1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ A G G R --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Itypes; use Itypes;
with Lib; use Lib;
with Lib.Xref; use Lib.Xref;
with Namet; use Namet;
with Namet.Sp; use Namet.Sp;
with Nmake; use Nmake;
with Nlists; use Nlists;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Case; use Sem_Case;
with Sem_Cat; use Sem_Cat;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch13; use Sem_Ch13;
with Sem_Dim; use Sem_Dim;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sem_Type; use Sem_Type;
with Sem_Warn; use Sem_Warn;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Snames; use Snames;
with Stringt; use Stringt;
with Stand; use Stand;
with Style; use Style;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Uintp; use Uintp;
with Warnsw; use Warnsw;
package body Sem_Aggr is
type Case_Bounds is record
Lo : Node_Id;
-- Low bound of choice. Once we sort the Case_Table, then entries
-- will be in order of ascending Choice_Lo values.
Hi : Node_Id;
-- High Bound of choice. The sort does not pay any attention to the
-- high bound, so choices 1 .. 4 and 1 .. 5 could be in either order.
Highest : Uint;
-- If there are duplicates or missing entries, then in the sorted
-- table, this records the highest value among Choice_Hi values
-- seen so far, including this entry.
Choice : Node_Id;
-- The node of the choice
end record;
type Case_Table_Type is array (Pos range <>) of Case_Bounds;
-- Table type used by Check_Case_Choices procedure
-----------------------
-- Local Subprograms --
-----------------------
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
-- Sort the Case Table using the Lower Bound of each Choice as the key. A
-- simple insertion sort is used since the choices in a case statement will
-- usually be in near sorted order.
procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
-- Ada 2005 (AI-231): Check bad usage of null for a component for which
-- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
-- the array case (the component type of the array will be used) or an
-- E_Component/E_Discriminant entity in the record case, in which case the
-- type of the component will be used for the test. If Typ is any other
-- kind of entity, the call is ignored. Expr is the component node in the
-- aggregate which is known to have a null value. A warning message will be
-- issued if the component is null excluding.
--
-- It would be better to pass the proper type for Typ ???
procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id);
-- Check that Expr is either not limited or else is one of the cases of
-- expressions allowed for a limited component association (namely, an
-- aggregate, function call, or <> notation). Report error for violations.
-- Expression is also OK in an instance or inlining context, because we
-- have already preanalyzed and it is known to be type correct.
------------------------------------------------------
-- Subprograms used for RECORD AGGREGATE Processing --
------------------------------------------------------
procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
-- This procedure performs all the semantic checks required for record
-- aggregates. Note that for aggregates analysis and resolution go
-- hand in hand. Aggregate analysis has been delayed up to here and
-- it is done while resolving the aggregate.
--
-- N is the N_Aggregate node.
-- Typ is the record type for the aggregate resolution
--
-- While performing the semantic checks, this procedure builds a new
-- Component_Association_List where each record field appears alone in a
-- Component_Choice_List along with its corresponding expression. The
-- record fields in the Component_Association_List appear in the same order
-- in which they appear in the record type Typ.
--
-- Once this new Component_Association_List is built and all the semantic
-- checks performed, the original aggregate subtree is replaced with the
-- new named record aggregate just built. This new record aggregate has no
-- positional associations, so its Expressions field is set to No_List.
-- Note that subtree substitution is performed with Rewrite so as to be
-- able to retrieve the original aggregate.
--
-- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
-- yields the aggregate format expected by Gigi. Typically, this kind of
-- tree manipulations are done in the expander. However, because the
-- semantic checks that need to be performed on record aggregates really go
-- hand in hand with the record aggregate normalization, the aggregate
-- subtree transformation is performed during resolution rather than
-- expansion. Had we decided otherwise we would have had to duplicate most
-- of the code in the expansion procedure Expand_Record_Aggregate. Note,
-- however, that all the expansion concerning aggregates for tagged records
-- is done in Expand_Record_Aggregate.
--
-- The algorithm of Resolve_Record_Aggregate proceeds as follows:
--
-- 1. Make sure that the record type against which the record aggregate
-- has to be resolved is not abstract. Furthermore if the type is a
-- null aggregate make sure the input aggregate N is also null.
--
-- 2. Verify that the structure of the aggregate is that of a record
-- aggregate. Specifically, look for component associations and ensure
-- that each choice list only has identifiers or the N_Others_Choice
-- node. Also make sure that if present, the N_Others_Choice occurs
-- last and by itself.
--
-- 3. If Typ contains discriminants, the values for each discriminant is
-- looked for. If the record type Typ has variants, we check that the
-- expressions corresponding to each discriminant ruling the (possibly
-- nested) variant parts of Typ, are static. This allows us to determine
-- the variant parts to which the rest of the aggregate must conform.
-- The names of discriminants with their values are saved in a new
-- association list, New_Assoc_List which is later augmented with the
-- names and values of the remaining components in the record type.
--
-- During this phase we also make sure that every discriminant is
-- assigned exactly one value. Note that when several values for a given
-- discriminant are found, semantic processing continues looking for
-- further errors. In this case it's the first discriminant value found
-- which we will be recorded.
--
-- IMPORTANT NOTE: For derived tagged types this procedure expects
-- First_Discriminant and Next_Discriminant to give the correct list
-- of discriminants, in the correct order.
--
-- 4. After all the discriminant values have been gathered, we can set the
-- Etype of the record aggregate. If Typ contains no discriminants this
-- is straightforward: the Etype of N is just Typ, otherwise a new
-- implicit constrained subtype of Typ is built to be the Etype of N.
--
-- 5. Gather the remaining record components according to the discriminant
-- values. This involves recursively traversing the record type
-- structure to see what variants are selected by the given discriminant
-- values. This processing is a little more convoluted if Typ is a
-- derived tagged types since we need to retrieve the record structure
-- of all the ancestors of Typ.
--
-- 6. After gathering the record components we look for their values in the
-- record aggregate and emit appropriate error messages should we not
-- find such values or should they be duplicated.
--
-- 7. We then make sure no illegal component names appear in the record
-- aggregate and make sure that the type of the record components
-- appearing in a same choice list is the same. Finally we ensure that
-- the others choice, if present, is used to provide the value of at
-- least a record component.
--
-- 8. The original aggregate node is replaced with the new named aggregate
-- built in steps 3 through 6, as explained earlier.
--
-- Given the complexity of record aggregate resolution, the primary goal of
-- this routine is clarity and simplicity rather than execution and storage
-- efficiency. If there are only positional components in the aggregate the
-- running time is linear. If there are associations the running time is
-- still linear as long as the order of the associations is not too far off
-- the order of the components in the record type. If this is not the case
-- the running time is at worst quadratic in the size of the association
-- list.
procedure Check_Misspelled_Component
(Elements : Elist_Id;
Component : Node_Id);
-- Give possible misspelling diagnostic if Component is likely to be a
-- misspelling of one of the components of the Assoc_List. This is called
-- by Resolve_Aggr_Expr after producing an invalid component error message.
-----------------------------------------------------
-- Subprograms used for ARRAY AGGREGATE Processing --
-----------------------------------------------------
function Resolve_Array_Aggregate
(N : Node_Id;
Index : Node_Id;
Index_Constr : Node_Id;
Component_Typ : Entity_Id;
Others_Allowed : Boolean) return Boolean;
-- This procedure performs the semantic checks for an array aggregate.
-- True is returned if the aggregate resolution succeeds.
--
-- The procedure works by recursively checking each nested aggregate.
-- Specifically, after checking a sub-aggregate nested at the i-th level
-- we recursively check all the subaggregates at the i+1-st level (if any).
-- Note that aggregates analysis and resolution go hand in hand.
-- Aggregate analysis has been delayed up to here and it is done while
-- resolving the aggregate.
--
-- N is the current N_Aggregate node to be checked.
--
-- Index is the index node corresponding to the array sub-aggregate that
-- we are currently checking (RM 4.3.3 (8)). Its Etype is the
-- corresponding index type (or subtype).
--
-- Index_Constr is the node giving the applicable index constraint if
-- any (RM 4.3.3 (10)). It "is a constraint provided by certain
-- contexts [...] that can be used to determine the bounds of the array
-- value specified by the aggregate". If Others_Allowed below is False
-- there is no applicable index constraint and this node is set to Index.
--
-- Component_Typ is the array component type.
--
-- Others_Allowed indicates whether an others choice is allowed
-- in the context where the top-level aggregate appeared.
--
-- The algorithm of Resolve_Array_Aggregate proceeds as follows:
--
-- 1. Make sure that the others choice, if present, is by itself and
-- appears last in the sub-aggregate. Check that we do not have
-- positional and named components in the array sub-aggregate (unless
-- the named association is an others choice). Finally if an others
-- choice is present, make sure it is allowed in the aggregate context.
--
-- 2. If the array sub-aggregate contains discrete_choices:
--
-- (A) Verify their validity. Specifically verify that:
--
-- (a) If a null range is present it must be the only possible
-- choice in the array aggregate.
--
-- (b) Ditto for a non static range.
--
-- (c) Ditto for a non static expression.
--
-- In addition this step analyzes and resolves each discrete_choice,
-- making sure that its type is the type of the corresponding Index.
-- If we are not at the lowest array aggregate level (in the case of
-- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
-- recursively on each component expression. Otherwise, resolve the
-- bottom level component expressions against the expected component
-- type ONLY IF the component corresponds to a single discrete choice
-- which is not an others choice (to see why read the DELAYED
-- COMPONENT RESOLUTION below).
--
-- (B) Determine the bounds of the sub-aggregate and lowest and
-- highest choice values.
--
-- 3. For positional aggregates:
--
-- (A) Loop over the component expressions either recursively invoking
-- Resolve_Array_Aggregate on each of these for multi-dimensional
-- array aggregates or resolving the bottom level component
-- expressions against the expected component type.
--
-- (B) Determine the bounds of the positional sub-aggregates.
--
-- 4. Try to determine statically whether the evaluation of the array
-- sub-aggregate raises Constraint_Error. If yes emit proper
-- warnings. The precise checks are the following:
--
-- (A) Check that the index range defined by aggregate bounds is
-- compatible with corresponding index subtype.
-- We also check against the base type. In fact it could be that
-- Low/High bounds of the base type are static whereas those of
-- the index subtype are not. Thus if we can statically catch
-- a problem with respect to the base type we are guaranteed
-- that the same problem will arise with the index subtype
--
-- (B) If we are dealing with a named aggregate containing an others
-- choice and at least one discrete choice then make sure the range
-- specified by the discrete choices does not overflow the
-- aggregate bounds. We also check against the index type and base
-- type bounds for the same reasons given in (A).
--
-- (C) If we are dealing with a positional aggregate with an others
-- choice make sure the number of positional elements specified
-- does not overflow the aggregate bounds. We also check against
-- the index type and base type bounds as mentioned in (A).
--
-- Finally construct an N_Range node giving the sub-aggregate bounds.
-- Set the Aggregate_Bounds field of the sub-aggregate to be this
-- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
-- to build the appropriate aggregate subtype. Aggregate_Bounds
-- information is needed during expansion.
--
-- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
-- expressions in an array aggregate may call Duplicate_Subexpr or some
-- other routine that inserts code just outside the outermost aggregate.
-- If the array aggregate contains discrete choices or an others choice,
-- this may be wrong. Consider for instance the following example.
--
-- type Rec is record
-- V : Integer := 0;
-- end record;
--
-- type Acc_Rec is access Rec;
-- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
--
-- Then the transformation of "new Rec" that occurs during resolution
-- entails the following code modifications
--
-- P7b : constant Acc_Rec := new Rec;
-- RecIP (P7b.all);
-- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
--
-- This code transformation is clearly wrong, since we need to call
-- "new Rec" for each of the 3 array elements. To avoid this problem we
-- delay resolution of the components of non positional array aggregates
-- to the expansion phase. As an optimization, if the discrete choice
-- specifies a single value we do not delay resolution.
function Array_Aggr_Subtype (N : Node_Id; Typ : Entity_Id) return Entity_Id;
-- This routine returns the type or subtype of an array aggregate.
--
-- N is the array aggregate node whose type we return.
--
-- Typ is the context type in which N occurs.
--
-- This routine creates an implicit array subtype whose bounds are
-- those defined by the aggregate. When this routine is invoked
-- Resolve_Array_Aggregate has already processed aggregate N. Thus the
-- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
-- sub-aggregate bounds. When building the aggregate itype, this function
-- traverses the array aggregate N collecting such Aggregate_Bounds and
-- constructs the proper array aggregate itype.
--
-- Note that in the case of multidimensional aggregates each inner
-- sub-aggregate corresponding to a given array dimension, may provide a
-- different bounds. If it is possible to determine statically that
-- some sub-aggregates corresponding to the same index do not have the
-- same bounds, then a warning is emitted. If such check is not possible
-- statically (because some sub-aggregate bounds are dynamic expressions)
-- then this job is left to the expander. In all cases the particular
-- bounds that this function will chose for a given dimension is the first
-- N_Range node for a sub-aggregate corresponding to that dimension.
--
-- Note that the Raises_Constraint_Error flag of an array aggregate
-- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
-- is set in Resolve_Array_Aggregate but the aggregate is not
-- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
-- first construct the proper itype for the aggregate (Gigi needs
-- this). After constructing the proper itype we will eventually replace
-- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
-- Of course in cases such as:
--
-- type Arr is array (integer range <>) of Integer;
-- A : Arr := (positive range -1 .. 2 => 0);
--
-- The bounds of the aggregate itype are cooked up to look reasonable
-- (in this particular case the bounds will be 1 .. 2).
procedure Make_String_Into_Aggregate (N : Node_Id);
-- A string literal can appear in a context in which a one dimensional
-- array of characters is expected. This procedure simply rewrites the
-- string as an aggregate, prior to resolution.
function Resolve_Null_Array_Aggregate (N : Node_Id) return Boolean;
-- For the Ada 2022 construct, build a subtype with a null range for each
-- dimension, using the bounds from the context subtype (if the subtype
-- is constrained). If the subtype is unconstrained, then the bounds
-- are determined in much the same way as the bounds for a null string
-- literal with no applicable index constraint.
---------------------------------
-- Delta aggregate processing --
---------------------------------
procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
procedure Resolve_Deep_Delta_Assoc (N : Node_Id; Typ : Entity_Id);
-- Resolve the names/expressions in a component association for
-- a deep delta aggregate. Typ is the type of the enclosing object.
------------------------
-- Array_Aggr_Subtype --
------------------------
function Array_Aggr_Subtype
(N : Node_Id;
Typ : Entity_Id) return Entity_Id
is
Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
-- Number of aggregate index dimensions
Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
-- Constrained N_Range of each index dimension in our aggregate itype
Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
-- Low and High bounds for each index dimension in our aggregate itype
Is_Fully_Positional : Boolean := True;
procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
-- N is an array (sub-)aggregate. Dim is the dimension corresponding
-- to (sub-)aggregate N. This procedure collects and removes the side
-- effects of the constrained N_Range nodes corresponding to each index
-- dimension of our aggregate itype. These N_Range nodes are collected
-- in Aggr_Range above.
--
-- Likewise collect in Aggr_Low & Aggr_High above the low and high
-- bounds of each index dimension. If, when collecting, two bounds
-- corresponding to the same dimension are static and found to differ,
-- then emit a warning, and mark N as raising Constraint_Error.
-------------------------
-- Collect_Aggr_Bounds --
-------------------------
procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
This_Range : constant Node_Id := Aggregate_Bounds (N);
-- The aggregate range node of this specific sub-aggregate
This_Low : constant Node_Id := Low_Bound (This_Range);
This_High : constant Node_Id := High_Bound (This_Range);
-- The aggregate bounds of this specific sub-aggregate
Assoc : Node_Id;
Expr : Node_Id;
begin
Remove_Side_Effects (This_Low, Variable_Ref => True);
Remove_Side_Effects (This_High, Variable_Ref => True);
-- Collect the first N_Range for a given dimension that you find.
-- For a given dimension they must be all equal anyway.
if No (Aggr_Range (Dim)) then
Aggr_Low (Dim) := This_Low;
Aggr_High (Dim) := This_High;
Aggr_Range (Dim) := This_Range;
else
if Compile_Time_Known_Value (This_Low) then
if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
Aggr_Low (Dim) := This_Low;
elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
Set_Raises_Constraint_Error (N);
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("sub-aggregate low bound mismatch<<", N);
Error_Msg_N ("\Constraint_Error [<<", N);
end if;
end if;
if Compile_Time_Known_Value (This_High) then
if not Compile_Time_Known_Value (Aggr_High (Dim)) then
Aggr_High (Dim) := This_High;
elsif
Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
then
Set_Raises_Constraint_Error (N);
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("sub-aggregate high bound mismatch<<", N);
Error_Msg_N ("\Constraint_Error [<<", N);
end if;
end if;
end if;
if Dim < Aggr_Dimension then
-- Process positional components
if Present (Expressions (N)) then
Expr := First (Expressions (N));
while Present (Expr) loop
Collect_Aggr_Bounds (Expr, Dim + 1);
Next (Expr);
end loop;
end if;
-- Process component associations
if Present (Component_Associations (N)) then
Is_Fully_Positional := False;
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
Expr := Expression (Assoc);
Collect_Aggr_Bounds (Expr, Dim + 1);
Next (Assoc);
end loop;
end if;
end if;
end Collect_Aggr_Bounds;
-- Array_Aggr_Subtype variables
Itype : Entity_Id;
-- The final itype of the overall aggregate
Index_Constraints : constant List_Id := New_List;
-- The list of index constraints of the aggregate itype
-- Start of processing for Array_Aggr_Subtype
begin
-- Make sure that the list of index constraints is properly attached to
-- the tree, and then collect the aggregate bounds.
-- If no aggregaate bounds have been set, this is an aggregate with
-- iterator specifications and a dynamic size to be determined by
-- first pass of expanded code.
if No (Aggregate_Bounds (N)) then
return Typ;
end if;
Set_Parent (Index_Constraints, N);
-- When resolving a null aggregate we created a list of aggregate bounds
-- for the consecutive dimensions. The bounds for the first dimension
-- are attached as the Aggregate_Bounds of the aggregate node.
if Is_Null_Aggregate (N) then
declare
This_Range : Node_Id := Aggregate_Bounds (N);
begin
for J in 1 .. Aggr_Dimension loop
Aggr_Range (J) := This_Range;
Next_Index (This_Range);
-- Remove bounds from the list, so they can be reattached as
-- the First_Index/Next_Index again by the code that also
-- handles non-null aggregates.
Remove (Aggr_Range (J));
end loop;
end;
else
Collect_Aggr_Bounds (N, 1);
end if;
-- Build the list of constrained indexes of our aggregate itype
for J in 1 .. Aggr_Dimension loop
Create_Index : declare
Index_Base : constant Entity_Id :=
Base_Type (Etype (Aggr_Range (J)));
Index_Typ : Entity_Id;
begin
-- Construct the Index subtype, and associate it with the range
-- construct that generates it.
Index_Typ :=
Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
Set_Etype (Index_Typ, Index_Base);
if Is_Character_Type (Index_Base) then
Set_Is_Character_Type (Index_Typ);
end if;
Set_Size_Info (Index_Typ, (Index_Base));
Set_RM_Size (Index_Typ, RM_Size (Index_Base));
Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
Set_Scalar_Range (Index_Typ, Aggr_Range (J));
if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
end if;
Set_Etype (Aggr_Range (J), Index_Typ);
Append (Aggr_Range (J), To => Index_Constraints);
end Create_Index;
end loop;
-- Now build the Itype
Itype := Create_Itype (E_Array_Subtype, N);
Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
Set_Convention (Itype, Convention (Typ));
Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
Set_Etype (Itype, Base_Type (Typ));
Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
Set_Is_Aliased (Itype, Is_Aliased (Typ));
Set_Is_Independent (Itype, Is_Independent (Typ));
Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
Copy_Suppress_Status (Index_Check, Typ, Itype);
Copy_Suppress_Status (Length_Check, Typ, Itype);
Set_First_Index (Itype, First (Index_Constraints));
Set_Is_Constrained (Itype, True);
Set_Is_Internal (Itype, True);
if Has_Predicates (Typ) then
Set_Has_Predicates (Itype);
-- If the base type has a predicate, capture the predicated parent
-- or the existing predicate function for SPARK use.
if Present (Predicate_Function (Typ)) then
Set_Predicate_Function (Itype, Predicate_Function (Typ));
elsif Is_Itype (Typ) then
Set_Predicated_Parent (Itype, Predicated_Parent (Typ));
else
Set_Predicated_Parent (Itype, Typ);
end if;
end if;
-- A simple optimization: purely positional aggregates of static
-- components should be passed to gigi unexpanded whenever possible, and
-- regardless of the staticness of the bounds themselves. Subsequent
-- checks in exp_aggr verify that type is not packed, etc.
