| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 
 | ------------------------------------------------------------------------------
--                                                                          --
--                         GNAT COMPILER COMPONENTS                         --
--                                                                          --
--                              S E M _ C H 5                               --
--                                                                          --
--                                 B o d y                                  --
--                                                                          --
--          Copyright (C) 1992-2024, Free Software Foundation, Inc.         --
--                                                                          --
-- GNAT is free software;  you can  redistribute it  and/or modify it under --
-- terms of the  GNU General Public License as published  by the Free Soft- --
-- ware  Foundation;  either version 3,  or (at your option) any later ver- --
-- sion.  GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License --
-- for  more details.  You should have  received  a copy of the GNU General --
-- Public License  distributed with GNAT; see file COPYING3.  If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license.          --
--                                                                          --
-- GNAT was originally developed  by the GNAT team at  New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc.      --
--                                                                          --
------------------------------------------------------------------------------
with Aspects;        use Aspects;
with Atree;          use Atree;
with Checks;         use Checks;
with Debug;          use Debug;
with Einfo;          use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils;    use Einfo.Utils;
with Errout;         use Errout;
with Expander;       use Expander;
with Exp_Ch6;        use Exp_Ch6;
with Exp_Tss;        use Exp_Tss;
with Exp_Util;       use Exp_Util;
with Freeze;         use Freeze;
with Ghost;          use Ghost;
with Lib;            use Lib;
with Lib.Xref;       use Lib.Xref;
with Namet;          use Namet;
with Nlists;         use Nlists;
with Nmake;          use Nmake;
with Opt;            use Opt;
with Sem;            use Sem;
with Sem_Aux;        use Sem_Aux;
with Sem_Case;       use Sem_Case;
with Sem_Ch3;        use Sem_Ch3;
with Sem_Ch6;        use Sem_Ch6;
with Sem_Ch8;        use Sem_Ch8;
with Sem_Dim;        use Sem_Dim;
with Sem_Disp;       use Sem_Disp;
with Sem_Elab;       use Sem_Elab;
with Sem_Eval;       use Sem_Eval;
with Sem_Res;        use Sem_Res;
with Sem_Type;       use Sem_Type;
with Sem_Util;       use Sem_Util;
with Sem_Warn;       use Sem_Warn;
with Snames;         use Snames;
with Stand;          use Stand;
with Sinfo;          use Sinfo;
with Sinfo.Nodes;    use Sinfo.Nodes;
with Sinfo.Utils;    use Sinfo.Utils;
with Targparm;       use Targparm;
with Tbuild;         use Tbuild;
with Ttypes;         use Ttypes;
with Uintp;          use Uintp;
with Warnsw;         use Warnsw;
package body Sem_Ch5 is
   Current_Assignment : Node_Id := Empty;
   --  This variable holds the node for an assignment that contains target
   --  names. The corresponding flag has been set by the parser, and when
   --  set the analysis of the RHS must be done with all expansion disabled,
   --  because the assignment is reanalyzed after expansion has replaced all
   --  occurrences of the target name appropriately.
   Unblocked_Exit_Count : Nat := 0;
   --  This variable is used when processing if statements, case statements,
   --  and block statements. It counts the number of exit points that are not
   --  blocked by unconditional transfer instructions: for IF and CASE, these
   --  are the branches of the conditional; for a block, they are the statement
   --  sequence of the block, and the statement sequences of any exception
   --  handlers that are part of the block. When processing is complete, if
   --  this count is zero, it means that control cannot fall through the IF,
   --  CASE or block statement. This is used for the generation of warning
   --  messages. This variable is recursively saved on entry to processing the
   --  construct, and restored on exit.
   function Has_Sec_Stack_Call (N : Node_Id) return Boolean;
   --  N is the node for an arbitrary construct. This function searches the
   --  construct N to see if it contains a function call that returns on the
   --  secondary stack, returning True if any such call is found, and False
   --  otherwise.
   --  ??? The implementation invokes Sem_Util.Requires_Transient_Scope so it
   --  will return True if N contains a function call that needs finalization,
   --  in addition to the above specification. See Analyze_Loop_Statement for
   --  a similar comment about this entanglement.
   procedure Preanalyze_Range (R_Copy : Node_Id);
   --  Determine expected type of range or domain of iteration of Ada 2012
   --  loop by analyzing separate copy. Do the analysis and resolution of the
   --  copy of the bound(s) with expansion disabled, to prevent the generation
   --  of finalization actions. This prevents memory leaks when the bounds
   --  contain calls to functions returning controlled arrays or when the
   --  domain of iteration is a container.
   ------------------------
   -- Analyze_Assignment --
   ------------------------
   --  WARNING: This routine manages Ghost regions. Return statements must be
   --  replaced by gotos which jump to the end of the routine and restore the
   --  Ghost mode.
   procedure Analyze_Assignment (N : Node_Id) is
      Lhs : constant Node_Id := Name (N);
      Rhs : constant Node_Id := Expression (N);
      procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
      --  N is the node for the left hand side of an assignment, and it is not
      --  a variable. This routine issues an appropriate diagnostic.
      function Is_Protected_Part_Of_Constituent
        (Nod : Node_Id) return Boolean;
      --  Determine whether arbitrary node Nod denotes a Part_Of constituent of
      --  a single protected type.
      procedure Kill_Lhs;
      --  This is called to kill current value settings of a simple variable
      --  on the left hand side. We call it if we find any error in analyzing
      --  the assignment, and at the end of processing before setting any new
      --  current values in place.
      procedure Set_Assignment_Type
        (Opnd      : Node_Id;
         Opnd_Type : in out Entity_Id);
      --  Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
      --  nominal subtype. This procedure is used to deal with cases where the
      --  nominal subtype must be replaced by the actual subtype.
      function Within_Function return Boolean;
      --  Determine whether the current scope is a function or appears within
      --  one.
      -------------------------------
      -- Diagnose_Non_Variable_Lhs --
      -------------------------------
      procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
      begin
         --  Not worth posting another error if left hand side already flagged
         --  as being illegal in some respect.
         if Error_Posted (N) then
            return;
         --  Some special bad cases of entity names
         elsif Is_Entity_Name (N) then
            declare
               Ent : constant Entity_Id := Entity (N);
            begin
               if Ekind (Ent) = E_Loop_Parameter
                 or else Is_Loop_Parameter (Ent)
               then
                  Error_Msg_N ("assignment to loop parameter not allowed", N);
                  return;
               elsif Ekind (Ent) = E_In_Parameter then
                  Error_Msg_N
                    ("assignment to IN mode parameter not allowed", N);
                  return;
               --  Renamings of protected private components are turned into
               --  constants when compiling a protected function. In the case
               --  of single protected types, the private component appears
               --  directly.
               elsif (Is_Prival (Ent) and then Within_Function)
                   or else Is_Protected_Component (Ent)
               then
                  Error_Msg_N
                    ("protected function cannot modify its protected object",
                     N);
                  return;
               end if;
            end;
         --  For indexed components, test prefix if it is in array. We do not
         --  want to recurse for cases where the prefix is a pointer, since we
         --  may get a message confusing the pointer and what it references.
         elsif Nkind (N) = N_Indexed_Component
           and then Is_Array_Type (Etype (Prefix (N)))
         then
            Diagnose_Non_Variable_Lhs (Prefix (N));
            return;
         --  Another special case for assignment to discriminant
         elsif Nkind (N) = N_Selected_Component then
            if Present (Entity (Selector_Name (N)))
              and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
            then
               Error_Msg_N ("assignment to discriminant not allowed", N);
               return;
            --  For selection from record, diagnose prefix, but note that again
            --  we only do this for a record, not e.g. for a pointer.
            elsif Is_Record_Type (Etype (Prefix (N))) then
               Diagnose_Non_Variable_Lhs (Prefix (N));
               return;
            end if;
         end if;
         --  If we fall through, we have no special message to issue
         Error_Msg_N ("left hand side of assignment must be a variable", N);
      end Diagnose_Non_Variable_Lhs;
      --------------------------------------
      -- Is_Protected_Part_Of_Constituent --
      --------------------------------------
      function Is_Protected_Part_Of_Constituent
        (Nod : Node_Id) return Boolean
      is
         Encap_Id : Entity_Id;
         Var_Id   : Entity_Id;
      begin
         --  Abstract states and variables may act as Part_Of constituents of
         --  single protected types, however only variables can be modified by
         --  an assignment.
         if Is_Entity_Name (Nod) then
            Var_Id := Entity (Nod);
            if Present (Var_Id) and then Ekind (Var_Id) = E_Variable then
               Encap_Id := Encapsulating_State (Var_Id);
               --  To qualify, the node must denote a reference to a variable
               --  whose encapsulating state is a single protected object.
               return
                 Present (Encap_Id)
                   and then Is_Single_Protected_Object (Encap_Id);
            end if;
         end if;
         return False;
      end Is_Protected_Part_Of_Constituent;
      --------------
      -- Kill_Lhs --
      --------------
      procedure Kill_Lhs is
      begin
         if Is_Entity_Name (Lhs) then
            declare
               Ent : constant Entity_Id := Entity (Lhs);
            begin
               if Present (Ent) then
                  Kill_Current_Values (Ent);
               end if;
            end;
         end if;
      end Kill_Lhs;
      -------------------------
      -- Set_Assignment_Type --
      -------------------------
      procedure Set_Assignment_Type
        (Opnd      : Node_Id;
         Opnd_Type : in out Entity_Id)
      is
         Decl : Node_Id;
      begin
         Require_Entity (Opnd);
         --  If the assignment operand is an in-out or out parameter, then we
         --  get the actual subtype (needed for the unconstrained case). If the
         --  operand is the actual in an entry declaration, then within the
         --  accept statement it is replaced with a local renaming, which may
         --  also have an actual subtype. Likewise for a return object that
         --  lives on the secondary stack.
         if Is_Entity_Name (Opnd)
           and then (Ekind (Entity (Opnd)) in E_Out_Parameter
                                            | E_In_Out_Parameter
                                            | E_Generic_In_Out_Parameter
                      or else
                        (Ekind (Entity (Opnd)) = E_Variable
                          and then Nkind (Parent (Entity (Opnd))) =
                                     N_Object_Renaming_Declaration
                          and then Nkind (Parent (Parent (Entity (Opnd)))) =
                                     N_Accept_Statement)
                      or else Is_Secondary_Stack_Return_Object (Entity (Opnd)))
         then
            Opnd_Type := Get_Actual_Subtype (Opnd);
         --  If the assignment operand is a component reference, then we build
         --  the actual subtype of the component for the unconstrained case,
         --  unless there is already one or the type is an unchecked union.
         elsif (Nkind (Opnd) = N_Selected_Component
                 or else (Nkind (Opnd) = N_Explicit_Dereference
                           and then No (Actual_Designated_Subtype (Opnd))))
           and then not Is_Unchecked_Union (Opnd_Type)
         then
            Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
            if Present (Decl) then
               Insert_Action (N, Decl);
               Mark_Rewrite_Insertion (Decl);
               Analyze (Decl);
               Opnd_Type := Defining_Identifier (Decl);
               Set_Etype (Opnd, Opnd_Type);
               Freeze_Itype (Opnd_Type, N);
            elsif Is_Constrained (Etype (Opnd)) then
               Opnd_Type := Etype (Opnd);
            end if;
         --  For slice, use the constrained subtype created for the slice
         elsif Nkind (Opnd) = N_Slice then
            Opnd_Type := Etype (Opnd);
         end if;
      end Set_Assignment_Type;
      ---------------------
      -- Within_Function --
      ---------------------
      function Within_Function return Boolean is
         Scop_Id : constant Entity_Id := Current_Scope;
      begin
         if Ekind (Scop_Id) = E_Function then
            return True;
         elsif Ekind (Enclosing_Dynamic_Scope (Scop_Id)) = E_Function then
            return True;
         end if;
         return False;
      end Within_Function;
      --  Local variables
      Saved_GM  : constant Ghost_Mode_Type := Ghost_Mode;
      Saved_IGR : constant Node_Id         := Ignored_Ghost_Region;
      --  Save the Ghost-related attributes to restore on exit
      T1 : Entity_Id;
      T2 : Entity_Id;
      Save_Full_Analysis : Boolean := False;
      --  Force initialization to facilitate static analysis
   --  Start of processing for Analyze_Assignment
   begin
      Mark_Coextensions (N, Rhs);
      --  Preserve relevant elaboration-related attributes of the context which
      --  are no longer available or very expensive to recompute once analysis,
      --  resolution, and expansion are over.
      Mark_Elaboration_Attributes
        (N_Id   => N,
         Checks => True,
         Modes  => True);
      --  An assignment statement is Ghost when the left hand side denotes a
      --  Ghost entity. Set the mode now to ensure that any nodes generated
      --  during analysis and expansion are properly marked as Ghost.
      Mark_And_Set_Ghost_Assignment (N);
      if Has_Target_Names (N) then
         pragma Assert (No (Current_Assignment));
         Current_Assignment := N;
         Expander_Mode_Save_And_Set (False);
         Save_Full_Analysis := Full_Analysis;
         Full_Analysis      := False;
      end if;
      Analyze (Lhs);
      Analyze (Rhs);
      --  Ensure that we never do an assignment on a variable marked as
      --  Is_Safe_To_Reevaluate.
      pragma Assert
        (not Is_Entity_Name (Lhs)
          or else Ekind (Entity (Lhs)) /= E_Variable
          or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
      --  Start type analysis for assignment
      T1 := Etype (Lhs);
      --  In the most general case, both Lhs and Rhs can be overloaded, and we
      --  must compute the intersection of the possible types on each side.
      if Is_Overloaded (Lhs) then
         declare
            I  : Interp_Index;
            It : Interp;
         begin
            T1 := Any_Type;
            Get_First_Interp (Lhs, I, It);
            while Present (It.Typ) loop
               --  An indexed component with generalized indexing is always
               --  overloaded with the corresponding dereference. Discard the
               --  interpretation that yields a reference type, which is not
               --  assignable.
               if Nkind (Lhs) = N_Indexed_Component
                 and then Present (Generalized_Indexing (Lhs))
                 and then Has_Implicit_Dereference (It.Typ)
               then
                  null;
               --  This may be a call to a parameterless function through an
               --  implicit dereference, so discard interpretation as well.
               elsif Is_Entity_Name (Lhs)
                 and then Has_Implicit_Dereference (It.Typ)
               then
                  null;
               elsif Has_Compatible_Type (Rhs, It.Typ) then
                  if T1 = Any_Type then
                     T1 := It.Typ;
                  else
                     --  An explicit dereference is overloaded if the prefix
                     --  is. Try to remove the ambiguity on the prefix, the
                     --  error will be posted there if the ambiguity is real.
                     if Nkind (Lhs) = N_Explicit_Dereference then
                        declare
                           PI    : Interp_Index;
                           PI1   : Interp_Index := 0;
                           PIt   : Interp;
                           Found : Boolean;
                        begin
                           Found := False;
                           Get_First_Interp (Prefix (Lhs), PI, PIt);
                           while Present (PIt.Typ) loop
                              if Is_Access_Type (PIt.Typ)
                                and then Has_Compatible_Type
                                           (Rhs, Designated_Type (PIt.Typ))
                              then
                                 if Found then
                                    PIt :=
                                      Disambiguate (Prefix (Lhs),
                                        PI1, PI, Any_Type);
                                    if PIt = No_Interp then
                                       Error_Msg_N
                                         ("ambiguous left-hand side in "
                                          & "assignment", Lhs);
                                       exit;
                                    else
                                       Resolve (Prefix (Lhs), PIt.Typ);
                                    end if;
                                    exit;
                                 else
                                    Found := True;
                                    PI1 := PI;
                                 end if;
                              end if;
                              Get_Next_Interp (PI, PIt);
                           end loop;
                        end;
                     else
                        Error_Msg_N
                          ("ambiguous left-hand side in assignment", Lhs);
                        exit;
                     end if;
                  end if;
               end if;
               Get_Next_Interp (I, It);
            end loop;
         end;
         if T1 = Any_Type then
            Error_Msg_N
              ("no valid types for left-hand side for assignment", Lhs);
            Kill_Lhs;
            goto Leave;
         end if;
      end if;
      --  The resulting assignment type is T1, so now we will resolve the left
      --  hand side of the assignment using this determined type.
