1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
  
     | 
    
      ------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                             S E M _ C A S E                              --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1996-2024, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------
with Atree;          use Atree;
with Einfo;          use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils;    use Einfo.Utils;
with Elists;         use Elists;
with Errout;         use Errout;
with Namet;          use Namet;
with Nlists;         use Nlists;
with Nmake;          use Nmake;
with Opt;            use Opt;
with Sem;            use Sem;
with Sem_Aux;        use Sem_Aux;
with Sem_Eval;       use Sem_Eval;
with Sem_Res;        use Sem_Res;
with Sem_Util;       use Sem_Util;
with Sem_Type;       use Sem_Type;
with Snames;         use Snames;
with Stand;          use Stand;
with Sinfo;          use Sinfo;
with Sinfo.Nodes;    use Sinfo.Nodes;
with Sinfo.Utils;    use Sinfo.Utils;
with Stringt;        use Stringt;
with Table;
with Tbuild;         use Tbuild;
with Uintp;          use Uintp;
with Warnsw;         use Warnsw;
with Ada.Unchecked_Deallocation;
with GNAT.Heap_Sort_G;
with GNAT.Sets;
package body Sem_Case is
   type Choice_Bounds is record
     Lo   : Node_Id;
     Hi   : Node_Id;
     Node : Node_Id;
   end record;
   --  Represent one choice bounds entry with Lo and Hi values, Node points
   --  to the choice node itself.
   type Choice_Table_Type is array (Nat range <>) of Choice_Bounds;
   --  Table type used to sort the choices present in a case statement or
   --  record variant. The actual entries are stored in 1 .. Last, but we
   --  have a 0 entry for use in sorting.
   -----------------------
   -- Local Subprograms --
   -----------------------
   procedure Check_Choice_Set
     (Choice_Table   : in out Choice_Table_Type;
      Bounds_Type    : Entity_Id;
      Subtyp         : Entity_Id;
      Others_Present : Boolean;
      Case_Node      : Node_Id);
   --  This is the procedure which verifies that a set of case alternatives
   --  or record variant choices has no duplicates, and covers the range
   --  specified by Bounds_Type. Choice_Table contains the discrete choices
   --  to check. These must start at position 1.
   --
   --  Furthermore Choice_Table (0) must exist. This element is used by
   --  the sorting algorithm as a temporary. Others_Present is a flag
   --  indicating whether or not an Others choice is present. Finally
   --  Msg_Sloc gives the source location of the construct containing the
   --  choices in the Choice_Table.
   --
   --  Bounds_Type is the type whose range must be covered by the alternatives
   --
   --  Subtyp is the subtype of the expression. If its bounds are nonstatic
   --  the alternatives must cover its base type.
   function Choice_Image (Value : Uint; Ctype : Entity_Id) return Name_Id;
   --  Given a Pos value of enumeration type Ctype, returns the name
   --  ID of an appropriate string to be used in error message output.
   function Has_Static_Discriminant_Constraint
     (Subtyp : Entity_Id) return Boolean;
   --  Returns True if the given subtype is subject to a discriminant
   --  constraint and at least one of the constraint values is nonstatic.
   package Composite_Case_Ops is
      Simplified_Composite_Coverage_Rules : constant Boolean := True;
      --  Indicates that, as a temporary stopgap, we implement
      --  simpler coverage-checking rules when casing on a
      --  composite selector:
      --     1) Require that an Others choice must be given, regardless
      --        of whether all possible values are covered explicitly.
      --     2) No legality checks regarding overlapping choices.
      function Box_Value_Required (Subtyp : Entity_Id) return Boolean;
      --  If result is True, then the only allowed value (in a choice
      --  aggregate) for a component of this (sub)type is a box. This rule
      --  means that such a component can be ignored in case alternative
      --  selection. This in turn implies that it is ok if the component
      --  type doesn't meet the usual restrictions, such as not being an
      --  access/task/protected type, since nobody is going to look
      --  at it.
      function Choice_Count (Alternatives : List_Id) return Nat;
      --  The sum of the number of choices for each alternative in the given
      --  list.
      function Normalized_Case_Expr_Type
        (Case_Statement : Node_Id) return Entity_Id;
      --  Usually returns the Etype of the selector expression of the
      --  case statement. However, in the case of a constrained composite
      --  subtype with a nonstatic constraint, returns the unconstrained
      --  base type.
      function Scalar_Part_Count (Subtyp : Entity_Id) return Nat;
      --  Given the composite type Subtyp of a case selector, returns the
      --  number of scalar parts in an object of this type. This is the
      --  dimensionality of the associated Cartesian product space.
      package Array_Case_Ops is
         function Array_Choice_Length (Choice : Node_Id) return Nat;
         --  Given a choice expression of an array type, returns its length.
         function Unconstrained_Array_Effective_Length
           (Array_Type : Entity_Id; Case_Statement : Node_Id) return Nat;
         --  If the nominal subtype of the case selector is unconstrained,
         --  then use the length of the longest choice of the case statement.
         --  Components beyond that index value will not influence the case
         --  selection decision.
         function Unconstrained_Array_Scalar_Part_Count
           (Array_Type : Entity_Id; Case_Statement : Node_Id) return Nat;
         --  Same as Scalar_Part_Count except that the value used for the
         --  "length" of the array subtype being cased on is determined by
         --  calling Unconstrained_Array_Effective_Length.
      end Array_Case_Ops;
      generic
         Case_Statement : Node_Id;
      package Choice_Analysis is
         use Array_Case_Ops;
         type Alternative_Id is
           new Int range 1 .. List_Length (Alternatives (Case_Statement));
         type Choice_Id is
           new Int range 1 .. Choice_Count (Alternatives (Case_Statement));
         Case_Expr_Type : constant Entity_Id :=
           Normalized_Case_Expr_Type (Case_Statement);
         Unconstrained_Array_Case : constant Boolean :=
           Is_Array_Type (Case_Expr_Type)
             and then not Is_Constrained (Case_Expr_Type);
         --  If Unconstrained_Array_Case is True, choice lengths may differ:
         --    when "Aaa" | "Bb" | "C" | "" =>
         --
         --  Strictly speaking, the name "Unconstrained_Array_Case" is
         --  slightly imprecise; a subtype with a nonstatic constraint is
         --  also treated as unconstrained (see Normalize_Case_Expr_Type).
         type Part_Id is new Int range
           1 .. (if Unconstrained_Array_Case
                 then Unconstrained_Array_Scalar_Part_Count
                        (Case_Expr_Type, Case_Statement)
                 else Scalar_Part_Count (Case_Expr_Type));
         type Discrete_Range_Info is
           record
              Low, High : Uint;
           end record;
         function "=" (X, Y : Discrete_Range_Info) return Boolean is abstract;
         --  Here (and below), we don't use "=", which is a good thing,
         --  because it wouldn't work, because the user-defined "=" on
         --  Uint does not compose according to Ada rules.
         type Composite_Range_Info is array (Part_Id) of Discrete_Range_Info;
         function "=" (X, Y : Composite_Range_Info) return Boolean is abstract;
         type Choice_Range_Info (Is_Others : Boolean := False) is
           record
              case Is_Others is
                 when False =>
                    Ranges : Composite_Range_Info;
                 when True =>
                    null;
              end case;
           end record;
         pragma Annotate (CodePeer, False_Positive, "raise exception",
                          "function is abstract, hence never called");
         function "=" (X, Y : Choice_Range_Info) return Boolean is abstract;
         type Choices_Range_Info is array (Choice_Id) of Choice_Range_Info;
         package Value_Sets is
            type Value_Set is private;
            --  A set of points in the Cartesian product space defined
            --  by the composite type of the case selector.
            --  Implemented as an access type.
            type Set_Comparison is
              (Disjoint, Equal, Contains, Contained_By, Overlaps);
            function Compare (S1, S2 : Value_Set) return Set_Comparison;
            --  If either argument (or both) is empty, result is Disjoint.
            --  Otherwise, result is Equal if the two sets are equal.
            Empty : constant Value_Set;
            function Matching_Values
              (Info : Composite_Range_Info) return Value_Set;
            --  The Cartesian product of the given array of ranges
            --  (excluding any values outside the Cartesian product of the
            --  component ranges).
            procedure Union (Target : in out Value_Set; Source : Value_Set);
            --  Add elements of Source into Target
            procedure Remove (Target : in out Value_Set; Source : Value_Set);
            --  Remove elements of Source from Target
            function Complement_Is_Empty (Set : Value_Set) return Boolean;
            --  Return True iff the set is "maximal", in the sense that it
            --  includes every value in the Cartesian product of the
            --  component ranges.
            procedure Free_Value_Sets;
            --  Reclaim storage associated with implementation of this package.
         private
            type Value_Set is new Natural;
            --  An index for a table that will be declared in the package body.
            Empty : constant Value_Set := 0;
         end Value_Sets;
         type Single_Choice_Info (Is_Others : Boolean := False) is
           record
              Alternative : Alternative_Id;
              case Is_Others is
                 when False =>
                    Matches : Value_Sets.Value_Set;
                 when True =>
                    null;
              end case;
           end record;
         type Choices_Info is array (Choice_Id) of Single_Choice_Info;
         function Analysis return Choices_Info;
         --  Parse the case choices in order to determine the set of
         --  matching values associated with each choice.
         type Bound_Values is array (Positive range <>) of Node_Id;
      end Choice_Analysis;
   end Composite_Case_Ops;
   procedure Expand_Others_Choice
     (Case_Table    : Choice_Table_Type;
      Others_Choice : Node_Id;
      Choice_Type   : Entity_Id);
   --  The case table is the table generated by a call to Check_Choices
   --  (with just 1 .. Last_Choice entries present). Others_Choice is a
   --  pointer to the N_Others_Choice node (this routine is only called if
   --  an others choice is present), and Choice_Type is the discrete type
   --  of the bounds. The effect of this call is to analyze the cases and
   --  determine the set of values covered by others. This choice list is
   --  set in the Others_Discrete_Choices field of the N_Others_Choice node.
   ----------------------
   -- Check_Choice_Set --
   ----------------------
   procedure Check_Choice_Set
     (Choice_Table   : in out Choice_Table_Type;
      Bounds_Type    : Entity_Id;
      Subtyp         : Entity_Id;
      Others_Present : Boolean;
      Case_Node      : Node_Id)
   is
      Predicate_Error : Boolean := False;
      --  Flag to prevent cascaded errors when a static predicate is known to
      --  be violated by one choice.
      Num_Choices : constant Nat := Choice_Table'Last;
      procedure Check_Against_Predicate
        (Pred    : in out Node_Id;
         Choice  : Choice_Bounds;
         Prev_Lo : in out Uint;
         Prev_Hi : in out Uint;
         Error   : in out Boolean);
      --  Determine whether a choice covers legal values as defined by a static
      --  predicate set. Pred is a static predicate range. Choice is the choice
      --  to be examined. Prev_Lo and Prev_Hi are the bounds of the previous
      --  choice that covered a predicate set. Error denotes whether the check
      --  found an illegal intersection.
      procedure Check_Duplicates;
      --  Check for duplicate choices, and call Dup_Choice if there are any
      --  such errors. Note that predicates are irrelevant here.
      procedure Dup_Choice (Lo, Hi : Uint; C : Node_Id);
      --  Post message "duplication of choice value(s) bla bla at xx". Message
      --  is posted at location C. Caller sets Error_Msg_Sloc for xx.
      procedure Explain_Non_Static_Bound;
      --  Called when we find a nonstatic bound, requiring the base type to
      --  be covered. Provides where possible a helpful explanation of why the
      --  bounds are nonstatic, since this is not always obvious.
      function Lt_Choice (C1, C2 : Natural) return Boolean;
      --  Comparison routine for comparing Choice_Table entries. Use the lower
      --  bound of each Choice as the key.
      procedure Missing_Choice (Value1 : Node_Id; Value2 : Node_Id);
      procedure Missing_Choice (Value1 : Node_Id; Value2 : Uint);
      procedure Missing_Choice (Value1 : Uint;    Value2 : Node_Id);
      procedure Missing_Choice (Value1 : Uint;    Value2 : Uint);
      --  Issue an error message indicating that there are missing choices,
      --  followed by the image of the missing choices themselves which lie
      --  between Value1 and Value2 inclusive.
      procedure Missing_Choices (Pred : Node_Id; Prev_Hi : Uint);
      --  Emit an error message for each non-covered static predicate set.
      --  Prev_Hi denotes the upper bound of the last choice covering a set.
      procedure Move_Choice (From : Natural; To : Natural);
      --  Move routine for sorting the Choice_Table
      package Sorting is new GNAT.Heap_Sort_G (Move_Choice, Lt_Choice);
      -----------------------------
      -- Check_Against_Predicate --
      -----------------------------
      procedure Check_Against_Predicate
        (Pred    : in out Node_Id;
         Choice  : Choice_Bounds;
         Prev_Lo : in out Uint;
         Prev_Hi : in out Uint;
         Error   : in out Boolean)
      is
         procedure Illegal_Range
           (Loc : Source_Ptr;
            Lo  : Uint;
            Hi  : Uint);
         --  Emit an error message regarding a choice that clashes with the
         --  legal static predicate sets. Loc is the location of the choice
         --  that introduced the illegal range. Lo .. Hi is the range.
         function Inside_Range
           (Lo  : Uint;
            Hi  : Uint;
            Val : Uint) return Boolean;
         --  Determine whether position Val within a discrete type is within
         --  the range Lo .. Hi inclusive.
         -------------------
         -- Illegal_Range --
         -------------------
         procedure Illegal_Range
           (Loc : Source_Ptr;
            Lo  : Uint;
            Hi  : Uint)
         is
         begin
            Error_Msg_Name_1 := Chars (Bounds_Type);
            --  Single value
            if Lo = Hi then
               if Is_Integer_Type (Bounds_Type) then
                  Error_Msg_Uint_1 := Lo;
                  Error_Msg ("static predicate on % excludes value ^!", Loc);
               else
                  Error_Msg_Name_2 := Choice_Image (Lo, Bounds_Type);
                  Error_Msg ("static predicate on % excludes value %!", Loc);
               end if;
            --  Range
            else
               if Is_Integer_Type (Bounds_Type) then
                  Error_Msg_Uint_1 := Lo;
                  Error_Msg_Uint_2 := Hi;
                  Error_Msg
                    ("static predicate on % excludes range ^ .. ^!", Loc);
               else
                  Error_Msg_Name_2 := Choice_Image (Lo, Bounds_Type);
                  Error_Msg_Name_3 := Choice_Image (Hi, Bounds_Type);
                  Error_Msg
                    ("static predicate on % excludes range % .. %!", Loc);
               end if;
            end if;
         end Illegal_Range;
         ------------------
         -- Inside_Range --
         ------------------
         function Inside_Range
           (Lo  : Uint;
            Hi  : Uint;
            Val : Uint) return Boolean
         is
         begin
            return Lo <= Val and then Val <= Hi;
         end Inside_Range;
         --  Local variables
         Choice_Hi : constant Uint := Expr_Value (Choice.Hi);
         Choice_Lo : constant Uint := Expr_Value (Choice.Lo);
         Loc       : Source_Ptr;
         LocN      : Node_Id;
         Next_Hi   : Uint;
         Next_Lo   : Uint;
         Pred_Hi   : Uint;
         Pred_Lo   : Uint;
      --  Start of processing for Check_Against_Predicate
      begin
         --  Find the proper error message location
         if Present (Choice.Node) then
            LocN := Choice.Node;
         else
            LocN := Case_Node;
         end if;
         Loc := Sloc (LocN);
         if Present (Pred) then
            Pred_Lo := Expr_Value (Low_Bound  (Pred));
            Pred_Hi := Expr_Value (High_Bound (Pred));
         --  Previous choices managed to satisfy all static predicate sets
         else
            Illegal_Range (Loc, Choice_Lo, Choice_Hi);
            Error := True;
            return;
         end if;
         --  Step 1: Ignore duplicate choices, other than to set the flag,
         --  because these were already detected by Check_Duplicates.
         if Inside_Range (Choice_Lo, Choice_Hi, Prev_Lo)
           or else  Inside_Range (Choice_Lo, Choice_Hi, Prev_Hi)
         then
            Error := True;
         --  Step 2: Detect full coverage
         --  Choice_Lo    Choice_Hi
         --  +============+
         --  Pred_Lo      Pred_Hi
         elsif Choice_Lo = Pred_Lo and then Choice_Hi = Pred_Hi then
            Prev_Lo := Choice_Lo;
            Prev_Hi := Choice_Hi;
            Next (Pred);
         --  Step 3: Detect all cases where a choice mentions values that are
         --  not part of the static predicate sets.
