1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
|
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- G N A T . L I S T S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2018-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.Unchecked_Deallocation;
package body GNAT.Lists is
package body Doubly_Linked_Lists is
procedure Delete_Node
(L : Doubly_Linked_List;
Nod : Node_Ptr);
pragma Inline (Delete_Node);
-- Detach and delete node Nod from list L
procedure Ensure_Circular (Head : Node_Ptr);
pragma Inline (Ensure_Circular);
-- Ensure that dummy head Head is circular with respect to itself
procedure Ensure_Created (L : Doubly_Linked_List);
pragma Inline (Ensure_Created);
-- Verify that list L is created. Raise Not_Created if this is not the
-- case.
procedure Ensure_Full (L : Doubly_Linked_List);
pragma Inline (Ensure_Full);
-- Verify that list L contains at least one element. Raise List_Empty if
-- this is not the case.
procedure Ensure_Unlocked (L : Doubly_Linked_List);
pragma Inline (Ensure_Unlocked);
-- Verify that list L is unlocked. Raise Iterated if this is not the
-- case.
function Find_Node
(Head : Node_Ptr;
Elem : Element_Type) return Node_Ptr;
pragma Inline (Find_Node);
-- Travers a list indicated by dummy head Head to determine whethe there
-- exists a node with element Elem. If such a node exists, return it,
-- otherwise return null;
procedure Free is
new Ada.Unchecked_Deallocation
(Doubly_Linked_List_Attributes, Doubly_Linked_List);
procedure Free is new Ada.Unchecked_Deallocation (Node, Node_Ptr);
procedure Insert_Between
(L : Doubly_Linked_List;
Elem : Element_Type;
Left : Node_Ptr;
Right : Node_Ptr);
pragma Inline (Insert_Between);
-- Insert element Elem between nodes Left and Right of list L
function Is_Valid (Iter : Iterator) return Boolean;
pragma Inline (Is_Valid);
-- Determine whether iterator Iter refers to a valid element
function Is_Valid
(Nod : Node_Ptr;
Head : Node_Ptr) return Boolean;
pragma Inline (Is_Valid);
-- Determine whether node Nod is non-null and does not refer to dummy
-- head Head, thus making it valid.
procedure Lock (L : Doubly_Linked_List);
pragma Inline (Lock);
-- Lock all mutation functionality of list L
function Present (Nod : Node_Ptr) return Boolean;
pragma Inline (Present);
-- Determine whether node Nod exists
procedure Unlock (L : Doubly_Linked_List);
pragma Inline (Unlock);
-- Unlock all mutation functionality of list L
------------
-- Append --
------------
procedure Append
(L : Doubly_Linked_List;
Elem : Element_Type)
is
Head : Node_Ptr;
begin
Ensure_Created (L);
Ensure_Unlocked (L);
-- Ensure that the dummy head of an empty list is circular with
-- respect to itself.
Head := L.Nodes'Access;
Ensure_Circular (Head);
-- Append the node by inserting it between the last node and the
-- dummy head.
Insert_Between
(L => L,
Elem => Elem,
Left => Head.Prev,
Right => Head);
end Append;
------------
-- Create --
------------
function Create return Doubly_Linked_List is
begin
return new Doubly_Linked_List_Attributes;
end Create;
--------------
-- Contains --
--------------
function Contains
(L : Doubly_Linked_List;
Elem : Element_Type) return Boolean
is
Head : Node_Ptr;
Nod : Node_Ptr;
begin
Ensure_Created (L);
Head := L.Nodes'Access;
Nod := Find_Node (Head, Elem);
return Is_Valid (Nod, Head);
end Contains;
------------
-- Delete --
------------
procedure Delete
(L : Doubly_Linked_List;
Elem : Element_Type)
is
Head : Node_Ptr;
Nod : Node_Ptr;
begin
Ensure_Created (L);
Ensure_Full (L);
Ensure_Unlocked (L);
Head := L.Nodes'Access;
Nod := Find_Node (Head, Elem);
if Is_Valid (Nod, Head) then
Delete_Node (L, Nod);
end if;
end Delete;
------------------
-- Delete_First --
------------------
procedure Delete_First (L : Doubly_Linked_List) is
Head : Node_Ptr;
Nod : Node_Ptr;
begin
Ensure_Created (L);
Ensure_Full (L);
Ensure_Unlocked (L);
Head := L.Nodes'Access;
Nod := Head.Next;
if Is_Valid (Nod, Head) then
Delete_Node (L, Nod);
end if;
end Delete_First;
-----------------
-- Delete_Last --
