1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. --
-- Extensive contributions were provided by Ada Core Technologies, Inc. --
-- --
------------------------------------------------------------------------------
-- This is the VxWorks version of this package
-- This package contains all the GNULL primitives that interface directly with
-- the underlying OS.
with Ada.Unchecked_Conversion;
with Interfaces.C;
with System.Multiprocessors;
with System.Tasking.Debug;
with System.Interrupt_Management;
with System.Float_Control;
with System.OS_Constants;
with System.Soft_Links;
-- We use System.Soft_Links instead of System.Tasking.Initialization
-- because the later is a higher level package that we shouldn't depend
-- on. For example when using the restricted run time, it is replaced by
-- System.Tasking.Restricted.Stages.
with System.Task_Info;
with System.VxWorks.Ext;
package body System.Task_Primitives.Operations is
package OSC renames System.OS_Constants;
package SSL renames System.Soft_Links;
use System.Tasking.Debug;
use System.Tasking;
use System.OS_Interface;
use System.Parameters;
use type Interfaces.C.int;
use type System.OS_Interface.unsigned;
use type System.VxWorks.Ext.t_id;
use type System.VxWorks.Ext.STATUS;
use type System.VxWorks.Ext.BOOL;
subtype int is System.OS_Interface.int;
subtype unsigned is System.OS_Interface.unsigned;
subtype STATUS is System.VxWorks.Ext.STATUS;
OK : constant STATUS := System.VxWorks.Ext.OK;
Relative : constant := 0;
----------------
-- Local Data --
----------------
-- The followings are logically constants, but need to be initialized at
-- run time.
Environment_Task_Id : Task_Id;
-- A variable to hold Task_Id for the environment task
-- The followings are internal configuration constants needed
Dispatching_Policy : constant Character;
pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
Foreign_Task_Elaborated : aliased Boolean := True;
-- Used to identified fake tasks (i.e., non-Ada Threads)
Locking_Policy : constant Character;
pragma Import (C, Locking_Policy, "__gl_locking_policy");
Mutex_Protocol : Priority_Type;
Single_RTS_Lock : aliased RTS_Lock;
-- This is a lock to allow only one thread of control in the RTS at a
-- time; it is used to execute in mutual exclusion from all other tasks.
-- Used to protect All_Tasks_List
Time_Slice_Val : constant Integer;
pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
Null_Thread_Id : constant Thread_Id := 0;
-- Constant to indicate that the thread identifier has not yet been
-- initialized.
--------------------
-- Local Packages --
--------------------
package Specific is
procedure Initialize;
pragma Inline (Initialize);
-- Initialize task specific data
function Is_Valid_Task return Boolean;
pragma Inline (Is_Valid_Task);
-- Does executing thread have a TCB?
procedure Set (Self_Id : Task_Id);
pragma Inline (Set);
-- Set the self id for the current task, unless Self_Id is null, in
-- which case the task specific data is deleted.
function Self return Task_Id;
pragma Inline (Self);
-- Return a pointer to the Ada Task Control Block of the calling task
end Specific;
package body Specific is separate;
-- The body of this package is target specific
----------------------------------
-- ATCB allocation/deallocation --
----------------------------------
package body ATCB_Allocation is separate;
-- The body of this package is shared across several targets
---------------------------------
-- Support for foreign threads --
---------------------------------
function Register_Foreign_Thread
(Thread : Thread_Id;
Sec_Stack_Size : Size_Type := Unspecified_Size) return Task_Id;
-- Allocate and initialize a new ATCB for the current Thread. The size of
-- the secondary stack can be optionally specified.
function Register_Foreign_Thread
(Thread : Thread_Id;
Sec_Stack_Size : Size_Type := Unspecified_Size)
return Task_Id is separate;
-----------------------
-- Local Subprograms --
-----------------------
procedure Abort_Handler (signo : Signal);
-- Handler for the abort (SIGABRT) signal to handle asynchronous abort
procedure Install_Signal_Handlers;
-- Install the default signal handlers for the current task
function Is_Task_Context return Boolean;
-- This function returns True if the current execution is in the context of
-- a task, and False if it is an interrupt context.