         --  Choice_Lo   Choice_Hi   Pred_Lo   Pred_Hi
         --  +-----------+ . . . . . +=========+
         --   ^ illegal ^
         elsif Choice_Lo < Pred_Lo and then Choice_Hi < Pred_Lo then
            Illegal_Range (Loc, Choice_Lo, Choice_Hi);
            Error := True;
         --  Choice_Lo   Pred_Lo   Choice_Hi   Pred_Hi
         --  +-----------+=========+===========+
         --   ^ illegal ^
         elsif Choice_Lo < Pred_Lo
           and then Inside_Range (Pred_Lo, Pred_Hi, Choice_Hi)
         then
            Illegal_Range (Loc, Choice_Lo, Pred_Lo - 1);
            Error := True;
         --  Pred_Lo   Pred_Hi   Choice_Lo   Choice_Hi
         --  +=========+ . . . . +-----------+
         --                       ^ illegal ^
         elsif Pred_Lo < Choice_Lo and then Pred_Hi < Choice_Lo then
            if Others_Present then
               --  Current predicate set is covered by others clause.
               null;
            else
               Missing_Choice (Pred_Lo, Pred_Hi);
               Error := True;
            end if;
            --  There may be several static predicate sets between the current
            --  one and the choice. Inspect the next static predicate set.
            Next (Pred);
            Check_Against_Predicate
              (Pred    => Pred,
               Choice  => Choice,
               Prev_Lo => Prev_Lo,
               Prev_Hi => Prev_Hi,
               Error   => Error);
         --  Pred_Lo   Choice_Lo   Pred_Hi     Choice_Hi
         --  +=========+===========+-----------+
         --                         ^ illegal ^
         elsif Pred_Hi < Choice_Hi
           and then Inside_Range (Pred_Lo, Pred_Hi, Choice_Lo)
         then
            Next (Pred);
            --  The choice may fall in a static predicate set. If this is the
            --  case, avoid mentioning legal values in the error message.
            if Present (Pred) then
               Next_Lo := Expr_Value (Low_Bound  (Pred));
               Next_Hi := Expr_Value (High_Bound (Pred));
               --  The next static predicate set is to the right of the choice
               if Choice_Hi < Next_Lo and then Choice_Hi < Next_Hi then
                  Illegal_Range (Loc, Pred_Hi + 1, Choice_Hi);
               else
                  Illegal_Range (Loc, Pred_Hi + 1, Next_Lo - 1);
               end if;
            else
               Illegal_Range (Loc, Pred_Hi + 1, Choice_Hi);
            end if;
            Error := True;
         --  Choice_Lo   Pred_Lo   Pred_Hi     Choice_Hi
         --  +-----------+=========+-----------+
         --   ^ illegal ^           ^ illegal ^
         --  Emit an error on the low gap, disregard the upper gap
         elsif Choice_Lo < Pred_Lo and then Pred_Hi < Choice_Hi then
            Illegal_Range (Loc, Choice_Lo, Pred_Lo - 1);
            Error := True;
         --  Step 4: Detect all cases of partial or missing coverage
         --  Pred_Lo   Choice_Lo  Choice_Hi   Pred_Hi
         --  +=========+==========+===========+
         --   ^  gap  ^            ^   gap   ^
         else
            --  An "others" choice covers all gaps
            if Others_Present then
               Prev_Lo := Choice_Lo;
               Prev_Hi := Choice_Hi;
               --  Check whether predicate set is fully covered by choice
               if Pred_Hi = Choice_Hi then
                  Next (Pred);
               end if;
            --  Choice_Lo   Choice_Hi   Pred_Hi
            --  +===========+===========+
            --  Pred_Lo      ^   gap   ^
            --  The upper gap may be covered by a subsequent choice
            elsif Pred_Lo = Choice_Lo then
               Prev_Lo := Choice_Lo;
               Prev_Hi := Choice_Hi;
            --  Pred_Lo     Prev_Hi   Choice_Lo   Choice_Hi   Pred_Hi
            --  +===========+=========+===========+===========+
            --   ^ covered ^ ^  gap  ^
            else pragma Assert (Pred_Lo < Choice_Lo);
               --  A previous choice covered the gap up to the current choice
               if Prev_Hi = Choice_Lo - 1 then
                  Prev_Lo := Choice_Lo;
                  Prev_Hi := Choice_Hi;
                  if Choice_Hi = Pred_Hi then
                     Next (Pred);
                  end if;
               --  The previous choice did not intersect with the current
               --  static predicate set.
               elsif Prev_Hi < Pred_Lo then
                  Missing_Choice (Pred_Lo, Choice_Lo - 1);
                  Error := True;
               --  The previous choice covered part of the static predicate set
               --  but there is a gap after Prev_Hi.
               else
                  Missing_Choice (Prev_Hi + 1, Choice_Lo - 1);
                  Error := True;
               end if;
            end if;
         end if;
      end Check_Against_Predicate;
      ----------------------
      -- Check_Duplicates --
      ----------------------
      procedure Check_Duplicates is
         Choice      : Node_Id;
         Choice_Hi   : Uint;
         Choice_Lo   : Uint;
         Prev_Choice : Node_Id := Empty;
         Prev_Hi     : Uint;
      begin
         Prev_Hi := Expr_Value (Choice_Table (1).Hi);
         for Outer_Index in 2 .. Num_Choices loop
            Choice_Lo := Expr_Value (Choice_Table (Outer_Index).Lo);
            Choice_Hi := Expr_Value (Choice_Table (Outer_Index).Hi);
            --  Choices overlap; this is an error
            if Choice_Lo <= Prev_Hi then
               Choice := Choice_Table (Outer_Index).Node;
               --  Find first previous choice that overlaps
               for Inner_Index in 1 .. Outer_Index - 1 loop
                  if Choice_Lo <=
                       Expr_Value (Choice_Table (Inner_Index).Hi)
                  then
                     Prev_Choice := Choice_Table (Inner_Index).Node;
                     exit;
                  end if;
               end loop;
               pragma Assert (Present (Prev_Choice));
               if Sloc (Prev_Choice) <= Sloc (Choice) then
                  Error_Msg_Sloc := Sloc (Prev_Choice);
                  Dup_Choice (Choice_Lo, UI_Min (Choice_Hi, Prev_Hi), Choice);
               else
                  Error_Msg_Sloc := Sloc (Choice);
                  Dup_Choice
                    (Choice_Lo, UI_Min (Choice_Hi, Prev_Hi), Prev_Choice);
               end if;
            end if;
            if Choice_Hi > Prev_Hi then
               Prev_Hi := Choice_Hi;
            end if;
         end loop;
      end Check_Duplicates;
      ----------------
      -- Dup_Choice --
      ----------------
      procedure Dup_Choice (Lo, Hi : Uint; C : Node_Id) is
      begin
         --  In some situations, we call this with a null range, and obviously
         --  we don't want to complain in this case.
         if Lo > Hi then
            return;
         end if;
         --  Case of only one value that is duplicated
         if Lo = Hi then
            --  Integer type
            if Is_Integer_Type (Bounds_Type) then
               --  We have an integer value, Lo, but if the given choice
               --  placement is a constant with that value, then use the
               --  name of that constant instead in the message:
               if Nkind (C) = N_Identifier
                 and then Compile_Time_Known_Value (C)
                 and then Expr_Value (C) = Lo
               then
                  Error_Msg_N
                    ("duplication of choice value: &#!", Original_Node (C));
               --  Not that special case, so just output the integer value
               else
                  Error_Msg_Uint_1 := Lo;
                  Error_Msg_N
                    ("duplication of choice value: ^#!", Original_Node (C));
               end if;
            --  Enumeration type
            else
               Error_Msg_Name_1 := Choice_Image (Lo, Bounds_Type);
               Error_Msg_N
                 ("duplication of choice value: %#!", Original_Node (C));
            end if;
         --  More than one choice value, so print range of values
         else
            --  Integer type
            if Is_Integer_Type (Bounds_Type) then
               --  Similar to the above, if C is a range of known values which
               --  match Lo and Hi, then use the names. We have to go to the
               --  original nodes, since the values will have been rewritten
               --  to their integer values.
               if Nkind (C) = N_Range
                 and then Nkind (Original_Node (Low_Bound  (C))) = N_Identifier
                 and then Nkind (Original_Node (High_Bound (C))) = N_Identifier
                 and then Compile_Time_Known_Value (Low_Bound (C))
                 and then Compile_Time_Known_Value (High_Bound (C))
                 and then Expr_Value (Low_Bound (C))  = Lo
                 and then Expr_Value (High_Bound (C)) = Hi
               then
                  Error_Msg_Node_2 := Original_Node (High_Bound (C));
                  Error_Msg_N
                    ("duplication of choice values: & .. &#!",
                     Original_Node (Low_Bound (C)));
               --  Not that special case, output integer values
               else
                  Error_Msg_Uint_1 := Lo;
                  Error_Msg_Uint_2 := Hi;
                  Error_Msg_N
                    ("duplication of choice values: ^ .. ^#!",
                     Original_Node (C));
               end if;
            --  Enumeration type
            else
               Error_Msg_Name_1 := Choice_Image (Lo, Bounds_Type);
               Error_Msg_Name_2 := Choice_Image (Hi, Bounds_Type);
               Error_Msg_N
                 ("duplication of choice values: % .. %#!", Original_Node (C));
            end if;
         end if;
      end Dup_Choice;
      ------------------------------
      -- Explain_Non_Static_Bound --
      ------------------------------
      procedure Explain_Non_Static_Bound is
         Expr : Node_Id;
      begin
         if Nkind (Case_Node) = N_Variant_Part then
            Expr := Name (Case_Node);
         else
            Expr := Expression (Case_Node);
         end if;
         if Bounds_Type /= Subtyp then
            --  If the case is a variant part, the expression is given by the
            --  discriminant itself, and the bounds are the culprits.
            if Nkind (Case_Node) = N_Variant_Part then
               Error_Msg_NE
                 ("bounds of & are not static, "
                  & "alternatives must cover base type!", Expr, Expr);
            --  If this is a case statement, the expression may be nonstatic
            --  or else the subtype may be at fault.
            elsif Is_Entity_Name (Expr) then
               Error_Msg_NE
                 ("bounds of & are not static, "
                  & "alternatives must cover base type!", Expr, Expr);
            else
               Error_Msg_N
                 ("subtype of expression is not static, "
                  & "alternatives must cover base type!", Expr);
            end if;
         --  Otherwise the expression is not static, even if the bounds of the
         --  type are, or else there are missing alternatives. If both, the
         --  additional information may be redundant but harmless. Examine
         --  whether original node is an entity, because it may have been
         --  constant-folded to a literal if value is known.
         elsif not Is_Entity_Name (Original_Node (Expr)) then
            Error_Msg_N
              ("subtype of expression is not static, "
               & "alternatives must cover base type!", Expr);
         end if;
      end Explain_Non_Static_Bound;
      ---------------
      -- Lt_Choice --
      ---------------
      function Lt_Choice (C1, C2 : Natural) return Boolean is
      begin
         return
           Expr_Value (Choice_Table (Nat (C1)).Lo)
             <
           Expr_Value (Choice_Table (Nat (C2)).Lo);
      end Lt_Choice;
      --------------------
      -- Missing_Choice --
      --------------------
      procedure Missing_Choice (Value1 : Node_Id; Value2 : Node_Id) is
      begin
         Missing_Choice (Expr_Value (Value1), Expr_Value (Value2));
      end Missing_Choice;
      procedure Missing_Choice (Value1 : Node_Id; Value2 : Uint) is
      begin
         Missing_Choice (Expr_Value (Value1), Value2);
      end Missing_Choice;
      procedure Missing_Choice (Value1 : Uint; Value2 : Node_Id) is
      begin
         Missing_Choice (Value1, Expr_Value (Value2));
      end Missing_Choice;
      --------------------
      -- Missing_Choice --
      --------------------
      procedure Missing_Choice (Value1 : Uint; Value2 : Uint) is
      begin
         --  AI05-0188 : within an instance the non-others choices do not have
         --  to belong to the actual subtype.
         if Ada_Version >= Ada_2012 and then In_Instance then
            return;
         --  In some situations, we call this with a null range, and obviously
         --  we don't want to complain in this case.
         elsif Value1 > Value2 then
            return;
         --  If predicate is already known to be violated, do not check for
         --  coverage error, to prevent cascaded messages.
         elsif Predicate_Error then
            return;
         end if;
         --  Case of only one value that is missing
         if Value1 = Value2 then
            if Is_Integer_Type (Bounds_Type) then
               Error_Msg_Uint_1 := Value1;
               Error_Msg_N ("missing case value: ^!", Case_Node);
            else
               Error_Msg_Name_1 := Choice_Image (Value1, Bounds_Type);
               Error_Msg_N ("missing case value: %!", Case_Node);
            end if;
         --  More than one choice value, so print range of values
         else
            if Is_Integer_Type (Bounds_Type) then
               Error_Msg_Uint_1 := Value1;
               Error_Msg_Uint_2 := Value2;
               Error_Msg_N ("missing case values: ^ .. ^!", Case_Node);
            else
               Error_Msg_Name_1 := Choice_Image (Value1, Bounds_Type);
               Error_Msg_Name_2 := Choice_Image (Value2, Bounds_Type);
               Error_Msg_N ("missing case values: % .. %!", Case_Node);
            end if;
         end if;
      end Missing_Choice;
      ---------------------
      -- Missing_Choices --
      ---------------------
      procedure Missing_Choices (Pred : Node_Id; Prev_Hi : Uint) is
         Hi  : Uint;
         Lo  : Uint;
         Set : Node_Id;
      begin
         Set := Pred;
         while Present (Set) loop
            Lo := Expr_Value (Low_Bound (Set));
            Hi := Expr_Value (High_Bound (Set));
            --  A choice covered part of a static predicate set
            if Lo <= Prev_Hi and then Prev_Hi < Hi then
               Missing_Choice (Prev_Hi + 1, Hi);
            else
               Missing_Choice (Lo, Hi);
            end if;
            Next (Set);
         end loop;
      end Missing_Choices;
      -----------------
      -- Move_Choice --
      -----------------
      procedure Move_Choice (From : Natural; To : Natural) is
      begin
         Choice_Table (Nat (To)) := Choice_Table (Nat (From));
      end Move_Choice;
      --  Local variables
      Bounds_Hi     : constant Node_Id := Type_High_Bound (Bounds_Type);
      Bounds_Lo     : constant Node_Id := Type_Low_Bound  (Bounds_Type);
      Has_Predicate : constant Boolean :=
                        Is_OK_Static_Subtype (Bounds_Type)
                          and then Has_Static_Predicate (Bounds_Type);
      Choice_Hi   : Uint;
      Choice_Lo   : Uint;
      Pred        : Node_Id;
      Prev_Lo     : Uint;
      Prev_Hi     : Uint;
   --  Start of processing for Check_Choice_Set
   begin
      --  If the case is part of a predicate aspect specification, do not
      --  recheck it against itself.
      if Present (Parent (Case_Node))
        and then Nkind (Parent (Case_Node)) = N_Aspect_Specification
      then
         return;
      end if;
      --  Choice_Table must start at 0 which is an unused location used by the
      --  sorting algorithm. However the first valid position for a discrete
      --  choice is 1.
      pragma Assert (Choice_Table'First = 0);
      --  The choices do not cover the base range. Emit an error if "others" is
      --  not available and return as there is no need for further processing.
      if Num_Choices = 0 then
         if not Others_Present then
            Missing_Choice (Bounds_Lo, Bounds_Hi);
         end if;
         return;
      end if;
      Sorting.Sort (Positive (Choice_Table'Last));
      --  First check for duplicates. This involved the choices; predicates, if
      --  any, are irrelevant.
