gnu_field, gnu_size, gnu_pos;
bool is_bitfield;
/* Force the type of the Not_Handled_By_Others field to be that of the
field in struct Exception_Data declared in raise.h instead of using
the declared boolean type. We need to do that because there is no
easy way to make use of a C compatible boolean type for the latter. */
if (gnu_field_id == not_handled_by_others_name_id
&& gnu_field_type == boolean_type_node)
gnu_field_type = char_type_node;
/* The qualifier to be used in messages. */
if (is_aliased)
field_s = "aliased&";
else if (is_full_access)
{
if (Is_Volatile_Full_Access (gnat_field)
|| Is_Volatile_Full_Access (gnat_field_type))
field_s = "volatile full access&";
else
field_s = "atomic&";
}
else if (is_independent)
field_s = "independent&";
else if (is_by_ref)
field_s = "& with by-reference type";
else if (is_strict_alignment)
field_s = "& with aliased part";
else
field_s = "&";
/* The message to be used for incompatible size. */
if (is_aliased || is_full_access)
size_s = "size for %s must be ^";
else if (field_s)
size_s = "size for %s too small{, minimum allowed is ^}";
/* If a field requires strict alignment, we cannot pack it (RM 13.2(7)). */
if (needs_strict_alignment)
packed = 0;
else
packed = adjust_packed (gnu_field_type, gnu_record_type, packed);
/* If a size is specified, use it. Otherwise, if the record type is packed,
use the official RM size. See "Handling of Type'Size Values" in Einfo
for further details. */
if (Present (gnat_clause) || Known_Esize (gnat_field))
gnu_size = validate_size (Esize (gnat_field), gnu_field_type, gnat_field,
FIELD_DECL, false, true, size_s, field_s);
else if (packed == 1)
{
gnu_size = rm_size (gnu_field_type);
if (TREE_CODE (gnu_size) != INTEGER_CST)
gnu_size = NULL_TREE;
}
else
gnu_size = NULL_TREE;
/* Likewise for the position. */
if (Present (gnat_clause))
{
gnu_pos = UI_To_gnu (Component_Bit_Offset (gnat_field), bitsizetype);
is_bitfield = !value_factor_p (gnu_pos, BITS_PER_UNIT);
}
/* If the record has rep clauses and this is the tag field, make a rep
clause for it as well. */
else if (Has_Specified_Layout (gnat_record_type)
&& Chars (gnat_field) == Name_uTag)
{
gnu_pos = bitsize_zero_node;
gnu_size = TYPE_SIZE (gnu_field_type);
is_bitfield = false;
}
else
{
gnu_pos = NULL_TREE;
is_bitfield = false;
}
/* If the field's type is a fixed-size record that does not require strict
alignment, and the record is packed or we have a position specified for
the field that makes it a bitfield or we have a specified size that is
smaller than that of the field's type, then see if we can get either an
integral mode form of the field's type or a smaller form. If we can,
consider that a size was specified for the field if there wasn't one
already, so we know to make it a bitfield and avoid making things wider.
Changing to an integral mode form is useful when the record is packed as
we can then place the field at a non-byte-aligned position and so achieve
tighter packing. This is in addition required if the field shares a byte
with another field and the front-end lets the back-end handle the access
to the field, because GCC cannot handle non-byte-aligned BLKmode fields.
Changing to a smaller form is required if the specified size is smaller
than that of the field's type and the type contains sub-fields that are
padded, in order to avoid generating accesses to these sub-fields that
are wider than the field.
We avoid the transformation if it is not required or potentially useful,
as it might entail an increase of the field's alignment and have ripple
effects on the outer record type. A typical case is a field known to be
byte-aligned and not to share a byte with another field. */
if (!needs_strict_alignment
&& RECORD_OR_UNION_TYPE_P (gnu_field_type)
&& !TYPE_FAT_POINTER_P (gnu_field_type)
&& tree_fits_uhwi_p (TYPE_SIZE (gnu_field_type))
&& (packed == 1
|| is_bitfield
|| (gnu_size
&& tree_int_cst_lt (gnu_size, TYPE_SIZE (gnu_field_type)))))
{
tree gnu_packable_type
= make_packable_type (gnu_field_type, true, is_bitfield ? 1 : 0);
if (gnu_packable_type != gnu_field_type)
{
gnu_field_type = gnu_packable_type;
if (!gnu_size)
gnu_size = rm_size (gnu_field_type);
}
}
/* Now check if the type of the field allows atomic access. */
if (Is_Full_Access (gnat_field))
{
const unsigned int align
= promote_object_alignment (gnu_field_type, NULL_TREE, gnat_field);
if (align > 0)
gnu_field_type
= maybe_pad_type (gnu_field_type, NULL_TREE, align, gnat_field,
false, definition, true);
check_ok_for_atomic_type (gnu_field_type, gnat_field, false);
}
/* If a position is specified, check that it is valid. */
if (gnu_pos)
{
Entity_Id gnat_parent = Parent_Subtype (gnat_record_type);
/* Ensure the position doesn't overlap with the parent subtype if there
is one. It would be impossible to build CONSTRUCTORs and accessing
the parent could clobber the component in the extension if directly
done. We accept it with -gnatd.K for the sake of compatibility. */
if (Present (gnat_parent)
&& !(Debug_Flag_Dot_KK && Is_Fully_Repped_Tagged_Type (gnat_parent)))
{
tree gnu_parent = gnat_to_gnu_type (gnat_parent);
if (TREE_CODE (TYPE_SIZE (gnu_parent)) == INTEGER_CST
&& tree_int_cst_lt (gnu_pos, TYPE_SIZE (gnu_parent)))
post_error_ne_tree
("position for& must be beyond parent{, minimum allowed is ^}",
Position (gnat_clause), gnat_field, TYPE_SIZE_UNIT (gnu_parent));
}
/* If this field needs strict alignment, make sure that the record is
sufficiently aligned and that the position and size are consistent
with the type. But don't do it if we are just annotating types and
the field's type is tagged, since tagged types aren't fully laid out
in this mode. Also, note that atomic implies volatile so the inner
test sequences ordering is significant here. */
if (needs_strict_alignment
&& !(type_annotate_only && Is_Tagged_Type (gnat_field_type)))
{
const unsigned int type_align = TYPE_ALIGN (gnu_field_type);
if (TYPE_ALIGN (gnu_record_type)
&& TYPE_ALIGN (gnu_record_type) < type_align)
SET_TYPE_ALIGN (gnu_record_type, type_align);
/* If the position is not a multiple of the storage unit, then error
out and reset the position. */
if (!integer_zerop (size_binop (TRUNC_MOD_EXPR, gnu_pos,
bitsize_unit_node)))
{
char s[128];
snprintf (s, sizeof (s), "position for %s must be "
"multiple of Storage_Unit", field_s);
post_error_ne (s, First_Bit (gnat_clause), gnat_field);
gnu_pos = NULL_TREE;
}
/* If the position is not a multiple of the alignment of the type,
then error out and reset the position. */
else if (type_align > BITS_PER_UNIT
&& !integer_zerop (size_binop (TRUNC_MOD_EXPR, gnu_pos,
bitsize_int (type_align))))
{
char s[128];
snprintf (s, sizeof (s), "position for %s must be multiple of ^",
field_s);
post_error_ne_num (s, First_Bit (gnat_clause), gnat_field,
type_align / BITS_PER_UNIT);
post_error_ne_num ("\\because alignment of its type& is ^",
First_Bit (gnat_clause), Etype (gnat_field),
type_align / BITS_PER_UNIT);
gnu_pos = NULL_TREE;
}
if (gnu_size)
{
tree type_size = TYPE_SIZE (gnu_field_type);
int cmp;
/* If the size is not a multiple of the storage unit, then error
out and reset the size. */
if (!integer_zerop (size_binop (TRUNC_MOD_EXPR, gnu_size,
bitsize_unit_node)))
{
char s[128];
snprintf (s, sizeof (s), "size for %s must be "
"multiple of Storage_Unit", field_s);
post_error_ne (s, Last_Bit (gnat_clause), gnat_field);
gnu_size = NULL_TREE;
}
/* If the size is lower than that of the type, or greater for
atomic and aliased, then error out and reset the size. */
else if ((cmp = tree_int_cst_compare (gnu_size, type_size)) < 0
|| (cmp > 0 && (is_aliased || is_full_access)))
{
char s[128];
snprintf (s, sizeof (s), size_s, field_s);
post_error_ne_tree (s, Last_Bit (gnat_clause), gnat_field,
type_size);
gnu_size = NULL_TREE;
}
}
}
}
else
{
/* If we are packing the record and the field is BLKmode, round the
size up to a byte boundary. */
if (packed && TYPE_MODE (gnu_field_type) == BLKmode && gnu_size)
gnu_size = round_up (gnu_size, BITS_PER_UNIT);
}
/* We need to make the size the maximum for the type if it is
self-referential and an unconstrained type. In that case, we can't
pack the field since we can't make a copy to align it. */
if (TREE_CODE (gnu_field_type) == RECORD_TYPE
&& !gnu_size
&& CONTAINS_PLACEHOLDER_P (TYPE_SIZE (gnu_field_type))
&& !Is_Constrained (Underlying_Type (gnat_field_type)))
{
gnu_size = max_size (TYPE_SIZE (gnu_field_type), true);
packed = 0;
}
/* If a size is specified, adjust the field's type to it. */
if (gnu_size)
{
tree orig_field_type;
/* If the field's type is justified modular, we would need to remove
the wrapper to (better) meet the layout requirements. However we
can do so only if the field is not aliased to preserve the unique
layout, if it has the same storage order as the enclosing record
and if the prescribed size is not greater than that of the packed
array to preserve the justification. */
if (!needs_strict_alignment
&& TREE_CODE (gnu_field_type) == RECORD_TYPE
&& TYPE_JUSTIFIED_MODULAR_P (gnu_field_type)
&& TYPE_REVERSE_STORAGE_ORDER (gnu_field_type)
== Reverse_Storage_Order (gnat_record_type)
&& tree_int_cst_compare (gnu_size, TYPE_ADA_SIZE (gnu_field_type))
<= 0)
gnu_field_type = TREE_TYPE (TYPE_FIELDS (gnu_field_type));
/* Similarly if the field's type is a misaligned integral type, but
there is no restriction on the size as there is no justification. */
if (!needs_strict_alignment
&& TYPE_IS_PADDING_P (gnu_field_type)
&& INTEGRAL_TYPE_P (TREE_TYPE (TYPE_FIELDS (gnu_field_type))))
gnu_field_type = TREE_TYPE (TYPE_FIELDS (gnu_field_type));
orig_field_type = gnu_field_type;
gnu_field_type
= make_type_from_size (gnu_field_type, gnu_size,
Has_Biased_Representation (gnat_field));
/* If the type has been extended, we may need to cap the alignment. */
if (!needs_strict_alignment
&& gnu_field_type != orig_field_type
&& tree_int_cst_lt (TYPE_SIZE (orig_field_type), gnu_size))
packed = adjust_packed (gnu_field_type, gnu_record_type, packed);
orig_field_type = gnu_field_type;
gnu_field_type = maybe_pad_type (gnu_field_type, gnu_size, 0, gnat_field,
false, definition, true);
/* For a bitfield, if the type still has BLKmode, try again to change it
to an integral mode form. This may be necessary on strict-alignment
platforms with a size clause that is much larger than the field type,
because maybe_pad_type has preserved the alignment of the field type,
which may be too low for the new size. */
if (!needs_strict_alignment
&& RECORD_OR_UNION_TYPE_P (gnu_field_type)
&& !TYPE_FAT_POINTER_P (gnu_field_type)
&& TYPE_MODE (gnu_field_type) == BLKmode
&& is_bitfield)
gnu_field_type = make_packable_type (gnu_field_type, true, 1);
/* If a padding record was made, declare it now since it will never be
declared otherwise. This is necessary to ensure that its subtrees
are properly marked. */
if (gnu_field_type != orig_field_type
&& !DECL_P (TYPE_NAME (gnu_field_type)))
create_type_decl (TYPE_NAME (gnu_field_type), gnu_field_type, true,
debug_info_p, gnat_field);
}
/* Otherwise (or if there was an error), don't specify a position. */
else
gnu_pos = NULL_TREE;
/* If the field's type is a padded type made for a scalar field of a record
type with reverse storage order, we need to propagate the reverse storage
order to the padding type since it is the innermost enclosing aggregate
type around the scalar. */
if (TYPE_IS_PADDING_P (gnu_field_type)
&& TYPE_REVERSE_STORAGE_ORDER (gnu_record_type)
&& Is_Scalar_Type (gnat_field_type))
gnu_field_type = set_reverse_storage_order_on_pad_type (gnu_field_type);
gcc_assert (TREE_CODE (gnu_field_type) != RECORD_TYPE
|| !TYPE_CONTAINS_TEMPLATE_P (gnu_field_type));
/* Now create the decl for the field. */
gnu_field
= create_field_decl (gnu_field_id, gnu_field_type, gnu_record_type,
gnu_size, gnu_pos, packed, is_aliased);
Sloc_to_locus (Sloc (gnat_field), &DECL_SOURCE_LOCATION (gnu_field));
DECL_ALIASED_P (gnu_field) = is_aliased;
TREE_SIDE_EFFECTS (gnu_field) = TREE_THIS_VOLATILE (gnu_field) = is_volatile;
/* If this is a discriminant, then we treat it specially: first, we set its
index number for the back-annotation; second, we record whether it cannot
be changed once it has been set for the computation of loop invariants;
third, we make it addressable in order for the optimizer to more easily
see that it cannot be modified by assignments to the other fields of the
record (see create_field_decl for a more detailed explanation), which is
crucial to hoist the offset and size computations of dynamic fields. */
if (Ekind (gnat_field) == E_Discriminant)
{
DECL_DISCRIMINANT_NUMBER (gnu_field)
= UI_To_gnu (Discriminant_Number (gnat_field), integer_type_node);
DECL_INVARIANT_P (gnu_field)
= No (Discriminant_Default_Value (gnat_field));
DECL_NONADDRESSABLE_P (gnu_field) = 0;
}
return gnu_field;
}
/* Return true if at least one member of COMPONENT_LIST needs strict
alignment. */
static bool
components_need_strict_alignment (Node_Id component_list)
{
Node_Id component_decl;
for (component_decl = First_Non_Pragma (Component_Items (component_list));
Present (component_decl);
component_decl = Next_Non_Pragma (component_decl))
{
Entity_Id gnat_field = Defining_Entity (component_decl);
if (Is_Independent (gnat_field) || Is_Independent (Etype (gnat_field)))
return true;
if (Strict_Alignment (Etype (gnat_field)))
return true;
}
return false;
}
/* Return true if FIELD is an artificial field. */
static bool
field_is_artificial (tree field)
{
/* These fields are generated by the front-end proper. */
if (IDENTIFIER_POINTER (DECL_NAME (field)) [0] == '_')
return true;
/* These fields are generated by gigi. */
if (DECL_INTERNAL_P (field))
return true;
return false;
}
/* Return true if FIELD is a non-artificial field with self-referential
size. */
static bool
field_has_self_size (tree field)
{
if (field_is_artificial (field))
return false;
if (DECL_SIZE (field) && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
return false;
return CONTAINS_PLACEHOLDER_P (TYPE_SIZE (TREE_TYPE (field)));
}
/* Return true if FIELD is a non-artificial field with variable size. */
static bool
field_has_variable_size (tree field)
{
if (field_is_artificial (field))
return false;
if (DECL_SIZE (field) && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
return false;
return TREE_CODE (TYPE_SIZE (TREE_TYPE (field))) != INTEGER_CST;
}
/* qsort comparer for the bit positions of two record components. */
static int
compare_field_bitpos (const void *rt1, const void *rt2)
{
const_tree const field1 = * (const_tree const *) rt1;
const_tree const field2 = * (const_tree const *) rt2;
const int ret
= tree_int_cst_compare (bit_position (field1), bit_position (field2));
return ret ? ret : (int) (DECL_UID (field1) - DECL_UID (field2));
}
/* Sort the LIST of fields in reverse order of increasing position. */
static tree
reverse_sort_field_list (tree list)
{
const int len = list_length (list);
tree *field_arr = XALLOCAVEC (tree, len);
for (int i = 0; list; list = DECL_CHAIN (list), i++)
field_arr[i] = list;
qsort (field_arr, len, sizeof (tree), compare_field_bitpos);
for (int i = 0; i < len; i++)
{
DECL_CHAIN (field_arr[i]) = list;
list = field_arr[i];
}
return list;
}
/* Reverse function from gnat_to_gnu_field: return the GNAT field present in
either GNAT_COMPONENT_LIST or the discriminants of GNAT_RECORD_TYPE, and
corresponding to the GNU tree GNU_FIELD. */
static Entity_Id
gnu_field_to_gnat (tree gnu_field, Node_Id gnat_component_list,
Entity_Id gnat_record_type)
{
Entity_Id gnat_component_decl, gnat_field;
if (Present (Component_Items (gnat_component_list)))
for (gnat_component_decl
= First_Non_Pragma (Component_Items (gnat_component_list));
Present (gnat_component_decl);
gnat_component_decl = Next_Non_Pragma (gnat_component_decl))
{
gnat_field = Defining_Entity (gnat_component_decl);
if (gnat_to_gnu_field_decl (gnat_field) == gnu_field)
return gnat_field;
}
if (Has_Discriminants (gnat_record_type))
for (gnat_field = First_Stored_Discriminant (gnat_record_type);
Present (gnat_field);
gnat_field = Next_Stored_Discriminant (gnat_field))
if (gnat_to_gnu_field_decl (gnat_field) == gnu_field)
return gnat_field;
return Empty;
}
/* Issue a warning for the problematic placement of GNU_FIELD present in
either GNAT_COMPONENT_LIST or the discriminants of GNAT_RECORD_TYPE.