Set_Size_Known_At_Compile_Time
(Itype,
Is_Fully_Positional
and then Comes_From_Source (N)
and then Size_Known_At_Compile_Time (Component_Type (Typ)));
-- We always need a freeze node for a packed array subtype, so that we
-- can build the Packed_Array_Impl_Type corresponding to the subtype. If
-- expansion is disabled, the packed array subtype is not built, and we
-- must not generate a freeze node for the type, or else it will appear
-- incomplete to gigi.
if Is_Packed (Itype)
and then not In_Spec_Expression
and then Expander_Active
then
Freeze_Itype (Itype, N);
end if;
return Itype;
end Array_Aggr_Subtype;
--------------------------------
-- Check_Misspelled_Component --
--------------------------------
procedure Check_Misspelled_Component
(Elements : Elist_Id;
Component : Node_Id)
is
Max_Suggestions : constant := 2;
Nr_Of_Suggestions : Natural := 0;
Suggestion_1 : Entity_Id := Empty;
Suggestion_2 : Entity_Id := Empty;
Component_Elmt : Elmt_Id;
begin
-- All the components of List are matched against Component and a count
-- is maintained of possible misspellings. When at the end of the
-- analysis there are one or two (not more) possible misspellings,
-- these misspellings will be suggested as possible corrections.
Component_Elmt := First_Elmt (Elements);
while Nr_Of_Suggestions <= Max_Suggestions
and then Present (Component_Elmt)
loop
if Is_Bad_Spelling_Of
(Chars (Node (Component_Elmt)),
Chars (Component))
then
Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
case Nr_Of_Suggestions is
when 1 => Suggestion_1 := Node (Component_Elmt);
when 2 => Suggestion_2 := Node (Component_Elmt);
when others => null;
end case;
end if;
Next_Elmt (Component_Elmt);
end loop;
-- Report at most two suggestions
if Nr_Of_Suggestions = 1 then
Error_Msg_NE -- CODEFIX
("\possible misspelling of&", Component, Suggestion_1);
elsif Nr_Of_Suggestions = 2 then
Error_Msg_Node_2 := Suggestion_2;
Error_Msg_NE -- CODEFIX
("\possible misspelling of& or&", Component, Suggestion_1);
end if;
end Check_Misspelled_Component;
----------------------------------------
-- Check_Expr_OK_In_Limited_Aggregate --
----------------------------------------
procedure Check_Expr_OK_In_Limited_Aggregate (Expr : Node_Id) is
begin
if Is_Limited_Type (Etype (Expr))
and then Comes_From_Source (Expr)
then
if In_Instance_Body or else In_Inlined_Body then
null;
elsif not OK_For_Limited_Init (Etype (Expr), Expr) then
Error_Msg_N
("initialization not allowed for limited types", Expr);
Explain_Limited_Type (Etype (Expr), Expr);
end if;
end if;
end Check_Expr_OK_In_Limited_Aggregate;
--------------------
-- Is_Deep_Choice --
--------------------
function Is_Deep_Choice
(Choice : Node_Id;
Aggr_Type : Type_Kind_Id) return Boolean
is
Pref : Node_Id := Choice;
begin
while not Is_Root_Prefix_Of_Deep_Choice (Pref) loop
Pref := Prefix (Pref);
end loop;
if Is_Array_Type (Aggr_Type) then
return Paren_Count (Pref) > 0
and then Pref /= Choice;
else
return Pref /= Choice;
end if;
end Is_Deep_Choice;
-------------------------
-- Is_Others_Aggregate --
-------------------------
function Is_Others_Aggregate (Aggr : Node_Id) return Boolean is
Assoc : constant List_Id := Component_Associations (Aggr);
begin
return No (Expressions (Aggr))
and then Nkind (First (Choice_List (First (Assoc)))) = N_Others_Choice;
end Is_Others_Aggregate;
-----------------------------------
-- Is_Root_Prefix_Of_Deep_Choice --
-----------------------------------
function Is_Root_Prefix_Of_Deep_Choice (Pref : Node_Id) return Boolean is
begin
return Paren_Count (Pref) > 0
or else Nkind (Pref) not in N_Indexed_Component
| N_Selected_Component;
end Is_Root_Prefix_Of_Deep_Choice;
-------------------------
-- Is_Single_Aggregate --
-------------------------
function Is_Single_Aggregate (Aggr : Node_Id) return Boolean is
Assoc : constant List_Id := Component_Associations (Aggr);
begin
return No (Expressions (Aggr))
and then No (Next (First (Assoc)))
and then No (Next (First (Choice_List (First (Assoc)))));
end Is_Single_Aggregate;
-----------------------
-- Is_Null_Aggregate --
-----------------------
function Is_Null_Aggregate (N : Node_Id) return Boolean is
begin
return Ada_Version >= Ada_2022
and then Is_Homogeneous_Aggregate (N)
and then Is_Empty_List (Expressions (N))
and then Is_Empty_List (Component_Associations (N));
end Is_Null_Aggregate;
----------------------------------------
-- Is_Null_Array_Aggregate_High_Bound --
----------------------------------------
function Is_Null_Array_Aggregate_High_Bound (N : Node_Id) return Boolean is
Original_N : constant Node_Id := Original_Node (N);
begin
return Ada_Version >= Ada_2022
and then not Comes_From_Source (Original_N)
and then Nkind (Original_N) = N_Attribute_Reference
and then
Get_Attribute_Id (Attribute_Name (Original_N)) = Attribute_Pred
and then Nkind (Parent (N)) in N_Range | N_Op_Le
and then not Comes_From_Source (Parent (N));
end Is_Null_Array_Aggregate_High_Bound;
--------------------------------
-- Make_String_Into_Aggregate --
--------------------------------
procedure Make_String_Into_Aggregate (N : Node_Id) is
Exprs : constant List_Id := New_List;
Loc : constant Source_Ptr := Sloc (N);
Str : constant String_Id := Strval (N);
Strlen : constant Nat := String_Length (Str);
C : Char_Code;
C_Node : Node_Id;
New_N : Node_Id;
P : Source_Ptr;
begin
P := Loc + 1;
for J in 1 .. Strlen loop
C := Get_String_Char (Str, J);
Set_Character_Literal_Name (C);
C_Node :=
Make_Character_Literal (P,
Chars => Name_Find,
Char_Literal_Value => UI_From_CC (C));
Set_Etype (C_Node, Any_Character);
Append_To (Exprs, C_Node);
P := P + 1;
-- Something special for wide strings???
end loop;
New_N := Make_Aggregate (Loc, Expressions => Exprs);
Set_Analyzed (New_N);
Set_Etype (New_N, Any_Composite);
Rewrite (N, New_N);
end Make_String_Into_Aggregate;
-----------------------
-- Resolve_Aggregate --
-----------------------
procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Aggr_Subtyp : Entity_Id;
-- The actual aggregate subtype. This is not necessarily the same as Typ
-- which is the subtype of the context in which the aggregate was found.
Others_Box : Boolean := False;
-- Set to True if N represents a simple aggregate with only
-- (others => <>), not nested as part of another aggregate.
function Is_Full_Access_Aggregate (N : Node_Id) return Boolean;
-- If a full access object is initialized with an aggregate or is
-- assigned an aggregate, we have to prevent a piecemeal access or
-- assignment to the object, even if the aggregate is to be expanded.
-- We create a temporary for the aggregate, and assign the temporary
-- instead, so that the back end can generate an atomic move for it.
-- This is only done in the context of an object declaration or an
-- assignment. Function is a noop and returns false in other contexts.
function Within_Aggregate (N : Node_Id) return Boolean;
-- Return True if N is part of an N_Aggregate
------------------------------
-- Is_Full_Access_Aggregate --
------------------------------
function Is_Full_Access_Aggregate (N : Node_Id) return Boolean is
Loc : constant Source_Ptr := Sloc (N);
New_N : Node_Id;
Par : Node_Id;
Temp : Entity_Id;
Typ : Entity_Id;
begin
Par := Parent (N);
-- Aggregate may be qualified, so find outer context
if Nkind (Par) = N_Qualified_Expression then
Par := Parent (Par);
end if;
if not Comes_From_Source (Par) then
return False;
end if;
case Nkind (Par) is
when N_Assignment_Statement =>
Typ := Etype (Name (Par));
if not Is_Full_Access (Typ)
and then not Is_Full_Access_Object (Name (Par))
then
return False;
end if;
when N_Object_Declaration =>
Typ := Etype (Defining_Identifier (Par));
if not Is_Full_Access (Typ)
and then not Is_Full_Access (Defining_Identifier (Par))
then
return False;
end if;
when others =>
return False;
end case;
Temp := Make_Temporary (Loc, 'T', N);
New_N :=
Make_Object_Declaration (Loc,
Defining_Identifier => Temp,
Constant_Present => True,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Expression => Relocate_Node (N));
Insert_Action (Par, New_N);
Rewrite (N, New_Occurrence_Of (Temp, Loc));
Analyze_And_Resolve (N, Typ);
return True;
end Is_Full_Access_Aggregate;
----------------------
-- Within_Aggregate --
----------------------
function Within_Aggregate (N : Node_Id) return Boolean is
P : Node_Id := Parent (N);
begin
while Present (P) loop
if Nkind (P) = N_Aggregate then
return True;
end if;
P := Parent (P);
end loop;
return False;
end Within_Aggregate;
-- Start of processing for Resolve_Aggregate
begin
-- Ignore junk empty aggregate resulting from parser error
if No (Expressions (N))
and then No (Component_Associations (N))
and then not Null_Record_Present (N)
then
return;
-- If the aggregate is assigned to a full access variable, we have
-- to prevent a piecemeal assignment even if the aggregate is to be
-- expanded. We create a temporary for the aggregate, and assign the
-- temporary instead, so that the back end can generate an atomic move
-- for it. This is properly an expansion activity but it must be done
-- before resolution because aggregate resolution cannot be done twice.
elsif Expander_Active and then Is_Full_Access_Aggregate (N) then
return;
end if;
-- If the aggregate has box-initialized components, its type must be
-- frozen so that initialization procedures can properly be called
-- in the resolution that follows. The replacement of boxes with
-- initialization calls is properly an expansion activity but it must
-- be done during resolution.
if Expander_Active
and then Present (Component_Associations (N))
then
declare
Comp : Node_Id;
First_Comp : Boolean := True;
begin
Comp := First (Component_Associations (N));
while Present (Comp) loop
if Box_Present (Comp) then
if First_Comp
and then No (Expressions (N))
and then Nkind (First (Choices (Comp))) = N_Others_Choice
and then not Within_Aggregate (N)
then
Others_Box := True;
end if;
Insert_Actions (N, Freeze_Entity (Typ, N));
exit;
end if;
First_Comp := False;
Next (Comp);
end loop;
end;
end if;
-- Check for aggregates not allowed in configurable run-time mode.
-- We allow all cases of aggregates that do not come from source, since
-- these are all assumed to be small (e.g. bounds of a string literal).
-- We also allow aggregates of types we know to be small.
if not Support_Aggregates_On_Target
and then Comes_From_Source (N)
and then (not Known_Static_Esize (Typ)
or else Esize (Typ) > System_Max_Integer_Size)
then
Error_Msg_CRT ("aggregate", N);
end if;
-- Ada 2005 (AI-287): Limited aggregates allowed
-- In an instance, ignore aggregate subcomponents that may be limited,
-- because they originate in view conflicts. If the original aggregate
-- is legal and the actuals are legal, the aggregate itself is legal.
if Is_Limited_Type (Typ)
and then Ada_Version < Ada_2005
and then not In_Instance
then
Error_Msg_N ("aggregate type cannot be limited", N);
Explain_Limited_Type (Typ, N);
elsif Is_Class_Wide_Type (Typ) then
Error_Msg_N ("type of aggregate cannot be class-wide", N);
elsif Typ = Any_String
or else Typ = Any_Composite
then
Error_Msg_N ("no unique type for aggregate", N);
Set_Etype (N, Any_Composite);
elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
Error_Msg_N ("null record forbidden in array aggregate", N);
elsif Has_Aspect (Typ, Aspect_Aggregate)
and then Ekind (Typ) /= E_Record_Type
and then Ada_Version >= Ada_2022
then
-- Check for Ada 2022 and () aggregate.
if not Is_Homogeneous_Aggregate (N) then
Error_Msg_N ("container aggregate must use '['], not ()", N);
end if;
Resolve_Container_Aggregate (N, Typ);
-- Check Ada 2022 empty aggregate [] initializing a record type that has
-- aspect aggregate; the empty aggregate will be expanded into a call to
-- the empty function specified in the aspect aggregate.
elsif Has_Aspect (Typ, Aspect_Aggregate)
and then Ekind (Typ) = E_Record_Type
and then Is_Homogeneous_Aggregate (N)
and then Is_Empty_List (Expressions (N))
and then Is_Empty_List (Component_Associations (N))
and then Ada_Version >= Ada_2022
then
Resolve_Container_Aggregate (N, Typ);
elsif Is_Record_Type (Typ) then
Resolve_Record_Aggregate (N, Typ);
elsif Is_Array_Type (Typ) then
-- First a special test, for the case of a positional aggregate of
-- characters which can be replaced by a string literal.
-- Do not perform this transformation if this was a string literal
-- to start with, whose components needed constraint checks, or if
-- the component type is non-static, because it will require those
-- checks and be transformed back into an aggregate. If the index
-- type is not Integer the aggregate may represent a user-defined
-- string type but the context might need the original type so we
-- do not perform the transformation at this point.
if Number_Dimensions (Typ) = 1
and then Is_Standard_Character_Type (Component_Type (Typ))
and then No (Component_Associations (N))
and then not Is_Limited_Composite (Typ)
and then not Is_Private_Composite (Typ)
and then not Is_Bit_Packed_Array (Typ)
and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
and then Is_OK_Static_Subtype (Component_Type (Typ))
and then Base_Type (Etype (First_Index (Typ))) =
Base_Type (Standard_Integer)
then
declare
Expr : Node_Id;
begin
Expr := First (Expressions (N));
while Present (Expr) loop
exit when Nkind (Expr) /= N_Character_Literal;
Next (Expr);
end loop;
if No (Expr) then
Start_String;
Expr := First (Expressions (N));
while Present (Expr) loop
Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
Next (Expr);
end loop;
Rewrite (N, Make_String_Literal (Loc, End_String));
Analyze_And_Resolve (N, Typ);
return;
end if;
end;
end if;
-- Here if we have a real aggregate to deal with
Array_Aggregate : declare
Aggr_Resolved : Boolean;
Aggr_Typ : constant Entity_Id := Etype (Typ);
-- This is the unconstrained array type, which is the type against
-- which the aggregate is to be resolved. Typ itself is the array
-- type of the context which may not be the same subtype as the
-- subtype for the final aggregate.
Is_Null_Aggr : constant Boolean := Is_Null_Aggregate (N);
begin
-- In the following we determine whether an OTHERS choice is
-- allowed inside the array aggregate. The test checks the context
-- in which the array aggregate occurs. If the context does not
-- permit it, or the aggregate type is unconstrained, an OTHERS
-- choice is not allowed (except that it is always allowed on the
-- right-hand side of an assignment statement; in this case the
-- constrainedness of the type doesn't matter, because an array
-- object is always constrained).
-- If expansion is disabled (generic context, or semantics-only
-- mode) actual subtypes cannot be constructed, and the type of an
-- object may be its unconstrained nominal type. However, if the
-- context is an assignment statement, OTHERS is allowed, because
-- the target of the assignment will have a constrained subtype
-- when fully compiled. Ditto if the context is an initialization
-- procedure where a component may have a predicate function that
-- carries the base type.
-- Note that there is no node for Explicit_Actual_Parameter.
-- To test for this context we therefore have to test for node
-- N_Parameter_Association which itself appears only if there is a
-- formal parameter. Consequently we also need to test for
-- N_Procedure_Call_Statement or N_Function_Call.
-- The context may be an N_Reference node, created by expansion.
-- Legality of the others clause was established in the source,
-- so the context is legal.
Set_Etype (N, Aggr_Typ); -- May be overridden later on
if Is_Null_Aggr then
Set_Etype (N, Typ);
Aggr_Resolved := Resolve_Null_Array_Aggregate (N);
elsif Nkind (Parent (N)) = N_Assignment_Statement
or else Inside_Init_Proc
or else (Is_Constrained (Typ)
and then Nkind (Parent (N)) in
N_Parameter_Association
| N_Function_Call
| N_Procedure_Call_Statement
| N_Generic_Association
| N_Formal_Object_Declaration
| N_Simple_Return_Statement
| N_Object_Declaration
| N_Component_Declaration
| N_Parameter_Specification
| N_Qualified_Expression
| N_Unchecked_Type_Conversion
| N_Reference
| N_Aggregate
| N_Extension_Aggregate
| N_Component_Association
| N_Case_Expression_Alternative
| N_If_Expression
| N_Expression_With_Actions)
then
Aggr_Resolved :=
Resolve_Array_Aggregate
(N,
Index => First_Index (Aggr_Typ),
Index_Constr => First_Index (Typ),
Component_Typ => Component_Type (Typ),
Others_Allowed => True);
else
Aggr_Resolved :=
Resolve_Array_Aggregate
(N,
Index => First_Index (Aggr_Typ),
Index_Constr => First_Index (Aggr_Typ),
Component_Typ => Component_Type (Typ),
Others_Allowed => False);
end if;
if not Aggr_Resolved then
-- A parenthesized expression may have been intended as an
-- aggregate, leading to a type error when analyzing the
-- component. This can also happen for a nested component
-- (see Analyze_Aggr_Expr).
if Paren_Count (N) > 0 then
Error_Msg_N
("positional aggregate cannot have one component", N);
end if;
Aggr_Subtyp := Any_Composite;
else
Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
end if;
Set_Etype (N, Aggr_Subtyp);
end Array_Aggregate;
elsif Is_Private_Type (Typ)
and then Present (Full_View (Typ))
and then (In_Inlined_Body or In_Instance_Body)
and then Is_Composite_Type (Full_View (Typ))
then
Resolve (N, Full_View (Typ));
else
Error_Msg_N ("illegal context for aggregate", N);
end if;
-- If we can determine statically that the evaluation of the aggregate
-- raises Constraint_Error, then replace the aggregate with an
-- N_Raise_Constraint_Error node, but set the Etype to the right
-- aggregate subtype. Gigi needs this.
if Raises_Constraint_Error (N) then
Aggr_Subtyp := Etype (N);
Rewrite (N,
Make_Raise_Constraint_Error (Loc, Reason => CE_Range_Check_Failed));
Set_Raises_Constraint_Error (N);
Set_Etype (N, Aggr_Subtyp);
Set_Analyzed (N);
end if;
if Warn_On_No_Value_Assigned
and then Others_Box
and then not Is_Fully_Initialized_Type (Etype (N))
then
Error_Msg_N ("?v?aggregate not fully initialized", N);
end if;
Check_Function_Writable_Actuals (N);
end Resolve_Aggregate;
-----------------------------
-- Resolve_Array_Aggregate --
-----------------------------
function Resolve_Array_Aggregate
(N : Node_Id;
Index : Node_Id;
Index_Constr : Node_Id;
Component_Typ : Entity_Id;
Others_Allowed : Boolean) return Boolean
is
Loc : constant Source_Ptr := Sloc (N);
Failure : constant Boolean := False;
Success : constant Boolean := True;
Index_Typ : constant Entity_Id := Etype (Index);
Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
-- The type of the index corresponding to the array sub-aggregate along
-- with its low and upper bounds.
Index_Base : constant Entity_Id := Base_Type (Index_Typ);
Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
-- Ditto for the base type
Others_Present : Boolean := False;
Nb_Choices : Nat := 0;
-- Contains the overall number of named choices in this sub-aggregate
function Add (Val : Uint; To : Node_Id) return Node_Id;
-- Creates a new expression node where Val is added to expression To.
-- Tries to constant fold whenever possible. To must be an already
-- analyzed expression.
procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
-- Checks that AH (the upper bound of an array aggregate) is less than
-- or equal to BH (the upper bound of the index base type). If the check
-- fails, a warning is emitted, the Raises_Constraint_Error flag of N is
-- set, and AH is replaced with a duplicate of BH.
procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
-- Checks that range AL .. AH is compatible with range L .. H. Emits a
-- warning if not and sets the Raises_Constraint_Error flag in N.
procedure Check_Length (L, H : Node_Id; Len : Uint);
-- Checks that range L .. H contains at least Len elements. Emits a
-- warning if not and sets the Raises_Constraint_Error flag in N.
function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
-- Returns True if range L .. H is dynamic or null
procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
-- Given expression node From, this routine sets OK to False if it
-- cannot statically evaluate From. Otherwise it stores this static
-- value into Value.
function Resolve_Aggr_Expr
(Expr : Node_Id;
Single_Elmt : Boolean) return Boolean;
-- Resolves aggregate expression Expr. Returns False if resolution
-- fails. If Single_Elmt is set to False, the expression Expr may be
-- used to initialize several array aggregate elements (this can happen
-- for discrete choices such as "L .. H => Expr" or the OTHERS choice).
-- In this event we do not resolve Expr unless expansion is disabled.
-- To know why, see the DELAYED COMPONENT RESOLUTION note above.
--
-- NOTE: In the case of "... => <>", we pass the N_Component_Association
-- node as Expr, since there is no Expression and we need a Sloc for the
-- error message.
procedure Resolve_Iterated_Component_Association
(N : Node_Id;
Index_Typ : Entity_Id);
-- For AI12-061
procedure Warn_On_Null_Component_Association (Expr : Node_Id);
-- Expr is either a conditional expression or a case expression of an
-- iterated component association initializing the aggregate N with
-- components that can never be null. Report warning on associations
-- that may initialize some component with a null value.