      Check_Duplicates;
      --  Then check for overlaps
      --  If the subtype has a static predicate, the predicate defines subsets
      --  of legal values and requires finer-grained analysis.
      --  Note that in GNAT the predicate is considered static if the predicate
      --  expression is static, independently of whether the aspect mentions
      --  Static explicitly.
      if Has_Predicate then
         Pred := First (Static_Discrete_Predicate (Bounds_Type));
         --  Make initial value smaller than 'First of type, so that first
         --  range comparison succeeds. This applies both to integer types
         --  and to enumeration types.
         Prev_Lo := Expr_Value (Type_Low_Bound (Bounds_Type)) - 1;
         Prev_Hi := Prev_Lo;
         declare
            Error : Boolean := False;
         begin
            for Index in 1 .. Num_Choices loop
               Check_Against_Predicate
                 (Pred    => Pred,
                  Choice  => Choice_Table (Index),
                  Prev_Lo => Prev_Lo,
                  Prev_Hi => Prev_Hi,
                  Error   => Error);
               --  The analysis detected an illegal intersection between a
               --  choice and a static predicate set. Do not examine other
               --  choices unless all errors are requested.
               if Error then
                  Predicate_Error := True;
                  if not All_Errors_Mode then
                     return;
                  end if;
               end if;
            end loop;
         end;
         if Predicate_Error then
            return;
         end if;
         --  The choices may legally cover some of the static predicate sets,
         --  but not all. Emit an error for each non-covered set.
         if not Others_Present then
            Missing_Choices (Pred, Prev_Hi);
         end if;
      --  Default analysis
      else
         Choice_Lo := Expr_Value (Choice_Table (1).Lo);
         Choice_Hi := Expr_Value (Choice_Table (1).Hi);
         Prev_Hi   := Choice_Hi;
         if not Others_Present and then Expr_Value (Bounds_Lo) < Choice_Lo then
            Missing_Choice (Bounds_Lo, Choice_Lo - 1);
            --  If values are missing outside of the subtype, add explanation.
            --  No additional message if only one value is missing.
            if Expr_Value (Bounds_Lo) < Choice_Lo - 1 then
               Explain_Non_Static_Bound;
            end if;
         end if;
         for Index in 2 .. Num_Choices loop
            Choice_Lo := Expr_Value (Choice_Table (Index).Lo);
            Choice_Hi := Expr_Value (Choice_Table (Index).Hi);
            if Choice_Lo > Prev_Hi + 1 and then not Others_Present then
               Missing_Choice (Prev_Hi + 1, Choice_Lo - 1);
            end if;
            if Choice_Hi > Prev_Hi then
               Prev_Hi := Choice_Hi;
            end if;
         end loop;
         if not Others_Present and then Expr_Value (Bounds_Hi) > Prev_Hi then
            Missing_Choice (Prev_Hi + 1, Bounds_Hi);
            if Expr_Value (Bounds_Hi) > Prev_Hi + 1 then
               Explain_Non_Static_Bound;
            end if;
         end if;
      end if;
   end Check_Choice_Set;
   ------------------
   -- Choice_Image --
   ------------------
   function Choice_Image (Value : Uint; Ctype : Entity_Id) return Name_Id is
      Rtp : constant Entity_Id := Root_Type (Ctype);
      Lit : Entity_Id;
      C   : Int;
   begin
      --  For character, or wide [wide] character. If 7-bit ASCII graphic
      --  range, then build and return appropriate character literal name
      if Is_Standard_Character_Type (Ctype) then
         C := UI_To_Int (Value);
         if C in 16#20# .. 16#7E# then
            Set_Character_Literal_Name (UI_To_CC (Value));
            return Name_Find;
         end if;
      --  For user defined enumeration type, find enum/char literal
      else
         Lit := First_Literal (Rtp);
         for J in 1 .. UI_To_Int (Value) loop
            Next_Literal (Lit);
         end loop;
         --  If enumeration literal, just return its value
         if Nkind (Lit) = N_Defining_Identifier then
            return Chars (Lit);
         --  For character literal, get the name and use it if it is
         --  for a 7-bit ASCII graphic character in 16#20#..16#7E#.
         else
            Get_Decoded_Name_String (Chars (Lit));
            if Name_Len = 3
              and then Name_Buffer (2) in
                Character'Val (16#20#) .. Character'Val (16#7E#)
            then
               return Chars (Lit);
            end if;
         end if;
      end if;
      --  If we fall through, we have a character literal which is not in
      --  the 7-bit ASCII graphic set. For such cases, we construct the
      --  name "type'val(nnn)" where type is the choice type, and nnn is
      --  the pos value passed as an argument to Choice_Image.
      Get_Name_String (Chars (First_Subtype (Ctype)));
      Add_Str_To_Name_Buffer ("'val(");
      UI_Image (Value);
      Add_Str_To_Name_Buffer (UI_Image_Buffer (1 .. UI_Image_Length));
      Add_Char_To_Name_Buffer (')');
      return Name_Find;
   end Choice_Image;
   package body Composite_Case_Ops is
      function Static_Array_Length (Subtyp : Entity_Id) return Nat;
      --  Given a one-dimensional constrained array subtype with
      --  statically known bounds, return its length.
      -------------------------
      -- Static_Array_Length --
      -------------------------
      function Static_Array_Length (Subtyp : Entity_Id) return Nat is
         pragma Assert (Is_Constrained (Subtyp));
         pragma Assert (Number_Dimensions (Subtyp) = 1);
         Index : constant Node_Id := First_Index (Subtyp);
         pragma Assert (Is_OK_Static_Range (Index));
         Lo  : constant Uint := Expr_Value (Low_Bound (Index));
         Hi  : constant Uint := Expr_Value (High_Bound (Index));
         Len : constant Uint := UI_Max (0, (Hi - Lo) + 1);
      begin
         return UI_To_Int (Len);
      end Static_Array_Length;
      ------------------------
      -- Box_Value_Required --
      ------------------------
      function Box_Value_Required (Subtyp : Entity_Id) return Boolean is
         --  Some of these restrictions will be relaxed eventually, but best
         --  to initially err in the direction of being too restrictive.
      begin
         if Has_Predicates (Subtyp) then
            return True;
         elsif Is_Discrete_Type (Subtyp) then
            if not Is_Static_Subtype (Subtyp) then
               return True;
            elsif Is_Enumeration_Type (Subtyp)
               and then Has_Enumeration_Rep_Clause (Subtyp)
               --  Maybe enumeration rep clauses can be ignored here?
            then
               return True;
            end if;
         elsif Is_Array_Type (Subtyp) then
            if Number_Dimensions (Subtyp) /= 1 then
               return True;
            elsif not Is_Constrained (Subtyp) then
               if not Is_Static_Subtype (Etype (First_Index (Subtyp))) then
                  return True;
               end if;
            elsif not Is_OK_Static_Range (First_Index (Subtyp)) then
               return True;
            end if;
         elsif Is_Record_Type (Subtyp) then
            if Has_Discriminants (Subtyp)
              and then Is_Constrained (Subtyp)
              and then not Has_Static_Discriminant_Constraint (Subtyp)
            then
               --  Perhaps treat differently the case where Subtyp is the
               --  subtype of the top-level selector expression, as opposed
               --  to the subtype of some subcomponent thereof.
               return True;
            end if;
         else
            --  Return True for any type that is not a discrete type,
            --  a record type, or an array type.
            return True;
         end if;
         return False;
      end Box_Value_Required;
      ------------------
      -- Choice_Count --
      ------------------
      function Choice_Count (Alternatives : List_Id) return Nat is
         Result : Nat := 0;
         Alt : Node_Id := First (Alternatives);
      begin
         while Present (Alt) loop
            Result := Result + List_Length (Discrete_Choices (Alt));
            Next (Alt);
         end loop;
         return Result;
      end Choice_Count;
      -------------------------------
      -- Normalized_Case_Expr_Type --
      -------------------------------
      function Normalized_Case_Expr_Type
        (Case_Statement : Node_Id) return Entity_Id
      is
         Unnormalized : constant Entity_Id :=
           Etype (Expression (Case_Statement));
         Is_Dynamically_Constrained_Array : constant Boolean :=
           Is_Array_Type (Unnormalized)
             and then Is_Constrained (Unnormalized)
             and then not Has_Static_Array_Bounds (Unnormalized);
         Is_Dynamically_Constrained_Record : constant Boolean :=
           Is_Record_Type (Unnormalized)
             and then Has_Discriminants (Unnormalized)
             and then Is_Constrained (Unnormalized)
             and then not Has_Static_Discriminant_Constraint (Unnormalized);
      begin
         if Is_Dynamically_Constrained_Array
           or Is_Dynamically_Constrained_Record
         then
            return Base_Type (Unnormalized);
         else
            return Unnormalized;
         end if;
      end Normalized_Case_Expr_Type;
      -----------------------
      -- Scalar_Part_Count --
      -----------------------
      function Scalar_Part_Count (Subtyp : Entity_Id) return Nat is
      begin
         if Box_Value_Required (Subtyp) then
            return 0; -- component does not participate in case selection
         elsif Is_Scalar_Type (Subtyp) then
            return 1;
         elsif Is_Array_Type (Subtyp) then
            return Static_Array_Length (Subtyp)
              * Scalar_Part_Count (Component_Type (Subtyp));
         elsif Is_Record_Type (Subtyp) then
            declare
               Result : Nat := 0;
               Comp : Entity_Id := First_Component_Or_Discriminant
                                     (Base_Type (Subtyp));
            begin
               while Present (Comp) loop
                  Result := Result + Scalar_Part_Count (Etype (Comp));
                  Next_Component_Or_Discriminant (Comp);
               end loop;
               return Result;
            end;
         else
            pragma Assert (Serious_Errors_Detected > 0);
            return 0;
         end if;
      end Scalar_Part_Count;
      package body Array_Case_Ops is
         -------------------------
         -- Array_Choice_Length --
         -------------------------
         function Array_Choice_Length (Choice : Node_Id) return Nat is
         begin
            case Nkind (Choice) is
               when N_String_Literal =>
                  return String_Length (Strval (Choice));
               when N_Aggregate =>
                  declare
                     Bounds : constant Node_Id :=
                       Aggregate_Bounds (Choice);
                     pragma Assert (Is_OK_Static_Range (Bounds));
                     Lo     : constant Uint :=
                       Expr_Value (Low_Bound (Bounds));
                     Hi     : constant Uint :=
                       Expr_Value (High_Bound (Bounds));
                     Len : constant Uint := (Hi - Lo) + 1;
                  begin
                     return UI_To_Int (Len);
                  end;
               when N_Has_Entity =>
                  if Present (Entity (Choice))
                    and then Ekind (Entity (Choice)) = E_Constant
                  then
                     return Array_Choice_Length
                              (Expression (Parent (Entity (Choice))));
                  end if;
               when N_Others_Choice =>
                  return 0;
               when others =>
                  null;
            end case;
            if Nkind (Original_Node (Choice))
                 in N_String_Literal | N_Aggregate
            then
               return Array_Choice_Length (Original_Node (Choice));
            end if;
            Error_Msg_N ("Unsupported case choice", Choice);
            return 0;
         end Array_Choice_Length;
         ------------------------------------------
         -- Unconstrained_Array_Effective_Length --
         ------------------------------------------
         function Unconstrained_Array_Effective_Length
           (Array_Type : Entity_Id; Case_Statement : Node_Id) return Nat
         is
            pragma Assert (Is_Array_Type (Array_Type));
            --  Array_Type is otherwise unreferenced for now.
            Result : Nat := 0;
            Alt : Node_Id := First (Alternatives (Case_Statement));
         begin
            while Present (Alt) loop
               declare
                  Choice : Node_Id := First (Discrete_Choices (Alt));
               begin
                  while Present (Choice) loop
                     Result := Nat'Max (Result, Array_Choice_Length (Choice));
                     Next (Choice);
                  end loop;
               end;
               Next (Alt);
            end loop;
            return Result;
         end Unconstrained_Array_Effective_Length;
         -------------------------------------------
         -- Unconstrained_Array_Scalar_Part_Count --
         -------------------------------------------
         function Unconstrained_Array_Scalar_Part_Count
           (Array_Type : Entity_Id; Case_Statement : Node_Id) return Nat
         is
         begin
            --  Add one for the length, which is treated like a discriminant
            return 1 + (Unconstrained_Array_Effective_Length
                          (Array_Type     => Array_Type,
                           Case_Statement => Case_Statement)
                        * Scalar_Part_Count (Component_Type (Array_Type)));
         end Unconstrained_Array_Scalar_Part_Count;
      end Array_Case_Ops;
      package body Choice_Analysis is
         function Component_Bounds_Info return Composite_Range_Info;
         --  Returns the (statically known) bounds for each component.
         --  The selector expression value (or any other value of the type
         --  of the selector expression) can be thought of as a point in the
         --  Cartesian product of these sets.
         function Parse_Choice (Choice : Node_Id;
                                Alt    : Node_Id) return Choice_Range_Info;
         --  Extract Choice_Range_Info from a Choice node
         ---------------------------
         -- Component_Bounds_Info --
         ---------------------------
         function Component_Bounds_Info return Composite_Range_Info is
            Result : Composite_Range_Info;
            Next   : Part_Id := 1;
            Done   : Boolean := False;
            procedure Update_Result (Info : Discrete_Range_Info);
            --  Initialize first remaining uninitialized element of Result.
            --  Also set Next and Done.