      Resolve (Lhs, T1);
      --  Cases where Lhs is not a variable. In an instance or an inlined body
      --  no need for further check because assignment was legal in template.
      if In_Inlined_Body then
         null;
      elsif not Is_Variable (Lhs) then
         --  Ada 2005 (AI-327): Check assignment to the attribute Priority of a
         --  protected object.
         declare
            Ent : Entity_Id;
            S   : Entity_Id;
         begin
            if Ada_Version >= Ada_2005 then
               --  Handle chains of renamings
               Ent := Lhs;
               while Nkind (Ent) in N_Has_Entity
                 and then Present (Entity (Ent))
                 and then Is_Object (Entity (Ent))
                 and then Present (Renamed_Object (Entity (Ent)))
               loop
                  Ent := Renamed_Object (Entity (Ent));
               end loop;
               if (Nkind (Ent) = N_Attribute_Reference
                    and then Attribute_Name (Ent) = Name_Priority)
                  --  Renamings of the attribute Priority applied to protected
                  --  objects have been previously expanded into calls to the
                  --  Get_Ceiling run-time subprogram.
                 or else Is_Expanded_Priority_Attribute (Ent)
               then
                  --  The enclosing subprogram cannot be a protected function
                  S := Current_Scope;
                  while not (Is_Subprogram (S)
                              and then Convention (S) = Convention_Protected)
                     and then S /= Standard_Standard
                  loop
                     S := Scope (S);
                  end loop;
                  if Ekind (S) = E_Function
                    and then Convention (S) = Convention_Protected
                  then
                     Error_Msg_N
                       ("protected function cannot modify its protected " &
                        "object",
                        Lhs);
                  end if;
                  --  Changes of the ceiling priority of the protected object
                  --  are only effective if the Ceiling_Locking policy is in
                  --  effect (AARM D.5.2 (5/2)).
                  if Locking_Policy /= 'C' then
                     Error_Msg_N
                       ("assignment to the attribute PRIORITY has no effect??",
                        Lhs);
                     Error_Msg_N
                       ("\since no Locking_Policy has been specified??", Lhs);
                  end if;
                  goto Leave;
               end if;
            end if;
         end;
         Diagnose_Non_Variable_Lhs (Lhs);
         goto Leave;
      --  Error of assigning to limited type. We do however allow this in
      --  certain cases where the front end generates the assignments.
      elsif Is_Limited_Type (T1)
        and then not Assignment_OK (Lhs)
        and then not Assignment_OK (Original_Node (Lhs))
      then
         --  CPP constructors can only be called in declarations
         if Is_CPP_Constructor_Call (Rhs) then
            Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
         else
            Error_Msg_N
              ("left hand of assignment must not be limited type", Lhs);
            Explain_Limited_Type (T1, Lhs);
         end if;
         goto Leave;
      --  A class-wide type may be a limited view. This illegal case is not
      --  caught by previous checks.
      elsif Ekind (T1) = E_Class_Wide_Type and then From_Limited_With (T1) then
         Error_Msg_NE ("invalid use of limited view of&", Lhs, T1);
         goto Leave;
      --  Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
      --  abstract. This is only checked when the assignment Comes_From_Source,
      --  because in some cases the expander generates such assignments (such
      --  in the _assign operation for an abstract type).
      elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
         Error_Msg_N
           ("target of assignment operation must not be abstract", Lhs);
      end if;
      --  Variables which are Part_Of constituents of single protected types
      --  behave in similar fashion to protected components. Such variables
      --  cannot be modified by protected functions.
      if Is_Protected_Part_Of_Constituent (Lhs) and then Within_Function then
         Error_Msg_N
           ("protected function cannot modify its protected object", Lhs);
      end if;
      --  Resolution may have updated the subtype, in case the left-hand side
      --  is a private protected component. Use the correct subtype to avoid
      --  scoping issues in the back-end.
      T1 := Etype (Lhs);
      --  Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
      --  type. For example:
      --    limited with P;
      --    package Pkg is
      --      type Acc is access P.T;
      --    end Pkg;
      --    with Pkg; use Acc;
      --    procedure Example is
      --       A, B : Acc;
      --    begin
      --       A.all := B.all;  -- ERROR
      --    end Example;
      if Nkind (Lhs) = N_Explicit_Dereference
        and then Ekind (T1) = E_Incomplete_Type
      then
         Error_Msg_N ("invalid use of incomplete type", Lhs);
         Kill_Lhs;
         goto Leave;
      end if;
      --  Now we can complete the resolution of the right hand side
      Set_Assignment_Type (Lhs, T1);
      --  If the target of the assignment is an entity of a mutable type and
      --  the expression is a conditional expression, its alternatives can be
      --  of different subtypes of the nominal type of the LHS, so they must be
      --  resolved with the base type, given that their subtype may differ from
      --  that of the target mutable object.
      if Is_Entity_Name (Lhs)
        and then Is_Assignable (Entity (Lhs))
        and then Is_Composite_Type (T1)
        and then not Is_Constrained (Etype (Entity (Lhs)))
        and then Nkind (Rhs) in N_If_Expression | N_Case_Expression
      then
         Resolve (Rhs, Base_Type (T1));
      else
         Resolve (Rhs, T1);
      end if;
      --  This is the point at which we check for an unset reference
      Check_Unset_Reference (Rhs);
      Check_Unprotected_Access (Lhs, Rhs);
      --  Remaining steps are skipped if Rhs was syntactically in error
      if Rhs = Error then
         Kill_Lhs;
         goto Leave;
      end if;
      T2 := Etype (Rhs);
      if not Covers (T1, T2) then
         Wrong_Type (Rhs, Etype (Lhs));
         Kill_Lhs;
         goto Leave;
      end if;
      --  Ada 2005 (AI-326): In case of explicit dereference of incomplete
      --  types, use the non-limited view if available
      if Nkind (Rhs) = N_Explicit_Dereference
        and then Is_Tagged_Type (T2)
        and then Has_Non_Limited_View (T2)
      then
         T2 := Non_Limited_View (T2);
      end if;
      Set_Assignment_Type (Rhs, T2);
      if Total_Errors_Detected /= 0 then
         if No (T1) then
            T1 := Any_Type;
         end if;
         if No (T2) then
            T2 := Any_Type;
         end if;
      end if;
      if T1 = Any_Type or else T2 = Any_Type then
         Kill_Lhs;
         goto Leave;
      end if;
      --  If the rhs is class-wide or dynamically tagged, then require the lhs
      --  to be class-wide. The case where the rhs is a dynamically tagged call
      --  to a dispatching operation with a controlling access result is
      --  excluded from this check, since the target has an access type (and
      --  no tag propagation occurs in that case).
      if (Is_Class_Wide_Type (T2)
           or else (Is_Dynamically_Tagged (Rhs)
                     and then not Is_Access_Type (T1)))
        and then not Is_Class_Wide_Type (T1)
      then
         Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
      elsif Is_Class_Wide_Type (T1)
        and then not Is_Class_Wide_Type (T2)
        and then not Is_Tag_Indeterminate (Rhs)
        and then not Is_Dynamically_Tagged (Rhs)
      then
         Error_Msg_N ("dynamically tagged expression required!", Rhs);
      end if;
      --  Propagate the tag from a class-wide target to the rhs when the rhs
      --  is a tag-indeterminate call.
      if Is_Tag_Indeterminate (Rhs) then
         if Is_Class_Wide_Type (T1) then
            Propagate_Tag (Lhs, Rhs);
         elsif Nkind (Rhs) = N_Function_Call
           and then Is_Entity_Name (Name (Rhs))
           and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
         then
            Error_Msg_N
              ("call to abstract function must be dispatching", Name (Rhs));
         elsif Nkind (Rhs) = N_Qualified_Expression
           and then Nkind (Expression (Rhs)) = N_Function_Call
              and then Is_Entity_Name (Name (Expression (Rhs)))
              and then
                Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
         then
            Error_Msg_N
              ("call to abstract function must be dispatching",
                Name (Expression (Rhs)));
         end if;
      end if;
      --  Ada 2005 (AI-385): When the lhs type is an anonymous access type,
      --  apply an implicit conversion of the rhs to that type to force
      --  appropriate static and run-time accessibility checks. This applies
      --  as well to anonymous access-to-subprogram types that are component
      --  subtypes or formal parameters.
      if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
         if Is_Local_Anonymous_Access (T1)
           or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
           --  Handle assignment to an Ada 2012 stand-alone object
           --  of an anonymous access type.
           or else (Ekind (T1) = E_Anonymous_Access_Type
                     and then Nkind (Associated_Node_For_Itype (T1)) =
                                                       N_Object_Declaration)
         then
            Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
            Analyze_And_Resolve (Rhs, T1);
         end if;
      end if;
      --  Ada 2005 (AI-231): Assignment to not null variable
      if Ada_Version >= Ada_2005
        and then Can_Never_Be_Null (T1)
        and then not Assignment_OK (Lhs)
      then
         --  Case where we know the right hand side is null
         if Known_Null (Rhs) then
            Apply_Compile_Time_Constraint_Error
              (N      => Rhs,
               Msg    =>
                 "(Ada 2005) NULL not allowed in null-excluding objects??",
               Reason => CE_Null_Not_Allowed);
            --  We still mark this as a possible modification, that's necessary
            --  to reset Is_True_Constant, and desirable for xref purposes.
            Note_Possible_Modification (Lhs, Sure => True);
            goto Leave;
         --  If we know the right hand side is non-null, then we convert to the
         --  target type, since we don't need a run time check in that case.
         elsif not Can_Never_Be_Null (T2) then
            Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
            Analyze_And_Resolve (Rhs, T1);
         end if;
      end if;
      if Is_Scalar_Type (T1) then
         declare
            function Omit_Range_Check_For_Streaming return Boolean;
            --  Return True if this assignment statement is the expansion of
            --  a Some_Scalar_Type'Read procedure call such that all conditions
            --  of 13.3.2(35)'s "no check is made" rule are met.
            ------------------------------------
            -- Omit_Range_Check_For_Streaming --
            ------------------------------------
            function Omit_Range_Check_For_Streaming return Boolean is
            begin
               --  Have we got an implicitly generated assignment to a
               --  component of a composite object? If not, return False.
               if Comes_From_Source (N)
                 or else Serious_Errors_Detected > 0
                 or else Nkind (Lhs)
                           not in N_Selected_Component | N_Indexed_Component
               then
                  return False;
               end if;
               declare
                  Pref : constant Node_Id := Prefix (Lhs);
               begin
                  --  Are we in the implicitly-defined Read subprogram
                  --  for a composite type, reading the value of a scalar
                  --  component from the stream? If not, return False.
                  if Nkind (Pref) /= N_Identifier
                    or else not Is_TSS (Scope (Entity (Pref)), TSS_Stream_Read)
                  then
                     return False;
                  end if;
                  --  Return False if Default_Value or Default_Component_Value
                  --  aspect applies.
                  if Has_Default_Aspect (Etype (Lhs))
                    or else Has_Default_Aspect (Etype (Pref))
                  then
                     return False;
                  --  Are we assigning to a record component (as opposed to
                  --  an array component)?
                  elsif Nkind (Lhs) = N_Selected_Component then
                     --  Are we assigning to a nondiscriminant component
                     --  that lacks a default initial value expression?
                     --  If so, return True.
                     declare
                        Comp_Id : constant Entity_Id :=
                          Original_Record_Component
                            (Entity (Selector_Name (Lhs)));
                     begin
                        if Ekind (Comp_Id) = E_Component
                          and then Nkind (Parent (Comp_Id))
                                     = N_Component_Declaration
                          and then No (Expression (Parent (Comp_Id)))
                        then
                           return True;
                        end if;
                        return False;
                     end;
                  --  We are assigning to a component of an array
                  --  (and we tested for both Default_Value and
                  --  Default_Component_Value above), so return True.
                  else
                     pragma Assert (Nkind (Lhs) = N_Indexed_Component);
                     return True;
                  end if;
               end;
            end Omit_Range_Check_For_Streaming;
         begin
            if not Omit_Range_Check_For_Streaming then
               Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
            end if;
         end;
      --  For array types, verify that lengths match. If the right hand side
      --  is a function call that has been inlined, the assignment has been
      --  rewritten as a block, and the constraint check will be applied to the
      --  assignment within the block.
      elsif Is_Array_Type (T1)
        and then (Nkind (Rhs) /= N_Type_Conversion
                   or else Is_Constrained (Etype (Rhs)))
        and then (Nkind (Rhs) /= N_Function_Call
                   or else Nkind (N) /= N_Block_Statement)
      then
         --  Assignment verifies that the length of the Lhs and Rhs are equal,
         --  but of course the indexes do not have to match. If the right-hand
         --  side is a type conversion to an unconstrained type, a length check
         --  is performed on the expression itself during expansion. In rare
         --  cases, the redundant length check is computed on an index type
         --  with a different representation, triggering incorrect code in the
         --  back end.
         Apply_Length_Check_On_Assignment (Rhs, Etype (Lhs), Lhs);
      else
         --  Discriminant checks are applied in the course of expansion
         null;
      end if;
      --  Note: modifications of the Lhs may only be recorded after
      --  checks have been applied.
      Note_Possible_Modification (Lhs, Sure => True);
      --  ??? a real accessibility check is needed when ???
      --  Post warning for redundant assignment or variable to itself
      if Warn_On_Redundant_Constructs
         --  We only warn for source constructs
         and then Comes_From_Source (N)
         --  Where the object is the same on both sides
         and then Same_Object (Lhs, Rhs)
         --  But exclude the case where the right side was an operation that
         --  got rewritten (e.g. JUNK + K, where K was known to be zero). We
         --  don't want to warn in such a case, since it is reasonable to write
         --  such expressions especially when K is defined symbolically in some
         --  other package.
        and then Nkind (Original_Node (Rhs)) not in N_Op
      then
         if Nkind (Lhs) in N_Has_Entity then
            Error_Msg_NE -- CODEFIX
              ("?r?useless assignment of & to itself!", N, Entity (Lhs));
         else
            Error_Msg_N -- CODEFIX
              ("?r?useless assignment of object to itself!", N);
         end if;
      end if;
      --  Check for non-allowed composite assignment
      if not Support_Composite_Assign_On_Target
        and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
        and then (not Has_Size_Clause (T1)
                   or else Esize (T1) > Ttypes.System_Max_Integer_Size)
      then
         Error_Msg_CRT ("composite assignment", N);
      end if;
      --  Check elaboration warning for left side if not in elab code
      if Legacy_Elaboration_Checks
        and not In_Subprogram_Or_Concurrent_Unit
      then
         Check_Elab_Assign (Lhs);
      end if;
      --  Save the scenario for later examination by the ABE Processing phase
      Record_Elaboration_Scenario (N);
      --  Set Referenced_As_LHS if appropriate. We are not interested in
      --  compiler-generated assignment statements, nor in references outside
      --  the extended main source unit. We check whether the Original_Node is
      --  in the extended main source unit because in the case of a renaming of
      --  a component of a packed array, the Lhs itself has a Sloc from the
      --  place of the renaming.
      if Comes_From_Source (N)
        and then (In_Extended_Main_Source_Unit (Lhs)
          or else In_Extended_Main_Source_Unit (Original_Node (Lhs)))
      then
         Set_Referenced_Modified (Lhs, Out_Param => False);
      end if;
      --  RM 7.3.2 (12/3): An assignment to a view conversion (from a type to
      --  one of its ancestors) requires an invariant check. Apply check only
      --  if expression comes from source, otherwise it will be applied when
      --  value is assigned to source entity. This is not done in GNATprove
      --  mode, as GNATprove handles invariant checks itself.
      if Nkind (Lhs) = N_Type_Conversion
        and then Has_Invariants (Etype (Expression (Lhs)))
        and then Comes_From_Source (Expression (Lhs))
        and then not GNATprove_Mode
      then
         Insert_After (N, Make_Invariant_Call (Expression (Lhs)));
      end if;
      --  Final step. If left side is an entity, then we may be able to reset
      --  the current tracked values to new safe values. We only have something
      --  to do if the left side is an entity name, and expansion has not
      --  modified the node into something other than an assignment, and of
      --  course we only capture values if it is safe to do so.
      if Is_Entity_Name (Lhs)
        and then Nkind (N) = N_Assignment_Statement
      then
         declare
            Ent : constant Entity_Id := Entity (Lhs);
         begin
            if Safe_To_Capture_Value (N, Ent) then
               --  If simple variable on left side, warn if this assignment
               --  blots out another one (rendering it useless). We only do
               --  this for source assignments, otherwise we can generate bogus
               --  warnings when an assignment is rewritten as another
               --  assignment, and gets tied up with itself.
               --  We also omit the warning if the RHS includes target names,
               --  that is to say the Ada 2022 "@" that denotes an instance of
               --  the LHS, which indicates that the current value is being
               --  used. Note that this implicit reference to the entity on
               --  the RHS is not treated as a source reference.
               --  There may have been a previous reference to a component of
               --  the variable, which in general removes the Last_Assignment
               --  field of the variable to indicate a relevant use of the
               --  previous assignment.
               if Warn_On_Modified_Unread
                 and then Is_Assignable (Ent)
                 and then Comes_From_Source (N)
                 and then In_Extended_Main_Source_Unit (Ent)
                 and then not Has_Target_Names (N)
               then
                  Warn_On_Useless_Assignment (Ent, N);
               end if;
               --  If we are assigning an access type and the left side is an
               --  entity, then make sure that the Is_Known_[Non_]Null flags
               --  properly reflect the state of the entity after assignment.
               if Is_Access_Type (T1) then
                  if Known_Non_Null (Rhs) then
                     Set_Is_Known_Non_Null (Ent, True);
                  elsif Known_Null (Rhs)
                    and then not Can_Never_Be_Null (Ent)
                  then
                     Set_Is_Known_Null (Ent, True);
                  else
                     Set_Is_Known_Null (Ent, False);
                     if not Can_Never_Be_Null (Ent) then
                        Set_Is_Known_Non_Null (Ent, False);
                     end if;
                  end if;
               --  For discrete types, we may be able to set the current value
               --  if the value is known at compile time.
               elsif Is_Discrete_Type (T1)
                 and then Compile_Time_Known_Value (Rhs)
               then
                  Set_Current_Value (Ent, Rhs);
               else
                  Set_Current_Value (Ent, Empty);
               end if;
            --  If not safe to capture values, kill them
            else
               Kill_Lhs;
            end if;
         end;
      end if;
      --  If assigning to an object in whole or in part, note location of
      --  assignment in case no one references value. We only do this for
      --  source assignments, otherwise we can generate bogus warnings when an
      --  assignment is rewritten as another assignment, and gets tied up with
      --  itself.
      declare
         Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
      begin
         if Present (Ent)
           and then Safe_To_Capture_Value (N, Ent)
           and then Nkind (N) = N_Assignment_Statement
           and then Warn_On_Modified_Unread
           and then Is_Assignable (Ent)
           and then Comes_From_Source (N)
           and then In_Extended_Main_Source_Unit (Ent)
         then
            Set_Last_Assignment (Ent, Lhs);
         end if;
      end;
      Analyze_Dimension (N);
   <<Leave>>
      Restore_Ghost_Region (Saved_GM, Saved_IGR);
      --  If the right-hand side contains target names, expansion has been
      --  disabled to prevent expansion that might move target names out of
      --  the context of the assignment statement. Restore the expander mode
      --  now so that assignment statement can be properly expanded.
      if Nkind (N) = N_Assignment_Statement then
         if Has_Target_Names (N) then
            Expander_Mode_Restore;
            Full_Analysis := Save_Full_Analysis;
            Current_Assignment := Empty;
         end if;
      end if;
   end Analyze_Assignment;
   -----------------------------
   -- Analyze_Block_Statement --
   -----------------------------
   procedure Analyze_Block_Statement (N : Node_Id) is
      procedure Install_Return_Entities (Scop : Entity_Id);
      --  Install all entities of return statement scope Scop in the visibility
      --  chain except for the return object since its entity is reused in a
      --  renaming.