-----------------
procedure Delete_Last (L : Doubly_Linked_List) is
Head : Node_Ptr;
Nod : Node_Ptr;
begin
Ensure_Created (L);
Ensure_Full (L);
Ensure_Unlocked (L);
Head := L.Nodes'Access;
Nod := Head.Prev;
if Is_Valid (Nod, Head) then
Delete_Node (L, Nod);
end if;
end Delete_Last;
-----------------
-- Delete_Node --
-----------------
procedure Delete_Node
(L : Doubly_Linked_List;
Nod : Node_Ptr)
is
Ref : Node_Ptr := Nod;
pragma Assert (Present (Ref));
Next : constant Node_Ptr := Ref.Next;
Prev : constant Node_Ptr := Ref.Prev;
begin
pragma Assert (Present (L));
pragma Assert (Present (Next));
pragma Assert (Present (Prev));
Prev.Next := Next; -- Prev ---> Next
Next.Prev := Prev; -- Prev <--> Next
Ref.Next := null;
Ref.Prev := null;
L.Elements := L.Elements - 1;
-- Invoke the element destructor before deallocating the node
Destroy_Element (Nod.Elem);
Free (Ref);
end Delete_Node;
-------------
-- Destroy --
-------------
procedure Destroy (L : in out Doubly_Linked_List) is
Head : Node_Ptr;
begin
Ensure_Created (L);
Ensure_Unlocked (L);
Head := L.Nodes'Access;
while Is_Valid (Head.Next, Head) loop
Delete_Node (L, Head.Next);
end loop;
Free (L);
end Destroy;
---------------------
-- Ensure_Circular --
---------------------
procedure Ensure_Circular (Head : Node_Ptr) is
pragma Assert (Present (Head));
begin
if not Present (Head.Next) and then not Present (Head.Prev) then
Head.Next := Head;
Head.Prev := Head;
end if;
end Ensure_Circular;
--------------------
-- Ensure_Created --
--------------------
procedure Ensure_Created (L : Doubly_Linked_List) is
begin
if not Present (L) then
raise Not_Created;
end if;
end Ensure_Created;
-----------------
-- Ensure_Full --
-----------------
procedure Ensure_Full (L : Doubly_Linked_List) is
begin
pragma Assert (Present (L));
if L.Elements = 0 then
raise List_Empty;
end if;
end Ensure_Full;
---------------------
-- Ensure_Unlocked --
---------------------
procedure Ensure_Unlocked (L : Doubly_Linked_List) is
begin
pragma Assert (Present (L));
-- The list has at least one outstanding iterator
if L.Iterators > 0 then
raise Iterated;
end if;
end Ensure_Unlocked;
-----------
-- Equal --
-----------
function Equal
(Left : Doubly_Linked_List;
Right : Doubly_Linked_List) return Boolean
is
Left_Head : Node_Ptr;
Left_Nod : Node_Ptr;
Right_Head : Node_Ptr;
Right_Nod : Node_Ptr;
begin
-- Two non-existent lists are considered equal
if Left = Nil and then Right = Nil then
return True;
-- A non-existent list is never equal to an already created list
elsif Left = Nil or else Right = Nil then
return False;
-- The two lists must contain the same number of elements to be equal
elsif Size (Left) /= Size (Right) then
return False;
end if;
-- Compare the two lists element by element
Left_Head := Left.Nodes'Access;
Left_Nod := Left_Head.Next;
Right_Head := Right.Nodes'Access;
Right_Nod := Right_Head.Next;
while Is_Valid (Left_Nod, Left_Head)
and then
Is_Valid (Right_Nod, Right_Head)
loop
if Left_Nod.Elem /= Right_Nod.Elem then
return False;
end if;
Left_Nod := Left_Nod.Next;
Right_Nod := Right_Nod.Next;
end loop;
return True;
end Equal;
---------------
-- Find_Node --
---------------
function Find_Node
(Head : Node_Ptr;
Elem : Element_Type) return Node_Ptr
is
pragma Assert (Present (Head));
Nod : Node_Ptr;
begin
-- Traverse the nodes of the list, looking for a matching element
Nod := Head.Next;
while Is_Valid (Nod, Head) loop
if Nod.Elem = Elem then
return Nod;
end if;
Nod := Nod.Next;
end loop;
return null;
end Find_Node;
-----------
-- First --
-----------
function First (L : Doubly_Linked_List) return Element_Type is
begin
Ensure_Created (L);
Ensure_Full (L);
return L.Nodes.Next.Elem;
end First;
--------------
-- Has_Next --
--------------
function Has_Next (Iter : Iterator) return Boolean is
Is_OK : constant Boolean := Is_Valid (Iter);
begin
-- The iterator is no longer valid which indicates that it has been
-- exhausted. Unlock all mutation functionality of the list because
-- the iterator cannot be advanced any further.