            -------------------
            -- Update_Result --
            -------------------
            procedure Update_Result (Info : Discrete_Range_Info) is
            begin
               Result (Next) := Info;
               if Next /= Part_Id'Last then
                  Next := Next + 1;
               else
                  pragma Assert (not Done);
                  Done := True;
               end if;
            end Update_Result;
            procedure Traverse_Discrete_Parts (Subtyp : Entity_Id);
            --  Traverse the given subtype, looking for discrete parts.
            --  For an array subtype of length N, the element subtype
            --  is traversed N times. For a record subtype, traverse
            --  each component's subtype (once). When a discrete part is
            --  found, call Update_Result.
            -----------------------------
            -- Traverse_Discrete_Parts --
            -----------------------------
            procedure Traverse_Discrete_Parts (Subtyp : Entity_Id) is
            begin
               if Box_Value_Required (Subtyp) then
                  return;
               end if;
               if Is_Discrete_Type (Subtyp) then
                  Update_Result
                    ((Low  => Expr_Value (Type_Low_Bound (Subtyp)),
                      High => Expr_Value (Type_High_Bound (Subtyp))));
               elsif Is_Array_Type (Subtyp) then
                  declare
                     Len : Nat;
                  begin
                     if Is_Constrained (Subtyp) then
                        Len := Static_Array_Length (Subtyp);
                     else
                        --  Length will be treated like a discriminant;
                        --  We could compute High more precisely as
                        --    1 + Index_Subtype'Last - Index_Subtype'First
                        --  (we currently require that those bounds be
                        --  static, so this is an option), but only downside of
                        --  overshooting is if somebody wants to omit a
                        --  "when others" choice and exhaustively cover all
                        --  possibilities explicitly.
                        Update_Result
                          ((Low  => Uint_0,
                            High => Uint_2 ** Uint_32));
                        Len := Unconstrained_Array_Effective_Length
                                 (Array_Type     => Subtyp,
                                  Case_Statement => Case_Statement);
                     end if;
                     for I in 1 .. Len loop
                        Traverse_Discrete_Parts (Component_Type (Subtyp));
                     end loop;
                  end;
               elsif Is_Record_Type (Subtyp) then
                  if Has_Static_Discriminant_Constraint (Subtyp) then
                     --  The component range for a constrained discriminant
                     --  is a single value.
                     declare
                        Dc_Elmt : Elmt_Id :=
                          First_Elmt (Discriminant_Constraint (Subtyp));
                        Dc_Value : Uint;
                     begin
                        while Present (Dc_Elmt) loop
                           Dc_Value := Expr_Value (Node (Dc_Elmt));
                           Update_Result ((Low  => Dc_Value,
                                           High => Dc_Value));
                           Next_Elmt (Dc_Elmt);
                        end loop;
                     end;
                     --  Generate ranges for nondiscriminant components.
                     declare
                        Comp : Entity_Id := First_Component
                                              (Base_Type (Subtyp));
                     begin
                        while Present (Comp) loop
                           Traverse_Discrete_Parts (Etype (Comp));
                           Next_Component (Comp);
                        end loop;
                     end;
                  else
                     --  Generate ranges for all components
                     declare
                        Comp : Entity_Id :=
                          First_Component_Or_Discriminant
                            (Base_Type (Subtyp));
                     begin
                        while Present (Comp) loop
                           Traverse_Discrete_Parts (Etype (Comp));
                           Next_Component_Or_Discriminant (Comp);
                        end loop;
                     end;
                  end if;
               else
                  Error_Msg_N
                    ("case selector type having a non-discrete non-record"
                     & "  non-array subcomponent type not implemented",
                     Expression (Case_Statement));
               end if;
            end Traverse_Discrete_Parts;
         begin
            Traverse_Discrete_Parts (Case_Expr_Type);
            pragma Assert (Done or else Serious_Errors_Detected > 0);
            return Result;
         end Component_Bounds_Info;
         Component_Bounds : constant Composite_Range_Info
           := Component_Bounds_Info;
         package Case_Bindings is
            procedure Note_Binding
              (Comp_Assoc : Node_Id;
               Choice     : Node_Id;
               Alt        : Node_Id);
            --  Note_Binding is called once for each component association
            --  that defines a binding (using either "A => B is X" or
            --  "A => <X>" syntax);
            procedure Check_Bindings;
            --  After all calls to Note_Binding, check that bindings are
            --  ok (e.g., check consistency among different choices of
            --  one alternative).
         end Case_Bindings;
         procedure Refresh_Binding_Info (Aggr : Node_Id);
         --  The parser records binding-related info in the tree.
         --  The choice nodes that we see here might not be (will never be?)
         --  the original nodes that were produced by the parser. The info
         --  recorded by the parser is missing in that case, so this
         --  procedure recovers it.
         --
         --  There are bugs here. In some cases involving nested aggregates,
         --  the path back to the parser-created nodes is lost. In particular,
         --  we may fail to detect an illegal case like
         --   when (F1 | F2 => (Aa => Natural, Bb => Natural is X)) =>
         --  This should be rejected because it is binding X to both the
         --  F1.Bb and to the F2.Bb subcomponents of the case selector.
         --  It would be nice if the not-specific-to-pattern-matching
         --  aggregate-processing code could remain unaware of the existence
         --  of this binding-related info but perhaps that isn't possible.
         --------------------------
         -- Refresh_Binding_Info --
         --------------------------
         procedure Refresh_Binding_Info (Aggr : Node_Id) is
            Orig_Aggr : constant Node_Id := Original_Node (Aggr);
            Orig_Comp : Node_Id := First (Component_Associations (Orig_Aggr));
         begin
            if Aggr = Orig_Aggr then
               return;
            end if;
            while Present (Orig_Comp) loop
               if Nkind (Orig_Comp) = N_Component_Association
                 and then Binding_Chars (Orig_Comp) /= No_Name
               then
                  if List_Length (Choices (Orig_Comp)) /= 1 then
                     --  Conceivably this could be checked during parsing,
                     --  but checking is easier here.
                     Error_Msg_N
                       ("binding shared by multiple components", Orig_Comp);
                     return;
                  end if;
                  declare
                     Orig_Name : constant Name_Id :=
                       Chars (First (Choices (Orig_Comp)));
                     Comp : Node_Id := First (Component_Associations (Aggr));
                     Matching_Comp : Node_Id := Empty;
                  begin
                     while Present (Comp) loop
                        if Chars (First (Choices (Comp))) = Orig_Name then
                           pragma Assert (No (Matching_Comp));
                           Matching_Comp := Comp;
                        end if;
                        Next (Comp);
                     end loop;
                     pragma Assert (Present (Matching_Comp));
                     Set_Binding_Chars
                       (Matching_Comp,
                        Binding_Chars (Orig_Comp));
                  end;
               end if;
               Next (Orig_Comp);
            end loop;
         end Refresh_Binding_Info;
         ------------------
         -- Parse_Choice --
         ------------------
         function Parse_Choice (Choice : Node_Id;
                                Alt    : Node_Id) return Choice_Range_Info
         is
            Result    : Choice_Range_Info (Is_Others => False);
            Ranges    : Composite_Range_Info renames Result.Ranges;
            Next_Part : Part_Id'Base range 1 .. Part_Id'Last + 1 := 1;
            procedure Traverse_Choice (Expr : Node_Id);
            --  Traverse a legal choice expression, looking for
            --  values/ranges of discrete parts. Call Update_Result
            --  for each.
            procedure Update_Result (Discrete_Range : Discrete_Range_Info);
            --  Initialize first remaining uninitialized element of Ranges.
            --  Also set Next_Part.
            procedure Update_Result_For_Full_Coverage (Comp_Type  : Entity_Id);
            --  For each scalar part of the given component type, call
            --  Update_Result with the full range for that scalar part.
            --  This is used for both box components in aggregates and
            --  for any inactive-variant components that do not appear in
            --  a given aggregate.
            -------------------
            -- Update_Result --
            -------------------
            procedure Update_Result (Discrete_Range : Discrete_Range_Info) is
            begin
               Ranges (Next_Part) := Discrete_Range;
               Next_Part := Next_Part + 1;
            end Update_Result;
            -------------------------------------
            -- Update_Result_For_Full_Coverage --
            -------------------------------------
            procedure Update_Result_For_Full_Coverage (Comp_Type : Entity_Id)
            is
            begin
               for Counter in 1 .. Scalar_Part_Count (Comp_Type) loop
                  Update_Result (Component_Bounds (Next_Part));
               end loop;
            end Update_Result_For_Full_Coverage;
            ---------------------
            -- Traverse_Choice --
            ---------------------
            procedure Traverse_Choice (Expr : Node_Id) is
            begin
               if Nkind (Expr) = N_Qualified_Expression then
                  Traverse_Choice (Expression (Expr));
               elsif Nkind (Expr) = N_Type_Conversion
                  and then not Comes_From_Source (Expr)
               then
                  if Expr /= Original_Node (Expr) then
                     Traverse_Choice (Original_Node (Expr));
                  else
                     Traverse_Choice (Expression (Expr));
                  end if;
               elsif Nkind (Expr) = N_Aggregate then
                  if Is_Record_Type (Etype (Expr)) then
                     Refresh_Binding_Info (Aggr => Expr);
                     declare
                        Comp_Assoc : Node_Id :=
                          First (Component_Associations (Expr));
                        --  Aggregate has been normalized (components in
                        --  order, only one component per choice, etc.).
                        Comp_From_Type : Node_Id :=
                          First_Component_Or_Discriminant
                            (Base_Type (Etype (Expr)));
                        Saved_Next_Part : constant Part_Id := Next_Part;
                     begin
                        while Present (Comp_Assoc) loop
                           pragma Assert
                             (List_Length (Choices (Comp_Assoc)) = 1);
                           declare
                              Comp : constant Node_Id :=
                                Entity (First (Choices (Comp_Assoc)));
                              Comp_Seen : Boolean := False;
                           begin
                              loop
                                 if Original_Record_Component (Comp) =
                                   Original_Record_Component (Comp_From_Type)
                                 then
                                    Comp_Seen := True;
                                 else
                                    --  We have an aggregate of a type that
                                    --  has a variant part (or has a
                                    --  subcomponent type that has a variant
                                    --  part) and we have to deal with a
                                    --  component that is present in the type
                                    --  but not in the aggregate (because the
                                    --  component is in an inactive variant).
                                    --
                                    Update_Result_For_Full_Coverage
                                      (Comp_Type => Etype (Comp_From_Type));
                                 end if;
                                 Comp_From_Type :=
                                   Next_Component_Or_Discriminant
                                     (Comp_From_Type);
                                 exit when Comp_Seen;
                              end loop;
                           end;
                           declare
                              Comp_Type : constant Entity_Id :=
                                Etype (First (Choices (Comp_Assoc)));
                           begin
                              if Box_Value_Required (Comp_Type) then
                                 --  This component is not allowed to
                                 --  influence which alternative is
                                 --  chosen; case choice must be box.
                                 --
                                 --  For example, component might be
                                 --  of a real type or of an access type
                                 --  or of a non-static discrete subtype.
                                 if not Box_Present (Comp_Assoc) then
                                    Error_Msg_N
                                      ("Non-box case choice component value" &
                                         " of unsupported type/subtype",
                                       Expression (Comp_Assoc));
                                 end if;
                              elsif Box_Present (Comp_Assoc) then
                                 --  Box matches all values
                                 Update_Result_For_Full_Coverage
                                   (Etype (First (Choices (Comp_Assoc))));
                              else
                                 Traverse_Choice (Expression (Comp_Assoc));
                              end if;
                           end;
                           if Binding_Chars (Comp_Assoc) /= No_Name
                           then
                              Case_Bindings.Note_Binding
                                (Comp_Assoc => Comp_Assoc,
                                 Choice     => Choice,
                                 Alt        => Alt);
                           end if;
                           Next (Comp_Assoc);
                        end loop;
                        while Present (Comp_From_Type) loop
                           --  Deal with any trailing inactive-variant
                           --  components.
                           --
                           --  See earlier commment about calling
                           --  Update_Result_For_Full_Coverage for such
                           --  components.
                           Update_Result_For_Full_Coverage
                             (Comp_Type => Etype (Comp_From_Type));
                           Comp_From_Type :=
                             Next_Component_Or_Discriminant (Comp_From_Type);
                        end loop;
                        declare
                           Expr_Type : Entity_Id := Etype (Expr);
                        begin
                           if Has_Discriminants (Expr_Type) then
                              --  Avoid nonstatic choice expr types,
                              --  for which Scalar_Part_Count returns 0.
                              Expr_Type := Base_Type (Expr_Type);
                           end if;
                           pragma Assert
                             (Nat (Next_Part - Saved_Next_Part)
                               = Scalar_Part_Count (Expr_Type));
                        end;
                     end;
                  elsif Is_Array_Type (Etype (Expr)) then
                     if Is_Non_Empty_List (Component_Associations (Expr)) then
                        Error_Msg_N
                          ("non-positional array aggregate as/within case "
                           & "choice not implemented", Expr);
                     end if;
                     if not Unconstrained_Array_Case
                        and then List_Length (Expressions (Expr))
                           /= Nat (Part_Id'Last)
                     then
                        Error_Msg_Uint_1 := UI_From_Int
                          (List_Length (Expressions (Expr)));
                        Error_Msg_Uint_2 := UI_From_Int (Int (Part_Id'Last));
                        Error_Msg_N
                          ("array aggregate length ^ does not match length " &
                           "of statically constrained case selector ^", Expr);
                        return;
                     end if;
                     declare
                        Subexpr : Node_Id := First (Expressions (Expr));
                     begin
                        while Present (Subexpr) loop
                           Traverse_Choice (Subexpr);
                           Next (Subexpr);
                        end loop;
                     end;
                  else
                     raise Program_Error;
                  end if;
               elsif Nkind (Expr) = N_String_Literal then
                  if not Is_Array_Type (Etype (Expr)) then
                     Error_Msg_N
                       ("User-defined string literal not allowed as/within"
                        & "case choice", Expr);
                  else
                     declare
                        Char_Type : constant Entity_Id :=
                          Root_Type (Component_Type (Etype (Expr)));
                        --  If the component type is not a standard character
                        --  type then this string lit should have already been
                        --  transformed into an aggregate in
                        --  Resolve_String_Literal.
