1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
|
# Python hooks for gdb for debugging GCC
# Copyright (C) 2013-2024 Free Software Foundation, Inc.
# Contributed by David Malcolm <dmalcolm@redhat.com>
# This file is part of GCC.
# GCC is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
# GCC is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
# You should have received a copy of the GNU General Public License
# along with GCC; see the file COPYING3. If not see
# <http://www.gnu.org/licenses/>.
"""
Enabling the debugging hooks
----------------------------
gcc/configure (from configure.ac) generates a .gdbinit within the "gcc"
subdirectory of the build directory, and when run by gdb, this imports
gcc/gdbhooks.py from the source directory, injecting useful Python code
into gdb.
You may see a message from gdb of the form:
"path-to-build/gcc/.gdbinit" auto-loading has been declined by your `auto-load safe-path'
as a protection against untrustworthy python scripts. See
http://sourceware.org/gdb/onlinedocs/gdb/Auto_002dloading-safe-path.html
The fix is to mark the paths of the build/gcc directory as trustworthy.
An easy way to do so is by adding the following to your ~/.gdbinit script:
add-auto-load-safe-path /absolute/path/to/build/gcc
for the build directories for your various checkouts of gcc.
If it's working, you should see the message:
Successfully loaded GDB hooks for GCC
as gdb starts up.
During development, I've been manually invoking the code in this way, as a
precanned way of printing a variety of different kinds of value:
gdb \
-ex "break expand_gimple_stmt" \
-ex "run" \
-ex "bt" \
--args \
./cc1 foo.c -O3
Examples of output using the pretty-printers
--------------------------------------------
Pointer values are generally shown in the form:
<type address extra_info>
For example, an opt_pass* might appear as:
(gdb) p pass
$2 = <opt_pass* 0x188b600 "expand"(170)>
The name of the pass is given ("expand"), together with the
static_pass_number.
Note that you can dereference the pointer in the normal way:
(gdb) p *pass
$4 = {type = RTL_PASS, name = 0x120a312 "expand",
[etc, ...snipped...]
and you can suppress pretty-printers using /r (for "raw"):
(gdb) p /r pass
$3 = (opt_pass *) 0x188b600
Basic blocks are shown with their index in parentheses, apart from the
CFG's entry and exit blocks, which are given as "ENTRY" and "EXIT":
(gdb) p bb
$9 = <basic_block 0x7ffff041f1a0 (2)>
(gdb) p cfun->cfg->x_entry_block_ptr
$10 = <basic_block 0x7ffff041f0d0 (ENTRY)>
(gdb) p cfun->cfg->x_exit_block_ptr
$11 = <basic_block 0x7ffff041f138 (EXIT)>
CFG edges are shown with the src and dest blocks given in parentheses:
(gdb) p e
$1 = <edge 0x7ffff043f118 (ENTRY -> 6)>
Tree nodes are printed using Python code that emulates print_node_brief,
running in gdb, rather than in the inferior:
(gdb) p cfun->decl
$1 = <function_decl 0x7ffff0420b00 foo>
For usability, the type is printed first (e.g. "function_decl"), rather
than just "tree".
RTL expressions use a kludge: they are pretty-printed by injecting
calls into print-rtl.c into the inferior:
Value returned is $1 = (note 9 8 10 [bb 3] NOTE_INSN_BASIC_BLOCK)
(gdb) p $1
$2 = (note 9 8 10 [bb 3] NOTE_INSN_BASIC_BLOCK)
(gdb) p /r $1
$3 = (rtx_def *) 0x7ffff043e140
This won't work for coredumps, and probably in other circumstances, but
it's a quick way of getting lots of debuggability quickly.
Callgraph nodes are printed with the name of the function decl, if
available:
(gdb) frame 5
#5 0x00000000006c288a in expand_function (node=<cgraph_node* 0x7ffff0312720 "foo"/12345>) at ../../src/gcc/cgraphunit.c:1594
1594 execute_pass_list (g->get_passes ()->all_passes);
(gdb) p node
$1 = <cgraph_node* 0x7ffff0312720 "foo"/12345>
Similarly for symtab_node and varpool_node classes.
