1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- I N L I N E --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Alloc;
with Aspects; use Aspects;
with Atree; use Atree;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch7; use Exp_Ch7;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Fname; use Fname;
with Fname.UF; use Fname.UF;
with Lib; use Lib;
with Namet; use Namet;
with Nmake; use Nmake;
with Nlists; use Nlists;
with Output; use Output;
with Sem_Aux; use Sem_Aux;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch10; use Sem_Ch10;
with Sem_Ch12; use Sem_Ch12;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Sinput; use Sinput;
with Snames; use Snames;
with Stand; use Stand;
with Table;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Uname; use Uname;
with GNAT.HTable;
package body Inline is
Check_Inlining_Restrictions : constant Boolean := True;
-- In the following cases the frontend rejects inlining because they
-- are not handled well by the backend. This variable facilitates
-- disabling these restrictions to evaluate future versions of the
-- GCC backend in which some of the restrictions may be supported.
--
-- - subprograms that have:
-- - nested subprograms
-- - instantiations
-- - package declarations
-- - task or protected object declarations
-- - some of the following statements:
-- - abort
-- - asynchronous-select
-- - conditional-entry-call
-- - delay-relative
-- - delay-until
-- - selective-accept
-- - timed-entry-call
Inlined_Calls : Elist_Id;
-- List of frontend inlined calls
Backend_Calls : Elist_Id;
-- List of inline calls passed to the backend
Backend_Instances : Elist_Id;
-- List of instances inlined for the backend
Backend_Inlined_Subps : Elist_Id;
-- List of subprograms inlined by the backend
Backend_Not_Inlined_Subps : Elist_Id;
-- List of subprograms that cannot be inlined by the backend
-----------------------------
-- Pending_Instantiations --
-----------------------------
-- We make entries in this table for the pending instantiations of generic
-- bodies that are created during semantic analysis. After the analysis is
-- complete, calling Instantiate_Bodies performs the actual instantiations.
package Pending_Instantiations is new Table.Table (
Table_Component_Type => Pending_Body_Info,
Table_Index_Type => Int,
Table_Low_Bound => 0,
Table_Initial => Alloc.Pending_Instantiations_Initial,
Table_Increment => Alloc.Pending_Instantiations_Increment,
Table_Name => "Pending_Instantiations");
-------------------------------------
-- Called_Pending_Instantiations --
-------------------------------------
-- With back-end inlining, the pending instantiations that are not in the
-- main unit or subunit are performed only after a call to the subprogram
-- instance, or to a subprogram within the package instance, is inlined.
-- Since such a call can be within a subsequent pending instantiation,
-- we make entries in this table that stores the index of these "called"
-- pending instantiations and perform them when the table is populated.
package Called_Pending_Instantiations is new Table.Table (
Table_Component_Type => Int,
Table_Index_Type => Int,
Table_Low_Bound => 0,
Table_Initial => Alloc.Pending_Instantiations_Initial,
Table_Increment => Alloc.Pending_Instantiations_Increment,
Table_Name => "Called_Pending_Instantiations");
---------------------------------
-- To_Pending_Instantiations --
---------------------------------
-- With back-end inlining, we also need to have a map from the pending
-- instantiations to their index in the Pending_Instantiations table.
Node_Table_Size : constant := 257;
-- Number of headers in hash table
subtype Node_Header_Num is Integer range 0 .. Node_Table_Size - 1;
-- Range of headers in hash table
function Node_Hash (Id : Node_Id) return Node_Header_Num;
-- Simple hash function for Node_Ids
package To_Pending_Instantiations is new GNAT.Htable.Simple_HTable
(Header_Num => Node_Header_Num,
Element => Int,
No_Element => -1,
Key => Node_Id,
Hash => Node_Hash,
Equal => "=");
-----------------
-- Node_Hash --
-----------------
function Node_Hash (Id : Node_Id) return Node_Header_Num is
begin
return Node_Header_Num (Id mod Node_Table_Size);
end Node_Hash;
--------------------
-- Inlined Bodies --
--------------------
-- Inlined functions are actually placed in line by the backend if the
-- corresponding bodies are available (i.e. compiled). Whenever we find
-- a call to an inlined subprogram, we add the name of the enclosing
-- compilation unit to a worklist. After all compilation, and after
-- expansion of generic bodies, we traverse the list of pending bodies
-- and compile them as well.
package Inlined_Bodies is new Table.Table (
Table_Component_Type => Entity_Id,
Table_Index_Type => Int,
Table_Low_Bound => 0,
Table_Initial => Alloc.Inlined_Bodies_Initial,
Table_Increment => Alloc.Inlined_Bodies_Increment,
Table_Name => "Inlined_Bodies");
-----------------------
-- Inline Processing --
-----------------------
-- For each call to an inlined subprogram, we make entries in a table
-- that stores caller and callee, and indicates the call direction from
-- one to the other. We also record the compilation unit that contains
-- the callee. After analyzing the bodies of all such compilation units,
-- we compute the transitive closure of inlined subprograms called from
-- the main compilation unit and make it available to the code generator
-- in no particular order, thus allowing cycles in the call graph.
Last_Inlined : Entity_Id := Empty;
-- For each entry in the table we keep a list of successors in topological
-- order, i.e. callers of the current subprogram.
type Subp_Index is new Nat;
No_Subp : constant Subp_Index := 0;
-- The subprogram entities are hashed into the Inlined table
Num_Hash_Headers : constant := 512;
Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
of Subp_Index;
type Succ_Index is new Nat;
No_Succ : constant Succ_Index := 0;
type Succ_Info is record
Subp : Subp_Index;
Next : Succ_Index;
end record;
-- The following table stores list elements for the successor lists. These
-- lists cannot be chained directly through entries in the Inlined table,
-- because a given subprogram can appear in several such lists.
package Successors is new Table.Table (
Table_Component_Type => Succ_Info,
Table_Index_Type => Succ_Index,
Table_Low_Bound => 1,
Table_Initial => Alloc.Successors_Initial,
Table_Increment => Alloc.Successors_Increment,
Table_Name => "Successors");
type Subp_Info is record
Name : Entity_Id := Empty;
Next : Subp_Index := No_Subp;
First_Succ : Succ_Index := No_Succ;
Main_Call : Boolean := False;
Processed : Boolean := False;
end record;
package Inlined is new Table.Table (
Table_Component_Type => Subp_Info,
Table_Index_Type => Subp_Index,
Table_Low_Bound => 1,
Table_Initial => Alloc.Inlined_Initial,
Table_Increment => Alloc.Inlined_Increment,
Table_Name => "Inlined");
-----------------------
-- Local Subprograms --
-----------------------
procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
-- Make two entries in Inlined table, for an inlined subprogram being
-- called, and for the inlined subprogram that contains the call. If
-- the call is in the main compilation unit, Caller is Empty.
procedure Add_Inlined_Instance (E : Entity_Id);
-- Add instance E to the list of inlined instances for the unit
procedure Add_Inlined_Subprogram (E : Entity_Id);
-- Add subprogram E to the list of inlined subprograms for the unit
function Add_Subp (E : Entity_Id) return Subp_Index;
-- Make entry in Inlined table for subprogram E, or return table index
-- that already holds E.
procedure Establish_Actual_Mapping_For_Inlined_Call
(N : Node_Id;
Subp : Entity_Id;
Decls : List_Id;
Body_Or_Expr_To_Check : Node_Id);
-- Establish a mapping from formals to actuals in the call N for the target
-- subprogram Subp, and create temporaries or renamings when needed for the
-- actuals that are expressions (except for actuals given by simple entity
-- names or literals) or that are scalars that require copying to preserve
-- semantics. Any temporary objects that are created are inserted in Decls.
-- Body_Or_Expr_To_Check indicates the target body (or possibly expression
-- of an expression function), which may be traversed to count formal uses.
function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
pragma Inline (Get_Code_Unit_Entity);
-- Return the entity node for the unit containing E. Always return the spec
-- for a package.
function Has_Initialized_Type (E : Entity_Id) return Boolean;
-- If a candidate for inlining contains type declarations for types with
-- nontrivial initialization procedures, they are not worth inlining.
function Has_Single_Return (N : Node_Id) return Boolean;
-- In general we cannot inline functions that return unconstrained type.
-- However, we can handle such functions if all return statements return
-- a local variable that is the first declaration in the body of the
-- function. In that case the call can be replaced by that local
-- variable as is done for other inlined calls.
function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
-- Return True if E is in the main unit or its spec or in a subunit
function Is_Nested (E : Entity_Id) return Boolean;
-- If the function is nested inside some other function, it will always
-- be compiled if that function is, so don't add it to the inline list.
-- We cannot compile a nested function outside the scope of the containing
-- function anyway. This is also the case if the function is defined in a
-- task body or within an entry (for example, an initialization procedure).
procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id);
-- Remove all aspects and/or pragmas that have no meaning in inlined body
-- Body_Decl. The analysis of these items is performed on the non-inlined
-- body. The items currently removed are:
-- Always_Terminates
-- Contract_Cases
-- Global
-- Depends
-- Exceptional_Cases
-- Postcondition
-- Precondition
-- Refined_Global
-- Refined_Depends
-- Refined_Post
-- Subprogram_Variant
-- Test_Case
-- Unmodified
-- Unreferenced
procedure Reset_Actual_Mapping_For_Inlined_Call (Subp : Entity_Id);
-- Reset the Renamed_Object field to Empty on all formals of Subp, which
-- can be set by a call to Establish_Actual_Mapping_For_Inlined_Call.
------------------------------
-- Deferred Cleanup Actions --
------------------------------
-- The cleanup actions for scopes that contain package instantiations with
-- a body are delayed until after the package body is instantiated. because
-- the body may contain finalizable objects or other constructs that affect
-- the cleanup code. A scope that contains such instantiations only needs
-- to be finalized once, even though it may contain more than one instance.
-- We keep a list of scopes that must still be finalized and Cleanup_Scopes
-- will be invoked after all the body instantiations have been completed.
To_Clean : Elist_Id;
procedure Add_Scope_To_Clean (Scop : Entity_Id);
-- Build set of scopes on which cleanup actions must be performed
procedure Cleanup_Scopes;
-- Complete cleanup actions on scopes that need it
--------------
-- Add_Call --
--------------
procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
P1 : constant Subp_Index := Add_Subp (Called);
P2 : Subp_Index;
J : Succ_Index;
begin
if Present (Caller) then
P2 := Add_Subp (Caller);
-- Add P1 to the list of successors of P2, if not already there.
-- Note that P2 may contain more than one call to P1, and only
-- one needs to be recorded.
J := Inlined.Table (P2).First_Succ;
while J /= No_Succ loop
if Successors.Table (J).Subp = P1 then
return;
end if;
J := Successors.Table (J).Next;
end loop;
-- On exit, make a successor entry for P1
Successors.Increment_Last;
Successors.Table (Successors.Last).Subp := P1;
Successors.Table (Successors.Last).Next :=
Inlined.Table (P2).First_Succ;
Inlined.Table (P2).First_Succ := Successors.Last;
else
Inlined.Table (P1).Main_Call := True;
end if;
end Add_Call;
----------------------
-- Add_Inlined_Body --
----------------------
procedure Add_Inlined_Body (E : Entity_Id; N : Node_Id) is
type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
-- Level of inlining for the call: Dont_Inline means no inlining,
-- Inline_Call means that only the call is considered for inlining,
-- Inline_Package means that the call is considered for inlining and
-- its package compiled and scanned for more inlining opportunities.
function Is_Non_Loading_Expression_Function
(Id : Entity_Id) return Boolean;
-- Determine whether arbitrary entity Id denotes a subprogram which is
-- either
--
-- * An expression function
--
-- * A function completed by an expression function where both the
-- spec and body are in the same context.
function Must_Inline return Inline_Level_Type;
-- Inlining is only done if the call statement N is in the main unit,
-- or within the body of another inlined subprogram.
----------------------------------------
-- Is_Non_Loading_Expression_Function --
----------------------------------------
function Is_Non_Loading_Expression_Function
(Id : Entity_Id) return Boolean
is
Body_Decl : Node_Id;
Body_Id : Entity_Id;
Spec_Decl : Node_Id;
begin
-- A stand-alone expression function is transformed into a spec-body
-- pair in-place. Since both the spec and body are in the same list,
-- the inlining of such an expression function does not need to load
-- anything extra.
if Is_Expression_Function (Id) then
return True;
-- A function may be completed by an expression function
elsif Ekind (Id) = E_Function then
Spec_Decl := Unit_Declaration_Node (Id);
if Nkind (Spec_Decl) = N_Subprogram_Declaration then
Body_Id := Corresponding_Body (Spec_Decl);
if Present (Body_Id) then
Body_Decl := Unit_Declaration_Node (Body_Id);
-- The inlining of a completing expression function does
-- not need to load anything extra when both the spec and
-- body are in the same context.
return
Was_Expression_Function (Body_Decl)
and then Parent (Spec_Decl) = Parent (Body_Decl);
end if;
end if;
end if;
return False;
end Is_Non_Loading_Expression_Function;
-----------------
-- Must_Inline --
-----------------
function Must_Inline return Inline_Level_Type is
Scop : Entity_Id;
Comp : Node_Id;
begin
-- Check if call is in main unit
Scop := Current_Scope;
-- Do not try to inline if scope is standard. This could happen, for
-- example, for a call to Add_Global_Declaration, and it causes
-- trouble to try to inline at this level.
if Scop = Standard_Standard then
return Dont_Inline;
end if;
-- Otherwise lookup scope stack to outer scope
while Scope (Scop) /= Standard_Standard
and then not Is_Child_Unit (Scop)
loop
Scop := Scope (Scop);
end loop;
Comp := Parent (Scop);
while Nkind (Comp) /= N_Compilation_Unit loop
Comp := Parent (Comp);
end loop;
-- If the call is in the main unit, inline the call and compile the
-- package of the subprogram to find more calls to be inlined.
if Comp = Cunit (Main_Unit)
or else Comp = Library_Unit (Cunit (Main_Unit))
then
Add_Call (E);
return Inline_Package;
end if;
-- The call is not in the main unit. See if it is in some subprogram
-- that can be inlined outside its unit. If so, inline the call and,
-- if the inlining level is set to 1, stop there; otherwise also
-- compile the package as above.
Scop := Current_Scope;
while Scope (Scop) /= Standard_Standard
and then not Is_Child_Unit (Scop)
loop
if Is_Overloadable (Scop)
and then Is_Inlined (Scop)
and then not Is_Nested (Scop)
then
Add_Call (E, Scop);
if Inline_Level = 1 then
return Inline_Call;
else
return Inline_Package;
end if;
end if;
Scop := Scope (Scop);
end loop;
return Dont_Inline;
end Must_Inline;
Inst : Entity_Id;
Inst_Decl : Node_Id;
Level : Inline_Level_Type;
-- Start of processing for Add_Inlined_Body
begin
Append_New_Elmt (N, To => Backend_Calls);
-- Skip subprograms that cannot or need not be inlined outside their
-- unit or parent subprogram.
if Is_Abstract_Subprogram (E)
or else Convention (E) = Convention_Protected
or else In_Main_Unit_Or_Subunit (E)
or else Is_Nested (E)
then
return;
end if;
-- Find out whether the call must be inlined. Unless the result is
-- Dont_Inline, Must_Inline also creates an edge for the call in the
-- callgraph; however, it will not be activated until after Is_Called
-- is set on the subprogram.
Level := Must_Inline;
if Level = Dont_Inline then
return;
end if;
-- If a previous call to the subprogram has been inlined, nothing to do
if Is_Called (E) then
return;
end if;
-- If the subprogram is an instance, then inline the instance
if Is_Generic_Instance (E) then
Add_Inlined_Instance (E);
end if;
-- Mark the subprogram as called
Set_Is_Called (E);
-- If the call was generated by the compiler and is to a subprogram in
-- a run-time unit, we need to suppress debugging information for it,
-- so that the code that is eventually inlined will not affect the
-- debugging of the program. We do not do it if the call comes from
-- source because, even if the call is inlined, the user may expect it
-- to be present in the debugging information.
if not Comes_From_Source (N)
and then In_Extended_Main_Source_Unit (N)
and then Is_Predefined_Unit (Get_Source_Unit (E))
then
Set_Needs_Debug_Info (E, False);
end if;
-- If the subprogram is an expression function, or is completed by one
-- where both the spec and body are in the same context, then there is
-- no need to load any package body since the body of the function is
-- in the spec.
if Is_Non_Loading_Expression_Function (E) then
return;
end if;
-- Find unit containing E, and add to list of inlined bodies if needed.
-- Library-level functions must be handled specially, because there is
-- no enclosing package to retrieve. In this case, it is the body of
-- the function that will have to be loaded.
declare
Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
begin
if Pack = E then
Inlined_Bodies.Increment_Last;
Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
else
pragma Assert (Ekind (Pack) = E_Package);
-- If the subprogram is within an instance, inline the instance
if Comes_From_Source (E) then
Inst := Scope (E);
while Present (Inst) and then Inst /= Standard_Standard loop
exit when Is_Generic_Instance (Inst);
Inst := Scope (Inst);
end loop;
if Present (Inst)
and then Is_Generic_Instance (Inst)
and then not Is_Called (Inst)
then
Inst_Decl := Unit_Declaration_Node (Inst);
-- Do not inline the instance if the body already exists,
-- or the instance node is simply missing.
if Present (Corresponding_Body (Inst_Decl))
or else (Nkind (Parent (Inst_Decl)) /= N_Compilation_Unit
and then No (Next (Inst_Decl)))
then
Set_Is_Called (Inst);
else
Add_Inlined_Instance (Inst);
end if;
end if;
end if;
-- If the unit containing E is an instance, nothing more to do
if Is_Generic_Instance (Pack) then
null;
-- Do not inline the package if the subprogram is an init proc
-- or other internally generated subprogram, because in that
-- case the subprogram body appears in the same unit that
-- declares the type, and that body is visible to the back end.