                        --
                        pragma Assert (Is_Standard_Character_Type (Char_Type));
                        Str      : constant String_Id := Strval (Expr);
                        Strlen   : constant Nat       := String_Length (Str);
                        Char_Val : Uint;
                     begin
                        if not Unconstrained_Array_Case
                           and then Strlen /= Nat (Part_Id'Last)
                        then
                           Error_Msg_Uint_1 := UI_From_Int (Strlen);
                           Error_Msg_Uint_2 := UI_From_Int
                             (Int (Part_Id'Last));
                           Error_Msg_N
                             ("String literal length ^ does not match length" &
                              " of statically constrained case selector ^",
                              Expr);
                           return;
                        end if;
                        for Idx in 1 .. Strlen loop
                           Char_Val :=
                             UI_From_CC (Get_String_Char (Str, Idx));
                           Update_Result ((Low | High => Char_Val));
                        end loop;
                     end;
                  end if;
               elsif Is_Discrete_Type (Etype (Expr)) then
                  if Nkind (Expr) in N_Has_Entity
                    and then Present (Entity (Expr))
                    and then Is_Type (Entity (Expr))
                  then
                     declare
                        Low  : constant Node_Id :=
                          Type_Low_Bound (Entity (Expr));
                        High : constant Node_Id :=
                          Type_High_Bound (Entity (Expr));
                     begin
                        Update_Result ((Low  => Expr_Value (Low),
                                        High => Expr_Value (High)));
                     end;
                  else
                     pragma Assert (Compile_Time_Known_Value (Expr));
                     Update_Result ((Low | High => Expr_Value (Expr)));
                  end if;
               elsif Nkind (Expr) in N_Has_Entity
                 and then Present (Entity (Expr))
                 and then Ekind (Entity (Expr)) = E_Constant
               then
                  Traverse_Choice (Expression (Parent (Entity (Expr))));
               elsif Nkind (Original_Node (Expr))
                       in N_Aggregate | N_String_Literal
               then
                  Traverse_Choice (Original_Node (Expr));
               else
                  Error_Msg_N
                    ("non-aggregate case choice (or subexpression thereof)"
                     & " that is not of a discrete type not implemented",
                     Expr);
               end if;
            end Traverse_Choice;
         --  Start of processing for Parse_Choice
         begin
            if Nkind (Choice) = N_Others_Choice then
               return (Is_Others => True);
            end if;
            if Unconstrained_Array_Case then
               --  Treat length like a discriminant
               Update_Result ((Low | High =>
                                 UI_From_Int (Array_Choice_Length (Choice))));
            end if;
            Traverse_Choice (Choice);
            if Unconstrained_Array_Case then
               --  This is somewhat tricky. Suppose we are casing on String,
               --  the longest choice in the case statement is length 10, and
               --  the choice we are looking at now is of length 6. We fill
               --  in the trailing 4 slots here.
               while Next_Part <= Part_Id'Last loop
                  Update_Result_For_Full_Coverage
                    (Comp_Type => Component_Type (Case_Expr_Type));
               end loop;
            end if;
            --  Avoid returning uninitialized garbage in error case
            if Next_Part /= Part_Id'Last + 1 then
               pragma Assert (Serious_Errors_Detected > 0);
               Result.Ranges := (others => (Low => Uint_1, High => Uint_0));
            end if;
            return Result;
         end Parse_Choice;
         package body Case_Bindings is
            type Binding is record
               Comp_Assoc : Node_Id;
               Choice     : Node_Id;
               Alt        : Node_Id;
            end record;
            type Binding_Index is new Natural;
            package Case_Bindings_Table is new Table.Table
              (Table_Component_Type => Binding,
               Table_Index_Type     => Binding_Index,
               Table_Low_Bound      => 1,
               Table_Initial        => 16,
               Table_Increment      => 64,
               Table_Name           => "Composite_Case_Ops.Case_Bindings");
            ------------------
            -- Note_Binding --
            ------------------
            procedure Note_Binding
              (Comp_Assoc : Node_Id;
               Choice     : Node_Id;
               Alt        : Node_Id)
            is
            begin
               Case_Bindings_Table.Append
                 ((Comp_Assoc => Comp_Assoc,
                   Choice     => Choice,
                   Alt        => Alt));
            end Note_Binding;
            --------------------
            -- Check_Bindings --
            --------------------
            procedure Check_Bindings
            is
               use Case_Bindings_Table;
               function Binding_Subtype (Idx : Binding_Index;
                                         Tab : Table_Type)
                 return Entity_Id is
                 (Etype (Nlists.First (Choices (Tab (Idx).Comp_Assoc))));
               procedure Declare_Binding_Objects
                  (Alt_Start             : Binding_Index;
                   Alt                   : Node_Id;
                   First_Choice_Bindings : Natural;
                   Tab                   : Table_Type);
               --  Declare the binding objects for a given alternative
               ------------------------------
               --  Declare_Binding_Objects --
               ------------------------------
               procedure Declare_Binding_Objects
                  (Alt_Start             : Binding_Index;
                   Alt                   : Node_Id;
                   First_Choice_Bindings : Natural;
                   Tab                   : Table_Type)
               is
                  Loc : constant Source_Ptr := Sloc (Alt);
                  Declarations : constant List_Id := New_List;
                  Decl         : Node_Id;
                  Obj_Type     : Entity_Id;
                  Def_Id       : Entity_Id;
               begin
                  for FC_Idx in Alt_Start ..
                    Alt_Start + Binding_Index (First_Choice_Bindings - 1)
                  loop
                     Obj_Type := Binding_Subtype (FC_Idx, Tab);
                     Def_Id := Make_Defining_Identifier
                                 (Loc,
                                  Binding_Chars (Tab (FC_Idx).Comp_Assoc));
                     --  Either make a copy or rename the original. At a
                     --  minimum, we do not want a copy if it would need
                     --  finalization. Copies may also introduce problems
                     --  if default init can have side effects (although we
                     --  could suppress such default initialization).
                     --  We have to make a copy in any cases where
                     --  Unrestricted_Access doesn't work.
                     --
                     --  This is where the copy-or-rename decision is made.
                     --  In many cases either way would work and so we have
                     --  some flexibility here.
                     if not Is_By_Copy_Type (Obj_Type) then
                        --  Generate
                        --     type Ref
                        --       is access constant Obj_Type;
                        --     Ptr : Ref := <some bogus value>;
                        --     Obj : Obj_Type renames Ptr.all;
                                       --
                        --  Initialization of Ptr will be generated later
                        --  during expansion.
                        declare
                           Ptr_Type : constant Entity_Id :=
                             Make_Temporary (Loc, 'P');
                           Ptr_Type_Def : constant Node_Id :=
                             Make_Access_To_Object_Definition (Loc,
                               All_Present => True,
                               Subtype_Indication =>
                                 New_Occurrence_Of (Obj_Type, Loc));
                           Ptr_Type_Decl : constant Node_Id :=
                             Make_Full_Type_Declaration (Loc,
                               Ptr_Type,
                               Type_Definition => Ptr_Type_Def);
                           Ptr_Obj : constant Entity_Id :=
                             Make_Temporary (Loc, 'T');
                           --  We will generate initialization code for this
                           --  object later (during expansion) but in the
                           --  meantime we don't want the dereference that
                           --  is generated a few lines below here to be
                           --  transformed into a Raise_C_E. To prevent this,
                           --  we provide a bogus initial value here; this
                           --  initial value will be removed later during
                           --  expansion.
                           Ptr_Obj_Decl : constant Node_Id :=
                             Make_Object_Declaration
                               (Loc, Ptr_Obj,
                                Object_Definition =>
                                  New_Occurrence_Of (Ptr_Type, Loc),
                                Expression =>
                                  Unchecked_Convert_To
                                    (Ptr_Type,
                                     Make_Integer_Literal (Loc, 5432)));
                        begin
                           Mutate_Ekind (Ptr_Type, E_Access_Type);
                           --  in effect, Storage_Size => 0
                           Set_No_Pool_Assigned (Ptr_Type);
                           Set_Is_Access_Constant (Ptr_Type);
                           --  We could set Ptr_Type'Alignment here if that
                           --  ever turns out to be needed for renaming a
                           --  misaligned subcomponent.
                           Mutate_Ekind (Ptr_Obj, E_Variable);
                           Set_Etype (Ptr_Obj, Ptr_Type);
                           Decl :=
                             Make_Object_Renaming_Declaration
                               (Loc, Def_Id,
                                Subtype_Mark =>
                                  New_Occurrence_Of (Obj_Type, Loc),
                                Name =>
                                  Make_Explicit_Dereference
                                    (Loc, New_Occurrence_Of (Ptr_Obj, Loc)));
                           Append_To (Declarations, Ptr_Type_Decl);
                           Append_To (Declarations, Ptr_Obj_Decl);
                        end;
                     else
                        Decl := Make_Object_Declaration
                          (Sloc => Loc,
                           Defining_Identifier => Def_Id,
                           Object_Definition =>
                              New_Occurrence_Of (Obj_Type, Loc));
                     end if;
                     Append_To (Declarations, Decl);
                  end loop;
                  declare
                     Old_Statements : constant List_Id := Statements (Alt);
                     New_Statements : constant List_Id := New_List;
                     Block_Statement : constant Node_Id :=
                       Make_Block_Statement (Sloc => Loc,
                         Declarations => Declarations,
                         Handled_Statement_Sequence =>
                           Make_Handled_Sequence_Of_Statements
                             (Loc, Old_Statements),
                         Has_Created_Identifier => True);
                  begin
                     Append_To (New_Statements, Block_Statement);
                     Set_Statements (Alt, New_Statements);
                  end;
               end Declare_Binding_Objects;
            begin
               if Last = 0 then
                  --  no bindings to check
                  return;
               end if;
               declare
                  Tab : Table_Type
                          renames Case_Bindings_Table.Table (1 .. Last);
                  function Same_Id (Idx1, Idx2 : Binding_Index)
                    return Boolean is (
                    Binding_Chars (Tab (Idx1).Comp_Assoc) =
                    Binding_Chars (Tab (Idx2).Comp_Assoc));
               begin
                  --  Verify that elements with given choice or alt value
                  --  are contiguous, and that elements with equal
                  --  choice values have same alt value.
                  for Idx1 in 2 .. Tab'Last loop
                     if Tab (Idx1 - 1).Choice /= Tab (Idx1).Choice then
                        pragma Assert
                          (for all Idx2 in Idx1 + 1 .. Tab'Last =>
                             Tab (Idx2).Choice /= Tab (Idx1 - 1).Choice);
                     else
                        pragma Assert (Tab (Idx1 - 1).Alt = Tab (Idx1).Alt);
                     end if;
                     if Tab (Idx1 - 1).Alt /= Tab (Idx1).Alt then
                        pragma Assert
                          (for all Idx2 in Idx1 + 1 .. Tab'Last =>
                             Tab (Idx2).Alt /= Tab (Idx1 - 1).Alt);
                     end if;
                  end loop;
                  --  Check for user errors:
                  --  1) Two choices for a given alternative shall define the
                  --     same set of names. Can't have
                  --        when (<X>, 0) | (0, <Y>) =>
                  --  2) A choice shall not define a name twice. Can't have
                  --        when (A => <X>, B => <X>, C => 0) =>
                  --  3) Two definitions of a name within one alternative
                  --     shall have statically matching component subtypes.
                  --     Can't have
                  --        type R is record Int : Integer;
                  --                         Nat : Natural; end record;
                  --        case R'(...) is
                  --          when (<X>, 1) | (1, <X>) =>
                  --  4) A given binding shall match only one value.
                  --     Can't have
                  --         (Fld1 | Fld2 => (Fld => <X>))
                  --     For now, this is enforced *very* conservatively
                  --     with respect to arrays - a binding cannot match
                  --     any part of an array. This is temporary.
                  for Idx1 in Tab'Range loop
                     if Idx1 = 1
                       or else Tab (Idx1 - 1).Alt /= Tab (Idx1).Alt
                     then
                        --  Process one alternative
                        declare
                           Alt_Start : constant Binding_Index := Idx1;
                           Alt : constant Node_Id := Tab (Alt_Start).Alt;
                           First_Choice : constant Node_Id :=
                             Nlists.First (Discrete_Choices (Alt));
                           First_Choice_Bindings : Natural := 0;
                        begin
                           --  Check for duplicates within one choice,
                           --  and for choices with no bindings.
                           if First_Choice /= Tab (Alt_Start).Choice then
                              Error_Msg_N ("binding(s) missing for choice",
                                           First_Choice);
                              return;
                           end if;
                           declare
                              Current_Choice : Node_Id := First_Choice;
                              Choice_Start : Binding_Index := Alt_Start;
                           begin
                              for Idx2 in Alt_Start .. Tab'Last loop
                                 exit when Tab (Idx2).Alt /= Alt;
                                 if Tab (Idx2).Choice = Current_Choice then
                                    for Idx3 in Choice_Start .. Idx2 - 1 loop
                                       if Same_Id (Idx2, Idx3)
                                       then
                                          Error_Msg_N
                                            ("duplicate binding in choice",
                                             Current_Choice);
                                          return;
                                       end if;
                                    end loop;
                                 else
                                    Next (Current_Choice);
                                    pragma Assert (Present (Current_Choice));
                                    Choice_Start := Idx2;
                                    if Tab (Idx2).Choice /= Current_Choice
                                    then
                                       Error_Msg_N
                                         ("binding(s) missing for choice",
                                          Current_Choice);
                                       return;
                                    end if;
                                 end if;
                              end loop;
                              --  If we made it through all the bindings
                              --  for this alternative but didn't make it
                              --  to the last choice, then bindings are
                              --  missing for all remaining choices.
                              --  We only complain about the first one.
                              if Present (Next (Current_Choice)) then
                                 Error_Msg_N
                                   ("binding(s) missing for choice",
                                     Next (Current_Choice));
                                 return;
                              end if;
                           end;
                           --  Count bindings for first choice of alternative
                           for FC_Idx in Alt_Start .. Tab'Last loop
                              exit when Tab (FC_Idx).Choice /= First_Choice;
                              First_Choice_Bindings :=
                                First_Choice_Bindings + 1;
                           end loop;
                           declare
                              Current_Choice : Node_Id := First_Choice;
                              Current_Choice_Bindings : Natural := 0;
                           begin
                              for Idx2 in Alt_Start .. Tab'Last loop
                                 exit when Tab (Idx2).Alt /= Alt;
                                 --  If starting a new choice
                                 if Tab (Idx2).Choice /= Current_Choice then
                                    --  Check count for choice just finished
                                    if Current_Choice_Bindings
                                      /= First_Choice_Bindings
                                    then
                                       Error_Msg_N
                                         ("subsequent choice has different"
                                          & " number of bindings than first"
                                          & " choice", Current_Choice);
                                    end if;
                                    Current_Choice := Tab (Idx2).Choice;
                                    Current_Choice_Bindings := 1;
                                    --  Remember that Alt has both one or more
                                    --  bindings and two or more choices; we'll
                                    --  need to know this during expansion.
                                    Set_Multidefined_Bindings (Alt, True);
                                 else
                                    Current_Choice_Bindings :=
                                      Current_Choice_Bindings + 1;
                                 end if;
                                 --  Check that first choice has binding with
                                 --  matching name; check subtype consistency.
                                 declare
                                    Found : Boolean := False;
                                 begin
                                    for FC_Idx in
                                      Alt_Start ..
                                      Alt_Start + Binding_Index
                                                    (First_Choice_Bindings - 1)
                                    loop
                                       if Same_Id (Idx2, FC_Idx) then
                                          if not Subtypes_Statically_Match
                                            (Binding_Subtype (Idx2, Tab),
                                             Binding_Subtype (FC_Idx, Tab))
                                          then
                                             Error_Msg_N
                                               ("subtype of binding in "
                                                & "subsequent choice does not "
                                                & "match that in first choice",
                                                Tab (Idx2).Comp_Assoc);
                                          end if;
                                          Found := True;
                                          exit;
                                       end if;
                                    end loop;
                                    if not Found then
                                       Error_Msg_N
                                         ("binding defined in subsequent "
                                          & "choice not defined in first "
                                          & "choice", Current_Choice);
                                    end if;
                                 end;
                                 --  Check for illegal repeated binding
                                 --  via an enclosing aggregate, as in
                                 --  (F1 | F2 => (F3 => Natural is X,
                                 --               F4 => Natural))
                                 --  where the inner aggregate would be ok.