Cgraph edges are printed with the name of caller and callee:
(gdb) p this->callees
$4 = <cgraph_edge* 0x7fffe25aa000 (<cgraph_node * 0x7fffe62b22e0 "_GLOBAL__sub_I__ZN5Pooma5pinfoE"/19660> -> <cgraph_node * 0x7fffe620f730 "__static_initialization_and_destruction_1"/19575>)>
IPA reference follow very similar format:
(gdb) Value returned is $5 = <ipa_ref* 0x7fffefcb80c8 (<symtab_node * 0x7ffff562f000 "__dt_base "/875> -> <symtab_node * 0x7fffe795f000 "_ZTVN6Smarts8RunnableE"/16056>:IPA_REF_ADDR)>
vec<> pointers are printed as the address followed by the elements in
braces. Here's a length 2 vec:
(gdb) p bb->preds
$18 = 0x7ffff0428b68 = {<edge 0x7ffff044d380 (3 -> 5)>, <edge 0x7ffff044d3b8 (4 -> 5)>}
and here's a length 1 vec:
(gdb) p bb->succs
$19 = 0x7ffff0428bb8 = {<edge 0x7ffff044d3f0 (5 -> EXIT)>}
You cannot yet use array notation [] to access the elements within the
vector: attempting to do so instead gives you the vec itself (for vec[0]),
or a (probably) invalid cast to vec<> for the memory after the vec (for
vec[1] onwards).
Instead (for now) you must access the payload directly:
(gdb) p ((edge_def**)(bb->preds+1))[0]
$20 = <edge 0x7ffff044d380 (3 -> 5)>
(gdb) p ((edge_def**)(bb->preds+1))[1]
$21 = <edge 0x7ffff044d3b8 (4 -> 5)>
"""
import os.path
import re
import sys
import tempfile
import gdb
import gdb.printing
import gdb.types
# Convert "enum tree_code" (tree.def and tree.h) to a dict:
tree_code_dict = gdb.types.make_enum_dict(gdb.lookup_type('enum tree_code'))
# ...and look up specific values for use later:
IDENTIFIER_NODE = tree_code_dict['IDENTIFIER_NODE']
TYPE_DECL = tree_code_dict['TYPE_DECL']
SSA_NAME = tree_code_dict['SSA_NAME']
# Similarly for "enum tree_code_class" (tree.h):
tree_code_class_dict = gdb.types.make_enum_dict(gdb.lookup_type('enum tree_code_class'))
tcc_type = tree_code_class_dict['tcc_type']
tcc_declaration = tree_code_class_dict['tcc_declaration']
# Python3 has int() with arbitrary precision (bignum). Python2 int() is 32-bit
# on 32-bit hosts but remote targets may have 64-bit pointers there; Python2
# long() is always 64-bit but Python3 no longer has anything named long.
def intptr(gdbval):
return long(gdbval) if sys.version_info.major == 2 else int(gdbval)
class Tree:
"""
Wrapper around a gdb.Value for a tree, with various methods
corresponding to macros in gcc/tree.h
"""
def __init__(self, gdbval):
self.gdbval = gdbval
def is_nonnull(self):
return intptr(self.gdbval)
def TREE_CODE(self):
"""
Get gdb.Value corresponding to TREE_CODE (self)
as per:
#define TREE_CODE(NODE) ((enum tree_code) (NODE)->base.code)
"""
return self.gdbval['base']['code']
def DECL_NAME(self):
"""
Get Tree instance corresponding to DECL_NAME (self)
"""
return Tree(self.gdbval['decl_minimal']['name'])
def TYPE_NAME(self):
"""
Get Tree instance corresponding to result of TYPE_NAME (self)
"""
return Tree(self.gdbval['type_common']['name'])
def IDENTIFIER_POINTER(self):
"""
Get str correspoinding to result of IDENTIFIER_NODE (self)
"""
return self.gdbval['identifier']['id']['str'].string()
class TreePrinter:
"Prints a tree"
def __init__ (self, gdbval):
self.gdbval = gdbval
self.node = Tree(gdbval)
def to_string (self):
# like gcc/print-tree.c:print_node_brief
# #define TREE_CODE(NODE) ((enum tree_code) (NODE)->base.code)
# tree_code_name[(int) TREE_CODE (node)])
if intptr(self.gdbval) == 0:
return '<tree 0x0>'
val_TREE_CODE = self.node.TREE_CODE()