      -----------------------------
      -- Install_Return_Entities --
      -----------------------------
      procedure Install_Return_Entities (Scop : Entity_Id) is
         Id : Entity_Id;
      begin
         Id := First_Entity (Scop);
         while Present (Id) loop
            --  Do not install the return object
            if Ekind (Id) not in E_Constant | E_Variable
              or else not Is_Return_Object (Id)
            then
               Install_Entity (Id);
            end if;
            Next_Entity (Id);
         end loop;
      end Install_Return_Entities;
      --  Local constants and variables
      Decls : constant List_Id := Declarations (N);
      Id    : constant Node_Id := Identifier (N);
      HSS   : constant Node_Id := Handled_Statement_Sequence (N);
      Is_BIP_Return_Statement : Boolean;
   --  Start of processing for Analyze_Block_Statement
   begin
      --  If no handled statement sequence is present, things are really messed
      --  up, and we just return immediately (defence against previous errors).
      if No (HSS) then
         Check_Error_Detected;
         return;
      end if;
      --  Detect whether the block is actually a rewritten return statement of
      --  a build-in-place function.
      Is_BIP_Return_Statement :=
        Present (Id)
          and then Present (Entity (Id))
          and then Ekind (Entity (Id)) = E_Return_Statement
          and then Is_Build_In_Place_Function
                     (Return_Applies_To (Entity (Id)));
      --  Normal processing with HSS present
      declare
         EH  : constant List_Id := Exception_Handlers (HSS);
         Ent : Entity_Id        := Empty;
         S   : Entity_Id;
         Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
         --  Recursively save value of this global, will be restored on exit
      begin
         --  Initialize unblocked exit count for statements of begin block
         --  plus one for each exception handler that is present.
         Unblocked_Exit_Count := 1 + List_Length (EH);
         --  If a label is present analyze it and mark it as referenced
         if Present (Id) then
            Analyze (Id);
            Ent := Entity (Id);
            --  An error defense. If we have an identifier, but no entity, then
            --  something is wrong. If previous errors, then just remove the
            --  identifier and continue, otherwise raise an exception.
            if No (Ent) then
               Check_Error_Detected;
               Set_Identifier (N, Empty);
            else
               if Ekind (Ent) = E_Label then
                  Reinit_Field_To_Zero (Ent, F_Enclosing_Scope);
               end if;
               Mutate_Ekind (Ent, E_Block);
               Generate_Reference (Ent, N, ' ');
               Generate_Definition (Ent);
               if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
                  Set_Label_Construct (Parent (Ent), N);
               end if;
            end if;
         end if;
         --  If no entity set, create a label entity
         if No (Ent) then
            Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
            Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
            Set_Parent (Ent, N);
         end if;
         Set_Etype (Ent, Standard_Void_Type);
         Set_Block_Node (Ent, Identifier (N));
         Push_Scope (Ent);
         --  The block served as an extended return statement. Ensure that any
         --  entities created during the analysis and expansion of the return
         --  object declaration are once again visible.
         if Is_BIP_Return_Statement then
            Install_Return_Entities (Ent);
         end if;
         if Present (Decls) then
            Analyze_Declarations (Decls);
            Check_Completion;
            Inspect_Deferred_Constant_Completion (Decls);
         end if;
         Analyze (HSS);
         Process_End_Label (HSS, 'e', Ent);
         --  If exception handlers are present, then we indicate that enclosing
         --  scopes contain a block with handlers. We only need to mark non-
         --  generic scopes.
         if Present (EH) then
            S := Scope (Ent);
            loop
               Set_Has_Nested_Block_With_Handler (S);
               exit when Is_Overloadable (S)
                 or else Ekind (S) = E_Package
                 or else Is_Generic_Unit (S);
               S := Scope (S);
            end loop;
         end if;
         Check_References (Ent);
         Update_Use_Clause_Chain;
         End_Scope;
         if Unblocked_Exit_Count = 0 then
            Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
            Check_Unreachable_Code (N);
         else
            Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
         end if;
      end;
   end Analyze_Block_Statement;
   --------------------------------
   -- Analyze_Compound_Statement --
   --------------------------------
   procedure Analyze_Compound_Statement (N : Node_Id) is
   begin
      Analyze_List (Actions (N));
   end Analyze_Compound_Statement;
   ----------------------------
   -- Analyze_Case_Statement --
   ----------------------------
   procedure Analyze_Case_Statement (N : Node_Id) is
      Exp : constant Node_Id := Expression (N);
      Statements_Analyzed : Boolean := False;
      --  Set True if at least some statement sequences get analyzed. If False
      --  on exit, means we had a serious error that prevented full analysis of
      --  the case statement, and as a result it is not a good idea to output
      --  warning messages about unreachable code.
      Is_General_Case_Statement : Boolean := False;
      --  Set True (later) if type of case expression is not discrete
      procedure Non_Static_Choice_Error (Choice : Node_Id);
      --  Error routine invoked by the generic instantiation below when the
      --  case statement has a non static choice.
      procedure Process_Statements (Alternative : Node_Id);
      --  Analyzes the statements associated with a case alternative. Needed
      --  by instantiation below.
      package Analyze_Case_Choices is new
        Generic_Analyze_Choices
          (Process_Associated_Node   => Process_Statements);
      use Analyze_Case_Choices;
      --  Instantiation of the generic choice analysis package
      package Check_Case_Choices is new
        Generic_Check_Choices
          (Process_Empty_Choice      => No_OP,
           Process_Non_Static_Choice => Non_Static_Choice_Error,
           Process_Associated_Node   => No_OP);
      use Check_Case_Choices;
      --  Instantiation of the generic choice processing package
      -----------------------------
      -- Non_Static_Choice_Error --
      -----------------------------
      procedure Non_Static_Choice_Error (Choice : Node_Id) is
      begin
         Flag_Non_Static_Expr
           ("choice given in case statement is not static!", Choice);
      end Non_Static_Choice_Error;
      ------------------------
      -- Process_Statements --
      ------------------------
      procedure Process_Statements (Alternative : Node_Id) is
         Choices : constant List_Id := Discrete_Choices (Alternative);
         Ent     : Entity_Id;
      begin
         if Is_General_Case_Statement then
            return;
            --  Processing deferred in this case; decls associated with
            --  pattern match bindings don't exist yet.
         end if;
         Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
         Statements_Analyzed := True;
         --  An interesting optimization. If the case statement expression
         --  is a simple entity, then we can set the current value within an
         --  alternative if the alternative has one possible value.
         --    case N is
         --      when 1      => alpha
         --      when 2 | 3  => beta
         --      when others => gamma
         --  Here we know that N is initially 1 within alpha, but for beta and
         --  gamma, we do not know anything more about the initial value.
         if Is_Entity_Name (Exp) then
            Ent := Entity (Exp);
            if Is_Object (Ent) then
               if List_Length (Choices) = 1
                 and then Nkind (First (Choices)) in N_Subexpr
                 and then Compile_Time_Known_Value (First (Choices))
               then
                  Set_Current_Value (Entity (Exp), First (Choices));
               end if;
               Analyze_Statements (Statements (Alternative));
               --  After analyzing the case, set the current value to empty
               --  since we won't know what it is for the next alternative
               --  (unless reset by this same circuit), or after the case.
               Set_Current_Value (Entity (Exp), Empty);
               return;
            end if;
         end if;
         --  Case where expression is not an entity name of an object
         Analyze_Statements (Statements (Alternative));
      end Process_Statements;
      --  Local variables
      Exp_Type  : Entity_Id;
      Exp_Btype : Entity_Id;
      Others_Present : Boolean;
      --  Indicates if Others was present
      Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
      --  Recursively save value of this global, will be restored on exit
   --  Start of processing for Analyze_Case_Statement
   begin
      Analyze (Exp);
      --  The expression must be of any discrete type. In rare cases, the
      --  expander constructs a case statement whose expression has a private
      --  type whose full view is discrete. This can happen when generating
      --  a stream operation for a variant type after the type is frozen,
      --  when the partial of view of the type of the discriminant is private.
      --  In that case, use the full view to analyze case alternatives.
      if not Is_Overloaded (Exp)
        and then not Comes_From_Source (N)
        and then Is_Private_Type (Etype (Exp))
        and then Present (Full_View (Etype (Exp)))
        and then Is_Discrete_Type (Full_View (Etype (Exp)))
      then
         Resolve (Exp);
         Exp_Type := Full_View (Etype (Exp));
      --  For Ada, overloading might be ok because subsequently filtering
      --  out non-discretes may resolve the ambiguity.
      --  But GNAT extensions allow casing on non-discretes.
      elsif Core_Extensions_Allowed and then Is_Overloaded (Exp) then
         --  It would be nice if we could generate all the right error
         --  messages by calling "Resolve (Exp, Any_Type);" in the
         --  same way that they are generated a few lines below by the
         --  call "Analyze_And_Resolve (Exp, Any_Discrete);".
         --  Unfortunately, Any_Type and Any_Discrete are not treated
         --  consistently (specifically, by Sem_Type.Covers), so that
         --  doesn't work.
         Error_Msg_N
           ("selecting expression of general case statement is ambiguous",
            Exp);
         return;
      --  Check for a GNAT-extension "general" case statement (i.e., one where
      --  the type of the selecting expression is not discrete).
      elsif Core_Extensions_Allowed
         and then not Is_Discrete_Type (Etype (Exp))
      then
         Resolve (Exp, Etype (Exp));
         Exp_Type := Etype (Exp);
         Is_General_Case_Statement := True;
      else
         Analyze_And_Resolve (Exp, Any_Discrete);
         Exp_Type := Etype (Exp);
      end if;
      Check_Unset_Reference (Exp);
      Exp_Btype := Base_Type (Exp_Type);
      --  The expression must be of a discrete type which must be determinable
      --  independently of the context in which the expression occurs, but
      --  using the fact that the expression must be of a discrete type.
      --  Moreover, the type this expression must not be a character literal
      --  (which is always ambiguous) or, for Ada-83, a generic formal type.
      --  If error already reported by Resolve, nothing more to do
      if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
         return;
      elsif Exp_Btype = Any_Character then
         Error_Msg_N
           ("character literal as case expression is ambiguous", Exp);
         return;
      elsif Ada_Version = Ada_83
        and then (Is_Generic_Type (Exp_Btype)
                   or else Is_Generic_Type (Root_Type (Exp_Btype)))
      then
         Error_Msg_N
           ("(Ada 83) case expression cannot be of a generic type", Exp);
         return;
      elsif not Core_Extensions_Allowed
        and then not Is_Discrete_Type (Exp_Type)
      then
         Error_Msg_N
           ("expression in case statement must be of a discrete_Type", Exp);
         return;
      end if;
      --  If the case expression is a formal object of mode in out, then treat
      --  it as having a nonstatic subtype by forcing use of the base type
      --  (which has to get passed to Check_Case_Choices below). Also use base
      --  type when the case expression is parenthesized.
      if Paren_Count (Exp) > 0
        or else (Is_Entity_Name (Exp)
                  and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
      then
         Exp_Type := Exp_Btype;
      end if;
      --  Call instantiated procedures to analyze and check discrete choices
      Unblocked_Exit_Count := 0;
      Analyze_Choices (Alternatives (N), Exp_Type);
      Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
      if Is_General_Case_Statement then
         --  Work normally done in Process_Statements was deferred; do that
         --  deferred work now that Check_Choices has had a chance to create
         --  any needed pattern-match-binding declarations.
         declare
            Alt : Node_Id := First (Alternatives (N));
         begin
            while Present (Alt) loop
               Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
               Analyze_Statements (Statements (Alt));
               Next (Alt);
            end loop;
         end;
      end if;
      if Exp_Type = Universal_Integer and then not Others_Present then
         Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
      end if;
      --  If all our exits were blocked by unconditional transfers of control,
      --  then the entire CASE statement acts as an unconditional transfer of
      --  control, so treat it like one, and check unreachable code. Skip this
      --  test if we had serious errors preventing any statement analysis.
      if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
         Check_Unreachable_Code (N);
      else
         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
      end if;
      --  If the expander is active it will detect the case of a statically
      --  determined single alternative and remove warnings for the case, but
      --  if we are not doing expansion, that circuit won't be active. Here we
      --  duplicate the effect of removing warnings in the same way, so that
      --  we will get the same set of warnings in -gnatc mode.
      if not Expander_Active
        and then Compile_Time_Known_Value (Expression (N))
        and then Serious_Errors_Detected = 0
      then
         declare
            Chosen : constant Node_Id := Find_Static_Alternative (N);
            Alt    : Node_Id;
         begin
            Alt := First (Alternatives (N));
            while Present (Alt) loop
               if Alt /= Chosen then
                  Remove_Warning_Messages (Statements (Alt));
               end if;
               Next (Alt);
            end loop;
         end;
      end if;
   end Analyze_Case_Statement;
   ----------------------------
   -- Analyze_Exit_Statement --
   ----------------------------
   --  If the exit includes a name, it must be the name of a currently open
   --  loop. Otherwise there must be an innermost open loop on the stack, to
   --  which the statement implicitly refers.
   --  Additionally, in SPARK mode:
   --    The exit can only name the closest enclosing loop;
   --    An exit with a when clause must be directly contained in a loop;
   --    An exit without a when clause must be directly contained in an
   --    if-statement with no elsif or else, which is itself directly contained
   --    in a loop. The exit must be the last statement in the if-statement.
   procedure Analyze_Exit_Statement (N : Node_Id) is
      Target   : constant Node_Id := Name (N);
      Cond     : constant Node_Id := Condition (N);
      Scope_Id : Entity_Id := Empty;  -- initialize to prevent warning
      U_Name   : Entity_Id;
      Kind     : Entity_Kind;
   begin
      if No (Cond) then
         Check_Unreachable_Code (N);
      end if;
      if Present (Target) then
         Analyze (Target);
         U_Name := Entity (Target);
         if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
            Error_Msg_N ("invalid loop name in exit statement", N);
            return;
         else
            Set_Has_Exit (U_Name);
         end if;
      else
         U_Name := Empty;
      end if;
      for J in reverse 0 .. Scope_Stack.Last loop
         Scope_Id := Scope_Stack.Table (J).Entity;
         Kind := Ekind (Scope_Id);
         if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
            Set_Has_Exit (Scope_Id);
            exit;
         elsif Kind = E_Block
           or else Kind = E_Loop
           or else Kind = E_Return_Statement
         then
            null;
         else
            Error_Msg_N
              ("cannot exit from program unit or accept statement", N);
            return;
         end if;
      end loop;
      --  Verify that if present the condition is a Boolean expression
      if Present (Cond) then
         Analyze_And_Resolve (Cond, Any_Boolean);
         Check_Unset_Reference (Cond);
      end if;
      --  Chain exit statement to associated loop entity
      Set_Next_Exit_Statement  (N, First_Exit_Statement (Scope_Id));
      Set_First_Exit_Statement (Scope_Id, N);
      --  Since the exit may take us out of a loop, any previous assignment
      --  statement is not useless, so clear last assignment indications. It
      --  is OK to keep other current values, since if the exit statement
      --  does not exit, then the current values are still valid.
      Kill_Current_Values (Last_Assignment_Only => True);
   end Analyze_Exit_Statement;
   ----------------------------
   -- Analyze_Goto_Statement --
   ----------------------------
   procedure Analyze_Goto_Statement (N : Node_Id) is
      Label       : constant Node_Id := Name (N);
      Scope_Id    : Entity_Id;
      Label_Scope : Entity_Id;
      Label_Ent   : Entity_Id;
   begin
      --  Actual semantic checks
      Check_Unreachable_Code (N);
      Kill_Current_Values (Last_Assignment_Only => True);
      Analyze (Label);
      Label_Ent := Entity (Label);
      --  Ignore previous error
      if Label_Ent = Any_Id then
         Check_Error_Detected;
         return;
      --  We just have a label as the target of a goto
      elsif Ekind (Label_Ent) /= E_Label then
         Error_Msg_N ("target of goto statement must be a label", Label);
         return;
      --  Check that the target of the goto is reachable according to Ada
      --  scoping rules. Note: the special gotos we generate for optimizing
      --  local handling of exceptions would violate these rules, but we mark
      --  such gotos as analyzed when built, so this code is never entered.
      elsif not Reachable (Label_Ent) then
         Error_Msg_N ("target of goto statement is not reachable", Label);
         return;
      end if;
      --  Here if goto passes initial validity checks
      Label_Scope := Enclosing_Scope (Label_Ent);
      for J in reverse 0 .. Scope_Stack.Last loop
         Scope_Id := Scope_Stack.Table (J).Entity;
         if Label_Scope = Scope_Id
           or else Ekind (Scope_Id) not in
                     E_Block | E_Loop | E_Return_Statement
         then
            if Scope_Id /= Label_Scope then
               Error_Msg_N
                 ("cannot exit from program unit or accept statement", N);
            end if;
            return;
         end if;
      end loop;
      raise Program_Error;
   end Analyze_Goto_Statement;
   ---------------------------------
   -- Analyze_Goto_When_Statement --
   ---------------------------------
   procedure Analyze_Goto_When_Statement (N : Node_Id) is
   begin
      --  Verify the condition is a Boolean expression
      Analyze_And_Resolve (Condition (N), Any_Boolean);
      Check_Unset_Reference (Condition (N));
   end Analyze_Goto_When_Statement;
   --------------------------
   -- Analyze_If_Statement --
   --------------------------
   --  A special complication arises in the analysis of if statements
   --  The expander has circuitry to completely delete code that it can tell
   --  will not be executed (as a result of compile time known conditions). In
   --  the analyzer, we ensure that code that will be deleted in this manner
   --  is analyzed but not expanded. This is obviously more efficient, but
   --  more significantly, difficulties arise if code is expanded and then
   --  eliminated (e.g. exception table entries disappear). Similarly, itypes
   --  generated in deleted code must be frozen from start, because the nodes
   --  on which they depend will not be available at the freeze point.
   procedure Analyze_If_Statement (N : Node_Id) is
      Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
      --  Recursively save value of this global, will be restored on exit
      Save_In_Deleted_Code : Boolean := In_Deleted_Code;
      Del : Boolean := False;
      --  This flag gets set True if a True condition has been found, which
      --  means that remaining ELSE/ELSIF parts are deleted.
      procedure Analyze_Cond_Then (Cnode : Node_Id);
      --  This is applied to either the N_If_Statement node itself or to an
      --  N_Elsif_Part node. It deals with analyzing the condition and the THEN
      --  statements associated with it.