                                 declare
                                    Rover : Node_Id := Tab (Idx2).Comp_Assoc;
                                 begin
                                    while Rover /= Tab (Idx2).Choice loop
                                       Rover :=
                                         (if Is_List_Member (Rover) then
                                            Parent (List_Containing (Rover))
                                          else Parent (Rover));
                                       pragma Assert (Present (Rover));
                                       if Nkind (Rover)
                                         = N_Component_Association
                                         and then List_Length (Choices (Rover))
                                         > 1
                                       then
                                          Error_Msg_N
                                            ("binding shared by multiple "
                                                & "enclosing components",
                                             Tab (Idx2).Comp_Assoc);
                                       end if;
                                    end loop;
                                 end;
                              end loop;
                           end;
                           --  Construct the (unanalyzed) declarations for
                           --  the current alternative. Then analyze them.
                           if First_Choice_Bindings > 0 then
                              Declare_Binding_Objects
                                (Alt_Start             => Alt_Start,
                                 Alt                   => Alt,
                                 First_Choice_Bindings =>
                                   First_Choice_Bindings,
                                 Tab                   => Tab);
                           end if;
                        end;
                     end if;
                  end loop;
               end;
            end Check_Bindings;
         end Case_Bindings;
         function Choice_Bounds_Info return Choices_Range_Info;
         --  Returns mapping from any given Choice_Id value to that choice's
         --  component-to-range map.
         ------------------------
         -- Choice_Bounds_Info --
         ------------------------
         function Choice_Bounds_Info return Choices_Range_Info is
            Result : Choices_Range_Info;
            Alt    : Node_Id := First (Alternatives (Case_Statement));
            C_Id   : Choice_Id := 1;
         begin
            while Present (Alt) loop
               declare
                  Choice : Node_Id := First (Discrete_Choices (Alt));
               begin
                  while Present (Choice) loop
                     Result (C_Id) := Parse_Choice (Choice, Alt => Alt);
                     Next (Choice);
                     if C_Id /= Choice_Id'Last then
                        C_Id := C_Id + 1;
                     end if;
                  end loop;
               end;
               Next (Alt);
            end loop;
            pragma Assert (C_Id = Choice_Id'Last);
            --  No more calls to Note_Binding, so time for checks.
            Case_Bindings.Check_Bindings;
            return Result;
         end Choice_Bounds_Info;
         Choices_Bounds : constant Choices_Range_Info := Choice_Bounds_Info;
         package body Value_Sets is
            use GNAT;
            function Hash (Key : Uint) return Bucket_Range_Type is
              (Bucket_Range_Type
                 (UI_To_Int (Key mod (Uint_2 ** Uint_31))));
            package Uint_Sets is new GNAT.Sets.Membership_Sets
              (Uint, "=", Hash);
            type Representative_Values_Array is
              array (Part_Id) of Uint_Sets.Membership_Set;
            function Representative_Values_Init
              return Representative_Values_Array;
            --  Select the representative values for each Part_Id value.
            --  This function is called exactly once, immediately after it
            --  is declared.
            --------------------------------
            -- Representative_Values_Init --
            --------------------------------
            function Representative_Values_Init
              return Representative_Values_Array
            is
               --  For each range of each choice (as well as the range for the
               --  component subtype, which is handled in the first loop),
               --  insert the low bound of the range and the successor of
               --  the high bound into the corresponding R_V element.
               --
               --  The idea we are trying to capture here is somewhat tricky.
               --  Given an arbitrary point P1 in the Cartesian product
               --  of the Component_Bounds sets, we want to be able
               --  to map that to a point P2 in the (smaller) Cartesian product
               --  of the Representative_Values sets that has the property
               --  that for every choice of the case statement, P1 matches
               --  the choice if and only if P2 also matches. Given that,
               --  we can implement the overlapping/containment/etc. rules
               --  safely by just looking at (using brute force enumeration)
               --  the (smaller) Cartesian product of the R_V sets.
               --  We are never going to actually perform this point-to-point
               --  mapping - just the fact that it exists is enough to ensure
               --  we can safely look at just the R_V sets.
               --
               --  The desired mapping can be implemented by mapping a point
               --  P1 to a point P2 by reducing each of P1's coordinates down
               --  to the largest element of the corresponding R_V set that is
               --  less than or equal to the original coordinate value (such
               --  an element Y will always exist because the R_V set for a
               --  given component always includes the low bound of the
               --  component subtype). It then suffices to show that every
               --  choice in the case statement yields the same Boolean result
               --  for P1 as for P2.
               --
               --  Suppose the contrary. Then there is some particular
               --  coordinate position X (i.e., a Part_Id value) and some
               --  choice C where exactly one of P1(X) and P2(X) belongs to
               --  the (contiguous) range associated with C(X); call that
               --  range L .. H. We know that P2(X) <= P1(X) because the
               --  mapping never increases coordinate values. Consider three
               --  cases: P1(X) lies within the L .. H range, or it is greater
               --  than H, or it is lower than L.
               --  The third case is impossible because reducing a value that
               --  is less than L can only produce another such value,
               --  violating the "exactly one" assumption. The second
               --  case is impossible because L belongs to the corresponding
               --  R_V set, so P2(X) >= L and both values belong to the
               --  range, again violating the "exactly one" assumption.
               --  Finally, the third case is impossible because H+1 belongs
               --  to the corresponding R_V set, so P2(X) > H, so neither
               --  value belongs to the range, again violating the "exactly
               --  one" assumption. So our initial supposition was wrong. QED.
               use Uint_Sets;
               Result : constant Representative_Values_Array
                 := (others => Uint_Sets.Create (Initial_Size => 32));
               procedure Insert_Representative (Value : Uint; P : Part_Id);
               --  Insert the given Value into the representative values set
               --  for the given component if it belongs to the component's
               --  subtype. Otherwise, do nothing.
               ---------------------------
               -- Insert_Representative --
               ---------------------------
               procedure Insert_Representative (Value : Uint; P : Part_Id) is
               begin
                  if Value >= Component_Bounds (P).Low and
                    Value <= Component_Bounds (P).High
                  then
                     Insert (Result (P), Value);
                  end if;
               end Insert_Representative;
            begin
               for P in Part_Id loop
                  Insert_Representative (Component_Bounds (P).Low, P);
               end loop;
               if Simplified_Composite_Coverage_Rules then
                  --  Omit other representative values to avoid capacity
                  --  problems building data structures only used in
                  --  compile-time checks that will not be performed.
                  return Result;
               end if;
               for C of Choices_Bounds loop
                  if not C.Is_Others then
                     for P in Part_Id loop
                        if C.Ranges (P).Low <= C.Ranges (P).High then
                           Insert_Representative (C.Ranges (P).Low, P);
                           Insert_Representative (C.Ranges (P).High + 1, P);
                        end if;
                     end loop;
                  end if;
               end loop;
               return Result;
            end Representative_Values_Init;
            Representative_Values : constant Representative_Values_Array
              := Representative_Values_Init;
            --  We want to avoid looking at every point in the Cartesian
            --  product of all component values. Instead we select, for each
            --  component, a set of representative values and then look only
            --  at the Cartesian product of those sets. A single value can
            --  safely represent a larger enclosing interval if every choice
            --  for that component either completely includes or completely
            --  excludes the interval. The elements of this array will be
            --  populated by a call to Initialize_Representative_Values and
            --  will remain constant after that.
            type Value_Index_Base is new Natural;
            function Value_Index_Count return Value_Index_Base;
            --  Returns the product of the sizes of the Representative_Values
            --  sets (i.e., the size of the Cartesian product of the sets).
            --  May return zero if one of the sets is empty.
            --  This function is called exactly once, immediately after it
            --  is declared.
            -----------------------
            -- Value_Index_Count --
            -----------------------
            function Value_Index_Count return Value_Index_Base is
               Result : Value_Index_Base := 1;
            begin
               for Set of Representative_Values loop
                  Result := Result * Value_Index_Base (Uint_Sets.Size (Set));
               end loop;
               return Result;
            exception
               when Constraint_Error =>
                  Error_Msg_N
                    ("Capacity exceeded in compiling case statement with"
                      & " composite selector type", Case_Statement);
                  raise;
            end Value_Index_Count;
            Max_Value_Index : constant Value_Index_Base := Value_Index_Count;
            subtype Value_Index is Value_Index_Base range 1 .. Max_Value_Index;
            type Value_Index_Set is array (Value_Index) of Boolean;
            package Value_Index_Set_Table is new Table.Table
              (Table_Component_Type => Value_Index_Set,
               Table_Index_Type     => Value_Set,
               Table_Low_Bound      => 1,
               Table_Initial        => 16,
               Table_Increment      => 100,
               Table_Name           => "Composite_Case_Ops.Value_Sets");
            --  A nonzero Value_Set value is an index into this table.
            function Indexed (Index : Value_Set) return Value_Index_Set
              is (Value_Index_Set_Table.Table.all (Index));
            function Allocate_Table_Element (Initial_Value : Value_Index_Set)
              return Value_Set;
            --  Allocate and initialize a new table element; return its index.
            ----------------------------
            -- Allocate_Table_Element --
            ----------------------------
            function Allocate_Table_Element (Initial_Value : Value_Index_Set)
              return Value_Set
            is
               use Value_Index_Set_Table;
            begin
               Append (Initial_Value);
               return Last;
            end Allocate_Table_Element;
            procedure Assign_Table_Element (Index : Value_Set;
                                            Value : Value_Index_Set);
            --  Assign specified value to specified table element.
            --------------------------
            -- Assign_Table_Element --
            --------------------------
            procedure Assign_Table_Element (Index : Value_Set;
                                            Value : Value_Index_Set)
            is
            begin
               Value_Index_Set_Table.Table.all (Index) := Value;
            end Assign_Table_Element;
            -------------
            -- Compare --
            -------------
            function Compare (S1, S2 : Value_Set) return Set_Comparison is
            begin
               if S1 = Empty or S2 = Empty then
                  return Disjoint;
               elsif Indexed (S1) = Indexed (S2) then
                  return Equal;
               else
                  declare
                     Intersection : constant Value_Index_Set
                       := Indexed (S1) and Indexed (S2);
                  begin
                     if (for all Flag of Intersection => not Flag) then
                        return Disjoint;
                     elsif Intersection = Indexed (S1) then
                        return Contained_By;
                     elsif Intersection = Indexed (S2) then
                        return Contains;
                     else
                        return Overlaps;
                     end if;
                  end;
               end if;
            end Compare;
            -------------------------
            -- Complement_Is_Empty --
            -------------------------
            function Complement_Is_Empty (Set : Value_Set) return Boolean
              is (Set /= Empty
                  and then (for all Flag of Indexed (Set) => Flag));
            ---------------------
            -- Free_Value_Sets --
            ---------------------
            procedure Free_Value_Sets is
            begin
               Value_Index_Set_Table.Free;
            end Free_Value_Sets;
            -----------
            -- Union --
            -----------
            procedure Union (Target : in out Value_Set; Source : Value_Set) is
            begin
               if Source /= Empty then
                  if Target = Empty then
                     Target := Allocate_Table_Element (Indexed (Source));
                  else
                     Assign_Table_Element
                       (Target, Indexed (Target) or Indexed (Source));
                  end if;
               end if;
            end Union;
            ------------
            -- Remove --
            ------------
            procedure Remove (Target : in out Value_Set; Source : Value_Set) is
            begin
               if Source /= Empty and Target /= Empty then
                  Assign_Table_Element
                    (Target, Indexed (Target) and not Indexed (Source));
                  if (for all V of Indexed (Target) => not V) then
                     Target := Empty;
                  end if;
               end if;
            end Remove;
            ---------------------
            -- Matching_Values --
            ---------------------
            function Matching_Values
              (Info : Composite_Range_Info) return Value_Set
            is
               Matches    : Value_Index_Set;
               Next_Index : Value_Index := 1;
               Done       : Boolean := False;
               Point      : array (Part_Id) of Uint;
               procedure Test_Point_For_Match;
               --  Point identifies a point in the Cartesian product of the
               --  representative value sets. Record whether that Point
               --  belongs to the product-of-ranges specified by Info.
               --------------------------
               -- Test_Point_For_Match --
               --------------------------
               procedure Test_Point_For_Match is
                  function In_Range (Val : Uint; Rang : Discrete_Range_Info)
                    return Boolean is
                    (Rang.Low <= Val and then Val <= Rang.High);
               begin
                  pragma Assert (not Done);
                  Matches (Next_Index) :=
                    (for all P in Part_Id => In_Range (Point (P), Info (P)));
                  if Next_Index = Matches'Last then
                     Done := True;
                  else
                     Next_Index := Next_Index + 1;
                  end if;
               end Test_Point_For_Match;
               procedure Test_Points (P : Part_Id);
               --  Iterate over the Cartesian product of the representative
               --  value sets, calling Test_Point_For_Match for each point.
               -----------------
               -- Test_Points --
               -----------------
               procedure Test_Points (P : Part_Id) is
                  use Uint_Sets;
                  Iter : Iterator := Iterate (Representative_Values (P));
               begin
                  --  We could traverse here in sorted order, as opposed to
                  --  whatever order the set iterator gives us.
                  --  No need for that as long as every iteration over
                  --  a given representative values set yields the same order.
                  --  Not sorting is more efficient, but it makes it harder to
                  --  interpret a Value_Index_Set bit vector when debugging.
                  while Has_Next (Iter) loop
                     Next (Iter, Point (P));
                     --  If we have finished building up a Point value, then
                     --  test it for matching. Otherwise, recurse to continue
                     --  building up a point value.
                     if P = Part_Id'Last then
                        Test_Point_For_Match;
                     else
                        Test_Points (P + 1);
                     end if;
                  end loop;
               end Test_Points;
            begin
               Test_Points (1);
               if (for all Flag of Matches => not Flag) then
                  return Empty;
               end if;
               return Allocate_Table_Element (Matches);
            end Matching_Values;
         end Value_Sets;
         --------------
         -- Analysis --
         --------------
         function Analysis return Choices_Info is
            Result : Choices_Info;
            Alt    : Node_Id := First (Alternatives (Case_Statement));
            A_Id   : Alternative_Id := 1;
            C_Id   : Choice_Id := 1;
         begin
            while Present (Alt) loop
               declare
                  Choice : Node_Id := First (Discrete_Choices (Alt));
               begin
                  while Present (Choice) loop
                     if Nkind (Choice) = N_Others_Choice then
                        pragma Assert (Choices_Bounds (C_Id).Is_Others);
                        Result (C_Id) :=
                          (Alternative => A_Id,
                           Is_Others   => True);
                     else
                        Result (C_Id) :=
                          (Alternative => A_Id,
                           Is_Others   => False,
                           Matches     => Value_Sets.Matching_Values
                                            (Choices_Bounds (C_Id).Ranges));
                     end if;
                     Next (Choice);
                     if C_Id /= Choice_Id'Last then
                        C_Id := C_Id + 1;
                     end if;
                  end loop;
               end;
               Next (Alt);
               if A_Id /= Alternative_Id'Last then
                  A_Id := A_Id + 1;
               end if;
            end loop;
            pragma Assert (A_Id = Alternative_Id'Last);
            pragma Assert (C_Id = Choice_Id'Last);
            return Result;
         end Analysis;
      end Choice_Analysis;
   end Composite_Case_Ops;
   --------------------------
   -- Expand_Others_Choice --
   --------------------------
   procedure Expand_Others_Choice
     (Case_Table    : Choice_Table_Type;
      Others_Choice : Node_Id;
      Choice_Type   : Entity_Id)
   is
      Loc         : constant Source_Ptr := Sloc (Others_Choice);
      Choice_List : constant List_Id    := New_List;
      Choice      : Node_Id;
      Exp_Lo      : Node_Id;
      Exp_Hi      : Node_Id;
      Hi          : Uint;
      Lo          : Uint;
      Previous_Hi : Uint;
      function Build_Choice (Value1, Value2 : Uint) return Node_Id;
      --  Builds a node representing the missing choices given by Value1 and
      --  Value2. A N_Range node is built if there is more than one literal
      --  value missing. Otherwise a single N_Integer_Literal, N_Identifier
      --  or N_Character_Literal is built depending on what Choice_Type is.
      function Lit_Of (Value : Uint) return Node_Id;
      --  Returns the Node_Id for the enumeration literal corresponding to the
      --  position given by Value within the enumeration type Choice_Type. The
      --  returned value has its Is_Static_Expression flag set to true.