# constexpr inline enum tree_code_class tree_code_type[] = { ... };
# #define TREE_CODE_CLASS(CODE) tree_code_type[(int) (CODE)]
# or
# template <int N>
# struct tree_code_type_tmpl {
# static constexpr enum tree_code_class tree_code_type[] = { ... };
# }; };
# #define TREE_CODE_CLASS(CODE) \
# tree_code_type_tmpl <0>::tree_code_type[(int) (CODE)]
if val_TREE_CODE == 0xa5a5:
return '<ggc_freed 0x%x>' % intptr(self.gdbval)
try:
val_tree_code_type = gdb.parse_and_eval('tree_code_type')
except:
val_tree_code_type = gdb.parse_and_eval('tree_code_type_tmpl<0>::tree_code_type')
val_tclass = val_tree_code_type[val_TREE_CODE]
val_tree_code_name = gdb.parse_and_eval('tree_code_name')
val_code_name = val_tree_code_name[intptr(val_TREE_CODE)]
#print(val_code_name.string())
try:
result = '<%s 0x%x' % (val_code_name.string(), intptr(self.gdbval))
except:
return '<tree 0x%x>' % intptr(self.gdbval)
if intptr(val_tclass) == tcc_declaration:
tree_DECL_NAME = self.node.DECL_NAME()
if tree_DECL_NAME.is_nonnull():
result += ' %s' % tree_DECL_NAME.IDENTIFIER_POINTER()
else:
pass # TODO: labels etc
elif intptr(val_tclass) == tcc_type:
tree_TYPE_NAME = Tree(self.gdbval['type_common']['name'])
if tree_TYPE_NAME.is_nonnull():
if tree_TYPE_NAME.TREE_CODE() == IDENTIFIER_NODE:
result += ' %s' % tree_TYPE_NAME.IDENTIFIER_POINTER()
elif tree_TYPE_NAME.TREE_CODE() == TYPE_DECL:
if tree_TYPE_NAME.DECL_NAME().is_nonnull():
result += ' %s' % tree_TYPE_NAME.DECL_NAME().IDENTIFIER_POINTER()
if self.node.TREE_CODE() == IDENTIFIER_NODE:
result += ' %s' % self.node.IDENTIFIER_POINTER()
elif self.node.TREE_CODE() == SSA_NAME:
result += ' %u' % self.gdbval['base']['u']['version']
# etc
result += '>'
return result
######################################################################
# Callgraph pretty-printers
######################################################################
class SymtabNodePrinter:
def __init__(self, gdbval):
self.gdbval = gdbval
def to_string (self):
t = str(self.gdbval.type)
result = '<%s 0x%x' % (t, intptr(self.gdbval))
if intptr(self.gdbval):
# symtab_node::name calls lang_hooks.decl_printable_name
# default implementation (lhd_decl_printable_name) is:
# return IDENTIFIER_POINTER (DECL_NAME (decl));
tree_decl = Tree(self.gdbval['decl'])
result += ' "%s"/%d' % (tree_decl.DECL_NAME().IDENTIFIER_POINTER(), self.gdbval['order'])
result += '>'
return result
class CgraphEdgePrinter:
def __init__(self, gdbval):
self.gdbval = gdbval
def to_string (self):
result = '<cgraph_edge* 0x%x' % intptr(self.gdbval)
if intptr(self.gdbval):
src = SymtabNodePrinter(self.gdbval['caller']).to_string()
dest = SymtabNodePrinter(self.gdbval['callee']).to_string()
result += ' (%s -> %s)' % (src, dest)
result += '>'
return result
class IpaReferencePrinter:
def __init__(self, gdbval):
self.gdbval = gdbval
def to_string (self):
result = '<ipa_ref* 0x%x' % intptr(self.gdbval)
if intptr(self.gdbval):
src = SymtabNodePrinter(self.gdbval['referring']).to_string()
dest = SymtabNodePrinter(self.gdbval['referred']).to_string()
result += ' (%s -> %s:%s)' % (src, dest, str(self.gdbval['use']))
result += '>'
return result
######################################################################
# Dwarf DIE pretty-printers
######################################################################
class DWDieRefPrinter:
def __init__(self, gdbval):
self.gdbval = gdbval
def to_string (self):
if intptr(self.gdbval) == 0:
return '<dw_die_ref 0x0>'