type Set_Stack_Limit_Proc_Acc is access procedure;
pragma Convention (C, Set_Stack_Limit_Proc_Acc);
Set_Stack_Limit_Hook : Set_Stack_Limit_Proc_Acc;
pragma Import (C, Set_Stack_Limit_Hook, "__gnat_set_stack_limit_hook");
-- Procedure to be called when a task is created to set stack limit. Used
-- only for VxWorks 5 and VxWorks MILS guest OS.
function To_Address is
new Ada.Unchecked_Conversion (Task_Id, System.Address);
-------------------
-- Abort_Handler --
-------------------
procedure Abort_Handler (signo : Signal) is
pragma Unreferenced (signo);
-- Do not call Self at this point as we're in a signal handler
-- and it may not be available, in particular on targets where we
-- support ZCX and where we don't do anything here anyway.
Self_ID : Task_Id;
Old_Set : aliased sigset_t;
Unblocked_Mask : aliased sigset_t;
Result : int;
pragma Warnings (Off, Result);
use System.Interrupt_Management;
begin
-- It is not safe to raise an exception when using ZCX and the GCC
-- exception handling mechanism.
if ZCX_By_Default then
return;
end if;
Self_ID := Self;
if Self_ID.Deferral_Level = 0
and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
and then not Self_ID.Aborting
then
Self_ID.Aborting := True;
-- Make sure signals used for RTS internal purposes are unmasked
Result := sigemptyset (Unblocked_Mask'Access);
pragma Assert (Result = 0);
Result :=
sigaddset
(Unblocked_Mask'Access,
Signal (Abort_Task_Interrupt));
pragma Assert (Result = 0);
Result := sigaddset (Unblocked_Mask'Access, SIGBUS);
pragma Assert (Result = 0);
Result := sigaddset (Unblocked_Mask'Access, SIGFPE);
pragma Assert (Result = 0);
Result := sigaddset (Unblocked_Mask'Access, SIGILL);
pragma Assert (Result = 0);
Result := sigaddset (Unblocked_Mask'Access, SIGSEGV);
pragma Assert (Result = 0);
Result :=
pthread_sigmask
(SIG_UNBLOCK,
Unblocked_Mask'Access,
Old_Set'Access);
pragma Assert (Result = 0);
raise Standard'Abort_Signal;
end if;
end Abort_Handler;
-----------------
-- Stack_Guard --
-----------------
procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
pragma Unreferenced (T);
pragma Unreferenced (On);
begin
-- Nothing needed (why not???)
null;
end Stack_Guard;
-------------------
-- Get_Thread_Id --
-------------------
function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
begin
return T.Common.LL.Thread;
end Get_Thread_Id;
----------
-- Self --
----------
function Self return Task_Id renames Specific.Self;
-----------------------------
-- Install_Signal_Handlers --
-----------------------------
procedure Install_Signal_Handlers is
act : aliased struct_sigaction;
old_act : aliased struct_sigaction;
Tmp_Set : aliased sigset_t;
Result : int;
begin
act.sa_flags := 0;
act.sa_handler := Abort_Handler'Address;
Result := sigemptyset (Tmp_Set'Access);
pragma Assert (Result = 0);
act.sa_mask := Tmp_Set;
Result :=
sigaction
(Signal (Interrupt_Management.Abort_Task_Interrupt),
act'Unchecked_Access,
old_act'Unchecked_Access);
pragma Assert (Result = 0);
Interrupt_Management.Initialize_Interrupts;
end Install_Signal_Handlers;
---------------------
-- Initialize_Lock --
---------------------
procedure Initialize_Lock
(Prio : System.Any_Priority;
L : not null access Lock)
is
begin
L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
L.Prio_Ceiling := int (Prio);
L.Protocol := Mutex_Protocol;
pragma Assert (L.Mutex /= 0);
end Initialize_Lock;
procedure Initialize_Lock
(L : not null access RTS_Lock;
Level : Lock_Level)
is
pragma Unreferenced (Level);
begin
L.Mutex := semMCreate (SEM_Q_PRIORITY + SEM_INVERSION_SAFE);
L.Prio_Ceiling := int (System.Any_Priority'Last);