IN_VARIANT is true if GNAT_COMPONENT_LIST is the list of a variant.
DO_REORDER is true if fields of GNAT_RECORD_TYPE are being reordered. */
static void
warn_on_field_placement (tree gnu_field, Node_Id gnat_component_list,
Entity_Id gnat_record_type, bool in_variant,
bool do_reorder)
{
if (!Comes_From_Source (gnat_record_type))
return;
Entity_Id gnat_field
= gnu_field_to_gnat (gnu_field, gnat_component_list, gnat_record_type);
gcc_assert (Present (gnat_field));
const char *msg1
= in_variant
? "?.q?variant layout may cause performance issues"
: "?.q?record layout may cause performance issues";
const char *msg2
= Ekind (gnat_field) == E_Discriminant
? "?.q?discriminant & whose length is not multiple of a byte"
: field_has_self_size (gnu_field)
? "?.q?component & whose length depends on a discriminant"
: field_has_variable_size (gnu_field)
? "?.q?component & whose length is not fixed"
: "?.q?component & whose length is not multiple of a byte";
const char *msg3
= do_reorder
? "?.q?comes too early and was moved down"
: "?.q?comes too early and ought to be moved down";
post_error (msg1, gnat_field);
post_error_ne (msg2, gnat_field, gnat_field);
post_error (msg3, gnat_field);
}
/* Likewise but for every field present on GNU_FIELD_LIST. */
static void
warn_on_list_placement (tree gnu_field_list, Node_Id gnat_component_list,
Entity_Id gnat_record_type, bool in_variant,
bool do_reorder)
{
for (tree gnu_tmp = gnu_field_list; gnu_tmp; gnu_tmp = DECL_CHAIN (gnu_tmp))
warn_on_field_placement (gnu_tmp, gnat_component_list, gnat_record_type,
in_variant, do_reorder);
}
/* Structure holding information for a given variant. */
typedef struct vinfo
{
/* The record type of the variant. */
tree type;
/* The name of the variant. */
tree name;
/* The qualifier of the variant. */
tree qual;
/* Whether the variant has a rep clause. */
bool has_rep;
/* Whether the variant is packed. */
bool packed;
} vinfo_t;
/* Translate and chain GNAT_COMPONENT_LIST present in GNAT_RECORD_TYPE to
GNU_FIELD_LIST, set the result as the field list of GNU_RECORD_TYPE and
finish it up. Return true if GNU_RECORD_TYPE has a rep clause that affects
the layout (see below). When called from gnat_to_gnu_entity during the
processing of a record definition, the GCC node for the parent, if any,
will be the single field of GNU_RECORD_TYPE and the GCC nodes for the
discriminants will be on GNU_FIELD_LIST. The other call to this function
is a recursive call for the component list of a variant and, in this case,
GNU_FIELD_LIST is empty. Note that GNAT_COMPONENT_LIST may be Empty.
PACKED is 1 if this is for a packed record or -1 if this is for a record
with Component_Alignment of Storage_Unit.
DEFINITION is true if we are defining this record type.
CANCEL_ALIGNMENT is true if the alignment should be zeroed before laying
out the record. This means the alignment only serves to force fields to
be bitfields, but not to require the record to be that aligned. This is
used for variants.
ALL_REP is true if a rep clause is present for all the fields.
UNCHECKED_UNION is true if we are building this type for a record with a
Pragma Unchecked_Union.
ARTIFICIAL is true if this is a type that was generated by the compiler.
DEBUG_INFO is true if we need to write debug information about the type.
IN_VARIANT is true if the componennt list is that of a variant.
FIRST_FREE_POS, if nonzero, is the first (lowest) free field position in
the outer record type down to this variant level. It is nonzero only if
all the fields down to this level have a rep clause and ALL_REP is false.
P_GNU_REP_LIST, if nonzero, is a pointer to a list to which each field
with a rep clause is to be added; in this case, that is all that should
be done with such fields and the return value will be false. */
static bool
components_to_record (Node_Id gnat_component_list, Entity_Id gnat_record_type,
tree gnu_field_list, tree gnu_record_type, int packed,
bool definition, bool cancel_alignment, bool all_rep,
bool unchecked_union, bool artificial, bool debug_info,
bool in_variant, tree first_free_pos,
tree *p_gnu_rep_list)
{
const bool needs_xv_encodings
= debug_info && gnat_encodings == DWARF_GNAT_ENCODINGS_ALL;
bool all_rep_and_size = all_rep && TYPE_SIZE (gnu_record_type);
bool variants_have_rep = all_rep;
bool layout_with_rep = false;
bool has_non_packed_fixed_size_field = false;
bool has_self_field = false;
bool has_aliased_after_self_field = false;
Entity_Id gnat_component_decl, gnat_variant_part;
tree gnu_field, gnu_next, gnu_last;
tree gnu_variant_part = NULL_TREE;
tree gnu_rep_list = NULL_TREE;
/* For each component referenced in a component declaration create a GCC
field and add it to the list, skipping pragmas in the GNAT list. */
gnu_last = tree_last (gnu_field_list);
if (Present (gnat_component_list)
&& (Present (Component_Items (gnat_component_list))))
for (gnat_component_decl
= First_Non_Pragma (Component_Items (gnat_component_list));
Present (gnat_component_decl);
gnat_component_decl = Next_Non_Pragma (gnat_component_decl))
{
Entity_Id gnat_field = Defining_Entity (gnat_component_decl);
Name_Id gnat_name = Chars (gnat_field);
/* If present, the _Parent field must have been created as the single
field of the record type. Put it before any other fields. */
if (gnat_name == Name_uParent)
{
gnu_field = TYPE_FIELDS (gnu_record_type);
gnu_field_list = chainon (gnu_field_list, gnu_field);
}
else
{
gnu_field = gnat_to_gnu_field (gnat_field, gnu_record_type, packed,
definition, debug_info);
/* If this is the _Tag field, put it before any other fields. */
if (gnat_name == Name_uTag)
gnu_field_list = chainon (gnu_field_list, gnu_field);
/* If this is the _Controller field, put it before the other
fields except for the _Tag or _Parent field. */
else if (gnat_name == Name_uController && gnu_last)
{
DECL_CHAIN (gnu_field) = DECL_CHAIN (gnu_last);
DECL_CHAIN (gnu_last) = gnu_field;
}
/* If this is a regular field, put it after the other fields. */
else
{
DECL_CHAIN (gnu_field) = gnu_field_list;
gnu_field_list = gnu_field;
if (!gnu_last)
gnu_last = gnu_field;
/* And record information for the final layout. */
if (field_has_self_size (gnu_field))
has_self_field = true;
else if (has_self_field && DECL_ALIASED_P (gnu_field))
has_aliased_after_self_field = true;
else if (!DECL_FIELD_OFFSET (gnu_field)
&& !DECL_PACKED (gnu_field)
&& !field_has_variable_size (gnu_field))
has_non_packed_fixed_size_field = true;
}
}
save_gnu_tree (gnat_field, gnu_field, false);
}
/* At the end of the component list there may be a variant part. */
if (Present (gnat_component_list))
gnat_variant_part = Variant_Part (gnat_component_list);
else
gnat_variant_part = Empty;
/* We create a QUAL_UNION_TYPE for the variant part since the variants are
mutually exclusive and should go in the same memory. To do this we need
to treat each variant as a record whose elements are created from the
component list for the variant. So here we create the records from the
lists for the variants and put them all into the QUAL_UNION_TYPE.
If this is an Unchecked_Union, we make a UNION_TYPE instead or
use GNU_RECORD_TYPE if there are no fields so far. */
if (Present (gnat_variant_part))
{
Node_Id gnat_discr = Name (gnat_variant_part), variant;
tree gnu_discr = gnat_to_gnu (gnat_discr);
tree gnu_name = TYPE_IDENTIFIER (gnu_record_type);
tree gnu_var_name
= concat_name (get_identifier (Get_Name_String (Chars (gnat_discr))),
"XVN");
tree gnu_union_name
= concat_name (gnu_name, IDENTIFIER_POINTER (gnu_var_name));
tree gnu_union_type;
tree this_first_free_pos, gnu_variant_list = NULL_TREE;
bool union_field_needs_strict_alignment = false;
bool innermost_variant_level = true;
auto_vec <vinfo_t, 16> variant_types;
vinfo_t *gnu_variant;
unsigned int variants_align = 0;
unsigned int i;
/* Reuse the enclosing union if this is an Unchecked_Union whose fields
are all in the variant part, to match the layout of C unions. There
is an associated check below. */
if (TREE_CODE (gnu_record_type) == UNION_TYPE)
gnu_union_type = gnu_record_type;
else
{
gnu_union_type
= make_node (unchecked_union ? UNION_TYPE : QUAL_UNION_TYPE);
TYPE_NAME (gnu_union_type) = gnu_union_name;
SET_TYPE_ALIGN (gnu_union_type, 0);
TYPE_PACKED (gnu_union_type) = TYPE_PACKED (gnu_record_type);
TYPE_REVERSE_STORAGE_ORDER (gnu_union_type)
= TYPE_REVERSE_STORAGE_ORDER (gnu_record_type);
}
/* If all the fields down to this level have a rep clause, find out
whether all the fields at this level also have one. If so, then
compute the new first free position to be passed downward. */
this_first_free_pos = first_free_pos;
if (this_first_free_pos)
{
for (gnu_field = gnu_field_list;
gnu_field;
gnu_field = DECL_CHAIN (gnu_field))
if (DECL_FIELD_OFFSET (gnu_field))
{
tree pos = bit_position (gnu_field);
if (!tree_int_cst_lt (pos, this_first_free_pos))
this_first_free_pos
= size_binop (PLUS_EXPR, pos, DECL_SIZE (gnu_field));
}
else
{
this_first_free_pos = NULL_TREE;
break;
}
}
/* For an unchecked union with a fixed part, we need to compute whether
we are at the innermost level of the variant part. */
if (unchecked_union && gnu_field_list)
for (variant = First_Non_Pragma (Variants (gnat_variant_part));
Present (variant);
variant = Next_Non_Pragma (variant))
if (Present (Component_List (variant))
&& Present (Variant_Part (Component_List (variant))))
{
innermost_variant_level = false;
break;
}
/* We build the variants in two passes. The bulk of the work is done in
the first pass, that is to say translating the GNAT nodes, building
the container types and computing the associated properties. However
we cannot finish up the container types during this pass because we
don't know where the variant part will be placed until the end. */
for (variant = First_Non_Pragma (Variants (gnat_variant_part));
Present (variant);
variant = Next_Non_Pragma (variant))
{
tree gnu_variant_type = make_node (RECORD_TYPE);
tree gnu_inner_name, gnu_qual;
bool has_rep;
int field_packed;
vinfo_t vinfo;
Get_Variant_Encoding (variant);
gnu_inner_name = get_identifier_with_length (Name_Buffer, Name_Len);
TYPE_NAME (gnu_variant_type)
= concat_name (gnu_union_name,
IDENTIFIER_POINTER (gnu_inner_name));
/* Set the alignment of the inner type in case we need to make
inner objects into bitfields, but then clear it out so the
record actually gets only the alignment required. */
SET_TYPE_ALIGN (gnu_variant_type, TYPE_ALIGN (gnu_record_type));
TYPE_PACKED (gnu_variant_type) = TYPE_PACKED (gnu_record_type);
TYPE_REVERSE_STORAGE_ORDER (gnu_variant_type)
= TYPE_REVERSE_STORAGE_ORDER (gnu_record_type);
/* Similarly, if the outer record has a size specified and all
the fields have a rep clause, we can propagate the size. */
if (all_rep_and_size)
{
TYPE_SIZE (gnu_variant_type) = TYPE_SIZE (gnu_record_type);
TYPE_SIZE_UNIT (gnu_variant_type)
= TYPE_SIZE_UNIT (gnu_record_type);
}
/* Add the fields into the record type for the variant but note that
we aren't sure to really use it at this point, see below. In the
case of an unchecked union with a fixed part, we force the fields
with a rep clause present in the innermost variant to be moved to
the outer variant, so as to flatten the rep-ed layout as much as
possible, the reason being that we cannot do any flattening when
a subtype statically selects a variant later on, for example for
an aggregate. */
has_rep
= components_to_record (Component_List (variant), gnat_record_type,
NULL_TREE, gnu_variant_type, packed,
definition, !all_rep_and_size, all_rep,
unchecked_union, true, needs_xv_encodings,
true, this_first_free_pos,
(all_rep || this_first_free_pos)
&& !(unchecked_union
&& gnu_field_list
&& innermost_variant_level)
? NULL : &gnu_rep_list);
/* Translate the qualifier and annotate the GNAT node. */
gnu_qual = choices_to_gnu (gnu_discr, Discrete_Choices (variant));
Set_Present_Expr (variant, annotate_value (gnu_qual));
/* Deal with packedness like in gnat_to_gnu_field. */
if (components_need_strict_alignment (Component_List (variant)))
{
field_packed = 0;
union_field_needs_strict_alignment = true;
}
else
field_packed
= adjust_packed (gnu_variant_type, gnu_record_type, packed);
/* Push this variant onto the stack for the second pass. */
vinfo.type = gnu_variant_type;
vinfo.name = gnu_inner_name;
vinfo.qual = gnu_qual;
vinfo.has_rep = has_rep;
vinfo.packed = field_packed;
variant_types.safe_push (vinfo);
/* Compute the global properties that will determine the placement of
the variant part. */
variants_have_rep |= has_rep;
if (!field_packed && TYPE_ALIGN (gnu_variant_type) > variants_align)
variants_align = TYPE_ALIGN (gnu_variant_type);
}
/* Round up the first free position to the alignment of the variant part
for the variants without rep clause. This will guarantee a consistent
layout independently of the placement of the variant part. */
if (variants_have_rep && variants_align > 0 && this_first_free_pos)
this_first_free_pos = round_up (this_first_free_pos, variants_align);
/* In the second pass, the container types are adjusted if necessary and
finished up, then the corresponding fields of the variant part are
built with their qualifier, unless this is an unchecked union. */
FOR_EACH_VEC_ELT (variant_types, i, gnu_variant)
{
tree gnu_variant_type = gnu_variant->type;
tree gnu_field_list = TYPE_FIELDS (gnu_variant_type);
/* If this is an Unchecked_Union whose fields are all in the variant
part and we have a single field with no representation clause or