-- Do not inline it either if it is in the main unit.
-- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
-- calls if the back end takes care of inlining the call.
-- Note that Level is in Inline_Call | Inline_Package here.
elsif ((Level = Inline_Call
and then Has_Pragma_Inline_Always (E)
and then Back_End_Inlining)
or else Level = Inline_Package)
and then not Is_Inlined (Pack)
and then not Is_Internal (E)
and then not In_Main_Unit_Or_Subunit (Pack)
then
Set_Is_Inlined (Pack);
Inlined_Bodies.Increment_Last;
Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
end if;
end if;
-- Ensure that Analyze_Inlined_Bodies will be invoked after
-- completing the analysis of the current unit.
Inline_Processing_Required := True;
end;
end Add_Inlined_Body;
--------------------------
-- Add_Inlined_Instance --
--------------------------
procedure Add_Inlined_Instance (E : Entity_Id) is
Decl_Node : constant Node_Id := Unit_Declaration_Node (E);
Index : Int;
begin
-- This machinery is only used with back-end inlining
if not Back_End_Inlining then
return;
end if;
-- Register the instance in the list
Append_New_Elmt (Decl_Node, To => Backend_Instances);
-- Retrieve the index of its corresponding pending instantiation
-- and mark this corresponding pending instantiation as needed.
Index := To_Pending_Instantiations.Get (Decl_Node);
if Index >= 0 then
Called_Pending_Instantiations.Append (Index);
else
pragma Assert (False);
null;
end if;
Set_Is_Called (E);
end Add_Inlined_Instance;
----------------------------
-- Add_Inlined_Subprogram --
----------------------------
procedure Add_Inlined_Subprogram (E : Entity_Id) is
Decl : constant Node_Id := Parent (Declaration_Node (E));
Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id);
-- Append Subp to the list of subprograms inlined by the backend
procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id);
-- Append Subp to the list of subprograms that cannot be inlined by
-- the backend.
-----------------------------------------
-- Register_Backend_Inlined_Subprogram --
-----------------------------------------
procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id) is
begin
Append_New_Elmt (Subp, To => Backend_Inlined_Subps);
end Register_Backend_Inlined_Subprogram;
---------------------------------------------
-- Register_Backend_Not_Inlined_Subprogram --
---------------------------------------------
procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id) is
begin
Append_New_Elmt (Subp, To => Backend_Not_Inlined_Subps);
end Register_Backend_Not_Inlined_Subprogram;
-- Start of processing for Add_Inlined_Subprogram
begin
-- We can inline the subprogram if its unit is known to be inlined or is
-- an instance whose body will be analyzed anyway or the subprogram was
-- generated as a body by the compiler (for example an initialization
-- procedure) or its declaration was provided along with the body (for
-- example an expression function) and it does not declare types with
-- nontrivial initialization procedures.
if (Is_Inlined (Pack)
or else Is_Generic_Instance (Pack)
or else Nkind (Decl) = N_Subprogram_Body
or else Present (Corresponding_Body (Decl)))
and then not Has_Initialized_Type (E)
then
Register_Backend_Inlined_Subprogram (E);
if No (Last_Inlined) then
Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
else
Set_Next_Inlined_Subprogram (Last_Inlined, E);
end if;
Last_Inlined := E;
else
Register_Backend_Not_Inlined_Subprogram (E);
end if;
end Add_Inlined_Subprogram;
--------------------------------
-- Add_Pending_Instantiation --
--------------------------------
procedure Add_Pending_Instantiation
(Inst : Node_Id;
Act_Decl : Node_Id;
Fin_Scop : Node_Id := Empty)
is
Act_Decl_Id : Entity_Id;
Index : Int;
begin
-- Here is a defense against a ludicrous number of instantiations
-- caused by a circular set of instantiation attempts.
if Pending_Instantiations.Last + 1 >= Maximum_Instantiations then
Error_Msg_Uint_1 := UI_From_Int (Maximum_Instantiations);
Error_Msg_N ("too many instantiations, exceeds max of^", Inst);
Error_Msg_N ("\limit can be changed using -gnateinn switch", Inst);
raise Unrecoverable_Error;
end if;
-- Capture the body of the generic instantiation along with its context
-- for later processing by Instantiate_Bodies.
Pending_Instantiations.Append
((Inst_Node => Inst,
Act_Decl => Act_Decl,
Fin_Scop => Fin_Scop,
Config_Switches => Save_Config_Switches,
Current_Sem_Unit => Current_Sem_Unit,
Expander_Status => Expander_Active,
Local_Suppress_Stack_Top => Local_Suppress_Stack_Top,
Scope_Suppress => Scope_Suppress,
Warnings => Save_Warnings));
-- With back-end inlining, also associate the index to the instantiation
if Back_End_Inlining then
Act_Decl_Id := Defining_Entity (Act_Decl);
Index := Pending_Instantiations.Last;
To_Pending_Instantiations.Set (Act_Decl, Index);
-- If an instantiation is in the main unit or subunit, or is a nested
-- subprogram, then its body is needed as per the analysis done in
-- Analyze_Package_Instantiation & Analyze_Subprogram_Instantiation.
if In_Main_Unit_Or_Subunit (Act_Decl_Id)
or else (Is_Subprogram (Act_Decl_Id)
and then Is_Nested (Act_Decl_Id))
then
Called_Pending_Instantiations.Append (Index);
Set_Is_Called (Act_Decl_Id);
end if;
end if;
end Add_Pending_Instantiation;
------------------------
-- Add_Scope_To_Clean --
------------------------
procedure Add_Scope_To_Clean (Scop : Entity_Id) is
Elmt : Elmt_Id;
begin
Elmt := First_Elmt (To_Clean);
while Present (Elmt) loop
if Node (Elmt) = Scop then
return;
end if;
Next_Elmt (Elmt);
end loop;
Append_Elmt (Scop, To_Clean);
end Add_Scope_To_Clean;
--------------
-- Add_Subp --
--------------
function Add_Subp (E : Entity_Id) return Subp_Index is
Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
J : Subp_Index;
procedure New_Entry;
-- Initialize entry in Inlined table
procedure New_Entry is
begin
Inlined.Increment_Last;
Inlined.Table (Inlined.Last).Name := E;
Inlined.Table (Inlined.Last).Next := No_Subp;
Inlined.Table (Inlined.Last).First_Succ := No_Succ;
Inlined.Table (Inlined.Last).Main_Call := False;
Inlined.Table (Inlined.Last).Processed := False;
end New_Entry;
-- Start of processing for Add_Subp
begin
if Hash_Headers (Index) = No_Subp then
New_Entry;
Hash_Headers (Index) := Inlined.Last;
return Inlined.Last;
else
J := Hash_Headers (Index);
while J /= No_Subp loop
if Inlined.Table (J).Name = E then
return J;
else
Index := J;
J := Inlined.Table (J).Next;
end if;
end loop;
-- On exit, subprogram was not found. Enter in table. Index is
-- the current last entry on the hash chain.
New_Entry;
Inlined.Table (Index).Next := Inlined.Last;
return Inlined.Last;
end if;
end Add_Subp;
----------------------------
-- Analyze_Inlined_Bodies --
----------------------------
procedure Analyze_Inlined_Bodies is
Comp_Unit : Node_Id;
J : Int;
Pack : Entity_Id;
Subp : Subp_Index;
S : Succ_Index;
type Pending_Index is new Nat;
package Pending_Inlined is new Table.Table (
Table_Component_Type => Subp_Index,
Table_Index_Type => Pending_Index,
Table_Low_Bound => 1,
Table_Initial => Alloc.Inlined_Initial,
Table_Increment => Alloc.Inlined_Increment,
Table_Name => "Pending_Inlined");
-- The workpile used to compute the transitive closure
-- Start of processing for Analyze_Inlined_Bodies
begin
if Serious_Errors_Detected = 0 then
Push_Scope (Standard_Standard);
J := 0;
while J <= Inlined_Bodies.Last
and then Serious_Errors_Detected = 0
loop
Pack := Inlined_Bodies.Table (J);
while Present (Pack)
and then Scope (Pack) /= Standard_Standard
and then not Is_Child_Unit (Pack)
loop
Pack := Scope (Pack);
end loop;
Comp_Unit := Parent (Pack);
while Present (Comp_Unit)
and then Nkind (Comp_Unit) /= N_Compilation_Unit
loop
Comp_Unit := Parent (Comp_Unit);
end loop;
-- Load the body if it exists and contains inlineable entities,
-- unless it is the main unit, or is an instance whose body has
-- already been analyzed.
if Present (Comp_Unit)
and then Comp_Unit /= Cunit (Main_Unit)
and then Body_Required (Comp_Unit)
and then
(Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
or else
(No (Corresponding_Body (Unit (Comp_Unit)))
and then Body_Needed_For_Inlining
(Defining_Entity (Unit (Comp_Unit)))))
then
declare
Bname : constant Unit_Name_Type :=
Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
OK : Boolean;
begin
if not Is_Loaded (Bname) then
Style_Check := False;
Load_Needed_Body (Comp_Unit, OK);
if not OK then
-- Warn that a body was not available for inlining
-- by the back-end.
Error_Msg_Unit_1 := Bname;
Error_Msg_N
("one or more inlined subprograms accessed in $!??",
Comp_Unit);
Error_Msg_File_1 :=
Get_File_Name (Bname, Subunit => False);
Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
end if;
end if;
end;
end if;
J := J + 1;
if J > Inlined_Bodies.Last then
-- The analysis of required bodies may have produced additional
-- generic instantiations. To obtain further inlining, we need
-- to perform another round of generic body instantiations.
Instantiate_Bodies;
-- Symmetrically, the instantiation of required generic bodies
-- may have caused additional bodies to be inlined. To obtain
-- further inlining, we keep looping over the inlined bodies.
end if;
end loop;
-- The list of inlined subprograms is an overestimate, because it
-- includes inlined functions called from functions that are compiled
-- as part of an inlined package, but are not themselves called. An
-- accurate computation of just those subprograms that are needed
-- requires that we perform a transitive closure over the call graph,
-- starting from calls in the main compilation unit.
for Index in Inlined.First .. Inlined.Last loop
if not Is_Called (Inlined.Table (Index).Name) then
-- This means that Add_Inlined_Body added the subprogram to the
-- table but wasn't able to handle its code unit. Do nothing.
Inlined.Table (Index).Processed := True;
elsif Inlined.Table (Index).Main_Call then
Pending_Inlined.Increment_Last;
Pending_Inlined.Table (Pending_Inlined.Last) := Index;
Inlined.Table (Index).Processed := True;
else
Set_Is_Called (Inlined.Table (Index).Name, False);
end if;
end loop;
-- Iterate over the workpile until it is emptied, propagating the
-- Is_Called flag to the successors of the processed subprogram.
while Pending_Inlined.Last >= Pending_Inlined.First loop
Subp := Pending_Inlined.Table (Pending_Inlined.Last);
Pending_Inlined.Decrement_Last;
S := Inlined.Table (Subp).First_Succ;
while S /= No_Succ loop
Subp := Successors.Table (S).Subp;
if not Inlined.Table (Subp).Processed then
Set_Is_Called (Inlined.Table (Subp).Name);
Pending_Inlined.Increment_Last;
Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
Inlined.Table (Subp).Processed := True;
end if;
S := Successors.Table (S).Next;
end loop;
end loop;
-- Finally add the called subprograms to the list of inlined
-- subprograms for the unit.
for Index in Inlined.First .. Inlined.Last loop
declare
E : constant Subprogram_Kind_Id := Inlined.Table (Index).Name;
begin
if Is_Called (E) and then not Is_Ignored_Ghost_Entity (E) then
Add_Inlined_Subprogram (E);
end if;
end;
end loop;
Pop_Scope;
end if;
end Analyze_Inlined_Bodies;
--------------------------
-- Build_Body_To_Inline --
--------------------------
procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
Original_Body : Node_Id;
Body_To_Analyze : Node_Id;
Max_Size : constant := 10;
function Has_Extended_Return return Boolean;
-- This function returns True if the subprogram has an extended return
-- statement.
function Has_Pending_Instantiation return Boolean;
-- If some enclosing body contains instantiations that appear before
-- the corresponding generic body, the enclosing body has a freeze node
-- so that it can be elaborated after the generic itself. This might
-- conflict with subsequent inlinings, so that it is unsafe to try to
-- inline in such a case.
function Has_Single_Return_In_GNATprove_Mode return Boolean;
-- This function is called only in GNATprove mode, and it returns
-- True if the subprogram has no return statement or a single return
-- statement as last statement. It returns False for subprogram with
-- a single return as last statement inside one or more blocks, as
-- inlining would generate gotos in that case as well (although the
-- goto is useless in that case).
function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
-- If the body of the subprogram includes a call that returns an
-- unconstrained type, the secondary stack is involved, and it is
-- not worth inlining.
-------------------------
-- Has_Extended_Return --
-------------------------
function Has_Extended_Return return Boolean is
Body_To_Inline : constant Node_Id := N;
function Check_Return (N : Node_Id) return Traverse_Result;
-- Returns OK on node N if this is not an extended return statement
------------------
-- Check_Return --
------------------
function Check_Return (N : Node_Id) return Traverse_Result is
begin
case Nkind (N) is
when N_Extended_Return_Statement =>
return Abandon;
-- Skip locally declared subprogram bodies inside the body to
-- inline, as the return statements inside those do not count.
when N_Subprogram_Body =>
if N = Body_To_Inline then
return OK;
else
return Skip;
end if;
when others =>
return OK;
end case;
end Check_Return;
function Check_All_Returns is new Traverse_Func (Check_Return);
-- Start of processing for Has_Extended_Return
begin
return Check_All_Returns (N) /= OK;
end Has_Extended_Return;
-------------------------------
-- Has_Pending_Instantiation --
-------------------------------
function Has_Pending_Instantiation return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) loop
if Is_Compilation_Unit (S)
or else Is_Child_Unit (S)
then
return False;
elsif Ekind (S) = E_Package
and then Has_Forward_Instantiation (S)
then
return True;
end if;
S := Scope (S);
end loop;
return False;
end Has_Pending_Instantiation;
-----------------------------------------
-- Has_Single_Return_In_GNATprove_Mode --
-----------------------------------------
function Has_Single_Return_In_GNATprove_Mode return Boolean is
Body_To_Inline : constant Node_Id := N;
Last_Statement : Node_Id := Empty;
function Check_Return (N : Node_Id) return Traverse_Result;
-- Returns OK on node N if this is not a return statement different
-- from the last statement in the subprogram.
------------------
-- Check_Return --
------------------
function Check_Return (N : Node_Id) return Traverse_Result is
begin
case Nkind (N) is
when N_Extended_Return_Statement
| N_Simple_Return_Statement
=>
if N = Last_Statement then
return OK;
else
return Abandon;
end if;
-- Skip locally declared subprogram bodies inside the body to
-- inline, as the return statements inside those do not count.
when N_Subprogram_Body =>
if N = Body_To_Inline then
return OK;
else
return Skip;
end if;
when others =>
return OK;
end case;
end Check_Return;
function Check_All_Returns is new Traverse_Func (Check_Return);
-- Start of processing for Has_Single_Return_In_GNATprove_Mode
begin
-- Retrieve the last statement
Last_Statement := Last (Statements (Handled_Statement_Sequence (N)));
-- Check that the last statement is the only possible return
-- statement in the subprogram.
return Check_All_Returns (N) = OK;
end Has_Single_Return_In_GNATprove_Mode;
--------------------------
-- Uses_Secondary_Stack --
--------------------------
function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
function Check_Call (N : Node_Id) return Traverse_Result;
-- Look for function calls that return an unconstrained type
----------------
-- Check_Call --
----------------
function Check_Call (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Function_Call
and then Is_Entity_Name (Name (N))
and then Is_Composite_Type (Etype (Entity (Name (N))))
and then not Is_Constrained (Etype (Entity (Name (N))))
then
Cannot_Inline
("cannot inline & (call returns unconstrained type)?",
N, Spec_Id);
return Abandon;
else
return OK;
end if;
end Check_Call;
function Check_Calls is new Traverse_Func (Check_Call);
begin
return Check_Calls (Bod) = Abandon;
end Uses_Secondary_Stack;
-- Start of processing for Build_Body_To_Inline
begin
-- Return immediately if done already
if Nkind (Decl) = N_Subprogram_Declaration
and then Present (Body_To_Inline (Decl))
then
return;
-- Subprograms that have return statements in the middle of the body are
-- inlined with gotos. GNATprove does not currently support gotos, so
-- we prevent such inlining.
elsif GNATprove_Mode
and then not Has_Single_Return_In_GNATprove_Mode
then
Cannot_Inline ("cannot inline & (multiple returns)?", N, Spec_Id);
return;
-- Functions that return controlled types cannot currently be inlined
-- because they require secondary stack handling; controlled actions
-- may also interfere in complex ways with inlining.
elsif Ekind (Spec_Id) = E_Function
and then Needs_Finalization (Etype (Spec_Id))
then
Cannot_Inline
("cannot inline & (controlled return type)?", N, Spec_Id);
return;
end if;
if Has_Excluded_Declaration (Spec_Id, Declarations (N)) then
return;
end if;
if Present (Handled_Statement_Sequence (N)) then
if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
Cannot_Inline
("cannot inline& (exception handler)?",
First (Exception_Handlers (Handled_Statement_Sequence (N))),
Spec_Id);
return;
elsif Has_Excluded_Statement
(Spec_Id, Statements (Handled_Statement_Sequence (N)))
then
return;
end if;
end if;
-- We do not inline a subprogram that is too large, unless it is marked
-- Inline_Always or we are in GNATprove mode. This pragma does not
-- suppress the other checks on inlining (forbidden declarations,
-- handlers, etc).
if not (Has_Pragma_Inline_Always (Spec_Id) or else GNATprove_Mode)
and then List_Length
(Statements (Handled_Statement_Sequence (N))) > Max_Size
then
Cannot_Inline ("cannot inline& (body too large)?", N, Spec_Id);
return;
end if;
if Has_Pending_Instantiation then
Cannot_Inline
("cannot inline& (forward instance within enclosing body)?",
N, Spec_Id);
return;
end if;
-- Within an instance, the body to inline must be treated as a nested
-- generic, so that the proper global references are preserved.