L.Protocol := Mutex_Protocol;
pragma Assert (L.Mutex /= 0);
end Initialize_Lock;
-------------------
-- Finalize_Lock --
-------------------
procedure Finalize_Lock (L : not null access Lock) is
Result : STATUS;
begin
Result := semDelete (L.Mutex);
pragma Assert (Result = OK);
end Finalize_Lock;
procedure Finalize_Lock (L : not null access RTS_Lock) is
Result : STATUS;
begin
Result := semDelete (L.Mutex);
pragma Assert (Result = OK);
end Finalize_Lock;
----------------
-- Write_Lock --
----------------
procedure Write_Lock
(L : not null access Lock;
Ceiling_Violation : out Boolean)
is
Result : STATUS;
begin
if L.Protocol = Prio_Protect
and then int (Self.Common.Current_Priority) > L.Prio_Ceiling
then
Ceiling_Violation := True;
return;
else
Ceiling_Violation := False;
end if;
Result := semTake (L.Mutex, WAIT_FOREVER);
pragma Assert (Result = OK);
end Write_Lock;
procedure Write_Lock (L : not null access RTS_Lock) is
Result : STATUS;
begin
Result := semTake (L.Mutex, WAIT_FOREVER);
pragma Assert (Result = OK);
end Write_Lock;
procedure Write_Lock (T : Task_Id) is
Result : STATUS;
begin
Result := semTake (T.Common.LL.L.Mutex, WAIT_FOREVER);
pragma Assert (Result = OK);
end Write_Lock;
---------------
-- Read_Lock --
---------------
procedure Read_Lock
(L : not null access Lock;
Ceiling_Violation : out Boolean) is
begin
Write_Lock (L, Ceiling_Violation);
end Read_Lock;
------------
-- Unlock --
------------
procedure Unlock (L : not null access Lock) is
Result : STATUS;
begin
Result := semGive (L.Mutex);
pragma Assert (Result = OK);
end Unlock;
procedure Unlock (L : not null access RTS_Lock) is
Result : STATUS;
begin
Result := semGive (L.Mutex);
pragma Assert (Result = OK);
end Unlock;
procedure Unlock (T : Task_Id) is
Result : STATUS;
begin
Result := semGive (T.Common.LL.L.Mutex);
pragma Assert (Result = OK);
end Unlock;
-----------------
-- Set_Ceiling --
-----------------
-- Dynamic priority ceilings are not supported by the underlying system
procedure Set_Ceiling
(L : not null access Lock;
Prio : System.Any_Priority)
is
pragma Unreferenced (L, Prio);
begin
null;
end Set_Ceiling;
-----------
-- Sleep --
-----------
procedure Sleep (Self_ID : Task_Id; Reason : System.Tasking.Task_States) is
pragma Unreferenced (Reason);
Result : STATUS;
begin
pragma Assert (Self_ID = Self);
-- Release the mutex before sleeping
Result := semGive (Self_ID.Common.LL.L.Mutex);
pragma Assert (Result = OK);
-- Perform a blocking operation to take the CV semaphore. Note that a
-- blocking operation in VxWorks will reenable task scheduling. When we
-- are no longer blocked and control is returned, task scheduling will
-- again be disabled.
Result := semTake (Self_ID.Common.LL.CV, WAIT_FOREVER);
pragma Assert (Result = OK);
-- Take the mutex back
Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
pragma Assert (Result = OK);
end Sleep;
-----------------
-- Timed_Sleep --
-----------------
-- This is for use within the run-time system, so abort is assumed to be
-- already deferred, and the caller should be holding its own ATCB lock.
procedure Timed_Sleep
(Self_ID : Task_Id;
Time : Duration;
Mode : ST.Delay_Modes;
Reason : System.Tasking.Task_States;
Timedout : out Boolean;
Yielded : out Boolean)
is
pragma Unreferenced (Reason);
Orig : constant Duration := Monotonic_Clock;
Absolute : Duration;
Ticks : int;
Result : STATUS;
Wakeup : Boolean := False;
begin
Timedout := False;
Yielded := True;
if Mode = Relative then
Absolute := Orig + Time;
-- Systematically add one since the first tick will delay *at most*
-- 1 / Rate_Duration seconds, so we need to add one to be on the
-- safe side.
