1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
|
/* Gimple range inference implementation.
Copyright (C) 2022-2024 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-range.h"
#include "value-range-storage.h"
#include "tree-cfg.h"
#include "target.h"
#include "attribs.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "cfganal.h"
#include "tree-dfa.h"
// Adapted from infer_nonnull_range_by_dereference and check_loadstore
// to process nonnull ssa_name OP in S. DATA contains a pointer to a
// stmt range inference instance.
static bool
non_null_loadstore (gimple *, tree op, tree, void *data)
{
if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
{
/* Some address spaces may legitimately dereference zero. */
addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
if (!targetm.addr_space.zero_address_valid (as))
{
tree ssa = TREE_OPERAND (op, 0);
((gimple_infer_range *)data)->add_nonzero (ssa);
}
}
return false;
}
// Process an ASSUME call to see if there are any inferred ranges available.
void
gimple_infer_range::check_assume_func (gcall *call)
{
tree arg;
unsigned i;
tree assume_id = TREE_OPERAND (gimple_call_arg (call, 0), 0);
if (!assume_id)
return;
struct function *fun = DECL_STRUCT_FUNCTION (assume_id);
if (!fun)
return;
// Loop over arguments, matching them to the assume parameters.
for (arg = DECL_ARGUMENTS (assume_id), i = 1;
arg && i < gimple_call_num_args (call);
i++, arg = DECL_CHAIN (arg))
{
tree op = gimple_call_arg (call, i);
tree type = TREE_TYPE (op);
if (gimple_range_ssa_p (op) && Value_Range::supports_type_p (type))
{
tree default_def = ssa_default_def (fun, arg);
if (!default_def || type != TREE_TYPE (default_def))
continue;
// Query the global range of the default def in the assume function.
Value_Range assume_range (type);
gimple_range_global (assume_range, default_def, fun);
// If there is a non-varying result, add it as an inferred range.
if (!assume_range.varying_p ())
{
add_range (op, assume_range);
if (dump_file)
{
print_generic_expr (dump_file, assume_id, TDF_SLIM);
fprintf (dump_file, " assume inferred range of ");
print_generic_expr (dump_file, op, TDF_SLIM);
fprintf (dump_file, " (param ");
print_generic_expr (dump_file, arg, TDF_SLIM);
fprintf (dump_file, ") = ");
assume_range.dump (dump_file);
fputc ('\n', dump_file);
}
}
}
}
}
// Add NAME and RANGE to the range inference summary.
void
gimple_infer_range::add_range (tree name, vrange &range)
{
m_names[num_args] = name;
m_ranges[num_args] = range;
if (num_args < size_limit - 1)
num_args++;
}
// Add a nonzero range for NAME to the range inference summary.
void
gimple_infer_range::add_nonzero (tree name)
{
if (!gimple_range_ssa_p (name))
return;
int_range<2> nz;
nz.set_nonzero (TREE_TYPE (name));
add_range (name, nz);
}
// Process S for range inference and fill in the summary list.
// This is the routine where new inferred ranges should be added.
gimple_infer_range::gimple_infer_range (gimple *s)
{
num_args = 0;
if (is_a<gphi *> (s))
return;
if (is_a<gcall *> (s) && flag_delete_null_pointer_checks)
{
tree fntype = gimple_call_fntype (s);
bitmap nonnullargs = get_nonnull_args (fntype);
// Process any non-null arguments
if (nonnullargs)
{
for (unsigned i = 0; i < gimple_call_num_args (s); i++)
{
if (bitmap_empty_p (nonnullargs)
|| bitmap_bit_p (nonnullargs, i))
{
tree op = gimple_call_arg (s, i);
if (POINTER_TYPE_P (TREE_TYPE (op)))
add_nonzero (op);
}
}
BITMAP_FREE (nonnullargs);
}
// Fallthru and walk load/store ops now.
}
// Check for inferred ranges from ASSUME calls.
if (is_a<gcall *> (s) && gimple_call_internal_p (s)
&& gimple_call_internal_fn (s) == IFN_ASSUME)
check_assume_func (as_a<gcall *> (s));
// Look for possible non-null values.
if (flag_delete_null_pointer_checks && gimple_code (s) != GIMPLE_ASM
&& !gimple_clobber_p (s))
walk_stmt_load_store_ops (s, (void *)this, non_null_loadstore,
non_null_loadstore);
}
// -------------------------------------------------------------------------
// This class is an element in the list of inferred ranges.
class exit_range
{
public:
tree name;
vrange_storage *range;
exit_range *next;
};
// If there is an element which matches SSA, return a pointer to the element.