---------
-- Add --
---------
function Add (Val : Uint; To : Node_Id) return Node_Id is
Expr_Pos : Node_Id;
Expr : Node_Id;
To_Pos : Node_Id;
begin
if Raises_Constraint_Error (To) then
return To;
end if;
-- First test if we can do constant folding
if Compile_Time_Known_Value (To)
or else Nkind (To) = N_Integer_Literal
then
Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
Set_Is_Static_Expression (Expr_Pos);
Set_Etype (Expr_Pos, Etype (To));
Set_Analyzed (Expr_Pos, Analyzed (To));
if not Is_Enumeration_Type (Index_Typ) then
Expr := Expr_Pos;
-- If we are dealing with enumeration return
-- Index_Typ'Val (Expr_Pos)
else
Expr :=
Make_Attribute_Reference
(Loc,
Prefix => New_Occurrence_Of (Index_Typ, Loc),
Attribute_Name => Name_Val,
Expressions => New_List (Expr_Pos));
end if;
return Expr;
end if;
-- If we are here no constant folding possible
if not Is_Enumeration_Type (Index_Base) then
Expr :=
Make_Op_Add (Loc,
Left_Opnd => Duplicate_Subexpr (To),
Right_Opnd => Make_Integer_Literal (Loc, Val));
-- If we are dealing with enumeration return
-- Index_Typ'Val (Index_Typ'Pos (To) + Val)
else
To_Pos :=
Make_Attribute_Reference
(Loc,
Prefix => New_Occurrence_Of (Index_Typ, Loc),
Attribute_Name => Name_Pos,
Expressions => New_List (Duplicate_Subexpr (To)));
Expr_Pos :=
Make_Op_Add (Loc,
Left_Opnd => To_Pos,
Right_Opnd => Make_Integer_Literal (Loc, Val));
Expr :=
Make_Attribute_Reference
(Loc,
Prefix => New_Occurrence_Of (Index_Typ, Loc),
Attribute_Name => Name_Val,
Expressions => New_List (Expr_Pos));
-- If the index type has a non standard representation, the
-- attributes 'Val and 'Pos expand into function calls and the
-- resulting expression is considered non-safe for reevaluation
-- by the backend. Relocate it into a constant temporary in order
-- to make it safe for reevaluation.
if Has_Non_Standard_Rep (Etype (N)) then
declare
Def_Id : Entity_Id;
begin
Def_Id := Make_Temporary (Loc, 'R', Expr);
Set_Etype (Def_Id, Index_Typ);
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition =>
New_Occurrence_Of (Index_Typ, Loc),
Constant_Present => True,
Expression => Relocate_Node (Expr)));
Expr := New_Occurrence_Of (Def_Id, Loc);
end;
end if;
end if;
return Expr;
end Add;
-----------------
-- Check_Bound --
-----------------
procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
Val_BH : Uint;
Val_AH : Uint;
OK_BH : Boolean;
OK_AH : Boolean;
begin
Get (Value => Val_BH, From => BH, OK => OK_BH);
Get (Value => Val_AH, From => AH, OK => OK_AH);
if OK_BH and then OK_AH and then Val_BH < Val_AH then
Set_Raises_Constraint_Error (N);
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("upper bound out of range<<", AH);
Error_Msg_N ("\Constraint_Error [<<", AH);
-- You need to set AH to BH or else in the case of enumerations
-- indexes we will not be able to resolve the aggregate bounds.
AH := Duplicate_Subexpr (BH);
end if;
end Check_Bound;
------------------
-- Check_Bounds --
------------------
procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
Val_L : Uint;
Val_H : Uint;
Val_AL : Uint;
Val_AH : Uint;
OK_L : Boolean;
OK_H : Boolean;
OK_AL : Boolean;
OK_AH : Boolean;
pragma Warnings (Off, OK_AL);
pragma Warnings (Off, OK_AH);
begin
if Raises_Constraint_Error (N)
or else Dynamic_Or_Null_Range (AL, AH)
then
return;
end if;
Get (Value => Val_L, From => L, OK => OK_L);
Get (Value => Val_H, From => H, OK => OK_H);
Get (Value => Val_AL, From => AL, OK => OK_AL);
Get (Value => Val_AH, From => AH, OK => OK_AH);
if OK_L and then Val_L > Val_AL then
Set_Raises_Constraint_Error (N);
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("lower bound of aggregate out of range<<", N);
Error_Msg_N ("\Constraint_Error [<<", N);
end if;
if OK_H and then Val_H < Val_AH then
Set_Raises_Constraint_Error (N);
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("upper bound of aggregate out of range<<", N);
Error_Msg_N ("\Constraint_Error [<<", N);
end if;
end Check_Bounds;
------------------
-- Check_Length --
------------------
procedure Check_Length (L, H : Node_Id; Len : Uint) is
Val_L : Uint;
Val_H : Uint;
OK_L : Boolean;
OK_H : Boolean;
Range_Len : Uint;
begin
if Raises_Constraint_Error (N) then
return;
end if;
Get (Value => Val_L, From => L, OK => OK_L);
Get (Value => Val_H, From => H, OK => OK_H);
if not OK_L or else not OK_H then
return;
end if;
-- If null range length is zero
if Val_L > Val_H then
Range_Len := Uint_0;
else
Range_Len := Val_H - Val_L + 1;
end if;
if Range_Len < Len then
Set_Raises_Constraint_Error (N);
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("too many elements<<", N);
Error_Msg_N ("\Constraint_Error [<<", N);
end if;
end Check_Length;
---------------------------
-- Dynamic_Or_Null_Range --
---------------------------
function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
Val_L : Uint;
Val_H : Uint;
OK_L : Boolean;
OK_H : Boolean;
begin
Get (Value => Val_L, From => L, OK => OK_L);
Get (Value => Val_H, From => H, OK => OK_H);
return not OK_L or else not OK_H
or else not Is_OK_Static_Expression (L)
or else not Is_OK_Static_Expression (H)
or else Val_L > Val_H;
end Dynamic_Or_Null_Range;
---------
-- Get --
---------
procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
begin
OK := True;
if Compile_Time_Known_Value (From) then
Value := Expr_Value (From);
-- If expression From is something like Some_Type'Val (10) then
-- Value = 10.
elsif Nkind (From) = N_Attribute_Reference
and then Attribute_Name (From) = Name_Val
and then Compile_Time_Known_Value (First (Expressions (From)))
then
Value := Expr_Value (First (Expressions (From)));
else
Value := Uint_0;
OK := False;
end if;
end Get;
-----------------------
-- Resolve_Aggr_Expr --
-----------------------
function Resolve_Aggr_Expr
(Expr : Node_Id;
Single_Elmt : Boolean) return Boolean
is
Nxt_Ind : constant Node_Id := Next_Index (Index);
Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
-- Index is the current index corresponding to the expression
Resolution_OK : Boolean := True;
-- Set to False if resolution of the expression failed
begin
-- Defend against previous errors
if Nkind (Expr) = N_Error
or else Error_Posted (Expr)
then
return True;
end if;
-- If the array type against which we are resolving the aggregate
-- has several dimensions, the expressions nested inside the
-- aggregate must be further aggregates (or strings).
if Present (Nxt_Ind) then
if Nkind (Expr) /= N_Aggregate then
-- A string literal can appear where a one-dimensional array
-- of characters is expected. If the literal looks like an
-- operator, it is still an operator symbol, which will be
-- transformed into a string when analyzed.
if Is_Character_Type (Component_Typ)
and then No (Next_Index (Nxt_Ind))
and then Nkind (Expr) in N_String_Literal | N_Operator_Symbol
then
-- A string literal used in a multidimensional array
-- aggregate in place of the final one-dimensional
-- aggregate must not be enclosed in parentheses.
if Paren_Count (Expr) /= 0 then
Error_Msg_N ("no parenthesis allowed here", Expr);
end if;
Make_String_Into_Aggregate (Expr);
else
Error_Msg_N ("nested array aggregate expected", Expr);
-- If the expression is parenthesized, this may be
-- a missing component association for a 1-aggregate.
if Paren_Count (Expr) > 0 then
Error_Msg_N
("\if single-component aggregate is intended, "
& "write e.g. (1 ='> ...)", Expr);
end if;
return Failure;
end if;
end if;
-- If it's "... => <>", nothing to resolve
if Nkind (Expr) = N_Component_Association then
pragma Assert (Box_Present (Expr));
return Success;
end if;
-- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
-- Required to check the null-exclusion attribute (if present).
-- This value may be overridden later on.
Set_Etype (Expr, Etype (N));
Resolution_OK := Resolve_Array_Aggregate
(Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
else
-- If it's "... => <>", nothing to resolve
if Nkind (Expr) = N_Component_Association then
pragma Assert (Box_Present (Expr));
return Success;
end if;
-- Do not resolve the expressions of discrete or others choices
-- unless the expression covers a single component, or the
-- expander is inactive.
-- In SPARK mode, expressions that can perform side effects will
-- be recognized by the gnat2why back-end, and the whole
-- subprogram will be ignored. So semantic analysis can be
-- performed safely.
if Single_Elmt
or else not Expander_Active
or else In_Spec_Expression
then
Analyze_And_Resolve (Expr, Component_Typ);
Check_Expr_OK_In_Limited_Aggregate (Expr);
Check_Non_Static_Context (Expr);
Aggregate_Constraint_Checks (Expr, Component_Typ);
Check_Unset_Reference (Expr);
end if;
end if;
-- If an aggregate component has a type with predicates, an explicit
-- predicate check must be applied, as for an assignment statement,
-- because the aggregate might not be expanded into individual
-- component assignments. If the expression covers several components
-- the analysis and the predicate check take place later.
if Has_Predicates (Component_Typ)
and then Analyzed (Expr)
then
Apply_Predicate_Check (Expr, Component_Typ);
end if;
if Raises_Constraint_Error (Expr)
and then Nkind (Parent (Expr)) /= N_Component_Association
then
Set_Raises_Constraint_Error (N);
end if;
-- If the expression has been marked as requiring a range check,
-- then generate it here. It's a bit odd to be generating such
-- checks in the analyzer, but harmless since Generate_Range_Check
-- does nothing (other than making sure Do_Range_Check is set) if
-- the expander is not active.
if Do_Range_Check (Expr) then
Generate_Range_Check (Expr, Component_Typ, CE_Range_Check_Failed);
end if;
return Resolution_OK;
end Resolve_Aggr_Expr;
--------------------------------------------
-- Resolve_Iterated_Component_Association --
--------------------------------------------
procedure Resolve_Iterated_Component_Association
(N : Node_Id;
Index_Typ : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Id : constant Entity_Id := Defining_Identifier (N);
-----------------------
-- Remove_References --
-----------------------
function Remove_Reference (N : Node_Id) return Traverse_Result;
-- Remove reference to the entity Id after analysis, so it can be
-- properly reanalyzed after construct is expanded into a loop.
function Remove_Reference (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Identifier
and then Present (Entity (N))
and then Entity (N) = Id
then
Set_Entity (N, Empty);
Set_Etype (N, Empty);
end if;
Set_Analyzed (N, False);
return OK;
end Remove_Reference;
procedure Remove_References is new Traverse_Proc (Remove_Reference);
-- Local variables
Choice : Node_Id;
Dummy : Boolean;
Scop : Entity_Id;
Expr : constant Node_Id := Expression (N);
-- Start of processing for Resolve_Iterated_Component_Association
begin
Error_Msg_Ada_2022_Feature ("iterated component", Loc);
-- Create a scope in which to introduce an index, to make it visible
-- for the analysis of component expression.
Scop := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
Set_Etype (Scop, Standard_Void_Type);
Set_Parent (Scop, Parent (N));
Push_Scope (Scop);
-- If there is iterator specification, then its preanalysis will make
-- the index visible.
if Present (Iterator_Specification (N)) then
Preanalyze (Iterator_Specification (N));
-- Otherwise, analyze discrete choices and make the index visible
else
-- Insert index name into current scope but don't decorate it yet,
-- so that a premature usage of this name in discrete choices will
-- be nicely diagnosed.
Enter_Name (Id);
Choice := First (Discrete_Choices (N));
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
Others_Present := True;
else
Analyze (Choice);
-- Choice can be a subtype name, a range, or an expression
if Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
and then
Base_Type (Entity (Choice)) = Base_Type (Index_Typ)
then
null;
else
Analyze_And_Resolve (Choice, Index_Typ);
end if;
end if;
Next (Choice);
end loop;
-- Decorate the index variable
Set_Etype (Id, Index_Typ);
Mutate_Ekind (Id, E_Variable);
Set_Is_Not_Self_Hidden (Id);
Set_Scope (Id, Scop);
end if;
-- Analyze expression without expansion, to verify legality.
-- When generating code, we then remove references to the index
-- variable, because the expression will be analyzed anew after
-- rewritting as a loop with a new index variable; when not
-- generating code we leave the analyzed expression as it is.
Dummy := Resolve_Aggr_Expr (Expr, Single_Elmt => False);
if Operating_Mode /= Check_Semantics then
Remove_References (Expr);
end if;
-- An iterated_component_association may appear in a nested
-- aggregate for a multidimensional structure: preserve the bounds
-- computed for the expression, as well as the anonymous array
-- type generated for it; both are needed during array expansion.
if Nkind (Expr) = N_Aggregate then
Set_Aggregate_Bounds (Expression (N), Aggregate_Bounds (Expr));
Set_Etype (Expression (N), Etype (Expr));
end if;
End_Scope;
end Resolve_Iterated_Component_Association;
----------------------------------------
-- Warn_On_Null_Component_Association --
----------------------------------------
procedure Warn_On_Null_Component_Association (Expr : Node_Id) is
Comp_Typ : constant Entity_Id := Component_Type (Etype (N));
procedure Check_Case_Expr (N : Node_Id);
-- Check if a case expression may initialize some component with a
-- null value.
procedure Check_Cond_Expr (N : Node_Id);
-- Check if a conditional expression may initialize some component
-- with a null value.
procedure Check_Expr (Expr : Node_Id);
-- Check if an expression may initialize some component with a
-- null value.
procedure Warn_On_Null_Expression_And_Rewrite (Null_Expr : Node_Id);
-- Report warning on known null expression and replace the expression
-- by a raise constraint error node.
---------------------
-- Check_Case_Expr --
---------------------
procedure Check_Case_Expr (N : Node_Id) is
Alt_Node : Node_Id := First (Alternatives (N));
begin
while Present (Alt_Node) loop
Check_Expr (Expression (Alt_Node));
Next (Alt_Node);
end loop;
end Check_Case_Expr;
---------------------
-- Check_Cond_Expr --
---------------------
procedure Check_Cond_Expr (N : Node_Id) is
If_Expr : Node_Id := N;
Then_Expr : Node_Id;
Else_Expr : Node_Id;
begin
Then_Expr := Next (First (Expressions (If_Expr)));
Else_Expr := Next (Then_Expr);
Check_Expr (Then_Expr);
-- Process elsif parts (if any)
while Nkind (Else_Expr) = N_If_Expression loop
If_Expr := Else_Expr;
Then_Expr := Next (First (Expressions (If_Expr)));
Else_Expr := Next (Then_Expr);
Check_Expr (Then_Expr);
end loop;
if Known_Null (Else_Expr) then
Warn_On_Null_Expression_And_Rewrite (Else_Expr);
end if;
end Check_Cond_Expr;
----------------
-- Check_Expr --
----------------
procedure Check_Expr (Expr : Node_Id) is
begin
if Known_Null (Expr) then
Warn_On_Null_Expression_And_Rewrite (Expr);
elsif Nkind (Expr) = N_If_Expression then
Check_Cond_Expr (Expr);
elsif Nkind (Expr) = N_Case_Expression then
Check_Case_Expr (Expr);
end if;
end Check_Expr;
-----------------------------------------
-- Warn_On_Null_Expression_And_Rewrite --
-----------------------------------------
procedure Warn_On_Null_Expression_And_Rewrite (Null_Expr : Node_Id) is
begin
Error_Msg_N
("(Ada 2005) NULL not allowed in null-excluding component??",
Null_Expr);
Error_Msg_N
("\Constraint_Error might be raised at run time??", Null_Expr);
-- We cannot use Apply_Compile_Time_Constraint_Error because in
-- some cases the components are rewritten and the runtime error
-- would be missed.
Rewrite (Null_Expr,
Make_Raise_Constraint_Error (Sloc (Null_Expr),
Reason => CE_Access_Check_Failed));
Set_Etype (Null_Expr, Comp_Typ);
Set_Analyzed (Null_Expr);
end Warn_On_Null_Expression_And_Rewrite;
-- Start of processing for Warn_On_Null_Component_Association
begin
pragma Assert (Can_Never_Be_Null (Comp_Typ));
case Nkind (Expr) is
when N_If_Expression =>
Check_Cond_Expr (Expr);
when N_Case_Expression =>
Check_Case_Expr (Expr);
when others =>
pragma Assert (False);
null;
end case;
end Warn_On_Null_Component_Association;
-- Local variables
Assoc : Node_Id;
Choice : Node_Id;
Expr : Node_Id;
Discard : Node_Id;
Aggr_Low : Node_Id := Empty;
Aggr_High : Node_Id := Empty;
-- The actual low and high bounds of this sub-aggregate
Case_Table_Size : Nat;
-- Contains the size of the case table needed to sort aggregate choices
Choices_Low : Node_Id := Empty;
Choices_High : Node_Id := Empty;
-- The lowest and highest discrete choices values for a named aggregate
Delete_Choice : Boolean;
-- Used when replacing a subtype choice with predicate by a list
Has_Iterator_Specifications : Boolean := False;
-- Flag to indicate that all named associations are iterated component
-- associations with iterator specifications, in which case the
-- expansion will create two loops: one to evaluate the size and one
-- to generate the elements (4.3.3 (20.2/5)).
Nb_Elements : Uint := Uint_0;
-- The number of elements in a positional aggregate
Nb_Discrete_Choices : Nat := 0;
-- The overall number of discrete choices (not counting others choice)
-- Start of processing for Resolve_Array_Aggregate
begin
-- Ignore junk empty aggregate resulting from parser error
if No (Expressions (N))
and then No (Component_Associations (N))
and then not Null_Record_Present (N)
then
return Failure;
end if;
-- Disable the warning for GNAT Mode to allow for easier transition.
if Ada_Version_Explicit >= Ada_2022
and then Warn_On_Obsolescent_Feature
and then not GNAT_Mode
and then not Is_Homogeneous_Aggregate (N)
and then not Is_Enum_Array_Aggregate (N)
and then Is_Parenthesis_Aggregate (N)
and then Nkind (Parent (N)) /= N_Qualified_Expression
and then Comes_From_Source (N)
then
Error_Msg_N
("?j?array aggregate using () is an" &
" obsolescent syntax, use '['] instead", N);
end if;
-- STEP 1: make sure the aggregate is correctly formatted
if Is_Null_Aggregate (N) then
null;
elsif Present (Component_Associations (N)) then
-- Verify that all or none of the component associations
-- include an iterator specification.
Assoc := First (Component_Associations (N));
if Nkind (Assoc) = N_Iterated_Component_Association
and then Present (Iterator_Specification (Assoc))
then
-- All other component associations must have an iterator spec.
Next (Assoc);
while Present (Assoc) loop
if Nkind (Assoc) /= N_Iterated_Component_Association
or else No (Iterator_Specification (Assoc))
then
Error_Msg_N ("mixed iterated component association"
& " (RM 4.3.3 (17.1/5))",
Assoc);
return Failure;
end if;
Next (Assoc);
end loop;
Has_Iterator_Specifications := True;
else
-- or none of them do.
Next (Assoc);
while Present (Assoc) loop
if Nkind (Assoc) = N_Iterated_Component_Association
and then Present (Iterator_Specification (Assoc))
then
Error_Msg_N ("mixed iterated component association"
& " (RM 4.3.3 (17.1/5))",
Assoc);
return Failure;
end if;
Next (Assoc);
end loop;
end if;
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
if Nkind (Assoc) = N_Iterated_Component_Association then
Resolve_Iterated_Component_Association (Assoc, Index_Typ);
elsif Nkind (Assoc) /= N_Component_Association then
Error_Msg_N
("invalid component association for aggregate", Assoc);
return Failure;
end if;
Choice := First (Choice_List (Assoc));
Delete_Choice := False;
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
Others_Present := True;
if Choice /= First (Choice_List (Assoc))
or else Present (Next (Choice))
then
Error_Msg_N
("OTHERS must appear alone in a choice list", Choice);
return Failure;
end if;
if Present (Next (Assoc)) then
Error_Msg_N
("OTHERS must appear last in an aggregate", Choice);
return Failure;
end if;
if Ada_Version = Ada_83
and then Assoc /= First (Component_Associations (N))
and then Nkind (Parent (N)) in
N_Assignment_Statement | N_Object_Declaration
then
Error_Msg_N
("(Ada 83) illegal context for OTHERS choice", N);
end if;
elsif Is_Entity_Name (Choice) then
Analyze (Choice);
declare
E : constant Entity_Id := Entity (Choice);
New_Cs : List_Id;
P : Node_Id;
C : Node_Id;
begin
if Is_Type (E) and then Has_Predicates (E) then
Freeze_Before (N, E);
if Has_Dynamic_Predicate_Aspect (E)
or else Has_Ghost_Predicate_Aspect (E)
then
Error_Msg_NE
("subtype& has non-static predicate, not allowed "
& "in aggregate choice", Choice, E);
elsif not Is_OK_Static_Subtype (E) then
Error_Msg_NE
("non-static subtype& has predicate, not allowed "
& "in aggregate choice", Choice, E);
end if;
-- If the subtype has a static predicate, replace the
-- original choice with the list of individual values
-- covered by the predicate.