Ticks := To_Clock_Ticks (Time);
if Ticks > 0 and then Ticks < int'Last then
Ticks := Ticks + 1;
end if;
else
Absolute := Time;
Ticks := To_Clock_Ticks (Time - Monotonic_Clock);
end if;
if Ticks > 0 then
loop
-- Release the mutex before sleeping
Result := semGive (Self_ID.Common.LL.L.Mutex);
pragma Assert (Result = OK);
-- Perform a blocking operation to take the CV semaphore. Note
-- that a blocking operation in VxWorks will reenable task
-- scheduling. When we are no longer blocked and control is
-- returned, task scheduling will again be disabled.
Result := semTake (Self_ID.Common.LL.CV, Ticks);
if Result = OK then
-- Somebody may have called Wakeup for us
Wakeup := True;
else
if errno /= S_objLib_OBJ_TIMEOUT then
Wakeup := True;
else
-- If Ticks = int'last, it was most probably truncated so
-- let's make another round after recomputing Ticks from
-- the absolute time.
if Ticks /= int'Last then
Timedout := True;
else
Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
if Ticks < 0 then
Timedout := True;
end if;
end if;
end if;
end if;
-- Take the mutex back
Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
pragma Assert (Result = OK);
exit when Timedout or Wakeup;
end loop;
else
Timedout := True;
-- Should never hold a lock while yielding
Result := semGive (Self_ID.Common.LL.L.Mutex);
Result := taskDelay (0);
Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
end if;
end Timed_Sleep;
-----------------
-- Timed_Delay --
-----------------
-- This is for use in implementing delay statements, so we assume the
-- caller is holding no locks.
procedure Timed_Delay
(Self_ID : Task_Id;
Time : Duration;
Mode : ST.Delay_Modes)
is
Orig : constant Duration := Monotonic_Clock;
Absolute : Duration;
Ticks : int;
Timedout : Boolean;
Aborted : Boolean := False;
Result : STATUS;
pragma Warnings (Off, Result);
begin
if Mode = Relative then
Absolute := Orig + Time;
Ticks := To_Clock_Ticks (Time);
if Ticks > 0 and then Ticks < int'Last then
-- First tick will delay anytime between 0 and 1 / sysClkRateGet
-- seconds, so we need to add one to be on the safe side.
Ticks := Ticks + 1;
end if;
else
Absolute := Time;
Ticks := To_Clock_Ticks (Time - Orig);
end if;
if Ticks > 0 then
-- Modifying State, locking the TCB
Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
pragma Assert (Result = OK);
Self_ID.Common.State := Delay_Sleep;
Timedout := False;
loop
Aborted := Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
-- Release the TCB before sleeping
Result := semGive (Self_ID.Common.LL.L.Mutex);
pragma Assert (Result = OK);
exit when Aborted;
Result := semTake (Self_ID.Common.LL.CV, Ticks);
if Result /= OK then
-- If Ticks = int'last, it was most probably truncated, so make
-- another round after recomputing Ticks from absolute time.
if errno = S_objLib_OBJ_TIMEOUT and then Ticks /= int'Last then
Timedout := True;
else
Ticks := To_Clock_Ticks (Absolute - Monotonic_Clock);
if Ticks < 0 then
Timedout := True;
end if;
end if;
end if;
-- Take back the lock after having slept, to protect further
-- access to Self_ID.
Result := semTake (Self_ID.Common.LL.L.Mutex, WAIT_FOREVER);
pragma Assert (Result = OK);
exit when Timedout;
end loop;
Self_ID.Common.State := Runnable;
Result := semGive (Self_ID.Common.LL.L.Mutex);
else
Result := taskDelay (0);
end if;
end Timed_Delay;
---------------------
-- Monotonic_Clock --
---------------------
function Monotonic_Clock return Duration is
TS : aliased timespec;
Result : int;
begin
Result := clock_gettime (OSC.CLOCK_RT_Ada, TS'Unchecked_Access);
pragma Assert (Result = 0);
return To_Duration (TS);
end Monotonic_Clock;
-------------------
-- RT_Resolution --
-------------------
function RT_Resolution return Duration is
begin
return 1.0 / Duration (sysClkRateGet);
end RT_Resolution;
------------
-- Wakeup --
------------
procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
pragma Unreferenced (Reason);
Result : STATUS;
begin
Result := semGive (T.Common.LL.CV);
pragma Assert (Result = OK);
end Wakeup;
-----------
-- Yield --
-----------
procedure Yield (Do_Yield : Boolean := True) is
pragma Unreferenced (Do_Yield);
Result : STATUS;
pragma Unreferenced (Result);
begin
Result := taskDelay (0);
end Yield;
------------------
-- Set_Priority --
------------------
procedure Set_Priority
(T : Task_Id;
Prio : System.Any_Priority;
Loss_Of_Inheritance : Boolean := False)
is
pragma Unreferenced (Loss_Of_Inheritance);
Result : STATUS;
begin
Result :=
taskPrioritySet
(T.Common.LL.Thread, To_VxWorks_Priority (int (Prio)));
pragma Assert (Result = OK);
-- Note: in VxWorks 6.6 (or earlier), the task is placed at the end of
-- the priority queue instead of the head. This is not the behavior
-- required by Annex D (RM D.2.3(5/2)), but we consider it an acceptable
-- variation (RM 1.1.3(6)), given this is the built-in behavior of the
-- operating system. VxWorks versions starting from 6.7 implement the
-- required Annex D semantics.