placed at offset zero, use the field directly to match the layout
of C unions. */
if (TREE_CODE (gnu_record_type) == UNION_TYPE
&& gnu_field_list
&& !DECL_CHAIN (gnu_field_list)
&& (!DECL_FIELD_OFFSET (gnu_field_list)
|| integer_zerop (bit_position (gnu_field_list))))
{
gnu_field = gnu_field_list;
DECL_CONTEXT (gnu_field) = gnu_record_type;
}
else
{
/* Finalize the variant type now. We used to throw away empty
record types but we no longer do that because we need them to
generate complete debug info for the variant; otherwise, the
union type definition will be lacking the fields associated
with these empty variants. */
if (gnu_field_list && variants_have_rep && !gnu_variant->has_rep)
{
/* The variant part will be at offset 0 so we need to ensure
that the fields are laid out starting from the first free
position at this level. */
tree gnu_rep_type = make_node (RECORD_TYPE);
tree gnu_rep_part;
TYPE_REVERSE_STORAGE_ORDER (gnu_rep_type)
= TYPE_REVERSE_STORAGE_ORDER (gnu_variant_type);
finish_record_type (gnu_rep_type, NULL_TREE, 0, debug_info);
gnu_rep_part
= create_rep_part (gnu_rep_type, gnu_variant_type,
this_first_free_pos);
DECL_CHAIN (gnu_rep_part) = gnu_field_list;
gnu_field_list = gnu_rep_part;
finish_record_type (gnu_variant_type, gnu_field_list, 0,
false);
}
if (debug_info)
rest_of_record_type_compilation (gnu_variant_type);
create_type_decl (TYPE_NAME (gnu_variant_type), gnu_variant_type,
true, needs_xv_encodings, gnat_component_list);
gnu_field
= create_field_decl (gnu_variant->name, gnu_variant_type,
gnu_union_type,
all_rep_and_size
? TYPE_SIZE (gnu_variant_type) : 0,
variants_have_rep ? bitsize_zero_node : 0,
gnu_variant->packed, 0);
DECL_INTERNAL_P (gnu_field) = 1;
if (!unchecked_union)
DECL_QUALIFIER (gnu_field) = gnu_variant->qual;
}
DECL_CHAIN (gnu_field) = gnu_variant_list;
gnu_variant_list = gnu_field;
}
/* Only make the QUAL_UNION_TYPE if there are non-empty variants. */
if (gnu_variant_list)
{
int union_field_packed;
if (all_rep_and_size)
{
TYPE_SIZE (gnu_union_type) = TYPE_SIZE (gnu_record_type);
TYPE_SIZE_UNIT (gnu_union_type)
= TYPE_SIZE_UNIT (gnu_record_type);
}
finish_record_type (gnu_union_type, nreverse (gnu_variant_list),
all_rep_and_size ? 1 : 0, needs_xv_encodings);
/* If GNU_UNION_TYPE is our record type, this means that we must have
an Unchecked_Union whose fields are all in the variant part. Now
verify that and, if so, just return. */
if (gnu_union_type == gnu_record_type)
{
gcc_assert (unchecked_union
&& !gnu_field_list
&& !gnu_rep_list);
return variants_have_rep;
}
create_type_decl (TYPE_NAME (gnu_union_type), gnu_union_type, true,
needs_xv_encodings, gnat_component_list);
/* Deal with packedness like in gnat_to_gnu_field. */
if (union_field_needs_strict_alignment)
union_field_packed = 0;
else
union_field_packed
= adjust_packed (gnu_union_type, gnu_record_type, packed);
gnu_variant_part
= create_field_decl (gnu_var_name, gnu_union_type, gnu_record_type,
all_rep_and_size
? TYPE_SIZE (gnu_union_type) : 0,
variants_have_rep ? bitsize_zero_node : 0,
union_field_packed, 0);
DECL_INTERNAL_P (gnu_variant_part) = 1;
}
}
/* Scan GNU_FIELD_LIST and see if any fields have rep clauses. If they do,
pull them out and put them onto the appropriate list.
Similarly, pull out the fields with zero size and no rep clause, as they
would otherwise modify the layout and thus very likely run afoul of the
Ada semantics, which are different from those of C here.
Finally, if there is an aliased field placed in the list after fields
with self-referential size, pull out the latter in the same way.
Optionally, if the reordering mechanism is enabled, pull out the fields
with self-referential size, variable size and fixed size not a multiple
of a byte, so that they don't cause the regular fields to be either at
self-referential/variable offset or misaligned. Note, in the latter
case, that this can only happen in packed record types so the alignment
is effectively capped to the byte for the whole record. But we don't
do it for packed record types if not all fixed-size fiels can be packed
and for non-packed record types if pragma Optimize_Alignment (Space) is
specified, because this can prevent alignment gaps from being filled.
Optionally, if the layout warning is enabled, keep track of the above 4
different kinds of fields and issue a warning if some of them would be
(or are being) reordered by the reordering mechanism.
??? If we reorder fields, the debugging information will be affected and
the debugger print fields in a different order from the source code. */
const bool do_reorder
= (Convention (gnat_record_type) == Convention_Ada
&& !No_Reordering (gnat_record_type)
&& !(Is_Packed (gnat_record_type)
? has_non_packed_fixed_size_field
: Optimize_Alignment_Space (gnat_record_type))
&& !Debug_Flag_Dot_R);
const bool w_reorder
= (Convention (gnat_record_type) == Convention_Ada
&& Get_Warn_On_Questionable_Layout ()
&& !(No_Reordering (gnat_record_type) && GNAT_Mode));
tree gnu_zero_list = NULL_TREE;
tree gnu_self_list = NULL_TREE;
tree gnu_var_list = NULL_TREE;
tree gnu_bitp_list = NULL_TREE;
tree gnu_tmp_bitp_list = NULL_TREE;
unsigned int tmp_bitp_size = 0;
unsigned int last_reorder_field_type = -1;
unsigned int tmp_last_reorder_field_type = -1;
#define MOVE_FROM_FIELD_LIST_TO(LIST) \
do { \
if (gnu_last) \
DECL_CHAIN (gnu_last) = gnu_next; \
else \
gnu_field_list = gnu_next; \
\
DECL_CHAIN (gnu_field) = (LIST); \
(LIST) = gnu_field; \
} while (0)
gnu_last = NULL_TREE;
for (gnu_field = gnu_field_list; gnu_field; gnu_field = gnu_next)
{
gnu_next = DECL_CHAIN (gnu_field);
if (DECL_FIELD_OFFSET (gnu_field))
{
MOVE_FROM_FIELD_LIST_TO (gnu_rep_list);
continue;
}
if (DECL_SIZE (gnu_field) && integer_zerop (DECL_SIZE (gnu_field)))
{
DECL_SIZE_UNIT (gnu_field) = size_zero_node;
DECL_FIELD_OFFSET (gnu_field) = size_zero_node;
SET_DECL_OFFSET_ALIGN (gnu_field, BIGGEST_ALIGNMENT);
DECL_FIELD_BIT_OFFSET (gnu_field) = bitsize_zero_node;
if (DECL_ALIASED_P (gnu_field))
SET_TYPE_ALIGN (gnu_record_type,
MAX (TYPE_ALIGN (gnu_record_type),
TYPE_ALIGN (TREE_TYPE (gnu_field))));
MOVE_FROM_FIELD_LIST_TO (gnu_zero_list);
continue;
}
if (has_aliased_after_self_field && field_has_self_size (gnu_field))
{
MOVE_FROM_FIELD_LIST_TO (gnu_self_list);
continue;
}
/* We don't need further processing in default mode. */
if (!w_reorder && !do_reorder)
{
gnu_last = gnu_field;
continue;
}
if (field_has_self_size (gnu_field))
{
if (w_reorder)
{
if (last_reorder_field_type < 4)
warn_on_field_placement (gnu_field, gnat_component_list,
gnat_record_type, in_variant,
do_reorder);
else
last_reorder_field_type = 4;
}
if (do_reorder)
{
MOVE_FROM_FIELD_LIST_TO (gnu_self_list);
continue;
}
}
else if (field_has_variable_size (gnu_field))
{
if (w_reorder)
{
if (last_reorder_field_type < 3)
warn_on_field_placement (gnu_field, gnat_component_list,
gnat_record_type, in_variant,
do_reorder);
else
last_reorder_field_type = 3;
}
if (do_reorder)
{
MOVE_FROM_FIELD_LIST_TO (gnu_var_list);
continue;
}
}
else
{
/* If the field has no size, then it cannot be bit-packed. */
const unsigned int bitp_size
= DECL_SIZE (gnu_field)
? TREE_INT_CST_LOW (DECL_SIZE (gnu_field)) % BITS_PER_UNIT
: 0;
/* If the field is bit-packed, we move it to a temporary list that
contains the contiguously preceding bit-packed fields, because
we want to be able to put them back if the misalignment happens
to cancel itself after several bit-packed fields. */
if (bitp_size != 0)
{
tmp_bitp_size = (tmp_bitp_size + bitp_size) % BITS_PER_UNIT;
if (last_reorder_field_type != 2)
{
tmp_last_reorder_field_type = last_reorder_field_type;
last_reorder_field_type = 2;
}
if (do_reorder)
{
MOVE_FROM_FIELD_LIST_TO (gnu_tmp_bitp_list);
continue;
}
}
/* No more bit-packed fields, move the existing ones to the end or
put them back at their original location. */
else if (last_reorder_field_type == 2 || gnu_tmp_bitp_list)
{
last_reorder_field_type = 1;
if (tmp_bitp_size != 0)
{
if (w_reorder && tmp_last_reorder_field_type < 2)
{
if (gnu_tmp_bitp_list)
warn_on_list_placement (gnu_tmp_bitp_list,
gnat_component_list,
gnat_record_type, in_variant,
do_reorder);
else
warn_on_field_placement (gnu_last,
gnat_component_list,
gnat_record_type, in_variant,
do_reorder);
}
if (do_reorder)
gnu_bitp_list = chainon (gnu_tmp_bitp_list, gnu_bitp_list);
gnu_tmp_bitp_list = NULL_TREE;
tmp_bitp_size = 0;
}
else
{
/* Rechain the temporary list in front of GNU_FIELD. */
tree gnu_bitp_field = gnu_field;
while (gnu_tmp_bitp_list)
{
tree gnu_bitp_next = DECL_CHAIN (gnu_tmp_bitp_list);
DECL_CHAIN (gnu_tmp_bitp_list) = gnu_bitp_field;
if (gnu_last)
DECL_CHAIN (gnu_last) = gnu_tmp_bitp_list;
else
gnu_field_list = gnu_tmp_bitp_list;
gnu_bitp_field = gnu_tmp_bitp_list;
gnu_tmp_bitp_list = gnu_bitp_next;
}
}
}
else
last_reorder_field_type = 1;
}
gnu_last = gnu_field;
}
#undef MOVE_FROM_FIELD_LIST_TO
gnu_field_list = nreverse (gnu_field_list);
/* If permitted, we reorder the fields as follows:
1) all (groups of) fields whose length is fixed and multiple of a byte,
2) the remaining fields whose length is fixed and not multiple of a byte,
3) the remaining fields whose length doesn't depend on discriminants,
4) all fields whose length depends on discriminants,
5) the variant part,
within the record and within each variant recursively. */
if (w_reorder)
{
/* If we have pending bit-packed fields, warn if they would be moved
to after regular fields. */
if (last_reorder_field_type == 2
&& tmp_bitp_size != 0
&& tmp_last_reorder_field_type < 2)
{
if (gnu_tmp_bitp_list)
warn_on_list_placement (gnu_tmp_bitp_list,
gnat_component_list, gnat_record_type,
in_variant, do_reorder);
else
warn_on_field_placement (gnu_field_list,
gnat_component_list, gnat_record_type,
in_variant, do_reorder);
}
}
if (do_reorder)
{
/* If we have pending bit-packed fields on the temporary list, we put
them either on the bit-packed list or back on the regular list. */
if (gnu_tmp_bitp_list)
{
if (tmp_bitp_size != 0)
gnu_bitp_list = chainon (gnu_tmp_bitp_list, gnu_bitp_list);
else
gnu_field_list = chainon (gnu_tmp_bitp_list, gnu_field_list);
}
gnu_field_list
= chainon (gnu_field_list,
chainon (gnu_bitp_list,
chainon (gnu_var_list, gnu_self_list)));
}
/* Otherwise, if there is an aliased field placed after a field whose length
depends on discriminants, we put all the fields of the latter sort, last.
We need to do this in case an object of this record type is mutable. */
else if (has_aliased_after_self_field)
gnu_field_list = chainon (gnu_field_list, gnu_self_list);
/* If P_REP_LIST is nonzero, this means that we are asked to move the fields
in our REP list to the previous level because this level needs them in
order to do a correct layout, i.e. avoid having overlapping fields. */
if (p_gnu_rep_list && gnu_rep_list)
*p_gnu_rep_list = chainon (*p_gnu_rep_list, gnu_rep_list);
/* Deal with the case of an extension of a record type with variable size and
partial rep clause, for which the _Parent field is forced at offset 0 and
has variable size. Note that we cannot do it if the field has fixed size
because we rely on the presence of the REP part built below to trigger the
reordering of the fields in a derived record type when all the fields have
a fixed position. */
else if (gnu_rep_list
&& !DECL_CHAIN (gnu_rep_list)
&& TREE_CODE (DECL_SIZE (gnu_rep_list)) != INTEGER_CST
&& !variants_have_rep
&& first_free_pos
&& integer_zerop (first_free_pos)
&& integer_zerop (bit_position (gnu_rep_list)))
{
DECL_CHAIN (gnu_rep_list) = gnu_field_list;
gnu_field_list = gnu_rep_list;
gnu_rep_list = NULL_TREE;
}
/* Otherwise, sort the fields by bit position and put them into their own
record, before the others, if we also have fields without rep clause. */
else if (gnu_rep_list)
{
tree gnu_parent, gnu_rep_type;
/* If all the fields have a rep clause, we can do a flat layout. */
layout_with_rep = !gnu_field_list
&& (!gnu_variant_part || variants_have_rep);
/* Same as above but the extension itself has a rep clause, in which case
we need to set aside the _Parent field to lay out the REP part. */
if (TREE_CODE (DECL_SIZE (gnu_rep_list)) != INTEGER_CST
&& !layout_with_rep
&& !variants_have_rep
&& first_free_pos
&& integer_zerop (first_free_pos)
&& integer_zerop (bit_position (gnu_rep_list)))
{
gnu_parent = gnu_rep_list;
gnu_rep_list = DECL_CHAIN (gnu_rep_list);
}
else
gnu_parent = NULL_TREE;
gnu_rep_type
= layout_with_rep ? gnu_record_type : make_node (RECORD_TYPE);
/* Sort the fields in order of increasing bit position. */
const int len = list_length (gnu_rep_list);
tree *gnu_arr = XALLOCAVEC (tree, len);
gnu_field = gnu_rep_list;
for (int i = 0; i < len; i++)
{
gnu_arr[i] = gnu_field;
gnu_field = DECL_CHAIN (gnu_field);
}
qsort (gnu_arr, len, sizeof (tree), compare_field_bitpos);
gnu_rep_list = NULL_TREE;
for (int i = len - 1; i >= 0; i--)
{
DECL_CHAIN (gnu_arr[i]) = gnu_rep_list;
gnu_rep_list = gnu_arr[i];
DECL_CONTEXT (gnu_arr[i]) = gnu_rep_type;
}
/* Do the layout of the REP part, if any. */
if (layout_with_rep)
gnu_field_list = gnu_rep_list;
else
{
TYPE_NAME (gnu_rep_type)
= create_concat_name (gnat_record_type, "REP");
TYPE_REVERSE_STORAGE_ORDER (gnu_rep_type)
= TYPE_REVERSE_STORAGE_ORDER (gnu_record_type);
finish_record_type (gnu_rep_type, gnu_rep_list, 1, false);
/* If FIRST_FREE_POS is nonzero, we need to ensure that the fields
without rep clause are laid out starting from this position.