-- This should be deferred to expansion time ???
if Present (Static_Discrete_Predicate (E)) then
Delete_Choice := True;
New_Cs := New_List;
P := First (Static_Discrete_Predicate (E));
while Present (P) loop
C := New_Copy (P);
Set_Sloc (C, Sloc (Choice));
Append_To (New_Cs, C);
Next (P);
end loop;
Insert_List_After (Choice, New_Cs);
end if;
end if;
end;
end if;
Nb_Choices := Nb_Choices + 1;
declare
C : constant Node_Id := Choice;
begin
Next (Choice);
if Delete_Choice then
Remove (C);
Nb_Choices := Nb_Choices - 1;
Delete_Choice := False;
end if;
end;
end loop;
Next (Assoc);
end loop;
end if;
-- At this point we know that the others choice, if present, is by
-- itself and appears last in the aggregate. Check if we have mixed
-- positional and discrete associations (other than the others choice).
if Present (Expressions (N))
and then (Nb_Choices > 1
or else (Nb_Choices = 1 and then not Others_Present))
then
Error_Msg_N
("cannot mix named and positional associations in array aggregate",
First (Choice_List (First (Component_Associations (N)))));
return Failure;
end if;
-- Test for the validity of an others choice if present
if Others_Present and then not Others_Allowed then
declare
Others_N : constant Node_Id :=
First (Choice_List (First (Component_Associations (N))));
begin
Error_Msg_N ("OTHERS choice not allowed here", Others_N);
Error_Msg_N ("\qualify the aggregate with a constrained subtype "
& "to provide bounds for it", Others_N);
return Failure;
end;
end if;
-- Protect against cascaded errors
if Etype (Index_Typ) = Any_Type then
return Failure;
end if;
-- STEP 2: Process named components
if No (Expressions (N)) then
if Others_Present then
Case_Table_Size := Nb_Choices - 1;
else
Case_Table_Size := Nb_Choices;
end if;
Step_2 : declare
function Empty_Range (A : Node_Id) return Boolean;
-- If an association covers an empty range, some warnings on the
-- expression of the association can be disabled.
-----------------
-- Empty_Range --
-----------------
function Empty_Range (A : Node_Id) return Boolean is
R : Node_Id;
begin
if Nkind (A) = N_Iterated_Component_Association then
R := First (Discrete_Choices (A));
else
R := First (Choices (A));
end if;
return No (Next (R))
and then Nkind (R) = N_Range
and then Compile_Time_Compare
(Low_Bound (R), High_Bound (R), False) = GT;
end Empty_Range;
-- Local variables
Low : Node_Id;
High : Node_Id;
-- Denote the lowest and highest values in an aggregate choice
S_Low : Node_Id := Empty;
S_High : Node_Id := Empty;
-- if a choice in an aggregate is a subtype indication these
-- denote the lowest and highest values of the subtype
Table : Case_Table_Type (1 .. Case_Table_Size);
-- Used to sort all the different choice values
Single_Choice : Boolean;
-- Set to true every time there is a single discrete choice in a
-- discrete association
Prev_Nb_Discrete_Choices : Nat;
-- Used to keep track of the number of discrete choices in the
-- current association.
Errors_Posted_On_Choices : Boolean := False;
-- Keeps track of whether any choices have semantic errors
-- Start of processing for Step_2
begin
-- STEP 2 (A): Check discrete choices validity
-- No need if this is an element iteration.
Assoc := First (Component_Associations (N));
while Present (Assoc)
and then Present (Choice_List (Assoc))
loop
Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
Choice := First (Choice_List (Assoc));
loop
Analyze (Choice);
if Nkind (Choice) = N_Others_Choice then
Single_Choice := False;
exit;
-- Test for subtype mark without constraint
elsif Is_Entity_Name (Choice) and then
Is_Type (Entity (Choice))
then
if Base_Type (Entity (Choice)) /= Index_Base then
Error_Msg_N
("invalid subtype mark in aggregate choice",
Choice);
return Failure;
end if;
-- Case of subtype indication
elsif Nkind (Choice) = N_Subtype_Indication then
Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
if Has_Dynamic_Predicate_Aspect
(Entity (Subtype_Mark (Choice)))
or else Has_Ghost_Predicate_Aspect
(Entity (Subtype_Mark (Choice)))
then
Error_Msg_NE
("subtype& has non-static predicate, "
& "not allowed in aggregate choice",
Choice, Entity (Subtype_Mark (Choice)));
end if;
-- Does the subtype indication evaluation raise CE?
Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
Get_Index_Bounds (Choice, Low, High);
Check_Bounds (S_Low, S_High, Low, High);
-- Case of range or expression
else
Resolve (Choice, Index_Base);
Check_Unset_Reference (Choice);
Check_Non_Static_Context (Choice);
-- If semantic errors were posted on the choice, then
-- record that for possible early return from later
-- processing (see handling of enumeration choices).
if Error_Posted (Choice) then
Errors_Posted_On_Choices := True;
end if;
-- Do not range check a choice. This check is redundant
-- since this test is already done when we check that the
-- bounds of the array aggregate are within range.
Set_Do_Range_Check (Choice, False);
end if;
-- If we could not resolve the discrete choice stop here
if Etype (Choice) = Any_Type then
return Failure;
-- If the discrete choice raises CE get its original bounds
elsif Nkind (Choice) = N_Raise_Constraint_Error then
Set_Raises_Constraint_Error (N);
Get_Index_Bounds (Original_Node (Choice), Low, High);
-- Otherwise get its bounds as usual
else
Get_Index_Bounds (Choice, Low, High);
end if;
if (Dynamic_Or_Null_Range (Low, High)
or else (Nkind (Choice) = N_Subtype_Indication
and then
Dynamic_Or_Null_Range (S_Low, S_High)))
and then Nb_Choices /= 1
then
Error_Msg_N
("dynamic or empty choice in aggregate "
& "must be the only choice", Choice);
return Failure;
end if;
if not (All_Composite_Constraints_Static (Low)
and then All_Composite_Constraints_Static (High)
and then All_Composite_Constraints_Static (S_Low)
and then All_Composite_Constraints_Static (S_High))
then
Check_Restriction (No_Dynamic_Sized_Objects, Choice);
end if;
Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
Table (Nb_Discrete_Choices).Lo := Low;
Table (Nb_Discrete_Choices).Hi := High;
Table (Nb_Discrete_Choices).Choice := Choice;
Next (Choice);
if No (Choice) then
-- Check if we have a single discrete choice and whether
-- this discrete choice specifies a single value.
Single_Choice :=
Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1
and then Low = High;
exit;
end if;
end loop;
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_2005
and then not Empty_Range (Assoc)
then
if Known_Null (Expression (Assoc)) then
Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
-- Report warning on iterated component association that may
-- initialize some component of an array of null-excluding
-- access type components with a null value. For example:
-- type AList is array (...) of not null access Integer;
-- L : AList :=
-- [for J in A'Range =>
-- (if Func (J) = 0 then A(J)'Access else Null)];
elsif Ada_Version >= Ada_2022
and then Can_Never_Be_Null (Component_Type (Etype (N)))
and then Nkind (Assoc) = N_Iterated_Component_Association
and then Nkind (Expression (Assoc)) in N_If_Expression
| N_Case_Expression
then
Warn_On_Null_Component_Association (Expression (Assoc));
end if;
end if;
-- Ada 2005 (AI-287): In case of default initialized component
-- we delay the resolution to the expansion phase.
if Box_Present (Assoc) then
-- Ada 2005 (AI-287): In case of default initialization of a
-- component the expander will generate calls to the
-- corresponding initialization subprogram. We need to call
-- Resolve_Aggr_Expr to check the rules about
-- dimensionality.
if not Resolve_Aggr_Expr
(Assoc, Single_Elmt => Single_Choice)
then
return Failure;
end if;
-- ??? Checks for dynamically tagged expressions below will
-- be only applied to iterated_component_association after
-- expansion; in particular, errors might not be reported when
-- -gnatc switch is used.
elsif Nkind (Assoc) = N_Iterated_Component_Association then
null; -- handled above, in a loop context
elsif not Resolve_Aggr_Expr
(Expression (Assoc), Single_Elmt => Single_Choice)
then
return Failure;
-- Check incorrect use of dynamically tagged expression
-- We differentiate here two cases because the expression may
-- not be decorated. For example, the analysis and resolution
-- of the expression associated with the others choice will be
-- done later with the full aggregate. In such case we
-- duplicate the expression tree to analyze the copy and
-- perform the required check.
elsif No (Etype (Expression (Assoc))) then
declare
Save_Analysis : constant Boolean := Full_Analysis;
Expr : constant Node_Id :=
New_Copy_Tree (Expression (Assoc));
begin
Expander_Mode_Save_And_Set (False);
Full_Analysis := False;
-- Analyze the expression, making sure it is properly
-- attached to the tree before we do the analysis.
Set_Parent (Expr, Parent (Expression (Assoc)));
Analyze (Expr);
-- Compute its dimensions now, rather than at the end of
-- resolution, because in the case of multidimensional
-- aggregates subsequent expansion may lead to spurious
-- errors.
Check_Expression_Dimensions (Expr, Component_Typ);
-- If the expression is a literal, propagate this info
-- to the expression in the association, to enable some
-- optimizations downstream.
if Is_Entity_Name (Expr)
and then Present (Entity (Expr))
and then Ekind (Entity (Expr)) = E_Enumeration_Literal
then
Analyze_And_Resolve
(Expression (Assoc), Component_Typ);
end if;
Full_Analysis := Save_Analysis;
Expander_Mode_Restore;
if Is_Tagged_Type (Etype (Expr)) then
Check_Dynamically_Tagged_Expression
(Expr => Expr,
Typ => Component_Type (Etype (N)),
Related_Nod => N);
end if;
end;
elsif Is_Tagged_Type (Etype (Expression (Assoc))) then
Check_Dynamically_Tagged_Expression
(Expr => Expression (Assoc),
Typ => Component_Type (Etype (N)),
Related_Nod => N);
end if;
Next (Assoc);
end loop;
-- If aggregate contains more than one choice then these must be
-- static. Check for duplicate and missing values.
-- Note: there is duplicated code here wrt Check_Choice_Set in
-- the body of Sem_Case, and it is possible we could just reuse
-- that procedure. To be checked ???
if Nb_Discrete_Choices > 1 then
Check_Choices : declare
Choice : Node_Id;
-- Location of choice for messages
Hi_Val : Uint;
Lo_Val : Uint;
-- High end of one range and Low end of the next. Should be
-- contiguous if there is no hole in the list of values.
Lo_Dup : Uint;
Hi_Dup : Uint;
-- End points of duplicated range
Missing_Or_Duplicates : Boolean := False;
-- Set True if missing or duplicate choices found
procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id);
-- Output continuation message with a representation of the
-- bounds (just Lo if Lo = Hi, else Lo .. Hi). C is the
-- choice node where the message is to be posted.
------------------------
-- Output_Bad_Choices --
------------------------
procedure Output_Bad_Choices (Lo, Hi : Uint; C : Node_Id) is
begin
-- Enumeration type case
if Is_Enumeration_Type (Index_Typ) then
Error_Msg_Name_1 :=
Chars (Get_Enum_Lit_From_Pos (Index_Typ, Lo, Loc));
Error_Msg_Name_2 :=
Chars (Get_Enum_Lit_From_Pos (Index_Typ, Hi, Loc));
if Lo = Hi then
Error_Msg_N ("\\ %!", C);
else
Error_Msg_N ("\\ % .. %!", C);
end if;
-- Integer types case
else
Error_Msg_Uint_1 := Lo;
Error_Msg_Uint_2 := Hi;
if Lo = Hi then
Error_Msg_N ("\\ ^!", C);
else
Error_Msg_N ("\\ ^ .. ^!", C);
end if;
end if;
end Output_Bad_Choices;
-- Start of processing for Check_Choices
begin
Sort_Case_Table (Table);
-- First we do a quick linear loop to find out if we have
-- any duplicates or missing entries (usually we have a
-- legal aggregate, so this will get us out quickly).
for J in 1 .. Nb_Discrete_Choices - 1 loop
Hi_Val := Expr_Value (Table (J).Hi);
Lo_Val := Expr_Value (Table (J + 1).Lo);
if Lo_Val <= Hi_Val
or else (Lo_Val > Hi_Val + 1
and then not Others_Present)
then
Missing_Or_Duplicates := True;
exit;
end if;
end loop;
-- If we have missing or duplicate entries, first fill in
-- the Highest entries to make life easier in the following
-- loops to detect bad entries.
if Missing_Or_Duplicates then
Table (1).Highest := Expr_Value (Table (1).Hi);
for J in 2 .. Nb_Discrete_Choices loop
Table (J).Highest :=
UI_Max
(Table (J - 1).Highest, Expr_Value (Table (J).Hi));
end loop;
-- Loop through table entries to find duplicate indexes
for J in 2 .. Nb_Discrete_Choices loop
Lo_Val := Expr_Value (Table (J).Lo);
Hi_Val := Expr_Value (Table (J).Hi);
-- Case where we have duplicates (the lower bound of
-- this choice is less than or equal to the highest
-- high bound found so far).
if Lo_Val <= Table (J - 1).Highest then
-- We move backwards looking for duplicates. We can
-- abandon this loop as soon as we reach a choice
-- highest value that is less than Lo_Val.
for K in reverse 1 .. J - 1 loop
exit when Table (K).Highest < Lo_Val;
-- Here we may have duplicates between entries
-- for K and J. Get range of duplicates.
Lo_Dup :=
UI_Max (Lo_Val, Expr_Value (Table (K).Lo));
Hi_Dup :=
UI_Min (Hi_Val, Expr_Value (Table (K).Hi));
-- Nothing to do if duplicate range is null
if Lo_Dup > Hi_Dup then
null;
-- Otherwise place proper message
else
-- We place message on later choice, with a
-- line reference to the earlier choice.
if Sloc (Table (J).Choice) <
Sloc (Table (K).Choice)
then
Choice := Table (K).Choice;
Error_Msg_Sloc := Sloc (Table (J).Choice);
else
Choice := Table (J).Choice;
Error_Msg_Sloc := Sloc (Table (K).Choice);
end if;
if Lo_Dup = Hi_Dup then
Error_Msg_N
("index value in array aggregate "
& "duplicates the one given#!", Choice);
else
Error_Msg_N
("index values in array aggregate "
& "duplicate those given#!", Choice);
end if;
Output_Bad_Choices (Lo_Dup, Hi_Dup, Choice);
end if;
end loop;
end if;
end loop;
-- Loop through entries in table to find missing indexes.
-- Not needed if others, since missing impossible.
if not Others_Present then
for J in 2 .. Nb_Discrete_Choices loop
Lo_Val := Expr_Value (Table (J).Lo);
Hi_Val := Table (J - 1).Highest;
if Lo_Val > Hi_Val + 1 then
declare
Error_Node : Node_Id;
begin
-- If the choice is the bound of a range in
-- a subtype indication, it is not in the
-- source lists for the aggregate itself, so
-- post the error on the aggregate. Otherwise
-- post it on choice itself.
Choice := Table (J).Choice;
if Is_List_Member (Choice) then
Error_Node := Choice;
else
Error_Node := N;
end if;
if Hi_Val + 1 = Lo_Val - 1 then
Error_Msg_N
("missing index value "
& "in array aggregate!", Error_Node);
else
Error_Msg_N
("missing index values "
& "in array aggregate!", Error_Node);
end if;
Output_Bad_Choices
(Hi_Val + 1, Lo_Val - 1, Error_Node);
end;
end if;
end loop;
end if;
-- If either missing or duplicate values, return failure
Set_Etype (N, Any_Composite);
return Failure;
end if;
end Check_Choices;
end if;
if Has_Iterator_Specifications then
-- Bounds will be determined dynamically.
return Success;
end if;
-- STEP 2 (B): Compute aggregate bounds and min/max choices values
if Nb_Discrete_Choices > 0 then
Choices_Low := Table (1).Lo;
Choices_High := Table (Nb_Discrete_Choices).Hi;
end if;
-- If Others is present, then bounds of aggregate come from the
-- index constraint (not the choices in the aggregate itself).
if Others_Present then
Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
-- Abandon processing if either bound is already signalled as
-- an error (prevents junk cascaded messages and blow ups).
if Nkind (Aggr_Low) = N_Error
or else
Nkind (Aggr_High) = N_Error
then
return False;
end if;
-- No others clause present
else
-- Special processing if others allowed and not present. This
-- means that the bounds of the aggregate come from the index
-- constraint (and the length must match).
if Others_Allowed then
Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
-- Abandon processing if either bound is already signalled
-- as an error (stop junk cascaded messages and blow ups).
if Nkind (Aggr_Low) = N_Error
or else
Nkind (Aggr_High) = N_Error
then
return False;
end if;
-- If others allowed, and no others present, then the array
-- should cover all index values. If it does not, we will
-- get a length check warning, but there is two cases where
-- an additional warning is useful:
-- If we have no positional components, and the length is
-- wrong (which we can tell by others being allowed with
-- missing components), and the index type is an enumeration
-- type, then issue appropriate warnings about these missing
-- components. They are only warnings, since the aggregate
-- is fine, it's just the wrong length. We skip this check
-- for standard character types (since there are no literals
-- and it is too much trouble to concoct them), and also if
-- any of the bounds have values that are not known at
-- compile time.
-- Another case warranting a warning is when the length
-- is right, but as above we have an index type that is
-- an enumeration, and the bounds do not match. This is a
-- case where dubious sliding is allowed and we generate a
-- warning that the bounds do not match.
if No (Expressions (N))
and then Nkind (Index) = N_Range
and then Is_Enumeration_Type (Etype (Index))
and then not Is_Standard_Character_Type (Etype (Index))
and then Compile_Time_Known_Value (Aggr_Low)
and then Compile_Time_Known_Value (Aggr_High)
and then Compile_Time_Known_Value (Choices_Low)
and then Compile_Time_Known_Value (Choices_High)
then
-- If any of the expressions or range bounds in choices
-- have semantic errors, then do not attempt further
-- resolution, to prevent cascaded errors.
if Errors_Posted_On_Choices then
return Failure;
end if;
declare
ALo : constant Node_Id := Expr_Value_E (Aggr_Low);
AHi : constant Node_Id := Expr_Value_E (Aggr_High);
CLo : constant Node_Id := Expr_Value_E (Choices_Low);
CHi : constant Node_Id := Expr_Value_E (Choices_High);
Ent : Entity_Id;
begin
-- Warning case 1, missing values at start/end. Only
-- do the check if the number of entries is too small.
if (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
<
(Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
then
Error_Msg_N
("missing index value(s) in array aggregate??",
N);
-- Output missing value(s) at start
if Chars (ALo) /= Chars (CLo) then
Ent := Prev (CLo);
if Chars (ALo) = Chars (Ent) then
Error_Msg_Name_1 := Chars (ALo);
Error_Msg_N ("\ %??", N);
else
Error_Msg_Name_1 := Chars (ALo);
Error_Msg_Name_2 := Chars (Ent);
Error_Msg_N ("\ % .. %??", N);
end if;
end if;
-- Output missing value(s) at end
if Chars (AHi) /= Chars (CHi) then
Ent := Next (CHi);
if Chars (AHi) = Chars (Ent) then
Error_Msg_Name_1 := Chars (Ent);
Error_Msg_N ("\ %??", N);
else
Error_Msg_Name_1 := Chars (Ent);
Error_Msg_Name_2 := Chars (AHi);
Error_Msg_N ("\ % .. %??", N);
end if;
end if;
-- Warning case 2, dubious sliding. The First_Subtype
-- test distinguishes between a constrained type where
-- sliding is not allowed (so we will get a warning
-- later that Constraint_Error will be raised), and
-- the unconstrained case where sliding is permitted.
elsif (Enumeration_Pos (CHi) - Enumeration_Pos (CLo))
=
(Enumeration_Pos (AHi) - Enumeration_Pos (ALo))
and then Chars (ALo) /= Chars (CLo)
and then
not Is_Constrained (First_Subtype (Etype (N)))
then
Error_Msg_N
("bounds of aggregate do not match target??", N);
end if;
end;
end if;
end if;
-- If no others, aggregate bounds come from aggregate
Aggr_Low := Choices_Low;
Aggr_High := Choices_High;
end if;
end Step_2;
-- STEP 3: Process positional components
else
-- STEP 3 (A): Process positional elements
Expr := First (Expressions (N));
Nb_Elements := Uint_0;
while Present (Expr) loop
Nb_Elements := Nb_Elements + 1;
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_2005 and then Known_Null (Expr) then
Check_Can_Never_Be_Null (Etype (N), Expr);
end if;
if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
return Failure;
end if;
-- Check incorrect use of dynamically tagged expression
if Is_Tagged_Type (Etype (Expr)) then
Check_Dynamically_Tagged_Expression
(Expr => Expr,
Typ => Component_Type (Etype (N)),
Related_Nod => N);
end if;
Next (Expr);
end loop;
if Others_Present then
Assoc := Last (Component_Associations (N));
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_2005 and then Known_Null (Assoc) then
Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
end if;
-- Ada 2005 (AI-287): In case of default initialized component,
-- we delay the resolution to the expansion phase.
if Box_Present (Assoc) then
-- Ada 2005 (AI-287): In case of default initialization of a
-- component the expander will generate calls to the
-- corresponding initialization subprogram. We need to call
-- Resolve_Aggr_Expr to check the rules about
-- dimensionality.
if not Resolve_Aggr_Expr (Assoc, Single_Elmt => False) then
return Failure;
end if;
elsif not Resolve_Aggr_Expr (Expression (Assoc),
Single_Elmt => False)
then
return Failure;
-- Check incorrect use of dynamically tagged expression. The
-- expression of the others choice has not been resolved yet.