-- Note that we do not do this at the library level, because it is not
-- needed, and furthermore this causes trouble if front-end inlining
-- is activated (-gnatN).
if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
Save_Env (Scope (Current_Scope), Scope (Current_Scope));
Original_Body := Copy_Generic_Node (N, Empty, Instantiating => True);
else
Original_Body := Copy_Separate_Tree (N);
end if;
-- We need to capture references to the formals in order to substitute
-- the actuals at the point of inlining, i.e. instantiation. To treat
-- the formals as globals to the body to inline, we nest it within a
-- dummy parameterless subprogram, declared within the real one. To
-- avoid generating an internal name (which is never public, and which
-- affects serial numbers of other generated names), we use an internal
-- symbol that cannot conflict with user declarations.
Set_Parameter_Specifications (Specification (Original_Body), No_List);
Set_Defining_Unit_Name
(Specification (Original_Body),
Make_Defining_Identifier (Sloc (N), Name_uParent));
Set_Corresponding_Spec (Original_Body, Empty);
-- Remove all aspects/pragmas that have no meaning in an inlined body
Remove_Aspects_And_Pragmas (Original_Body);
Body_To_Analyze :=
Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
-- Set return type of function, which is also global and does not need
-- to be resolved.
if Ekind (Spec_Id) = E_Function then
Set_Result_Definition
(Specification (Body_To_Analyze),
New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
end if;
if No (Declarations (N)) then
Set_Declarations (N, New_List (Body_To_Analyze));
else
Append (Body_To_Analyze, Declarations (N));
end if;
Start_Generic;
Analyze (Body_To_Analyze);
Push_Scope (Defining_Entity (Body_To_Analyze));
Save_Global_References (Original_Body);
End_Scope;
Remove (Body_To_Analyze);
End_Generic;
-- Restore environment if previously saved
if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
Restore_Env;
end if;
-- Functions that return unconstrained composite types require
-- secondary stack handling, and cannot currently be inlined, unless
-- all return statements return a local variable that is the first
-- local declaration in the body. We had to delay this check until
-- the body of the function is analyzed since Has_Single_Return()
-- requires a minimum decoration.
if Ekind (Spec_Id) = E_Function
and then not Is_Scalar_Type (Etype (Spec_Id))
and then not Is_Access_Type (Etype (Spec_Id))
and then not Is_Constrained (Etype (Spec_Id))
then
if not Has_Single_Return (Body_To_Analyze)
-- Skip inlining if the function returns an unconstrained type
-- using an extended return statement, since this part of the
-- new inlining model is not yet supported by the current
-- implementation.
or else (Returns_Unconstrained_Type (Spec_Id)
and then Has_Extended_Return)
then
Cannot_Inline
("cannot inline & (unconstrained return type)?", N, Spec_Id);
return;
end if;
-- If secondary stack is used, there is no point in inlining. We have
-- already issued the warning in this case, so nothing to do.
elsif Uses_Secondary_Stack (Body_To_Analyze) then
return;
end if;
Set_Body_To_Inline (Decl, Original_Body);
Mutate_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
Set_Is_Inlined (Spec_Id);
end Build_Body_To_Inline;
-------------------------------------------
-- Call_Can_Be_Inlined_In_GNATprove_Mode --
-------------------------------------------
function Call_Can_Be_Inlined_In_GNATprove_Mode
(N : Node_Id;
Subp : Entity_Id) return Boolean
is
F : Entity_Id;
A : Node_Id;
begin
F := First_Formal (Subp);
A := First_Actual (N);
while Present (F) loop
if Ekind (F) /= E_Out_Parameter
and then not Same_Type (Etype (F), Etype (A))
and then
(Is_By_Reference_Type (Etype (A))
or else Is_Limited_Type (Etype (A)))
then
return False;
end if;
Next_Formal (F);
Next_Actual (A);
end loop;
return True;
end Call_Can_Be_Inlined_In_GNATprove_Mode;
--------------------------------------
-- Can_Be_Inlined_In_GNATprove_Mode --
--------------------------------------
function Can_Be_Inlined_In_GNATprove_Mode
(Spec_Id : Entity_Id;
Body_Id : Entity_Id) return Boolean
is
function Has_Formal_Or_Result_Of_Deep_Type
(Id : Entity_Id) return Boolean;
-- Returns true if the subprogram has at least one formal parameter or
-- a return type of a deep type: either an access type or a composite
-- type containing an access type.
function Has_Formal_With_Discriminant_Dependent_Fields
(Id : Entity_Id) return Boolean;
-- Returns true if the subprogram has at least one formal parameter of
-- an unconstrained record type with per-object constraints on component
-- types.
function Has_Skip_Proof_Annotation (Id : Entity_Id) return Boolean;
-- Returns True if subprogram Id has an annotation Skip_Proof or
-- Skip_Flow_And_Proof.
function Has_Some_Contract (Id : Entity_Id) return Boolean;
-- Return True if subprogram Id has any contract. The presence of
-- Extensions_Visible or Volatile_Function is also considered as a
-- contract here.
function Is_Unit_Subprogram (Id : Entity_Id) return Boolean;
-- Return True if subprogram Id defines a compilation unit
function In_Package_Spec (Id : Entity_Id) return Boolean;
-- Return True if subprogram Id is defined in the package specification,
-- either its visible or private part.
function Maybe_Traversal_Function (Id : Entity_Id) return Boolean;
-- Return True if subprogram Id could be a traversal function, as
-- defined in SPARK RM 3.10. This is only a safe approximation, as the
-- knowledge of the SPARK boundary is needed to determine exactly
-- traversal functions.
---------------------------------------
-- Has_Formal_Or_Result_Of_Deep_Type --
---------------------------------------
function Has_Formal_Or_Result_Of_Deep_Type
(Id : Entity_Id) return Boolean
is
function Is_Deep (Typ : Entity_Id) return Boolean;
-- Return True if Typ is deep: either an access type or a composite
-- type containing an access type.
-------------
-- Is_Deep --
-------------
function Is_Deep (Typ : Entity_Id) return Boolean is
begin
case Type_Kind'(Ekind (Typ)) is
when Access_Kind =>
return True;
when E_Array_Type
| E_Array_Subtype
=>
return Is_Deep (Component_Type (Typ));
when Record_Kind =>
declare
Comp : Entity_Id := First_Component_Or_Discriminant (Typ);
begin
while Present (Comp) loop
if Is_Deep (Etype (Comp)) then
return True;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end;
return False;
when Scalar_Kind
| E_String_Literal_Subtype
| Concurrent_Kind
| Incomplete_Kind
| E_Exception_Type
| E_Subprogram_Type
=>
return False;
when E_Private_Type
| E_Private_Subtype
| E_Limited_Private_Type
| E_Limited_Private_Subtype
=>
-- Conservatively consider that the type might be deep if
-- its completion has not been seen yet.
if No (Underlying_Type (Typ)) then
return True;
-- Do not peek under a private type if its completion has
-- SPARK_Mode Off. In such a case, a deep type is considered
-- by GNATprove to be not deep.
elsif Present (Full_View (Typ))
and then Present (SPARK_Pragma (Full_View (Typ)))
and then Get_SPARK_Mode_From_Annotation
(SPARK_Pragma (Full_View (Typ))) = Off
then
return False;
-- Otherwise peek under the private type.
else
return Is_Deep (Underlying_Type (Typ));
end if;
end case;
end Is_Deep;
-- Local variables
Subp_Id : constant Entity_Id := Ultimate_Alias (Id);
Formal : Entity_Id;
Formal_Typ : Entity_Id;
-- Start of processing for Has_Formal_Or_Result_Of_Deep_Type
begin
-- Inspect all parameters of the subprogram looking for a formal
-- of a deep type.
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
Formal_Typ := Etype (Formal);
if Is_Deep (Formal_Typ) then
return True;
end if;
Next_Formal (Formal);
end loop;
-- Check whether this is a function whose return type is deep
if Ekind (Subp_Id) = E_Function
and then Is_Deep (Etype (Subp_Id))
then
return True;
end if;
return False;
end Has_Formal_Or_Result_Of_Deep_Type;
---------------------------------------------------
-- Has_Formal_With_Discriminant_Dependent_Fields --
---------------------------------------------------
function Has_Formal_With_Discriminant_Dependent_Fields
(Id : Entity_Id) return Boolean
is
function Has_Discriminant_Dependent_Component
(Typ : Entity_Id) return Boolean;
-- Determine whether unconstrained record type Typ has at least one
-- component that depends on a discriminant.
------------------------------------------
-- Has_Discriminant_Dependent_Component --
------------------------------------------
function Has_Discriminant_Dependent_Component
(Typ : Entity_Id) return Boolean
is
Comp : Entity_Id;
begin
-- Inspect all components of the record type looking for one that
-- depends on a discriminant.
Comp := First_Component (Typ);
while Present (Comp) loop
if Has_Discriminant_Dependent_Constraint (Comp) then
return True;
end if;
Next_Component (Comp);
end loop;
return False;
end Has_Discriminant_Dependent_Component;
-- Local variables
Subp_Id : constant Entity_Id := Ultimate_Alias (Id);
Formal : Entity_Id;
Formal_Typ : Entity_Id;
-- Start of processing for
-- Has_Formal_With_Discriminant_Dependent_Fields
begin
-- Inspect all parameters of the subprogram looking for a formal
-- of an unconstrained record type with at least one discriminant
-- dependent component.
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
Formal_Typ := Etype (Formal);
if Is_Record_Type (Formal_Typ)
and then not Is_Constrained (Formal_Typ)
and then Has_Discriminant_Dependent_Component (Formal_Typ)
then
return True;
end if;
Next_Formal (Formal);
end loop;
return False;
end Has_Formal_With_Discriminant_Dependent_Fields;
-------------------------------
-- Has_Skip_Proof_Annotation --
-------------------------------
function Has_Skip_Proof_Annotation (Id : Entity_Id) return Boolean is
Decl : Node_Id := Unit_Declaration_Node (Id);
begin
Next (Decl);
while Present (Decl)
and then Nkind (Decl) = N_Pragma
loop
if Get_Pragma_Id (Decl) = Pragma_Annotate
and then List_Length (Pragma_Argument_Associations (Decl)) = 3
then
declare
Arg1 : constant Node_Id :=
First (Pragma_Argument_Associations (Decl));
Arg2 : constant Node_Id := Next (Arg1);
Arg1_Name : constant String :=
Get_Name_String (Chars (Get_Pragma_Arg (Arg1)));
Arg2_Name : constant String :=
Get_Name_String (Chars (Get_Pragma_Arg (Arg2)));
begin
if Arg1_Name = "gnatprove"
and then Arg2_Name in "skip_proof" | "skip_flow_and_proof"
then
return True;
end if;
end;
end if;
Next (Decl);
end loop;
return False;
end Has_Skip_Proof_Annotation;
-----------------------
-- Has_Some_Contract --
-----------------------
function Has_Some_Contract (Id : Entity_Id) return Boolean is
Items : Node_Id;
begin
-- A call to an expression function may precede the actual body which
-- is inserted at the end of the enclosing declarations. Ensure that
-- the related entity is decorated before inspecting the contract.
if Is_Subprogram_Or_Generic_Subprogram (Id) then
Items := Contract (Id);
-- Note that Classifications is not Empty when Extensions_Visible
-- or Volatile_Function is present, which causes such subprograms
-- to be considered to have a contract here. This is fine as we
-- want to avoid inlining these too.
return Present (Items)
and then (Present (Pre_Post_Conditions (Items)) or else
Present (Contract_Test_Cases (Items)) or else
Present (Classifications (Items)));
end if;
return False;
end Has_Some_Contract;
---------------------
-- In_Package_Spec --
---------------------
function In_Package_Spec (Id : Entity_Id) return Boolean is
P : constant Node_Id := Parent (Subprogram_Spec (Id));
-- Parent of the subprogram's declaration
begin
return Nkind (Enclosing_Declaration (P)) = N_Package_Declaration;
end In_Package_Spec;
------------------------
-- Is_Unit_Subprogram --
------------------------
function Is_Unit_Subprogram (Id : Entity_Id) return Boolean is
Decl : Node_Id := Parent (Parent (Id));
begin
if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
Decl := Parent (Decl);
end if;
return Nkind (Parent (Decl)) = N_Compilation_Unit;
end Is_Unit_Subprogram;
------------------------------
-- Maybe_Traversal_Function --
------------------------------
function Maybe_Traversal_Function (Id : Entity_Id) return Boolean is
begin
return Ekind (Id) = E_Function
-- Only traversal functions return an anonymous access-to-object
-- type in SPARK.
and then Is_Anonymous_Access_Type (Etype (Id));
end Maybe_Traversal_Function;
-- Local declarations
Id : Entity_Id;
-- Procedure or function entity for the subprogram
-- Start of processing for Can_Be_Inlined_In_GNATprove_Mode
begin
pragma Assert (Present (Spec_Id) or else Present (Body_Id));
if Present (Spec_Id) then
Id := Spec_Id;
else
Id := Body_Id;
end if;
-- Only local subprograms without contracts are inlined in GNATprove
-- mode, as these are the subprograms which a user is not interested in
-- analyzing in isolation, but rather in the context of their call. This
-- is a convenient convention, that could be changed for an explicit
-- pragma/aspect one day.
-- In a number of special cases, inlining is not desirable or not
-- possible, see below.
-- Do not inline unit-level subprograms
if Is_Unit_Subprogram (Id) then
return False;
-- Do not inline subprograms declared in package specs, because they are
-- not local, i.e. can be called either from anywhere (if declared in
-- visible part) or from the child units (if declared in private part).
elsif In_Package_Spec (Id) then
return False;
-- Do not inline subprograms declared in other units. This is important
-- in particular for subprograms defined in the private part of a
-- package spec, when analyzing one of its child packages, as otherwise
-- we issue spurious messages about the impossibility to inline such
-- calls.
elsif not In_Extended_Main_Code_Unit (Id) then
return False;
-- Do not inline dispatching operations, as only their static calls
-- can be analyzed in context, and not their dispatching calls.
elsif Is_Dispatching_Operation (Id) then
return False;
-- Do not inline subprograms marked No_Return, possibly used for
-- signaling errors, which GNATprove handles specially.
elsif No_Return (Id) then
return False;
-- Do not inline subprograms that have a contract on the spec or the
-- body. Use the contract(s) instead in GNATprove. This also prevents
-- inlining of subprograms with Extensions_Visible or Volatile_Function.
elsif (Present (Spec_Id) and then Has_Some_Contract (Spec_Id))
or else
(Present (Body_Id) and then Has_Some_Contract (Body_Id))
then
return False;
-- Do not inline expression functions, which are directly inlined at the
-- prover level.
elsif (Present (Spec_Id) and then Is_Expression_Function (Spec_Id))
or else
(Present (Body_Id) and then Is_Expression_Function (Body_Id))
then
return False;
-- Do not inline generic subprogram instances. The visibility rules of
-- generic instances plays badly with inlining.
elsif Is_Generic_Instance (Spec_Id) then
return False;
-- Only inline subprograms whose spec is marked SPARK_Mode On. For
-- the subprogram body, a similar check is performed after the body
-- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
elsif Present (Spec_Id)
and then
(No (SPARK_Pragma (Spec_Id))
or else
Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) /= On)
then
return False;
-- Do not inline subprograms and entries defined inside protected types,
-- which typically are not helper subprograms, which also avoids getting
-- spurious messages on calls that cannot be inlined.
elsif Within_Protected_Type (Id) then
return False;
-- Do not inline predicate functions (treated specially by GNATprove)
elsif Is_Predicate_Function (Id) then
return False;
-- Do not inline subprograms with a parameter of an unconstrained
-- record type if it has discrimiant dependent fields. Indeed, with
-- such parameters, the frontend cannot always ensure type compliance
-- in record component accesses (in particular with records containing
-- packed arrays).
elsif Has_Formal_With_Discriminant_Dependent_Fields (Id) then
return False;
-- Do not inline subprograms with a formal parameter or return type of
-- a deep type, as in that case inlining might generate code that
-- violates borrow-checking rules of SPARK 3.10 even if the original
-- code did not.