-- In older versions we attempted to better approximate the Annex D
-- required behavior, but this simulation was not entirely accurate,
-- and it seems better to live with the standard VxWorks semantics.
T.Common.Current_Priority := Prio;
end Set_Priority;
------------------
-- Get_Priority --
------------------
function Get_Priority (T : Task_Id) return System.Any_Priority is
begin
return T.Common.Current_Priority;
end Get_Priority;
----------------
-- Enter_Task --
----------------
procedure Enter_Task (Self_ID : Task_Id) is
begin
-- Store the user-level task id in the Thread field (to be used
-- internally by the run-time system) and the kernel-level task id in
-- the LWP field (to be used by the debugger).
Self_ID.Common.LL.Thread := taskIdSelf;
Self_ID.Common.LL.LWP := getpid;
Specific.Set (Self_ID);
-- Properly initializes the FPU for PPC/MIPS systems
System.Float_Control.Reset;
-- Install the signal handlers
-- This is called for each task since there is no signal inheritance
-- between VxWorks tasks.
Install_Signal_Handlers;
-- If stack checking is enabled, set the stack limit for this task
if Set_Stack_Limit_Hook /= null then
Set_Stack_Limit_Hook.all;
end if;
end Enter_Task;
-------------------
-- Is_Valid_Task --
-------------------
function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
-----------------------------
-- Register_Foreign_Thread --
-----------------------------
function Register_Foreign_Thread return Task_Id is
begin
if Is_Valid_Task then
return Self;
else
return Register_Foreign_Thread (taskIdSelf);
end if;
end Register_Foreign_Thread;
--------------------
-- Initialize_TCB --
--------------------
procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
begin
Self_ID.Common.LL.CV := semBCreate (SEM_Q_PRIORITY, SEM_EMPTY);
Self_ID.Common.LL.Thread := Null_Thread_Id;
if Self_ID.Common.LL.CV = 0 then
Succeeded := False;
else
Succeeded := True;
Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
end if;
end Initialize_TCB;
-----------------
-- Create_Task --
-----------------
procedure Create_Task
(T : Task_Id;
Wrapper : System.Address;
Stack_Size : System.Parameters.Size_Type;
Priority : System.Any_Priority;
Succeeded : out Boolean)
is
Adjusted_Stack_Size : size_t;
use type System.Multiprocessors.CPU_Range;
begin
-- Check whether both Dispatching_Domain and CPU are specified for
-- the task, and the CPU value is not contained within the range of
-- processors for the domain.
if T.Common.Domain /= null
and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
and then
(T.Common.Base_CPU not in T.Common.Domain'Range
or else not T.Common.Domain (T.Common.Base_CPU))
then
Succeeded := False;
return;
end if;
-- Ask for four extra bytes of stack space so that the ATCB pointer can
-- be stored below the stack limit, plus extra space for the frame of
-- Task_Wrapper. This is so the user gets the amount of stack requested
-- exclusive of the needs.
-- We also have to allocate n more bytes for the task name storage and
-- enough space for the Wind Task Control Block which is around 0x778
-- bytes. VxWorks also seems to carve out additional space, so use 2048
-- as a nice round number. We might want to increment to the nearest
-- page size in case we ever support VxVMI.
-- ??? - we should come back and visit this so we can set the task name
-- to something appropriate.
