1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- ADA.NUMERICS.GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.Numerics.Generic_Elementary_Functions;
package body Ada.Numerics.Generic_Complex_Elementary_Functions is
package Elementary_Functions is new
Ada.Numerics.Generic_Elementary_Functions (Real'Base);
use Elementary_Functions;
PI : constant := 3.14159_26535_89793_23846_26433_83279_50288_41971;
PI_2 : constant := PI / 2.0;
Sqrt_Two : constant := 1.41421_35623_73095_04880_16887_24209_69807_85696;
Log_Two : constant := 0.69314_71805_59945_30941_72321_21458_17656_80755;
subtype T is Real'Base;
Epsilon : constant T := 2.0 ** (1 - T'Model_Mantissa);
Square_Root_Epsilon : constant T := Sqrt_Two ** (1 - T'Model_Mantissa);
Inv_Square_Root_Epsilon : constant T := Sqrt_Two ** (T'Model_Mantissa - 1);
Root_Root_Epsilon : constant T := Sqrt_Two **
((1 - T'Model_Mantissa) / 2);
Log_Inverse_Epsilon_2 : constant T := T (T'Model_Mantissa - 1) / 2.0;
Complex_Zero : constant Complex := (0.0, 0.0);
Complex_One : constant Complex := (1.0, 0.0);
Complex_I : constant Complex := (0.0, 1.0);
Half_Pi : constant Complex := (PI_2, 0.0);
--------
-- ** --
--------
function "**" (Left : Complex; Right : Complex) return Complex is
begin
if Re (Right) = 0.0
and then Im (Right) = 0.0
and then Re (Left) = 0.0
and then Im (Left) = 0.0
then
raise Argument_Error;
elsif Re (Left) = 0.0
and then Im (Left) = 0.0
and then Re (Right) < 0.0
then
raise Constraint_Error;
elsif Re (Left) = 0.0 and then Im (Left) = 0.0 then
return Left;
elsif Right = (0.0, 0.0) then
return Complex_One;
elsif Re (Right) = 0.0 and then Im (Right) = 0.0 then
return 1.0 + Right;
elsif Re (Right) = 1.0 and then Im (Right) = 0.0 then
return Left;
else
return Exp (Right * Log (Left));
end if;
end "**";
function "**" (Left : Real'Base; Right : Complex) return Complex is
begin
if Re (Right) = 0.0 and then Im (Right) = 0.0 and then Left = 0.0 then
raise Argument_Error;
elsif Left = 0.0 and then Re (Right) < 0.0 then
raise Constraint_Error;
elsif Left = 0.0 then
return Compose_From_Cartesian (Left, 0.0);
elsif Re (Right) = 0.0 and then Im (Right) = 0.0 then
return Complex_One;
elsif Re (Right) = 1.0 and then Im (Right) = 0.0 then
return Compose_From_Cartesian (Left, 0.0);
else
return Exp (Log (Left) * Right);
end if;
end "**";
function "**" (Left : Complex; Right : Real'Base) return Complex is
begin
if Right = 0.0
and then Re (Left) = 0.0
and then Im (Left) = 0.0
then
raise Argument_Error;
elsif Re (Left) = 0.0
and then Im (Left) = 0.0
and then Right < 0.0
then
raise Constraint_Error;
elsif Re (Left) = 0.0 and then Im (Left) = 0.0 then
return Left;
elsif Right = 0.0 then
return Complex_One;
elsif Right = 1.0 then
return Left;
else
return Exp (Right * Log (Left));
end if;
end "**";
------------
-- Arccos --
------------
function Arccos (X : Complex) return Complex is
Result : Complex;
begin
if X = Complex_One then
return Complex_Zero;
elsif abs Re (X) < Square_Root_Epsilon and then
abs Im (X) < Square_Root_Epsilon
then
return Half_Pi - X;
elsif abs Re (X) > Inv_Square_Root_Epsilon or else
abs Im (X) > Inv_Square_Root_Epsilon
then
return -2.0 * Complex_I * Log (Sqrt ((1.0 + X) / 2.0) +