result = '<dw_die_ref 0x%x' % intptr(self.gdbval)
result += ' %s' % self.gdbval['die_tag']
if intptr(self.gdbval['die_parent']) != 0:
result += ' <parent=0x%x %s>' % (intptr(self.gdbval['die_parent']),
self.gdbval['die_parent']['die_tag'])
result += '>'
return result
######################################################################
class GimplePrinter:
def __init__(self, gdbval):
self.gdbval = gdbval
def to_string (self):
if intptr(self.gdbval) == 0:
return '<gimple 0x0>'
val_gimple_code = self.gdbval['code']
val_gimple_code_name = gdb.parse_and_eval('gimple_code_name')
val_code_name = val_gimple_code_name[intptr(val_gimple_code)]
result = '<%s 0x%x' % (val_code_name.string(),
intptr(self.gdbval))
result += '>'
return result
######################################################################
# CFG pretty-printers
######################################################################
def bb_index_to_str(index):
if index == 0:
return 'ENTRY'
elif index == 1:
return 'EXIT'
else:
return '%i' % index
class BasicBlockPrinter:
def __init__(self, gdbval):
self.gdbval = gdbval
def to_string (self):
result = '<basic_block 0x%x' % intptr(self.gdbval)
if intptr(self.gdbval):
result += ' (%s)' % bb_index_to_str(intptr(self.gdbval['index']))
result += '>'
return result
class CfgEdgePrinter:
def __init__(self, gdbval):
self.gdbval = gdbval
def to_string (self):
result = '<edge 0x%x' % intptr(self.gdbval)
if intptr(self.gdbval):
src = bb_index_to_str(intptr(self.gdbval['src']['index']))
dest = bb_index_to_str(intptr(self.gdbval['dest']['index']))
result += ' (%s -> %s)' % (src, dest)
result += '>'
return result
######################################################################
class Rtx:
def __init__(self, gdbval):
self.gdbval = gdbval
def GET_CODE(self):
return self.gdbval['code']
def GET_RTX_LENGTH(code):
val_rtx_length = gdb.parse_and_eval('rtx_length')
return intptr(val_rtx_length[code])
def GET_RTX_NAME(code):
val_rtx_name = gdb.parse_and_eval('rtx_name')
return val_rtx_name[code].string()
def GET_RTX_FORMAT(code):
val_rtx_format = gdb.parse_and_eval('rtx_format')
return val_rtx_format[code].string()
class RtxPrinter:
def __init__(self, gdbval):
self.gdbval = gdbval
self.rtx = Rtx(gdbval)
def to_string (self):
"""
For now, a cheap kludge: invoke the inferior's print
function to get a string to use the user, and return an empty
string for gdb
"""
# We use print_inline_rtx to avoid a trailing newline
gdb.execute('call print_inline_rtx (stderr, (const_rtx) %s, 0)'
% intptr(self.gdbval))
return ''
# or by hand; based on gcc/print-rtl.c:print_rtx
result = ('<rtx_def 0x%x'
% (intptr(self.gdbval)))
code = self.rtx.GET_CODE()
result += ' (%s' % GET_RTX_NAME(code)
format_ = GET_RTX_FORMAT(code)
for i in range(GET_RTX_LENGTH(code)):
print(format_[i])
result += ')>'
return result
######################################################################
class PassPrinter:
def __init__(self, gdbval):
self.gdbval = gdbval
def to_string (self):
result = '<opt_pass* 0x%x' % intptr(self.gdbval)
if intptr(self.gdbval):
result += (' "%s"(%i)'
% (self.gdbval['name'].string(),
intptr(self.gdbval['static_pass_number'])))
result += '>'
return result
######################################################################
class VecPrinter:
# -ex "up" -ex "p bb->preds"
def __init__(self, gdbval):
self.gdbval = gdbval
def display_hint (self):
return 'array'
def to_string (self):