Adjusted_Stack_Size := size_t (Stack_Size) + 2048;
-- Since the initial signal mask of a thread is inherited from the
-- creator, and the Environment task has all its signals masked, we do
-- not need to manipulate caller's signal mask at this point. All tasks
-- in RTS will have All_Tasks_Mask initially.
-- We now compute the VxWorks task name and options, then spawn ...
declare
Name : aliased String (1 .. T.Common.Task_Image_Len + 1);
Name_Address : System.Address;
-- Task name we are going to hand down to VxWorks
function Get_Task_Options return int;
pragma Import (C, Get_Task_Options, "__gnat_get_task_options");
-- Function that returns the options to be set for the task that we
-- are creating. We fetch the options assigned to the current task,
-- so offering some user level control over the options for a task
-- hierarchy, and force VX_FP_TASK because it is almost always
-- required.
begin
-- If there is no Ada task name handy, let VxWorks choose one.
-- Otherwise, tell VxWorks what the Ada task name is.
if T.Common.Task_Image_Len = 0 then
Name_Address := System.Null_Address;
else
Name (1 .. Name'Last - 1) :=
T.Common.Task_Image (1 .. T.Common.Task_Image_Len);
Name (Name'Last) := ASCII.NUL;
Name_Address := Name'Address;
end if;
-- Now spawn the VxWorks task for real
T.Common.LL.Thread :=
taskSpawn
(Name_Address,
To_VxWorks_Priority (int (Priority)),
Get_Task_Options,
Adjusted_Stack_Size,
Wrapper,
To_Address (T));
end;
-- Set processor affinity
Set_Task_Affinity (T);
-- Only case of failure is if taskSpawn returned 0 (aka Null_Thread_Id)
if T.Common.LL.Thread = Null_Thread_Id then
Succeeded := False;
else
Succeeded := True;
Task_Creation_Hook (T.Common.LL.Thread);
Set_Priority (T, Priority);
end if;
end Create_Task;
------------------
-- Finalize_TCB --
------------------
procedure Finalize_TCB (T : Task_Id) is
Result : STATUS;
begin
Result := semDelete (T.Common.LL.L.Mutex);
pragma Assert (Result = OK);
T.Common.LL.Thread := Null_Thread_Id;
Result := semDelete (T.Common.LL.CV);
pragma Assert (Result = OK);
if T.Known_Tasks_Index /= -1 then
Known_Tasks (T.Known_Tasks_Index) := null;
end if;
ATCB_Allocation.Free_ATCB (T);
end Finalize_TCB;
---------------
-- Exit_Task --
---------------
procedure Exit_Task is
begin
Specific.Set (null);
end Exit_Task;
----------------
-- Abort_Task --
----------------
procedure Abort_Task (T : Task_Id) is
Result : int;
begin
Result :=
kill
(T.Common.LL.Thread,
Signal (Interrupt_Management.Abort_Task_Interrupt));
pragma Assert (Result = 0);
end Abort_Task;
----------------
-- Initialize --
----------------
procedure Initialize (S : in out Suspension_Object) is
begin
-- Initialize internal state (always to False (RM D.10(6)))
S.State := False;
S.Waiting := False;
-- Initialize internal mutex
-- Use simpler binary semaphore instead of VxWorks mutual exclusion
-- semaphore, because we don't need the fancier semantics and their
-- overhead.
S.L := semBCreate (SEM_Q_FIFO, SEM_FULL);
-- Initialize internal condition variable
S.CV := semBCreate (SEM_Q_FIFO, SEM_EMPTY);
end Initialize;
--------------
-- Finalize --
--------------
procedure Finalize (S : in out Suspension_Object) is
pragma Unmodified (S);
-- S may be modified on other targets, but not on VxWorks
Result : STATUS;
begin
-- Destroy internal mutex
Result := semDelete (S.L);
pragma Assert (Result = OK);
-- Destroy internal condition variable
Result := semDelete (S.CV);
pragma Assert (Result = OK);
end Finalize;
-------------------
-- Current_State --
-------------------
function Current_State (S : Suspension_Object) return Boolean is
begin
-- We do not want to use lock on this read operation. State is marked
-- as Atomic so that we ensure that the value retrieved is correct.