elsif Has_Formal_Or_Result_Of_Deep_Type (Id) then
return False;
-- Do not inline subprograms which may be traversal functions. Such
-- inlining introduces temporary variables of named access type for
-- which assignments are move instead of borrow/observe, possibly
-- leading to spurious errors when checking SPARK rules related to
-- pointer usage.
elsif Maybe_Traversal_Function (Id) then
return False;
-- Do not inline subprograms with the Skip_Proof or Skip_Flow_And_Proof
-- annotation, which should be handled separately.
elsif Has_Skip_Proof_Annotation (Id) then
return False;
-- Otherwise, this is a subprogram declared inside the private part of a
-- package, or inside a package body, or locally in a subprogram, and it
-- does not have any contract. Inline it.
else
return True;
end if;
end Can_Be_Inlined_In_GNATprove_Mode;
-------------------
-- Cannot_Inline --
-------------------
procedure Cannot_Inline
(Msg : String;
N : Node_Id;
Subp : Entity_Id;
Is_Serious : Boolean := False;
Suppress_Info : Boolean := False)
is
begin
-- In GNATprove mode, inlining is the technical means by which the
-- higher-level goal of contextual analysis is reached, so issue
-- messages about failure to apply contextual analysis to a
-- subprogram, rather than failure to inline it.
if GNATprove_Mode
and then Msg (Msg'First .. Msg'First + 12) = "cannot inline"
then
declare
Len1 : constant Positive :=
String'("cannot inline")'Length;
Len2 : constant Positive :=
String'("info: no contextual analysis of")'Length;
New_Msg : String (1 .. Msg'Length + Len2 - Len1);
begin
New_Msg (1 .. Len2) := "info: no contextual analysis of";
New_Msg (Len2 + 1 .. Msg'Length + Len2 - Len1) :=
Msg (Msg'First + Len1 .. Msg'Last);
Cannot_Inline (New_Msg, N, Subp, Is_Serious, Suppress_Info);
return;
end;
end if;
pragma Assert (Msg (Msg'Last) = '?');
-- Legacy front-end inlining model
if not Back_End_Inlining then
-- Do not emit warning if this is a predefined unit which is not
-- the main unit. With validity checks enabled, some predefined
-- subprograms may contain nested subprograms and become ineligible
-- for inlining.
if Is_Predefined_Unit (Get_Source_Unit (Subp))
and then not In_Extended_Main_Source_Unit (Subp)
then
null;
-- In GNATprove mode, issue an info message when -gnatd_f is set and
-- Suppress_Info is False, and indicate that the subprogram is not
-- always inlined by setting flag Is_Inlined_Always to False.
elsif GNATprove_Mode then
Set_Is_Inlined_Always (Subp, False);
if Debug_Flag_Underscore_F and not Suppress_Info then
Error_Msg_NE (Msg, N, Subp);
end if;
elsif Has_Pragma_Inline_Always (Subp) then
-- Remove last character (question mark) to make this into an
-- error, because the Inline_Always pragma cannot be obeyed.
Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
elsif Ineffective_Inline_Warnings then
Error_Msg_NE (Msg & "p?", N, Subp);
end if;
-- New semantics relying on back-end inlining
elsif Is_Serious then
-- Remove last character (question mark) to make this into an error.
Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
else
-- Do not emit warning if this is a predefined unit which is not
-- the main unit. This behavior is currently provided for backward
-- compatibility but it will be removed when we enforce the
-- strictness of the new rules.
if Is_Predefined_Unit (Get_Source_Unit (Subp))
and then not In_Extended_Main_Source_Unit (Subp)
then
null;
elsif Has_Pragma_Inline_Always (Subp) then
-- Emit a warning if this is a call to a runtime subprogram
-- which is located inside a generic. Previously this call
-- was silently skipped.
if Is_Generic_Instance (Subp) then
declare
Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
begin
if Is_Predefined_Unit (Get_Source_Unit (Gen_P)) then
Set_Is_Inlined (Subp, False);
Error_Msg_NE (Msg & "p?", N, Subp);
return;
end if;
end;
end if;
-- Remove last character (question mark) to make this into an
-- error, because the Inline_Always pragma cannot be obeyed.
Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
else
Set_Is_Inlined (Subp, False);
if Ineffective_Inline_Warnings then
Error_Msg_NE (Msg & "p?", N, Subp);
end if;
end if;
end if;
end Cannot_Inline;
--------------------------------------------
-- Check_And_Split_Unconstrained_Function --
--------------------------------------------
procedure Check_And_Split_Unconstrained_Function
(N : Node_Id;
Spec_Id : Entity_Id;
Body_Id : Entity_Id)
is
procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
-- Use generic machinery to build an unexpanded body for the subprogram.
-- This body is subsequently used for inline expansions at call sites.
procedure Build_Return_Object_Formal
(Loc : Source_Ptr;
Obj_Decl : Node_Id;
Formals : List_Id);
-- Create a formal parameter for return object declaration Obj_Decl of
-- an extended return statement and add it to list Formals.
function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
-- Return true if we generate code for the function body N, the function
-- body N has no local declarations and its unique statement is a single
-- extended return statement with a handled statements sequence.
procedure Copy_Formals
(Loc : Source_Ptr;
Subp_Id : Entity_Id;
Formals : List_Id);
-- Create new formal parameters from the formal parameters of subprogram
-- Subp_Id and add them to list Formals.
function Copy_Return_Object (Obj_Decl : Node_Id) return Node_Id;
-- Create a copy of return object declaration Obj_Decl of an extended
-- return statement.
procedure Split_Unconstrained_Function
(N : Node_Id;
Spec_Id : Entity_Id);
-- N is an inlined function body that returns an unconstrained type and
-- has a single extended return statement. Split N in two subprograms:
-- a procedure P' and a function F'. The formals of P' duplicate the
-- formals of N plus an extra formal which is used to return a value;
-- its body is composed by the declarations and list of statements
-- of the extended return statement of N.
--------------------------
-- Build_Body_To_Inline --
--------------------------
procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
procedure Generate_Subprogram_Body
(N : Node_Id;
Body_To_Inline : out Node_Id);
-- Generate a parameterless duplicate of subprogram body N. Note that
-- occurrences of pragmas referencing the formals are removed since
-- they have no meaning when the body is inlined and the formals are
-- rewritten (the analysis of the non-inlined body will handle these
-- pragmas). A new internal name is associated with Body_To_Inline.
------------------------------
-- Generate_Subprogram_Body --
------------------------------
procedure Generate_Subprogram_Body
(N : Node_Id;
Body_To_Inline : out Node_Id)
is
begin
-- Within an instance, the body to inline must be treated as a
-- nested generic so that proper global references are preserved.
-- Note that we do not do this at the library level, because it
-- is not needed, and furthermore this causes trouble if front
-- end inlining is activated (-gnatN).
if In_Instance
and then Scope (Current_Scope) /= Standard_Standard
then
Body_To_Inline :=
Copy_Generic_Node (N, Empty, Instantiating => True);
else
Body_To_Inline := New_Copy_Tree (N);
end if;
-- Remove aspects/pragmas that have no meaning in an inlined body
Remove_Aspects_And_Pragmas (Body_To_Inline);
-- We need to capture references to the formals in order
-- to substitute the actuals at the point of inlining, i.e.
-- instantiation. To treat the formals as globals to the body to
-- inline, we nest it within a dummy parameterless subprogram,
-- declared within the real one.
Set_Parameter_Specifications
(Specification (Body_To_Inline), No_List);
-- A new internal name is associated with Body_To_Inline to avoid
-- conflicts when the non-inlined body N is analyzed.
Set_Defining_Unit_Name (Specification (Body_To_Inline),
Make_Temporary (Sloc (N), 'P'));
Set_Corresponding_Spec (Body_To_Inline, Empty);
end Generate_Subprogram_Body;
-- Local variables
Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
Original_Body : Node_Id;
Body_To_Analyze : Node_Id;
-- Start of processing for Build_Body_To_Inline
begin
pragma Assert (Current_Scope = Spec_Id);
-- Within an instance, the body to inline must be treated as a nested
-- generic, so that the proper global references are preserved. We
-- do not do this at the library level, because it is not needed, and
-- furthermore this causes trouble if front-end inlining is activated
-- (-gnatN).
if In_Instance
and then Scope (Current_Scope) /= Standard_Standard
then
Save_Env (Scope (Current_Scope), Scope (Current_Scope));
end if;
-- Capture references to formals in order to substitute the actuals
-- at the point of inlining or instantiation. To treat the formals
-- as globals to the body to inline, nest the body within a dummy
-- parameterless subprogram, declared within the real one.
Generate_Subprogram_Body (N, Original_Body);
Body_To_Analyze :=
Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
-- Set return type of function, which is also global and does not
-- need to be resolved.
if Ekind (Spec_Id) = E_Function then
Set_Result_Definition (Specification (Body_To_Analyze),
New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
end if;
if No (Declarations (N)) then
Set_Declarations (N, New_List (Body_To_Analyze));
else
Append_To (Declarations (N), Body_To_Analyze);
end if;
Preanalyze (Body_To_Analyze);
Push_Scope (Defining_Entity (Body_To_Analyze));
Save_Global_References (Original_Body);
End_Scope;
Remove (Body_To_Analyze);
-- Restore environment if previously saved
if In_Instance
and then Scope (Current_Scope) /= Standard_Standard
then
Restore_Env;
end if;
pragma Assert (No (Body_To_Inline (Decl)));
Set_Body_To_Inline (Decl, Original_Body);
Mutate_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
end Build_Body_To_Inline;
--------------------------------
-- Build_Return_Object_Formal --
--------------------------------
procedure Build_Return_Object_Formal
(Loc : Source_Ptr;
Obj_Decl : Node_Id;
Formals : List_Id)
is
Obj_Def : constant Node_Id := Object_Definition (Obj_Decl);
Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
Typ_Def : Node_Id;
begin
-- Build the type definition of the formal parameter. The use of
-- New_Copy_Tree ensures that global references preserved in the
-- case of generics.
if Is_Entity_Name (Obj_Def) then
Typ_Def := New_Copy_Tree (Obj_Def);
else
Typ_Def := New_Copy_Tree (Subtype_Mark (Obj_Def));
end if;
-- Generate:
--
-- Obj_Id : [out] Typ_Def
-- Mode OUT should not be used when the return object is declared as
-- a constant. Check the definition of the object declaration because
-- the object has not been analyzed yet.
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Chars (Obj_Id)),
In_Present => False,
Out_Present => not Constant_Present (Obj_Decl),
Null_Exclusion_Present => False,
Parameter_Type => Typ_Def));
end Build_Return_Object_Formal;
--------------------------------------
-- Can_Split_Unconstrained_Function --
--------------------------------------
function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean is
Stmt : constant Node_Id :=
First (Statements (Handled_Statement_Sequence (N)));
Decl : Node_Id;
begin
-- No user defined declarations allowed in the function except inside
-- the unique return statement; implicit labels are the only allowed
-- declarations.
Decl := First (Declarations (N));
while Present (Decl) loop
if Nkind (Decl) /= N_Implicit_Label_Declaration then
return False;
end if;
Next (Decl);
end loop;
-- We only split the inlined function when we are generating the code
-- of its body; otherwise we leave duplicated split subprograms in
-- the tree which (if referenced) generate wrong references at link
-- time.
return In_Extended_Main_Code_Unit (N)
and then Present (Stmt)
and then Nkind (Stmt) = N_Extended_Return_Statement
and then No (Next (Stmt))
and then Present (Handled_Statement_Sequence (Stmt));
end Can_Split_Unconstrained_Function;
------------------
-- Copy_Formals --
------------------
procedure Copy_Formals
(Loc : Source_Ptr;
Subp_Id : Entity_Id;
Formals : List_Id)
is
Formal : Entity_Id;
Spec : Node_Id;
begin
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
Spec := Parent (Formal);
-- Create an exact copy of the formal parameter. The use of
-- New_Copy_Tree ensures that global references are preserved
-- in case of generics.
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Sloc (Formal), Chars (Formal)),
In_Present => In_Present (Spec),
Out_Present => Out_Present (Spec),
Null_Exclusion_Present => Null_Exclusion_Present (Spec),
Parameter_Type =>
New_Copy_Tree (Parameter_Type (Spec)),
Expression => New_Copy_Tree (Expression (Spec))));
Next_Formal (Formal);
end loop;
end Copy_Formals;
------------------------
-- Copy_Return_Object --
------------------------
function Copy_Return_Object (Obj_Decl : Node_Id) return Node_Id is
Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
begin
-- The use of New_Copy_Tree ensures that global references are
-- preserved in case of generics.
return
Make_Object_Declaration (Sloc (Obj_Decl),
Defining_Identifier =>
Make_Defining_Identifier (Sloc (Obj_Id), Chars (Obj_Id)),
Aliased_Present => Aliased_Present (Obj_Decl),
Constant_Present => Constant_Present (Obj_Decl),
Null_Exclusion_Present => Null_Exclusion_Present (Obj_Decl),
Object_Definition =>
New_Copy_Tree (Object_Definition (Obj_Decl)),
Expression => New_Copy_Tree (Expression (Obj_Decl)));
end Copy_Return_Object;
----------------------------------
-- Split_Unconstrained_Function --
----------------------------------
procedure Split_Unconstrained_Function
(N : Node_Id;
Spec_Id : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Ret_Stmt : constant Node_Id :=
First (Statements (Handled_Statement_Sequence (N)));
Ret_Obj : constant Node_Id :=
First (Return_Object_Declarations (Ret_Stmt));
procedure Build_Procedure
(Proc_Id : out Entity_Id;
Decl_List : out List_Id);
-- Build a procedure containing the statements found in the extended
-- return statement of the unconstrained function body N.
---------------------
-- Build_Procedure --
---------------------
procedure Build_Procedure
(Proc_Id : out Entity_Id;
Decl_List : out List_Id)
is
Formals : constant List_Id := New_List;
Subp_Name : constant Name_Id := New_Internal_Name ('F');
Body_Decls : List_Id := No_List;
Decl : Node_Id;
Proc_Body : Node_Id;
Proc_Spec : Node_Id;
begin
-- Create formal parameters for the return object and all formals
-- of the unconstrained function in order to pass their values to
-- the procedure.
Build_Return_Object_Formal
(Loc => Loc,
Obj_Decl => Ret_Obj,
Formals => Formals);
Copy_Formals
(Loc => Loc,
Subp_Id => Spec_Id,
Formals => Formals);
Proc_Id := Make_Defining_Identifier (Loc, Chars => Subp_Name);
Proc_Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => Formals);
Decl_List := New_List;
Append_To (Decl_List,
Make_Subprogram_Declaration (Loc, Proc_Spec));
-- Can_Convert_Unconstrained_Function checked that the function
-- has no local declarations except implicit label declarations.
-- Copy these declarations to the built procedure.
if Present (Declarations (N)) then
Body_Decls := New_List;
Decl := First (Declarations (N));
while Present (Decl) loop
pragma Assert (Nkind (Decl) = N_Implicit_Label_Declaration);
Append_To (Body_Decls,
Make_Implicit_Label_Declaration (Loc,
Make_Defining_Identifier (Loc,
Chars => Chars (Defining_Identifier (Decl))),
Label_Construct => Empty));
Next (Decl);
end loop;
end if;
pragma Assert (Present (Handled_Statement_Sequence (Ret_Stmt)));
Proc_Body :=
Make_Subprogram_Body (Loc,
Specification => Copy_Subprogram_Spec (Proc_Spec),
Declarations => Body_Decls,
Handled_Statement_Sequence =>
New_Copy_Tree (Handled_Statement_Sequence (Ret_Stmt)));
Set_Defining_Unit_Name (Specification (Proc_Body),
Make_Defining_Identifier (Loc, Subp_Name));
Append_To (Decl_List, Proc_Body);
end Build_Procedure;
-- Local variables
New_Obj : constant Node_Id := Copy_Return_Object (Ret_Obj);
Blk_Stmt : Node_Id;
Proc_Call : Node_Id;
Proc_Id : Entity_Id;
-- Start of processing for Split_Unconstrained_Function
begin
-- Build the associated procedure, analyze it and insert it before
-- the function body N.
declare
Scope : constant Entity_Id := Current_Scope;
Decl_List : List_Id;
begin
Pop_Scope;
Build_Procedure (Proc_Id, Decl_List);
Insert_Actions (N, Decl_List);
Set_Is_Inlined (Proc_Id);
Push_Scope (Scope);
end;
-- Build the call to the generated procedure
declare
Actual_List : constant List_Id := New_List;
Formal : Entity_Id;
begin
Append_To (Actual_List,
New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
Formal := First_Formal (Spec_Id);
while Present (Formal) loop
Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
-- Avoid spurious warning on unreferenced formals
Set_Referenced (Formal);
Next_Formal (Formal);
end loop;
Proc_Call :=
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Id, Loc),
Parameter_Associations => Actual_List);
end;
-- Generate:
-- declare
-- New_Obj : ...
