1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 2 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2024, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Einfo; use Einfo;
with Einfo.Utils; use Einfo.Utils;
with Ghost; use Ghost;
with Namet; use Namet;
with Nlists; use Nlists;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Sem; use Sem;
with Sem_Ch8; use Sem_Ch8;
with Sem_Dim; use Sem_Dim;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Stand; use Stand;
with Uintp; use Uintp;
package body Sem_Ch2 is
-------------------------------
-- Analyze_Character_Literal --
-------------------------------
procedure Analyze_Character_Literal (N : Node_Id) is
begin
-- The type is eventually inherited from the context. If expansion
-- has already established the proper type, do not modify it.
if No (Etype (N)) then
Set_Etype (N, Any_Character);
end if;
Set_Is_Static_Expression (N);
if Comes_From_Source (N)
and then not In_Character_Range (UI_To_CC (Char_Literal_Value (N)))
then
Check_Restriction (No_Wide_Characters, N);
end if;
end Analyze_Character_Literal;
------------------------
-- Analyze_Identifier --
------------------------
procedure Analyze_Identifier (N : Node_Id) is
begin
-- Ignore call if prior errors, and identifier has no name, since
-- this is the result of some kind of previous error generating a
-- junk identifier.
if not Is_Valid_Name (Chars (N)) and then Total_Errors_Detected /= 0 then
return;
else
Find_Direct_Name (N);
end if;
-- A Ghost entity must appear in a specific context. Only do this
-- checking on non-overloaded expressions, as otherwise we need to
-- wait for resolution, and the checking is done in Resolve_Entity_Name.
if Nkind (N) in N_Expanded_Name | N_Identifier
and then Present (Entity (N))
and then Is_Ghost_Entity (Entity (N))
and then not Is_Overloaded (N)
then
Check_Ghost_Context (Entity (N), N);
end if;
Analyze_Dimension (N);
end Analyze_Identifier;
-----------------------------
-- Analyze_Integer_Literal --
-----------------------------
procedure Analyze_Integer_Literal (N : Node_Id) is
begin
-- As a lexical element, an integer literal has type Universal_Integer,
-- i.e., is compatible with any integer type. This is semantically
-- consistent and simplifies type checking and subsequent constant
-- folding when needed. An exception is caused by 64-bit modular types,
-- whose upper bound is not representable in a nonstatic context that
-- will use 64-bit integers at run time. For such cases, we need to
-- preserve the information that the analyzed literal has that modular
-- type. For simplicity, we preserve the information for all integer
-- literals that result from a modular operation. This happens after
-- prior analysis (or construction) of the literal, and after type
-- checking and resolution.
if No (Etype (N)) or else not Is_Modular_Integer_Type (Etype (N)) then
Set_Etype (N, Universal_Integer);
end if;
Set_Is_Static_Expression (N);
end Analyze_Integer_Literal;
-----------------------------------------
-- Analyze_Interpolated_String_Literal --
-----------------------------------------
procedure Analyze_Interpolated_String_Literal (N : Node_Id) is
Str_Elem : Node_Id;
begin
Set_Etype (N, Any_String);
Str_Elem := First (Expressions (N));
while Present (Str_Elem) loop
Analyze (Str_Elem);
Next (Str_Elem);
end loop;
end Analyze_Interpolated_String_Literal;
--------------------------
-- Analyze_Real_Literal --
--------------------------
procedure Analyze_Real_Literal (N : Node_Id) is
begin
Set_Etype (N, Universal_Real);
Set_Is_Static_Expression (N);
end Analyze_Real_Literal;
----------------------------
-- Analyze_String_Literal --
----------------------------
procedure Analyze_String_Literal (N : Node_Id) is
begin
-- The type is eventually inherited from the context. If expansion
-- has already established the proper type, do not modify it.
if No (Etype (N)) then
Set_Etype (N, Any_String);
end if;
-- String literals are static in Ada 95. Note that if the subtype
-- turns out to be non-static, then the Is_Static_Expression flag
-- will be reset in Eval_String_Literal.
if Ada_Version >= Ada_95 then
Set_Is_Static_Expression (N);
end if;
if Comes_From_Source (N) and then Has_Wide_Character (N) then
Check_Restriction (No_Wide_Characters, N);
end if;
end Analyze_String_Literal;
end Sem_Ch2;
|