Therefore, we force it as a minimal size on the REP part. */
tree gnu_rep_part
= create_rep_part (gnu_rep_type, gnu_record_type, first_free_pos);
/* If this is an extension, put back the _Parent field as the first
field of the REP part at offset 0 and update its layout. */
if (gnu_parent)
{
const unsigned int align = DECL_ALIGN (gnu_parent);
DECL_CHAIN (gnu_parent) = TYPE_FIELDS (gnu_rep_type);
TYPE_FIELDS (gnu_rep_type) = gnu_parent;
DECL_CONTEXT (gnu_parent) = gnu_rep_type;
if (align > TYPE_ALIGN (gnu_rep_type))
{
SET_TYPE_ALIGN (gnu_rep_type, align);
TYPE_SIZE (gnu_rep_type)
= round_up (TYPE_SIZE (gnu_rep_type), align);
TYPE_SIZE_UNIT (gnu_rep_type)
= round_up (TYPE_SIZE_UNIT (gnu_rep_type), align);
SET_DECL_ALIGN (gnu_rep_part, align);
}
}
if (debug_info)
rest_of_record_type_compilation (gnu_rep_type);
/* Chain the REP part at the beginning of the field list. */
DECL_CHAIN (gnu_rep_part) = gnu_field_list;
gnu_field_list = gnu_rep_part;
}
}
/* Chain the variant part at the end of the field list. */
if (gnu_variant_part)
gnu_field_list = chainon (gnu_field_list, gnu_variant_part);
if (cancel_alignment)
SET_TYPE_ALIGN (gnu_record_type, 0);
TYPE_ARTIFICIAL (gnu_record_type) = artificial;
finish_record_type (gnu_record_type, gnu_field_list, layout_with_rep ? 1 : 0,
debug_info && !in_variant);
/* Chain the fields with zero size at the beginning of the field list. */
if (gnu_zero_list)
TYPE_FIELDS (gnu_record_type)
= chainon (gnu_zero_list, TYPE_FIELDS (gnu_record_type));
return (gnu_rep_list && !p_gnu_rep_list) || variants_have_rep;
}
/* Given GNU_SIZE, a GCC tree representing a size, return a Uint to be
placed into an Esize, Component_Bit_Offset, or Component_Size value
in the GNAT tree. */
static Uint
annotate_value (tree gnu_size)
{
static int var_count = 0;
TCode tcode;
Node_Ref_Or_Val ops[3] = { No_Uint, No_Uint, No_Uint };
struct tree_int_map in;
/* See if we've already saved the value for this node. */
if (EXPR_P (gnu_size) || DECL_P (gnu_size))
{
struct tree_int_map *e;
in.base.from = gnu_size;
e = annotate_value_cache->find (&in);
if (e)
return (Node_Ref_Or_Val) e->to;
}
else
in.base.from = NULL_TREE;
/* If we do not return inside this switch, TCODE will be set to the
code to be used in a call to Create_Node. */
switch (TREE_CODE (gnu_size))
{
case INTEGER_CST:
/* For negative values, build NEGATE_EXPR of the opposite. Such values
can appear for discriminants in expressions for variants. */
if (tree_int_cst_sgn (gnu_size) < 0)
{
tree t = wide_int_to_tree (sizetype, -wi::to_wide (gnu_size));
tcode = Negate_Expr;
ops[0] = UI_From_gnu (t);
}
else
return TREE_OVERFLOW (gnu_size) ? No_Uint : UI_From_gnu (gnu_size);
break;
case COMPONENT_REF:
/* The only case we handle here is a simple discriminant reference. */
if (DECL_DISCRIMINANT_NUMBER (TREE_OPERAND (gnu_size, 1)))
{
tree ref = gnu_size;
gnu_size = TREE_OPERAND (ref, 1);
/* Climb up the chain of successive extensions, if any. */
while (TREE_CODE (TREE_OPERAND (ref, 0)) == COMPONENT_REF
&& DECL_NAME (TREE_OPERAND (TREE_OPERAND (ref, 0), 1))
== parent_name_id)
ref = TREE_OPERAND (ref, 0);
if (TREE_CODE (TREE_OPERAND (ref, 0)) == PLACEHOLDER_EXPR)
{
/* Fall through to common processing as a FIELD_DECL. */
tcode = Discrim_Val;
ops[0] = UI_From_gnu (DECL_DISCRIMINANT_NUMBER (gnu_size));
}
else
return No_Uint;
}
else
return No_Uint;
break;
case PARM_DECL:
case VAR_DECL:
tcode = Dynamic_Val;
ops[0] = UI_From_Int (++var_count);
break;
CASE_CONVERT:
case NON_LVALUE_EXPR:
return annotate_value (TREE_OPERAND (gnu_size, 0));
/* Now just list the operations we handle. */
case COND_EXPR: tcode = Cond_Expr; break;
case MINUS_EXPR: tcode = Minus_Expr; break;
case TRUNC_DIV_EXPR: tcode = Trunc_Div_Expr; break;
case CEIL_DIV_EXPR: tcode = Ceil_Div_Expr; break;
case FLOOR_DIV_EXPR: tcode = Floor_Div_Expr; break;
case TRUNC_MOD_EXPR: tcode = Trunc_Mod_Expr; break;
case CEIL_MOD_EXPR: tcode = Ceil_Mod_Expr; break;
case FLOOR_MOD_EXPR: tcode = Floor_Mod_Expr; break;
case EXACT_DIV_EXPR: tcode = Exact_Div_Expr; break;
case NEGATE_EXPR: tcode = Negate_Expr; break;
case MIN_EXPR: tcode = Min_Expr; break;
case MAX_EXPR: tcode = Max_Expr; break;
case ABS_EXPR: tcode = Abs_Expr; break;
case TRUTH_ANDIF_EXPR:
case TRUTH_AND_EXPR: tcode = Truth_And_Expr; break;
case TRUTH_ORIF_EXPR:
case TRUTH_OR_EXPR: tcode = Truth_Or_Expr; break;
case TRUTH_XOR_EXPR: tcode = Truth_Xor_Expr; break;
case TRUTH_NOT_EXPR: tcode = Truth_Not_Expr; break;
case LT_EXPR: tcode = Lt_Expr; break;
case LE_EXPR: tcode = Le_Expr; break;
case GT_EXPR: tcode = Gt_Expr; break;
case GE_EXPR: tcode = Ge_Expr; break;
case EQ_EXPR: tcode = Eq_Expr; break;
case NE_EXPR: tcode = Ne_Expr; break;
case PLUS_EXPR:
/* Turn addition of negative constant into subtraction. */
if (TREE_CODE (TREE_OPERAND (gnu_size, 1)) == INTEGER_CST
&& tree_int_cst_sign_bit (TREE_OPERAND (gnu_size, 1)))
{
tcode = Minus_Expr;
wide_int wop1 = -wi::to_wide (TREE_OPERAND (gnu_size, 1));
ops[1] = annotate_value (wide_int_to_tree (sizetype, wop1));
break;
}
/* ... fall through ... */
case MULT_EXPR:
tcode = (TREE_CODE (gnu_size) == MULT_EXPR ? Mult_Expr : Plus_Expr);
/* Fold conversions from bytes to bits into inner operations. */
if (TREE_CODE (TREE_OPERAND (gnu_size, 1)) == INTEGER_CST
&& CONVERT_EXPR_P (TREE_OPERAND (gnu_size, 0)))
{
tree inner_op = TREE_OPERAND (TREE_OPERAND (gnu_size, 0), 0);
if (TREE_CODE (inner_op) == TREE_CODE (gnu_size)
&& TREE_CODE (TREE_OPERAND (inner_op, 1)) == INTEGER_CST)
{
ops[0] = annotate_value (TREE_OPERAND (inner_op, 0));
tree inner_op_op1 = TREE_OPERAND (inner_op, 1);
tree gnu_size_op1 = TREE_OPERAND (gnu_size, 1);
widest_int op1;
if (TREE_CODE (gnu_size) == MULT_EXPR)
op1 = (wi::to_widest (inner_op_op1)
* wi::to_widest (gnu_size_op1));
else
{
op1 = (wi::to_widest (inner_op_op1)
+ wi::to_widest (gnu_size_op1));
if (wi::zext (op1, TYPE_PRECISION (sizetype)) == 0)
return ops[0];
}
ops[1] = annotate_value (wide_int_to_tree (sizetype, op1));
}
}
break;
case BIT_AND_EXPR:
tcode = Bit_And_Expr;
/* For negative values in sizetype, build NEGATE_EXPR of the opposite.
Such values can appear in expressions with aligning patterns. */
if (TREE_CODE (TREE_OPERAND (gnu_size, 1)) == INTEGER_CST)
{
wide_int wop1 = -wi::to_wide (TREE_OPERAND (gnu_size, 1));
tree op1 = wide_int_to_tree (sizetype, wop1);
ops[1] = annotate_value (build1 (NEGATE_EXPR, sizetype, op1));
}
break;
case CALL_EXPR:
/* In regular mode, inline back only if symbolic annotation is requested
in order to avoid memory explosion on big discriminated record types.
But not in ASIS mode, as symbolic annotation is required for DDA. */
if (List_Representation_Info >= 3 || type_annotate_only)
{
tree t = maybe_inline_call_in_expr (gnu_size);
return t ? annotate_value (t) : No_Uint;
}
else
return Uint_Minus_1;
default:
return No_Uint;
}
/* Now get each of the operands that's relevant for this code. If any
cannot be expressed as a repinfo node, say we can't. */
for (int i = 0; i < TREE_CODE_LENGTH (TREE_CODE (gnu_size)); i++)
if (ops[i] == No_Uint)
{
ops[i] = annotate_value (TREE_OPERAND (gnu_size, i));
if (ops[i] == No_Uint)
return No_Uint;
}
Node_Ref_Or_Val ret = Create_Node (tcode, ops[0], ops[1], ops[2]);
/* Save the result in the cache. */
if (in.base.from)
{
struct tree_int_map **h;
/* We can't assume the hash table data hasn't moved since the initial
look up, so we have to search again. Allocating and inserting an
entry at that point would be an alternative, but then we'd better
discard the entry if we decided not to cache it. */
h = annotate_value_cache->find_slot (&in, INSERT);
gcc_assert (!*h);
*h = ggc_alloc<tree_int_map> ();
(*h)->base.from = in.base.from;
(*h)->to = ret;
}
return ret;
}
/* Given GNAT_ENTITY, an object (constant, variable, parameter, exception)
and GNU_TYPE, its corresponding GCC type, set Esize and Alignment to the
size and alignment used by Gigi. Prefer SIZE over TYPE_SIZE if non-null.
BY_REF is true if the object is used by reference. */
void
annotate_object (Entity_Id gnat_entity, tree gnu_type, tree size, bool by_ref)
{
if (by_ref)
{
if (TYPE_IS_FAT_POINTER_P (gnu_type))
gnu_type = TYPE_UNCONSTRAINED_ARRAY (gnu_type);
else
gnu_type = TREE_TYPE (gnu_type);
}
if (!Known_Esize (gnat_entity))
{
if (TREE_CODE (gnu_type) == RECORD_TYPE
&& TYPE_CONTAINS_TEMPLATE_P (gnu_type))
size = TYPE_SIZE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (gnu_type))));
else if (!size)
size = TYPE_SIZE (gnu_type);
if (size)
Set_Esize (gnat_entity, No_Uint_To_0 (annotate_value (size)));
}
if (!Known_Alignment (gnat_entity))
Set_Alignment (gnat_entity,
UI_From_Int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT));
}
/* Return first element of field list whose TREE_PURPOSE is the same as ELEM.