# A trivial implementation; prettyprinting the contents is done
# by gdb calling the "children" method below.
return '0x%x' % intptr(self.gdbval)
def children (self):
if intptr(self.gdbval) == 0:
return
m_vecpfx = self.gdbval['m_vecpfx']
m_num = m_vecpfx['m_num']
val = self.gdbval
typ = val.type
if typ.code == gdb.TYPE_CODE_PTR:
typ = typ.target()
else:
val = val.address
typ_T = typ.template_argument(0) # the type T
vecdata = (val + 1).cast(typ_T.pointer())
for i in range(m_num):
yield ('[%d]' % i, vecdata[i])
######################################################################
class MachineModePrinter:
def __init__(self, gdbval):
self.gdbval = gdbval
def to_string (self):
name = str(self.gdbval['m_mode'])
return name[2:] if name.startswith('E_') else name
######################################################################
class OptMachineModePrinter:
def __init__(self, gdbval):
self.gdbval = gdbval
def to_string (self):
name = str(self.gdbval['m_mode'])
if name == 'E_VOIDmode':
return '<None>'
return name[2:] if name.startswith('E_') else name
######################################################################
# TODO:
# * hashtab
# * location_t
class GdbSubprinter(gdb.printing.SubPrettyPrinter):
def __init__(self, name, class_):
super(GdbSubprinter, self).__init__(name)
self.class_ = class_
def handles_type(self, str_type):
raise NotImplementedError
class GdbSubprinterTypeList(GdbSubprinter):
"""
A GdbSubprinter that handles a specific set of types
"""
def __init__(self, str_types, name, class_):
super(GdbSubprinterTypeList, self).__init__(name, class_)
self.str_types = frozenset(str_types)
def handles_type(self, str_type):
return str_type in self.str_types
class GdbSubprinterRegex(GdbSubprinter):
"""
A GdbSubprinter that handles types that match a regex
"""
def __init__(self, regex, name, class_):
super(GdbSubprinterRegex, self).__init__(name, class_)
self.regex = re.compile(regex)
def handles_type(self, str_type):
return self.regex.match(str_type)
class GdbPrettyPrinters(gdb.printing.PrettyPrinter):
def __init__(self, name):
super(GdbPrettyPrinters, self).__init__(name, [])
def add_printer_for_types(self, types, name, class_):
self.subprinters.append(GdbSubprinterTypeList(types, name, class_))
def add_printer_for_regex(self, regex, name, class_):
self.subprinters.append(GdbSubprinterRegex(regex, name, class_))
def __call__(self, gdbval):
type_ = gdbval.type.unqualified()
str_type = str(type_)
for printer in self.subprinters:
if printer.enabled and printer.handles_type(str_type):
return printer.class_(gdbval)
# Couldn't find a pretty printer (or it was disabled):
return None
def build_pretty_printer():
pp = GdbPrettyPrinters('gcc')
pp.add_printer_for_types(['tree', 'const_tree'],
'tree', TreePrinter)
pp.add_printer_for_types(['cgraph_node *', 'varpool_node *', 'symtab_node *'],
'symtab_node', SymtabNodePrinter)
pp.add_printer_for_types(['cgraph_edge *'],
'cgraph_edge', CgraphEdgePrinter)
pp.add_printer_for_types(['ipa_ref *'],
'ipa_ref', IpaReferencePrinter)
pp.add_printer_for_types(['dw_die_ref'],
'dw_die_ref', DWDieRefPrinter)
pp.add_printer_for_types(['gimple', 'gimple *',
# Keep this in the same order as gimple.def:
'gimple_cond', 'const_gimple_cond',
'gimple_statement_cond *',
'gimple_debug', 'const_gimple_debug',
'gimple_statement_debug *',
'gimple_label', 'const_gimple_label',
'gimple_statement_label *',
'gimple_switch', 'const_gimple_switch',
'gimple_statement_switch *',
'gimple_assign', 'const_gimple_assign',
'gimple_statement_assign *',
'gimple_bind', 'const_gimple_bind',
'gimple_statement_bind *',
