1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . D O U B L E _ R E A L --
-- --
-- B o d y --
-- --
-- Copyright (C) 2021-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
package body System.Double_Real is
function Is_NaN (N : Num) return Boolean is (N /= N);
-- Return True if N is a NaN
function Is_Infinity (N : Num) return Boolean is (Is_NaN (N - N));
-- Return True if N is an infinity. Used to avoid propagating meaningless
-- errors when the result of a product is an infinity.
function Is_Zero (N : Num) return Boolean is (N = -N);
-- Return True if N is a Zero. Used to preserve the sign when the result of
-- a product is a zero.
package Product is
function Two_Prod (A, B : Num) return Double_T;
function Two_Sqr (A : Num) return Double_T;
end Product;
-- The low-level implementation of multiplicative operations
package body Product is separate;
-- This is a separate body because the implementation depends on whether a
-- Fused Multiply-Add instruction is available on the target.
-------------------
-- Quick_Two_Sum --
-------------------
function Quick_Two_Sum (A, B : Num) return Double_T is
S : constant Num := A + B;
V : constant Num := S - A;
E : constant Num := B - V;
begin
return (S, E);
end Quick_Two_Sum;
-------------
-- Two_Sum --
-------------
function Two_Sum (A, B : Num) return Double_T is
S : constant Num := A + B;
V : constant Num := S - A;
E : constant Num := (A - (S - V)) + (B - V);
begin
return (S, E);
end Two_Sum;
--------------
-- Two_Diff --
--------------
function Two_Diff (A, B : Num) return Double_T is
S : constant Num := A - B;
V : constant Num := S - A;
E : constant Num := (A - (S - V)) - (B + V);
begin
return (S, E);
end Two_Diff;
--------------
-- Two_Prod --
--------------
function Two_Prod (A, B : Num) return Double_T renames Product.Two_Prod;
-------------
-- Two_Sqr --
-------------
function Two_Sqr (A : Num) return Double_T renames Product.Two_Sqr;
---------
-- "+" --
---------
function "+" (A : Double_T; B : Num) return Double_T is
S : constant Double_T := Two_Sum (A.Hi, B);
begin
return Quick_Two_Sum (S.Hi, S.Lo + A.Lo);
end "+";
function "+" (A, B : Double_T) return Double_T is
S1 : constant Double_T := Two_Sum (A.Hi, B.Hi);
S2 : constant Double_T := Two_Sum (A.Lo, B.Lo);
S3 : constant Double_T := Quick_Two_Sum (S1.Hi, S1.Lo + S2.Hi);
begin
return Quick_Two_Sum (S3.Hi, S3.Lo + S2.Lo);
end "+";
---------
-- "-" --
---------
function "-" (A : Double_T; B : Num) return Double_T is
D : constant Double_T := Two_Diff (A.Hi, B);
begin
return Quick_Two_Sum (D.Hi, D.Lo + A.Lo);
end "-";
function "-" (A, B : Double_T) return Double_T is
D1 : constant Double_T := Two_Diff (A.Hi, B.Hi);
D2 : constant Double_T := Two_Diff (A.Lo, B.Lo);
D3 : constant Double_T := Quick_Two_Sum (D1.Hi, D1.Lo + D2.Hi);
begin
return Quick_Two_Sum (D3.Hi, D3.Lo + D2.Lo);
end "-";
---------
-- "*" --
---------
function "*" (A : Double_T; B : Num) return Double_T is
P : constant Double_T := Two_Prod (A.Hi, B);
begin
if Is_Infinity (P.Hi) or else Is_Zero (P.Hi) then
return (P.Hi, 0.0);
else
return Quick_Two_Sum (P.Hi, P.Lo + A.Lo * B);
end if;
end "*";
function "*" (A, B : Double_T) return Double_T is
P : constant Double_T := Two_Prod (A.Hi, B.Hi);
begin
if Is_Infinity (P.Hi) or else Is_Zero (P.Hi) then
return (P.Hi, 0.0);
else
return Quick_Two_Sum (P.Hi, P.Lo + A.Hi * B.Lo + A.Lo * B.Hi);
end if;
end "*";
---------
-- "/" --
---------
function "/" (A : Double_T; B : Num) return Double_T is
Q1, Q2 : Num;
P, R : Double_T;
begin
if Is_Infinity (B) or else Is_Zero (B) then
return (A.Hi / B, 0.0);
end if;
pragma Annotate (CodePeer, Intentional, "test always false",
"code deals with infinity");
Q1 := A.Hi / B;
-- Compute R = A - B * Q1
P := Two_Prod (B, Q1);
R := Two_Diff (A.Hi, P.Hi);
R.Lo := (R.Lo + A.Lo) - P.Lo;
Q2 := (R.Hi + R.Lo) / B;
return Quick_Two_Sum (Q1, Q2);
end "/";
function "/" (A, B : Double_T) return Double_T is
Q1, Q2, Q3 : Num;
R, S : Double_T;
begin
if Is_Infinity (B.Hi) or else Is_Zero (B.Hi) then
return (A.Hi / B.Hi, 0.0);
end if;
pragma Annotate (CodePeer, Intentional, "test always false",
"code deals with infinity");
Q1 := A.Hi / B.Hi;
R := A - B * Q1;
Q2 := R.Hi / B.Hi;
R := R - B * Q2;
Q3 := R.Hi / B.Hi;
S := Quick_Two_Sum (Q1, Q2);
return Quick_Two_Sum (S.Hi, S.Lo + Q3);
end "/";
---------
-- Sqr --
---------
function Sqr (A : Double_T) return Double_T is
Q : constant Double_T := Two_Sqr (A.Hi);
begin
if Is_Infinity (Q.Hi) or else Is_Zero (Q.Hi) then
return (Q.Hi, 0.0);
else
return Quick_Two_Sum (Q.Hi, Q.Lo + 2.0 * A.Hi * A.Lo + A.Lo * A.Lo);
end if;
end Sqr;
-------------------
-- From_Unsigned --
-------------------
function From_Unsigned (U : Uns) return Double_T is
begin
return To_Double (Num (U));
end From_Unsigned;
-----------------
-- To_Unsigned --
-----------------
function To_Unsigned (D : Double_T) return Uns is
Hi : constant Num := Num'Truncation (D.Hi);
begin
-- If the high part is already an integer, add Floor of the low part,
-- which means subtract Ceiling of its opposite if it is negative.
if Hi = D.Hi then
if D.Lo < 0.0 then
return Uns (Hi) - Uns (Num'Ceiling (-D.Lo));
else
return Uns (Hi) + Uns (Num'Floor (D.Lo));
end if;
else
return Uns (Hi);
end if;
end To_Unsigned;
end System.Double_Real;
|