-- In order to diagnose the semantic error we create a duplicate
-- tree to analyze it and perform the check.
elsif Nkind (Assoc) /= N_Iterated_Component_Association then
declare
Save_Analysis : constant Boolean := Full_Analysis;
Expr : constant Node_Id :=
New_Copy_Tree (Expression (Assoc));
begin
Expander_Mode_Save_And_Set (False);
Full_Analysis := False;
Analyze (Expr);
Full_Analysis := Save_Analysis;
Expander_Mode_Restore;
if Is_Tagged_Type (Etype (Expr)) then
Check_Dynamically_Tagged_Expression
(Expr => Expr,
Typ => Component_Type (Etype (N)),
Related_Nod => N);
end if;
end;
end if;
end if;
-- STEP 3 (B): Compute the aggregate bounds
if Others_Present then
Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
else
if Others_Allowed then
Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
else
Aggr_Low := Index_Typ_Low;
end if;
Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
Check_Bound (Index_Base_High, Aggr_High);
end if;
end if;
-- STEP 4: Perform static aggregate checks and save the bounds
-- Check (A)
Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
-- Check (B)
if Others_Present and then Nb_Discrete_Choices > 0 then
Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
Check_Bounds (Index_Typ_Low, Index_Typ_High,
Choices_Low, Choices_High);
Check_Bounds (Index_Base_Low, Index_Base_High,
Choices_Low, Choices_High);
-- Check (C)
elsif Others_Present and then Nb_Elements > 0 then
Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
end if;
if Raises_Constraint_Error (Aggr_Low)
or else Raises_Constraint_Error (Aggr_High)
then
Set_Raises_Constraint_Error (N);
end if;
Aggr_Low := Duplicate_Subexpr (Aggr_Low);
-- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
-- since the addition node returned by Add is not yet analyzed. Attach
-- to tree and analyze first. Reset analyzed flag to ensure it will get
-- analyzed when it is a literal bound whose type must be properly set.
if Others_Present or else Nb_Discrete_Choices > 0 then
Aggr_High := Duplicate_Subexpr (Aggr_High);
if Etype (Aggr_High) = Universal_Integer then
Set_Analyzed (Aggr_High, False);
end if;
end if;
-- If the aggregate already has bounds attached to it, it means this is
-- a positional aggregate created as an optimization by
-- Exp_Aggr.Convert_To_Positional, so we don't want to change those
-- bounds.
if Present (Aggregate_Bounds (N))
and then not Others_Allowed
and then not Comes_From_Source (N)
then
Aggr_Low := Low_Bound (Aggregate_Bounds (N));
Aggr_High := High_Bound (Aggregate_Bounds (N));
end if;
Set_Aggregate_Bounds
(N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
-- The bounds may contain expressions that must be inserted upwards.
-- Attach them fully to the tree. After analysis, remove side effects
-- from upper bound, if still needed.
Set_Parent (Aggregate_Bounds (N), N);
Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
Check_Unset_Reference (Aggregate_Bounds (N));
if not Others_Present and then Nb_Discrete_Choices = 0 then
Set_High_Bound
(Aggregate_Bounds (N),
Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
end if;
-- Check the dimensions of each component in the array aggregate
Analyze_Dimension_Array_Aggregate (N, Component_Typ);
return Success;
end Resolve_Array_Aggregate;
---------------------------------
-- Resolve_Container_Aggregate --
---------------------------------
procedure Resolve_Container_Aggregate (N : Node_Id; Typ : Entity_Id) is
procedure Resolve_Iterated_Association
(Comp : Node_Id;
Key_Type : Entity_Id;
Elmt_Type : Entity_Id);
-- Resolve choices and expression in an iterated component association
-- or an iterated element association, which has a key_expression.
-- This is similar but not identical to the handling of this construct
-- in an array aggregate.
-- For a named container, the type of each choice must be compatible
-- with the key type. For a positional container, the choice must be
-- a subtype indication or an iterator specification that determines
-- an element type.
Asp : constant Node_Id := Find_Value_Of_Aspect (Typ, Aspect_Aggregate);
Empty_Subp : Node_Id := Empty;
Add_Named_Subp : Node_Id := Empty;
Add_Unnamed_Subp : Node_Id := Empty;
New_Indexed_Subp : Node_Id := Empty;
Assign_Indexed_Subp : Node_Id := Empty;
----------------------------------
-- Resolve_Iterated_Association --
----------------------------------
procedure Resolve_Iterated_Association
(Comp : Node_Id;
Key_Type : Entity_Id;
Elmt_Type : Entity_Id)
is
Loc : constant Source_Ptr := Sloc (N);
Choice : Node_Id;
Copy : Node_Id;
Ent : Entity_Id;
Expr : Node_Id;
Key_Expr : Node_Id;
Id : Entity_Id;
Id_Name : Name_Id;
Typ : Entity_Id := Empty;
begin
Error_Msg_Ada_2022_Feature ("iterated component", Loc);
-- If this is an Iterated_Element_Association then either a
-- an Iterator_Specification or a Loop_Parameter specification
-- is present. In both cases a Key_Expression is present.
if Nkind (Comp) = N_Iterated_Element_Association then
-- Create a temporary scope to avoid some modifications from
-- escaping the Analyze call below. The original Tree will be
-- reanalyzed later.
Ent := New_Internal_Entity
(E_Loop, Current_Scope, Sloc (Comp), 'L');
Set_Etype (Ent, Standard_Void_Type);
Set_Parent (Ent, Parent (Comp));
Push_Scope (Ent);
if Present (Loop_Parameter_Specification (Comp)) then
Copy := Copy_Separate_Tree (Comp);
Analyze
(Loop_Parameter_Specification (Copy));
Id_Name := Chars (Defining_Identifier
(Loop_Parameter_Specification (Comp)));
else
Copy := Copy_Separate_Tree (Iterator_Specification (Comp));
Analyze (Copy);
Id_Name := Chars (Defining_Identifier
(Iterator_Specification (Comp)));
end if;
-- Key expression must have the type of the key. We preanalyze
-- a copy of the original expression, because it will be
-- reanalyzed and copied as needed during expansion of the
-- corresponding loop.
Key_Expr := Key_Expression (Comp);
Preanalyze_And_Resolve (New_Copy_Tree (Key_Expr), Key_Type);
End_Scope;
Typ := Key_Type;
elsif Present (Iterator_Specification (Comp)) then
-- Create a temporary scope to avoid some modifications from
-- escaping the Analyze call below. The original Tree will be
-- reanalyzed later.
Ent := New_Internal_Entity
(E_Loop, Current_Scope, Sloc (Comp), 'L');
Set_Etype (Ent, Standard_Void_Type);
Set_Parent (Ent, Parent (Comp));
Push_Scope (Ent);
Copy := Copy_Separate_Tree (Iterator_Specification (Comp));
Id_Name :=
Chars (Defining_Identifier (Iterator_Specification (Comp)));
Preanalyze (Copy);
End_Scope;
Typ := Etype (Defining_Identifier (Copy));
else
Choice := First (Discrete_Choices (Comp));
while Present (Choice) loop
Analyze (Choice);
-- Choice can be a subtype name, a range, or an expression
if Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
and then Base_Type (Entity (Choice)) = Base_Type (Key_Type)
then
null;
elsif Present (Key_Type) then
Analyze_And_Resolve (Choice, Key_Type);
Typ := Key_Type;
else
Typ := Etype (Choice); -- assume unique for now
end if;
Next (Choice);
end loop;
Id_Name := Chars (Defining_Identifier (Comp));
end if;
-- Create a scope in which to introduce an index, which is usually
-- visible in the expression for the component, and needed for its
-- analysis.
Id := Make_Defining_Identifier (Sloc (Comp), Id_Name);
Ent := New_Internal_Entity (E_Loop,
Current_Scope, Sloc (Comp), 'L');
Set_Etype (Ent, Standard_Void_Type);
Set_Parent (Ent, Parent (Comp));
Push_Scope (Ent);
-- Insert and decorate the loop variable in the current scope.
-- The expression has to be analyzed once the loop variable is
-- directly visible. Mark the variable as referenced to prevent
-- spurious warnings, given that subsequent uses of its name in the
-- expression will reference the internal (synonym) loop variable.
Enter_Name (Id);
pragma Assert (Present (Typ));
Set_Etype (Id, Typ);
Mutate_Ekind (Id, E_Variable);
Set_Is_Not_Self_Hidden (Id);
Set_Scope (Id, Ent);
Set_Referenced (Id);
-- Analyze a copy of the expression, to verify legality. We use
-- a copy because the expression will be analyzed anew when the
-- enclosing aggregate is expanded, and the construct is rewritten
-- as a loop with a new index variable.
Expr := New_Copy_Tree (Expression (Comp));
Preanalyze_And_Resolve (Expr, Elmt_Type);
End_Scope;
end Resolve_Iterated_Association;
-- Start of processing for Resolve_Container_Aggregate
begin
pragma Assert (Nkind (Asp) = N_Aggregate);
Set_Etype (N, Typ);
Parse_Aspect_Aggregate (Asp,
Empty_Subp, Add_Named_Subp, Add_Unnamed_Subp,
New_Indexed_Subp, Assign_Indexed_Subp);
if Present (Add_Unnamed_Subp)
and then No (New_Indexed_Subp)
and then Present (Etype (Add_Unnamed_Subp))
and then Etype (Add_Unnamed_Subp) /= Any_Type
then
declare
Elmt_Type : constant Entity_Id :=
Etype (Next_Formal
(First_Formal (Entity (Add_Unnamed_Subp))));
Comp : Node_Id;
begin
if Present (Expressions (N)) then
-- positional aggregate
Comp := First (Expressions (N));
while Present (Comp) loop
Analyze_And_Resolve (Comp, Elmt_Type);
Next (Comp);
end loop;
end if;
-- Empty aggregate, to be replaced by Empty during
-- expansion, or iterated component association.
if Present (Component_Associations (N)) then
declare
Comp : Node_Id := First (Component_Associations (N));
begin
while Present (Comp) loop
if Nkind (Comp) /=
N_Iterated_Component_Association
then
Error_Msg_N ("illegal component association "
& "for unnamed container aggregate", Comp);
return;
else
Resolve_Iterated_Association
(Comp, Empty, Elmt_Type);
end if;
Next (Comp);
end loop;
end;
end if;
end;
elsif Present (Add_Named_Subp)
and then Etype (Add_Named_Subp) /= Any_Type
then
declare
-- Retrieves types of container, key, and element from the
-- specified insertion procedure.
Container : constant Entity_Id :=
First_Formal (Entity (Add_Named_Subp));
Key_Type : constant Entity_Id := Etype (Next_Formal (Container));
Elmt_Type : constant Entity_Id :=
Etype (Next_Formal (Next_Formal (Container)));
Comp_Assocs : constant List_Id := Component_Associations (N);
Comp : Node_Id;
Choice : Node_Id;
begin
-- In the Add_Named case, the aggregate must consist of named
-- associations (Add_Unnnamed is not allowed), so we issue an
-- error if there are positional associations.
if No (Comp_Assocs)
and then Present (Expressions (N))
then
Error_Msg_N ("container aggregate must be "
& "named, not positional", N);
return;
end if;
Comp := First (Comp_Assocs);
while Present (Comp) loop
if Nkind (Comp) = N_Component_Association then
Choice := First (Choices (Comp));
while Present (Choice) loop
Analyze_And_Resolve (Choice, Key_Type);
if not Is_Static_Expression (Choice) then
Error_Msg_N ("choice must be static", Choice);
end if;
Next (Choice);
end loop;
Analyze_And_Resolve (Expression (Comp), Elmt_Type);
elsif Nkind (Comp) in
N_Iterated_Component_Association |
N_Iterated_Element_Association
then
Resolve_Iterated_Association
(Comp, Key_Type, Elmt_Type);
end if;
Next (Comp);
end loop;
end;
elsif Present (Assign_Indexed_Subp)
and then Etype (Assign_Indexed_Subp) /= Any_Type
then
-- Indexed Aggregate. Positional or indexed component
-- can be present, but not both. Choices must be static
-- values or ranges with static bounds.
declare
Container : constant Entity_Id :=
First_Formal (Entity (Assign_Indexed_Subp));
Index_Type : constant Entity_Id := Etype (Next_Formal (Container));
Comp_Type : constant Entity_Id :=
Etype (Next_Formal (Next_Formal (Container)));
Comp : Node_Id;
Choice : Node_Id;
Num_Choices : Nat := 0;
Hi_Val : Uint;
Lo_Val : Uint;
begin
if Present (Expressions (N)) then
Comp := First (Expressions (N));
while Present (Comp) loop
Analyze_And_Resolve (Comp, Comp_Type);
Next (Comp);
end loop;
end if;
if Present (Component_Associations (N))
and then not Is_Empty_List (Component_Associations (N))
then
if Present (Expressions (N))
and then not Is_Empty_List (Expressions (N))
then
Error_Msg_N ("container aggregate cannot be "
& "both positional and named", N);
return;
end if;
Comp := First (Component_Associations (N));
while Present (Comp) loop
if Nkind (Comp) = N_Component_Association then
Choice := First (Choices (Comp));
while Present (Choice) loop
Analyze_And_Resolve (Choice, Index_Type);
Num_Choices := Num_Choices + 1;
Next (Choice);
end loop;
Analyze_And_Resolve (Expression (Comp), Comp_Type);
elsif Nkind (Comp) in
N_Iterated_Component_Association |
N_Iterated_Element_Association
then
Resolve_Iterated_Association
(Comp, Index_Type, Comp_Type);
Num_Choices := Num_Choices + 1;
end if;
Next (Comp);
end loop;
-- The component associations in an indexed aggregate
-- must denote a contiguous set of static values. We
-- build a table of values/ranges and sort it, as is done
-- elsewhere for case statements and array aggregates.
-- If the aggregate has a single iterated association it
-- is allowed to be nonstatic and there is nothing to check.
if Num_Choices > 1 then
declare
Table : Case_Table_Type (1 .. Num_Choices);
No_Choice : Pos := 1;
Lo, Hi : Node_Id;
-- Traverse aggregate to determine size of needed table.
-- Verify that bounds are static and that loops have no
-- filters or key expressions.
begin
Comp := First (Component_Associations (N));
while Present (Comp) loop
if Nkind (Comp) = N_Iterated_Element_Association then
if Present
(Loop_Parameter_Specification (Comp))
then
if Present (Iterator_Filter
(Loop_Parameter_Specification (Comp)))
then
Error_Msg_N
("iterator filter not allowed " &
"in indexed aggregate", Comp);
return;
elsif Present (Key_Expression
(Loop_Parameter_Specification (Comp)))
then
Error_Msg_N
("key expression not allowed " &
"in indexed aggregate", Comp);
return;
end if;
end if;
else
-- If Nkind is N_Iterated_Component_Association,
-- this corresponds to an iterator_specification
-- with a loop_parameter_specification, and we
-- have to pick up Discrete_Choices. In this case
-- there will be just one "choice", which will
-- typically be a range.
if Nkind (Comp) = N_Iterated_Component_Association
then
Choice := First (Discrete_Choices (Comp));
-- Case where there's a list of choices
else
Choice := First (Choices (Comp));
end if;
while Present (Choice) loop
Get_Index_Bounds (Choice, Lo, Hi);
Table (No_Choice).Choice := Choice;
Table (No_Choice).Lo := Lo;
Table (No_Choice).Hi := Hi;
-- Verify staticness of value or range
if not Is_Static_Expression (Lo)
or else not Is_Static_Expression (Hi)
then
Error_Msg_N
("nonstatic expression for index " &
"for indexed aggregate", Choice);
return;
end if;
No_Choice := No_Choice + 1;
Next (Choice);
end loop;
end if;
Next (Comp);
end loop;
Sort_Case_Table (Table);
for J in 1 .. Num_Choices - 1 loop
Hi_Val := Expr_Value (Table (J).Hi);
Lo_Val := Expr_Value (Table (J + 1).Lo);
if Lo_Val = Hi_Val then
Error_Msg_N
("duplicate index in indexed aggregate",
Table (J + 1).Choice);
exit;
elsif Lo_Val < Hi_Val then
Error_Msg_N
("overlapping indices in indexed aggregate",
Table (J + 1).Choice);
exit;
elsif Lo_Val > Hi_Val + 1 then
Error_Msg_N
("missing index values", Table (J + 1).Choice);
exit;
end if;
end loop;
end;
end if;
end if;
end;
end if;
end Resolve_Container_Aggregate;
-----------------------------
-- Resolve_Delta_Aggregate --
-----------------------------
procedure Resolve_Delta_Aggregate (N : Node_Id; Typ : Entity_Id) is
Base : constant Node_Id := Expression (N);
begin
Error_Msg_Ada_2022_Feature ("delta aggregate", Sloc (N));
if not Is_Composite_Type (Typ) then
Error_Msg_N ("not a composite type", N);
end if;
Analyze_And_Resolve (Base, Typ);
if Is_Array_Type (Typ) then
-- For an array_delta_aggregate, the base_expression and each
-- expression in every array_component_association shall be of a
-- nonlimited type; RM 4.3.4(13/5). However, to prevent repeated
-- errors we only check the base expression and not array component
-- associations.
if Is_Limited_Type (Etype (Base)) then
Error_Msg_N
("array delta aggregate shall be of a nonlimited type", Base);
Explain_Limited_Type (Etype (Base), Base);
end if;
Resolve_Delta_Array_Aggregate (N, Typ);
else
-- Delta aggregates for record types must use parentheses,
-- not square brackets.
if Is_Homogeneous_Aggregate (N) then
Error_Msg_N
("delta aggregates for record types must use (), not '[']", N);
end if;
-- The base_expression of a record_delta_aggregate can be of a
-- limited type only if it is newly constructed; RM 7.5(2.1/5).
Check_Expr_OK_In_Limited_Aggregate (Base);
Resolve_Delta_Record_Aggregate (N, Typ);
end if;
Set_Etype (N, Typ);
end Resolve_Delta_Aggregate;
-----------------------------------
-- Resolve_Delta_Array_Aggregate --
-----------------------------------
procedure Resolve_Delta_Array_Aggregate (N : Node_Id; Typ : Entity_Id) is
Deltas : constant List_Id := Component_Associations (N);
Index_Type : constant Entity_Id := Etype (First_Index (Typ));
Assoc : Node_Id;
Choice : Node_Id;
Expr : Node_Id;
Deep_Choice_Seen : Boolean := False;
begin
Assoc := First (Deltas);
while Present (Assoc) loop
if Nkind (Assoc) = N_Iterated_Component_Association then
Choice := First (Choice_List (Assoc));
while Present (Choice) loop
if Nkind (Choice) = N_Others_Choice then
Error_Msg_N
("OTHERS not allowed in delta aggregate", Choice);
elsif Nkind (Choice) = N_Subtype_Indication then
Resolve_Discrete_Subtype_Indication
(Choice, Base_Type (Index_Type));
else
Analyze_And_Resolve (Choice, Index_Type);
end if;
Next (Choice);
end loop;
declare
Id : constant Entity_Id := Defining_Identifier (Assoc);
Ent : constant Entity_Id :=
New_Internal_Entity
(E_Loop, Current_Scope, Sloc (Assoc), 'L');
begin
Set_Etype (Ent, Standard_Void_Type);
Set_Parent (Ent, Assoc);
Push_Scope (Ent);
if No (Scope (Id)) then
Set_Etype (Id, Index_Type);
Mutate_Ekind (Id, E_Variable);
Set_Is_Not_Self_Hidden (Id);
Set_Scope (Id, Ent);
end if;
Enter_Name (Id);
-- Resolve a copy of the expression, after setting
-- its parent properly to preserve its context.
Expr := New_Copy_Tree (Expression (Assoc));
Set_Parent (Expr, Assoc);
Analyze_And_Resolve (Expr, Component_Type (Typ));
End_Scope;
end;
else
Choice := First (Choice_List (Assoc));
while Present (Choice) loop
if Is_Deep_Choice (Choice, Typ) then
pragma Assert (All_Extensions_Allowed);
Deep_Choice_Seen := True;
-- a deep delta aggregate
Resolve_Deep_Delta_Assoc (Assoc, Typ);
else
Analyze (Choice);
if Nkind (Choice) = N_Others_Choice then
Error_Msg_N
("OTHERS not allowed in delta aggregate", Choice);
elsif Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
then
-- Choice covers a range of values
if Base_Type (Entity (Choice)) /=
Base_Type (Index_Type)
then
Error_Msg_NE
("choice does not match index type of &",
Choice, Typ);
end if;
elsif Nkind (Choice) = N_Subtype_Indication then
Resolve_Discrete_Subtype_Indication
(Choice, Base_Type (Index_Type));
else
Resolve (Choice, Index_Type);
end if;
end if;
Next (Choice);
end loop;
-- For an array_delta_aggregate, the array_component_association
-- shall not use the box symbol <>; RM 4.3.4(11/5).
pragma Assert
(Box_Present (Assoc) xor Present (Expression (Assoc)));
if Box_Present (Assoc) then
Error_Msg_N
("'<'> in array delta aggregate is not allowed", Assoc);
elsif not Deep_Choice_Seen then
Analyze_And_Resolve (Expression (Assoc), Component_Type (Typ));
end if;
end if;
Next (Assoc);
end loop;
end Resolve_Delta_Array_Aggregate;
------------------------------------
-- Resolve_Delta_Record_Aggregate --
------------------------------------
procedure Resolve_Delta_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
-- Variables used to verify that discriminant-dependent components
-- appear in the same variant.