Return NULL_TREE if there is no such element in the list. */
static tree
purpose_member_field (const_tree elem, tree list)
{
while (list)
{
tree field = TREE_PURPOSE (list);
if (SAME_FIELD_P (field, elem))
return list;
list = TREE_CHAIN (list);
}
return NULL_TREE;
}
/* Given GNAT_ENTITY, a record type, and GNU_TYPE, its corresponding GCC type,
set Component_Bit_Offset and Esize of the components to the position and
size used by Gigi. */
static void
annotate_rep (Entity_Id gnat_entity, tree gnu_type)
{
/* For an extension, the inherited components have not been translated because
they are fetched from the _Parent component on the fly. */
const bool is_extension
= Is_Tagged_Type (gnat_entity) && Is_Derived_Type (gnat_entity);
/* We operate by first making a list of all fields and their position (we
can get the size easily) and then update all the sizes in the tree. */
tree gnu_list
= build_position_list (gnu_type, false, size_zero_node, bitsize_zero_node,
BIGGEST_ALIGNMENT, NULL_TREE);
for (Entity_Id gnat_field = First_Entity (gnat_entity);
Present (gnat_field);
gnat_field = Next_Entity (gnat_field))
if ((Ekind (gnat_field) == E_Component
&& (is_extension || present_gnu_tree (gnat_field)))
|| (Ekind (gnat_field) == E_Discriminant
&& !Is_Unchecked_Union (Scope (gnat_field))))
{
tree t = purpose_member_field (gnat_to_gnu_field_decl (gnat_field),
gnu_list);
if (t)
{
tree offset = TREE_VEC_ELT (TREE_VALUE (t), 0);
tree bit_offset = TREE_VEC_ELT (TREE_VALUE (t), 2);
/* If we are just annotating types and the type is tagged, the tag
and the parent components are not generated by the front-end so
we need to add the appropriate offset to each component without
representation clause. */
if (type_annotate_only
&& Is_Tagged_Type (gnat_entity)
&& No (Component_Clause (gnat_field)))
{
tree parent_bit_offset;
/* For a component appearing in the current extension, the
offset is the size of the parent. */
if (Is_Derived_Type (gnat_entity)
&& Original_Record_Component (gnat_field) == gnat_field)
parent_bit_offset
= UI_To_gnu (Esize (Etype (Base_Type (gnat_entity))),
bitsizetype);
else
parent_bit_offset = bitsize_int (POINTER_SIZE);
if (TYPE_FIELDS (gnu_type))
parent_bit_offset
= round_up (parent_bit_offset,
DECL_ALIGN (TYPE_FIELDS (gnu_type)));
offset
= size_binop (PLUS_EXPR, offset,
fold_convert (sizetype,
size_binop (TRUNC_DIV_EXPR,
parent_bit_offset,
bitsize_unit_node)));
}
/* If the field has a variable offset, also compute the normalized
position since it's easier to do on trees here than to deduce
it from the annotated expression of Component_Bit_Offset. */
if (TREE_CODE (offset) != INTEGER_CST)
{
normalize_offset (&offset, &bit_offset, BITS_PER_UNIT);
Set_Normalized_Position (gnat_field,
annotate_value (offset));
Set_Normalized_First_Bit (gnat_field,
annotate_value (bit_offset));
}
Set_Component_Bit_Offset
(gnat_field,
annotate_value (bit_from_pos (offset, bit_offset)));
Set_Esize
(gnat_field,
No_Uint_To_0 (annotate_value (DECL_SIZE (TREE_PURPOSE (t)))));
}
else if (is_extension)
{
/* If there is no entry, this is an inherited component whose
position is the same as in the parent type. */
Entity_Id gnat_orig = Original_Record_Component (gnat_field);
/* If we are just annotating types, discriminants renaming those of
the parent have no entry so deal with them specifically. */
if (type_annotate_only
&& gnat_orig == gnat_field
&& Ekind (gnat_field) == E_Discriminant)
gnat_orig = Corresponding_Discriminant (gnat_field);
if (Known_Normalized_Position (gnat_orig))
{
Set_Normalized_Position (gnat_field,
Normalized_Position (gnat_orig));
Set_Normalized_First_Bit (gnat_field,
Normalized_First_Bit (gnat_orig));
}
Set_Component_Bit_Offset (gnat_field,
Component_Bit_Offset (gnat_orig));
Set_Esize (gnat_field, Esize (gnat_orig));
}
}
}
/* Scan all fields in GNU_TYPE and return a TREE_LIST where TREE_PURPOSE is
the FIELD_DECL and TREE_VALUE a TREE_VEC containing the byte position, the
value to be placed into DECL_OFFSET_ALIGN and the bit position. The list
of fields is flattened, except for variant parts if DO_NOT_FLATTEN_VARIANT
is set to true. GNU_POS is to be added to the position, GNU_BITPOS to the
bit position, OFFSET_ALIGN is the present offset alignment. GNU_LIST is a
pre-existing list to be chained to the newly created entries. */
static tree
build_position_list (tree gnu_type, bool do_not_flatten_variant, tree gnu_pos,
tree gnu_bitpos, unsigned int offset_align, tree gnu_list)
{
tree gnu_field;
for (gnu_field = TYPE_FIELDS (gnu_type);
gnu_field;
gnu_field = DECL_CHAIN (gnu_field))
{
tree gnu_our_bitpos = size_binop (PLUS_EXPR, gnu_bitpos,
DECL_FIELD_BIT_OFFSET (gnu_field));
tree gnu_our_offset = size_binop (PLUS_EXPR, gnu_pos,
DECL_FIELD_OFFSET (gnu_field));
unsigned int our_offset_align
= MIN (offset_align, DECL_OFFSET_ALIGN (gnu_field));
tree v = make_tree_vec (3);
TREE_VEC_ELT (v, 0) = gnu_our_offset;
TREE_VEC_ELT (v, 1) = size_int (our_offset_align);
TREE_VEC_ELT (v, 2) = gnu_our_bitpos;
gnu_list = tree_cons (gnu_field, v, gnu_list);
/* Recurse on internal fields, flattening the nested fields except for
those in the variant part, if requested. */
if (DECL_INTERNAL_P (gnu_field))
{
tree gnu_field_type = TREE_TYPE (gnu_field);
if (do_not_flatten_variant
&& TREE_CODE (gnu_field_type) == QUAL_UNION_TYPE)
gnu_list
= build_position_list (gnu_field_type, do_not_flatten_variant,
size_zero_node, bitsize_zero_node,
BIGGEST_ALIGNMENT, gnu_list);
else
gnu_list
= build_position_list (gnu_field_type, do_not_flatten_variant,
gnu_our_offset, gnu_our_bitpos,
our_offset_align, gnu_list);
}
}
return gnu_list;
}
/* Return a list describing the substitutions needed to reflect the
discriminant substitutions from GNAT_TYPE to GNAT_SUBTYPE. They can
be in any order. The values in an element of the list are in the form
of operands to SUBSTITUTE_IN_EXPR. DEFINITION is true if this is for
a definition of GNAT_SUBTYPE. */
static vec<subst_pair>
build_subst_list (Entity_Id gnat_subtype, Entity_Id gnat_type, bool definition)
{
vec<subst_pair> gnu_list = vNULL;
Entity_Id gnat_discrim;
Node_Id gnat_constr;
for (gnat_discrim = First_Stored_Discriminant (gnat_type),
gnat_constr = First_Elmt (Stored_Constraint (gnat_subtype));
Present (gnat_discrim);
gnat_discrim = Next_Stored_Discriminant (gnat_discrim),
gnat_constr = Next_Elmt (gnat_constr))
/* Ignore access discriminants. */
if (!Is_Access_Type (Etype (Node (gnat_constr))))
{
tree gnu_field = gnat_to_gnu_field_decl (gnat_discrim);
tree replacement
= elaborate_expression (Node (gnat_constr), gnat_subtype,
get_entity_char (gnat_discrim),
definition, true, false);
/* If this is a definition, we need to make sure that the SAVE_EXPRs
are instantiated on every possibly path in size computations. */
if (definition && TREE_CODE (replacement) == SAVE_EXPR)
add_stmt (replacement);
replacement = convert (TREE_TYPE (gnu_field), replacement);
subst_pair s = { gnu_field, replacement };
gnu_list.safe_push (s);
}
return gnu_list;
}
/* Scan all fields in {GNU_QUAL_UNION_TYPE,GNAT_VARIANT_PART} and return a list
describing the variants of GNU_QUAL_UNION_TYPE that are still relevant after
applying the substitutions described in SUBST_LIST. GNU_LIST is an existing
list to be prepended to the newly created entries. */
static vec<variant_desc>
build_variant_list (tree gnu_qual_union_type, Node_Id gnat_variant_part,
vec<subst_pair> subst_list, vec<variant_desc> gnu_list)
{
Node_Id gnat_variant;
tree gnu_field;
for (gnu_field = TYPE_FIELDS (gnu_qual_union_type),
gnat_variant
= Present (gnat_variant_part)
? First_Non_Pragma (Variants (gnat_variant_part))
: Empty;
gnu_field;
gnu_field = DECL_CHAIN (gnu_field),
gnat_variant
= Present (gnat_variant_part)
? Next_Non_Pragma (gnat_variant)
: Empty)
{
tree qual = DECL_QUALIFIER (gnu_field);
unsigned int i;
subst_pair *s;
FOR_EACH_VEC_ELT (subst_list, i, s)
qual = SUBSTITUTE_IN_EXPR (qual, s->discriminant, s->replacement);
/* If the new qualifier is not unconditionally false, its variant may
still be accessed. */
if (!integer_zerop (qual))
{
tree variant_type = TREE_TYPE (gnu_field), variant_subpart;
variant_desc v
= { variant_type, gnu_field, qual, NULL_TREE, NULL_TREE };
gnu_list.safe_push (v);
/* Annotate the GNAT node if present. */
if (Present (gnat_variant))
Set_Present_Expr (gnat_variant, annotate_value (qual));
/* Recurse on the variant subpart of the variant, if any. */
variant_subpart = get_variant_part (variant_type);
if (variant_subpart)
gnu_list
= build_variant_list (TREE_TYPE (variant_subpart),
Present (gnat_variant)
? Variant_Part
(Component_List (gnat_variant))
: Empty,
subst_list,
gnu_list);
/* If the new qualifier is unconditionally true, the subsequent
variants cannot be accessed. */
if (integer_onep (qual))
break;
}
}
return gnu_list;
}
/* If SIZE has overflowed, return the maximum valid size, which is the upper
bound of the signed sizetype in bits, rounded down to ALIGN. Otherwise
return SIZE unmodified. */
static tree
maybe_saturate_size (tree size, unsigned int align)
{
if (TREE_CODE (size) == INTEGER_CST && TREE_OVERFLOW (size))
{
size
= size_binop (MULT_EXPR,
fold_convert (bitsizetype, TYPE_MAX_VALUE (ssizetype)),
build_int_cst (bitsizetype, BITS_PER_UNIT));
size = round_down (size, align);
}
return size;
}
/* UINT_SIZE is a Uint giving the specified size for an object of GNU_TYPE
corresponding to GNAT_OBJECT. If the size is valid, return an INTEGER_CST
corresponding to its value. Otherwise, return NULL_TREE. KIND is set to
VAR_DECL if we are specifying the size of an object, TYPE_DECL for the
size of a type, and FIELD_DECL for the size of a field. COMPONENT_P is
true if we are being called to process the Component_Size of GNAT_OBJECT;
this is used only for error messages. ZERO_OK is true if a size of zero
is permitted; if ZERO_OK is false, it means that a size of zero should be
treated as an unspecified size. S1 and S2 are used for error messages. */
static tree
validate_size (Uint uint_size, tree gnu_type, Entity_Id gnat_object,
enum tree_code kind, bool component_p, bool zero_ok,
const char *s1, const char *s2)
{
Node_Id gnat_error_node;
tree old_size, size;
/* Return 0 if no size was specified. */
if (uint_size == No_Uint)
return NULL_TREE;
/* Ignore a negative size since that corresponds to our back-annotation. */
if (UI_Lt (uint_size, Uint_0))
return NULL_TREE;
/* Find the node to use for error messages. */
if ((Ekind (gnat_object) == E_Component
|| Ekind (gnat_object) == E_Discriminant)
&& Present (Component_Clause (gnat_object)))
gnat_error_node = Last_Bit (Component_Clause (gnat_object));
else if (Present (Size_Clause (gnat_object)))
gnat_error_node = Expression (Size_Clause (gnat_object));
else if (Has_Object_Size_Clause (gnat_object))
gnat_error_node = Expression (Object_Size_Clause (gnat_object));
else
gnat_error_node = gnat_object;
/* Get the size as an INTEGER_CST. Issue an error if a size was specified
but cannot be represented in bitsizetype. */
size = UI_To_gnu (uint_size, bitsizetype);
if (TREE_OVERFLOW (size))
{
if (component_p)
post_error_ne ("component size for& is too large", gnat_error_node,
gnat_object);
else
post_error_ne ("size for& is too large", gnat_error_node,
gnat_object);
return NULL_TREE;
}
/* Ignore a zero size if it is not permitted. */
if (!zero_ok && integer_zerop (size))
return NULL_TREE;
/* The size of objects is always a multiple of a byte. */
if (kind == VAR_DECL
&& !integer_zerop (size_binop (TRUNC_MOD_EXPR, size, bitsize_unit_node)))
{
if (component_p)
post_error_ne ("component size for& must be multiple of Storage_Unit",
gnat_error_node, gnat_object);
else
post_error_ne ("size for& must be multiple of Storage_Unit",
gnat_error_node, gnat_object);
return NULL_TREE;
}
/* If this is an integral type or a bit-packed array type, the front-end has
already verified the size, so we need not do it again (which would mean
checking against the bounds). However, if this is an aliased object, it
may not be smaller than the type of the object. */
if ((INTEGRAL_TYPE_P (gnu_type) || BIT_PACKED_ARRAY_TYPE_P (gnu_type))
&& !(kind == VAR_DECL && Is_Aliased (gnat_object)))
return size;
/* If the object is a record that contains a template, add the size of the
template to the specified size. */
if (TREE_CODE (gnu_type) == RECORD_TYPE
&& TYPE_CONTAINS_TEMPLATE_P (gnu_type))
size = size_binop (PLUS_EXPR, DECL_SIZE (TYPE_FIELDS (gnu_type)), size);
old_size = (kind == VAR_DECL ? TYPE_SIZE (gnu_type) : rm_size (gnu_type));
/* If the old size is self-referential, get the maximum size. */
if (CONTAINS_PLACEHOLDER_P (old_size))
old_size = max_size (old_size, true);
/* If this is an access type or a fat pointer, the minimum size is that given
by the smallest integral mode that's valid for pointers. */
if (TREE_CODE (gnu_type) == POINTER_TYPE || TYPE_IS_FAT_POINTER_P (gnu_type))
{
scalar_int_mode p_mode = NARROWEST_INT_MODE;
while (!targetm.valid_pointer_mode (p_mode))
p_mode = GET_MODE_WIDER_MODE (p_mode).require ();
old_size = bitsize_int (GET_MODE_BITSIZE (p_mode));
}
/* Issue an error either if the default size of the object isn't a constant
or if the new size is smaller than it. */
if (TREE_CODE (old_size) != INTEGER_CST
|| (!TREE_OVERFLOW (old_size) && tree_int_cst_lt (size, old_size)))
{
char buf[128];
const char *s;
if (s1 && s2)
{
snprintf (buf, sizeof (buf), s1, s2);
s = buf;
}
else if (component_p)
s = "component size for& too small{, minimum allowed is ^}";
else
s = "size for& too small{, minimum allowed is ^}";
post_error_ne_tree (s, gnat_error_node, gnat_object, old_size);
return NULL_TREE;
}
return size;
}
/* Similarly, but both validate and process a value of RM size. This routine
is only called for types. */
static void
set_rm_size (Uint uint_size, tree gnu_type, Entity_Id gnat_entity)
{
Node_Id gnat_attr_node;
tree old_size, size;
/* Do nothing if no size was specified. */
if (uint_size == No_Uint)
return;
/* Only issue an error if a Value_Size clause was explicitly given for the
entity; otherwise, we'd be duplicating an error on the Size clause. */
gnat_attr_node
= Get_Attribute_Definition_Clause (gnat_entity, Attr_Value_Size);
if (Present (gnat_attr_node) && Entity (gnat_attr_node) != gnat_entity)
gnat_attr_node = Empty;
/* Get the size as an INTEGER_CST. Issue an error if a size was specified
but cannot be represented in bitsizetype. */
size = UI_To_gnu (uint_size, bitsizetype);
if (TREE_OVERFLOW (size))
{
if (Present (gnat_attr_node))
post_error_ne ("Value_Size for& is too large", gnat_attr_node,
gnat_entity);
return;
}
/* Ignore a zero size unless a Value_Size clause exists, or a size clause
exists, or this is an integer type, in which case the front-end will
have always set it. */
if (No (gnat_attr_node)
&& integer_zerop (size)
&& !Has_Size_Clause (gnat_entity)
&& !Is_Discrete_Or_Fixed_Point_Type (gnat_entity))
return;
old_size = rm_size (gnu_type);
/* If the old size is self-referential, get the maximum size. */
if (CONTAINS_PLACEHOLDER_P (old_size))
old_size = max_size (old_size, true);
/* Issue an error either if the old size of the object isn't a constant or
if the new size is smaller than it. The front-end has already verified
this for scalar and bit-packed array types. */
if (TREE_CODE (old_size) != INTEGER_CST
|| TREE_OVERFLOW (old_size)
|| (AGGREGATE_TYPE_P (gnu_type)
&& !BIT_PACKED_ARRAY_TYPE_P (gnu_type)