return S.State;
end Current_State;
---------------
-- Set_False --
---------------
procedure Set_False (S : in out Suspension_Object) is
Result : STATUS;
begin
SSL.Abort_Defer.all;
Result := semTake (S.L, WAIT_FOREVER);
pragma Assert (Result = OK);
S.State := False;
Result := semGive (S.L);
pragma Assert (Result = OK);
SSL.Abort_Undefer.all;
end Set_False;
--------------
-- Set_True --
--------------
procedure Set_True (S : in out Suspension_Object) is
Result : STATUS;
begin
-- Set_True can be called from an interrupt context, in which case
-- Abort_Defer is undefined.
if Is_Task_Context then
SSL.Abort_Defer.all;
end if;
Result := semTake (S.L, WAIT_FOREVER);
pragma Assert (Result = OK);
-- If there is already a task waiting on this suspension object then we
-- resume it, leaving the state of the suspension object to False, as it
-- is specified in (RM D.10 (9)). Otherwise, it just leaves the state to
-- True.
if S.Waiting then
S.Waiting := False;
S.State := False;
Result := semGive (S.CV);
pragma Assert (Result = OK);
else
S.State := True;
end if;
Result := semGive (S.L);
pragma Assert (Result = OK);
-- Set_True can be called from an interrupt context, in which case
-- Abort_Undefer is undefined.
if Is_Task_Context then
SSL.Abort_Undefer.all;
end if;
end Set_True;
------------------------
-- Suspend_Until_True --
------------------------
procedure Suspend_Until_True (S : in out Suspension_Object) is
Result : STATUS;
begin
SSL.Abort_Defer.all;
Result := semTake (S.L, WAIT_FOREVER);
if S.Waiting then
-- Program_Error must be raised upon calling Suspend_Until_True
-- if another task is already waiting on that suspension object
-- (RM D.10(10)).
Result := semGive (S.L);
pragma Assert (Result = OK);
SSL.Abort_Undefer.all;
raise Program_Error;
else
-- Suspend the task if the state is False. Otherwise, the task
-- continues its execution, and the state of the suspension object
-- is set to False (RM D.10 (9)).
if S.State then
S.State := False;
Result := semGive (S.L);
pragma Assert (Result = OK);
SSL.Abort_Undefer.all;
else
S.Waiting := True;
-- Release the mutex before sleeping
Result := semGive (S.L);
pragma Assert (Result = OK);
SSL.Abort_Undefer.all;
Result := semTake (S.CV, WAIT_FOREVER);
pragma Assert (Result = 0);
end if;
end if;
end Suspend_Until_True;
----------------
-- Check_Exit --
----------------
-- Dummy version
function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
pragma Unreferenced (Self_ID);
begin
return True;
end Check_Exit;
--------------------
-- Check_No_Locks --
--------------------
function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
pragma Unreferenced (Self_ID);
begin
return True;
end Check_No_Locks;
----------------------
-- Environment_Task --
----------------------
function Environment_Task return Task_Id is
begin
return Environment_Task_Id;
end Environment_Task;
--------------
-- Lock_RTS --
--------------
procedure Lock_RTS is
begin
Write_Lock (Single_RTS_Lock'Access);
end Lock_RTS;
----------------
-- Unlock_RTS --
----------------
procedure Unlock_RTS is
begin
Unlock (Single_RTS_Lock'Access);
end Unlock_RTS;
------------------
-- Suspend_Task --
------------------
function Suspend_Task
(T : ST.Task_Id;
Thread_Self : Thread_Id) return Boolean
is
begin
if T.Common.LL.Thread /= Null_Thread_Id
and then T.Common.LL.Thread /= Thread_Self
then
return taskSuspend (T.Common.LL.Thread) = OK;
else
return True;
end if;
end Suspend_Task;
-----------------
-- Resume_Task --
-----------------
function Resume_Task
(T : ST.Task_Id;
Thread_Self : Thread_Id) return Boolean
is
begin
if T.Common.LL.Thread /= Null_Thread_Id
and then T.Common.LL.Thread /= Thread_Self
then
return taskResume (T.Common.LL.Thread) = OK;
else
return True;
end if;
end Resume_Task;
--------------------