      -----------------------
      -- Analyze_Cond_Then --
      -----------------------
      procedure Analyze_Cond_Then (Cnode : Node_Id) is
         Cond : constant Node_Id := Condition (Cnode);
         Tstm : constant List_Id := Then_Statements (Cnode);
      begin
         Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
         Analyze_And_Resolve (Cond, Any_Boolean);
         Check_Unset_Reference (Cond);
         Set_Current_Value_Condition (Cnode);
         --  If already deleting, then just analyze then statements
         if Del then
            Analyze_Statements (Tstm);
         --  Compile time known value, not deleting yet
         elsif Compile_Time_Known_Value (Cond) then
            Save_In_Deleted_Code := In_Deleted_Code;
            --  If condition is True, then analyze the THEN statements and set
            --  no expansion for ELSE and ELSIF parts.
            if Is_True (Expr_Value (Cond)) then
               Analyze_Statements (Tstm);
               Del := True;
               Expander_Mode_Save_And_Set (False);
               In_Deleted_Code := True;
            --  If condition is False, analyze THEN with expansion off
            else pragma Assert (Is_False (Expr_Value (Cond)));
               Expander_Mode_Save_And_Set (False);
               In_Deleted_Code := True;
               Analyze_Statements (Tstm);
               Expander_Mode_Restore;
               In_Deleted_Code := Save_In_Deleted_Code;
            end if;
         --  Not known at compile time, not deleting, normal analysis
         else
            Analyze_Statements (Tstm);
         end if;
      end Analyze_Cond_Then;
      --  Local variables
      E : Node_Id;
      --  For iterating over elsif parts
   --  Start of processing for Analyze_If_Statement
   begin
      --  Initialize exit count for else statements. If there is no else part,
      --  this count will stay non-zero reflecting the fact that the uncovered
      --  else case is an unblocked exit.
      Unblocked_Exit_Count := 1;
      Analyze_Cond_Then (N);
      --  Now to analyze the elsif parts if any are present
      E := First (Elsif_Parts (N));
      while Present (E) loop
         Analyze_Cond_Then (E);
         Next (E);
      end loop;
      if Present (Else_Statements (N)) then
         Analyze_Statements (Else_Statements (N));
      end if;
      --  If all our exits were blocked by unconditional transfers of control,
      --  then the entire IF statement acts as an unconditional transfer of
      --  control, so treat it like one, and check unreachable code.
      if Unblocked_Exit_Count = 0 then
         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
         Check_Unreachable_Code (N);
      else
         Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
      end if;
      if Del then
         Expander_Mode_Restore;
         In_Deleted_Code := Save_In_Deleted_Code;
      end if;
      if not Expander_Active
        and then Compile_Time_Known_Value (Condition (N))
        and then Serious_Errors_Detected = 0
      then
         if Is_True (Expr_Value (Condition (N))) then
            Remove_Warning_Messages (Else_Statements (N));
            E := First (Elsif_Parts (N));
            while Present (E) loop
               Remove_Warning_Messages (Then_Statements (E));
               Next (E);
            end loop;
         else
            Remove_Warning_Messages (Then_Statements (N));
         end if;
      end if;
      --  Warn on redundant if statement that has no effect
      --  Note, we could also check empty ELSIF parts ???
      if Warn_On_Redundant_Constructs
        --  If statement must be from source
        and then Comes_From_Source (N)
        --  Condition must not have obvious side effect
        and then Has_No_Obvious_Side_Effects (Condition (N))
        --  No elsif parts of else part
        and then No (Elsif_Parts (N))
        and then No (Else_Statements (N))
        --  Then must be a single null statement
        and then List_Length (Then_Statements (N)) = 1
      then
         --  Go to original node, since we may have rewritten something as
         --  a null statement (e.g. a case we could figure the outcome of).
         declare
            T : constant Node_Id := First (Then_Statements (N));
            S : constant Node_Id := Original_Node (T);
         begin
            if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
               Error_Msg_N ("if statement has no effect?r?", N);
            end if;
         end;
      end if;
   end Analyze_If_Statement;
   ----------------------------------------
   -- Analyze_Implicit_Label_Declaration --
   ----------------------------------------
   --  An implicit label declaration is generated in the innermost enclosing
   --  declarative part. This is done for labels, and block and loop names.
   procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
      Id : constant Node_Id := Defining_Identifier (N);
   begin
      Enter_Name          (Id);
      Mutate_Ekind        (Id, E_Label);
      Set_Etype           (Id, Standard_Void_Type);
      Set_Enclosing_Scope (Id, Current_Scope);
      --  A label declared within a Ghost region becomes Ghost (SPARK RM
      --  6.9(2)).
      if Ghost_Mode > None then
         Set_Is_Ghost_Entity (Id);
      end if;
   end Analyze_Implicit_Label_Declaration;
   ------------------------------
   -- Analyze_Iteration_Scheme --
   ------------------------------
   procedure Analyze_Iteration_Scheme (N : Node_Id) is
      Cond      : Node_Id;
      Iter_Spec : Node_Id;
      Loop_Spec : Node_Id;
   begin
      --  For an infinite loop, there is no iteration scheme
      if No (N) then
         return;
      end if;
      Cond      := Condition (N);
      Iter_Spec := Iterator_Specification (N);
      Loop_Spec := Loop_Parameter_Specification (N);
      if Present (Cond) then
         Analyze_And_Resolve (Cond, Any_Boolean);
         Check_Unset_Reference (Cond);
         Set_Current_Value_Condition (N);
      elsif Present (Iter_Spec) then
         Analyze_Iterator_Specification (Iter_Spec);
      else
         Analyze_Loop_Parameter_Specification (Loop_Spec);
      end if;
   end Analyze_Iteration_Scheme;
   ------------------------------------
   -- Analyze_Iterator_Specification --
   ------------------------------------
   procedure Analyze_Iterator_Specification (N : Node_Id) is
      Def_Id    : constant Node_Id    := Defining_Identifier (N);
      Iter_Name : constant Node_Id    := Name (N);
      Loc       : constant Source_Ptr := Sloc (N);
      Subt      : constant Node_Id    := Subtype_Indication (N);
      Bas : Entity_Id := Empty;  -- initialize to prevent warning
      Typ : Entity_Id;
      procedure Check_Reverse_Iteration (Typ : Entity_Id);
      --  For an iteration over a container, if the loop carries the Reverse
      --  indicator, verify that the container type has an Iterate aspect that
      --  implements the reversible iterator interface.
      procedure Check_Subtype_Definition (Comp_Type : Entity_Id);
      --  If a subtype indication is present, verify that it is consistent
      --  with the component type of the array or container name.
      --  In Ada 2022, the subtype indication may be an access definition,
      --  if the array or container has elements of an anonymous access type.
      function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
      --  For containers with Iterator and related aspects, the cursor is
      --  obtained by locating an entity with the proper name in the scope
      --  of the type.
      -----------------------------
      -- Check_Reverse_Iteration --
      -----------------------------
      procedure Check_Reverse_Iteration (Typ : Entity_Id) is
      begin
         if Reverse_Present (N) then
            if Is_Array_Type (Typ)
              or else Is_Reversible_Iterator (Typ)
              or else
                (Has_Aspect (Typ, Aspect_Iterable)
                  and then
                    Present
                      (Get_Iterable_Type_Primitive (Typ, Name_Previous)))
            then
               null;
            else
               Error_Msg_N
                 ("container type does not support reverse iteration", N);
            end if;
         end if;
      end Check_Reverse_Iteration;
      -------------------------------
      --  Check_Subtype_Definition --
      -------------------------------
      procedure Check_Subtype_Definition (Comp_Type : Entity_Id) is
      begin
         if No (Subt) then
            return;
         end if;
         if Is_Anonymous_Access_Type (Entity (Subt)) then
            if not Is_Anonymous_Access_Type (Comp_Type) then
               Error_Msg_NE
                 ("component type& is not an anonymous access",
                  Subt, Comp_Type);
            elsif not Conforming_Types
                (Designated_Type (Entity (Subt)),
                 Designated_Type (Comp_Type),
                 Fully_Conformant)
            then
               Error_Msg_NE
                 ("subtype indication does not match component type&",
                  Subt, Comp_Type);
            end if;
         elsif not Covers (Base_Type (Bas), Comp_Type)
           or else not Subtypes_Statically_Match (Bas, Comp_Type)
         then
            if Is_Array_Type (Typ) then
               Error_Msg_NE
                 ("subtype indication does not match component type&",
                  Subt, Comp_Type);
            else
               Error_Msg_NE
                 ("subtype indication does not match element type&",
                  Subt, Comp_Type);
            end if;
         end if;
      end Check_Subtype_Definition;
      ---------------------
      -- Get_Cursor_Type --
      ---------------------
      function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
         Ent : Entity_Id;
      begin
         --  If the iterator type is derived and it has an iterator interface
         --  type as an ancestor, then the cursor type is declared in the scope
         --  of that interface type.
         if Is_Derived_Type (Typ) then
            declare
               Iter_Iface : constant Entity_Id :=
                              Iterator_Interface_Ancestor (Typ);
            begin
               if Present (Iter_Iface) then
                  Ent := First_Entity (Scope (Iter_Iface));
               --  If there's not an iterator interface, then retrieve the
               --  scope associated with the parent type and start from its
               --  first entity.
               else
                  Ent := First_Entity (Scope (Etype (Typ)));
               end if;
            end;
         else
            Ent := First_Entity (Scope (Typ));
         end if;
         while Present (Ent) loop
            exit when Chars (Ent) = Name_Cursor;
            Next_Entity (Ent);
         end loop;
         if No (Ent) then
            return Any_Type;
         end if;
         --  The cursor is the target of generated assignments in the
         --  loop, and cannot have a limited type.
         if Is_Limited_Type (Etype (Ent)) then
            Error_Msg_N ("cursor type cannot be limited", N);
         end if;
         return Etype (Ent);
      end Get_Cursor_Type;
   --   Start of processing for Analyze_Iterator_Specification
   begin
      Enter_Name (Def_Id);
      --  AI12-0151 specifies that when the subtype indication is present, it
      --  must statically match the type of the array or container element.
      --  To simplify this check, we introduce a subtype declaration with the
      --  given subtype indication when it carries a constraint, and rewrite
      --  the original as a reference to the created subtype entity.
      if Present (Subt) then
         if Nkind (Subt) = N_Subtype_Indication then
            declare
               S    : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
               Decl : constant Node_Id :=
                        Make_Subtype_Declaration (Loc,
                          Defining_Identifier => S,
                          Subtype_Indication  => New_Copy_Tree (Subt));
            begin
               Insert_Action (N, Decl);
               Analyze (Decl);
               Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
            end;
         --  Ada 2022: the subtype definition may be for an anonymous
         --  access type.
         elsif Nkind (Subt) = N_Access_Definition then
            declare
               S    : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
               Decl : Node_Id;
            begin
               if Present (Subtype_Mark (Subt)) then
                  Decl :=
                    Make_Full_Type_Declaration (Loc,
                      Defining_Identifier => S,
                      Type_Definition     =>
                        Make_Access_To_Object_Definition (Loc,
                          All_Present        => True,
                          Subtype_Indication =>
                            New_Copy_Tree (Subtype_Mark (Subt))));
               else
                  Decl :=
                    Make_Full_Type_Declaration (Loc,
                      Defining_Identifier => S,
                      Type_Definition     =>
                        New_Copy_Tree
                          (Access_To_Subprogram_Definition (Subt)));
               end if;
               Insert_Before (Parent (Parent (N)), Decl);
               Analyze (Decl);
               Freeze_Before (First (Statements (Parent (Parent (N)))), S);
               Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
            end;
         else
            Analyze (Subt);
         end if;
         --  Save entity of subtype indication for subsequent check
         Bas := Entity (Subt);
      end if;
      Preanalyze_Range (Iter_Name);
      --  If the domain of iteration is a function call, make sure the function
      --  itself is frozen. This is an issue if this is a local expression
      --  function.
      if Nkind (Iter_Name) = N_Function_Call
        and then Is_Entity_Name (Name (Iter_Name))
        and then Full_Analysis
        and then (In_Assertion_Expr = 0 or else Assertions_Enabled)
      then
         Freeze_Before (N, Entity (Name (Iter_Name)));
      end if;
      --  Set the kind of the loop variable, which is not visible within the
      --  iterator name.
      Mutate_Ekind (Def_Id, E_Variable);
      Set_Is_Not_Self_Hidden (Def_Id);
      --  Provide a link between the iterator variable and the container, for
      --  subsequent use in cross-reference and modification information.
      if Of_Present (N) then
         Set_Related_Expression (Def_Id, Iter_Name);
         --  For a container, the iterator is specified through the aspect
         if not Is_Array_Type (Etype (Iter_Name)) then
            declare
               Iterator : constant Entity_Id :=
                            Find_Value_Of_Aspect
                              (Etype (Iter_Name), Aspect_Default_Iterator);
               I  : Interp_Index;
               It : Interp;
            begin
               --  The domain of iteration must implement either the RM
               --  iterator interface, or the SPARK Iterable aspect.
               if No (Iterator) then
                  if No (Find_Aspect (Etype (Iter_Name), Aspect_Iterable)) then
                     Error_Msg_NE
                       ("cannot iterate over&",
                        N, Base_Type (Etype (Iter_Name)));
                     return;
                  end if;
               elsif not Is_Overloaded (Iterator) then
                  Check_Reverse_Iteration (Etype (Iterator));
               --  If Iterator is overloaded, use reversible iterator if one is
               --  available.
               elsif Is_Overloaded (Iterator) then
                  Get_First_Interp (Iterator, I, It);
                  while Present (It.Nam) loop
                     if Ekind (It.Nam) = E_Function
                       and then Is_Reversible_Iterator (Etype (It.Nam))
                     then
                        Set_Etype (Iterator, It.Typ);
                        Set_Entity (Iterator, It.Nam);
                        exit;
                     end if;
                     Get_Next_Interp (I, It);
                  end loop;
                  Check_Reverse_Iteration (Etype (Iterator));
               end if;
            end;
         end if;
      end if;
      --  If the domain of iteration is an expression, create a declaration for
      --  it, so that finalization actions are introduced outside of the loop.
      --  The declaration must be a renaming (both in GNAT and GNATprove
      --  modes), because the body of the loop may assign to elements.
      if not Is_Entity_Name (Iter_Name)
        --  Do not perform this expansion in preanalysis
        and then Full_Analysis
        --  Do not perform this expansion when expansion is disabled, where the
        --  temporary may hide the transformation of a selected component into
        --  a prefixed function call, and references need to see the original
        --  expression.
        and then (Expander_Active or GNATprove_Mode)
      then
         declare
            Id    : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
            Decl  : Node_Id;
            Act_S : Node_Id;
         begin
            --  If the domain of iteration is an array component that depends
            --  on a discriminant, create actual subtype for it. Preanalysis
            --  does not generate the actual subtype of a selected component.
            if Nkind (Iter_Name) = N_Selected_Component
              and then Is_Array_Type (Etype (Iter_Name))
            then
               Act_S :=
                 Build_Actual_Subtype_Of_Component
                   (Etype (Selector_Name (Iter_Name)), Iter_Name);
               Insert_Action (N, Act_S);
               if Present (Act_S) then
                  Typ := Defining_Identifier (Act_S);
               else
                  Typ := Etype (Iter_Name);
               end if;
            else
               Typ := Etype (Iter_Name);
               --  Verify that the expression produces an iterator
               if not Of_Present (N) and then not Is_Iterator (Typ)
                 and then not Is_Array_Type (Typ)
                 and then No (Find_Aspect (Typ, Aspect_Iterable))
               then
                  Error_Msg_N
                    ("expect object that implements iterator interface",
                     Iter_Name);
               end if;
            end if;
            --  Protect against malformed iterator
            if Typ = Any_Type then
               Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
               return;
            end if;
            if not Of_Present (N) then
               Check_Reverse_Iteration (Typ);
            end if;
            --  For an element iteration over a slice, we must complete
            --  the resolution and expansion of the slice bounds. These
            --  can be arbitrary expressions, and the preanalysis that
            --  was performed in preparation for the iteration may have
            --  generated an itype whose bounds must be fully expanded.