Comp_Ref : Entity_Id := Empty; -- init to avoid warning
Variant : Node_Id;
procedure Check_Variant (Id : Node_Id);
-- If a given component of the delta aggregate appears in a variant
-- part, verify that it is within the same variant as that of previous
-- specified variant components of the delta.
function Get_Component_Type
(Selector : Node_Id; Enclosing_Type : Entity_Id) return Entity_Id;
-- Locate component with a given name and return its type.
-- If none found then report error and return Empty.
function Nested_In (V1 : Node_Id; V2 : Node_Id) return Boolean;
-- Determine whether variant V1 is within variant V2
function Variant_Depth (N : Node_Id) return Natural;
-- Determine the distance of a variant to the enclosing type declaration
--------------------
-- Check_Variant --
--------------------
procedure Check_Variant (Id : Node_Id) is
Comp : Entity_Id;
Comp_Variant : Node_Id;
begin
if not Has_Discriminants (Typ) then
return;
end if;
Comp := First_Entity (Typ);
while Present (Comp) loop
exit when Chars (Comp) = Chars (Id);
Next_Component (Comp);
end loop;
-- Find the variant, if any, whose component list includes the
-- component declaration.
Comp_Variant := Parent (Parent (List_Containing (Parent (Comp))));
if Nkind (Comp_Variant) = N_Variant then
if No (Variant) then
Variant := Comp_Variant;
Comp_Ref := Comp;
elsif Variant /= Comp_Variant then
declare
D1 : constant Integer := Variant_Depth (Variant);
D2 : constant Integer := Variant_Depth (Comp_Variant);
begin
if D1 = D2
or else
(D1 > D2 and then not Nested_In (Variant, Comp_Variant))
or else
(D2 > D1 and then not Nested_In (Comp_Variant, Variant))
then
pragma Assert (Present (Comp_Ref));
Error_Msg_Node_2 := Comp_Ref;
Error_Msg_NE
("& and & appear in different variants", Id, Comp);
-- Otherwise retain the deeper variant for subsequent tests
elsif D2 > D1 then
Variant := Comp_Variant;
end if;
end;
end if;
end if;
end Check_Variant;
------------------------
-- Get_Component_Type --
------------------------
function Get_Component_Type
(Selector : Node_Id; Enclosing_Type : Entity_Id) return Entity_Id
is
Comp : Entity_Id;
begin
case Nkind (Selector) is
when N_Selected_Component | N_Indexed_Component =>
-- a deep delta aggregate choice
declare
Prefix_Type : constant Entity_Id :=
Get_Component_Type (Prefix (Selector), Enclosing_Type);
begin
if No (Prefix_Type) then
pragma Assert (Serious_Errors_Detected > 0);
return Empty;
end if;
-- Set the type of the prefix for GNATprove
Set_Etype (Prefix (Selector), Prefix_Type);
if Nkind (Selector) = N_Selected_Component then
return Get_Component_Type
(Selector_Name (Selector),
Enclosing_Type => Prefix_Type);
elsif not Is_Array_Type (Prefix_Type) then
Error_Msg_NE
("type& is not an array type",
Selector, Prefix_Type);
elsif Number_Dimensions (Prefix_Type) /= 1 then
Error_Msg_NE
("array type& not one-dimensional",
Selector, Prefix_Type);
elsif List_Length (Expressions (Selector)) /= 1 then
Error_Msg_NE
("wrong number of indices for array type&",
Selector, Prefix_Type);
else
Analyze_And_Resolve
(First (Expressions (Selector)),
Etype (First_Index (Prefix_Type)));
return Component_Type (Prefix_Type);
end if;
end;
when others =>
null;
end case;
Comp := First_Entity (Enclosing_Type);
while Present (Comp) loop
if Chars (Comp) = Chars (Selector) then
if Ekind (Comp) = E_Discriminant then
Error_Msg_N ("delta cannot apply to discriminant", Selector);
end if;
Set_Entity (Selector, Comp);
Set_Etype (Selector, Etype (Comp));
return Etype (Comp);
end if;
Next_Entity (Comp);
end loop;
Error_Msg_NE
("type& has no component with this name", Selector, Enclosing_Type);
return Empty;
end Get_Component_Type;
---------------
-- Nested_In --
---------------
function Nested_In (V1, V2 : Node_Id) return Boolean is
Par : Node_Id;
begin
Par := Parent (V1);
while Nkind (Par) /= N_Full_Type_Declaration loop
if Par = V2 then
return True;
end if;
Par := Parent (Par);
end loop;
return False;
end Nested_In;
-------------------
-- Variant_Depth --
-------------------
function Variant_Depth (N : Node_Id) return Natural is
Depth : Natural;
Par : Node_Id;
begin
Depth := 0;
Par := Parent (N);
while Nkind (Par) /= N_Full_Type_Declaration loop
Depth := Depth + 1;
Par := Parent (Par);
end loop;
return Depth;
end Variant_Depth;
-- Local variables
Deltas : constant List_Id := Component_Associations (N);
Assoc : Node_Id;
Choice : Node_Id;
Comp_Type : Entity_Id := Empty; -- init to avoid warning
Deep_Choice : Boolean;
-- Start of processing for Resolve_Delta_Record_Aggregate
begin
Variant := Empty;
Assoc := First (Deltas);
while Present (Assoc) loop
Choice := First (Choice_List (Assoc));
while Present (Choice) loop
Deep_Choice := Nkind (Choice) /= N_Identifier;
if Deep_Choice then
Error_Msg_GNAT_Extension
("deep delta aggregate", Sloc (Choice));
end if;
Comp_Type := Get_Component_Type
(Selector => Choice, Enclosing_Type => Typ);
-- Set the type of the choice for GNATprove
if Deep_Choice then
Set_Etype (Choice, Comp_Type);
end if;
if Present (Comp_Type) then
if not Deep_Choice then
-- ??? Not clear yet how RM 4.3.1(17.7) applies to a
-- deep delta aggregate.
Check_Variant (Choice);
end if;
else
Comp_Type := Any_Type;
end if;
Next (Choice);
end loop;
pragma Assert (Present (Comp_Type));
-- A record_component_association in record_delta_aggregate shall not
-- use the box compound delimiter <> rather than an expression; see
-- RM 4.3.1(17.3/5).
pragma Assert (Present (Expression (Assoc)) xor Box_Present (Assoc));
if Box_Present (Assoc) then
Error_Msg_N
("'<'> in record delta aggregate is not allowed", Assoc);
else
Analyze_And_Resolve (Expression (Assoc), Comp_Type);
-- The expression must not be of a limited type; RM 4.3.1(17.4/5)
if Is_Limited_Type (Etype (Expression (Assoc))) then
Error_Msg_N
("expression of a limited type in record delta aggregate " &
"is not allowed",
Expression (Assoc));
end if;
end if;
Next (Assoc);
end loop;
end Resolve_Delta_Record_Aggregate;
------------------------------
-- Resolve_Deep_Delta_Assoc --
------------------------------
procedure Resolve_Deep_Delta_Assoc (N : Node_Id; Typ : Entity_Id) is
Choice : constant Node_Id := First (Choice_List (N));
Enclosing_Type : Entity_Id := Typ;
procedure Resolve_Choice_Prefix
(Choice_Prefix : Node_Id; Enclosing_Type : in out Entity_Id);
-- Recursively analyze selectors. Enclosing_Type is set to
-- type of the last component.
---------------------------
-- Resolve_Choice_Prefix --
---------------------------
procedure Resolve_Choice_Prefix
(Choice_Prefix : Node_Id; Enclosing_Type : in out Entity_Id)
is
Selector : Node_Id := Choice_Prefix;
begin
if not Is_Root_Prefix_Of_Deep_Choice (Choice_Prefix) then
Resolve_Choice_Prefix (Prefix (Choice_Prefix), Enclosing_Type);
if Nkind (Choice_Prefix) = N_Selected_Component then
Selector := Selector_Name (Choice_Prefix);
else
pragma Assert (Nkind (Choice_Prefix) = N_Indexed_Component);
Selector := First (Expressions (Choice_Prefix));
end if;
end if;
if Is_Array_Type (Enclosing_Type) then
Analyze_And_Resolve (Selector,
Etype (First_Index (Enclosing_Type)));
Enclosing_Type := Component_Type (Enclosing_Type);
else
declare
Comp : Entity_Id := First_Entity (Enclosing_Type);
Found : Boolean := False;
begin
while Present (Comp) and not Found loop
if Chars (Comp) = Chars (Selector) then
if Ekind (Comp) = E_Discriminant then
Error_Msg_N ("delta cannot apply to discriminant",
Selector);
end if;
Found := True;
Set_Entity (Selector, Comp);
Set_Etype (Selector, Etype (Comp));
Set_Analyzed (Selector);
Enclosing_Type := Etype (Comp);
else
Next_Entity (Comp);
end if;
end loop;
if not Found then
Error_Msg_NE
("type& has no component with this name",
Selector, Enclosing_Type);
end if;
end;
end if;
-- Set the type of the prefix for GNATprove, except for the root
-- prefix, whose type is already the expected one for a record
-- delta aggregate, or the type of the array index for an
-- array delta aggregate (the only case here really since
-- Resolve_Deep_Delta_Assoc is only called for array delta
-- aggregates).
if Selector /= Choice_Prefix then
Set_Etype (Choice_Prefix, Enclosing_Type);
end if;
end Resolve_Choice_Prefix;
begin
declare
Unimplemented : exception; -- TEMPORARY
begin
if Present (Next (Choice)) then
raise Unimplemented;
end if;
end;
Resolve_Choice_Prefix (Choice, Enclosing_Type);
Analyze_And_Resolve (Expression (N), Enclosing_Type);
end Resolve_Deep_Delta_Assoc;
---------------------------------
-- Resolve_Extension_Aggregate --
---------------------------------
-- There are two cases to consider:
-- a) If the ancestor part is a type mark, the components needed are the
-- difference between the components of the expected type and the
-- components of the given type mark.
-- b) If the ancestor part is an expression, it must be unambiguous, and
-- once we have its type we can also compute the needed components as in
-- the previous case. In both cases, if the ancestor type is not the
-- immediate ancestor, we have to build this ancestor recursively.
-- In both cases, discriminants of the ancestor type do not play a role in
-- the resolution of the needed components, because inherited discriminants
-- cannot be used in a type extension. As a result we can compute
-- independently the list of components of the ancestor type and of the
-- expected type.
procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
A : constant Node_Id := Ancestor_Part (N);
A_Type : Entity_Id;
I : Interp_Index;
It : Interp;
function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean;
-- If the type is limited, verify that the ancestor part is a legal
-- expression (aggregate or function call, including 'Input)) that does
-- not require a copy, as specified in 7.5(2).
function Valid_Ancestor_Type return Boolean;
-- Verify that the type of the ancestor part is a non-private ancestor
-- of the expected type, which must be a type extension.
----------------------------
-- Valid_Limited_Ancestor --
----------------------------
function Valid_Limited_Ancestor (Anc : Node_Id) return Boolean is
begin
if Is_Entity_Name (Anc) and then Is_Type (Entity (Anc)) then
return True;
-- The ancestor must be a call or an aggregate, but a call may
-- have been expanded into a temporary, so check original node.
elsif Nkind (Anc) in N_Aggregate
| N_Extension_Aggregate
| N_Function_Call
then
return True;
elsif Nkind (Original_Node (Anc)) = N_Function_Call then
return True;
elsif Nkind (Anc) = N_Attribute_Reference
and then Attribute_Name (Anc) = Name_Input
then
return True;
elsif Nkind (Anc) = N_Qualified_Expression then
return Valid_Limited_Ancestor (Expression (Anc));
elsif Nkind (Anc) = N_Raise_Expression then
return True;
else
return False;
end if;
end Valid_Limited_Ancestor;
-------------------------
-- Valid_Ancestor_Type --
-------------------------
function Valid_Ancestor_Type return Boolean is
Imm_Type : Entity_Id;
begin
Imm_Type := Base_Type (Typ);
while Is_Derived_Type (Imm_Type) loop
if Etype (Imm_Type) = Base_Type (A_Type) then
return True;
-- The base type of the parent type may appear as a private
-- extension if it is declared as such in a parent unit of the
-- current one. For consistency of the subsequent analysis use
-- the partial view for the ancestor part.
elsif Is_Private_Type (Etype (Imm_Type))
and then Present (Full_View (Etype (Imm_Type)))
and then Base_Type (A_Type) = Full_View (Etype (Imm_Type))
then
A_Type := Etype (Imm_Type);
return True;
-- The parent type may be a private extension. The aggregate is
-- legal if the type of the aggregate is an extension of it that
-- is not a private extension.
elsif Is_Private_Type (A_Type)
and then not Is_Private_Type (Imm_Type)
and then Present (Full_View (A_Type))
and then Base_Type (Full_View (A_Type)) = Etype (Imm_Type)
then
return True;
-- The parent type may be a raise expression (which is legal in
-- any expression context).
elsif A_Type = Raise_Type then
A_Type := Etype (Imm_Type);
return True;
else
Imm_Type := Etype (Base_Type (Imm_Type));
end if;
end loop;
-- If previous loop did not find a proper ancestor, report error
Error_Msg_NE ("expect ancestor type of &", A, Typ);
return False;
end Valid_Ancestor_Type;
-- Start of processing for Resolve_Extension_Aggregate
begin
-- Analyze the ancestor part and account for the case where it is a
-- parameterless function call.
Analyze (A);
Check_Parameterless_Call (A);
if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
-- AI05-0115: If the ancestor part is a subtype mark, the ancestor
-- must not have unknown discriminants. To catch cases where the
-- aggregate occurs at a place where the full view of the ancestor
-- type is visible and doesn't have unknown discriminants, but the
-- aggregate type was derived from a partial view that has unknown
-- discriminants, we check whether the aggregate type has unknown
-- discriminants (unknown discriminants were inherited), along
-- with checking that the partial view of the ancestor has unknown
-- discriminants. (It might be sufficient to replace the entire
-- condition with Has_Unknown_Discriminants (Typ), but that might
-- miss some cases, not clear, and causes error changes in some tests
-- such as class-wide cases, that aren't clearly improvements. ???)
if Has_Unknown_Discriminants (Entity (A))
or else (Has_Unknown_Discriminants (Typ)
and then Partial_View_Has_Unknown_Discr (Entity (A)))
then
Error_Msg_NE
("aggregate not available for type& whose ancestor "
& "has unknown discriminants", N, Typ);
end if;
end if;
if not Is_Tagged_Type (Typ) then
Error_Msg_N ("type of extension aggregate must be tagged", N);
return;
elsif Is_Limited_Type (Typ) then
-- Ada 2005 (AI-287): Limited aggregates are allowed
if Ada_Version < Ada_2005 then
Error_Msg_N ("aggregate type cannot be limited", N);
Explain_Limited_Type (Typ, N);
return;
elsif Valid_Limited_Ancestor (A) then
null;
else
Error_Msg_N
("limited ancestor part must be aggregate or function call", A);
end if;
elsif Is_Class_Wide_Type (Typ) then
Error_Msg_N ("aggregate cannot be of a class-wide type", N);
return;
end if;
if Is_Entity_Name (A) and then Is_Type (Entity (A)) then
A_Type := Get_Full_View (Entity (A));
if Valid_Ancestor_Type then
Set_Entity (A, A_Type);
Set_Etype (A, A_Type);
Validate_Ancestor_Part (N);
Resolve_Record_Aggregate (N, Typ);
end if;
elsif Nkind (A) /= N_Aggregate then
if Is_Overloaded (A) then
A_Type := Any_Type;
Get_First_Interp (A, I, It);
while Present (It.Typ) loop
-- Consider limited interpretations if Ada 2005 or higher
if Is_Tagged_Type (It.Typ)
and then (Ada_Version >= Ada_2005
or else not Is_Limited_Type (It.Typ))
then
if A_Type /= Any_Type then
Error_Msg_N ("cannot resolve expression", A);
return;
else
A_Type := It.Typ;
end if;
end if;
Get_Next_Interp (I, It);
end loop;
if A_Type = Any_Type then
if Ada_Version >= Ada_2005 then
Error_Msg_N
("ancestor part must be of a tagged type", A);
else
Error_Msg_N
("ancestor part must be of a nonlimited tagged type", A);
end if;
return;
end if;
else
A_Type := Etype (A);
end if;
if Valid_Ancestor_Type then
Resolve (A, A_Type);
Check_Unset_Reference (A);
Check_Non_Static_Context (A);
-- The aggregate is illegal if the ancestor expression is a call
-- to a function with a limited unconstrained result, unless the
-- type of the aggregate is a null extension. This restriction
-- was added in AI05-67 to simplify implementation.
if Nkind (A) = N_Function_Call
and then Is_Limited_Type (A_Type)
and then not Is_Null_Extension (Typ)
and then not Is_Constrained (A_Type)
then
Error_Msg_N
("type of limited ancestor part must be constrained", A);
-- Reject the use of CPP constructors that leave objects partially
-- initialized. For example:
-- type CPP_Root is tagged limited record ...
-- pragma Import (CPP, CPP_Root);
-- type CPP_DT is new CPP_Root and Iface ...
-- pragma Import (CPP, CPP_DT);
-- type Ada_DT is new CPP_DT with ...
-- Obj : Ada_DT := Ada_DT'(New_CPP_Root with others => <>);
-- Using the constructor of CPP_Root the slots of the dispatch
-- table of CPP_DT cannot be set, and the secondary tag of
-- CPP_DT is unknown.
elsif Nkind (A) = N_Function_Call
and then Is_CPP_Constructor_Call (A)
and then Enclosing_CPP_Parent (Typ) /= A_Type
then
Error_Msg_NE
("??must use 'C'P'P constructor for type &", A,
Enclosing_CPP_Parent (Typ));
-- The following call is not needed if the previous warning
-- is promoted to an error.
Resolve_Record_Aggregate (N, Typ);
elsif Is_Class_Wide_Type (Etype (A))
and then Nkind (Original_Node (A)) = N_Function_Call
then
-- If the ancestor part is a dispatching call, it appears
-- statically to be a legal ancestor, but it yields any member
-- of the class, and it is not possible to determine whether
-- it is an ancestor of the extension aggregate (much less
-- which ancestor). It is not possible to determine the
-- components of the extension part.
-- This check implements AI-306, which in fact was motivated by
-- an AdaCore query to the ARG after this test was added.
Error_Msg_N ("ancestor part must be statically tagged", A);
else
Resolve_Record_Aggregate (N, Typ);
end if;
end if;
else
Error_Msg_N ("no unique type for this aggregate", A);
end if;
Check_Function_Writable_Actuals (N);
end Resolve_Extension_Aggregate;
----------------------------------
-- Resolve_Null_Array_Aggregate --
----------------------------------
function Resolve_Null_Array_Aggregate (N : Node_Id) return Boolean is
-- Never returns False, but declared as a function to match
-- other Resolve_Mumble functions.
Loc : constant Source_Ptr := Sloc (N);
Typ : constant Entity_Id := Etype (N);
Index : Node_Id;
Lo, Hi : Node_Id;
Constr : constant List_Id := New_List;
begin
-- Attach the list of constraints at the location of the aggregate, so
-- the individual constraints can be analyzed.
Set_Parent (Constr, N);
-- Create a constrained subtype with null dimensions
Index := First_Index (Typ);
while Present (Index) loop
Get_Index_Bounds (Index, L => Lo, H => Hi);
-- The upper bound is the predecessor of the lower bound
Hi := Make_Attribute_Reference
(Loc,
Prefix => New_Occurrence_Of (Etype (Index), Loc),
Attribute_Name => Name_Pred,
Expressions => New_List (New_Copy_Tree (Lo)));
Append (Make_Range (Loc, New_Copy_Tree (Lo), Hi), Constr);
Analyze_And_Resolve (Last (Constr), Etype (Index));
Next_Index (Index);
end loop;
Set_Compile_Time_Known_Aggregate (N);
Set_Aggregate_Bounds (N, First (Constr));
return True;
end Resolve_Null_Array_Aggregate;
------------------------------
-- Resolve_Record_Aggregate --
------------------------------
procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
New_Assoc_List : constant List_Id := New_List;
-- New_Assoc_List is the newly built list of N_Component_Association
-- nodes.
Others_Etype : Entity_Id := Empty;
-- This variable is used to save the Etype of the last record component
-- that takes its value from the others choice. Its purpose is:
--
-- (a) make sure the others choice is useful
--
-- (b) make sure the type of all the components whose value is
-- subsumed by the others choice are the same.
--
-- This variable is updated as a side effect of function Get_Value.