&& !(TYPE_IS_PADDING_P (gnu_type)
&& BIT_PACKED_ARRAY_TYPE_P (TREE_TYPE (TYPE_FIELDS (gnu_type))))
&& tree_int_cst_lt (size, old_size)))
{
if (Present (gnat_attr_node))
post_error_ne_tree
("Value_Size for& too small{, minimum allowed is ^}",
gnat_attr_node, gnat_entity, old_size);
return;
}
/* Otherwise, set the RM size proper for integral types... */
if ((TREE_CODE (gnu_type) == INTEGER_TYPE
&& Is_Discrete_Or_Fixed_Point_Type (gnat_entity))
|| (TREE_CODE (gnu_type) == ENUMERAL_TYPE
|| TREE_CODE (gnu_type) == BOOLEAN_TYPE))
SET_TYPE_RM_SIZE (gnu_type, size);
/* ...or the Ada size for record and union types. */
else if (RECORD_OR_UNION_TYPE_P (gnu_type)
&& !TYPE_FAT_POINTER_P (gnu_type))
SET_TYPE_ADA_SIZE (gnu_type, size);
}
/* ALIGNMENT is a Uint giving the alignment specified for GNAT_ENTITY,
a type or object whose present alignment is ALIGN. If this alignment is
valid, return it. Otherwise, give an error and return ALIGN. */
static unsigned int
validate_alignment (Uint alignment, Entity_Id gnat_entity, unsigned int align)
{
unsigned int max_allowed_alignment = get_target_maximum_allowed_alignment ();
unsigned int new_align;
Node_Id gnat_error_node;
/* Don't worry about checking alignment if alignment was not specified
by the source program and we already posted an error for this entity. */
if (Error_Posted (gnat_entity) && !Has_Alignment_Clause (gnat_entity))
return align;
/* Post the error on the alignment clause if any. Note, for the implicit
base type of an array type, the alignment clause is on the first
subtype. */
if (Present (Alignment_Clause (gnat_entity)))
gnat_error_node = Expression (Alignment_Clause (gnat_entity));
else if (Is_Itype (gnat_entity)
&& Is_Array_Type (gnat_entity)
&& Etype (gnat_entity) == gnat_entity
&& Present (Alignment_Clause (First_Subtype (gnat_entity))))
gnat_error_node =
Expression (Alignment_Clause (First_Subtype (gnat_entity)));
else
gnat_error_node = gnat_entity;
/* Within GCC, an alignment is an integer, so we must make sure a value is
specified that fits in that range. Also, there is an upper bound to
alignments we can support/allow. */
if (!UI_Is_In_Int_Range (alignment)
|| ((new_align = UI_To_Int (alignment)) > max_allowed_alignment))
post_error_ne_num ("largest supported alignment for& is ^",
gnat_error_node, gnat_entity, max_allowed_alignment);
else if (!(Present (Alignment_Clause (gnat_entity))
&& From_At_Mod (Alignment_Clause (gnat_entity)))
&& new_align * BITS_PER_UNIT < align)
{
unsigned int double_align;
bool is_capped_double, align_clause;
/* If the default alignment of "double" or larger scalar types is
specifically capped and the new alignment is above the cap, do
not post an error and change the alignment only if there is an
alignment clause; this makes it possible to have the associated
GCC type overaligned by default for performance reasons. */
if ((double_align = double_float_alignment) > 0)
{
Entity_Id gnat_type
= Is_Type (gnat_entity) ? gnat_entity : Etype (gnat_entity);
is_capped_double
= is_double_float_or_array (gnat_type, &align_clause);
}
else if ((double_align = double_scalar_alignment) > 0)
{
Entity_Id gnat_type
= Is_Type (gnat_entity) ? gnat_entity : Etype (gnat_entity);
is_capped_double
= is_double_scalar_or_array (gnat_type, &align_clause);
}
else
is_capped_double = align_clause = false;
if (is_capped_double && new_align >= double_align)
{
if (align_clause)
align = new_align * BITS_PER_UNIT;
}
else
{
if (is_capped_double)
align = double_align * BITS_PER_UNIT;
post_error_ne_num ("alignment for& must be at least ^",
gnat_error_node, gnat_entity,
align / BITS_PER_UNIT);
}
}
else
{
new_align = (new_align > 0 ? new_align * BITS_PER_UNIT : 1);
if (new_align > align)
align = new_align;
}
return align;
}
/* Promote the alignment of GNU_TYPE for an object with GNU_SIZE corresponding
to GNAT_ENTITY. Return a positive value on success or zero on failure. */
static unsigned int
promote_object_alignment (tree gnu_type, tree gnu_size, Entity_Id gnat_entity)
{
unsigned int align, size_cap, align_cap;
/* No point in promoting the alignment if this doesn't prevent BLKmode access
to the object, in particular block copy, as this will for example disable
the NRV optimization for it. No point in jumping through all the hoops
needed in order to support BIGGEST_ALIGNMENT if we don't really have to.
So we cap to the smallest alignment that corresponds to a known efficient
memory access pattern, except for a full access entity. */
if (Is_Full_Access (gnat_entity))
{
size_cap = UINT_MAX;
align_cap = BIGGEST_ALIGNMENT;
}
else
{
size_cap = MAX_FIXED_MODE_SIZE;
align_cap = get_mode_alignment (ptr_mode);
}
if (!gnu_size)
gnu_size = TYPE_SIZE (gnu_type);
/* Do the promotion within the above limits. */
if (!tree_fits_uhwi_p (gnu_size)
|| compare_tree_int (gnu_size, size_cap) > 0)
align = 0;
else if (compare_tree_int (gnu_size, align_cap) > 0)
align = align_cap;
else
align = ceil_pow2 (tree_to_uhwi (gnu_size));
/* But make sure not to under-align the object. */
if (align <= TYPE_ALIGN (gnu_type))
align = 0;
/* And honor the minimum valid atomic alignment, if any. */
#ifdef MINIMUM_ATOMIC_ALIGNMENT
else if (align < MINIMUM_ATOMIC_ALIGNMENT)
align = MINIMUM_ATOMIC_ALIGNMENT;
#endif
return align;
}
/* Return whether GNAT_ENTITY is a simple constant, i.e. it represents only
its value and reading it has no side effects. */
bool
simple_constant_p (Entity_Id gnat_entity)
{
return Ekind (gnat_entity) == E_Constant
&& Present (Constant_Value (gnat_entity))
&& !No_Initialization (gnat_entity)
&& No (Address_Clause (gnat_entity))
&& No (Renamed_Object (gnat_entity));
}
/* Verify that TYPE is something we can implement atomically. If not, issue
an error for GNAT_ENTITY. COMPONENT_P is true if we are being called to
process a component type. */
static void
check_ok_for_atomic_type (tree type, Entity_Id gnat_entity, bool component_p)
{
Node_Id gnat_error_point = gnat_entity;
Node_Id gnat_node;
machine_mode mode;
enum mode_class mclass;
unsigned int align;
tree size;
/* If this is an anonymous base type, nothing to check, the error will be
reported on the source type if need be. */
if (!Comes_From_Source (gnat_entity))
return;
mode = TYPE_MODE (type);
mclass = GET_MODE_CLASS (mode);
align = TYPE_ALIGN (type);
size = TYPE_SIZE (type);
/* Consider all aligned floating-point types atomic and any aligned types
that are represented by integers no wider than a machine word. */
scalar_int_mode int_mode;
if ((mclass == MODE_FLOAT
|| (is_a <scalar_int_mode> (mode, &int_mode)
&& GET_MODE_BITSIZE (int_mode) <= BITS_PER_WORD))
&& align >= GET_MODE_ALIGNMENT (mode))
return;
/* For the moment, also allow anything that has an alignment equal to its
size and which is smaller than a word. */
if (size
&& TREE_CODE (size) == INTEGER_CST
&& compare_tree_int (size, align) == 0
&& align <= BITS_PER_WORD)
return;
for (gnat_node = First_Rep_Item (gnat_entity);
Present (gnat_node);
gnat_node = Next_Rep_Item (gnat_node))
if (Nkind (gnat_node) == N_Pragma)
{
const Pragma_Id pragma_id
= Get_Pragma_Id (Chars (Pragma_Identifier (gnat_node)));
if ((pragma_id == Pragma_Atomic && !component_p)
|| (pragma_id == Pragma_Atomic_Components && component_p))
{
gnat_error_point = First (Pragma_Argument_Associations (gnat_node));
break;
}
}
if (component_p)
post_error_ne ("atomic access to component of & cannot be guaranteed",
gnat_error_point, gnat_entity);
else if (Is_Volatile_Full_Access (gnat_entity))
post_error_ne ("volatile full access to & cannot be guaranteed",
gnat_error_point, gnat_entity);
else
post_error_ne ("atomic access to & cannot be guaranteed",
gnat_error_point, gnat_entity);
}
/* Return true if TYPE is suitable for a type-generic atomic builtin. */
static bool
type_for_atomic_builtin_p (tree type)
{
const enum machine_mode mode = TYPE_MODE (type);
if (GET_MODE_CLASS (mode) == MODE_FLOAT)
return true;
scalar_int_mode imode;
if (is_a <scalar_int_mode> (mode, &imode) && GET_MODE_SIZE (imode) <= 16)
return true;
return false;
}
/* Return the GCC atomic builtin based on CODE and sized for TYPE. */
static tree
resolve_atomic_builtin (enum built_in_function code, tree type)
{
const unsigned int size = resolve_atomic_size (type);
code = (enum built_in_function) ((int) code + exact_log2 (size) + 1);
return builtin_decl_implicit (code);
}
/* Helper for intrin_profiles_compatible_p, to perform compatibility checks
on the Ada/builtin argument lists for the INB binding. */
static bool
intrin_arglists_compatible_p (const intrin_binding_t *inb)
{
function_args_iterator ada_iter, btin_iter;
function_args_iter_init (&ada_iter, inb->ada_fntype);
function_args_iter_init (&btin_iter, inb->btin_fntype);
/* Sequence position of the last argument we checked. */
int argpos = 0;
while (true)
{
tree ada_type = function_args_iter_cond (&ada_iter);
tree btin_type = function_args_iter_cond (&btin_iter);
/* If we've exhausted both lists simultaneously, we're done. */
if (!ada_type && !btin_type)
break;
/* If the internal builtin uses a variable list, accept anything. */
if (!btin_type)
break;
/* If we're done with the Ada args and not with the internal builtin
args, or the other way around, complain. */
if (ada_type == void_type_node && btin_type != void_type_node)
{
post_error ("??Ada parameter list too short!", inb->gnat_entity);
return false;
}
if (btin_type == void_type_node && ada_type != void_type_node)
{
post_error_ne_num ("??Ada parameter list too long ('> ^)!",
inb->gnat_entity, inb->gnat_entity, argpos);
return false;
}
/* Otherwise, check that types match for the current argument. */
argpos++;
if (!types_compatible_p (ada_type, btin_type))
{
/* For vector builtins, issue an error to avoid an ICE. */
if (VECTOR_TYPE_P (btin_type))
post_error_ne_num
("intrinsic binding type mismatch on parameter ^",
inb->gnat_entity, inb->gnat_entity, argpos);
else
post_error_ne_num
("??intrinsic binding type mismatch on parameter ^!",
inb->gnat_entity, inb->gnat_entity, argpos);
return false;
}
function_args_iter_next (&ada_iter);
function_args_iter_next (&btin_iter);
}
return true;
}
/* Helper for intrin_profiles_compatible_p, to perform compatibility checks
on the Ada/builtin return values for the INB binding. */
static bool
intrin_return_compatible_p (const intrin_binding_t *inb)
{
tree ada_return_type = TREE_TYPE (inb->ada_fntype);
tree btin_return_type = TREE_TYPE (inb->btin_fntype);
/* Accept function imported as procedure, common and convenient. */
if (VOID_TYPE_P (ada_return_type) && !VOID_TYPE_P (btin_return_type))
return true;
/* Check return types compatibility otherwise. Note that this
handles void/void as well. */
if (!types_compatible_p (btin_return_type, ada_return_type))
{
/* For vector builtins, issue an error to avoid an ICE. */
if (VECTOR_TYPE_P (btin_return_type))
post_error ("intrinsic binding type mismatch on result",
inb->gnat_entity);
else
post_error ("??intrinsic binding type mismatch on result",
inb->gnat_entity);
return false;
}
return true;
}
/* Check and return whether the Ada and gcc builtin profiles bound by INB are
compatible. Issue relevant warnings when they are not.
This is intended as a light check to diagnose the most obvious cases, not
as a full fledged type compatibility predicate. It is the programmer's
responsibility to ensure correctness of the Ada declarations in Imports,
especially when binding straight to a compiler internal. */
static bool
intrin_profiles_compatible_p (const intrin_binding_t *inb)
{
/* Check compatibility on return values and argument lists, each responsible
for posting warnings as appropriate. Ensure use of the proper sloc for
this purpose. */
bool arglists_compatible_p, return_compatible_p;
location_t saved_location = input_location;
Sloc_to_locus (Sloc (inb->gnat_entity), &input_location);
return_compatible_p = intrin_return_compatible_p (inb);
arglists_compatible_p = intrin_arglists_compatible_p (inb);
input_location = saved_location;
return return_compatible_p && arglists_compatible_p;
}
/* Return a FIELD_DECL node modeled on OLD_FIELD. FIELD_TYPE is its type
and RECORD_TYPE is the type of the parent. If SIZE is nonzero, it is the
specified size for this field. POS_LIST is a position list describing
the layout of OLD_FIELD and SUBST_LIST a substitution list to be applied
to this layout. */
static tree
create_field_decl_from (tree old_field, tree field_type, tree record_type,
tree size, tree pos_list,
vec<subst_pair> subst_list)
{
tree t = TREE_VALUE (purpose_member (old_field, pos_list));
tree pos = TREE_VEC_ELT (t, 0), bitpos = TREE_VEC_ELT (t, 2);
unsigned int offset_align = tree_to_uhwi (TREE_VEC_ELT (t, 1));
tree new_pos, new_field;
unsigned int i;
subst_pair *s;
if (CONTAINS_PLACEHOLDER_P (pos))
FOR_EACH_VEC_ELT (subst_list, i, s)
pos = SUBSTITUTE_IN_EXPR (pos, s->discriminant, s->replacement);
/* If the position is now a constant, we can set it as the position of the
field when we make it. Otherwise, we need to deal with it specially. */
if (TREE_CONSTANT (pos))
new_pos = bit_from_pos (pos, bitpos);
else
new_pos = NULL_TREE;
new_field
= create_field_decl (DECL_NAME (old_field), field_type, record_type,
size, new_pos, DECL_PACKED (old_field),
!DECL_NONADDRESSABLE_P (old_field));
if (!new_pos)
{
normalize_offset (&pos, &bitpos, offset_align);
/* Finalize the position. */
DECL_FIELD_OFFSET (new_field) = variable_size (pos);
DECL_FIELD_BIT_OFFSET (new_field) = bitpos;
SET_DECL_OFFSET_ALIGN (new_field, offset_align);
DECL_SIZE (new_field) = size;
DECL_SIZE_UNIT (new_field)
= convert (sizetype,
size_binop (CEIL_DIV_EXPR, size, bitsize_unit_node));
layout_decl (new_field, DECL_OFFSET_ALIGN (new_field));
}
DECL_INTERNAL_P (new_field) = DECL_INTERNAL_P (old_field);
SET_DECL_ORIGINAL_FIELD_TO_FIELD (new_field, old_field);
DECL_DISCRIMINANT_NUMBER (new_field) = DECL_DISCRIMINANT_NUMBER (old_field);
TREE_THIS_VOLATILE (new_field) = TREE_THIS_VOLATILE (old_field);
return new_field;
}
/* Create the REP part of RECORD_TYPE with REP_TYPE. If MIN_SIZE is nonzero,
it is the minimal size the REP_PART must have. */
static tree
create_rep_part (tree rep_type, tree record_type, tree min_size)
{
tree field;
if (min_size && !tree_int_cst_lt (TYPE_SIZE (rep_type), min_size))
min_size = NULL_TREE;
field = create_field_decl (get_identifier ("REP"), rep_type, record_type,
min_size, NULL_TREE, 0, 1);
DECL_INTERNAL_P (field) = 1;
return field;
}
/* Return the REP part of RECORD_TYPE, if any. Otherwise return NULL. */
static tree
get_rep_part (tree record_type)
{
tree field = TYPE_FIELDS (record_type);
/* The REP part is the first field, internal, another record, and its name
starts with an 'R'. */
if (field
&& DECL_INTERNAL_P (field)
&& TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
&& IDENTIFIER_POINTER (DECL_NAME (field)) [0] == 'R')
return field;
return NULL_TREE;
}
/* Return the variant part of RECORD_TYPE, if any. Otherwise return NULL. */
tree
get_variant_part (tree record_type)
{
tree field;
/* The variant part is the only internal field that is a qualified union. */
for (field = TYPE_FIELDS (record_type); field; field = DECL_CHAIN (field))
if (DECL_INTERNAL_P (field)
&& TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE)
return field;
return NULL_TREE;
}
/* Return a new variant part modeled on OLD_VARIANT_PART. VARIANT_LIST is
the list of variants to be used and RECORD_TYPE is the type of the parent.