Complex_I * Sqrt ((1.0 - X) / 2.0));
end if;
Result := -Complex_I * Log (X + Complex_I * Sqrt (1.0 - X * X));
if Im (X) = 0.0
and then abs Re (X) <= 1.00
then
Set_Im (Result, Im (X));
end if;
return Result;
end Arccos;
-------------
-- Arccosh --
-------------
function Arccosh (X : Complex) return Complex is
Result : Complex;
begin
if X = Complex_One then
return Complex_Zero;
elsif abs Re (X) < Square_Root_Epsilon and then
abs Im (X) < Square_Root_Epsilon
then
Result := Compose_From_Cartesian (-Im (X), -PI_2 + Re (X));
elsif abs Re (X) > Inv_Square_Root_Epsilon or else
abs Im (X) > Inv_Square_Root_Epsilon
then
Result := Log_Two + Log (X);
else
Result := 2.0 * Log (Sqrt ((1.0 + X) / 2.0) +
Sqrt ((X - 1.0) / 2.0));
end if;
if Re (Result) <= 0.0 then
Result := -Result;
end if;
return Result;
end Arccosh;
------------
-- Arccot --
------------
function Arccot (X : Complex) return Complex is
Xt : Complex;
begin
if abs Re (X) < Square_Root_Epsilon and then
abs Im (X) < Square_Root_Epsilon
then
return Half_Pi - X;
elsif abs Re (X) > 1.0 / Epsilon or else
abs Im (X) > 1.0 / Epsilon
then
Xt := Complex_One / X;
if Re (X) < 0.0 then
Set_Re (Xt, PI - Re (Xt));
return Xt;
else
return Xt;
end if;
end if;
Xt := Complex_I * Log ((X - Complex_I) / (X + Complex_I)) / 2.0;
if Re (Xt) < 0.0 then
Xt := PI + Xt;
end if;
return Xt;
end Arccot;
--------------
-- Arccoth --
--------------
function Arccoth (X : Complex) return Complex is
R : Complex;
begin
if X = (0.0, 0.0) then
return Compose_From_Cartesian (0.0, PI_2);
elsif abs Re (X) < Square_Root_Epsilon
and then abs Im (X) < Square_Root_Epsilon
then
return PI_2 * Complex_I + X;
elsif abs Re (X) > 1.0 / Epsilon or else
abs Im (X) > 1.0 / Epsilon
then
if Im (X) > 0.0 then
return (0.0, 0.0);
else
return PI * Complex_I;
end if;
elsif Im (X) = 0.0 and then Re (X) = 1.0 then
raise Constraint_Error;
elsif Im (X) = 0.0 and then Re (X) = -1.0 then
raise Constraint_Error;
end if;
begin
R := Log ((1.0 + X) / (X - 1.0)) / 2.0;
exception
when Constraint_Error =>
R := (Log (1.0 + X) - Log (X - 1.0)) / 2.0;
end;
if Im (R) < 0.0 then
Set_Im (R, PI + Im (R));
end if;
if Re (X) = 0.0 then
Set_Re (R, Re (X));
end if;
return R;
end Arccoth;
------------
-- Arcsin --
------------
function Arcsin (X : Complex) return Complex is
Result : Complex;
begin
-- For very small argument, sin (x) = x
if abs Re (X) < Square_Root_Epsilon and then
abs Im (X) < Square_Root_Epsilon
then
return X;
elsif abs Re (X) > Inv_Square_Root_Epsilon or else
abs Im (X) > Inv_Square_Root_Epsilon
then
Result := -Complex_I * (Log (Complex_I * X) + Log (2.0 * Complex_I));
if Im (Result) > PI_2 then
Set_Im (Result, PI - Im (X));
elsif Im (Result) < -PI_2 then
Set_Im (Result, -(PI + Im (X)));
end if;
return Result;
end if;
Result := -Complex_I * Log (Complex_I * X + Sqrt (1.0 - X * X));
if Re (X) = 0.0 then
Set_Re (Result, Re (X));
elsif Im (X) = 0.0
and then abs Re (X) <= 1.00
then
Set_Im (Result, Im (X));
end if;
return Result;
end Arcsin;
-------------
-- Arcsinh --
-------------
function Arcsinh (X : Complex) return Complex is
Result : Complex;
begin
if abs Re (X) < Square_Root_Epsilon and then
abs Im (X) < Square_Root_Epsilon
then
return X;