            --  We set the parent node to provide a proper insertion
            --  point for generated actions, if any.
            if Nkind (Iter_Name) = N_Slice
              and then Nkind (Discrete_Range (Iter_Name)) = N_Range
              and then not Analyzed (Discrete_Range (Iter_Name))
            then
               declare
                  Indx : constant Node_Id :=
                     Entity (First_Index (Etype (Iter_Name)));
               begin
                  Set_Parent (Indx, Iter_Name);
                  Resolve (Scalar_Range (Indx), Etype (Indx));
               end;
            end if;
            --  The name in the renaming declaration may be a function call.
            --  Indicate that it does not come from source, to suppress
            --  spurious warnings on renamings of parameterless functions,
            --  a common enough idiom in user-defined iterators.
            Decl :=
              Make_Object_Renaming_Declaration (Loc,
                Defining_Identifier => Id,
                Subtype_Mark        => New_Occurrence_Of (Typ, Loc),
                Name                =>
                  New_Copy_Tree (Iter_Name, New_Sloc => Loc));
            Set_Comes_From_Iterator (Decl);
            Insert_Actions (Parent (Parent (N)), New_List (Decl));
            Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
            Analyze (Name (N));
            Set_Etype (Id, Typ);
            Set_Etype (Name (N), Typ);
         end;
      --  Container is an entity or an array with uncontrolled components, or
      --  else it is a container iterator given by a function call, typically
      --  called Iterate in the case of predefined containers, even though
      --  Iterate is not a reserved name. What matters is that the return type
      --  of the function is an iterator type.
      elsif Is_Entity_Name (Iter_Name) then
         Analyze (Iter_Name);
         if Nkind (Iter_Name) = N_Function_Call then
            declare
               C  : constant Node_Id := Name (Iter_Name);
               I  : Interp_Index;
               It : Interp;
            begin
               if not Is_Overloaded (Iter_Name) then
                  Resolve (Iter_Name, Etype (C));
               else
                  Get_First_Interp (C, I, It);
                  while It.Typ /= Empty loop
                     if Reverse_Present (N) then
                        if Is_Reversible_Iterator (It.Typ) then
                           Resolve (Iter_Name, It.Typ);
                           exit;
                        end if;
                     elsif Is_Iterator (It.Typ) then
                        Resolve (Iter_Name, It.Typ);
                        exit;
                     end if;
                     Get_Next_Interp (I, It);
                  end loop;
               end if;
            end;
         --  Domain of iteration is not overloaded
         else
            Resolve (Iter_Name);
         end if;
         if not Of_Present (N) then
            Check_Reverse_Iteration (Etype (Iter_Name));
         end if;
      end if;
      --  Get base type of container, for proper retrieval of Cursor type
      --  and primitive operations.
      Typ := Base_Type (Etype (Iter_Name));
      if Is_Array_Type (Typ) then
         if Of_Present (N) then
            Set_Etype (Def_Id, Component_Type (Typ));
            --  The loop variable is aliased if the array components are
            --  aliased. Likewise for the independent aspect.
            Set_Is_Aliased     (Def_Id, Has_Aliased_Components     (Typ));
            Set_Is_Independent (Def_Id, Has_Independent_Components (Typ));
            --  AI12-0047 stipulates that the domain (array or container)
            --  cannot be a component that depends on a discriminant if the
            --  enclosing object is mutable, to prevent a modification of the
            --  domain of iteration in the course of an iteration.
            --  If the object is an expression it has been captured in a
            --  temporary, so examine original node.
            if Nkind (Original_Node (Iter_Name)) = N_Selected_Component
              and then Is_Dependent_Component_Of_Mutable_Object
                         (Original_Node (Iter_Name))
            then
               Error_Msg_N
                 ("iterable name cannot be a discriminant-dependent "
                  & "component of a mutable object", N);
            end if;
            Check_Subtype_Definition (Component_Type (Typ));
         --  Here we have a missing Range attribute
         else
            Error_Msg_N
              ("missing Range attribute in iteration over an array", N);
            --  In Ada 2012 mode, this may be an attempt at an iterator
            if Ada_Version >= Ada_2012 then
               Error_Msg_NE
                 ("\if& is meant to designate an element of the array, use OF",
                  N, Def_Id);
            end if;
            --  Prevent cascaded errors
            Mutate_Ekind (Def_Id, E_Loop_Parameter);
            Set_Etype (Def_Id, Etype (First_Index (Typ)));
         end if;
         --  Check for type error in iterator
      elsif Typ = Any_Type then
         return;
      --  Iteration over a container
      else
         Mutate_Ekind (Def_Id, E_Loop_Parameter);
         Set_Is_Not_Self_Hidden (Def_Id);
         Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
         --  OF present
         if Of_Present (N) then
            if Has_Aspect (Typ, Aspect_Iterable) then
               declare
                  Elt : constant Entity_Id :=
                          Get_Iterable_Type_Primitive (Typ, Name_Element);
               begin
                  if No (Elt) then
                     Error_Msg_N
                       ("missing Element primitive for iteration", N);
                  else
                     Set_Etype (Def_Id, Etype (Elt));
                     Check_Reverse_Iteration (Typ);
                  end if;
               end;
               Check_Subtype_Definition (Etype (Def_Id));
            --  For a predefined container, the type of the loop variable is
            --  the Iterator_Element aspect of the container type.
            else
               declare
                  Element        : constant Entity_Id :=
                                     Find_Value_Of_Aspect
                                       (Typ, Aspect_Iterator_Element);
                  Iterator       : constant Entity_Id :=
                                     Find_Value_Of_Aspect
                                       (Typ, Aspect_Default_Iterator);
                  Orig_Iter_Name : constant Node_Id :=
                                     Original_Node (Iter_Name);
                  Cursor_Type    : Entity_Id;
               begin
                  if No (Element) then
                     Error_Msg_NE ("cannot iterate over&", N, Typ);
                     return;
                  else
                     Set_Etype (Def_Id, Entity (Element));
                     Cursor_Type := Get_Cursor_Type (Typ);
                     pragma Assert (Present (Cursor_Type));
                     Check_Subtype_Definition (Etype (Def_Id));
                     --  If the container has a variable indexing aspect, the
                     --  element is a variable and is modifiable in the loop.
                     if Has_Aspect (Typ, Aspect_Variable_Indexing) then
                        Mutate_Ekind (Def_Id, E_Variable);
                        Set_Is_Not_Self_Hidden (Def_Id);
                     end if;
                     --  If the container is a constant, iterating over it
                     --  requires a Constant_Indexing operation.
                     if not Is_Variable (Iter_Name)
                       and then not Has_Aspect (Typ, Aspect_Constant_Indexing)
                     then
                        Error_Msg_N
                          ("iteration over constant container require "
                           & "constant_indexing aspect", N);
                     --  The Iterate function may have an in_out parameter,
                     --  and a constant container is thus illegal.
                     elsif Present (Iterator)
                       and then Ekind (Entity (Iterator)) = E_Function
                       and then Ekind (First_Formal (Entity (Iterator))) /=
                                  E_In_Parameter
                       and then not Is_Variable (Iter_Name)
                     then
                        Error_Msg_N ("variable container expected", N);
                     end if;
                     --  Detect a case where the iterator denotes a component
                     --  of a mutable object which depends on a discriminant.
                     --  Note that the iterator may denote a function call in
                     --  qualified form, in which case this check should not
                     --  be performed.
                     if Nkind (Orig_Iter_Name) = N_Selected_Component
                       and then
                         Present (Entity (Selector_Name (Orig_Iter_Name)))
                       and then
                         Ekind (Entity (Selector_Name (Orig_Iter_Name))) in
                           E_Component | E_Discriminant
                       and then Is_Dependent_Component_Of_Mutable_Object
                                  (Orig_Iter_Name)
                     then
                        Error_Msg_N
                          ("container cannot be a discriminant-dependent "
                           & "component of a mutable object", N);
                     end if;
                  end if;
               end;
            end if;
         --  IN iterator, domain is a range, a call to Iterate function,
         --  or an object/actual parameter of an iterator type.
         else
            --  If the type of the name is class-wide and its root type is a
            --  derived type, the primitive operations (First, Next, etc.) are
            --  those inherited by its specific type. Calls to these primitives
            --  will be dispatching.
            if Is_Class_Wide_Type (Typ)
              and then Is_Derived_Type (Etype (Typ))
            then
               Typ := Etype (Typ);
            end if;
            --  For an iteration of the form IN, the name must denote an
            --  iterator, typically the result of a call to Iterate. Give a
            --  useful error message when the name is a container by itself.
            --  The type may be a formal container type, which has to have
            --  an Iterable aspect detailing the required primitives.
            if Is_Entity_Name (Original_Node (Name (N)))
              and then not Is_Iterator (Typ)
            then
               if Has_Aspect (Typ, Aspect_Iterable) then
                  null;
               elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
                  Error_Msg_NE
                    ("cannot iterate over&", Name (N), Typ);
               else
                  Error_Msg_N
                    ("name must be an iterator, not a container", Name (N));
               end if;
               if Has_Aspect (Typ, Aspect_Iterable) then
                  null;
               else
                  Error_Msg_NE
                    ("\to iterate directly over the elements of a container, "
                     & "write `of &`", Name (N), Original_Node (Name (N)));
                  --  No point in continuing analysis of iterator spec
                  return;
               end if;
            end if;
            --  If the name is a call (typically prefixed) to some Iterate
            --  function, it has been rewritten as an object declaration.
            --  If that object is a selected component, verify that it is not
            --  a component of an unconstrained mutable object.
            if Nkind (Iter_Name) = N_Identifier
              or else (not Expander_Active and Comes_From_Source (Iter_Name))
            then
               declare
                  Orig_Node : constant Node_Id   := Original_Node (Iter_Name);
                  Iter_Kind : constant Node_Kind := Nkind (Orig_Node);
                  Obj       : Node_Id;
               begin
                  if Iter_Kind = N_Selected_Component then
                     Obj  := Prefix (Orig_Node);
                  elsif Iter_Kind = N_Function_Call then
                     Obj  := First_Actual (Orig_Node);
                  --  If neither, the name comes from source
                  else
                     Obj := Iter_Name;
                  end if;
                  if Nkind (Obj) = N_Selected_Component
                    and then Is_Dependent_Component_Of_Mutable_Object (Obj)
                  then
                     Error_Msg_N
                       ("container cannot be a discriminant-dependent "
                        & "component of a mutable object", N);
                  end if;
               end;
            end if;
            --  The result type of Iterate function is the classwide type of
            --  the interface parent. We need the specific Cursor type defined
            --  in the container package. We obtain it by name for a predefined
            --  container, or through the Iterable aspect for a formal one.
            if Has_Aspect (Typ, Aspect_Iterable) then
               Set_Etype (Def_Id,
                 Get_Cursor_Type
                   (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
                    Typ));
            else
               Set_Etype (Def_Id, Get_Cursor_Type (Typ));
               Check_Reverse_Iteration (Etype (Iter_Name));
            end if;
         end if;
      end if;
      --  Preanalyze the filter. Expansion will take place when enclosing
      --  loop is expanded.
      if Present (Iterator_Filter (N)) then
         Preanalyze_And_Resolve (Iterator_Filter (N), Standard_Boolean);
      end if;
   end Analyze_Iterator_Specification;
   -------------------
   -- Analyze_Label --
   -------------------
   --  Note: the semantic work required for analyzing labels (setting them as
   --  reachable) was done in a prepass through the statements in the block,
   --  so that forward gotos would be properly handled. See Analyze_Statements
   --  for further details. The only processing required here is to deal with
   --  optimizations that depend on an assumption of sequential control flow,
   --  since of course the occurrence of a label breaks this assumption.
   procedure Analyze_Label (N : Node_Id) is
      pragma Warnings (Off, N);
   begin
      Kill_Current_Values;
   end Analyze_Label;
   ------------------------------------------
   -- Analyze_Loop_Parameter_Specification --
   ------------------------------------------
   procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
      Loop_Nod : constant Node_Id := Parent (Parent (N));
      procedure Check_Controlled_Array_Attribute (DS : Node_Id);
      --  If the bounds are given by a 'Range reference on a function call
      --  that returns a controlled array, introduce an explicit declaration
      --  to capture the bounds, so that the function result can be finalized
      --  in timely fashion.
      procedure Check_Predicate_Use (T : Entity_Id);
      --  Diagnose Attempt to iterate through non-static predicate. Note that
      --  a type with inherited predicates may have both static and dynamic
      --  forms. In this case it is not sufficient to check the static
      --  predicate function only, look for a dynamic predicate aspect as well.
      procedure Process_Bounds (R : Node_Id);
      --  If the iteration is given by a range, create temporaries and
      --  assignment statements block to capture the bounds and perform
      --  required finalization actions in case a bound includes a function
      --  call that uses the temporary stack. We first preanalyze a copy of
      --  the range in order to determine the expected type, and analyze and
      --  resolve the original bounds.
      --------------------------------------
      -- Check_Controlled_Array_Attribute --
      --------------------------------------
      procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
      begin
         if Nkind (DS) = N_Attribute_Reference
           and then Is_Entity_Name (Prefix (DS))
           and then Ekind (Entity (Prefix (DS))) = E_Function
           and then Is_Array_Type (Etype (Entity (Prefix (DS))))
           and then
             Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
           and then Expander_Active
         then
            declare
               Loc  : constant Source_Ptr := Sloc (N);
               Arr  : constant Entity_Id := Etype (Entity (Prefix (DS)));
               Indx : constant Entity_Id :=
                        Base_Type (Etype (First_Index (Arr)));
               Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
               Decl : Node_Id;
            begin
               Decl :=
                 Make_Subtype_Declaration (Loc,
                   Defining_Identifier => Subt,
                   Subtype_Indication  =>
                      Make_Subtype_Indication (Loc,
                        Subtype_Mark => New_Occurrence_Of (Indx, Loc),
                        Constraint   =>
                          Make_Range_Constraint (Loc, Relocate_Node (DS))));
               Insert_Before (Loop_Nod, Decl);
               Analyze (Decl);
               Rewrite (DS,
                 Make_Attribute_Reference (Loc,
                   Prefix         => New_Occurrence_Of (Subt, Loc),
                   Attribute_Name => Attribute_Name (DS)));
               Analyze (DS);
            end;
         end if;
      end Check_Controlled_Array_Attribute;
      -------------------------
      -- Check_Predicate_Use --
      -------------------------
      procedure Check_Predicate_Use (T : Entity_Id) is
      begin
         --  A predicated subtype is illegal in loops and related constructs
         --  if the predicate is not static, or if it is a non-static subtype
         --  of a statically predicated subtype.
         if Is_Discrete_Type (T)
           and then Has_Predicates (T)
           and then (not Has_Static_Predicate (T)
                      or else not Is_Static_Subtype (T)
                      or else Has_Dynamic_Predicate_Aspect (T)
                      or else Has_Ghost_Predicate_Aspect (T))
         then
            --  Seems a confusing message for the case of a static predicate
            --  with a non-static subtype???
            Bad_Predicated_Subtype_Use
              ("cannot use subtype& with non-static predicate for loop "
               & "iteration", Discrete_Subtype_Definition (N),
               T, Suggest_Static => True);
         elsif Inside_A_Generic
           and then Is_Generic_Formal (T)
           and then Is_Discrete_Type (T)
         then
            Set_No_Dynamic_Predicate_On_Actual (T);
         end if;
      end Check_Predicate_Use;
      --------------------
      -- Process_Bounds --
      --------------------
      procedure Process_Bounds (R : Node_Id) is
         Loc : constant Source_Ptr := Sloc (N);
         function One_Bound
           (Original_Bound : Node_Id;
            Analyzed_Bound : Node_Id;
            Typ            : Entity_Id) return Node_Id;
         --  Capture value of bound and return captured value
         ---------------
         -- One_Bound --
         ---------------
         function One_Bound
           (Original_Bound : Node_Id;
            Analyzed_Bound : Node_Id;
            Typ            : Entity_Id) return Node_Id
         is
            Assign : Node_Id;
            Decl   : Node_Id;
            Id     : Entity_Id;
         begin
            --  If the bound is a constant or an object, no need for a separate
            --  declaration. If the bound is the result of previous expansion
            --  it is already analyzed and should not be modified. Note that
            --  the Bound will be resolved later, if needed, as part of the
            --  call to Make_Index (literal bounds may need to be resolved to
            --  type Integer).
            if Analyzed (Original_Bound) then
               return Original_Bound;
            elsif Nkind (Analyzed_Bound) in
                    N_Integer_Literal | N_Character_Literal
              or else Is_Entity_Name (Analyzed_Bound)
            then
               Analyze_And_Resolve (Original_Bound, Typ);
               return Original_Bound;
            elsif Inside_Class_Condition_Preanalysis then
               Analyze_And_Resolve (Original_Bound, Typ);
               return Original_Bound;
            end if;
            --  Normally, the best approach is simply to generate a constant
            --  declaration that captures the bound. However, there is a nasty
            --  case where this is wrong. If the bound is complex, and has a
            --  possible use of the secondary stack, we need to generate a
            --  separate assignment statement to ensure the creation of a block
            --  which will release the secondary stack.
            --  We prefer the constant declaration, since it leaves us with a
            --  proper trace of the value, useful in optimizations that get rid
            --  of junk range checks.
            if not Has_Sec_Stack_Call (Analyzed_Bound) then
               Analyze_And_Resolve (Original_Bound, Typ);
               --  Ensure that the bound is valid. This check should not be
               --  generated when the range belongs to a quantified expression
               --  as the construct is still not expanded into its final form.
               if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
                 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
               then
                  Ensure_Valid (Original_Bound);
               end if;
               Force_Evaluation (Original_Bound);
               return Original_Bound;
            end if;
            Id := Make_Temporary (Loc, 'R', Original_Bound);
            --  Here we make a declaration with a separate assignment
            --  statement, and insert before loop header.