      ------------------
      -- Build_Choice --
      ------------------
      function Build_Choice (Value1, Value2 : Uint) return Node_Id is
         Lit_Node : Node_Id;
         Lo, Hi   : Node_Id;
      begin
         --  If there is only one choice value missing between Value1 and
         --  Value2, build an integer or enumeration literal to represent it.
         if Value1 = Value2 then
            if Is_Integer_Type (Choice_Type) then
               Lit_Node := Make_Integer_Literal (Loc, Value1);
               Set_Etype (Lit_Node, Choice_Type);
               Set_Is_Static_Expression (Lit_Node);
            else
               Lit_Node := Lit_Of (Value1);
            end if;
         --  Otherwise is more that one choice value that is missing between
         --  Value1 and Value2, therefore build a N_Range node of either
         --  integer or enumeration literals.
         else
            if Is_Integer_Type (Choice_Type) then
               Lo := Make_Integer_Literal (Loc, Value1);
               Set_Etype (Lo, Choice_Type);
               Set_Is_Static_Expression (Lo);
               Hi := Make_Integer_Literal (Loc, Value2);
               Set_Etype (Hi, Choice_Type);
               Set_Is_Static_Expression (Hi);
               Lit_Node :=
                 Make_Range (Loc,
                   Low_Bound  => Lo,
                   High_Bound => Hi);
            else
               Lit_Node :=
                 Make_Range (Loc,
                   Low_Bound  => Lit_Of (Value1),
                   High_Bound => Lit_Of (Value2));
            end if;
         end if;
         return Lit_Node;
      end Build_Choice;
      ------------
      -- Lit_Of --
      ------------
      function Lit_Of (Value : Uint) return Node_Id is
         Lit : Entity_Id;
      begin
         --  In the case where the literal is of type Character, there needs
         --  to be some special handling since there is no explicit chain
         --  of literals to search. Instead, a N_Character_Literal node
         --  is created with the appropriate Char_Code and Chars fields.
         if Is_Standard_Character_Type (Choice_Type) then
            Set_Character_Literal_Name (UI_To_CC (Value));
            Lit :=
              Make_Character_Literal (Loc,
                Chars              => Name_Find,
                Char_Literal_Value => Value);
            Set_Etype (Lit, Choice_Type);
            Set_Is_Static_Expression (Lit, True);
            return Lit;
         --  Otherwise, iterate through the literals list of Choice_Type
         --  "Value" number of times until the desired literal is reached
         --  and then return an occurrence of it.
         else
            Lit := First_Literal (Choice_Type);
            for J in 1 .. UI_To_Int (Value) loop
               Next_Literal (Lit);
            end loop;
            return New_Occurrence_Of (Lit, Loc);
         end if;
      end Lit_Of;
   --  Start of processing for Expand_Others_Choice
   begin
      if Case_Table'Last = 0 then
         --  Special case: only an others case is present. The others case
         --  covers the full range of the type.
         if Is_OK_Static_Subtype (Choice_Type) then
            Choice := New_Occurrence_Of (Choice_Type, Loc);
         else
            Choice := New_Occurrence_Of (Base_Type (Choice_Type), Loc);
         end if;
         Set_Others_Discrete_Choices (Others_Choice, New_List (Choice));
         return;
      end if;
      --  Establish the bound values for the choice depending upon whether the
      --  type of the case statement is static or not.
      if Is_OK_Static_Subtype (Choice_Type) then
         Exp_Lo := Type_Low_Bound (Choice_Type);
         Exp_Hi := Type_High_Bound (Choice_Type);
      else
         Exp_Lo := Type_Low_Bound (Base_Type (Choice_Type));
         Exp_Hi := Type_High_Bound (Base_Type (Choice_Type));
      end if;
      Lo := Expr_Value (Case_Table (1).Lo);
      Hi := Expr_Value (Case_Table (1).Hi);
      Previous_Hi := Expr_Value (Case_Table (1).Hi);
      --  Build the node for any missing choices that are smaller than any
      --  explicit choices given in the case.
      if Expr_Value (Exp_Lo) < Lo then
         Append (Build_Choice (Expr_Value (Exp_Lo), Lo - 1), Choice_List);
      end if;
      --  Build the nodes representing any missing choices that lie between
      --  the explicit ones given in the case.
      for J in 2 .. Case_Table'Last loop
         Lo := Expr_Value (Case_Table (J).Lo);
         Hi := Expr_Value (Case_Table (J).Hi);
         if Lo /= (Previous_Hi + 1) then
            Append_To (Choice_List, Build_Choice (Previous_Hi + 1, Lo - 1));
         end if;
         Previous_Hi := Hi;
      end loop;
      --  Build the node for any missing choices that are greater than any
      --  explicit choices given in the case.
      if Expr_Value (Exp_Hi) > Hi then
         Append (Build_Choice (Hi + 1, Expr_Value (Exp_Hi)), Choice_List);
      end if;
      Set_Others_Discrete_Choices (Others_Choice, Choice_List);
      --  Warn on null others list if warning option set
      if Warn_On_Redundant_Constructs
        and then Comes_From_Source (Others_Choice)
        and then Is_Empty_List (Choice_List)
      then
         Error_Msg_N ("?r?OTHERS choice is redundant", Others_Choice);
         Error_Msg_N ("\?r?previous choices cover all values", Others_Choice);
      end if;
   end Expand_Others_Choice;
   -----------
   -- No_OP --
   -----------
   procedure No_OP (C : Node_Id) is
   begin
      if Nkind (C) = N_Range and then Warn_On_Redundant_Constructs then
         Error_Msg_N ("choice is an empty range?r?", C);
      end if;
   end No_OP;
   -----------------------------
   -- Generic_Analyze_Choices --
   -----------------------------
   package body Generic_Analyze_Choices is
      --  The following type is used to gather the entries for the choice
      --  table, so that we can then allocate the right length.
      type Link;
      type Link_Ptr is access all Link;
      type Link is record
         Val : Choice_Bounds;
         Nxt : Link_Ptr;
      end record;
      ---------------------
      -- Analyze_Choices --
      ---------------------
      procedure Analyze_Choices
        (Alternatives : List_Id;
         Subtyp       : Entity_Id)
      is
         Choice_Type : constant Entity_Id := Base_Type (Subtyp);
         --  The actual type against which the discrete choices are resolved.
         --  Note that this type is always the base type not the subtype of the
         --  ruling expression, index or discriminant.
         Expected_Type : Entity_Id;
         --  The expected type of each choice. Equal to Choice_Type, except if
         --  the expression is universal, in which case the choices can be of
         --  any integer type.
         Alt : Node_Id;
         --  A case statement alternative or a variant in a record type
         --  declaration.
         Choice : Node_Id;
         Kind   : Node_Kind;
         --  The node kind of the current Choice
      begin
         --  Set Expected type (= choice type except for universal integer,
         --  where we accept any integer type as a choice).
         if Choice_Type = Universal_Integer then
            Expected_Type := Any_Integer;
         else
            Expected_Type := Choice_Type;
         end if;
         --  Now loop through the case alternatives or record variants
         Alt := First (Alternatives);
         while Present (Alt) loop
            --  If pragma, just analyze it
            if Nkind (Alt) = N_Pragma then
               Analyze (Alt);
            --  Otherwise we have an alternative. In most cases the semantic
            --  processing leaves the list of choices unchanged
            --  Check each choice against its base type
            else
               Choice := First (Discrete_Choices (Alt));
               while Present (Choice) loop
                  Analyze (Choice);
                  Kind := Nkind (Choice);
                  --  Choice is a Range
                  if Kind = N_Range
                    or else (Kind = N_Attribute_Reference
                              and then Attribute_Name (Choice) = Name_Range)
                  then
                     Resolve (Choice, Expected_Type);
                  --  Choice is a subtype name, nothing further to do now
                  elsif Is_Entity_Name (Choice)
                    and then Is_Type (Entity (Choice))
                  then
                     null;
                  --  Choice is a subtype indication
                  elsif Kind = N_Subtype_Indication then
                     Resolve_Discrete_Subtype_Indication
                       (Choice, Expected_Type);
                  --  Others choice, no analysis needed
                  elsif Kind = N_Others_Choice then
                     null;
                  --  Only other possibility is an expression
                  else
                     Resolve (Choice, Expected_Type);
                  end if;
                  --  Move to next choice
                  Next (Choice);
               end loop;
               Process_Associated_Node (Alt);
            end if;
            Next (Alt);
         end loop;
      end Analyze_Choices;
   end Generic_Analyze_Choices;
   ---------------------------
   -- Generic_Check_Choices --
   ---------------------------
   package body Generic_Check_Choices is
      --  The following type is used to gather the entries for the choice
      --  table, so that we can then allocate the right length.
      type Link;
      type Link_Ptr is access all Link;
      type Link is record
         Val : Choice_Bounds;
         Nxt : Link_Ptr;
      end record;
      procedure Free is new Ada.Unchecked_Deallocation (Link, Link_Ptr);
      -------------------
      -- Check_Choices --
      -------------------
      procedure Check_Choices
        (N              : Node_Id;
         Alternatives   : List_Id;
         Subtyp         : Entity_Id;
         Others_Present : out Boolean)
      is
         E : Entity_Id;
         Raises_CE : Boolean;
         --  Set True if one of the bounds of a choice raises CE
         Enode : Node_Id;
         --  This is where we post error messages for bounds out of range
         Choice_List : Link_Ptr := null;
         --  Gather list of choices
         Num_Choices : Nat := 0;
         --  Number of entries in Choice_List
         Choice_Type : constant Entity_Id := Base_Type (Subtyp);
         --  The actual type against which the discrete choices are resolved.
         --  Note that this type is always the base type not the subtype of the
         --  ruling expression, index or discriminant.
         Bounds_Type : Entity_Id;
         --  The type from which are derived the bounds of the values covered
         --  by the discrete choices (see 3.8.1 (4)). If a discrete choice
         --  specifies a value outside of these bounds we have an error.
         Bounds_Lo : Uint;
         Bounds_Hi : Uint;
         --  The actual bounds of the above type
         Expected_Type : Entity_Id;
         --  The expected type of each choice. Equal to Choice_Type, except if
         --  the expression is universal, in which case the choices can be of
         --  any integer type.
         Alt : Node_Id;
         --  A case statement alternative or a variant in a record type
         --  declaration.
         Choice : Node_Id;
         Kind   : Node_Kind;
         --  The node kind of the current Choice
         Others_Choice : Node_Id := Empty;
         --  Remember others choice if it is present (empty otherwise)
         procedure Check (Choice : Node_Id; Lo, Hi : Node_Id);
         --  Checks the validity of the bounds of a choice. When the bounds
         --  are static and no error occurred the bounds are collected for
         --  later entry into the choices table so that they can be sorted
         --  later on.
         procedure Check_Case_Pattern_Choices;
         --  Check choices validity for the Ada extension case where the
         --  selecting expression is not of a discrete type and so the
         --  choices are patterns.
         procedure Check_Composite_Case_Selector;
         --  Check that the (non-discrete) type of the expression being
         --  cased on is suitable.
         procedure Handle_Static_Predicate
           (Typ : Entity_Id;
            Lo  : Node_Id;
            Hi  : Node_Id);
         --  If the type of the alternative has predicates, we must examine
         --  each subset of the predicate rather than the bounds of the type
         --  itself. This is relevant when the choice is a subtype mark or a
         --  subtype indication.
         -----------
         -- Check --
         -----------
         procedure Check (Choice : Node_Id; Lo, Hi : Node_Id) is
            Lo_Val : Uint;
            Hi_Val : Uint;
         begin
            --  First check if an error was already detected on either bounds
            if Etype (Lo) = Any_Type or else Etype (Hi) = Any_Type then
               return;
            --  Do not insert non static choices in the table to be sorted
            elsif not Is_OK_Static_Expression (Lo)
                    or else
                  not Is_OK_Static_Expression (Hi)
            then
               Process_Non_Static_Choice (Choice);
               return;
            --  Ignore range which raise constraint error
            elsif Raises_Constraint_Error (Lo)
              or else Raises_Constraint_Error (Hi)
            then
               Raises_CE := True;
               return;
            --  AI05-0188 : Within an instance the non-others choices do not
            --  have to belong to the actual subtype.
            elsif Ada_Version >= Ada_2012 and then In_Instance then
               return;
            --  Otherwise we have an OK static choice
            else
               Lo_Val := Expr_Value (Lo);
               Hi_Val := Expr_Value (Hi);
               --  Do not insert null ranges in the choices table
               if Lo_Val > Hi_Val then
                  Process_Empty_Choice (Choice);
                  return;
               end if;
            end if;
            --  Check for low bound out of range
            if Lo_Val < Bounds_Lo then
               --  If the choice is an entity name, then it is a type, and we
               --  want to post the message on the reference to this entity.
               --  Otherwise post it on the lower bound of the range.
               if Is_Entity_Name (Choice) then
                  Enode := Choice;
               else
                  Enode := Lo;
               end if;
               --  Specialize message for integer/enum type
               if Is_Integer_Type (Bounds_Type) then
                  Error_Msg_Uint_1 := Bounds_Lo;
                  Error_Msg_N ("minimum allowed choice value is^", Enode);
               else
                  Error_Msg_Name_1 := Choice_Image (Bounds_Lo, Bounds_Type);
                  Error_Msg_N ("minimum allowed choice value is%", Enode);
               end if;
            end if;
            --  Check for high bound out of range
            if Hi_Val > Bounds_Hi then
               --  If the choice is an entity name, then it is a type, and we
               --  want to post the message on the reference to this entity.
               --  Otherwise post it on the upper bound of the range.
               if Is_Entity_Name (Choice) then
                  Enode := Choice;
               else
                  Enode := Hi;
               end if;
               --  Specialize message for integer/enum type
               if Is_Integer_Type (Bounds_Type) then
                  Error_Msg_Uint_1 := Bounds_Hi;
                  Error_Msg_N ("maximum allowed choice value is^", Enode);
               else
                  Error_Msg_Name_1 := Choice_Image (Bounds_Hi, Bounds_Type);
                  Error_Msg_N ("maximum allowed choice value is%", Enode);
               end if;
            end if;
            --  Collect bounds in the list
            --  Note: we still store the bounds, even if they are out of range,
            --  since this may prevent unnecessary cascaded errors for values
            --  that are covered by such an excessive range.