-- begin
-- Proc (New_Obj, ...);
-- return New_Obj;
-- end;
Blk_Stmt :=
Make_Block_Statement (Loc,
Declarations => New_List (New_Obj),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Proc_Call,
Make_Simple_Return_Statement (Loc,
Expression =>
New_Occurrence_Of
(Defining_Identifier (New_Obj), Loc)))));
Rewrite (Ret_Stmt, Blk_Stmt);
end Split_Unconstrained_Function;
-- Local variables
Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
-- Start of processing for Check_And_Split_Unconstrained_Function
begin
pragma Assert (Back_End_Inlining
and then Ekind (Spec_Id) = E_Function
and then Returns_Unconstrained_Type (Spec_Id)
and then Comes_From_Source (Body_Id)
and then (Has_Pragma_Inline_Always (Spec_Id)
or else Optimization_Level > 0));
-- This routine must not be used in GNATprove mode since GNATprove
-- relies on frontend inlining
pragma Assert (not GNATprove_Mode);
-- No need to split the function if we cannot generate the code
if Serious_Errors_Detected /= 0 then
return;
end if;
-- No action needed in stubs since the attribute Body_To_Inline
-- is not available
if Nkind (Decl) = N_Subprogram_Body_Stub then
return;
-- Cannot build the body to inline if the attribute is already set.
-- This attribute may have been set if this is a subprogram renaming
-- declarations (see Freeze.Build_Renamed_Body).
elsif Present (Body_To_Inline (Decl)) then
return;
-- Do not generate a body to inline for protected functions, because the
-- transformation generates a call to a protected procedure, causing
-- spurious errors. We don't inline protected operations anyway, so
-- this is no loss. We might as well ignore intrinsics and foreign
-- conventions as well -- just allow Ada conventions.
elsif not (Convention (Spec_Id) = Convention_Ada
or else Convention (Spec_Id) = Convention_Ada_Pass_By_Copy
or else Convention (Spec_Id) = Convention_Ada_Pass_By_Reference)
then
return;
-- Check excluded declarations
elsif Has_Excluded_Declaration (Spec_Id, Declarations (N)) then
return;
-- Check excluded statements. There is no need to protect us against
-- exception handlers since they are supported by the GCC backend.
elsif Present (Handled_Statement_Sequence (N))
and then Has_Excluded_Statement
(Spec_Id, Statements (Handled_Statement_Sequence (N)))
then
return;
end if;
-- Build the body to inline only if really needed
if Can_Split_Unconstrained_Function (N) then
Split_Unconstrained_Function (N, Spec_Id);
Build_Body_To_Inline (N, Spec_Id);
Set_Is_Inlined (Spec_Id);
end if;
end Check_And_Split_Unconstrained_Function;
---------------------------------------------
-- Check_Object_Renaming_In_GNATprove_Mode --
---------------------------------------------
procedure Check_Object_Renaming_In_GNATprove_Mode (Spec_Id : Entity_Id) is
Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
Body_Decl : constant Node_Id :=
Unit_Declaration_Node (Corresponding_Body (Decl));
function Check_Object_Renaming (N : Node_Id) return Traverse_Result;
-- Returns Abandon on node N if this is a reference to an object
-- renaming, which will be expanded into the renamed object in
-- GNATprove mode.
---------------------------
-- Check_Object_Renaming --
---------------------------
function Check_Object_Renaming (N : Node_Id) return Traverse_Result is
begin
case Nkind (Original_Node (N)) is
when N_Expanded_Name
| N_Identifier
=>
declare
Obj_Id : constant Entity_Id := Entity (Original_Node (N));
begin
-- Recognize the case when SPARK expansion rewrites a
-- reference to an object renaming.
if Present (Obj_Id)
and then Is_Object (Obj_Id)
and then Present (Renamed_Object (Obj_Id))
and then Nkind (Renamed_Object (Obj_Id)) not in N_Entity
-- Copy_Generic_Node called for inlining expects the
-- references to global entities to have the same kind
-- in the "generic" code and its "instantiation".
and then Nkind (Original_Node (N)) /=
Nkind (Renamed_Object (Obj_Id))
then
return Abandon;
else
return OK;
end if;
end;
when others =>
return OK;
end case;
end Check_Object_Renaming;
function Check_All_Object_Renamings is new
Traverse_Func (Check_Object_Renaming);
-- Start of processing for Check_Object_Renaming_In_GNATprove_Mode
begin
-- Subprograms with object renamings replaced by the special SPARK
-- expansion cannot be inlined.
if Check_All_Object_Renamings (Body_Decl) /= OK then
Cannot_Inline ("cannot inline & (object renaming)?",
Body_Decl, Spec_Id);
Set_Body_To_Inline (Decl, Empty);
end if;
end Check_Object_Renaming_In_GNATprove_Mode;
-------------------------------------
-- Check_Package_Body_For_Inlining --
-------------------------------------
procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
Bname : Unit_Name_Type;
E : Entity_Id;
OK : Boolean;
begin
-- Legacy implementation (relying on frontend inlining)
if not Back_End_Inlining
and then Is_Compilation_Unit (P)
and then not Is_Generic_Instance (P)
then
Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
E := First_Entity (P);
while Present (E) loop
if Has_Pragma_Inline_Always (E)
or else (Has_Pragma_Inline (E) and Front_End_Inlining)
then
if not Is_Loaded (Bname) then
Load_Needed_Body (N, OK);
if OK then
-- Check we are not trying to inline a parent whose body
-- depends on a child, when we are compiling the body of
-- the child. Otherwise we have a potential elaboration
-- circularity with inlined subprograms and with
-- Taft-Amendment types.
declare
Comp : Node_Id; -- Body just compiled
Child_Spec : Entity_Id; -- Spec of main unit
Ent : Entity_Id; -- For iteration
With_Clause : Node_Id; -- Context of body.
begin
if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
and then Present (Body_Entity (P))
then
Child_Spec :=
Defining_Entity
((Unit (Library_Unit (Cunit (Main_Unit)))));
Comp :=
Parent (Unit_Declaration_Node (Body_Entity (P)));
-- Check whether the context of the body just
-- compiled includes a child of itself, and that
-- child is the spec of the main compilation.
With_Clause := First (Context_Items (Comp));
while Present (With_Clause) loop
if Nkind (With_Clause) = N_With_Clause
and then
Scope (Entity (Name (With_Clause))) = P
and then
Entity (Name (With_Clause)) = Child_Spec
then
Error_Msg_Node_2 := Child_Spec;
Error_Msg_NE
("body of & depends on child unit&??",
With_Clause, P);
Error_Msg_N
("\subprograms in body cannot be inlined??",
With_Clause);
-- Disable further inlining from this unit,
-- and keep Taft-amendment types incomplete.
Ent := First_Entity (P);
while Present (Ent) loop
if Is_Type (Ent)
and then Has_Completion_In_Body (Ent)
then
Set_Full_View (Ent, Empty);
elsif Is_Subprogram (Ent) then
Set_Is_Inlined (Ent, False);
end if;
Next_Entity (Ent);
end loop;
return;
end if;
Next (With_Clause);
end loop;
end if;
end;
elsif Ineffective_Inline_Warnings then
Error_Msg_Unit_1 := Bname;
Error_Msg_N
("unable to inline subprograms defined in $?p?", P);
Error_Msg_N ("\body not found?p?", P);
return;
end if;
end if;
return;
end if;
Next_Entity (E);
end loop;
end if;
end Check_Package_Body_For_Inlining;
--------------------
-- Cleanup_Scopes --
--------------------
procedure Cleanup_Scopes is
Decl : Node_Id;
Elmt : Elmt_Id;
Fin : Entity_Id;
Kind : Entity_Kind;
Scop : Entity_Id;
begin
Elmt := First_Elmt (To_Clean);
while Present (Elmt) loop
Scop := Node (Elmt);
Kind := Ekind (Scop);
if Kind = E_Block then
Decl := Parent (Block_Node (Scop));
else
Decl := Unit_Declaration_Node (Scop);
if Nkind (Decl) in N_Subprogram_Declaration
| N_Task_Type_Declaration
| N_Subprogram_Body_Stub
then
Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
end if;
end if;
-- Finalizers are built only for package specs and bodies that are
-- compilation units, so check that we do not have anything else.
-- Moreover, they must be built at most once for each entity during
-- the compilation of the main unit. However, if other units are
-- later compiled for inlining purposes, they may also contain body
-- instances and, therefore, appear again here, so we need to make
-- sure that we do not build two finalizers for them (note that the
-- contents of the finalizer for these units is irrelevant since it
-- is not output in the generated code).
if Kind in E_Package | E_Package_Body then
declare
Unit_Entity : constant Entity_Id :=
(if Kind = E_Package then Scop else Spec_Entity (Scop));
begin
pragma Assert (Is_Compilation_Unit (Unit_Entity)
and then (No (Finalizer (Scop))
or else Unit_Entity /= Main_Unit_Entity));
if No (Finalizer (Scop)) then
Build_Finalizer
(N => Decl,
Clean_Stmts => No_List,
Mark_Id => Empty,
Top_Decls => No_List,
Defer_Abort => False,
Fin_Id => Fin);
if Present (Fin) then
Set_Finalizer (Scop, Fin);
end if;
end if;
end;
else
Push_Scope (Scop);
Expand_Cleanup_Actions (Decl);
Pop_Scope;
end if;
Next_Elmt (Elmt);
end loop;
end Cleanup_Scopes;
-----------------------------------------------
-- Establish_Actual_Mapping_For_Inlined_Call --
-----------------------------------------------
procedure Establish_Actual_Mapping_For_Inlined_Call
(N : Node_Id;
Subp : Entity_Id;
Decls : List_Id;
Body_Or_Expr_To_Check : Node_Id)
is
function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
-- Determine whether a formal parameter is used only once in
-- Body_Or_Expr_To_Check.
-------------------------
-- Formal_Is_Used_Once --
-------------------------
function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
Use_Counter : Nat := 0;
function Count_Uses (N : Node_Id) return Traverse_Result;
-- Traverse the tree and count the uses of the formal parameter.
-- In this case, for optimization purposes, we do not need to
-- continue the traversal once more than one use is encountered.
----------------
-- Count_Uses --
----------------
function Count_Uses (N : Node_Id) return Traverse_Result is
begin
-- The original node is an identifier
if Nkind (N) = N_Identifier
and then Present (Entity (N))
-- Original node's entity points to the one in the copied body
and then Nkind (Entity (N)) = N_Identifier
and then Present (Entity (Entity (N)))
-- The entity of the copied node is the formal parameter
and then Entity (Entity (N)) = Formal
then
Use_Counter := Use_Counter + 1;
-- If this is a second use then abandon the traversal
if Use_Counter > 1 then
return Abandon;
end if;
end if;
return OK;
end Count_Uses;
procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
-- Start of processing for Formal_Is_Used_Once
begin
Count_Formal_Uses (Body_Or_Expr_To_Check);
return Use_Counter = 1;
end Formal_Is_Used_Once;
-- Local Data --
F : Entity_Id;
A : Node_Id;
Decl : Node_Id;
Loc : constant Source_Ptr := Sloc (N);
New_A : Node_Id;
Temp : Entity_Id;
Temp_Typ : Entity_Id;
-- Start of processing for Establish_Actual_Mapping_For_Inlined_Call
begin
F := First_Formal (Subp);
A := First_Actual (N);
while Present (F) loop
-- Reset Last_Assignment for any parameters of mode out or in out, to
-- prevent spurious warnings about overwriting for assignments to the
-- formal in the inlined code.
if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
-- In GNATprove mode a protected component acting as an actual
-- subprogram parameter will appear as inlined-for-proof. However,
-- its E_Component entity is not an assignable object, so the
-- assertion in Set_Last_Assignment will fail. We just omit the
-- call to Set_Last_Assignment, because GNATprove flags useless
-- assignments with its own flow analysis.
--
-- In GNAT mode such a problem does not occur, because protected
-- components are inlined via object renamings whose entity kind
-- E_Variable is assignable.
if Is_Assignable (Entity (A)) then
Set_Last_Assignment (Entity (A), Empty);
else
pragma Assert
(GNATprove_Mode and then Is_Protected_Component (Entity (A)));
end if;
end if;
-- If the argument may be a controlling argument in a call within
-- the inlined body, we must preserve its class-wide nature to ensure
-- that dynamic dispatching will take place subsequently. If the
-- formal has a constraint, then it must be preserved to retain the
-- semantics of the body.
if Is_Class_Wide_Type (Etype (F))
or else (Is_Access_Type (Etype (F))
and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
then
Temp_Typ := Etype (F);
elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
and then Etype (F) /= Base_Type (Etype (F))
and then Is_Constrained (Etype (F))
then
Temp_Typ := Etype (F);
else
Temp_Typ := Etype (A);
end if;
-- If the actual is a simple name or a literal, no need to create a
-- temporary, object can be used directly. Skip this optimization in
-- GNATprove mode, to make sure any check on a type conversion will
-- be issued.
if (Is_Entity_Name (A)
and then
(not Is_Scalar_Type (Etype (A))
or else Ekind (Entity (A)) = E_Enumeration_Literal)
and then not GNATprove_Mode)
-- When the actual is an identifier and the corresponding formal is
-- used only once in the original body, the formal can be substituted
-- directly with the actual parameter. Skip this optimization in
-- GNATprove mode, to make sure any check on a type conversion
-- will be issued.
or else
(Nkind (A) = N_Identifier
and then Formal_Is_Used_Once (F)
and then not GNATprove_Mode)
-- If the actual is a literal and the formal has its address taken,
-- we cannot pass the literal itself as an argument, so its value
-- must be captured in a temporary.
or else
(Nkind (A) in
N_Real_Literal | N_Integer_Literal | N_Character_Literal
and then not Address_Taken (F))
then
if Etype (F) /= Etype (A) then
Set_Renamed_Object
(F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
else
Set_Renamed_Object (F, A);
end if;
else
Temp := Make_Temporary (Loc, 'C');
-- If the actual for an in/in-out parameter is a view conversion,
-- make it into an unchecked conversion, given that an untagged
-- type conversion is not a proper object for a renaming.
-- In-out conversions that involve real conversions have already
-- been transformed in Expand_Actuals.
if Nkind (A) = N_Type_Conversion
and then Ekind (F) /= E_In_Parameter
then
New_A := Unchecked_Convert_To (Etype (F), Expression (A));
-- In GNATprove mode, keep the most precise type of the actual for
-- the temporary variable, when the formal type is unconstrained.
-- Otherwise, the AST may contain unexpected assignment statements
-- to a temporary variable of unconstrained type renaming a local
-- variable of constrained type, which is not expected by
-- GNATprove.
elsif Etype (F) /= Etype (A)
and then (not GNATprove_Mode or else Is_Constrained (Etype (F)))
then
New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
Temp_Typ := Etype (F);
else
New_A := Relocate_Node (A);
end if;
Set_Sloc (New_A, Sloc (N));
-- If the actual has a by-reference type, it cannot be copied,
-- so its value is captured in a renaming declaration. Otherwise
-- declare a local constant initialized with the actual.
-- We also use a renaming declaration for expressions of an array
-- type that is not bit-packed, both for efficiency reasons and to
-- respect the semantics of the call: in most cases the original
-- call will pass the parameter by reference, and thus the inlined
-- code will have the same semantics.
-- Finally, we need a renaming declaration in the case of limited
-- types for which initialization cannot be by copy either.
if Ekind (F) = E_In_Parameter
and then not Is_By_Reference_Type (Etype (A))
and then not Is_Limited_Type (Etype (A))
and then
(not Is_Array_Type (Etype (A))
or else not Is_Object_Reference (A)
or else Is_Bit_Packed_Array (Etype (A)))
then
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
Expression => New_A);
else
-- In GNATprove mode, make an explicit copy of input
-- parameters when formal and actual types differ, to make
-- sure any check on the type conversion will be issued.
-- The legality of the copy is ensured by calling first
-- Call_Can_Be_Inlined_In_GNATprove_Mode.
if GNATprove_Mode
and then Ekind (F) /= E_Out_Parameter
and then not Same_Type (Etype (F), Etype (A))
then
pragma Assert (not Is_By_Reference_Type (Etype (A)));
pragma Assert (not Is_Limited_Type (Etype (A)));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'C'),
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
Expression => New_Copy_Tree (New_A)));
end if;
Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Temp,
Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
Name => New_A);
end if;
Append (Decl, Decls);
Set_Renamed_Object (F, Temp);
end if;
Next_Formal (F);
Next_Actual (A);
end loop;
end Establish_Actual_Mapping_For_Inlined_Call;
-------------------------
-- Expand_Inlined_Call --
-------------------------
procedure Expand_Inlined_Call
(N : Node_Id;
Subp : Entity_Id;
Orig_Subp : Entity_Id)
is
Decls : constant List_Id := New_List;
Is_Predef : constant Boolean :=
Is_Predefined_Unit (Get_Source_Unit (Subp));
Loc : constant Source_Ptr := Sloc (N);
Orig_Bod : constant Node_Id :=
Body_To_Inline (Unit_Declaration_Node (Subp));
Uses_Back_End : constant Boolean :=
Back_End_Inlining and then Optimization_Level > 0;
-- The back-end expansion is used if the target supports back-end
-- inlining and some level of optimixation is required; otherwise
-- the inlining takes place fully as a tree expansion.
Blk : Node_Id;
Decl : Node_Id;
Exit_Lab : Entity_Id := Empty;
Lab_Decl : Node_Id := Empty;
Lab_Id : Node_Id;
Num_Ret : Nat := 0;
Ret_Type : Entity_Id;
Temp : Entity_Id;
Is_Unc : Boolean;
Is_Unc_Decl : Boolean;
-- If the type returned by the function is unconstrained and the call
-- can be inlined, special processing is required.
Return_Object : Entity_Id := Empty;
-- Entity in declaration in an extended_return_statement
Targ : Node_Id := Empty;
-- The target of the call. If context is an assignment statement then
-- this is the left-hand side of the assignment, else it is a temporary
-- to which the return value is assigned prior to rewriting the call.