'gimple_phi', 'const_gimple_phi',
'gimple_statement_phi *'],
'gimple',
GimplePrinter)
pp.add_printer_for_types(['basic_block', 'basic_block_def *'],
'basic_block',
BasicBlockPrinter)
pp.add_printer_for_types(['edge', 'edge_def *'],
'edge',
CfgEdgePrinter)
pp.add_printer_for_types(['rtx_def *'], 'rtx_def', RtxPrinter)
pp.add_printer_for_types(['opt_pass *'], 'opt_pass', PassPrinter)
pp.add_printer_for_regex(r'vec<(\S+), (\S+), (\S+)> \*',
'vec',
VecPrinter)
pp.add_printer_for_regex(r'opt_mode<(\S+)>',
'opt_mode', OptMachineModePrinter)
pp.add_printer_for_types(['opt_scalar_int_mode',
'opt_scalar_float_mode',
'opt_scalar_mode'],
'opt_mode', OptMachineModePrinter)
pp.add_printer_for_regex(r'pod_mode<(\S+)>',
'pod_mode', MachineModePrinter)
pp.add_printer_for_types(['scalar_int_mode_pod',
'scalar_mode_pod'],
'pod_mode', MachineModePrinter)
for mode in ('scalar_mode', 'scalar_int_mode', 'scalar_float_mode',
'complex_mode'):
pp.add_printer_for_types([mode], mode, MachineModePrinter)
return pp
gdb.printing.register_pretty_printer(
gdb.current_objfile(),
build_pretty_printer(),
replace=True)
def find_gcc_source_dir():
# Use location of global "g" to locate the source tree
sym_g = gdb.lookup_global_symbol('g')
path = sym_g.symtab.filename # e.g. '../../src/gcc/context.h'
srcdir = os.path.split(path)[0] # e.g. '../../src/gcc'
return srcdir
class PassNames:
"""Parse passes.def, gathering a list of pass class names"""
def __init__(self):
srcdir = find_gcc_source_dir()
self.names = []
with open(os.path.join(srcdir, 'passes.def')) as f:
for line in f:
m = re.match(r'\s*NEXT_PASS \(([^,]+).*\);', line)
if m:
self.names.append(m.group(1))
class BreakOnPass(gdb.Command):
"""
A custom command for putting breakpoints on the execute hook of passes.
This is largely a workaround for issues with tab-completion in gdb when
setting breakpoints on methods on classes within anonymous namespaces.
Example of use: putting a breakpoint on "final"
(gdb) break-on-pass
Press <TAB>; it autocompletes to "pass_":
(gdb) break-on-pass pass_
Press <TAB>:
Display all 219 possibilities? (y or n)
Press "n"; then type "f":
(gdb) break-on-pass pass_f
Press <TAB> to autocomplete to pass classnames beginning with "pass_f":
pass_fast_rtl_dce pass_fold_builtins
pass_feedback_split_functions pass_forwprop
pass_final pass_fre
pass_fixup_cfg pass_free_cfg
Type "in<TAB>" to complete to "pass_final":
(gdb) break-on-pass pass_final
...and hit <RETURN>:
Breakpoint 6 at 0x8396ba: file ../../src/gcc/final.c, line 4526.
...and we have a breakpoint set; continue execution:
(gdb) cont
Continuing.
Breakpoint 6, (anonymous namespace)::pass_final::execute (this=0x17fb990) at ../../src/gcc/final.c:4526
4526 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
"""
def __init__(self):
gdb.Command.__init__(self, 'break-on-pass', gdb.COMMAND_BREAKPOINTS)
self.pass_names = None
def complete(self, text, word):
# Lazily load pass names:
if not self.pass_names:
self.pass_names = PassNames()
return [name
for name in sorted(self.pass_names.names)
if name.startswith(text)]
def invoke(self, arg, from_tty):
sym = '(anonymous namespace)::%s::execute' % arg
breakpoint = gdb.Breakpoint(sym)
BreakOnPass()
class DumpFn(gdb.Command):
"""
A custom command to dump a gimple/rtl function to file. By default, it
dumps the current function using 0 as dump_flags, but the function and flags
can also be specified. If /f <file> are passed as the first two arguments,
the dump is written to that file. Otherwise, a temporary file is created
and opened in the text editor specified in the EDITOR environment variable.