Box_Node : Node_Id := Empty;
Is_Box_Present : Boolean := False;
Is_Box_Init_By_Default : Boolean := False;
Others_Box : Natural := 0;
-- Ada 2005 (AI-287): Variables used in case of default initialization
-- to provide a functionality similar to Others_Etype. Box_Present
-- indicates that the component takes its default initialization;
-- Others_Box counts the number of components of the current aggregate
-- (which may be a sub-aggregate of a larger one) that are default-
-- initialized. A value of One indicates that an others_box is present.
-- Any larger value indicates that the others_box is not redundant.
-- These variables, similar to Others_Etype, are also updated as a side
-- effect of function Get_Value. Box_Node is used to place a warning on
-- a redundant others_box.
procedure Add_Association
(Component : Entity_Id;
Expr : Node_Id;
Assoc_List : List_Id;
Is_Box_Present : Boolean := False);
-- Builds a new N_Component_Association node which associates Component
-- to expression Expr and adds it to the association list being built,
-- either New_Assoc_List, or the association being built for an inner
-- aggregate.
function Discriminant_Present (Input_Discr : Entity_Id) return Boolean;
-- If aggregate N is a regular aggregate this routine will return True.
-- Otherwise, if N is an extension aggregate, then Input_Discr denotes
-- a discriminant whose value may already have been specified by N's
-- ancestor part. This routine checks whether this is indeed the case
-- and if so returns False, signaling that no value for Input_Discr
-- should appear in N's aggregate part. Also, in this case, the routine
-- appends to New_Assoc_List the discriminant value specified in the
-- ancestor part.
--
-- If the aggregate is in a context with expansion delayed, it will be
-- reanalyzed. The inherited discriminant values must not be reinserted
-- in the component list to prevent spurious errors, but they must be
-- present on first analysis to build the proper subtype indications.
-- The flag Inherited_Discriminant is used to prevent the re-insertion.
function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id;
-- AI05-0115: Find earlier ancestor in the derivation chain that is
-- derived from private view Typ. Whether the aggregate is legal depends
-- on the current visibility of the type as well as that of the parent
-- of the ancestor.
function Get_Value
(Compon : Entity_Id;
From : List_Id;
Consider_Others_Choice : Boolean := False) return Node_Id;
-- Given a record component stored in parameter Compon, this function
-- returns its value as it appears in the list From, which is a list
-- of N_Component_Association nodes.
--
-- If no component association has a choice for the searched component,
-- the value provided by the others choice is returned, if there is one,
-- and Consider_Others_Choice is set to true. Otherwise Empty is
-- returned. If there is more than one component association giving a
-- value for the searched record component, an error message is emitted
-- and the first found value is returned.
--
-- If Consider_Others_Choice is set and the returned expression comes
-- from the others choice, then Others_Etype is set as a side effect.
-- An error message is emitted if the components taking their value from
-- the others choice do not have same type.
procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id);
-- Analyzes and resolves expression Expr against the Etype of the
-- Component. This routine also applies all appropriate checks to Expr.
-- It finally saves a Expr in the newly created association list that
-- will be attached to the final record aggregate. Note that if the
-- Parent pointer of Expr is not set then Expr was produced with a
-- New_Copy_Tree or some such.
procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id);
-- Rewrite a range node Rge when its bounds refer to non-stored
-- discriminants from Root_Type, to replace them with the stored
-- discriminant values. This is required in GNATprove mode, and is
-- adopted in all modes to avoid special-casing GNATprove mode.
---------------------
-- Add_Association --
---------------------
procedure Add_Association
(Component : Entity_Id;
Expr : Node_Id;
Assoc_List : List_Id;
Is_Box_Present : Boolean := False)
is
Choice_List : constant List_Id := New_List;
Loc : Source_Ptr;
begin
-- If this is a box association the expression is missing, so use the
-- Sloc of the aggregate itself for the new association.
pragma Assert (Present (Expr) xor Is_Box_Present);
if Present (Expr) then
Loc := Sloc (Expr);
else
Loc := Sloc (N);
end if;
Append_To (Choice_List, New_Occurrence_Of (Component, Loc));
Append_To (Assoc_List,
Make_Component_Association (Loc,
Choices => Choice_List,
Expression => Expr,
Box_Present => Is_Box_Present));
-- If this association has a box for a component that is initialized
-- by default, then set flag on the new association to indicate that
-- the original association was for such a box-initialized component.
if Is_Box_Init_By_Default then
Set_Was_Default_Init_Box_Association (Last (Assoc_List));
end if;
end Add_Association;
--------------------------
-- Discriminant_Present --
--------------------------
function Discriminant_Present (Input_Discr : Entity_Id) return Boolean is
Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
Ancestor_Is_Subtyp : Boolean;
Loc : Source_Ptr;
Ancestor : Node_Id;
Ancestor_Typ : Entity_Id;
Comp_Assoc : Node_Id;
Discr : Entity_Id;
Discr_Expr : Node_Id;
Discr_Val : Elmt_Id := No_Elmt;
Orig_Discr : Entity_Id;
begin
if Regular_Aggr then
return True;
end if;
-- Check whether inherited discriminant values have already been
-- inserted in the aggregate. This will be the case if we are
-- re-analyzing an aggregate whose expansion was delayed.
if Present (Component_Associations (N)) then
Comp_Assoc := First (Component_Associations (N));
while Present (Comp_Assoc) loop
if Inherited_Discriminant (Comp_Assoc) then
return True;
end if;
Next (Comp_Assoc);
end loop;
end if;
Ancestor := Ancestor_Part (N);
Ancestor_Typ := Etype (Ancestor);
Loc := Sloc (Ancestor);
-- For a private type with unknown discriminants, use the underlying
-- record view if it is available.
if Has_Unknown_Discriminants (Ancestor_Typ)
and then Present (Full_View (Ancestor_Typ))
and then Present (Underlying_Record_View (Full_View (Ancestor_Typ)))
then
Ancestor_Typ := Underlying_Record_View (Full_View (Ancestor_Typ));
end if;
Ancestor_Is_Subtyp :=
Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
-- If the ancestor part has no discriminants clearly N's aggregate
-- part must provide a value for Discr.
if not Has_Discriminants (Ancestor_Typ) then
return True;
-- If the ancestor part is an unconstrained subtype mark then the
-- Discr must be present in N's aggregate part.
elsif Ancestor_Is_Subtyp
and then not Is_Constrained (Entity (Ancestor))
then
return True;
end if;
-- Now look to see if Discr was specified in the ancestor part
if Ancestor_Is_Subtyp then
Discr_Val :=
First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
end if;
Orig_Discr := Original_Record_Component (Input_Discr);
Discr := First_Discriminant (Ancestor_Typ);
while Present (Discr) loop
-- If Ancestor has already specified Disc value then insert its
-- value in the final aggregate.
if Original_Record_Component (Discr) = Orig_Discr then
if Ancestor_Is_Subtyp then
Discr_Expr := New_Copy_Tree (Node (Discr_Val));
else
Discr_Expr :=
Make_Selected_Component (Loc,
Prefix => Duplicate_Subexpr (Ancestor),
Selector_Name => New_Occurrence_Of (Input_Discr, Loc));
end if;
Resolve_Aggr_Expr (Discr_Expr, Input_Discr);
Set_Inherited_Discriminant (Last (New_Assoc_List));
return False;
end if;
Next_Discriminant (Discr);
if Ancestor_Is_Subtyp then
Next_Elmt (Discr_Val);
end if;
end loop;
return True;
end Discriminant_Present;
---------------------------
-- Find_Private_Ancestor --
---------------------------
function Find_Private_Ancestor (Typ : Entity_Id) return Entity_Id is
Par : Entity_Id;
begin
Par := Typ;
loop
if Has_Private_Ancestor (Par)
and then not Has_Private_Ancestor (Etype (Base_Type (Par)))
then
return Par;
elsif not Is_Derived_Type (Par) then
return Empty;
else
Par := Etype (Base_Type (Par));
end if;
end loop;
end Find_Private_Ancestor;
---------------
-- Get_Value --
---------------
function Get_Value
(Compon : Entity_Id;
From : List_Id;
Consider_Others_Choice : Boolean := False) return Node_Id
is
Typ : constant Entity_Id := Etype (Compon);
Assoc : Node_Id;
Expr : Node_Id := Empty;
Selector_Name : Node_Id;
begin
Is_Box_Present := False;
Is_Box_Init_By_Default := False;
if No (From) then
return Empty;
end if;
Assoc := First (From);
while Present (Assoc) loop
Selector_Name := First (Choices (Assoc));
while Present (Selector_Name) loop
if Nkind (Selector_Name) = N_Others_Choice then
if Consider_Others_Choice and then No (Expr) then
-- We need to duplicate the expression for each
-- successive component covered by the others choice.
-- This is redundant if the others_choice covers only
-- one component (small optimization possible???), but
-- indispensable otherwise, because each one must be
-- expanded individually to preserve side effects.
-- Ada 2005 (AI-287): In case of default initialization
-- of components, we duplicate the corresponding default
-- expression (from the record type declaration). The
-- copy must carry the sloc of the association (not the
-- original expression) to prevent spurious elaboration
-- checks when the default includes function calls.
if Box_Present (Assoc) then
Others_Box := Others_Box + 1;
Is_Box_Present := True;
if Expander_Active then
return
New_Copy_Tree_And_Copy_Dimensions
(Expression (Parent (Compon)),
New_Sloc => Sloc (Assoc));
else
return Expression (Parent (Compon));
end if;
else
if Present (Others_Etype)
and then Base_Type (Others_Etype) /= Base_Type (Typ)
then
-- If the components are of an anonymous access
-- type they are distinct, but this is legal in
-- Ada 2012 as long as designated types match.
if (Ekind (Typ) = E_Anonymous_Access_Type
or else Ekind (Typ) =
E_Anonymous_Access_Subprogram_Type)
and then Designated_Type (Typ) =
Designated_Type (Others_Etype)
then
null;
else
Error_Msg_N
("components in OTHERS choice must have same "
& "type", Selector_Name);
end if;
end if;
Others_Etype := Typ;
-- Copy the expression so that it is resolved
-- independently for each component, This is needed
-- for accessibility checks on components of anonymous
-- access types, even in compile_only mode.
if not Inside_A_Generic then
return
New_Copy_Tree_And_Copy_Dimensions
(Expression (Assoc));
else
return Expression (Assoc);
end if;
end if;
end if;
elsif Chars (Compon) = Chars (Selector_Name) then
if No (Expr) then
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_2005
and then Known_Null (Expression (Assoc))
then
Check_Can_Never_Be_Null (Compon, Expression (Assoc));
end if;
-- We need to duplicate the expression when several
-- components are grouped together with a "|" choice.
-- For instance "filed1 | filed2 => Expr"
-- Ada 2005 (AI-287)
if Box_Present (Assoc) then
Is_Box_Present := True;
-- Duplicate the default expression of the component
-- from the record type declaration, so a new copy
-- can be attached to the association.
-- Note that we always copy the default expression,
-- even when the association has a single choice, in
-- order to create a proper association for the
-- expanded aggregate.
-- Component may have no default, in which case the
-- expression is empty and the component is default-
-- initialized, but an association for the component
-- exists, and it is not covered by an others clause.
-- Scalar and private types have no initialization
-- procedure, so they remain uninitialized. If the
-- target of the aggregate is a constant this
-- deserves a warning.
if No (Expression (Parent (Compon)))
and then not Has_Non_Null_Base_Init_Proc (Typ)
and then not Has_Aspect (Typ, Aspect_Default_Value)
and then not Is_Concurrent_Type (Typ)
and then Nkind (Parent (N)) = N_Object_Declaration
and then Constant_Present (Parent (N))
then
Error_Msg_Node_2 := Typ;
Error_Msg_NE
("??component& of type& is uninitialized",
Assoc, Selector_Name);
-- An additional reminder if the component type
-- is a generic formal.
if Is_Generic_Type (Base_Type (Typ)) then
Error_Msg_NE
("\instance should provide actual type with "
& "initialization for&", Assoc, Typ);
end if;
end if;
return
New_Copy_Tree_And_Copy_Dimensions
(Expression (Parent (Compon)));
else
if Present (Next (Selector_Name)) then
Expr := New_Copy_Tree_And_Copy_Dimensions
(Expression (Assoc));
else
Expr := Expression (Assoc);
end if;
end if;
Generate_Reference (Compon, Selector_Name, 'm');
else
Error_Msg_NE
("more than one value supplied for &",
Selector_Name, Compon);
end if;
end if;
Next (Selector_Name);
end loop;
Next (Assoc);
end loop;
return Expr;
end Get_Value;
-----------------------
-- Resolve_Aggr_Expr --
-----------------------
procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Entity_Id) is
function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
-- If the expression is an aggregate (possibly qualified) then its
-- expansion is delayed until the enclosing aggregate is expanded
-- into assignments. In that case, do not generate checks on the
-- expression, because they will be generated later, and will other-
-- wise force a copy (to remove side effects) that would leave a
-- dynamic-sized aggregate in the code, something that gigi cannot
-- handle.
---------------------------
-- Has_Expansion_Delayed --
---------------------------
function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
begin
return
(Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
and then Present (Etype (Expr))
and then Is_Record_Type (Etype (Expr))
and then Expansion_Delayed (Expr))
or else
(Nkind (Expr) = N_Qualified_Expression
and then Has_Expansion_Delayed (Expression (Expr)));
end Has_Expansion_Delayed;
-- Local variables
Expr_Type : Entity_Id := Empty;
New_C : Entity_Id := Component;
New_Expr : Node_Id;
Relocate : Boolean;
-- Set to True if the resolved Expr node needs to be relocated when
-- attached to the newly created association list. This node need not
-- be relocated if its parent pointer is not set. In fact in this
-- case Expr is the output of a New_Copy_Tree call. If Relocate is
-- True then we have analyzed the expression node in the original
-- aggregate and hence it needs to be relocated when moved over to
-- the new association list.
-- Start of processing for Resolve_Aggr_Expr
begin
-- If the type of the component is elementary or the type of the
-- aggregate does not contain discriminants, use the type of the
-- component to resolve Expr.
if Is_Elementary_Type (Etype (Component))
or else not Has_Discriminants (Etype (N))
then
Expr_Type := Etype (Component);
-- Otherwise we have to pick up the new type of the component from
-- the new constrained subtype of the aggregate. In fact components
-- which are of a composite type might be constrained by a
-- discriminant, and we want to resolve Expr against the subtype were
-- all discriminant occurrences are replaced with their actual value.
else
New_C := First_Component (Etype (N));
while Present (New_C) loop
if Chars (New_C) = Chars (Component) then
Expr_Type := Etype (New_C);
exit;
end if;
Next_Component (New_C);
end loop;
pragma Assert (Present (Expr_Type));
-- For each range in an array type where a discriminant has been
-- replaced with the constraint, check that this range is within
-- the range of the base type. This checks is done in the init
-- proc for regular objects, but has to be done here for
-- aggregates since no init proc is called for them.
if Is_Array_Type (Expr_Type) then
declare
Index : Node_Id;
-- Range of the current constrained index in the array
Orig_Index : Node_Id := First_Index (Etype (Component));
-- Range corresponding to the range Index above in the
-- original unconstrained record type. The bounds of this
-- range may be governed by discriminants.
Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
-- Range corresponding to the range Index above for the
-- unconstrained array type. This range is needed to apply
-- range checks.
begin
Index := First_Index (Expr_Type);
while Present (Index) loop
if Depends_On_Discriminant (Orig_Index) then
Apply_Range_Check (Index, Etype (Unconstr_Index));
end if;
Next_Index (Index);
Next_Index (Orig_Index);
Next_Index (Unconstr_Index);
end loop;
end;
end if;
end if;
-- If the Parent pointer of Expr is not set, Expr is an expression
-- duplicated by New_Tree_Copy (this happens for record aggregates
-- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
-- Such a duplicated expression must be attached to the tree
-- before analysis and resolution to enforce the rule that a tree
-- fragment should never be analyzed or resolved unless it is
-- attached to the current compilation unit.
if No (Parent (Expr)) then
Set_Parent (Expr, N);
Relocate := False;
else
Relocate := True;
end if;
Analyze_And_Resolve (Expr, Expr_Type);
Check_Expr_OK_In_Limited_Aggregate (Expr);
Check_Non_Static_Context (Expr);
Check_Unset_Reference (Expr);
-- Check wrong use of class-wide types
if Is_Class_Wide_Type (Etype (Expr)) then
Error_Msg_N ("dynamically tagged expression not allowed", Expr);
end if;
if not Has_Expansion_Delayed (Expr) then
Aggregate_Constraint_Checks (Expr, Expr_Type);
end if;
-- If an aggregate component has a type with predicates, an explicit
-- predicate check must be applied, as for an assignment statement,
-- because the aggregate might not be expanded into individual
-- component assignments.
if Has_Predicates (Expr_Type)
and then Analyzed (Expr)
then
Apply_Predicate_Check (Expr, Expr_Type);
end if;
if Raises_Constraint_Error (Expr) then
Set_Raises_Constraint_Error (N);
end if;
-- If the expression has been marked as requiring a range check, then
-- generate it here. It's a bit odd to be generating such checks in
-- the analyzer, but harmless since Generate_Range_Check does nothing
-- (other than making sure Do_Range_Check is set) if the expander is
-- not active.
if Do_Range_Check (Expr) then
Generate_Range_Check (Expr, Expr_Type, CE_Range_Check_Failed);
end if;
-- Add association Component => Expr if the caller requests it
if Relocate then
New_Expr := Relocate_Node (Expr);
-- Since New_Expr is not gonna be analyzed later on, we need to
-- propagate here the dimensions form Expr to New_Expr.
Copy_Dimensions (Expr, New_Expr);
else
New_Expr := Expr;
end if;
Add_Association (New_C, New_Expr, New_Assoc_List);
end Resolve_Aggr_Expr;
-------------------
-- Rewrite_Range --
-------------------
procedure Rewrite_Range (Root_Type : Entity_Id; Rge : Node_Id) is
procedure Rewrite_Bound
(Bound : Node_Id;
Disc : Entity_Id;
Expr_Disc : Node_Id);
-- Rewrite a bound of the range Bound, when it is equal to the
-- non-stored discriminant Disc, into the stored discriminant
-- value Expr_Disc.
-------------------
-- Rewrite_Bound --
-------------------
procedure Rewrite_Bound
(Bound : Node_Id;
Disc : Entity_Id;
Expr_Disc : Node_Id)
is
begin
if Nkind (Bound) /= N_Identifier then
return;
end if;
-- We expect either the discriminant or the discriminal
if Entity (Bound) = Disc
or else (Ekind (Entity (Bound)) = E_In_Parameter
and then Discriminal_Link (Entity (Bound)) = Disc)
then
Rewrite (Bound, New_Copy_Tree (Expr_Disc));
end if;
end Rewrite_Bound;
-- Local variables
Low, High : Node_Id;
Disc : Entity_Id;
Expr_Disc : Elmt_Id;
-- Start of processing for Rewrite_Range
begin
if Has_Discriminants (Root_Type) and then Nkind (Rge) = N_Range then
Low := Low_Bound (Rge);
High := High_Bound (Rge);
Disc := First_Discriminant (Root_Type);
Expr_Disc := First_Elmt (Stored_Constraint (Etype (N)));
while Present (Disc) loop
Rewrite_Bound (Low, Disc, Node (Expr_Disc));
Rewrite_Bound (High, Disc, Node (Expr_Disc));
Next_Discriminant (Disc);
Next_Elmt (Expr_Disc);
end loop;
end if;
end Rewrite_Range;
-- Local variables
Components : constant Elist_Id := New_Elmt_List;
-- Components is the list of the record components whose value must be
-- provided in the aggregate. This list does include discriminants.
Component : Entity_Id;
Component_Elmt : Elmt_Id;
Expr : Node_Id;
Positional_Expr : Node_Id;
-- Start of processing for Resolve_Record_Aggregate
begin
-- A record aggregate is restricted in SPARK:
-- Each named association can have only a single choice.
-- OTHERS cannot be used.
-- Positional and named associations cannot be mixed.
if Present (Component_Associations (N)) then
declare
Assoc : Node_Id;
begin
Assoc := First (Component_Associations (N));
while Present (Assoc) loop
if Nkind (Assoc) = N_Iterated_Component_Association then
Error_Msg_N
("iterated component association can only appear in an "
& "array aggregate", N);
raise Unrecoverable_Error;
end if;
Next (Assoc);
end loop;
end;
end if;
-- We may end up calling Duplicate_Subexpr on expressions that are
-- attached to New_Assoc_List. For this reason we need to attach it
-- to the tree by setting its parent pointer to N. This parent point
-- will change in STEP 8 below.