            Decl :=
              Make_Object_Declaration (Loc,
                Defining_Identifier => Id,
                Object_Definition   => New_Occurrence_Of (Typ, Loc));
            Assign :=
              Make_Assignment_Statement (Loc,
                Name        => New_Occurrence_Of (Id, Loc),
                Expression  => Relocate_Node (Original_Bound));
            Insert_Actions (Loop_Nod, New_List (Decl, Assign));
            --  Now that this temporary variable is initialized we decorate it
            --  as safe-to-reevaluate to inform to the backend that no further
            --  asignment will be issued and hence it can be handled as side
            --  effect free. Note that this decoration must be done when the
            --  assignment has been analyzed because otherwise it will be
            --  rejected (see Analyze_Assignment).
            Set_Is_Safe_To_Reevaluate (Id);
            Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
            if Nkind (Assign) = N_Assignment_Statement then
               return Expression (Assign);
            else
               return Original_Bound;
            end if;
         end One_Bound;
         Hi     : constant Node_Id := High_Bound (R);
         Lo     : constant Node_Id := Low_Bound  (R);
         R_Copy : constant Node_Id := New_Copy_Tree (R);
         New_Hi : Node_Id;
         New_Lo : Node_Id;
         Typ    : Entity_Id;
      --  Start of processing for Process_Bounds
      begin
         Set_Parent (R_Copy, Parent (R));
         Preanalyze_Range (R_Copy);
         Typ := Etype (R_Copy);
         --  If the type of the discrete range is Universal_Integer, then the
         --  bound's type must be resolved to Integer, and any object used to
         --  hold the bound must also have type Integer, unless the literal
         --  bounds are constant-folded expressions with a user-defined type.
         if Typ = Universal_Integer then
            if Nkind (Lo) = N_Integer_Literal
              and then Present (Etype (Lo))
              and then Scope (Etype (Lo)) /= Standard_Standard
            then
               Typ := Etype (Lo);
            elsif Nkind (Hi) = N_Integer_Literal
              and then Present (Etype (Hi))
              and then Scope (Etype (Hi)) /= Standard_Standard
            then
               Typ := Etype (Hi);
            else
               Typ := Standard_Integer;
            end if;
         end if;
         Set_Etype (R, Typ);
         New_Lo := One_Bound (Lo, Low_Bound  (R_Copy), Typ);
         New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
         --  Propagate staticness to loop range itself, in case the
         --  corresponding subtype is static.
         if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
            Rewrite (Low_Bound (R), New_Copy (New_Lo));
         end if;
         if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
            Rewrite (High_Bound (R), New_Copy (New_Hi));
         end if;
      end Process_Bounds;
      --  Local variables
      DS : constant Node_Id   := Discrete_Subtype_Definition (N);
      Id : constant Entity_Id := Defining_Identifier (N);
      DS_Copy : Node_Id;
   --  Start of processing for Analyze_Loop_Parameter_Specification
   begin
      Enter_Name (Id);
      --  We always consider the loop variable to be referenced, since the loop
      --  may be used just for counting purposes.
      Generate_Reference (Id, N, ' ');
      --  Check for the case of loop variable hiding a local variable (used
      --  later on to give a nice warning if the hidden variable is never
      --  assigned).
      declare
         H : constant Entity_Id := Homonym (Id);
      begin
         if Present (H)
           and then Ekind (H) = E_Variable
           and then Is_Discrete_Type (Etype (H))
           and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
         then
            Set_Hiding_Loop_Variable (H, Id);
         end if;
      end;
      --  Analyze the subtype definition and create temporaries for the bounds.
      --  Do not evaluate the range when preanalyzing a quantified expression
      --  because bounds expressed as function calls with side effects will be
      --  incorrectly replicated.
      if Nkind (DS) = N_Range
        and then Expander_Active
        and then Nkind (Parent (N)) /= N_Quantified_Expression
      then
         Process_Bounds (DS);
      --  Either the expander not active or the range of iteration is a subtype
      --  indication, an entity, or a function call that yields an aggregate or
      --  a container.
      else
         DS_Copy := New_Copy_Tree (DS);
         Set_Parent (DS_Copy, Parent (DS));
         Preanalyze_Range (DS_Copy);
         --  Ada 2012: If the domain of iteration is:
         --  a)  a function call,
         --  b)  an identifier that is not a type,
         --  c)  an attribute reference 'Old (within a postcondition),
         --  d)  an unchecked conversion or a qualified expression with
         --      the proper iterator type.
         --  then it is an iteration over a container. It was classified as
         --  a loop specification by the parser, and must be rewritten now
         --  to activate container iteration. The last case will occur within
         --  an expanded inlined call, where the expansion wraps an actual in
         --  an unchecked conversion when needed. The expression of the
         --  conversion is always an object.
         if Nkind (DS_Copy) = N_Function_Call
           or else (Is_Entity_Name (DS_Copy)
                     and then not Is_Type (Entity (DS_Copy)))
           or else (Nkind (DS_Copy) = N_Attribute_Reference
                     and then Attribute_Name (DS_Copy) in
                                Name_Loop_Entry | Name_Old)
           or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)
           or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
           or else (Nkind (DS_Copy) = N_Qualified_Expression
                     and then Is_Iterator (Etype (DS_Copy)))
         then
            --  This is an iterator specification. Rewrite it as such and
            --  analyze it to capture function calls that may require
            --  finalization actions.
            declare
               I_Spec : constant Node_Id :=
                          Make_Iterator_Specification (Sloc (N),
                            Defining_Identifier => Relocate_Node (Id),
                            Name                => DS_Copy,
                            Subtype_Indication  => Empty,
                            Reverse_Present     => Reverse_Present (N));
               Scheme : constant Node_Id := Parent (N);
            begin
               Set_Iterator_Specification (Scheme, I_Spec);
               Set_Loop_Parameter_Specification (Scheme, Empty);
               Set_Iterator_Filter (I_Spec,
                 Relocate_Node (Iterator_Filter (N)));
               Analyze_Iterator_Specification (I_Spec);
               --  In a generic context, analyze the original domain of
               --  iteration, for name capture.
               if not Expander_Active then
                  Analyze (DS);
               end if;
               --  Set kind of loop parameter, which may be used in the
               --  subsequent analysis of the condition in a quantified
               --  expression.
               Mutate_Ekind (Id, E_Loop_Parameter);
               return;
            end;
         --  Domain of iteration is not a function call, and is side-effect
         --  free.
         else
            --  A quantified expression that appears in a pre/post condition
            --  is preanalyzed several times. If the range is given by an
            --  attribute reference it is rewritten as a range, and this is
            --  done even with expansion disabled. If the type is already set
            --  do not reanalyze, because a range with static bounds may be
            --  typed Integer by default.
            if Nkind (Parent (N)) = N_Quantified_Expression
              and then Present (Etype (DS))
            then
               null;
            else
               Analyze (DS);
            end if;
         end if;
      end if;
      if DS = Error then
         return;
      end if;
      --  Some additional checks if we are iterating through a type
      if Is_Entity_Name (DS)
        and then Present (Entity (DS))
        and then Is_Type (Entity (DS))
      then
         --  The subtype indication may denote the completion of an incomplete
         --  type declaration.
         if Ekind (Entity (DS)) = E_Incomplete_Type then
            Set_Entity (DS, Get_Full_View (Entity (DS)));
            Set_Etype  (DS, Entity (DS));
         end if;
         Check_Predicate_Use (Entity (DS));
      end if;
      --  Error if not discrete type
      if not Is_Discrete_Type (Etype (DS)) then
         Wrong_Type (DS, Any_Discrete);
         Set_Etype (DS, Any_Type);
      end if;
      Check_Controlled_Array_Attribute (DS);
      if Nkind (DS) = N_Subtype_Indication then
         Check_Predicate_Use (Entity (Subtype_Mark (DS)));
      end if;
      if Nkind (DS) not in N_Raise_xxx_Error then
         Make_Index (DS, N);
      end if;
      Mutate_Ekind (Id, E_Loop_Parameter);
      Set_Is_Not_Self_Hidden (Id);
      --  A quantified expression which appears in a pre- or post-condition may
      --  be analyzed multiple times. The analysis of the range creates several
      --  itypes which reside in different scopes depending on whether the pre-
      --  or post-condition has been expanded. Update the type of the loop
      --  variable to reflect the proper itype at each stage of analysis.
      --  Loop_Nod might not be present when we are preanalyzing a class-wide
      --  pre/postcondition since preanalysis occurs in a place unrelated to
      --  the actual code and the quantified expression may be the outermost
      --  expression of the class-wide condition.
      if No (Etype (Id))
        or else Etype (Id) = Any_Type
        or else
          (Present (Etype (Id))
            and then Is_Itype (Etype (Id))
            and then Present (Loop_Nod)
            and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
            and then Nkind (Original_Node (Parent (Loop_Nod))) =
                                                   N_Quantified_Expression)
      then
         Set_Etype (Id, Etype (DS));
      end if;
      --  Treat a range as an implicit reference to the type, to inhibit
      --  spurious warnings.
      Generate_Reference (Base_Type (Etype (DS)), N, ' ');
      Set_Is_Known_Valid (Id, True);
      --  The loop is not a declarative part, so the loop variable must be
      --  frozen explicitly. Do not freeze while preanalyzing a quantified
      --  expression because the freeze node will not be inserted into the
      --  tree due to flag Is_Spec_Expression being set.
      if Nkind (Parent (N)) /= N_Quantified_Expression then
         declare
            Flist : constant List_Id := Freeze_Entity (Id, N);
         begin
            Insert_Actions (N, Flist);
         end;
      end if;
      --  Case where we have a range or a subtype, get type bounds
      if Nkind (DS) in N_Range | N_Subtype_Indication
        and then not Error_Posted (DS)
        and then Etype (DS) /= Any_Type
        and then Is_Discrete_Type (Etype (DS))
      then
         declare
            L          : Node_Id;
            H          : Node_Id;
            Null_Range : Boolean := False;
         begin
            if Nkind (DS) = N_Range then
               L := Low_Bound  (DS);
               H := High_Bound (DS);
            else
               L :=
                 Type_Low_Bound  (Underlying_Type (Etype (Subtype_Mark (DS))));
               H :=
                 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
            end if;
            --  Check for null or possibly null range and issue warning. We
            --  suppress such messages in generic templates and instances,
            --  because in practice they tend to be dubious in these cases. The
            --  check applies as well to rewritten array element loops where a
            --  null range may be detected statically.
            if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
               if Compile_Time_Compare (L, H, Assume_Valid => False) = GT then
                  --  Since we know the range of the loop is always null,
                  --  set the appropriate flag to remove the loop entirely
                  --  during expansion.
                  Set_Is_Null_Loop (Loop_Nod);
                  Null_Range := True;
               end if;
               --  Suppress the warning if inside a generic template or
               --  instance, since in practice they tend to be dubious in these
               --  cases since they can result from intended parameterization.
               if not Inside_A_Generic and then not In_Instance then
                  --  Specialize msg if invalid values could make the loop
                  --  non-null after all.
                  if Null_Range then
                     if Comes_From_Source (N) then
                        Error_Msg_N
                          ("??loop range is null, loop will not execute", DS);
                     end if;
                  --  Here is where the loop could execute because of
                  --  invalid values, so issue appropriate message.
                  elsif Comes_From_Source (N) then
                     Error_Msg_N
                       ("??loop range may be null, loop may not execute",
                        DS);
                     Error_Msg_N
                       ("??can only execute if invalid values are present",
                        DS);
                  end if;
               end if;
               --  In either case, suppress warnings in the body of the loop,
               --  since it is likely that these warnings will be inappropriate
               --  if the loop never actually executes, which is likely.
               Set_Suppress_Loop_Warnings (Loop_Nod);
               --  The other case for a warning is a reverse loop where the
               --  upper bound is the integer literal zero or one, and the
               --  lower bound may exceed this value.
               --  For example, we have
               --     for J in reverse N .. 1 loop
               --  In practice, this is very likely to be a case of reversing
               --  the bounds incorrectly in the range.
            elsif Reverse_Present (N)
              and then Nkind (Original_Node (H)) = N_Integer_Literal
              and then
                (Intval (Original_Node (H)) = Uint_0
                  or else
                 Intval (Original_Node (H)) = Uint_1)
            then
               --  Lower bound may in fact be known and known not to exceed
               --  upper bound (e.g. reverse 0 .. 1) and that's OK.
               if Compile_Time_Known_Value (L)
                 and then Expr_Value (L) <= Expr_Value (H)
               then
                  null;
               --  Otherwise warning is warranted
               else
                  Error_Msg_N ("??loop range may be null", DS);
                  Error_Msg_N ("\??bounds may be wrong way round", DS);
               end if;
            end if;
            --  Check if either bound is known to be outside the range of the
            --  loop parameter type, this is e.g. the case of a loop from
            --  20..X where the type is 1..19.
            --  Such a loop is dubious since either it raises CE or it executes
            --  zero times, and that cannot be useful!
            if Etype (DS) /= Any_Type
              and then not Error_Posted (DS)
              and then Nkind (DS) = N_Subtype_Indication
              and then Nkind (Constraint (DS)) = N_Range_Constraint
            then
               declare
                  LLo : constant Node_Id :=
                          Low_Bound  (Range_Expression (Constraint (DS)));
                  LHi : constant Node_Id :=
                          High_Bound (Range_Expression (Constraint (DS)));
                  Bad_Bound : Node_Id := Empty;
                  --  Suspicious loop bound
               begin
                  --  At this stage L, H are the bounds of the type, and LLo
                  --  Lhi are the low bound and high bound of the loop.
                  if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
                       or else
                     Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
                  then
                     Bad_Bound := LLo;
                  end if;
                  if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
                       or else
                     Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
                  then
                     Bad_Bound := LHi;
                  end if;
                  if Present (Bad_Bound) then
                     Error_Msg_N
                       ("suspicious loop bound out of range of "
                        & "loop subtype??", Bad_Bound);
                     Error_Msg_N
                       ("\loop executes zero times or raises "
                        & "Constraint_Error??", Bad_Bound);
                  end if;
                  if Compile_Time_Compare (LLo, LHi, Assume_Valid => False)
                    = GT
                  then
                     Error_Msg_N ("??constrained range is null",
                       Constraint (DS));
                     --  Additional constraints on modular types can be
                     --  confusing, add more information.
                     if Ekind (Etype (DS)) = E_Modular_Integer_Subtype then
                        Error_Msg_Uint_1 := Intval (LLo);
                        Error_Msg_Uint_2 := Intval (LHi);
                        Error_Msg_NE ("\iterator has modular type &, " &
                          "so the loop has bounds ^ ..^",
                          Constraint (DS),
                          Subtype_Mark (DS));
                     end if;
                     Set_Is_Null_Loop (Loop_Nod);
                     Null_Range := True;
                     --  Suppress other warnings about the body of the loop, as
                     --  it will never execute.
                     Set_Suppress_Loop_Warnings (Loop_Nod);
                  end if;
               end;
            end if;
         --  This declare block is about warnings, if we get an exception while
         --  testing for warnings, we simply abandon the attempt silently. This
         --  most likely occurs as the result of a previous error, but might
         --  just be an obscure case we have missed. In either case, not giving
         --  the warning is perfectly acceptable.
         exception
            when others =>
               --  With debug flag K we will get an exception unless an error
               --  has already occurred (useful for debugging).
               if Debug_Flag_K then
                  Check_Error_Detected;
               end if;
         end;
      end if;
      --  Preanalyze the filter. Expansion will take place when enclosing
      --  loop is expanded.
      if Present (Iterator_Filter (N)) then
         Preanalyze_And_Resolve (Iterator_Filter (N), Standard_Boolean);
      end if;
   end Analyze_Loop_Parameter_Specification;
   ----------------------------
   -- Analyze_Loop_Statement --
   ----------------------------
   procedure Analyze_Loop_Statement (N : Node_Id) is
      --  The following exception is raised by routine Prepare_Loop_Statement
      --  to avoid further analysis of a transformed loop.
      procedure Prepare_Loop_Statement
        (Iter            : Node_Id;
         Stop_Processing : out Boolean);
      --  Determine whether loop statement N with iteration scheme Iter must be
      --  transformed prior to analysis, and if so, perform it.
      --  If Stop_Processing is set to True, should stop further processing.
      ----------------------------
      -- Prepare_Loop_Statement --
      ----------------------------
      procedure Prepare_Loop_Statement
        (Iter            : Node_Id;
         Stop_Processing : out Boolean)
      is
         function Has_Sec_Stack_Default_Iterator
           (Cont_Typ : Entity_Id) return Boolean;
         pragma Inline (Has_Sec_Stack_Default_Iterator);
         --  Determine whether container type Cont_Typ has a default iterator
         --  that requires secondary stack management.
         function Is_Sec_Stack_Iteration_Primitive
           (Cont_Typ      : Entity_Id;
            Iter_Prim_Nam : Name_Id) return Boolean;
         pragma Inline (Is_Sec_Stack_Iteration_Primitive);
         --  Determine whether container type Cont_Typ has an iteration routine
         --  described by its name Iter_Prim_Nam that requires secondary stack
         --  management.
         function Is_Wrapped_In_Block (Stmt : Node_Id) return Boolean;
         pragma Inline (Is_Wrapped_In_Block);
         --  Determine whether arbitrary statement Stmt is the sole statement
         --  wrapped within some block, excluding pragmas.
         procedure Prepare_Iterator_Loop
           (Iter_Spec       : Node_Id;
            Stop_Processing : out Boolean);
         pragma Inline (Prepare_Iterator_Loop);
         --  Prepare an iterator loop with iteration specification Iter_Spec
         --  for transformation if needed.