            Choice_List :=
              new Link'(Val => (Lo, Hi, Choice), Nxt => Choice_List);
            Num_Choices := Num_Choices + 1;
         end Check;
         --------------------------------
         -- Check_Case_Pattern_Choices --
         --------------------------------
         procedure Check_Case_Pattern_Choices is
            package Ops is new Composite_Case_Ops.Choice_Analysis
              (Case_Statement => N);
            use Ops;
            use Ops.Value_Sets;
            Empty : Value_Set renames Value_Sets.Empty;
            --  Cope with hiding due to multiple use clauses
            Info        : constant Choices_Info := Analysis;
            Others_Seen : Boolean := False;
         begin
            declare
               Matches : array (Alternative_Id) of Value_Sets.Value_Set :=
                 (others => Empty);
               Flag_Overlapping_Within_One_Alternative : constant Boolean :=
                 False;
               --  We may want to flag overlapping (perhaps with only a
               --  warning) if the pattern binds an identifier, as in
               --    when (Positive, <X>) | (Integer, <X>) =>
               Covered : Value_Set := Empty;
               --  The union of all alternatives seen so far
            begin
               if Composite_Case_Ops.Simplified_Composite_Coverage_Rules then
                  if not (for some Choice of Info => Choice.Is_Others) then
                     Error_Msg_N ("others choice required", N);
                  end if;
                  return;
               end if;
               for Choice of Info loop
                  if Choice.Is_Others then
                     Others_Seen := True;
                  else
                     if Flag_Overlapping_Within_One_Alternative
                        and then Compare (Matches (Choice.Alternative),
                                          Choice.Matches) /= Disjoint
                     then
                        Error_Msg_N
                          ("bad overlapping within one alternative", N);
                     end if;
                     Union (Target => Matches (Choice.Alternative),
                            Source => Choice.Matches);
                  end if;
               end loop;
               for A1 in Alternative_Id loop
                  for A2 in Alternative_Id
                              range A1 + 1 .. Alternative_Id'Last
                  loop
                     case Compare (Matches (A1), Matches (A2)) is
                        when Disjoint | Contained_By =>
                           null; -- OK
                        when Overlaps =>
                           declare
                              Uncovered_1, Uncovered_2 : Value_Set := Empty;
                           begin
                              Union (Uncovered_1, Matches (A1));
                              Remove (Uncovered_1, Covered);
                              Union (Uncovered_2, Matches (A2));
                              Remove (Uncovered_2, Covered);
                              --  Recheck for overlap after removing choices
                              --  covered by earlier alternatives.
                              case Compare (Uncovered_1, Uncovered_2) is
                                 when Disjoint | Contained_By =>
                                    null;
                                 when Contains | Overlaps | Equal =>
                                    Error_Msg_N
                                      ("bad alternative overlapping", N);
                              end case;
                           end;
                        when Equal =>
                           Error_Msg_N ("alternatives match same values", N);
                        when Contains =>
                           Error_Msg_N ("alternatives in wrong order", N);
                     end case;
                  end loop;
                  Union (Target => Covered, Source => Matches (A1));
               end loop;
               if not Others_Seen and then not Complement_Is_Empty (Covered)
               then
                  Error_Msg_N ("not all values are covered", N);
               end if;
            end;
            Ops.Value_Sets.Free_Value_Sets;
         end Check_Case_Pattern_Choices;
         -----------------------------------
         -- Check_Composite_Case_Selector --
         -----------------------------------
         procedure Check_Composite_Case_Selector is
         begin
            if not Is_Composite_Type (Subtyp) then
               Error_Msg_N
                 ("case selector type must be discrete or composite", N);
            elsif Is_Limited_Type (Subtyp) then
               Error_Msg_N ("case selector type must not be limited", N);
            elsif Is_Class_Wide_Type (Subtyp) then
               Error_Msg_N ("case selector type must not be class-wide", N);
            elsif Needs_Finalization (Subtyp)
              and then Is_Newly_Constructed
                         (Expression (N), Context_Requires_NC => False)
            then
               --  We could allow this case as long as there are no bindings.
               --
               --  If there are bindings, then allowing this case will get
               --  messy because the selector expression will be finalized
               --  before the statements of the selected alternative are
               --  executed (unless we add an INOX-specific change to the
               --  accessibility rules to prevent this earlier-than-wanted
               --  finalization, but adding new INOX-specific accessibility
               --  complexity is probably not the direction we want to go).
               --  This early selector finalization would be ok if we made
               --  copies in this case (so that the bindings would not yield
               --  a view of a finalized object), but then we'd have to deal
               --  with finalizing those copies (which would necessarily
               --  include defining their accessibility level). So it gets
               --  messy either way.
               Error_Msg_N ("case selector must not require finalization", N);
            end if;
         end Check_Composite_Case_Selector;
         -----------------------------
         -- Handle_Static_Predicate --
         -----------------------------
         procedure Handle_Static_Predicate
           (Typ : Entity_Id;
            Lo  : Node_Id;
            Hi  : Node_Id)
         is
            P : Node_Id;
            C : Node_Id;
         begin
            --  Loop through entries in predicate list, checking each entry.
            --  Note that if the list is empty, corresponding to a False
            --  predicate, then no choices are checked. If the choice comes
            --  from a subtype indication, the given range may have bounds
            --  that narrow the predicate choices themselves, so we must
            --  consider only those entries within the range of the given
            --  subtype indication..
            P := First (Static_Discrete_Predicate (Typ));
            while Present (P) loop
               --  Check that part of the predicate choice is included in the
               --  given bounds.
               if Expr_Value (High_Bound (P)) >= Expr_Value (Lo)
                 and then Expr_Value (Low_Bound (P)) <= Expr_Value (Hi)
               then
                  C := New_Copy (P);
                  Set_Sloc (C, Sloc (Choice));
                  Set_Original_Node (C, Choice);
                  if Expr_Value (Low_Bound (C)) < Expr_Value (Lo) then
                     Set_Low_Bound (C, Lo);
                  end if;
                  if Expr_Value (High_Bound (C)) > Expr_Value (Hi) then
                     Set_High_Bound (C, Hi);
                  end if;
                  Check (C, Low_Bound (C), High_Bound (C));
               end if;
               Next (P);
            end loop;
            Set_Has_SP_Choice (Alt);
         end Handle_Static_Predicate;
      --  Start of processing for Check_Choices
      begin
         Raises_CE      := False;
         Others_Present := False;
         --  If Subtyp is not a discrete type or there was some other error,
         --  then don't try any semantic checking on the choices since we have
         --  a complete mess.
         if not Is_Discrete_Type (Subtyp) or else Subtyp = Any_Type then
            --  Hold on, maybe it isn't a complete mess after all.
            if Core_Extensions_Allowed and then Subtyp /= Any_Type then
               Check_Composite_Case_Selector;
               Check_Case_Pattern_Choices;
            end if;
            return;
         end if;
         --  If Subtyp is not a static subtype Ada 95 requires then we use the
         --  bounds of its base type to determine the values covered by the
         --  discrete choices.
         --  In Ada 2012, if the subtype has a nonstatic predicate the full
         --  range of the base type must be covered as well.
         if Is_OK_Static_Subtype (Subtyp) then
            if not Has_Predicates (Subtyp)
              or else Has_Static_Predicate (Subtyp)
            then
               Bounds_Type := Subtyp;
            else
               Bounds_Type := Choice_Type;
            end if;
         else
            Bounds_Type := Choice_Type;
         end if;
         --  Obtain static bounds of type, unless this is a generic formal
         --  discrete type for which all choices will be nonstatic.
         if not Is_Generic_Type (Root_Type (Bounds_Type))
           or else Ekind (Bounds_Type) /= E_Enumeration_Type
         then
            Bounds_Lo := Expr_Value (Type_Low_Bound (Bounds_Type));
            Bounds_Hi := Expr_Value (Type_High_Bound (Bounds_Type));
         end if;
         if Choice_Type = Universal_Integer then
            Expected_Type := Any_Integer;
         else
            Expected_Type := Choice_Type;
         end if;
         --  Now loop through the case alternatives or record variants
         Alt := First (Alternatives);
         while Present (Alt) loop
            --  If pragma, just analyze it
            if Nkind (Alt) = N_Pragma then
               Analyze (Alt);
            --  Otherwise we have an alternative. In most cases the semantic
            --  processing leaves the list of choices unchanged
            --  Check each choice against its base type
            else
               Choice := First (Discrete_Choices (Alt));
               while Present (Choice) loop
                  Kind := Nkind (Choice);
                  --  Choice is a Range
                  if Kind = N_Range
                    or else (Kind = N_Attribute_Reference
                              and then Attribute_Name (Choice) = Name_Range)
                  then
                     Check (Choice, Low_Bound (Choice), High_Bound (Choice));
                  --  Choice is a subtype name
                  elsif Is_Entity_Name (Choice)
                    and then Is_Type (Entity (Choice))
                  then
                     --  Check for inappropriate type
                     if not Covers (Expected_Type, Etype (Choice)) then
                        Wrong_Type (Choice, Choice_Type);
                     --  Type is OK, so check further
                     else
                        E := Entity (Choice);
                        --  Case of predicated subtype
                        if Has_Predicates (E) then
                           --  Use of nonstatic predicate is an error
                           if not Is_Discrete_Type (E)
                             or else not Has_Static_Predicate (E)
                             or else Has_Dynamic_Predicate_Aspect (E)
                             or else Has_Ghost_Predicate_Aspect (E)
                           then
                              Bad_Predicated_Subtype_Use
                                ("cannot use subtype& with non-static "
                                 & "predicate as case alternative",
                                 Choice, E, Suggest_Static => True);
                           --  Static predicate case. The bounds are those of
                           --  the given subtype.
                           else
                              Handle_Static_Predicate (E,
                                Type_Low_Bound (E), Type_High_Bound (E));
                           end if;
                        --  Not predicated subtype case
                        elsif not Is_OK_Static_Subtype (E) then
                           Process_Non_Static_Choice (Choice);
                        else
                           Check
                             (Choice, Type_Low_Bound (E), Type_High_Bound (E));
                        end if;
                     end if;
                  --  Choice is a subtype indication
                  elsif Kind = N_Subtype_Indication then
                     Resolve_Discrete_Subtype_Indication
                       (Choice, Expected_Type);
                     if Etype (Choice) /= Any_Type then
                        declare
                           C : constant Node_Id := Constraint (Choice);
                           R : constant Node_Id := Range_Expression (C);
                           L : constant Node_Id := Low_Bound (R);
                           H : constant Node_Id := High_Bound (R);
                        begin
                           E := Entity (Subtype_Mark (Choice));
                           if not Is_OK_Static_Subtype (E) then
                              Process_Non_Static_Choice (Choice);
                           else
                              if Is_OK_Static_Expression (L)
                                   and then
                                 Is_OK_Static_Expression (H)
                              then
                                 if Expr_Value (L) > Expr_Value (H) then
                                    Process_Empty_Choice (Choice);
                                 else
                                    if Is_Out_Of_Range (L, E) then
                                       Apply_Compile_Time_Constraint_Error
                                         (L, "static value out of range",
                                          CE_Range_Check_Failed);
                                    end if;
                                    if Is_Out_Of_Range (H, E) then
                                       Apply_Compile_Time_Constraint_Error
                                         (H, "static value out of range",
                                          CE_Range_Check_Failed);
                                    end if;
                                 end if;
                              end if;
                              --  Check applicable predicate values within the
                              --  bounds of the given range.
                              if Has_Static_Predicate (E) then
                                 Handle_Static_Predicate (E, L, H);
                              else
                                 Check (Choice, L, H);
                              end if;
                           end if;
                        end;
                     end if;
                  --  The others choice is only allowed for the last
                  --  alternative and as its only choice.
                  elsif Kind = N_Others_Choice then
                     if not (Choice = First (Discrete_Choices (Alt))
                              and then Choice = Last (Discrete_Choices (Alt))
                              and then Alt = Last (Alternatives))
                     then
                        Error_Msg_N
                          ("the choice OTHERS must appear alone and last",
                           Choice);
                        return;
                     end if;
                     Others_Present := True;
                     Others_Choice  := Choice;
                  --  Only other possibility is an expression
                  else
                     Check (Choice, Choice, Choice);
                  end if;
                  --  Move to next choice
                  Next (Choice);
               end loop;
               Process_Associated_Node (Alt);
            end if;
            Next (Alt);
         end loop;
         --  Now we can create the Choice_Table, since we know how long
         --  it needs to be so we can allocate exactly the right length.
         declare
            Choice_Table : Choice_Table_Type (0 .. Num_Choices);
         begin
            --  Now copy the items we collected in the linked list into this
            --  newly allocated table (leave entry 0 unused for sorting).
            declare
               T : Link_Ptr;
            begin
               for J in 1 .. Num_Choices loop
                  T := Choice_List;
                  Choice_List := T.Nxt;
                  Choice_Table (J) := T.Val;
                  Free (T);
               end loop;
            end;
            Check_Choice_Set
              (Choice_Table,
               Bounds_Type,
               Subtyp,
               Others_Present or else Choice_Type = Universal_Integer,
               N);
            --  If no others choice we are all done, otherwise we have one more
            --  step, which is to set the Others_Discrete_Choices field of the
            --  others choice (to contain all otherwise unspecified choices).
            --  Skip this if CE is known to be raised.
            if Others_Present and not Raises_CE then
               Expand_Others_Choice
                 (Case_Table    => Choice_Table,
                  Others_Choice => Others_Choice,
                  Choice_Type   => Bounds_Type);
            end if;
         end;
      end Check_Choices;
   end Generic_Check_Choices;
   -----------------------------------------
   --  Has_Static_Discriminant_Constraint --
   -----------------------------------------
   function Has_Static_Discriminant_Constraint
     (Subtyp : Entity_Id) return Boolean
   is
   begin
      if Has_Discriminants (Subtyp) and then Is_Constrained (Subtyp) then
         declare
            DC_Elmt : Elmt_Id := First_Elmt (Discriminant_Constraint (Subtyp));
         begin
            while Present (DC_Elmt) loop
               if not All_Composite_Constraints_Static (Node (DC_Elmt)) then
                  return False;
               end if;
               Next_Elmt (DC_Elmt);
            end loop;
            return True;
         end;
      end if;
      return False;
   end Has_Static_Discriminant_Constraint;
   ----------------------------
   -- Is_Case_Choice_Pattern --
   ----------------------------
   function Is_Case_Choice_Pattern (Expr : Node_Id) return Boolean is
      E : Node_Id := Expr;
   begin
      if not Core_Extensions_Allowed then
         return False;
      end if;
      loop
         case Nkind (E) is
            when N_Case_Statement_Alternative
               | N_Case_Expression_Alternative
            =>
               --  We could return False if selecting expression is discrete,
               --  but this doesn't seem to be worth the bother.
               return True;
            when N_Empty
               | N_Statement_Other_Than_Procedure_Call
               | N_Procedure_Call_Statement
               | N_Declaration
            =>
               return False;
            when others =>
               E := Parent (E);
         end case;
      end loop;
   end Is_Case_Choice_Pattern;
end Sem_Case;
 
     |