-- Stop_All_Tasks --
--------------------
procedure Stop_All_Tasks
is
Thread_Self : constant Thread_Id := taskIdSelf;
C : Task_Id;
Dummy : STATUS;
Old : int;
begin
Old := Int_Lock;
C := All_Tasks_List;
while C /= null loop
if C.Common.LL.Thread /= Null_Thread_Id
and then C.Common.LL.Thread /= Thread_Self
then
Dummy := Task_Stop (C.Common.LL.Thread);
end if;
C := C.Common.All_Tasks_Link;
end loop;
Int_Unlock (Old);
end Stop_All_Tasks;
---------------
-- Stop_Task --
---------------
function Stop_Task (T : ST.Task_Id) return Boolean is
begin
if T.Common.LL.Thread /= Null_Thread_Id then
return Task_Stop (T.Common.LL.Thread) = OK;
else
return True;
end if;
end Stop_Task;
-------------------
-- Continue_Task --
-------------------
function Continue_Task (T : ST.Task_Id) return Boolean
is
begin
if T.Common.LL.Thread /= Null_Thread_Id then
return Task_Cont (T.Common.LL.Thread) = OK;
else
return True;
end if;
end Continue_Task;
---------------------
-- Is_Task_Context --
---------------------
function Is_Task_Context return Boolean is
begin
return OSI.Interrupt_Context = 0;
end Is_Task_Context;
----------------
-- Initialize --
----------------
procedure Initialize (Environment_Task : Task_Id) is
Result : STATUS;
pragma Unreferenced (Result);
begin
Environment_Task_Id := Environment_Task;
Interrupt_Management.Initialize;
Specific.Initialize;
if Locking_Policy = 'C' then
Mutex_Protocol := Prio_Protect;
elsif Locking_Policy = 'I' then
Mutex_Protocol := Prio_Inherit;
else
Mutex_Protocol := Prio_None;
end if;
if Time_Slice_Val > 0 then
Result :=
Set_Time_Slice
(To_Clock_Ticks
(Duration (Time_Slice_Val) / Duration (1_000_000.0)));
elsif Dispatching_Policy = 'R' then
Result := Set_Time_Slice (To_Clock_Ticks (0.01));
end if;
-- Initialize the lock used to synchronize chain of all ATCBs
Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
-- Make environment task known here because it doesn't go through
-- Activate_Tasks, which does it for all other tasks.
Known_Tasks (Known_Tasks'First) := Environment_Task;
Environment_Task.Known_Tasks_Index := Known_Tasks'First;
Enter_Task (Environment_Task);
-- Set processor affinity
Set_Task_Affinity (Environment_Task);
end Initialize;
-----------------------
-- Set_Task_Affinity --
-----------------------
procedure Set_Task_Affinity (T : ST.Task_Id) is
Result : int := 0;
pragma Unreferenced (Result);
use System.Task_Info;
use type System.Multiprocessors.CPU_Range;
begin
-- Do nothing if the underlying thread has not yet been created. If the
-- thread has not yet been created then the proper affinity will be set
-- during its creation.
if T.Common.LL.Thread = Null_Thread_Id then
null;
-- pragma CPU
elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
-- Ada 2012 pragma CPU uses CPU numbers starting from 1, while on
-- VxWorks the first CPU is identified by a 0, so we need to adjust.
Result :=
taskCpuAffinitySet
(T.Common.LL.Thread, int (T.Common.Base_CPU) - 1);
-- Task_Info
elsif T.Common.Task_Info /= Unspecified_Task_Info then
Result := taskCpuAffinitySet (T.Common.LL.Thread, T.Common.Task_Info);
-- Handle dispatching domains
elsif T.Common.Domain /= null
and then (T.Common.Domain /= ST.System_Domain
or else T.Common.Domain.all /=
(Multiprocessors.CPU'First ..
Multiprocessors.Number_Of_CPUs => True))
then
declare
CPU_Set : unsigned := 0;
begin
-- Set the affinity to all the processors belonging to the
-- dispatching domain.
for Proc in T.Common.Domain'Range loop
if T.Common.Domain (Proc) then
-- The thread affinity mask is a bit vector in which each
-- bit represents a logical processor.
CPU_Set := CPU_Set + 2 ** (Integer (Proc) - 1);
end if;
end loop;
Result := taskMaskAffinitySet (T.Common.LL.Thread, CPU_Set);
end;
end if;
end Set_Task_Affinity;
end System.Task_Primitives.Operations;
|