Targ1 : Node_Id := Empty;
-- A separate target used when the return type is unconstrained
procedure Declare_Postconditions_Result;
-- When generating C code, declare _Result, which may be used in the
-- inlined _Postconditions procedure to verify the return value.
procedure Make_Exit_Label;
-- Build declaration for exit label to be used in Return statements,
-- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
-- declaration). Does nothing if Exit_Lab already set.
procedure Make_Loop_Labels_Unique (HSS : Node_Id);
-- When compiling for CCG and performing front-end inlining, replace
-- loop names and references to them so that they do not conflict with
-- homographs in the current subprogram.
function Process_Formals (N : Node_Id) return Traverse_Result;
-- Replace occurrence of a formal with the corresponding actual, or the
-- thunk generated for it. Replace a return statement with an assignment
-- to the target of the call, with appropriate conversions if needed.
function Process_Formals_In_Aspects (N : Node_Id) return Traverse_Result;
-- Because aspects are linked indirectly to the rest of the tree,
-- replacement of formals appearing in aspect specifications must
-- be performed in a separate pass, using an instantiation of the
-- previous subprogram over aspect specifications reachable from N.
function Process_Sloc (Nod : Node_Id) return Traverse_Result;
-- If the call being expanded is that of an internal subprogram, set the
-- sloc of the generated block to that of the call itself, so that the
-- expansion is skipped by the "next" command in gdb. Same processing
-- for a subprogram in a predefined file, e.g. Ada.Tags. If
-- Debug_Generated_Code is true, suppress this change to simplify our
-- own development. Same in GNATprove mode, to ensure that warnings and
-- diagnostics point to the proper location.
procedure Reset_Dispatching_Calls (N : Node_Id);
-- In subtree N search for occurrences of dispatching calls that use the
-- Ada 2005 Object.Operation notation and the object is a formal of the
-- inlined subprogram. Reset the entity associated with Operation in all
-- the found occurrences.
procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
-- If the function body is a single expression, replace call with
-- expression, else insert block appropriately.
procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
-- If procedure body has no local variables, inline body without
-- creating block, otherwise rewrite call with block.
-----------------------------------
-- Declare_Postconditions_Result --
-----------------------------------
procedure Declare_Postconditions_Result is
Enclosing_Subp : constant Entity_Id := Scope (Subp);
begin
pragma Assert
(Modify_Tree_For_C
and then Is_Subprogram (Enclosing_Subp)
and then Present (Wrapped_Statements (Enclosing_Subp)));
if Ekind (Enclosing_Subp) = E_Function then
if Nkind (First (Parameter_Associations (N))) in
N_Numeric_Or_String_Literal
then
Append_To (Declarations (Blk),
Make_Object_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uResult),
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Etype (Enclosing_Subp), Loc),
Expression =>
New_Copy_Tree (First (Parameter_Associations (N)))));
else
Append_To (Declarations (Blk),
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uResult),
Subtype_Mark =>
New_Occurrence_Of (Etype (Enclosing_Subp), Loc),
Name =>
New_Copy_Tree (First (Parameter_Associations (N)))));
end if;
end if;
end Declare_Postconditions_Result;
---------------------
-- Make_Exit_Label --
---------------------
procedure Make_Exit_Label is
Lab_Ent : Entity_Id;
begin
if No (Exit_Lab) then
Lab_Ent := Make_Temporary (Loc, 'L');
Lab_Id := New_Occurrence_Of (Lab_Ent, Loc);
Exit_Lab := Make_Label (Loc, Lab_Id);
Lab_Decl :=
Make_Implicit_Label_Declaration (Loc,
Defining_Identifier => Lab_Ent,
Label_Construct => Exit_Lab);
end if;
end Make_Exit_Label;
-----------------------------
-- Make_Loop_Labels_Unique --
-----------------------------
procedure Make_Loop_Labels_Unique (HSS : Node_Id) is
function Process_Loop (N : Node_Id) return Traverse_Result;
------------------
-- Process_Loop --
------------------
function Process_Loop (N : Node_Id) return Traverse_Result is
Id : Entity_Id;
begin
if Nkind (N) = N_Loop_Statement
and then Present (Identifier (N))
then
-- Create new external name for loop and update the
-- corresponding entity.
Id := Entity (Identifier (N));
Set_Chars (Id, New_External_Name (Chars (Id), 'L', -1));
Set_Chars (Identifier (N), Chars (Id));
elsif Nkind (N) = N_Exit_Statement
and then Present (Name (N))
then
-- The exit statement must name an enclosing loop, whose name
-- has already been updated.
Set_Chars (Name (N), Chars (Entity (Name (N))));
end if;
return OK;
end Process_Loop;
procedure Update_Loop_Names is new Traverse_Proc (Process_Loop);
-- Local variables
Stmt : Node_Id;
-- Start of processing for Make_Loop_Labels_Unique
begin
if Modify_Tree_For_C then
Stmt := First (Statements (HSS));
while Present (Stmt) loop
Update_Loop_Names (Stmt);
Next (Stmt);
end loop;
end if;
end Make_Loop_Labels_Unique;
---------------------
-- Process_Formals --
---------------------
function Process_Formals (N : Node_Id) return Traverse_Result is
A : Entity_Id;
E : Entity_Id;
Ret : Node_Id;
Had_Private_View : Boolean;
begin
if Is_Entity_Name (N) and then Present (Entity (N)) then
E := Entity (N);
if Is_Formal (E) and then Scope (E) = Subp then
A := Renamed_Object (E);
-- Rewrite the occurrence of the formal into an occurrence of
-- the actual. Also establish visibility on the proper view of
-- the actual's subtype for the body's context (if the actual's
-- subtype is private at the call point but its full view is
-- visible to the body, then the inlined tree here must be
-- analyzed with the full view).
--
-- The Has_Private_View flag is cleared by rewriting, so it
-- must be explicitly saved and restored, just like when
-- instantiating the body to inline.
if Is_Entity_Name (A) then
Had_Private_View := Has_Private_View (N);
Rewrite (N, New_Occurrence_Of (Entity (A), Sloc (N)));
Set_Has_Private_View (N, Had_Private_View);
Check_Private_View (N);
elsif Nkind (A) = N_Defining_Identifier then
Had_Private_View := Has_Private_View (N);
Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
Set_Has_Private_View (N, Had_Private_View);
Check_Private_View (N);
-- Numeric literal
else
Rewrite (N, New_Copy (A));
end if;
end if;
return Skip;
elsif Is_Entity_Name (N)
and then Present (Return_Object)
and then Chars (N) = Chars (Return_Object)
then
-- Occurrence within an extended return statement. The return
-- object is local to the body been inlined, and thus the generic
-- copy is not analyzed yet, so we match by name, and replace it
-- with target of call.
if Nkind (Targ) = N_Defining_Identifier then
Rewrite (N, New_Occurrence_Of (Targ, Loc));
else
Rewrite (N, New_Copy_Tree (Targ));
end if;
return Skip;
elsif Nkind (N) = N_Simple_Return_Statement then
if No (Expression (N)) then
Num_Ret := Num_Ret + 1;
Make_Exit_Label;
Rewrite (N,
Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
else
if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
then
-- Function body is a single expression. No need for
-- exit label.
null;
else
Num_Ret := Num_Ret + 1;
Make_Exit_Label;
end if;
-- Because of the presence of private types, the views of the
-- expression and the context may be different, so place
-- a type conversion to the context type to avoid spurious
-- errors, e.g. when the expression is a numeric literal and
-- the context is private. If the expression is an aggregate,
-- use a qualified expression, because an aggregate is not a
-- legal argument of a conversion. Ditto for numeric, character
-- and string literals, and attributes that yield a universal
-- type, because those must be resolved to a specific type.
if Nkind (Expression (N)) in N_Aggregate
| N_Character_Literal
| N_Null
| N_String_Literal
or else Yields_Universal_Type (Expression (N))
then
Ret :=
Make_Qualified_Expression (Sloc (N),
Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
Expression => Relocate_Node (Expression (N)));
-- Use an unchecked type conversion between access types, for
-- which a type conversion would not always be valid, as no
-- check may result from the conversion.
elsif Is_Access_Type (Ret_Type) then
Ret :=
Unchecked_Convert_To
(Ret_Type, Relocate_Node (Expression (N)));
-- Otherwise use a type conversion, which may trigger a check
else
Ret :=
Make_Type_Conversion (Sloc (N),
Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
Expression => Relocate_Node (Expression (N)));
end if;
if Nkind (Targ) = N_Defining_Identifier then
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Targ, Loc),
Expression => Ret));
else
Rewrite (N,
Make_Assignment_Statement (Loc,
Name => New_Copy (Targ),
Expression => Ret));
end if;
Set_Assignment_OK (Name (N));
if Present (Exit_Lab) then
Insert_After (N,
Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
end if;
end if;
return OK;
-- An extended return becomes a block whose first statement is the
-- assignment of the initial expression of the return object to the
-- target of the call itself.
elsif Nkind (N) = N_Extended_Return_Statement then
declare
Return_Decl : constant Entity_Id :=
First (Return_Object_Declarations (N));
Assign : Node_Id;
begin
Return_Object := Defining_Identifier (Return_Decl);
if Present (Expression (Return_Decl)) then
if Nkind (Targ) = N_Defining_Identifier then
Assign :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Targ, Loc),
Expression => Expression (Return_Decl));
else
Assign :=
Make_Assignment_Statement (Loc,
Name => New_Copy (Targ),
Expression => Expression (Return_Decl));
end if;
Set_Assignment_OK (Name (Assign));
if No (Handled_Statement_Sequence (N)) then
Set_Handled_Statement_Sequence (N,
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List));
end if;
Prepend (Assign,
Statements (Handled_Statement_Sequence (N)));
end if;
Rewrite (N,
Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Handled_Statement_Sequence (N)));
return OK;
end;
-- Remove pragma Unreferenced since it may refer to formals that
-- are not visible in the inlined body, and in any case we will
-- not be posting warnings on the inlined body so it is unneeded.
elsif Nkind (N) = N_Pragma
and then Pragma_Name (N) = Name_Unreferenced
then
Rewrite (N, Make_Null_Statement (Sloc (N)));
return OK;
else
return OK;
end if;
end Process_Formals;
procedure Replace_Formals is new Traverse_Proc (Process_Formals);
--------------------------------
-- Process_Formals_In_Aspects --
--------------------------------
function Process_Formals_In_Aspects
(N : Node_Id) return Traverse_Result
is
begin
if Nkind (N) = N_Aspect_Specification then
Replace_Formals (Expression (N));
end if;
return OK;
end Process_Formals_In_Aspects;
procedure Replace_Formals_In_Aspects is
new Traverse_Proc (Process_Formals_In_Aspects);
------------------
-- Process_Sloc --
------------------
function Process_Sloc (Nod : Node_Id) return Traverse_Result is
begin
if not Debug_Generated_Code then
Set_Sloc (Nod, Sloc (N));
Set_Comes_From_Source (Nod, False);
end if;
return OK;
end Process_Sloc;
procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
------------------------------
-- Reset_Dispatching_Calls --
------------------------------
procedure Reset_Dispatching_Calls (N : Node_Id) is
function Do_Reset (N : Node_Id) return Traverse_Result;
--------------
-- Do_Reset --
--------------
function Do_Reset (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Procedure_Call_Statement
and then Nkind (Name (N)) = N_Selected_Component
and then Nkind (Prefix (Name (N))) = N_Identifier
and then Is_Formal (Entity (Prefix (Name (N))))
and then Is_Dispatching_Operation
(Entity (Selector_Name (Name (N))))
then
Set_Entity (Selector_Name (Name (N)), Empty);
end if;
return OK;
end Do_Reset;
procedure Do_Reset_Calls is new Traverse_Proc (Do_Reset);
begin
Do_Reset_Calls (N);
end Reset_Dispatching_Calls;
---------------------------
-- Rewrite_Function_Call --
---------------------------
procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
Fst : constant Node_Id := First (Statements (HSS));
begin
Make_Loop_Labels_Unique (HSS);
-- Optimize simple case: function body is a single return statement,
-- which has been expanded into an assignment.
if Is_Empty_List (Declarations (Blk))
and then Nkind (Fst) = N_Assignment_Statement
and then No (Next (Fst))
then
-- The function call may have been rewritten as the temporary
-- that holds the result of the call, in which case remove the
-- now useless declaration.
if Nkind (N) = N_Identifier
and then Nkind (Parent (Entity (N))) = N_Object_Declaration
then
Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
end if;
Rewrite (N, Expression (Fst));
elsif Nkind (N) = N_Identifier
and then Nkind (Parent (Entity (N))) = N_Object_Declaration
then
-- The block assigns the result of the call to the temporary
Insert_After (Parent (Entity (N)), Blk);
-- If the context is an assignment, and the left-hand side is free of
-- side effects, the replacement is also safe.
elsif Nkind (Parent (N)) = N_Assignment_Statement
and then
(Is_Entity_Name (Name (Parent (N)))
or else
(Nkind (Name (Parent (N))) = N_Explicit_Dereference
and then Is_Entity_Name (Prefix (Name (Parent (N)))))
or else
(Nkind (Name (Parent (N))) = N_Selected_Component
and then Is_Entity_Name (Prefix (Name (Parent (N))))))
then
-- Replace assignment with the block
declare
Original_Assignment : constant Node_Id := Parent (N);
begin
-- Preserve the original assignment node to keep the complete
-- assignment subtree consistent enough for Analyze_Assignment
-- to proceed (specifically, the original Lhs node must still
-- have an assignment statement as its parent).
-- We cannot rely on Original_Node to go back from the block
-- node to the assignment node, because the assignment might
-- already be a rewrite substitution.
Discard_Node (Relocate_Node (Original_Assignment));
Rewrite (Original_Assignment, Blk);
end;
elsif Nkind (Parent (N)) = N_Object_Declaration then
-- A call to a function which returns an unconstrained type
-- found in the expression initializing an object-declaration is
-- expanded into a procedure call which must be added after the
-- object declaration.
if Is_Unc_Decl and Back_End_Inlining then
Insert_Action_After (Parent (N), Blk);
else
Set_Expression (Parent (N), Empty);
Insert_After (Parent (N), Blk);
end if;
elsif Is_Unc and then not Back_End_Inlining then
Insert_Before (Parent (N), Blk);
end if;
end Rewrite_Function_Call;
----------------------------
-- Rewrite_Procedure_Call --
----------------------------
procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
begin
Make_Loop_Labels_Unique (HSS);
-- If there is a transient scope for N, this will be the scope of the
-- actions for N, and the statements in Blk need to be within this
-- scope. For example, they need to have visibility on the constant
-- declarations created for the formals.
-- If N needs no transient scope, and if there are no declarations in
-- the inlined body, we can do a little optimization and insert the
-- statements for the body directly after N, and rewrite N to a
-- null statement, instead of rewriting N into a full-blown block
-- statement.
if not Scope_Is_Transient
and then Is_Empty_List (Declarations (Blk))
then
Insert_List_After (N, Statements (HSS));
Rewrite (N, Make_Null_Statement (Loc));
else
Rewrite (N, Blk);
end if;
end Rewrite_Procedure_Call;
-- Start of processing for Expand_Inlined_Call
begin
-- Initializations for old/new semantics
if not Uses_Back_End then
Is_Unc := Is_Array_Type (Etype (Subp))
and then not Is_Constrained (Etype (Subp));
Is_Unc_Decl := False;
else
Is_Unc := Returns_Unconstrained_Type (Subp)
and then Optimization_Level > 0;
Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
and then Is_Unc;
end if;
-- Check for an illegal attempt to inline a recursive procedure. If the
-- subprogram has parameters this is detected when trying to supply a
-- binding for parameters that already have one. For parameterless
-- subprograms this must be done explicitly.
if In_Open_Scopes (Subp) then
Cannot_Inline
("cannot inline call to recursive subprogram?", N, Subp);
Set_Is_Inlined (Subp, False);
return;
-- Skip inlining if this is not a true inlining since the attribute
-- Body_To_Inline is also set for renamings (see sinfo.ads). For a
-- true inlining, Orig_Bod has code rather than being an entity.
elsif Nkind (Orig_Bod) in N_Entity then
return;
end if;
if Nkind (Orig_Bod) in N_Defining_Identifier
| N_Defining_Operator_Symbol
then
-- Subprogram is renaming_as_body. Calls occurring after the renaming
-- can be replaced with calls to the renamed entity directly, because
-- the subprograms are subtype conformant. If the renamed subprogram
-- is an inherited operation, we must redo the expansion because
-- implicit conversions may be needed. Similarly, if the renamed
-- entity is inlined, expand the call for further optimizations.
Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
Expand_Call (N);
end if;
return;
end if;
-- Register the call in the list of inlined calls
Append_New_Elmt (N, To => Inlined_Calls);
-- Use generic machinery to copy body of inlined subprogram, as if it
-- were an instantiation, resetting source locations appropriately, so
-- that nested inlined calls appear in the main unit.
Save_Env (Subp, Empty);
Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
-- Old semantics
if not Uses_Back_End then
declare
Bod : Node_Id;
begin
Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
Blk :=
Make_Block_Statement (Loc,
Declarations => Declarations (Bod),
Handled_Statement_Sequence =>
Handled_Statement_Sequence (Bod));
if No (Declarations (Bod)) then
Set_Declarations (Blk, New_List);
end if;
-- When generating C code, declare _Result, which may be used to
-- verify the return value.
if Modify_Tree_For_C
and then Nkind (N) = N_Procedure_Call_Statement
and then Chars (Name (N)) = Name_uWrapped_Statements
then
Declare_Postconditions_Result;
end if;
-- For the unconstrained case, capture the name of the local
-- variable that holds the result. This must be the first
-- declaration in the block, because its bounds cannot depend
-- on local variables. Otherwise there is no way to declare the
-- result outside of the block. Needless to say, in general the
-- bounds will depend on the actuals in the call.