POS_LIST is a position list describing the layout of fields present in
OLD_VARIANT_PART and SUBST_LIST a substitution list to be applied to this
layout. DEBUG_INFO_P is true if we need to write debug information. */
static tree
create_variant_part_from (tree old_variant_part,
vec<variant_desc> variant_list,
tree record_type, tree pos_list,
vec<subst_pair> subst_list,
bool debug_info_p)
{
tree offset = DECL_FIELD_OFFSET (old_variant_part);
tree old_union_type = TREE_TYPE (old_variant_part);
tree new_union_type, new_variant_part;
tree union_field_list = NULL_TREE;
variant_desc *v;
unsigned int i;
/* First create the type of the variant part from that of the old one. */
new_union_type = make_node (QUAL_UNION_TYPE);
TYPE_NAME (new_union_type)
= concat_name (TYPE_NAME (record_type),
IDENTIFIER_POINTER (DECL_NAME (old_variant_part)));
/* If the position of the variant part is constant, subtract it from the
size of the type of the parent to get the new size. This manual CSE
reduces the code size when not optimizing. */
if (TREE_CODE (offset) == INTEGER_CST
&& TYPE_SIZE (record_type)
&& TYPE_SIZE_UNIT (record_type))
{
tree bitpos = DECL_FIELD_BIT_OFFSET (old_variant_part);
tree first_bit = bit_from_pos (offset, bitpos);
TYPE_SIZE (new_union_type)
= size_binop (MINUS_EXPR, TYPE_SIZE (record_type), first_bit);
TYPE_SIZE_UNIT (new_union_type)
= size_binop (MINUS_EXPR, TYPE_SIZE_UNIT (record_type),
byte_from_pos (offset, bitpos));
SET_TYPE_ADA_SIZE (new_union_type,
size_binop (MINUS_EXPR, TYPE_ADA_SIZE (record_type),
first_bit));
SET_TYPE_ALIGN (new_union_type, TYPE_ALIGN (old_union_type));
relate_alias_sets (new_union_type, old_union_type, ALIAS_SET_COPY);
}
else
copy_and_substitute_in_size (new_union_type, old_union_type, subst_list);
/* Now finish up the new variants and populate the union type. */
FOR_EACH_VEC_ELT_REVERSE (variant_list, i, v)
{
tree old_field = v->field, new_field;
tree old_variant, old_variant_subpart, new_variant, field_list;
/* Skip variants that don't belong to this nesting level. */
if (DECL_CONTEXT (old_field) != old_union_type)
continue;
/* Retrieve the list of fields already added to the new variant. */
new_variant = v->new_type;
field_list = TYPE_FIELDS (new_variant);
/* If the old variant had a variant subpart, we need to create a new
variant subpart and add it to the field list. */
old_variant = v->type;
old_variant_subpart = get_variant_part (old_variant);
if (old_variant_subpart)
{
tree new_variant_subpart
= create_variant_part_from (old_variant_subpart, variant_list,
new_variant, pos_list, subst_list,
debug_info_p);
DECL_CHAIN (new_variant_subpart) = field_list;
field_list = new_variant_subpart;
}
/* Finish up the new variant and create the field. */
finish_record_type (new_variant, nreverse (field_list), 2, debug_info_p);
create_type_decl (TYPE_NAME (new_variant), new_variant, true,
debug_info_p, Empty);
new_field
= create_field_decl_from (old_field, new_variant, new_union_type,
TYPE_SIZE (new_variant),
pos_list, subst_list);
DECL_QUALIFIER (new_field) = v->qual;
DECL_INTERNAL_P (new_field) = 1;
DECL_CHAIN (new_field) = union_field_list;
union_field_list = new_field;
}
/* Finish up the union type and create the variant part. Note that we don't
reverse the field list because VARIANT_LIST has been traversed in reverse
order. */
finish_record_type (new_union_type, union_field_list, 2, debug_info_p);
create_type_decl (TYPE_NAME (new_union_type), new_union_type, true,
debug_info_p, Empty);
new_variant_part
= create_field_decl_from (old_variant_part, new_union_type, record_type,
TYPE_SIZE (new_union_type),
pos_list, subst_list);
DECL_INTERNAL_P (new_variant_part) = 1;
/* With multiple discriminants it is possible for an inner variant to be
statically selected while outer ones are not; in this case, the list
of fields of the inner variant is not flattened and we end up with a
qualified union with a single member. Drop the useless container. */
if (!DECL_CHAIN (union_field_list))
{
DECL_CONTEXT (union_field_list) = record_type;
DECL_FIELD_OFFSET (union_field_list)
= DECL_FIELD_OFFSET (new_variant_part);
DECL_FIELD_BIT_OFFSET (union_field_list)
= DECL_FIELD_BIT_OFFSET (new_variant_part);
SET_DECL_OFFSET_ALIGN (union_field_list,
DECL_OFFSET_ALIGN (new_variant_part));
new_variant_part = union_field_list;
}
return new_variant_part;
}
/* Copy the size (and alignment and alias set) from OLD_TYPE to NEW_TYPE,
which are both RECORD_TYPE, after applying the substitutions described
in SUBST_LIST. */
static void
copy_and_substitute_in_size (tree new_type, tree old_type,
vec<subst_pair> subst_list)
{
unsigned int i;
subst_pair *s;
TYPE_SIZE (new_type) = TYPE_SIZE (old_type);
TYPE_SIZE_UNIT (new_type) = TYPE_SIZE_UNIT (old_type);
SET_TYPE_ADA_SIZE (new_type, TYPE_ADA_SIZE (old_type));
SET_TYPE_ALIGN (new_type, TYPE_ALIGN (old_type));
relate_alias_sets (new_type, old_type, ALIAS_SET_COPY);
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (new_type)))
FOR_EACH_VEC_ELT (subst_list, i, s)
TYPE_SIZE (new_type)
= SUBSTITUTE_IN_EXPR (TYPE_SIZE (new_type),
s->discriminant, s->replacement);
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (new_type)))
FOR_EACH_VEC_ELT (subst_list, i, s)
TYPE_SIZE_UNIT (new_type)
= SUBSTITUTE_IN_EXPR (TYPE_SIZE_UNIT (new_type),
s->discriminant, s->replacement);
if (CONTAINS_PLACEHOLDER_P (TYPE_ADA_SIZE (new_type)))
FOR_EACH_VEC_ELT (subst_list, i, s)
SET_TYPE_ADA_SIZE
(new_type, SUBSTITUTE_IN_EXPR (TYPE_ADA_SIZE (new_type),
s->discriminant, s->replacement));
/* Finalize the size. */
TYPE_SIZE (new_type) = variable_size (TYPE_SIZE (new_type));
TYPE_SIZE_UNIT (new_type) = variable_size (TYPE_SIZE_UNIT (new_type));
}
/* Return true if DISC is a stored discriminant of RECORD_TYPE. */
static inline bool
is_stored_discriminant (Entity_Id discr, Entity_Id record_type)
{
if (Is_Unchecked_Union (record_type))
return false;
else if (Is_Tagged_Type (record_type))
return No (Corresponding_Discriminant (discr));
else if (Ekind (record_type) == E_Record_Type)
return Original_Record_Component (discr) == discr;
else
return true;
}
/* Copy the layout from {GNAT,GNU}_OLD_TYPE to {GNAT,GNU}_NEW_TYPE, which are
both record types, after applying the substitutions described in SUBST_LIST.
DEBUG_INFO_P is true if we need to write debug information for NEW_TYPE. */
static void
copy_and_substitute_in_layout (Entity_Id gnat_new_type,
Entity_Id gnat_old_type,
tree gnu_new_type,
tree gnu_old_type,
vec<subst_pair> subst_list,
bool debug_info_p)
{
const bool is_subtype = (Ekind (gnat_new_type) == E_Record_Subtype);
tree gnu_field_list = NULL_TREE;
tree gnu_variable_field_list = NULL_TREE;
bool selected_variant;
vec<variant_desc> gnu_variant_list;
/* Look for REP and variant parts in the old type. */
tree gnu_rep_part = get_rep_part (gnu_old_type);
tree gnu_variant_part = get_variant_part (gnu_old_type);
/* If there is a variant part, we must compute whether the constraints
statically select a particular variant. If so, we simply drop the
qualified union and flatten the list of fields. Otherwise we will
build a new qualified union for the variants that are still relevant. */
if (gnu_variant_part)
{
const Node_Id gnat_decl = Declaration_Node (gnat_new_type);
variant_desc *v;
unsigned int i;
gnu_variant_list
= build_variant_list (TREE_TYPE (gnu_variant_part),
is_subtype
? Empty
: Variant_Part
(Component_List (Type_Definition (gnat_decl))),
subst_list,
vNULL);
/* If all the qualifiers are unconditionally true, the innermost variant
is statically selected. */
selected_variant = true;
FOR_EACH_VEC_ELT (gnu_variant_list, i, v)
if (!integer_onep (v->qual))
{
selected_variant = false;
break;
}
/* Otherwise, create the new variants. */
if (!selected_variant)
FOR_EACH_VEC_ELT (gnu_variant_list, i, v)
{
tree old_variant = v->type;
tree new_variant = make_node (RECORD_TYPE);
tree suffix
= concat_name (DECL_NAME (gnu_variant_part),
IDENTIFIER_POINTER (DECL_NAME (v->field)));
TYPE_NAME (new_variant)
= concat_name (TYPE_NAME (gnu_new_type),
IDENTIFIER_POINTER (suffix));
TYPE_REVERSE_STORAGE_ORDER (new_variant)
= TYPE_REVERSE_STORAGE_ORDER (gnu_new_type);
copy_and_substitute_in_size (new_variant, old_variant, subst_list);
v->new_type = new_variant;
}
}
else
{
gnu_variant_list.create (0);
selected_variant = false;
}
/* Make a list of fields and their position in the old type. */
tree gnu_pos_list
= build_position_list (gnu_old_type,
gnu_variant_list.exists () && !selected_variant,
size_zero_node, bitsize_zero_node,
BIGGEST_ALIGNMENT, NULL_TREE);
/* Now go down every component in the new type and compute its size and
position from those of the component in the old type and the stored
constraints of the new type. */
Entity_Id gnat_field, gnat_old_field;
for (gnat_field = First_Entity (gnat_new_type);
Present (gnat_field);
gnat_field = Next_Entity (gnat_field))
if ((Ekind (gnat_field) == E_Component
|| (Ekind (gnat_field) == E_Discriminant
&& is_stored_discriminant (gnat_field, gnat_new_type)))
&& (gnat_old_field = is_subtype
? Original_Record_Component (gnat_field)
: Corresponding_Record_Component (gnat_field))
&& Underlying_Type (Scope (gnat_old_field)) == gnat_old_type
&& present_gnu_tree (gnat_old_field))
{
Name_Id gnat_name = Chars (gnat_field);
tree gnu_old_field = get_gnu_tree (gnat_old_field);
if (TREE_CODE (gnu_old_field) == COMPONENT_REF)
gnu_old_field = TREE_OPERAND (gnu_old_field, 1);
tree gnu_context = DECL_CONTEXT (gnu_old_field);
tree gnu_field, gnu_field_type, gnu_size, gnu_pos;
tree gnu_cont_type, gnu_last = NULL_TREE;
variant_desc *v = NULL;
/* If the type is the same, retrieve the GCC type from the
old field to take into account possible adjustments. */
if (Etype (gnat_field) == Etype (gnat_old_field))
gnu_field_type = TREE_TYPE (gnu_old_field);
else
gnu_field_type = gnat_to_gnu_type (Etype (gnat_field));
/* If there was a component clause, the field types must be the same
for the old and new types, so copy the data from the old field to
avoid recomputation here. Also if the field is justified modular
and the optimization in gnat_to_gnu_field was applied. */
if (Present (Component_Clause (gnat_old_field))
|| (TREE_CODE (gnu_field_type) == RECORD_TYPE
&& TYPE_JUSTIFIED_MODULAR_P (gnu_field_type)
&& TREE_TYPE (TYPE_FIELDS (gnu_field_type))
== TREE_TYPE (gnu_old_field)))
{
gnu_size = DECL_SIZE (gnu_old_field);
gnu_field_type = TREE_TYPE (gnu_old_field);
}
/* If the old field was packed and of constant size, we have to get the
old size here as it might differ from what the Etype conveys and the
latter might overlap with the following field. Try to arrange the
type for possible better packing along the way. */
else if (DECL_PACKED (gnu_old_field)
&& TREE_CODE (DECL_SIZE (gnu_old_field)) == INTEGER_CST)
{
gnu_size = DECL_SIZE (gnu_old_field);
if (RECORD_OR_UNION_TYPE_P (gnu_field_type)
&& !TYPE_FAT_POINTER_P (gnu_field_type)
&& tree_fits_uhwi_p (TYPE_SIZE (gnu_field_type)))
gnu_field_type = make_packable_type (gnu_field_type, true, 0);
}
else
gnu_size = TYPE_SIZE (gnu_field_type);
/* If the context of the old field is the old type or its REP part,
put the field directly in the new type; otherwise look up the
context in the variant list and put the field either in the new
type if there is a selected variant or in one new variant. */
if (gnu_context == gnu_old_type
|| (gnu_rep_part && gnu_context == TREE_TYPE (gnu_rep_part)))
gnu_cont_type = gnu_new_type;
else
{
unsigned int i;
tree rep_part;
FOR_EACH_VEC_ELT (gnu_variant_list, i, v)
if (gnu_context == v->type
|| ((rep_part = get_rep_part (v->type))
&& gnu_context == TREE_TYPE (rep_part)))
break;
if (v)
gnu_cont_type = selected_variant ? gnu_new_type : v->new_type;
else
/* The front-end may pass us zombie components if it fails to
recognize that a constrain statically selects a particular
variant. Discard them. */
continue;
}
/* Now create the new field modeled on the old one. */
gnu_field
= create_field_decl_from (gnu_old_field, gnu_field_type,
gnu_cont_type, gnu_size,
gnu_pos_list, subst_list);
gnu_pos = DECL_FIELD_OFFSET (gnu_field);
/* If the context is a variant, put it in the new variant directly. */
if (gnu_cont_type != gnu_new_type)
{
if (TREE_CODE (gnu_pos) == INTEGER_CST)
{
DECL_CHAIN (gnu_field) = TYPE_FIELDS (gnu_cont_type);
TYPE_FIELDS (gnu_cont_type) = gnu_field;
}
else
{
DECL_CHAIN (gnu_field) = v->aux;
v->aux = gnu_field;
}
}
/* To match the layout crafted in components_to_record, if this is
the _Tag or _Parent field, put it before any other fields. */
else if (gnat_name == Name_uTag || gnat_name == Name_uParent)
gnu_field_list = chainon (gnu_field_list, gnu_field);
/* Similarly, if this is the _Controller field, put it before the
other fields except for the _Tag or _Parent field. */
else if (gnat_name == Name_uController && gnu_last)
{
DECL_CHAIN (gnu_field) = DECL_CHAIN (gnu_last);
DECL_CHAIN (gnu_last) = gnu_field;
}
/* Otherwise, put it after the other fields. */
else
{
if (TREE_CODE (gnu_pos) == INTEGER_CST)
{
DECL_CHAIN (gnu_field) = gnu_field_list;
gnu_field_list = gnu_field;
if (!gnu_last)
gnu_last = gnu_field;
}
else
{
DECL_CHAIN (gnu_field) = gnu_variable_field_list;
gnu_variable_field_list = gnu_field;
}
}
/* For a stored discriminant in a derived type, replace the field. */
if (!is_subtype && Ekind (gnat_field) == E_Discriminant)
{
tree gnu_ref = get_gnu_tree (gnat_field);
TREE_OPERAND (gnu_ref, 1) = gnu_field;
}
else
save_gnu_tree (gnat_field, gnu_field, false);
}
/* Put the fields with fixed position in order of increasing position. */
if (gnu_field_list)
gnu_field_list = reverse_sort_field_list (gnu_field_list);
/* Put the fields with variable position at the end. */
if (gnu_variable_field_list)
gnu_field_list = chainon (gnu_variable_field_list, gnu_field_list);
/* If there is a variant list and no selected variant, we need to create the
nest of variant parts from the old nest. */
if (gnu_variant_list.exists () && !selected_variant)
{
variant_desc *v;
unsigned int i;
/* Same processing as above for the fields of each variant. */
FOR_EACH_VEC_ELT (gnu_variant_list, i, v)
{
if (TYPE_FIELDS (v->new_type))
TYPE_FIELDS (v->new_type)
= reverse_sort_field_list (TYPE_FIELDS (v->new_type));
if (v->aux)
TYPE_FIELDS (v->new_type)
= chainon (v->aux, TYPE_FIELDS (v->new_type));
}
tree new_variant_part
= create_variant_part_from (gnu_variant_part, gnu_variant_list,
gnu_new_type, gnu_pos_list,
subst_list, debug_info_p);
DECL_CHAIN (new_variant_part) = gnu_field_list;
gnu_field_list = new_variant_part;
}
gnu_variant_list.release ();
subst_list.release ();
/* If NEW_TYPE is a subtype, it inherits all the attributes from OLD_TYPE.