Examples of use:
(gdb) dump-fn
(gdb) dump-fn /f foo.1.txt
(gdb) dump-fn cfun->decl
(gdb) dump-fn /f foo.1.txt cfun->decl
(gdb) dump-fn cfun->decl 0
(gdb) dump-fn cfun->decl dump_flags
"""
def __init__(self):
gdb.Command.__init__(self, 'dump-fn', gdb.COMMAND_USER)
def invoke(self, arg, from_tty):
# Parse args, check number of args
args = gdb.string_to_argv(arg)
if len(args) >= 1 and args[0] == "/f":
if len(args) == 1:
print ("Missing file argument")
return
filename = args[1]
editor_mode = False
base_arg = 2
else:
editor = os.getenv("EDITOR", "")
if editor == "":
print ("EDITOR environment variable not defined")
return
editor_mode = True
base_arg = 0
if len(args) - base_arg > 2:
print ("Too many arguments")
return
# Set func
if len(args) - base_arg >= 1:
funcname = args[base_arg]
printfuncname = "function %s" % funcname
else:
funcname = "cfun ? cfun->decl : current_function_decl"
printfuncname = "current function"
func = gdb.parse_and_eval(funcname)
if func == 0:
print ("Could not find %s" % printfuncname)
return
func = "(tree)%u" % func
# Set flags
if len(args) - base_arg >= 2:
flags = gdb.parse_and_eval(args[base_arg + 1])
else:
flags = 0
# Get tempory file, if necessary
if editor_mode:
f = tempfile.NamedTemporaryFile(delete=False, suffix=".txt")
filename = f.name
f.close()
# Open file
fp = gdb.parse_and_eval("(FILE *) fopen (\"%s\", \"w\")" % filename)
if fp == 0:
print ("Could not open file: %s" % filename)
return
# Dump function to file
_ = gdb.parse_and_eval("dump_function_to_file (%s, %s, %u)" %
(func, fp, flags))
# Close file
ret = gdb.parse_and_eval("(int) fclose (%s)" % fp)
if ret != 0:
print ("Could not close file: %s" % filename)
return
# Open file in editor, if necessary
if editor_mode:
os.system("( %s \"%s\"; rm \"%s\" ) &" %
(editor, filename, filename))
DumpFn()
class DotFn(gdb.Command):
"""
A custom command to show a gimple/rtl function control flow graph.
By default, it show the current function, but the function can also be
specified.
Examples of use:
(gdb) dot-fn
(gdb) dot-fn cfun
(gdb) dot-fn cfun 0
(gdb) dot-fn cfun dump_flags
"""
def __init__(self):
gdb.Command.__init__(self, 'dot-fn', gdb.COMMAND_USER)
def invoke(self, arg, from_tty):
# Parse args, check number of args
args = gdb.string_to_argv(arg)
if len(args) > 2:
print("Too many arguments")
return
# Set func
if len(args) >= 1:
funcname = args[0]
printfuncname = "function %s" % funcname
else:
funcname = "cfun"
printfuncname = "current function"
func = gdb.parse_and_eval(funcname)
if func == 0:
print("Could not find %s" % printfuncname)
return
func = "(struct function *)%s" % func
# Set flags
if len(args) >= 2:
flags = gdb.parse_and_eval(args[1])
else:
flags = 0
# Get temp file
f = tempfile.NamedTemporaryFile(delete=False)
filename = f.name
# Close and reopen temp file to get C FILE*
f.close()
fp = gdb.parse_and_eval("(FILE *) fopen (\"%s\", \"w\")" % filename)
if fp == 0:
print("Cannot open temp file")
return
# Write graph to temp file
_ = gdb.parse_and_eval("start_graph_dump (%s, \"<debug>\")" % fp)
_ = gdb.parse_and_eval("print_graph_cfg (%s, %s, %u)"
% (fp, func, flags))
_ = gdb.parse_and_eval("end_graph_dump (%s)" % fp)
# Close temp file
ret = gdb.parse_and_eval("(int) fclose (%s)" % fp)
if ret != 0:
print("Could not close temp file: %s" % filename)
return
# Show graph in temp file
os.system("( dot -Tx11 \"%s\"; rm \"%s\" ) &" % (filename, filename))
DotFn()
print('Successfully loaded GDB hooks for GCC')
|