elsif abs Re (X) > Inv_Square_Root_Epsilon or else
abs Im (X) > Inv_Square_Root_Epsilon
then
Result := Log_Two + Log (X); -- may have wrong sign
if (Re (X) < 0.0 and then Re (Result) > 0.0)
or else (Re (X) > 0.0 and then Re (Result) < 0.0)
then
Set_Re (Result, -Re (Result));
end if;
return Result;
end if;
Result := Log (X + Sqrt (1.0 + X * X));
if Re (X) = 0.0 then
Set_Re (Result, Re (X));
elsif Im (X) = 0.0 then
Set_Im (Result, Im (X));
end if;
return Result;
end Arcsinh;
------------
-- Arctan --
------------
function Arctan (X : Complex) return Complex is
begin
if abs Re (X) < Square_Root_Epsilon and then
abs Im (X) < Square_Root_Epsilon
then
return X;
else
return -Complex_I * (Log (1.0 + Complex_I * X)
- Log (1.0 - Complex_I * X)) / 2.0;
end if;
end Arctan;
-------------
-- Arctanh --
-------------
function Arctanh (X : Complex) return Complex is
begin
if abs Re (X) < Square_Root_Epsilon and then
abs Im (X) < Square_Root_Epsilon
then
return X;
else
return (Log (1.0 + X) - Log (1.0 - X)) / 2.0;
end if;
end Arctanh;
---------
-- Cos --
---------
function Cos (X : Complex) return Complex is
begin
return
Compose_From_Cartesian
(Cos (Re (X)) * Cosh (Im (X)),
-(Sin (Re (X)) * Sinh (Im (X))));
end Cos;
----------
-- Cosh --
----------
function Cosh (X : Complex) return Complex is
begin
return
Compose_From_Cartesian
(Cosh (Re (X)) * Cos (Im (X)),
Sinh (Re (X)) * Sin (Im (X)));
end Cosh;
---------
-- Cot --
---------
function Cot (X : Complex) return Complex is
begin
if abs Re (X) < Square_Root_Epsilon and then
abs Im (X) < Square_Root_Epsilon
then
return Complex_One / X;
elsif Im (X) > Log_Inverse_Epsilon_2 then
return -Complex_I;
elsif Im (X) < -Log_Inverse_Epsilon_2 then
return Complex_I;
end if;
return Cos (X) / Sin (X);
end Cot;
----------
-- Coth --
----------
function Coth (X : Complex) return Complex is
begin
if abs Re (X) < Square_Root_Epsilon and then
abs Im (X) < Square_Root_Epsilon
then
return Complex_One / X;
elsif Re (X) > Log_Inverse_Epsilon_2 then
return Complex_One;
elsif Re (X) < -Log_Inverse_Epsilon_2 then
return -Complex_One;
else
return Cosh (X) / Sinh (X);
end if;
end Coth;
---------
-- Exp --
---------
function Exp (X : Complex) return Complex is
ImX : constant Real'Base := Im (X);
EXP_RE_X : constant Real'Base := Exp (Re (X));
begin
return Compose_From_Cartesian (EXP_RE_X * Cos (ImX),
EXP_RE_X * Sin (ImX));
end Exp;
function Exp (X : Imaginary) return Complex is
ImX : constant Real'Base := Im (X);
begin
return Compose_From_Cartesian (Cos (ImX), Sin (ImX));
end Exp;
---------
-- Log --
---------
function Log (X : Complex) return Complex is
ReX : Real'Base;
ImX : Real'Base;
Z : Complex;
begin
if Re (X) = 0.0 and then Im (X) = 0.0 then
raise Constraint_Error;
elsif abs (1.0 - Re (X)) < Root_Root_Epsilon
and then abs Im (X) < Root_Root_Epsilon
then
Z := X;
Set_Re (Z, Re (Z) - 1.0);
return (1.0 - (1.0 / 2.0 -
(1.0 / 3.0 - (1.0 / 4.0) * Z) * Z) * Z) * Z;
end if;
begin
ReX := Log (Modulus (X));
exception
when Constraint_Error =>
ReX := Log (Modulus (X / 2.0)) - Log_Two;
end;
ImX := Arctan (Im (X), Re (X));
if ImX > PI then
ImX := ImX - 2.0 * PI;
end if;
return Compose_From_Cartesian (ReX, ImX);
end Log;
---------