if not Is_OK then
Unlock (Iter.List);
end if;
return Is_OK;
end Has_Next;
------------------
-- Insert_After --
------------------
procedure Insert_After
(L : Doubly_Linked_List;
After : Element_Type;
Elem : Element_Type)
is
Head : Node_Ptr;
Nod : Node_Ptr;
begin
Ensure_Created (L);
Ensure_Unlocked (L);
Head := L.Nodes'Access;
Nod := Find_Node (Head, After);
if Is_Valid (Nod, Head) then
Insert_Between
(L => L,
Elem => Elem,
Left => Nod,
Right => Nod.Next);
end if;
end Insert_After;
-------------------
-- Insert_Before --
-------------------
procedure Insert_Before
(L : Doubly_Linked_List;
Before : Element_Type;
Elem : Element_Type)
is
Head : Node_Ptr;
Nod : Node_Ptr;
begin
Ensure_Created (L);
Ensure_Unlocked (L);
Head := L.Nodes'Access;
Nod := Find_Node (Head, Before);
if Is_Valid (Nod, Head) then
Insert_Between
(L => L,
Elem => Elem,
Left => Nod.Prev,
Right => Nod);
end if;
end Insert_Before;
--------------------
-- Insert_Between --
--------------------
procedure Insert_Between
(L : Doubly_Linked_List;
Elem : Element_Type;
Left : Node_Ptr;
Right : Node_Ptr)
is
pragma Assert (Present (L));
pragma Assert (Present (Left));
pragma Assert (Present (Right));
Nod : constant Node_Ptr :=
new Node'(Elem => Elem,
Next => Right, -- Left Nod ---> Right
Prev => Left); -- Left <--- Nod ---> Right
begin
Left.Next := Nod; -- Left <--> Nod ---> Right
Right.Prev := Nod; -- Left <--> Nod <--> Right
L.Elements := L.Elements + 1;
end Insert_Between;
--------------
-- Is_Empty --
--------------
function Is_Empty (L : Doubly_Linked_List) return Boolean is
begin
Ensure_Created (L);
return L.Elements = 0;
end Is_Empty;
--------------
-- Is_Valid --
--------------
function Is_Valid (Iter : Iterator) return Boolean is
begin
-- The invariant of Iterate and Next ensures that the iterator always
-- refers to a valid node if there exists one.
return Is_Valid (Iter.Curr_Nod, Iter.List.Nodes'Access);
end Is_Valid;
--------------
-- Is_Valid --
--------------
function Is_Valid
(Nod : Node_Ptr;
Head : Node_Ptr) return Boolean
is
begin
-- A node is valid if it is non-null, and does not refer to the dummy
-- head of some list.
return Present (Nod) and then Nod /= Head;
end Is_Valid;
-------------
-- Iterate --
-------------
function Iterate (L : Doubly_Linked_List) return Iterator is
begin
Ensure_Created (L);
-- Lock all mutation functionality of the list while it is being
-- iterated on.
Lock (L);
return (List => L, Curr_Nod => L.Nodes.Next);
end Iterate;
----------
-- Last --
----------
function Last (L : Doubly_Linked_List) return Element_Type is
begin
Ensure_Created (L);
Ensure_Full (L);
return L.Nodes.Prev.Elem;
end Last;
----------
-- Lock --
----------
procedure Lock (L : Doubly_Linked_List) is
begin
pragma Assert (Present (L));
-- The list may be locked multiple times if multiple iterators are
-- operating over it.
L.Iterators := L.Iterators + 1;
end Lock;
----------
-- Next --
----------
procedure Next
(Iter : in out Iterator;
Elem : out Element_Type)
is
Is_OK : constant Boolean := Is_Valid (Iter);
Saved : constant Node_Ptr := Iter.Curr_Nod;
begin
-- The iterator is no linger valid which indicates that it has been
-- exhausted. Unlock all mutation functionality of the list as the
-- iterator cannot be advanced any further.
if not Is_OK then
Unlock (Iter.List);
raise Iterator_Exhausted;
end if;
-- Advance to the next node along the list
Iter.Curr_Nod := Iter.Curr_Nod.Next;
Elem := Saved.Elem;
end Next;
-------------
-- Prepend --
-------------
procedure Prepend
(L : Doubly_Linked_List;
Elem : Element_Type)
is
Head : Node_Ptr;
begin
Ensure_Created (L);
Ensure_Unlocked (L);
-- Ensure that the dummy head of an empty list is circular with
-- respect to itself.
Head := L.Nodes'Access;
Ensure_Circular (Head);
-- Append the node by inserting it between the dummy head and the
-- first node.
Insert_Between
(L => L,
Elem => Elem,
Left => Head,
Right => Head.Next);
end Prepend;
-------------
-- Present --
-------------
function Present (L : Doubly_Linked_List) return Boolean is
begin
return L /= Nil;
end Present;
-------------
-- Present --
-------------
function Present (Nod : Node_Ptr) return Boolean is
begin
return Nod /= null;
end Present;
-------------
-- Replace --
-------------
procedure Replace
(L : Doubly_Linked_List;
Old_Elem : Element_Type;
New_Elem : Element_Type)
is
Head : Node_Ptr;
Nod : Node_Ptr;
begin
Ensure_Created (L);
Ensure_Unlocked (L);
Head := L.Nodes'Access;
Nod := Find_Node (Head, Old_Elem);
if Is_Valid (Nod, Head) then
Nod.Elem := New_Elem;
end if;
end Replace;
----------
-- Size --
----------
function Size (L : Doubly_Linked_List) return Natural is
begin
Ensure_Created (L);
return L.Elements;
end Size;
------------
-- Unlock --
------------
procedure Unlock (L : Doubly_Linked_List) is
begin
pragma Assert (Present (L));
-- The list may be locked multiple times if multiple iterators are
-- operating over it.
L.Iterators := L.Iterators - 1;
end Unlock;
end Doubly_Linked_Lists;
end GNAT.Lists;
|