1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- ADA.NUMERICS.GENERIC_ELEMENTARY_FUNCTIONS --
-- --
-- S p e c --
-- --
-- Copyright (C) 2012-2024, Free Software Foundation, Inc. --
-- --
-- This specification is derived from the Ada Reference Manual for use with --
-- GNAT. The copyright notice above, and the license provisions that follow --
-- apply solely to the Post aspects that have been added to the spec. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
generic
type Float_Type is digits <>;
package Ada.Numerics.Generic_Elementary_Functions with
SPARK_Mode => On,
Always_Terminates
is
pragma Pure;
-- Preconditions in this unit are meant for analysis only, not for run-time
-- checking, so that the expected exceptions are raised when calling
-- Assert. This is enforced by setting the corresponding assertion policy
-- to Ignore. This is done in the generic spec so that it applies to all
-- instances.
pragma Assertion_Policy (Pre => Ignore);
function Sqrt (X : Float_Type'Base) return Float_Type'Base with
Pre => X >= 0.0,
Post => Sqrt'Result >= 0.0
and then (if X = 0.0 then Sqrt'Result = 0.0)
and then (if X = 1.0 then Sqrt'Result = 1.0)
-- Finally if X is positive, the result of Sqrt is positive (because
-- the sqrt of numbers greater than 1 is greater than or equal to 1,
-- and the sqrt of numbers less than 1 is greater than the argument).
-- This property is useful in particular for static analysis. The
-- property that X is positive is not expressed as (X > 0.0), as
-- the value X may be held in registers that have larger range and
-- precision on some architecture (for example, on x86 using x387
-- FPU, as opposed to SSE2). So, it might be possible for X to be
-- 2.0**(-5000) or so, which could cause the number to compare as
-- greater than 0, but Sqrt would still return a zero result.
-- Note: we use the comparison with Succ (0.0) here because this is
-- more amenable to CodePeer analysis than the use of 'Machine.
and then (if X >= Float_Type'Succ (0.0) then Sqrt'Result > 0.0);
function Log (X : Float_Type'Base) return Float_Type'Base with
Pre => X > 0.0,
Post => (if X = 1.0 then Log'Result = 0.0);
function Log (X, Base : Float_Type'Base) return Float_Type'Base with
Pre => X > 0.0 and Base > 0.0 and Base /= 1.0,
Post => (if X = 1.0 then Log'Result = 0.0);
function Exp (X : Float_Type'Base) return Float_Type'Base with
Post => (if X = 0.0 then Exp'Result = 1.0);
function "**" (Left, Right : Float_Type'Base) return Float_Type'Base with
Pre => (if Left = 0.0 then Right > 0.0) and Left >= 0.0,
Post => "**"'Result >= 0.0
and then (if Right = 0.0 then "**"'Result = 1.0)
and then (if Right = 1.0 then "**"'Result = Left)
and then (if Left = 1.0 then "**"'Result = 1.0)
and then (if Left = 0.0 then "**"'Result = 0.0);
function Sin (X : Float_Type'Base) return Float_Type'Base with
Inline,
Post => Sin'Result in -1.0 .. 1.0
and then (if X = 0.0 then Sin'Result = 0.0);
function Sin (X, Cycle : Float_Type'Base) return Float_Type'Base with
Pre => Cycle > 0.0,
Post => Sin'Result in -1.0 .. 1.0
and then (if X = 0.0 then Sin'Result = 0.0);
function Cos (X : Float_Type'Base) return Float_Type'Base with
Inline,
Post => Cos'Result in -1.0 .. 1.0
and then (if X = 0.0 then Cos'Result = 1.0);