Set_Parent (New_Assoc_List, N);
-- STEP 1: abstract type and null record verification
if Is_Abstract_Type (Typ) then
Error_Msg_N ("type of aggregate cannot be abstract", N);
end if;
if No (First_Entity (Typ)) and then Null_Record_Present (N) then
Set_Etype (N, Typ);
return;
elsif Present (First_Entity (Typ))
and then Null_Record_Present (N)
and then not Is_Tagged_Type (Typ)
then
Error_Msg_N ("record aggregate cannot be null", N);
return;
-- If the type has no components, then the aggregate should either
-- have "null record", or in Ada 2005 it could instead have a single
-- component association given by "others => <>". For Ada 95 we flag an
-- error at this point, but for Ada 2005 we proceed with checking the
-- associations below, which will catch the case where it's not an
-- aggregate with "others => <>". Note that the legality of a <>
-- aggregate for a null record type was established by AI05-016.
elsif No (First_Entity (Typ))
and then Ada_Version < Ada_2005
then
Error_Msg_N ("record aggregate must be null", N);
return;
end if;
-- A record aggregate can only use parentheses
if Nkind (N) = N_Aggregate
and then Is_Homogeneous_Aggregate (N)
then
Error_Msg_N ("record aggregate must use (), not '[']", N);
return;
end if;
-- STEP 2: Verify aggregate structure
Step_2 : declare
Assoc : Node_Id;
Bad_Aggregate : Boolean := False;
Selector_Name : Node_Id;
begin
if Present (Component_Associations (N)) then
Assoc := First (Component_Associations (N));
else
Assoc := Empty;
end if;
while Present (Assoc) loop
Selector_Name := First (Choices (Assoc));
while Present (Selector_Name) loop
if Nkind (Selector_Name) = N_Identifier then
null;
elsif Nkind (Selector_Name) = N_Others_Choice then
if Selector_Name /= First (Choices (Assoc))
or else Present (Next (Selector_Name))
then
Error_Msg_N
("OTHERS must appear alone in a choice list",
Selector_Name);
return;
elsif Present (Next (Assoc)) then
Error_Msg_N
("OTHERS must appear last in an aggregate",
Selector_Name);
return;
-- (Ada 2005): If this is an association with a box,
-- indicate that the association need not represent
-- any component.
elsif Box_Present (Assoc) then
Others_Box := 1;
Box_Node := Assoc;
end if;
else
Error_Msg_N
("selector name should be identifier or OTHERS",
Selector_Name);
Bad_Aggregate := True;
end if;
Next (Selector_Name);
end loop;
Next (Assoc);
end loop;
if Bad_Aggregate then
return;
end if;
end Step_2;
-- STEP 3: Find discriminant Values
Step_3 : declare
Discrim : Entity_Id;
Missing_Discriminants : Boolean := False;
begin
if Present (Expressions (N)) then
Positional_Expr := First (Expressions (N));
else
Positional_Expr := Empty;
end if;
-- AI05-0115: if the ancestor part is a subtype mark, the ancestor
-- must not have unknown discriminants.
-- ??? We are not checking any subtype mark here and this code is not
-- exercised by any test, so it's likely wrong (in particular
-- we should not use Root_Type here but the subtype mark, if any),
-- and possibly not needed.
if Is_Derived_Type (Typ)
and then Has_Unknown_Discriminants (Root_Type (Typ))
and then Nkind (N) /= N_Extension_Aggregate
then
Error_Msg_NE
("aggregate not available for type& whose ancestor "
& "has unknown discriminants", N, Typ);
end if;
if Has_Unknown_Discriminants (Typ)
and then Present (Underlying_Record_View (Typ))
then
Discrim := First_Discriminant (Underlying_Record_View (Typ));
elsif Has_Discriminants (Typ) then
Discrim := First_Discriminant (Typ);
else
Discrim := Empty;
end if;
-- First find the discriminant values in the positional components
while Present (Discrim) and then Present (Positional_Expr) loop
if Discriminant_Present (Discrim) then
Resolve_Aggr_Expr (Positional_Expr, Discrim);
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_2005
and then Known_Null (Positional_Expr)
then
Check_Can_Never_Be_Null (Discrim, Positional_Expr);
end if;
Next (Positional_Expr);
end if;
if Present (Get_Value (Discrim, Component_Associations (N))) then
Error_Msg_NE
("more than one value supplied for discriminant&",
N, Discrim);
end if;
Next_Discriminant (Discrim);
end loop;
-- Find remaining discriminant values if any among named components
while Present (Discrim) loop
Expr := Get_Value (Discrim, Component_Associations (N), True);
if not Discriminant_Present (Discrim) then
if Present (Expr) then
Error_Msg_NE
("more than one value supplied for discriminant &",
N, Discrim);
end if;
elsif No (Expr) then
Error_Msg_NE
("no value supplied for discriminant &", N, Discrim);
Missing_Discriminants := True;
else
Resolve_Aggr_Expr (Expr, Discrim);
end if;
Next_Discriminant (Discrim);
end loop;
if Missing_Discriminants then
return;
end if;
-- At this point and until the beginning of STEP 6, New_Assoc_List
-- contains only the discriminants and their values.
end Step_3;
-- STEP 4: Set the Etype of the record aggregate
if Has_Discriminants (Typ)
or else (Has_Unknown_Discriminants (Typ)
and then Present (Underlying_Record_View (Typ)))
then
Build_Constrained_Itype (N, Typ, New_Assoc_List);
else
Set_Etype (N, Typ);
end if;
-- STEP 5: Get remaining components according to discriminant values
Step_5 : declare
Dnode : Node_Id;
Errors_Found : Boolean := False;
Record_Def : Node_Id;
Parent_Typ : Entity_Id;
Parent_Typ_List : Elist_Id;
Parent_Elmt : Elmt_Id;
Root_Typ : Entity_Id;
begin
if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
Parent_Typ_List := New_Elmt_List;
-- If this is an extension aggregate, the component list must
-- include all components that are not in the given ancestor type.
-- Otherwise, the component list must include components of all
-- ancestors, starting with the root.
if Nkind (N) = N_Extension_Aggregate then
Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
else
-- AI05-0115: check legality of aggregate for type with a
-- private ancestor.
Root_Typ := Root_Type (Typ);
if Has_Private_Ancestor (Typ) then
declare
Ancestor : constant Entity_Id :=
Find_Private_Ancestor (Typ);
Ancestor_Unit : constant Entity_Id :=
Cunit_Entity
(Get_Source_Unit (Ancestor));
Parent_Unit : constant Entity_Id :=
Cunit_Entity (Get_Source_Unit
(Base_Type (Etype (Ancestor))));
begin
-- Check whether we are in a scope that has full view
-- over the private ancestor and its parent. This can
-- only happen if the derivation takes place in a child
-- unit of the unit that declares the parent, and we are
-- in the private part or body of that child unit, else
-- the aggregate is illegal.
if Is_Child_Unit (Ancestor_Unit)
and then Scope (Ancestor_Unit) = Parent_Unit
and then In_Open_Scopes (Scope (Ancestor))
and then
(In_Private_Part (Scope (Ancestor))
or else In_Package_Body (Scope (Ancestor)))
then
null;
else
Error_Msg_NE
("type of aggregate has private ancestor&!",
N, Root_Typ);
Error_Msg_N ("must use extension aggregate!", N);
return;
end if;
end;
end if;
Dnode := Declaration_Node (Base_Type (Root_Typ));
-- If we don't get a full declaration, then we have some error
-- which will get signalled later so skip this part. Otherwise
-- gather components of root that apply to the aggregate type.
-- We use the base type in case there is an applicable stored
-- constraint that renames the discriminants of the root.
if Nkind (Dnode) = N_Full_Type_Declaration then
Record_Def := Type_Definition (Dnode);
Gather_Components
(Base_Type (Typ),
Component_List (Record_Def),
Governed_By => New_Assoc_List,
Into => Components,
Report_Errors => Errors_Found);
if Errors_Found then
Error_Msg_N
("discriminant controlling variant part is not static",
N);
return;
end if;
end if;
end if;
Parent_Typ := Base_Type (Typ);
while Parent_Typ /= Root_Typ loop
Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
Parent_Typ := Etype (Parent_Typ);
-- Check whether a private parent requires the use of
-- an extension aggregate.
if Nkind (Parent (Base_Type (Parent_Typ))) =
N_Private_Type_Declaration
or else Nkind (Parent (Base_Type (Parent_Typ))) =
N_Private_Extension_Declaration
then
if Nkind (N) /= N_Extension_Aggregate then
Error_Msg_NE
("type of aggregate has private ancestor&!",
N, Parent_Typ);
Error_Msg_N ("must use extension aggregate!", N);
return;
elsif Parent_Typ /= Root_Typ then
Error_Msg_NE
("ancestor part of aggregate must be private type&",
Ancestor_Part (N), Parent_Typ);
return;
end if;
-- The current view of ancestor part may be a private type,
-- while the context type is always non-private.
elsif Is_Private_Type (Root_Typ)
and then Present (Full_View (Root_Typ))
and then Nkind (N) = N_Extension_Aggregate
then
exit when Base_Type (Full_View (Root_Typ)) = Parent_Typ;
end if;
end loop;
-- Now collect components from all other ancestors, beginning
-- with the current type. If the type has unknown discriminants
-- use the component list of the Underlying_Record_View, which
-- needs to be used for the subsequent expansion of the aggregate
-- into assignments.
Parent_Elmt := First_Elmt (Parent_Typ_List);
while Present (Parent_Elmt) loop
Parent_Typ := Node (Parent_Elmt);
if Has_Unknown_Discriminants (Parent_Typ)
and then Present (Underlying_Record_View (Typ))
then
Parent_Typ := Underlying_Record_View (Parent_Typ);
end if;
Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
Gather_Components (Parent_Typ,
Component_List (Record_Extension_Part (Record_Def)),
Governed_By => New_Assoc_List,
Into => Components,
Report_Errors => Errors_Found);
Next_Elmt (Parent_Elmt);
end loop;
-- Typ is not a derived tagged type
else
Record_Def := Type_Definition (Parent (Base_Type (Typ)));
if Null_Present (Record_Def) then
null;
elsif not Has_Unknown_Discriminants (Typ) then
Gather_Components
(Base_Type (Typ),
Component_List (Record_Def),
Governed_By => New_Assoc_List,
Into => Components,
Report_Errors => Errors_Found);
else
Gather_Components
(Base_Type (Underlying_Record_View (Typ)),
Component_List (Record_Def),
Governed_By => New_Assoc_List,
Into => Components,
Report_Errors => Errors_Found);
end if;
end if;
if Errors_Found then
return;
end if;
end Step_5;
-- STEP 6: Find component Values
Component_Elmt := First_Elmt (Components);
-- First scan the remaining positional associations in the aggregate.
-- Remember that at this point Positional_Expr contains the current
-- positional association if any is left after looking for discriminant
-- values in step 3.
while Present (Positional_Expr) and then Present (Component_Elmt) loop
Component := Node (Component_Elmt);
Resolve_Aggr_Expr (Positional_Expr, Component);
-- Ada 2005 (AI-231)
if Ada_Version >= Ada_2005 and then Known_Null (Positional_Expr) then
Check_Can_Never_Be_Null (Component, Positional_Expr);
end if;
if Present (Get_Value (Component, Component_Associations (N))) then
Error_Msg_NE
("more than one value supplied for component &", N, Component);
end if;
Next (Positional_Expr);
Next_Elmt (Component_Elmt);
end loop;
if Present (Positional_Expr) then
Error_Msg_N
("too many components for record aggregate", Positional_Expr);
end if;
-- Now scan for the named arguments of the aggregate
while Present (Component_Elmt) loop
Component := Node (Component_Elmt);
Expr := Get_Value (Component, Component_Associations (N), True);
-- Note: The previous call to Get_Value sets the value of the
-- variable Is_Box_Present.
-- Ada 2005 (AI-287): Handle components with default initialization.
-- Note: This feature was originally added to Ada 2005 for limited
-- but it was finally allowed with any type.
if Is_Box_Present then
Check_Box_Component : declare
Ctyp : constant Entity_Id := Etype (Component);
begin
-- Initially assume that the box is for a default-initialized
-- component and reset to False in cases where that's not true.
Is_Box_Init_By_Default := True;
-- If there is a default expression for the aggregate, copy
-- it into a new association. This copy must modify the scopes
-- of internal types that may be attached to the expression
-- (e.g. index subtypes of arrays) because in general the type
-- declaration and the aggregate appear in different scopes,
-- and the backend requires the scope of the type to match the
-- point at which it is elaborated.
-- If the component has an initialization procedure (IP) we
-- pass the component to the expander, which will generate
-- the call to such IP.
-- If the component has discriminants, their values must
-- be taken from their subtype. This is indispensable for
-- constraints that are given by the current instance of an
-- enclosing type, to allow the expansion of the aggregate to
-- replace the reference to the current instance by the target
-- object of the aggregate.
if Is_Case_Choice_Pattern (N) then
-- Do not transform box component values in a case-choice
-- aggregate.
Add_Association
(Component => Component,
Expr => Empty,
Assoc_List => New_Assoc_List,
Is_Box_Present => True);
elsif Present (Parent (Component))
and then Nkind (Parent (Component)) = N_Component_Declaration
and then Present (Expression (Parent (Component)))
then
-- If component declaration has an initialization expression
-- then this is not a case of default initialization.
Is_Box_Init_By_Default := False;
Expr :=
New_Copy_Tree_And_Copy_Dimensions
(Expression (Parent (Component)),
New_Scope => Current_Scope,
New_Sloc => Sloc (N));
-- As the type of the copied default expression may refer
-- to discriminants of the record type declaration, these
-- non-stored discriminants need to be rewritten into stored
-- discriminant values for the aggregate. This is required
-- in GNATprove mode, and is adopted in all modes to avoid
-- special-casing GNATprove mode.
if Is_Array_Type (Etype (Expr)) then
declare
Rec_Typ : constant Entity_Id := Scope (Component);
-- Root record type whose discriminants may be used as
-- bounds in range nodes.
Assoc : Node_Id;
Choice : Node_Id;
Index : Node_Id;
begin
-- Rewrite the range nodes occurring in the indexes
-- and their types.
Index := First_Index (Etype (Expr));
while Present (Index) loop
Rewrite_Range (Rec_Typ, Index);
Rewrite_Range
(Rec_Typ, Scalar_Range (Etype (Index)));
Next_Index (Index);
end loop;
-- Rewrite the range nodes occurring as aggregate
-- bounds and component associations.
if Nkind (Expr) = N_Aggregate then
if Present (Aggregate_Bounds (Expr)) then
Rewrite_Range (Rec_Typ, Aggregate_Bounds (Expr));
end if;
if Present (Component_Associations (Expr)) then
Assoc := First (Component_Associations (Expr));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
while Present (Choice) loop
Rewrite_Range (Rec_Typ, Choice);
Next (Choice);
end loop;
Next (Assoc);
end loop;
end if;
end if;
end;
end if;
Add_Association
(Component => Component,
Expr => Expr,
Assoc_List => New_Assoc_List);
Set_Has_Self_Reference (N);
elsif Needs_Simple_Initialization (Ctyp)
or else Has_Non_Null_Base_Init_Proc (Ctyp)
or else not Expander_Active
then
Add_Association
(Component => Component,
Expr => Empty,
Assoc_List => New_Assoc_List,
Is_Box_Present => True);
-- Otherwise we only need to resolve the expression if the
-- component has partially initialized values (required to
-- expand the corresponding assignments and run-time checks).
elsif Present (Expr)
and then Is_Partially_Initialized_Type (Ctyp)
then
Resolve_Aggr_Expr (Expr, Component);
end if;
end Check_Box_Component;
elsif No (Expr) then
-- Ignore hidden components associated with the position of the
-- interface tags: these are initialized dynamically.
if No (Related_Type (Component)) then
Error_Msg_NE
("no value supplied for component &!", N, Component);
end if;
else
Resolve_Aggr_Expr (Expr, Component);
end if;
Next_Elmt (Component_Elmt);
end loop;
-- STEP 7: check for invalid components + check type in choice list
Step_7 : declare
Assoc : Node_Id;
New_Assoc : Node_Id;
Selectr : Node_Id;
-- Selector name
Typech : Entity_Id;
-- Type of first component in choice list
begin
if Present (Component_Associations (N)) then
Assoc := First (Component_Associations (N));
else
Assoc := Empty;
end if;
Verification : while Present (Assoc) loop
Selectr := First (Choices (Assoc));
Typech := Empty;
if Nkind (Selectr) = N_Others_Choice then
-- Ada 2005 (AI-287): others choice may have expression or box
if No (Others_Etype) and then Others_Box = 0 then
Error_Msg_N
("OTHERS must represent at least one component", Selectr);
elsif Others_Box = 1 and then Warn_On_Redundant_Constructs then
Error_Msg_N ("OTHERS choice is redundant?r?", Box_Node);
Error_Msg_N
("\previous choices cover all components?r?", Box_Node);
end if;
exit Verification;
end if;
while Present (Selectr) loop
Component := Empty;
New_Assoc := First (New_Assoc_List);
while Present (New_Assoc) loop
Component := First (Choices (New_Assoc));
if Chars (Selectr) = Chars (Component) then
if Style_Check then
Check_Identifier (Selectr, Entity (Component));
end if;
exit;
end if;
Next (New_Assoc);
end loop;
-- If we found an association, then this is a legal component
-- of the type in question.
pragma Assert (if Present (New_Assoc) then Present (Component));
-- If no association, this is not a legal component of the type
-- in question, unless its association is provided with a box.
if No (New_Assoc) then
if Box_Present (Parent (Selectr)) then
-- This may still be a bogus component with a box. Scan
-- list of components to verify that a component with
-- that name exists.
declare
C : Entity_Id;
begin
C := First_Component (Typ);
while Present (C) loop
if Chars (C) = Chars (Selectr) then
-- If the context is an extension aggregate,
-- the component must not be inherited from
-- the ancestor part of the aggregate.
if Nkind (N) /= N_Extension_Aggregate
or else
Scope (Original_Record_Component (C)) /=
Etype (Ancestor_Part (N))
then
exit;
end if;
end if;
Next_Component (C);
end loop;
if No (C) then
Error_Msg_Node_2 := Typ;
Error_Msg_N ("& is not a component of}", Selectr);
end if;
end;
elsif Chars (Selectr) /= Name_uTag
and then Chars (Selectr) /= Name_uParent
then
if not Has_Discriminants (Typ) then
Error_Msg_Node_2 := Typ;
Error_Msg_N ("& is not a component of}", Selectr);
else
Error_Msg_N
("& is not a component of the aggregate subtype",
Selectr);
end if;
Check_Misspelled_Component (Components, Selectr);
end if;
elsif No (Typech) then
Typech := Base_Type (Etype (Component));
-- AI05-0199: In Ada 2012, several components of anonymous
-- access types can appear in a choice list, as long as the
-- designated types match.
elsif Typech /= Base_Type (Etype (Component)) then
if Ada_Version >= Ada_2012
and then Ekind (Typech) = E_Anonymous_Access_Type
and then
Ekind (Etype (Component)) = E_Anonymous_Access_Type
and then Base_Type (Designated_Type (Typech)) =
Base_Type (Designated_Type (Etype (Component)))
and then
Subtypes_Statically_Match (Typech, (Etype (Component)))
then
null;
elsif not Box_Present (Parent (Selectr)) then
Error_Msg_N
("components in choice list must have same type",
Selectr);
end if;
end if;
Next (Selectr);
end loop;
Next (Assoc);
end loop Verification;
end Step_7;
-- STEP 8: replace the original aggregate
Step_8 : declare
New_Aggregate : constant Node_Id := New_Copy (N);
begin
Set_Expressions (New_Aggregate, No_List);
Set_Etype (New_Aggregate, Etype (N));
Set_Component_Associations (New_Aggregate, New_Assoc_List);
Set_Check_Actuals (New_Aggregate, Check_Actuals (N));
Rewrite (N, New_Aggregate);
end Step_8;
-- Check the dimensions of the components in the record aggregate
Analyze_Dimension_Extension_Or_Record_Aggregate (N);
end Resolve_Record_Aggregate;
-----------------------------
-- Check_Can_Never_Be_Null --
-----------------------------
procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
Comp_Typ : Entity_Id;
begin
pragma Assert
(Ada_Version >= Ada_2005
and then Present (Expr)
and then Known_Null (Expr));
case Ekind (Typ) is
when E_Array_Type =>
Comp_Typ := Component_Type (Typ);
when E_Component
| E_Discriminant
=>
Comp_Typ := Etype (Typ);
when others =>
return;
end case;
if Can_Never_Be_Null (Comp_Typ) then
-- Here we know we have a constraint error. Note that we do not use
-- Apply_Compile_Time_Constraint_Error here to the Expr, which might
-- seem the more natural approach. That's because in some cases the
-- components are rewritten, and the replacement would be missed.
-- We do not mark the whole aggregate as raising a constraint error,
-- because the association may be a null array range.
Error_Msg_N
("(Ada 2005) NULL not allowed in null-excluding component??", Expr);
Error_Msg_N
("\Constraint_Error will be raised at run time??", Expr);
Rewrite (Expr,
Make_Raise_Constraint_Error
(Sloc (Expr), Reason => CE_Access_Check_Failed));
Set_Etype (Expr, Comp_Typ);
Set_Analyzed (Expr);
end if;
end Check_Can_Never_Be_Null;
---------------------
-- Sort_Case_Table --
---------------------
procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
U : constant Int := Case_Table'Last;
K : Int;
J : Int;
T : Case_Bounds;
begin
K := 1;
while K < U loop
T := Case_Table (K + 1);
J := K + 1;
while J > 1
and then Expr_Value (Case_Table (J - 1).Lo) > Expr_Value (T.Lo)
loop
Case_Table (J) := Case_Table (J - 1);
J := J - 1;
end loop;
Case_Table (J) := T;
K := K + 1;
end loop;
end Sort_Case_Table;
end Sem_Aggr;
|