// Otherwise return NULL.
exit_range *
infer_range_manager::exit_range_head::find_ptr (tree ssa)
{
// Return NULL if SSA is not in this list.
if (!m_names || !bitmap_bit_p (m_names, SSA_NAME_VERSION (ssa)))
return NULL;
for (exit_range *ptr = head; ptr != NULL; ptr = ptr->next)
if (ptr->name == ssa)
return ptr;
// Should be unreachable.
gcc_unreachable ();
return NULL;
}
// Construct a range infer manager. DO_SEARCH indicates whether an immediate
// use scan should be made the first time a name is processed. This is for
// on-demand clients who may not visit every statement and may miss uses.
infer_range_manager::infer_range_manager (bool do_search)
{
bitmap_obstack_initialize (&m_bitmaps);
m_on_exit.create (0);
m_on_exit.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1);
// m_seen == NULL indicates no scanning. Otherwise the bit indicates a
// scan has been performed on NAME.
if (do_search)
m_seen = BITMAP_ALLOC (&m_bitmaps);
else
m_seen = NULL;
obstack_init (&m_list_obstack);
// Non-zero elements are very common, so cache them for each ssa-name.
m_nonzero.create (0);
m_nonzero.safe_grow_cleared (num_ssa_names + 1);
m_range_allocator = new vrange_allocator;
}
// Destruct a range infer manager.
infer_range_manager::~infer_range_manager ()
{
m_nonzero.release ();
obstack_free (&m_list_obstack, NULL);
m_on_exit.release ();
bitmap_obstack_release (&m_bitmaps);
delete m_range_allocator;
}
// Return a non-zero range value of the appropriate type for NAME from
// the cache, creating it if necessary.
const vrange&
infer_range_manager::get_nonzero (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_nonzero.length ())
m_nonzero.safe_grow_cleared (num_ssa_names + 20);
if (!m_nonzero[v])
{
m_nonzero[v]
= (irange *) m_range_allocator->alloc (sizeof (int_range <2>));
m_nonzero[v]->set_nonzero (TREE_TYPE (name));
}
return *(m_nonzero[v]);
}
// Return TRUE if there are any range inferences in block BB.
bool
infer_range_manager::has_range_p (basic_block bb)
{
if (bb->index >= (int)m_on_exit.length ())
return false;
bitmap b = m_on_exit[bb->index].m_names;
return b && !bitmap_empty_p (b);
}
// Return TRUE if NAME has a range inference in block BB.
bool
infer_range_manager::has_range_p (tree name, basic_block bb)
{
// Check if this is an immediate use search model.
if (m_seen && !bitmap_bit_p (m_seen, SSA_NAME_VERSION (name)))
register_all_uses (name);
if (bb->index >= (int)m_on_exit.length ())
return false;
if (!m_on_exit[bb->index].m_names)
return false;
if (!bitmap_bit_p (m_on_exit[bb->index].m_names, SSA_NAME_VERSION (name)))
return false;
return true;
}
// Return TRUE if NAME has a range inference in block BB, and adjust range R
// to include it.
bool
infer_range_manager::maybe_adjust_range (vrange &r, tree name, basic_block bb)
{
if (!has_range_p (name, bb))
return false;
exit_range *ptr = m_on_exit[bb->index].find_ptr (name);
gcc_checking_assert (ptr);
// Return true if this exit range changes R, otherwise false.
tree type = TREE_TYPE (name);
Value_Range tmp (type);
ptr->range->get_vrange (tmp, type);
return r.intersect (tmp);
}
// Add range R as an inferred range for NAME in block BB.
void
infer_range_manager::add_range (tree name, basic_block bb, const vrange &r)
{
if (bb->index >= (int)m_on_exit.length ())
m_on_exit.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1);
// Create the summary list bitmap if it doesn't exist.
if (!m_on_exit[bb->index].m_names)
m_on_exit[bb->index].m_names = BITMAP_ALLOC (&m_bitmaps);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " on-exit update ");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " in BB%d : ",bb->index);
r.dump (dump_file);
fprintf (dump_file, "\n");
}
// If NAME already has a range, intersect them and done.
exit_range *ptr = m_on_exit[bb->index].find_ptr (name);
if (ptr)
{
tree type = TREE_TYPE (name);
Value_Range cur (r), name_range (type);
ptr->range->get_vrange (name_range, type);
// If no new info is added, just return.
if (!cur.intersect (name_range))
return;
if (ptr->range->fits_p (cur))
ptr->range->set_vrange (cur);
else
ptr->range = m_range_allocator->clone (cur);
return;
}
// Otherwise create a record.
bitmap_set_bit (m_on_exit[bb->index].m_names, SSA_NAME_VERSION (name));
ptr = (exit_range *)obstack_alloc (&m_list_obstack, sizeof (exit_range));
ptr->range = m_range_allocator->clone (r);
ptr->name = name;
ptr->next = m_on_exit[bb->index].head;
m_on_exit[bb->index].head = ptr;
}
// Add a non-zero inferred range for NAME in block BB.
void
infer_range_manager::add_nonzero (tree name, basic_block bb)
{
add_range (name, bb, get_nonzero (name));
}
// Follow immediate use chains and find all inferred ranges for NAME.
void
infer_range_manager::register_all_uses (tree name)
{
gcc_checking_assert (m_seen);
// Check if we've already processed this name.
unsigned v = SSA_NAME_VERSION (name);
if (bitmap_bit_p (m_seen, v))
return;
bitmap_set_bit (m_seen, v);
use_operand_p use_p;
imm_use_iterator iter;
// Loop over each immediate use and see if it has an inferred range.
FOR_EACH_IMM_USE_FAST (use_p, iter, name)
{
gimple *s = USE_STMT (use_p);
gimple_infer_range infer (s);
for (unsigned x = 0; x < infer.num (); x++)
{
if (name == infer.name (x))
add_range (name, gimple_bb (s), infer.range (x));
}
}
}
|