function Cos (X, Cycle : Float_Type'Base) return Float_Type'Base with
Pre => Cycle > 0.0,
Post => Cos'Result in -1.0 .. 1.0
and then (if X = 0.0 then Cos'Result = 1.0);
function Tan (X : Float_Type'Base) return Float_Type'Base with
Post => (if X = 0.0 then Tan'Result = 0.0);
function Tan (X, Cycle : Float_Type'Base) return Float_Type'Base with
Pre => Cycle > 0.0
and then abs Float_Type'Base'Remainder (X, Cycle) /= 0.25 * Cycle,
Post => (if X = 0.0 then Tan'Result = 0.0);
function Cot (X : Float_Type'Base) return Float_Type'Base with
Pre => X /= 0.0;
function Cot (X, Cycle : Float_Type'Base) return Float_Type'Base with
Pre => Cycle > 0.0
and then X /= 0.0
and then Float_Type'Base'Remainder (X, Cycle) /= 0.0
and then abs Float_Type'Base'Remainder (X, Cycle) /= 0.5 * Cycle;
function Arcsin (X : Float_Type'Base) return Float_Type'Base with
Pre => abs X <= 1.0,
Post => (if X = 0.0 then Arcsin'Result = 0.0);
function Arcsin (X, Cycle : Float_Type'Base) return Float_Type'Base with
Pre => Cycle > 0.0 and abs X <= 1.0,
Post => (if X = 0.0 then Arcsin'Result = 0.0);
function Arccos (X : Float_Type'Base) return Float_Type'Base with
Pre => abs X <= 1.0,
Post => (if X = 1.0 then Arccos'Result = 0.0);
function Arccos (X, Cycle : Float_Type'Base) return Float_Type'Base with
Pre => Cycle > 0.0 and abs X <= 1.0,
Post => (if X = 1.0 then Arccos'Result = 0.0);
function Arctan
(Y : Float_Type'Base;
X : Float_Type'Base := 1.0) return Float_Type'Base
with
Pre => X /= 0.0 or Y /= 0.0,
Post => (if X > 0.0 and then Y = 0.0 then Arctan'Result = 0.0);
function Arctan
(Y : Float_Type'Base;
X : Float_Type'Base := 1.0;
Cycle : Float_Type'Base) return Float_Type'Base
with
Pre => Cycle > 0.0 and (X /= 0.0 or Y /= 0.0),
Post => (if X > 0.0 and then Y = 0.0 then Arctan'Result = 0.0);
function Arccot
(X : Float_Type'Base;
Y : Float_Type'Base := 1.0) return Float_Type'Base
with
Pre => X /= 0.0 or Y /= 0.0,
Post => (if X > 0.0 and then Y = 0.0 then Arccot'Result = 0.0);
function Arccot
(X : Float_Type'Base;
Y : Float_Type'Base := 1.0;
Cycle : Float_Type'Base) return Float_Type'Base
with
Pre => Cycle > 0.0 and (X /= 0.0 or Y /= 0.0),
Post => (if X > 0.0 and then Y = 0.0 then Arccot'Result = 0.0);
function Sinh (X : Float_Type'Base) return Float_Type'Base with
Post => (if X = 0.0 then Sinh'Result = 0.0);
function Cosh (X : Float_Type'Base) return Float_Type'Base with
Post => Cosh'Result >= 1.0
and then (if X = 0.0 then Cosh'Result = 1.0);
function Tanh (X : Float_Type'Base) return Float_Type'Base with
Post => Tanh'Result in -1.0 .. 1.0
and then (if X = 0.0 then Tanh'Result = 0.0);
function Coth (X : Float_Type'Base) return Float_Type'Base with
Pre => X /= 0.0,
Post => abs Coth'Result >= 1.0;
function Arcsinh (X : Float_Type'Base) return Float_Type'Base with
Post => (if X = 0.0 then Arcsinh'Result = 0.0);
function Arccosh (X : Float_Type'Base) return Float_Type'Base with
Pre => X >= 1.0,
Post => Arccosh'Result >= 0.0
and then (if X = 1.0 then Arccosh'Result = 0.0);
function Arctanh (X : Float_Type'Base) return Float_Type'Base with
Pre => abs X < 1.0,
Post => (if X = 0.0 then Arctanh'Result = 0.0);
function Arccoth (X : Float_Type'Base) return Float_Type'Base with
Pre => abs X > 1.0;
end Ada.Numerics.Generic_Elementary_Functions;
|