-- If the context is an assignment statement, as is the case
-- for the expansion of an extended return, the left-hand side
-- provides bounds even if the return type is unconstrained.
if Is_Unc then
declare
First_Decl : Node_Id;
begin
First_Decl := First (Declarations (Blk));
-- If the body is a single extended return statement,the
-- resulting block is a nested block.
if No (First_Decl) then
First_Decl :=
First (Statements (Handled_Statement_Sequence (Blk)));
if Nkind (First_Decl) = N_Block_Statement then
First_Decl := First (Declarations (First_Decl));
end if;
end if;
-- No front-end inlining possible
if Nkind (First_Decl) /= N_Object_Declaration then
return;
end if;
if Nkind (Parent (N)) /= N_Assignment_Statement then
Targ1 := Defining_Identifier (First_Decl);
else
Targ1 := Name (Parent (N));
end if;
end;
end if;
end;
-- New semantics
else
declare
Bod : Node_Id;
begin
-- General case
if not Is_Unc then
Bod :=
Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
Blk :=
Make_Block_Statement (Loc,
Declarations => Declarations (Bod),
Handled_Statement_Sequence =>
Handled_Statement_Sequence (Bod));
-- Inline a call to a function that returns an unconstrained type.
-- The semantic analyzer checked that frontend-inlined functions
-- returning unconstrained types have no declarations and have
-- a single extended return statement. As part of its processing
-- the function was split into two subprograms: a procedure P' and
-- a function F' that has a block with a call to procedure P' (see
-- Split_Unconstrained_Function).
else
pragma Assert
(Nkind
(First
(Statements (Handled_Statement_Sequence (Orig_Bod)))) =
N_Block_Statement);
declare
Blk_Stmt : constant Node_Id :=
First (Statements (Handled_Statement_Sequence (Orig_Bod)));
First_Stmt : constant Node_Id :=
First (Statements (Handled_Statement_Sequence (Blk_Stmt)));
Second_Stmt : constant Node_Id := Next (First_Stmt);
begin
pragma Assert
(Nkind (First_Stmt) = N_Procedure_Call_Statement
and then Nkind (Second_Stmt) = N_Simple_Return_Statement
and then No (Next (Second_Stmt)));
Bod :=
Copy_Generic_Node
(First
(Statements (Handled_Statement_Sequence (Orig_Bod))),
Empty, Instantiating => True);
Blk := Bod;
-- Capture the name of the local variable that holds the
-- result. This must be the first declaration in the block,
-- because its bounds cannot depend on local variables.
-- Otherwise there is no way to declare the result outside
-- of the block. Needless to say, in general the bounds will
-- depend on the actuals in the call.
if Nkind (Parent (N)) /= N_Assignment_Statement then
Targ1 := Defining_Identifier (First (Declarations (Blk)));
-- If the context is an assignment statement, as is the case
-- for the expansion of an extended return, the left-hand
-- side provides bounds even if the return type is
-- unconstrained.
else
Targ1 := Name (Parent (N));
end if;
end;
end if;
if No (Declarations (Bod)) then
Set_Declarations (Blk, New_List);
end if;
end;
end if;
-- If this is a derived function, establish the proper return type
if Present (Orig_Subp) and then Orig_Subp /= Subp then
Ret_Type := Etype (Orig_Subp);
else
Ret_Type := Etype (Subp);
end if;
-- Create temporaries for the actuals that are expressions, or that are
-- scalars and require copying to preserve semantics.
Establish_Actual_Mapping_For_Inlined_Call (N, Subp, Decls, Orig_Bod);
-- Establish target of function call. If context is not assignment or
-- declaration, create a temporary as a target. The declaration for the
-- temporary may be subsequently optimized away if the body is a single
-- expression, or if the left-hand side of the assignment is simple
-- enough, i.e. an entity or an explicit dereference of one.
if Ekind (Subp) = E_Function then
if Nkind (Parent (N)) = N_Assignment_Statement
and then Is_Entity_Name (Name (Parent (N)))
then
Targ := Name (Parent (N));
elsif Nkind (Parent (N)) = N_Assignment_Statement
and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
and then Is_Entity_Name (Prefix (Name (Parent (N))))
then
Targ := Name (Parent (N));
elsif Nkind (Parent (N)) = N_Assignment_Statement
and then Nkind (Name (Parent (N))) = N_Selected_Component
and then Is_Entity_Name (Prefix (Name (Parent (N))))
then
Targ := New_Copy_Tree (Name (Parent (N)));
elsif Nkind (Parent (N)) = N_Object_Declaration
and then Is_Limited_Type (Etype (Subp))
then
Targ := Defining_Identifier (Parent (N));
-- New semantics: In an object declaration avoid an extra copy
-- of the result of a call to an inlined function that returns
-- an unconstrained type
elsif Uses_Back_End
and then Nkind (Parent (N)) = N_Object_Declaration
and then Is_Unc
then
Targ := Defining_Identifier (Parent (N));
else
-- Replace call with temporary and create its declaration
Temp := Make_Temporary (Loc, 'C');
Set_Is_Internal (Temp);
-- For the unconstrained case, the generated temporary has the
-- same constrained declaration as the result variable. It may
-- eventually be possible to remove that temporary and use the
-- result variable directly.
if Is_Unc and then Nkind (Parent (N)) /= N_Assignment_Statement
then
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition =>
New_Copy_Tree (Object_Definition (Parent (Targ1))));
Replace_Formals (Decl);
else
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Object_Definition => New_Occurrence_Of (Ret_Type, Loc));
Set_Etype (Temp, Ret_Type);
end if;
Set_No_Initialization (Decl);
Append (Decl, Decls);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Targ := Temp;
end if;
end if;
Insert_Actions (N, Decls);
if Is_Unc_Decl then
-- Special management for inlining a call to a function that returns
-- an unconstrained type and initializes an object declaration: we
-- avoid generating undesired extra calls and goto statements.
-- Given:
-- function Func (...) return String is
-- begin
-- declare
-- Result : String (1 .. 4);
-- begin
-- Proc (Result, ...);
-- return Result;
-- end;
-- end Func;
-- Result : String := Func (...);
-- Replace this object declaration by:
-- Result : String (1 .. 4);
-- Proc (Result, ...);
Remove_Homonym (Targ);
Decl :=
Make_Object_Declaration
(Loc,
Defining_Identifier => Targ,
Object_Definition =>
New_Copy_Tree (Object_Definition (Parent (Targ1))));
Replace_Formals (Decl);
Set_No_Initialization (Decl);
Rewrite (Parent (N), Decl);
Analyze (Parent (N));
-- Avoid spurious warnings since we know that this declaration is
-- referenced by the procedure call.
Set_Never_Set_In_Source (Targ, False);
-- Remove the local declaration of the extended return stmt from the
-- inlined code
Remove (Parent (Targ1));
-- Update the reference to the result (since we have rewriten the
-- object declaration)
declare
Blk_Call_Stmt : Node_Id;
begin
-- Capture the call to the procedure
Blk_Call_Stmt :=
First (Statements (Handled_Statement_Sequence (Blk)));
pragma Assert
(Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
Remove (First (Parameter_Associations (Blk_Call_Stmt)));
Prepend_To (Parameter_Associations (Blk_Call_Stmt),
New_Occurrence_Of (Targ, Loc));
end;
-- Remove the return statement
pragma Assert
(Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
N_Simple_Return_Statement);
Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
end if;
-- Traverse the tree and replace formals with actuals or their thunks.
-- Attach block to tree before analysis and rewriting.
Replace_Formals (Blk);
Replace_Formals_In_Aspects (Blk);
Set_Parent (Blk, N);
if GNATprove_Mode then
null;
elsif not Comes_From_Source (Subp) or else Is_Predef then
Reset_Slocs (Blk);
end if;
if Is_Unc_Decl then
-- No action needed since return statement has been already removed
null;
elsif Present (Exit_Lab) then
-- If there's a single return statement at the end of the subprogram,
-- the corresponding goto statement and the corresponding label are
-- useless.
if Num_Ret = 1
and then
Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
N_Goto_Statement
then
Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
else
Append (Lab_Decl, (Declarations (Blk)));
Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
end if;
end if;
-- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
-- on conflicting private views that Gigi would ignore. If this is a
-- predefined unit, analyze with checks off, as is done in the non-
-- inlined run-time units.
declare
I_Flag : constant Boolean := In_Inlined_Body;
begin
In_Inlined_Body := True;
if Is_Predef then
declare
Style : constant Boolean := Style_Check;
begin
Style_Check := False;
-- Search for dispatching calls that use the Object.Operation
-- notation using an Object that is a parameter of the inlined
-- function. We reset the decoration of Operation to force
-- the reanalysis of the inlined dispatching call because
-- the actual object has been inlined.
Reset_Dispatching_Calls (Blk);
-- In GNATprove mode, always consider checks on, even for
-- predefined units.
if GNATprove_Mode then
Analyze (Blk);
else
Analyze (Blk, Suppress => All_Checks);
end if;
Style_Check := Style;
end;
else
Analyze (Blk);
end if;
In_Inlined_Body := I_Flag;
end;
if Ekind (Subp) = E_Procedure then
Rewrite_Procedure_Call (N, Blk);
else
Rewrite_Function_Call (N, Blk);
if Is_Unc_Decl then
null;
-- For the unconstrained case, the replacement of the call has been
-- made prior to the complete analysis of the generated declarations.
-- Propagate the proper type now.
elsif Is_Unc then
if Nkind (N) = N_Identifier then
Set_Etype (N, Etype (Entity (N)));
else
Set_Etype (N, Etype (Targ1));
end if;
end if;
end if;
Restore_Env;
-- Cleanup mapping between formals and actuals for other expansions
Reset_Actual_Mapping_For_Inlined_Call (Subp);
end Expand_Inlined_Call;
--------------------------
-- Get_Code_Unit_Entity --
--------------------------
function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
begin
if Ekind (Unit) = E_Package_Body then
Unit := Spec_Entity (Unit);
end if;
return Unit;
end Get_Code_Unit_Entity;
------------------------------
-- Has_Excluded_Declaration --
------------------------------
function Has_Excluded_Declaration
(Subp : Entity_Id;
Decls : List_Id) return Boolean
is
function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
-- Nested subprograms make a given body ineligible for inlining, but
-- we make an exception for instantiations of unchecked conversion.
-- The body has not been analyzed yet, so check the name, and verify
-- that the visible entity with that name is the predefined unit.
-----------------------------
-- Is_Unchecked_Conversion --
-----------------------------
function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
Id : constant Node_Id := Name (D);
Conv : Entity_Id;
begin
if Nkind (Id) = N_Identifier
and then Chars (Id) = Name_Unchecked_Conversion
then
Conv := Current_Entity (Id);
elsif Nkind (Id) in N_Selected_Component | N_Expanded_Name
and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
then
Conv := Current_Entity (Selector_Name (Id));
else
return False;
end if;
return Present (Conv)
and then Is_Predefined_Unit (Get_Source_Unit (Conv))
and then Is_Intrinsic_Subprogram (Conv);
end Is_Unchecked_Conversion;
-- Local variables
Decl : Node_Id;
-- Start of processing for Has_Excluded_Declaration
begin
-- No action needed if the check is not needed
if not Check_Inlining_Restrictions then
return False;
end if;
Decl := First (Decls);
while Present (Decl) loop
-- First declarations universally excluded
if Nkind (Decl) = N_Package_Declaration then
Cannot_Inline
("cannot inline & (nested package declaration)?", Decl, Subp);
return True;
elsif Nkind (Decl) = N_Package_Instantiation then
Cannot_Inline
("cannot inline & (nested package instantiation)?", Decl, Subp);
return True;
end if;
-- Then declarations excluded only for front-end inlining
if Back_End_Inlining then
null;
elsif Nkind (Decl) = N_Task_Type_Declaration
or else Nkind (Decl) = N_Single_Task_Declaration
then
Cannot_Inline
("cannot inline & (nested task type declaration)?", Decl, Subp);
return True;
elsif Nkind (Decl) in N_Protected_Type_Declaration
| N_Single_Protected_Declaration
then
Cannot_Inline
("cannot inline & (nested protected type declaration)?",
Decl, Subp);
return True;
elsif Nkind (Decl) = N_Subprogram_Body then
Cannot_Inline
("cannot inline & (nested subprogram)?", Decl, Subp);
return True;
elsif Nkind (Decl) = N_Function_Instantiation
and then not Is_Unchecked_Conversion (Decl)
then
Cannot_Inline
("cannot inline & (nested function instantiation)?", Decl, Subp);
return True;
elsif Nkind (Decl) = N_Procedure_Instantiation then
Cannot_Inline
("cannot inline & (nested procedure instantiation)?",
Decl, Subp);
return True;
-- Subtype declarations with predicates will generate predicate
-- functions, i.e. nested subprogram bodies, so inlining is not
-- possible.
elsif Nkind (Decl) = N_Subtype_Declaration then
declare
A : Node_Id;
A_Id : Aspect_Id;
begin
A := First (Aspect_Specifications (Decl));
while Present (A) loop
A_Id := Get_Aspect_Id (Chars (Identifier (A)));
if A_Id = Aspect_Predicate
or else A_Id = Aspect_Static_Predicate
or else A_Id = Aspect_Dynamic_Predicate
then
Cannot_Inline
("cannot inline & (subtype declaration with "
& "predicate)?", Decl, Subp);
return True;
end if;
Next (A);
end loop;
end;
end if;
Next (Decl);
end loop;
return False;
end Has_Excluded_Declaration;
----------------------------
-- Has_Excluded_Statement --
----------------------------
function Has_Excluded_Statement
(Subp : Entity_Id;
Stats : List_Id) return Boolean
is
S : Node_Id;
E : Node_Id;
begin
-- No action needed if the check is not needed
if not Check_Inlining_Restrictions then
return False;
end if;
S := First (Stats);
while Present (S) loop
if Nkind (S) in N_Abort_Statement
| N_Asynchronous_Select
| N_Conditional_Entry_Call
| N_Delay_Relative_Statement
| N_Delay_Until_Statement
| N_Selective_Accept
| N_Timed_Entry_Call
then
Cannot_Inline
("cannot inline & (non-allowed statement)?", S, Subp);
return True;
elsif Nkind (S) = N_Block_Statement then
if Has_Excluded_Declaration (Subp, Declarations (S)) then
return True;
elsif Present (Handled_Statement_Sequence (S)) then
if not Back_End_Inlining
and then
Present
(Exception_Handlers (Handled_Statement_Sequence (S)))
then
Cannot_Inline
("cannot inline& (exception handler)?",
First (Exception_Handlers
(Handled_Statement_Sequence (S))),
Subp);
return True;
elsif Has_Excluded_Statement
(Subp, Statements (Handled_Statement_Sequence (S)))
then
return True;
end if;
end if;
elsif Nkind (S) = N_Case_Statement then
E := First (Alternatives (S));
while Present (E) loop
if Has_Excluded_Statement (Subp, Statements (E)) then
return True;
end if;
Next (E);
end loop;
elsif Nkind (S) = N_If_Statement then
if Has_Excluded_Statement (Subp, Then_Statements (S)) then
return True;
end if;
if Present (Elsif_Parts (S)) then
E := First (Elsif_Parts (S));
while Present (E) loop
if Has_Excluded_Statement (Subp, Then_Statements (E)) then
return True;
end if;
Next (E);
end loop;
end if;
if Present (Else_Statements (S))
and then Has_Excluded_Statement (Subp, Else_Statements (S))
then
return True;
end if;
elsif Nkind (S) = N_Loop_Statement
and then Has_Excluded_Statement (Subp, Statements (S))
then
return True;
elsif Nkind (S) = N_Extended_Return_Statement then
if Present (Handled_Statement_Sequence (S))
and then
Has_Excluded_Statement
(Subp, Statements (Handled_Statement_Sequence (S)))
then
return True;
elsif not Back_End_Inlining
and then Present (Handled_Statement_Sequence (S))
and then
Present (Exception_Handlers
(Handled_Statement_Sequence (S)))
then
Cannot_Inline
("cannot inline& (exception handler)?",
First (Exception_Handlers (Handled_Statement_Sequence (S))),
Subp);
return True;
end if;
end if;
Next (S);
end loop;
return False;
end Has_Excluded_Statement;
--------------------------
-- Has_Initialized_Type --
--------------------------
function Has_Initialized_Type (E : Entity_Id) return Boolean is
E_Body : constant Node_Id := Subprogram_Body (E);
Decl : Node_Id;
begin
if No (E_Body) then -- imported subprogram
return False;
else
Decl := First (Declarations (E_Body));
while Present (Decl) loop
if Nkind (Decl) = N_Full_Type_Declaration
and then Comes_From_Source (Decl)
and then Present (Init_Proc (Defining_Identifier (Decl)))
then
return True;
end if;
Next (Decl);
end loop;
end if;
return False;
end Has_Initialized_Type;
-----------------------
-- Has_Single_Return --
-----------------------
function Has_Single_Return (N : Node_Id) return Boolean is
Return_Statement : Node_Id := Empty;
function Check_Return (N : Node_Id) return Traverse_Result;
------------------
-- Check_Return --
------------------
function Check_Return (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Simple_Return_Statement then
if Present (Expression (N))
and then Is_Entity_Name (Expression (N))
then
pragma Assert (Present (Entity (Expression (N))));
if No (Return_Statement) then
Return_Statement := N;
return OK;
else
pragma Assert
(Present (Entity (Expression (Return_Statement))));
if Entity (Expression (N)) =
Entity (Expression (Return_Statement))
then
return OK;
else
return Abandon;
end if;
end if;
-- A return statement within an extended return is a noop after
-- inlining.