-- Sin --
---------
function Sin (X : Complex) return Complex is
begin
if abs Re (X) < Square_Root_Epsilon
and then
abs Im (X) < Square_Root_Epsilon
then
return X;
end if;
return
Compose_From_Cartesian
(Sin (Re (X)) * Cosh (Im (X)),
Cos (Re (X)) * Sinh (Im (X)));
end Sin;
----------
-- Sinh --
----------
function Sinh (X : Complex) return Complex is
begin
if abs Re (X) < Square_Root_Epsilon and then
abs Im (X) < Square_Root_Epsilon
then
return X;
else
return Compose_From_Cartesian (Sinh (Re (X)) * Cos (Im (X)),
Cosh (Re (X)) * Sin (Im (X)));
end if;
end Sinh;
----------
-- Sqrt --
----------
function Sqrt (X : Complex) return Complex is
ReX : constant Real'Base := Re (X);
ImX : constant Real'Base := Im (X);
XR : constant Real'Base := abs Re (X);
YR : constant Real'Base := abs Im (X);
R : Real'Base;
R_X : Real'Base;
R_Y : Real'Base;
begin
-- Deal with pure real case, see (RM G.1.2(39))
if ImX = 0.0 then
if ReX > 0.0 then
return
Compose_From_Cartesian
(Sqrt (ReX), 0.0);
elsif ReX = 0.0 then
return X;
else
return
Compose_From_Cartesian
(0.0, Real'Copy_Sign (Sqrt (-ReX), ImX));
end if;
elsif ReX = 0.0 then
R_X := Sqrt (YR / 2.0);
if ImX > 0.0 then
return Compose_From_Cartesian (R_X, R_X);
else
return Compose_From_Cartesian (R_X, -R_X);
end if;
else
R := Sqrt (XR ** 2 + YR ** 2);
-- If the square of the modulus overflows, try rescaling the
-- real and imaginary parts. We cannot depend on an exception
-- being raised on all targets.
if R > Real'Base'Last then
raise Constraint_Error;
end if;
-- We are solving the system
-- XR = R_X ** 2 - Y_R ** 2 (1)
-- YR = 2.0 * R_X * R_Y (2)
--
-- The symmetric solution involves square roots for both R_X and
-- R_Y, but it is more accurate to use the square root with the
-- larger argument for either R_X or R_Y, and equation (2) for the
-- other.
if ReX < 0.0 then
R_Y := Sqrt (0.5 * (R - ReX));
R_X := YR / (2.0 * R_Y);
else
R_X := Sqrt (0.5 * (R + ReX));
R_Y := YR / (2.0 * R_X);
end if;
end if;
if Im (X) < 0.0 then -- halve angle, Sqrt of magnitude
R_Y := -R_Y;
end if;
return Compose_From_Cartesian (R_X, R_Y);
exception
when Constraint_Error =>
-- Rescale and try again
R := Modulus (Compose_From_Cartesian (Re (X / 4.0), Im (X / 4.0)));
R_X := 2.0 * Sqrt (0.5 * R + 0.5 * Re (X / 4.0));
R_Y := 2.0 * Sqrt (0.5 * R - 0.5 * Re (X / 4.0));
if Im (X) < 0.0 then -- halve angle, Sqrt of magnitude
R_Y := -R_Y;
end if;
return Compose_From_Cartesian (R_X, R_Y);
end Sqrt;
---------
-- Tan --
---------
function Tan (X : Complex) return Complex is
begin
if abs Re (X) < Square_Root_Epsilon and then
abs Im (X) < Square_Root_Epsilon
then
return X;
elsif Im (X) > Log_Inverse_Epsilon_2 then
return Complex_I;
elsif Im (X) < -Log_Inverse_Epsilon_2 then
return -Complex_I;
else
return Sin (X) / Cos (X);
end if;
end Tan;
----------
-- Tanh --
----------
function Tanh (X : Complex) return Complex is
begin
if abs Re (X) < Square_Root_Epsilon and then
abs Im (X) < Square_Root_Epsilon
then
return X;
elsif Re (X) > Log_Inverse_Epsilon_2 then
return Complex_One;
elsif Re (X) < -Log_Inverse_Epsilon_2 then
return -Complex_One;
else
return Sinh (X) / Cosh (X);
end if;
end Tanh;
end Ada.Numerics.Generic_Complex_Elementary_Functions;
|