Otherwise sizes and alignment must be computed independently. */
finish_record_type (gnu_new_type, nreverse (gnu_field_list),
is_subtype ? 2 : 1, debug_info_p);
/* Now go through the entities again looking for itypes that we have not yet
elaborated (e.g. Etypes of fields that have Original_Components). */
for (Entity_Id gnat_field = First_Entity (gnat_new_type);
Present (gnat_field);
gnat_field = Next_Entity (gnat_field))
if ((Ekind (gnat_field) == E_Component
|| Ekind (gnat_field) == E_Discriminant)
&& Is_Itype (Etype (gnat_field))
&& !present_gnu_tree (Etype (gnat_field)))
gnat_to_gnu_entity (Etype (gnat_field), NULL_TREE, false);
}
/* Associate to the implementation type of a packed array type specified by
GNU_TYPE, which is the translation of GNAT_ENTITY, the original array type
if it has been translated. This association is a parallel type for GNAT
encodings or a debug type for standard DWARF. Note that for standard DWARF,
we also want to get the original type name and therefore we return it. */
static tree
associate_original_type_to_packed_array (tree gnu_type, Entity_Id gnat_entity)
{
const Entity_Id gnat_original_array_type
= Underlying_Type (Original_Array_Type (gnat_entity));
tree gnu_original_array_type;
if (!present_gnu_tree (gnat_original_array_type))
return NULL_TREE;
gnu_original_array_type = gnat_to_gnu_type (gnat_original_array_type);
if (TYPE_IS_DUMMY_P (gnu_original_array_type))
return NULL_TREE;
gcc_assert (TYPE_IMPL_PACKED_ARRAY_P (gnu_type));
if (gnat_encodings == DWARF_GNAT_ENCODINGS_ALL)
{
add_parallel_type (gnu_type, gnu_original_array_type);
return NULL_TREE;
}
else
{
SET_TYPE_ORIGINAL_PACKED_ARRAY (gnu_type, gnu_original_array_type);
tree original_name = TYPE_NAME (gnu_original_array_type);
if (TREE_CODE (original_name) == TYPE_DECL)
original_name = DECL_NAME (original_name);
return original_name;
}
}
/* Given a type T, a FIELD_DECL F, and a replacement value R, return an
equivalent type with adjusted size expressions where all occurrences
of references to F in a PLACEHOLDER_EXPR have been replaced by R.
The function doesn't update the layout of the type, i.e. it assumes
that the substitution is purely formal. That's why the replacement
value R must itself contain a PLACEHOLDER_EXPR. */
tree
substitute_in_type (tree t, tree f, tree r)
{
tree nt;
gcc_assert (CONTAINS_PLACEHOLDER_P (r));
switch (TREE_CODE (t))
{
case INTEGER_TYPE:
case ENUMERAL_TYPE:
case BOOLEAN_TYPE:
case REAL_TYPE:
/* First the domain types of arrays. */
if (CONTAINS_PLACEHOLDER_P (TYPE_GCC_MIN_VALUE (t))
|| CONTAINS_PLACEHOLDER_P (TYPE_GCC_MAX_VALUE (t)))
{
tree low = SUBSTITUTE_IN_EXPR (TYPE_GCC_MIN_VALUE (t), f, r);
tree high = SUBSTITUTE_IN_EXPR (TYPE_GCC_MAX_VALUE (t), f, r);
if (low == TYPE_GCC_MIN_VALUE (t) && high == TYPE_GCC_MAX_VALUE (t))
return t;
nt = copy_type (t);
TYPE_GCC_MIN_VALUE (nt) = low;
TYPE_GCC_MAX_VALUE (nt) = high;
if (TREE_CODE (t) == INTEGER_TYPE && TYPE_INDEX_TYPE (t))
SET_TYPE_INDEX_TYPE
(nt, substitute_in_type (TYPE_INDEX_TYPE (t), f, r));
return nt;
}
/* Then the subtypes. */
if (CONTAINS_PLACEHOLDER_P (TYPE_RM_MIN_VALUE (t))
|| CONTAINS_PLACEHOLDER_P (TYPE_RM_MAX_VALUE (t)))
{
tree low = SUBSTITUTE_IN_EXPR (TYPE_RM_MIN_VALUE (t), f, r);
tree high = SUBSTITUTE_IN_EXPR (TYPE_RM_MAX_VALUE (t), f, r);
if (low == TYPE_RM_MIN_VALUE (t) && high == TYPE_RM_MAX_VALUE (t))
return t;
nt = copy_type (t);
SET_TYPE_RM_MIN_VALUE (nt, low);
SET_TYPE_RM_MAX_VALUE (nt, high);
return nt;
}
return t;
case COMPLEX_TYPE:
nt = substitute_in_type (TREE_TYPE (t), f, r);
if (nt == TREE_TYPE (t))
return t;
return build_complex_type (nt);
case FUNCTION_TYPE:
case METHOD_TYPE:
/* These should never show up here. */
gcc_unreachable ();
case ARRAY_TYPE:
{
tree component = substitute_in_type (TREE_TYPE (t), f, r);
tree domain = substitute_in_type (TYPE_DOMAIN (t), f, r);
if (component == TREE_TYPE (t) && domain == TYPE_DOMAIN (t))
return t;
nt = build_nonshared_array_type (component, domain);
SET_TYPE_ALIGN (nt, TYPE_ALIGN (t));
TYPE_USER_ALIGN (nt) = TYPE_USER_ALIGN (t);
SET_TYPE_MODE (nt, TYPE_MODE (t));
TYPE_SIZE (nt) = SUBSTITUTE_IN_EXPR (TYPE_SIZE (t), f, r);
TYPE_SIZE_UNIT (nt) = SUBSTITUTE_IN_EXPR (TYPE_SIZE_UNIT (t), f, r);
TYPE_MULTI_ARRAY_P (nt) = TYPE_MULTI_ARRAY_P (t);
TYPE_CONVENTION_FORTRAN_P (nt) = TYPE_CONVENTION_FORTRAN_P (t);
if (TYPE_REVERSE_STORAGE_ORDER (t))
set_reverse_storage_order_on_array_type (nt);
if (TYPE_NONALIASED_COMPONENT (t))
set_nonaliased_component_on_array_type (nt);
return nt;
}
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
{
bool changed_field = false;
tree field;
/* Start out with no fields, make new fields, and chain them
in. If we haven't actually changed the type of any field,
discard everything we've done and return the old type. */
nt = copy_type (t);
TYPE_FIELDS (nt) = NULL_TREE;
for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
{
tree new_field = copy_node (field), new_n;
new_n = substitute_in_type (TREE_TYPE (field), f, r);
if (new_n != TREE_TYPE (field))
{
TREE_TYPE (new_field) = new_n;
changed_field = true;
}
new_n = SUBSTITUTE_IN_EXPR (DECL_FIELD_OFFSET (field), f, r);
if (new_n != DECL_FIELD_OFFSET (field))
{
DECL_FIELD_OFFSET (new_field) = new_n;
changed_field = true;
}
/* Do the substitution inside the qualifier, if any. */
if (TREE_CODE (t) == QUAL_UNION_TYPE)
{
new_n = SUBSTITUTE_IN_EXPR (DECL_QUALIFIER (field), f, r);
if (new_n != DECL_QUALIFIER (field))
{
DECL_QUALIFIER (new_field) = new_n;
changed_field = true;
}
}
DECL_CONTEXT (new_field) = nt;
SET_DECL_ORIGINAL_FIELD_TO_FIELD (new_field, field);
DECL_CHAIN (new_field) = TYPE_FIELDS (nt);
TYPE_FIELDS (nt) = new_field;
}
if (!changed_field)
return t;
TYPE_FIELDS (nt) = nreverse (TYPE_FIELDS (nt));
TYPE_SIZE (nt) = SUBSTITUTE_IN_EXPR (TYPE_SIZE (t), f, r);
TYPE_SIZE_UNIT (nt) = SUBSTITUTE_IN_EXPR (TYPE_SIZE_UNIT (t), f, r);
SET_TYPE_ADA_SIZE (nt, SUBSTITUTE_IN_EXPR (TYPE_ADA_SIZE (t), f, r));
return nt;
}
default:
return t;
}
}
/* Return the RM size of GNU_TYPE. This is the actual number of bits
needed to represent the object. */
tree
rm_size (tree gnu_type)
{
/* For integral types, we store the RM size explicitly. */
if (INTEGRAL_TYPE_P (gnu_type) && TYPE_RM_SIZE (gnu_type))
return TYPE_RM_SIZE (gnu_type);
/* If the type contains a template, return the padded size of the template
plus the RM size of the actual data. */
if (TREE_CODE (gnu_type) == RECORD_TYPE
&& TYPE_CONTAINS_TEMPLATE_P (gnu_type))
return
size_binop (PLUS_EXPR,
bit_position (DECL_CHAIN (TYPE_FIELDS (gnu_type))),
rm_size (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (gnu_type)))));
/* For record or union types, we store the size explicitly. */
if (RECORD_OR_UNION_TYPE_P (gnu_type)
&& !TYPE_FAT_POINTER_P (gnu_type)
&& TYPE_ADA_SIZE (gnu_type))
return TYPE_ADA_SIZE (gnu_type);
/* For other types, this is just the size. */
return TYPE_SIZE (gnu_type);
}
/* Return the name to be used for GNAT_ENTITY. If a type, create a
fully-qualified name, possibly with type information encoding.
Otherwise, return the name. */
static const char *
get_entity_char (Entity_Id gnat_entity)
{
Get_Encoded_Name (gnat_entity);
return ggc_strdup (Name_Buffer);
}
tree
get_entity_name (Entity_Id gnat_entity)
{
Get_Encoded_Name (gnat_entity);
return get_identifier_with_length (Name_Buffer, Name_Len);
}
/* Return an identifier representing the external name to be used for
GNAT_ENTITY. If SUFFIX is specified, the name is followed by "___"
and the specified suffix. */
tree
create_concat_name (Entity_Id gnat_entity, const char *suffix)
{
const Entity_Kind kind = Ekind (gnat_entity);
const bool has_suffix = (suffix != NULL);
String_Template temp = {1, has_suffix ? (int) strlen (suffix) : 0};
String_Pointer sp = {suffix, &temp};
Get_External_Name (gnat_entity, has_suffix, sp);
/* A variable using the Stdcall convention lives in a DLL. We adjust
its name to use the jump table, the _imp__NAME contains the address
for the NAME variable. */
if ((kind == E_Variable || kind == E_Constant)
&& Has_Stdcall_Convention (gnat_entity))
{
const int len = strlen (STDCALL_PREFIX) + Name_Len;
char *new_name = (char *) alloca (len + 1);
strcpy (new_name, STDCALL_PREFIX);
strcat (new_name, Name_Buffer);
return get_identifier_with_length (new_name, len);
}
return get_identifier_with_length (Name_Buffer, Name_Len);
}
/* Given GNU_NAME, an IDENTIFIER_NODE containing a name and SUFFIX, a
string, return a new IDENTIFIER_NODE that is the concatenation of
the name followed by "___" and the specified suffix. */
tree
concat_name (tree gnu_name, const char *suffix)
{
const int len = IDENTIFIER_LENGTH (gnu_name) + 3 + strlen (suffix);
char *new_name = (char *) alloca (len + 1);
strcpy (new_name, IDENTIFIER_POINTER (gnu_name));
strcat (new_name, "___");
strcat (new_name, suffix);
return get_identifier_with_length (new_name, len);
}
/* Initialize the data structures of the decl.cc module. */
void
init_gnat_decl (void)
{
/* Initialize the cache of annotated values. */
annotate_value_cache = hash_table<value_annotation_hasher>::create_ggc (512);
/* Initialize the association of dummy types with subprograms. */
dummy_to_subprog_map = hash_table<dummy_type_hasher>::create_ggc (512);
}
/* Destroy the data structures of the decl.cc module. */
void
destroy_gnat_decl (void)
{
/* Destroy the cache of annotated values. */
annotate_value_cache->empty ();
annotate_value_cache = NULL;
/* Destroy the association of dummy types with subprograms. */
dummy_to_subprog_map->empty ();
dummy_to_subprog_map = NULL;
}
#include "gt-ada-decl.h"
|