         --  If Stop_Processing is set to True, should stop further processing.
         procedure Prepare_Param_Spec_Loop
           (Param_Spec      : Node_Id;
            Stop_Processing : out Boolean);
         pragma Inline (Prepare_Param_Spec_Loop);
         --  Prepare a discrete loop with parameter specification Param_Spec
         --  for transformation if needed.
         --  If Stop_Processing is set to True, should stop further processing.
         procedure Wrap_Loop_Statement (Manage_Sec_Stack : Boolean);
         pragma Inline (Wrap_Loop_Statement);
         --  Wrap loop statement N within a block. Flag Manage_Sec_Stack must
         --  be set when the block must mark and release the secondary stack.
         --  Should stop further processing after calling this procedure.
         ------------------------------------
         -- Has_Sec_Stack_Default_Iterator --
         ------------------------------------
         function Has_Sec_Stack_Default_Iterator
           (Cont_Typ : Entity_Id) return Boolean
         is
            Def_Iter : constant Node_Id :=
                         Find_Value_Of_Aspect
                           (Cont_Typ, Aspect_Default_Iterator);
         begin
            return
              Present (Def_Iter)
                and then Present (Etype (Def_Iter))
                and then Requires_Transient_Scope (Etype (Def_Iter));
         end Has_Sec_Stack_Default_Iterator;
         --------------------------------------
         -- Is_Sec_Stack_Iteration_Primitive --
         --------------------------------------
         function Is_Sec_Stack_Iteration_Primitive
           (Cont_Typ      : Entity_Id;
            Iter_Prim_Nam : Name_Id) return Boolean
         is
            Iter_Prim : constant Entity_Id :=
                          Get_Iterable_Type_Primitive
                            (Cont_Typ, Iter_Prim_Nam);
         begin
            return
              Present (Iter_Prim)
                and then Requires_Transient_Scope (Etype (Iter_Prim));
         end Is_Sec_Stack_Iteration_Primitive;
         -------------------------
         -- Is_Wrapped_In_Block --
         -------------------------
         function Is_Wrapped_In_Block (Stmt : Node_Id) return Boolean is
            Blk_HSS  : Node_Id;
            Blk_Id   : Entity_Id;
            Blk_Stmt : Node_Id;
         begin
            Blk_Id := Current_Scope;
            --  The current context is a block. Inspect the statements of the
            --  block to determine whether it wraps Stmt.
            if Ekind (Blk_Id) = E_Block
              and then Present (Block_Node (Blk_Id))
            then
               Blk_HSS :=
                 Handled_Statement_Sequence (Parent (Block_Node (Blk_Id)));
               --  Skip leading pragmas introduced for invariant and predicate
               --  checks.
               Blk_Stmt := First (Statements (Blk_HSS));
               while Present (Blk_Stmt)
                 and then Nkind (Blk_Stmt) = N_Pragma
               loop
                  Next (Blk_Stmt);
               end loop;
               return Blk_Stmt = Stmt and then No (Next (Blk_Stmt));
            end if;
            return False;
         end Is_Wrapped_In_Block;
         ---------------------------
         -- Prepare_Iterator_Loop --
         ---------------------------
         procedure Prepare_Iterator_Loop
           (Iter_Spec       : Node_Id;
            Stop_Processing : out Boolean)
         is
            Cont_Typ : Entity_Id;
            Nam      : Node_Id;
            Nam_Copy : Node_Id;
         begin
            Stop_Processing := False;
            --  The iterator specification has syntactic errors. Transform the
            --  loop into an infinite loop in order to safely perform at least
            --  some minor analysis. This check must come first.
            if Error_Posted (Iter_Spec) then
               Set_Iteration_Scheme (N, Empty);
               Analyze (N);
               Stop_Processing := True;
            --  Nothing to do when the loop is already wrapped in a block
            elsif Is_Wrapped_In_Block (N) then
               null;
            --  Otherwise the iterator loop traverses an array or a container
            --  and appears in the form
            --
            --    for Def_Id in [reverse] Iterator_Name loop
            --    for Def_Id [: Subtyp_Indic] of [reverse] Iterable_Name loop
            else
               --  Prepare a copy of the iterated name for preanalysis. The
               --  copy is semi inserted into the tree by setting its Parent
               --  pointer.
               Nam      := Name (Iter_Spec);
               Nam_Copy := New_Copy_Tree (Nam);
               Set_Parent (Nam_Copy, Parent (Nam));
               --  Determine what the loop is iterating on
               Preanalyze_Range (Nam_Copy);
               Cont_Typ := Etype (Nam_Copy);
               --  The iterator loop is traversing an array. This case does not
               --  require any transformation, unless the name contains a call
               --  that returns on the secondary stack since we need to release
               --  the space allocated there.
               if Is_Array_Type (Cont_Typ)
                 and then not Has_Sec_Stack_Call (Nam_Copy)
               then
                  null;
               --  Otherwise unconditionally wrap the loop statement within
               --  a block. The expansion of iterator loops may relocate the
               --  iterator outside the loop, thus "leaking" its entity into
               --  the enclosing scope. Wrapping the loop statement allows
               --  for multiple iterator loops using the same iterator name
               --  to coexist within the same scope.
               --
               --  The block must manage the secondary stack when the iterator
               --  loop is traversing a container using either
               --
               --    * A default iterator obtained on the secondary stack
               --
               --    * Call to Iterate where the iterator is returned on the
               --      secondary stack.
               --
               --    * Combination of First, Next, and Has_Element where the
               --      first two return a cursor on the secondary stack.
               else
                  Wrap_Loop_Statement
                    (Manage_Sec_Stack =>
                       Has_Sec_Stack_Default_Iterator (Cont_Typ)
                         or else Has_Sec_Stack_Call (Nam_Copy)
                         or else Is_Sec_Stack_Iteration_Primitive
                                   (Cont_Typ, Name_First)
                         or else Is_Sec_Stack_Iteration_Primitive
                                   (Cont_Typ, Name_Next));
                  Stop_Processing := True;
               end if;
            end if;
         end Prepare_Iterator_Loop;
         -----------------------------
         -- Prepare_Param_Spec_Loop --
         -----------------------------
         procedure Prepare_Param_Spec_Loop
           (Param_Spec      : Node_Id;
            Stop_Processing : out Boolean)
         is
            High     : Node_Id;
            Low      : Node_Id;
            Rng      : Node_Id;
            Rng_Copy : Node_Id;
            Rng_Typ  : Entity_Id;
         begin
            Stop_Processing := False;
            Rng := Discrete_Subtype_Definition (Param_Spec);
            --  Nothing to do when the loop is already wrapped in a block
            if Is_Wrapped_In_Block (N) then
               null;
            --  The parameter specification appears in the form
            --
            --    for Def_Id in Subtype_Mark Constraint loop
            elsif Nkind (Rng) = N_Subtype_Indication
              and then Nkind (Range_Expression (Constraint (Rng))) = N_Range
            then
               Rng := Range_Expression (Constraint (Rng));
               --  Preanalyze the bounds of the range constraint, setting
               --  parent fields to associate the copied bounds with the range,
               --  allowing proper tree climbing during preanalysis.
               Low  := New_Copy_Tree (Low_Bound  (Rng));
               High := New_Copy_Tree (High_Bound (Rng));
               Set_Parent (Low, Rng);
               Set_Parent (High, Rng);
               Preanalyze (Low);
               Preanalyze (High);
               --  The bounds contain at least one function call that returns
               --  on the secondary stack. Note that the loop must be wrapped
               --  only when such a call exists.
               if Has_Sec_Stack_Call (Low) or else Has_Sec_Stack_Call (High)
               then
                  Wrap_Loop_Statement (Manage_Sec_Stack => True);
                  Stop_Processing := True;
               end if;
            --  Otherwise the parameter specification appears in the form
            --
            --    for Def_Id in Range loop
            else
               --  Prepare a copy of the discrete range for preanalysis. The
               --  copy is semi inserted into the tree by setting its Parent
               --  pointer.
               Rng_Copy := New_Copy_Tree (Rng);
               Set_Parent (Rng_Copy, Parent (Rng));
               --  Determine what the loop is iterating on
               Preanalyze_Range (Rng_Copy);
               Rng_Typ := Etype (Rng_Copy);
               --  Wrap the loop statement within a block in order to manage
               --  the secondary stack when the discrete range is
               --
               --    * Either a Forward_Iterator or a Reverse_Iterator
               --
               --    * Function call whose return type requires finalization
               --      actions.
               --  ??? it is unclear why using Has_Sec_Stack_Call directly on
               --  the discrete range causes the freeze node of an itype to be
               --  in the wrong scope in complex assertion expressions.
               if Is_Iterator (Rng_Typ)
                 or else (Nkind (Rng_Copy) = N_Function_Call
                           and then Needs_Finalization (Rng_Typ))
               then
                  Wrap_Loop_Statement (Manage_Sec_Stack => True);
                  Stop_Processing := True;
               end if;
            end if;
         end Prepare_Param_Spec_Loop;
         -------------------------
         -- Wrap_Loop_Statement --
         -------------------------
         procedure Wrap_Loop_Statement (Manage_Sec_Stack : Boolean) is
            Loc : constant Source_Ptr := Sloc (N);
            Blk    : Node_Id;
            Blk_Id : Entity_Id;
         begin
            Blk :=
              Make_Block_Statement (Loc,
                Declarations               => New_List,
                Handled_Statement_Sequence =>
                  Make_Handled_Sequence_Of_Statements (Loc,
                    Statements => New_List (Relocate_Node (N))));
            Add_Block_Identifier (Blk, Blk_Id);
            Set_Uses_Sec_Stack (Blk_Id, Manage_Sec_Stack);
            Rewrite (N, Blk);
            Analyze (N);
         end Wrap_Loop_Statement;
         --  Local variables
         Iter_Spec  : constant Node_Id := Iterator_Specification (Iter);
         Param_Spec : constant Node_Id := Loop_Parameter_Specification (Iter);
      --  Start of processing for Prepare_Loop_Statement
      begin
         Stop_Processing := False;
         if Present (Iter_Spec) then
            Prepare_Iterator_Loop (Iter_Spec, Stop_Processing);
         elsif Present (Param_Spec) then
            Prepare_Param_Spec_Loop (Param_Spec, Stop_Processing);
         end if;
      end Prepare_Loop_Statement;
      --  Local declarations
      Id   : constant Node_Id := Identifier (N);
      Iter : constant Node_Id := Iteration_Scheme (N);
      Loc  : constant Source_Ptr := Sloc (N);
      Ent  : Entity_Id;
      Stmt : Node_Id;
   --  Start of processing for Analyze_Loop_Statement
   begin
      if Present (Id) then
         --  Make name visible, e.g. for use in exit statements. Loop labels
         --  are always considered to be referenced.
         Analyze (Id);
         Ent := Entity (Id);
         --  Guard against serious error (typically, a scope mismatch when
         --  semantic analysis is requested) by creating loop entity to
         --  continue analysis.
         if No (Ent) then
            if Total_Errors_Detected /= 0 then
               Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
            else
               raise Program_Error;
            end if;
         --  Verify that the loop name is hot hidden by an unrelated
         --  declaration in an inner scope.
         elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
            Error_Msg_Sloc := Sloc (Ent);
            Error_Msg_N ("implicit label declaration for & is hidden#", Id);
            if Present (Homonym (Ent))
              and then Ekind (Homonym (Ent)) = E_Label
            then
               Set_Entity (Id, Ent);
               Mutate_Ekind (Ent, E_Loop);
            end if;
         else
            Generate_Reference (Ent, N, ' ');
            Generate_Definition (Ent);
            --  If we found a label, mark its type. If not, ignore it, since it
            --  means we have a conflicting declaration, which would already
            --  have been diagnosed at declaration time. Set Label_Construct
            --  of the implicit label declaration, which is not created by the
            --  parser for generic units.
            if Ekind (Ent) = E_Label then
               Reinit_Field_To_Zero (Ent, F_Enclosing_Scope);
               Reinit_Field_To_Zero (Ent, F_Reachable);
               Mutate_Ekind (Ent, E_Loop);
               if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
                  Set_Label_Construct (Parent (Ent), N);
               end if;
            end if;
         end if;
      --  Case of no identifier present. Create one and attach it to the
      --  loop statement for use as a scope and as a reference for later
      --  expansions. Indicate that the label does not come from source,
      --  and attach it to the loop statement so it is part of the tree,
      --  even without a full declaration.
      else
         Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
         Set_Etype  (Ent, Standard_Void_Type);
         Set_Identifier (N, New_Occurrence_Of (Ent, Loc));
         Set_Parent (Ent, N);
         Set_Has_Created_Identifier (N);
      end if;
      --  Determine whether the loop statement must be transformed prior to
      --  analysis, and if so, perform it. This early modification is needed
      --  when:
      --
      --    * The loop has an erroneous iteration scheme. In this case the
      --      loop is converted into an infinite loop in order to perform
      --      minor analysis.
      --
      --    * The loop is an Ada 2012 iterator loop. In this case the loop is
      --      wrapped within a block to provide a local scope for the iterator.
      --      If the iterator specification requires the secondary stack in any
      --      way, the block is marked in order to manage it.
      --
      --    * The loop is using a parameter specification where the discrete
      --      range requires the secondary stack. In this case the loop is
      --      wrapped within a block in order to manage the secondary stack.
      --  ??? This overlooks finalization: the loop may leave the secondary
      --  stack untouched, but its iterator or discrete range may need
      --  finalization, in which case the block is also required. Therefore
      --  the criterion must be based on Sem_Util.Requires_Transient_Scope,
      --  which happens to be what is currently implemented.
      if Present (Iter) then
         declare
            Stop_Processing : Boolean;
         begin
            Prepare_Loop_Statement (Iter, Stop_Processing);
            if Stop_Processing then
               return;
            end if;
         end;
      end if;
      --  Kill current values on entry to loop, since statements in the body of
      --  the loop may have been executed before the loop is entered. Similarly
      --  we kill values after the loop, since we do not know that the body of
      --  the loop was executed.
      Kill_Current_Values;
      Push_Scope (Ent);
      Analyze_Iteration_Scheme (Iter);
      --  Check for following case which merits a warning if the type E of is
      --  a multi-dimensional array (and no explicit subscript ranges present).
      --      for J in E'Range
      --         for K in E'Range
      if Present (Iter)
        and then Present (Loop_Parameter_Specification (Iter))
      then
         declare
            LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
            DSD : constant Node_Id :=
                    Original_Node (Discrete_Subtype_Definition (LPS));
         begin
            if Nkind (DSD) = N_Attribute_Reference
              and then Attribute_Name (DSD) = Name_Range
              and then No (Expressions (DSD))
            then
               declare
                  Typ : constant Entity_Id := Etype (Prefix (DSD));
               begin
                  if Is_Array_Type (Typ)
                    and then Number_Dimensions (Typ) > 1
                    and then Nkind (Parent (N)) = N_Loop_Statement
                    and then Present (Iteration_Scheme (Parent (N)))
                  then
                     declare
                        OIter : constant Node_Id :=
                          Iteration_Scheme (Parent (N));
                        OLPS  : constant Node_Id :=
                          Loop_Parameter_Specification (OIter);
                        ODSD  : constant Node_Id :=
                          Original_Node (Discrete_Subtype_Definition (OLPS));
                     begin
                        if Nkind (ODSD) = N_Attribute_Reference
                          and then Attribute_Name (ODSD) = Name_Range
                          and then No (Expressions (ODSD))
                          and then Etype (Prefix (ODSD)) = Typ
                        then
                           Error_Msg_Sloc := Sloc (ODSD);
                           Error_Msg_N
                             ("inner range same as outer range#??", DSD);
                        end if;
                     end;
                  end if;
               end;
            end if;
         end;
      end if;
      --  Analyze the statements of the body except in the case of an Ada 2012
      --  iterator with the expander active. In this case the expander will do
      --  a rewrite of the loop into a while loop. We will then analyze the
      --  loop body when we analyze this while loop.
      --  We need to do this delay because if the container is for indefinite
      --  types the actual subtype of the components will only be determined
      --  when the cursor declaration is analyzed.
      --  If the expander is not active then we want to analyze the loop body
      --  now even in the Ada 2012 iterator case, since the rewriting will not
      --  be done. Insert the loop variable in the current scope, if not done
      --  when analysing the iteration scheme. Set its kind properly to detect
      --  improper uses in the loop body.
      --  In GNATprove mode, we do one of the above depending on the kind of
      --  loop. If it is an iterator over an array, then we do not analyze the
      --  loop now. We will analyze it after it has been rewritten by the
      --  special SPARK expansion which is activated in GNATprove mode. We need
      --  to do this so that other expansions that should occur in GNATprove
      --  mode take into account the specificities of the rewritten loop, in
      --  particular the introduction of a renaming (which needs to be
      --  expanded).