elsif No (Expression (N))
and then Nkind (Parent (Parent (N))) =
N_Extended_Return_Statement
then
return OK;
else
-- Expression has wrong form
return Abandon;
end if;
-- We can only inline a build-in-place function if it has a single
-- extended return.
elsif Nkind (N) = N_Extended_Return_Statement then
if No (Return_Statement) then
Return_Statement := N;
return OK;
else
return Abandon;
end if;
else
return OK;
end if;
end Check_Return;
function Check_All_Returns is new Traverse_Func (Check_Return);
-- Start of processing for Has_Single_Return
begin
if Check_All_Returns (N) /= OK then
return False;
elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
return True;
else
return
Present (Declarations (N))
and then Present (First (Declarations (N)))
and then Nkind (First (Declarations (N))) = N_Object_Declaration
and then Entity (Expression (Return_Statement)) =
Defining_Identifier (First (Declarations (N)));
end if;
end Has_Single_Return;
-----------------------------
-- In_Main_Unit_Or_Subunit --
-----------------------------
function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
Comp : Node_Id := Cunit (Get_Code_Unit (E));
begin
-- Check whether the subprogram or package to inline is within the main
-- unit or its spec or within a subunit. In either case there are no
-- additional bodies to process. If the subprogram appears in a parent
-- of the current unit, the check on whether inlining is possible is
-- done in Analyze_Inlined_Bodies.
while Nkind (Unit (Comp)) = N_Subunit loop
Comp := Library_Unit (Comp);
end loop;
return Comp = Cunit (Main_Unit)
or else Comp = Library_Unit (Cunit (Main_Unit));
end In_Main_Unit_Or_Subunit;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Pending_Instantiations.Init;
Called_Pending_Instantiations.Init;
Inlined_Bodies.Init;
Successors.Init;
Inlined.Init;
for J in Hash_Headers'Range loop
Hash_Headers (J) := No_Subp;
end loop;
Inlined_Calls := No_Elist;
Backend_Calls := No_Elist;
Backend_Instances := No_Elist;
Backend_Inlined_Subps := No_Elist;
Backend_Not_Inlined_Subps := No_Elist;
end Initialize;
---------------------------------
-- Inline_Static_Function_Call --
---------------------------------
procedure Inline_Static_Function_Call (N : Node_Id; Subp : Entity_Id) is
function Replace_Formal (N : Node_Id) return Traverse_Result;
-- Replace each occurrence of a formal with the
-- corresponding actual, using the mapping created
-- by Establish_Actual_Mapping_For_Inlined_Call.
function Reset_Sloc (Nod : Node_Id) return Traverse_Result;
-- Reset the Sloc of a node to that of the call itself, so that errors
-- will be flagged on the call to the static expression function itself
-- rather than on the expression of the function's declaration.
--------------------
-- Replace_Formal --
--------------------
function Replace_Formal (N : Node_Id) return Traverse_Result is
A : Entity_Id;
E : Entity_Id;
begin
if Is_Entity_Name (N) and then Present (Entity (N)) then
E := Entity (N);
if Is_Formal (E) and then Scope (E) = Subp then
A := Renamed_Object (E);
if Nkind (A) = N_Defining_Identifier then
Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
-- Literal cases
else
Rewrite (N, New_Copy (A));
end if;
end if;
return Skip;
else
return OK;
end if;
end Replace_Formal;
procedure Replace_Formals is new Traverse_Proc (Replace_Formal);
------------------
-- Process_Sloc --
------------------
function Reset_Sloc (Nod : Node_Id) return Traverse_Result is
begin
Set_Sloc (Nod, Sloc (N));
Set_Comes_From_Source (Nod, False);
return OK;
end Reset_Sloc;
procedure Reset_Slocs is new Traverse_Proc (Reset_Sloc);
-- Start of processing for Inline_Static_Function_Call
begin
pragma Assert (Is_Static_Function_Call (N));
declare
Decls : constant List_Id := New_List;
Func_Expr : constant Node_Id :=
Expression_Of_Expression_Function (Subp);
Expr_Copy : constant Node_Id := New_Copy_Tree (Func_Expr);
begin
-- Create a mapping from formals to actuals, also creating temps in
-- Decls, when needed, to hold the actuals.
Establish_Actual_Mapping_For_Inlined_Call (N, Subp, Decls, Func_Expr);
-- Ensure that the copy has the same parent as the call (this seems
-- to matter when GNATprove_Mode is set and there are nested static
-- calls; prevents blowups in Insert_Actions, though it's not clear
-- exactly why this is needed???).
Set_Parent (Expr_Copy, Parent (N));
Insert_Actions (N, Decls);
-- Now substitute actuals for their corresponding formal references
-- within the expression.
Replace_Formals (Expr_Copy);
Reset_Slocs (Expr_Copy);
-- Apply a qualified expression with the function's result subtype,
-- to ensure that we check the expression against any constraint
-- or predicate, which will cause the call to be illegal if the
-- folded expression doesn't satisfy them. (The predicate case
-- might not get checked if the subtype hasn't been frozen yet,
-- which can happen if this static expression happens to be what
-- causes the freezing, because Has_Static_Predicate doesn't get
-- set on the subtype until it's frozen and Build_Predicates is
-- called. It's not clear how to address this case. ???)
Rewrite (Expr_Copy,
Make_Qualified_Expression (Sloc (Expr_Copy),
Subtype_Mark =>
New_Occurrence_Of (Etype (N), Sloc (Expr_Copy)),
Expression =>
Relocate_Node (Expr_Copy)));
Set_Etype (Expr_Copy, Etype (N));
Analyze_And_Resolve (Expr_Copy, Etype (N));
-- Finally rewrite the function call as the folded static result
Rewrite (N, Expr_Copy);
-- Cleanup mapping between formals and actuals for other expansions
Reset_Actual_Mapping_For_Inlined_Call (Subp);
end;
end Inline_Static_Function_Call;
------------------------
-- Instantiate_Bodies --
------------------------
-- Generic bodies contain all the non-local references, so an
-- instantiation does not need any more context than Standard
-- itself, even if the instantiation appears in an inner scope.
-- Generic associations have verified that the contract model is
-- satisfied, so that any error that may occur in the analysis of
-- the body is an internal error.
procedure Instantiate_Bodies is
procedure Instantiate_Body (Info : Pending_Body_Info);
-- Instantiate a pending body
------------------------
-- Instantiate_Body --
------------------------
procedure Instantiate_Body (Info : Pending_Body_Info) is
Scop : Entity_Id;
begin
-- If the instantiation node is absent, it has been removed as part
-- of unreachable code.
if No (Info.Inst_Node) then
null;
-- If the instantiation node is a package body, this means that the
-- instance is a compilation unit and the instantiation has already
-- been performed by Build_Instance_Compilation_Unit_Nodes.
elsif Nkind (Info.Inst_Node) = N_Package_Body then
null;
-- For other package instances, instantiate the body and register the
-- finalization scope, if any, for subsequent generation of cleanups.
elsif Nkind (Info.Inst_Node) = N_Package_Instantiation then
-- If the enclosing finalization scope is a package body, set the
-- In_Package_Body flag on its spec. This is required, in the case
-- where the body contains other package instantiations that have
-- a body, for Analyze_Package_Instantiation to compute a correct
-- finalization scope.
if Present (Info.Fin_Scop)
and then Ekind (Info.Fin_Scop) = E_Package_Body
then
Set_In_Package_Body (Spec_Entity (Info.Fin_Scop), True);
end if;
Instantiate_Package_Body (Info);
if Present (Info.Fin_Scop) then
Scop := Info.Fin_Scop;
-- If the enclosing finalization scope is dynamic, the instance
-- may have been relocated, for example if it was declared in a
-- protected entry, protected subprogram, or task body.
if Is_Dynamic_Scope (Scop) then
Scop :=
Enclosing_Dynamic_Scope (Defining_Entity (Info.Act_Decl));
end if;
Add_Scope_To_Clean (Scop);
-- Reset the In_Package_Body flag if it was set above
if Ekind (Info.Fin_Scop) = E_Package_Body then
Set_In_Package_Body (Spec_Entity (Info.Fin_Scop), False);
end if;
end if;
-- For subprogram instances, always instantiate the body
else
Instantiate_Subprogram_Body (Info);
end if;
end Instantiate_Body;
J, K : Nat;
Info : Pending_Body_Info;
-- Start of processing for Instantiate_Bodies
begin
if Serious_Errors_Detected = 0 then
Expander_Active := (Operating_Mode = Opt.Generate_Code);
Push_Scope (Standard_Standard);
To_Clean := New_Elmt_List;
if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
Start_Generic;
end if;
-- A body instantiation may generate additional instantiations, so
-- the following loop must scan to the end of a possibly expanding
-- set (that's why we cannot simply use a FOR loop here). We must
-- also capture the element lest the set be entirely reallocated.
J := 0;
if Back_End_Inlining then
while J <= Called_Pending_Instantiations.Last
and then Serious_Errors_Detected = 0
loop
K := Called_Pending_Instantiations.Table (J);
Info := Pending_Instantiations.Table (K);
Instantiate_Body (Info);
J := J + 1;
end loop;
else
while J <= Pending_Instantiations.Last
and then Serious_Errors_Detected = 0
loop
Info := Pending_Instantiations.Table (J);
Instantiate_Body (Info);
J := J + 1;
end loop;
end if;
-- Reset the table of instantiations. Additional instantiations
-- may be added through inlining, when additional bodies are
-- analyzed.
if Back_End_Inlining then
Called_Pending_Instantiations.Init;
else
Pending_Instantiations.Init;
end if;
-- We can now complete the cleanup actions of scopes that contain
-- pending instantiations (skipped for generic units, since we
-- never need any cleanups in generic units).
if Expander_Active
and then not Is_Generic_Unit (Main_Unit_Entity)
then
Cleanup_Scopes;
elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
End_Generic;
end if;
Pop_Scope;
end if;
end Instantiate_Bodies;
---------------
-- Is_Nested --
---------------
function Is_Nested (E : Entity_Id) return Boolean is
Scop : Entity_Id;
begin
Scop := Scope (E);
while Scop /= Standard_Standard loop
if Is_Subprogram (Scop) then
return True;
elsif Ekind (Scop) = E_Task_Type
or else Ekind (Scop) = E_Entry
or else Ekind (Scop) = E_Entry_Family
then
return True;
end if;
Scop := Scope (Scop);
end loop;
return False;
end Is_Nested;
------------------------
-- List_Inlining_Info --
------------------------
procedure List_Inlining_Info is
Elmt : Elmt_Id;
Nod : Node_Id;
Count : Nat;
begin
if not Debug_Flag_Dot_J then
return;
end if;
-- Generate listing of calls inlined by the frontend
if Present (Inlined_Calls) then
Count := 0;
Elmt := First_Elmt (Inlined_Calls);
while Present (Elmt) loop
Nod := Node (Elmt);
if not In_Internal_Unit (Nod) then
Count := Count + 1;
if Count = 1 then
Write_Str ("List of calls inlined by the frontend");
Write_Eol;
end if;
Write_Str (" ");
Write_Int (Count);
Write_Str (":");
Write_Location (Sloc (Nod));
Write_Str (":");
Output.Write_Eol;
end if;
Next_Elmt (Elmt);
end loop;
end if;
-- Generate listing of calls passed to the backend
if Present (Backend_Calls) then
Count := 0;
Elmt := First_Elmt (Backend_Calls);
while Present (Elmt) loop
Nod := Node (Elmt);
if not In_Internal_Unit (Nod) then
Count := Count + 1;
if Count = 1 then
Write_Str ("List of inlined calls passed to the backend");
Write_Eol;
end if;
Write_Str (" ");
Write_Int (Count);
Write_Str (":");
Write_Location (Sloc (Nod));
Output.Write_Eol;
end if;
Next_Elmt (Elmt);
end loop;
end if;
-- Generate listing of instances inlined for the backend
if Present (Backend_Instances) then
Count := 0;
Elmt := First_Elmt (Backend_Instances);
while Present (Elmt) loop
Nod := Node (Elmt);
if not In_Internal_Unit (Nod) then
Count := Count + 1;
if Count = 1 then
Write_Str ("List of instances inlined for the backend");
Write_Eol;
end if;
Write_Str (" ");
Write_Int (Count);
Write_Str (":");
Write_Location (Sloc (Nod));
Output.Write_Eol;
end if;
Next_Elmt (Elmt);
end loop;
end if;
-- Generate listing of subprograms passed to the backend
if Present (Backend_Inlined_Subps) and then Back_End_Inlining then
Count := 0;
Elmt := First_Elmt (Backend_Inlined_Subps);
while Present (Elmt) loop
Nod := Node (Elmt);
if not In_Internal_Unit (Nod) then
Count := Count + 1;
if Count = 1 then
Write_Str
("List of inlined subprograms passed to the backend");
Write_Eol;
end if;
Write_Str (" ");
Write_Int (Count);
Write_Str (":");
Write_Name (Chars (Nod));
Write_Str (" (");
Write_Location (Sloc (Nod));
Write_Str (")");
Output.Write_Eol;
end if;
Next_Elmt (Elmt);
end loop;
end if;
-- Generate listing of subprograms that cannot be inlined by the backend
if Present (Backend_Not_Inlined_Subps) and then Back_End_Inlining then
Count := 0;
Elmt := First_Elmt (Backend_Not_Inlined_Subps);
while Present (Elmt) loop
Nod := Node (Elmt);
if not In_Internal_Unit (Nod) then
Count := Count + 1;
if Count = 1 then
Write_Str
("List of subprograms that cannot be inlined by backend");
Write_Eol;
end if;
Write_Str (" ");
Write_Int (Count);
Write_Str (":");
Write_Name (Chars (Nod));
Write_Str (" (");
Write_Location (Sloc (Nod));
Write_Str (")");
Output.Write_Eol;
end if;
Next_Elmt (Elmt);
end loop;
end if;
end List_Inlining_Info;
----------
-- Lock --
----------
procedure Lock is
begin
Pending_Instantiations.Release;
Pending_Instantiations.Locked := True;
Called_Pending_Instantiations.Release;
Called_Pending_Instantiations.Locked := True;
Inlined_Bodies.Release;
Inlined_Bodies.Locked := True;
Successors.Release;
Successors.Locked := True;
Inlined.Release;
Inlined.Locked := True;
end Lock;
--------------------------------
-- Remove_Aspects_And_Pragmas --
--------------------------------
procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id) is
procedure Remove_Items (List : List_Id);
-- Remove all useless aspects/pragmas from a particular list
------------------
-- Remove_Items --
------------------
procedure Remove_Items (List : List_Id) is
Item : Node_Id;
Item_Id : Node_Id;
Next_Item : Node_Id;
begin
-- Traverse the list looking for an aspect specification or a pragma
Item := First (List);
while Present (Item) loop
Next_Item := Next (Item);
if Nkind (Item) = N_Aspect_Specification then
Item_Id := Identifier (Item);
elsif Nkind (Item) = N_Pragma then
Item_Id := Pragma_Identifier (Item);
else
Item_Id := Empty;
end if;
if Present (Item_Id)
and then Chars (Item_Id) in Name_Always_Terminates
| Name_Contract_Cases
| Name_Global
| Name_Depends
| Name_Exceptional_Cases
| Name_Postcondition
| Name_Precondition
| Name_Refined_Global
| Name_Refined_Depends
| Name_Refined_Post
| Name_Subprogram_Variant
| Name_Test_Case
| Name_Unmodified
| Name_Unreferenced
| Name_Unused
then
Remove (Item);
end if;
Item := Next_Item;
end loop;
end Remove_Items;
-- Start of processing for Remove_Aspects_And_Pragmas
begin
Remove_Items (Aspect_Specifications (Body_Decl));
Remove_Items (Declarations (Body_Decl));
-- Pragmas Unmodified, Unreferenced, and Unused may additionally appear
-- in the body of the subprogram.
Remove_Items (Statements (Handled_Statement_Sequence (Body_Decl)));
end Remove_Aspects_And_Pragmas;
--------------------------
-- Remove_Dead_Instance --
--------------------------
procedure Remove_Dead_Instance (N : Node_Id) is
begin
for J in 0 .. Pending_Instantiations.Last loop
if Pending_Instantiations.Table (J).Inst_Node = N then
Pending_Instantiations.Table (J).Inst_Node := Empty;
return;
end if;
end loop;
end Remove_Dead_Instance;
-------------------------------------------
-- Reset_Actual_Mapping_For_Inlined_Call --
-------------------------------------------
procedure Reset_Actual_Mapping_For_Inlined_Call (Subp : Entity_Id) is
F : Entity_Id := First_Formal (Subp);
begin
while Present (F) loop
Set_Renamed_Object (F, Empty);
Next_Formal (F);
end loop;
end Reset_Actual_Mapping_For_Inlined_Call;
end Inline;
|