      --  In other cases in GNATprove mode then we want to analyze the loop
      --  body now, since no rewriting will occur. Within a generic the
      --  GNATprove mode is irrelevant, we must analyze the generic for
      --  non-local name capture.
      if Present (Iter)
        and then Present (Iterator_Specification (Iter))
      then
         if GNATprove_Mode
           and then Is_Iterator_Over_Array (Iterator_Specification (Iter))
           and then not Inside_A_Generic
         then
            null;
         elsif not Expander_Active then
            declare
               I_Spec : constant Node_Id   := Iterator_Specification (Iter);
               Id     : constant Entity_Id := Defining_Identifier (I_Spec);
            begin
               if Scope (Id) /= Current_Scope then
                  Enter_Name (Id);
               end if;
               --  In an element iterator, the loop parameter is a variable if
               --  the domain of iteration (container or array) is a variable.
               if not Of_Present (I_Spec)
                 or else not Is_Variable (Name (I_Spec))
               then
                  Mutate_Ekind (Id, E_Loop_Parameter);
               end if;
            end;
            Analyze_Statements (Statements (N));
         end if;
      else
         --  Pre-Ada2012 for-loops and while loops
         Analyze_Statements (Statements (N));
      end if;
      --  If the loop has no side effects, mark it for removal.
      if Side_Effect_Free_Loop (N) then
         Set_Is_Null_Loop (N);
      end if;
      --  When the iteration scheme of a loop contains attribute 'Loop_Entry,
      --  the loop is transformed into a conditional block. Retrieve the loop.
      Stmt := N;
      if Subject_To_Loop_Entry_Attributes (Stmt) then
         Stmt := Find_Loop_In_Conditional_Block (Stmt);
      end if;
      --  Finish up processing for the loop. We kill all current values, since
      --  in general we don't know if the statements in the loop have been
      --  executed. We could do a bit better than this with a loop that we
      --  know will execute at least once, but it's not worth the trouble and
      --  the front end is not in the business of flow tracing.
      Process_End_Label (Stmt, 'e', Ent);
      End_Scope;
      Kill_Current_Values;
      --  Check for infinite loop. Skip check for generated code, since it
      --  justs waste time and makes debugging the routine called harder.
      --  Note that we have to wait till the body of the loop is fully analyzed
      --  before making this call, since Check_Infinite_Loop_Warning relies on
      --  being able to use semantic visibility information to find references.
      if Comes_From_Source (Stmt) then
         Check_Infinite_Loop_Warning (Stmt);
      end if;
      --  Code after loop is unreachable if the loop has no WHILE or FOR and
      --  contains no EXIT statements within the body of the loop.
      if No (Iter) and then not Has_Exit (Ent) then
         Check_Unreachable_Code (Stmt);
      end if;
   end Analyze_Loop_Statement;
   ----------------------------
   -- Analyze_Null_Statement --
   ----------------------------
   --  Note: the semantics of the null statement is implemented by a single
   --  null statement, too bad everything isn't as simple as this.
   procedure Analyze_Null_Statement (N : Node_Id) is
      pragma Warnings (Off, N);
   begin
      null;
   end Analyze_Null_Statement;
   -------------------------
   -- Analyze_Target_Name --
   -------------------------
   procedure Analyze_Target_Name (N : Node_Id) is
      procedure Report_Error;
      --  Complain about illegal use of target_name and rewrite it into unknown
      --  identifier.
      ------------------
      -- Report_Error --
      ------------------
      procedure Report_Error is
      begin
         Error_Msg_N
           ("must appear in the right-hand side of an assignment statement",
             N);
         Rewrite (N, New_Occurrence_Of (Any_Id, Sloc (N)));
      end Report_Error;
   --  Start of processing for Analyze_Target_Name
   begin
      --  A target name has the type of the left-hand side of the enclosing
      --  assignment.
      --  First, verify that the context is the right-hand side of an
      --  assignment statement.
      if No (Current_Assignment) then
         Report_Error;
         return;
      end if;
      declare
         Current : Node_Id := N;
         Context : Node_Id := Parent (N);
      begin
         while Present (Context) loop
            --  Check if target_name appears in the expression of the enclosing
            --  assignment.
            if Nkind (Context) = N_Assignment_Statement then
               if Current = Expression (Context) then
                  pragma Assert (Context = Current_Assignment);
                  Set_Etype (N, Etype (Name (Current_Assignment)));
               else
                  Report_Error;
               end if;
               return;
            --  Prevent the search from going too far
            elsif Is_Body_Or_Package_Declaration (Context) then
               Report_Error;
               return;
            end if;
            Current := Context;
            Context := Parent (Context);
         end loop;
         Report_Error;
      end;
   end Analyze_Target_Name;
   ------------------------
   -- Analyze_Statements --
   ------------------------
   procedure Analyze_Statements (L : List_Id) is
      Lab : Entity_Id;
      S   : Node_Id;
   begin
      --  The labels declared in the statement list are reachable from
      --  statements in the list. We do this as a prepass so that any goto
      --  statement will be properly flagged if its target is not reachable.
      --  This is not required, but is nice behavior.
      S := First (L);
      while Present (S) loop
         if Nkind (S) = N_Label then
            Analyze (Identifier (S));
            Lab := Entity (Identifier (S));
            --  If we found a label mark it as reachable
            if Ekind (Lab) = E_Label then
               Generate_Definition (Lab);
               Set_Reachable (Lab);
               if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
                  Set_Label_Construct (Parent (Lab), S);
               end if;
            --  If we failed to find a label, it means the implicit declaration
            --  of the label was hidden. A for-loop parameter can do this to
            --  a label with the same name inside the loop, since the implicit
            --  label declaration is in the innermost enclosing body or block
            --  statement.
            else
               Error_Msg_Sloc := Sloc (Lab);
               Error_Msg_N
                 ("implicit label declaration for & is hidden#",
                  Identifier (S));
            end if;
         end if;
         Next (S);
      end loop;
      --  Perform semantic analysis on all statements
      Conditional_Statements_Begin;
      S := First (L);
      while Present (S) loop
         Analyze (S);
         --  Remove dimension in all statements
         Remove_Dimension_In_Statement (S);
         Next (S);
      end loop;
      Conditional_Statements_End;
      --  Make labels unreachable. Visibility is not sufficient, because labels
      --  in one if-branch for example are not reachable from the other branch,
      --  even though their declarations are in the enclosing declarative part.
      S := First (L);
      while Present (S) loop
         if Nkind (S) = N_Label
           and then Ekind (Entity (Identifier (S))) = E_Label
         then
            Set_Reachable (Entity (Identifier (S)), False);
         end if;
         Next (S);
      end loop;
   end Analyze_Statements;
   ----------------------------
   -- Check_Unreachable_Code --
   ----------------------------
   procedure Check_Unreachable_Code (N : Node_Id) is
      function Is_Simple_Case (N : Node_Id) return Boolean;
      --  N is the condition of an if statement. True if N is simple enough
      --  that we should not set Unblocked_Exit_Count in the special case
      --  below.
      --------------------
      -- Is_Simple_Case --
      --------------------
      function Is_Simple_Case (N : Node_Id) return Boolean is
      begin
         return
            Is_Trivial_Boolean (N)
           or else
            (Comes_From_Source (N)
               and then Is_Static_Expression (N)
               and then Nkind (N) in N_Identifier | N_Expanded_Name
               and then Ekind (Entity (N)) = E_Constant)
           or else
            (not In_Instance
               and then Nkind (Original_Node (N)) = N_Op_Not
               and then Is_Simple_Case (Right_Opnd (Original_Node (N))));
      end Is_Simple_Case;
      Error_Node : Node_Id;
      Nxt        : Node_Id;
      P          : Node_Id;
   begin
      if Comes_From_Source (N) then
         Nxt := Original_Node (Next (N));
         --  Skip past pragmas
         while Nkind (Nxt) = N_Pragma loop
            Nxt := Original_Node (Next (Nxt));
         end loop;
         --  If a label follows us, then we never have dead code, since someone
         --  could branch to the label, so we just ignore it.
         if Nkind (Nxt) = N_Label then
            return;
         --  Otherwise see if we have a real statement following us
         elsif Comes_From_Source (Nxt)
           and then Is_Statement (Nxt)
         then
            --  Special very annoying exception. Ada RM 6.5(5) annoyingly
            --  requires functions to have at least one return statement, so
            --  don't complain about a simple return that follows a raise or a
            --  call to procedure with No_Return.
            if not (Present (Current_Subprogram)
                    and then Ekind (Current_Subprogram) = E_Function
                    and then (Nkind (N) in N_Raise_Statement
                                or else
                              (Nkind (N) = N_Procedure_Call_Statement
                               and then Is_Entity_Name (Name (N))
                               and then Present (Entity (Name (N)))
                               and then No_Return (Entity (Name (N)))))
                    and then Nkind (Nxt) = N_Simple_Return_Statement)
            then
               --  The rather strange shenanigans with the warning message
               --  here reflects the fact that Kill_Dead_Code is very good at
               --  removing warnings in deleted code, and this is one warning
               --  we would prefer NOT to have removed.
               Error_Node := Nxt;
               --  If we have unreachable code, analyze and remove the
               --  unreachable code, since it is useless and we don't want
               --  to generate junk warnings.
               --  We skip this step if we are not in code generation mode.
               --  This is the one case where we remove dead code in the
               --  semantics as opposed to the expander, and we do not want
               --  to remove code if we are not in code generation mode, since
               --  this messes up the tree or loses useful information for
               --  analysis tools such as CodePeer.
               --  Note that one might react by moving the whole circuit to
               --  exp_ch5, but then we lose the warning in -gnatc mode.
               if Operating_Mode = Generate_Code then
                  loop
                     declare
                        Del : constant Node_Id := Next (N);
                        --  Node to be possibly deleted
                     begin
                        --  Quit deleting when we have nothing more to delete
                        --  or if we hit a label (since someone could transfer
                        --  control to a label, so we should not delete it).
                        exit when No (Del) or else Nkind (Del) = N_Label;
                        --  Statement/declaration is to be deleted
                        Analyze (Del);
                        Kill_Dead_Code (Del);
                        Remove (Del);
                     end;
                  end loop;
                  --  If this is a function, we add "raise Program_Error;",
                  --  because otherwise, we will get incorrect warnings about
                  --  falling off the end of the function.
                  declare
                     Subp : constant Entity_Id := Current_Subprogram;
                  begin
                     if Present (Subp) and then Ekind (Subp) = E_Function then
                        Insert_After_And_Analyze (N,
                          Make_Raise_Program_Error (Sloc (Error_Node),
                            Reason => PE_Missing_Return));
                     end if;
                  end;
               end if;
               --  Suppress the warning in instances, because a statement can
               --  be unreachable in some instances but not others.
               if not In_Instance then
                  Error_Msg_N ("??unreachable code!", Error_Node);
               end if;
            end if;
         --  If the unconditional transfer of control instruction is the
         --  last statement of a sequence, then see if our parent is one of
         --  the constructs for which we count unblocked exits, and if so,
         --  adjust the count.
         else
            P := Parent (N);
            --  Statements in THEN part or ELSE part of IF statement
            if Nkind (P) = N_If_Statement then
               null;
            --  Statements in ELSIF part of an IF statement
            elsif Nkind (P) = N_Elsif_Part then
               P := Parent (P);
               pragma Assert (Nkind (P) = N_If_Statement);
            --  Statements in CASE statement alternative
            elsif Nkind (P) = N_Case_Statement_Alternative then
               P := Parent (P);
               pragma Assert (Nkind (P) = N_Case_Statement);
            --  Statements in body of block
            elsif Nkind (P) = N_Handled_Sequence_Of_Statements
              and then Nkind (Parent (P)) = N_Block_Statement
            then
               --  The original loop is now placed inside a block statement
               --  due to the expansion of attribute 'Loop_Entry. Return as
               --  this is not a "real" block for the purposes of exit
               --  counting.
               if Nkind (N) = N_Loop_Statement
                 and then Subject_To_Loop_Entry_Attributes (N)
               then
                  return;
               end if;
            --  Statements in exception handler in a block
            elsif Nkind (P) = N_Exception_Handler
              and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
              and then Nkind (Parent (Parent (P))) = N_Block_Statement
            then
               null;
            --  None of these cases, so return
            else
               return;
            end if;
            --  This was one of the cases we are looking for (i.e. the parent
            --  construct was IF, CASE or block). In most cases, we simply
            --  decrement the count. However, if the parent is something like:
            --
            --     if cond then
            --        raise ...; -- or some other jump
            --     end if;
            --
            --  where cond is an expression that is known-true at compile time,
            --  we can treat that as just the jump -- i.e. anything following
            --  the if statement is unreachable. We don't do this for simple
            --  cases like "if True" or "if Debug_Flag", because that causes
            --  too many warnings.
            if Nkind (P) = N_If_Statement
              and then Present (Then_Statements (P))
              and then No (Elsif_Parts (P))
              and then No (Else_Statements (P))
              and then Is_OK_Static_Expression (Condition (P))
              and then Is_True (Expr_Value (Condition (P)))
              and then not Is_Simple_Case (Condition (P))
            then
               pragma Assert (Unblocked_Exit_Count = 2);
               Unblocked_Exit_Count := 0;
            else
               Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
            end if;
         end if;
      end if;
   end Check_Unreachable_Code;
   ------------------------
   -- Has_Sec_Stack_Call --
   ------------------------
   function Has_Sec_Stack_Call (N : Node_Id) return Boolean is
      function Check_Call (N : Node_Id) return Traverse_Result;
      --  Check if N is a function call which uses the secondary stack
      ----------------
      -- Check_Call --
      ----------------
      function Check_Call (N : Node_Id) return Traverse_Result is
         Nam  : Node_Id;
         Subp : Entity_Id;
         Typ  : Entity_Id;
      begin
         if Nkind (N) = N_Function_Call then
            Nam := Name (N);
            --  Obtain the subprogram being invoked
            loop
               if Nkind (Nam) = N_Explicit_Dereference then
                  Nam := Prefix (Nam);
               elsif Nkind (Nam) = N_Selected_Component then
                  Nam := Selector_Name (Nam);
               else
                  exit;
               end if;
            end loop;
            Subp := Entity (Nam);
            if Present (Subp) then
               Typ := Etype (Subp);
               if Requires_Transient_Scope (Typ) then
                  return Abandon;
               elsif Sec_Stack_Needed_For_Return (Subp) then
                  return Abandon;
               end if;
            end if;
         end if;
         --  Continue traversing the tree
         return OK;
      end Check_Call;
      function Check_Calls is new Traverse_Func (Check_Call);
   --  Start of processing for Has_Sec_Stack_Call
   begin
      return Check_Calls (N) = Abandon;
   end Has_Sec_Stack_Call;
   ----------------------
   -- Preanalyze_Range --
   ----------------------
   procedure Preanalyze_Range (R_Copy : Node_Id) is
      Save_Analysis : constant Boolean := Full_Analysis;
      Typ           : Entity_Id;
   begin
      Full_Analysis := False;
      Expander_Mode_Save_And_Set (False);
      --  In addition to the above we must explicitly suppress the generation
      --  of freeze nodes that might otherwise be generated during resolution
      --  of the range (e.g. if given by an attribute that will freeze its
      --  prefix).
      Set_Must_Not_Freeze (R_Copy);
      if Nkind (R_Copy) = N_Attribute_Reference then
         Set_Must_Not_Freeze (Prefix (R_Copy));
      end if;
      Analyze (R_Copy);
      if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
         --  Apply preference rules for range of predefined integer types, or
         --  check for array or iterable construct for "of" iterator, or
         --  diagnose true ambiguity.
         declare
            I     : Interp_Index;
            It    : Interp;
            Found : Entity_Id := Empty;
         begin
            Get_First_Interp (R_Copy, I, It);
            while Present (It.Typ) loop
               if Is_Discrete_Type (It.Typ) then
                  if No (Found) then
                     Found := It.Typ;
                  else
                     if Scope (Found) = Standard_Standard then
                        null;
                     elsif Scope (It.Typ) = Standard_Standard then
                        Found := It.Typ;
                     else
                        --  Both of them are user-defined
                        Error_Msg_N
                          ("ambiguous bounds in range of iteration", R_Copy);
                        Error_Msg_N ("\possible interpretations:", R_Copy);
                        Error_Msg_NE ("\\}", R_Copy, Found);
                        Error_Msg_NE ("\\}", R_Copy, It.Typ);
                        exit;
                     end if;
                  end if;
               elsif Nkind (Parent (R_Copy)) = N_Iterator_Specification
                 and then Of_Present (Parent (R_Copy))
               then
                  if Is_Array_Type (It.Typ)
                    or else Has_Aspect (It.Typ, Aspect_Iterator_Element)
                    or else Has_Aspect (It.Typ, Aspect_Constant_Indexing)
                    or else Has_Aspect (It.Typ, Aspect_Variable_Indexing)
                  then
                     if No (Found) then
                        Found := It.Typ;
                        Set_Etype (R_Copy, It.Typ);
                     else
                        Error_Msg_N ("ambiguous domain of iteration", R_Copy);
                     end if;
                  end if;
               end if;
               Get_Next_Interp (I, It);
            end loop;
         end;
      end if;
      --  Subtype mark in iteration scheme
      if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
         null;
      --  Expression in range, or Ada 2012 iterator
      elsif Nkind (R_Copy) in N_Subexpr then
         Resolve (R_Copy);
         Typ := Etype (R_Copy);
         if Is_Discrete_Type (Typ) then
            null;
         --  Check that the resulting object is an iterable container
         elsif Has_Aspect (Typ, Aspect_Iterator_Element)
           or else Has_Aspect (Typ, Aspect_Constant_Indexing)
           or else Has_Aspect (Typ, Aspect_Variable_Indexing)
         then
            null;
         --  The expression may yield an implicit reference to an iterable
         --  container. Insert explicit dereference so that proper type is
         --  visible in the loop.
         elsif Has_Implicit_Dereference (Etype (R_Copy)) then
            Build_Explicit_Dereference
              (R_Copy, Get_Reference_Discriminant (Etype (R_Copy)));
         end if;
      end if;
      Expander_Mode_Restore;
      Full_Analysis := Save_Analysis;
   end Preanalyze_Range;
end Sem_Ch5;
 |