1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
|
/* Utilities for ipa analysis.
Copyright (C) 2005-2024 Free Software Foundation, Inc.
Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "alloc-pool.h"
#include "cgraph.h"
#include "lto-streamer.h"
#include "dumpfile.h"
#include "splay-tree.h"
#include "ipa-utils.h"
#include "symbol-summary.h"
#include "tree-vrp.h"
#include "sreal.h"
#include "ipa-cp.h"
#include "ipa-prop.h"
#include "ipa-fnsummary.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "ipa-modref-tree.h"
#include "ipa-modref.h"
#include "tree-ssa-loop-niter.h"
#include "calls.h"
#include "cfgloop.h"
#include "cfganal.h"
/* Debugging function for postorder and inorder code. NOTE is a string
that is printed before the nodes are printed. ORDER is an array of
cgraph_nodes that has COUNT useful nodes in it. */
void
ipa_print_order (FILE* out,
const char * note,
struct cgraph_node** order,
int count)
{
int i;
fprintf (out, "\n\n ordered call graph: %s\n", note);
for (i = count - 1; i >= 0; i--)
order[i]->dump (out);
fprintf (out, "\n");
fflush (out);
}
struct searchc_env {
struct cgraph_node **stack;
struct cgraph_node **result;
int stack_size;
int order_pos;
splay_tree nodes_marked_new;
bool reduce;
int count;
};
/* This is an implementation of Tarjan's strongly connected region
finder as reprinted in Aho Hopcraft and Ullman's The Design and
Analysis of Computer Programs (1975) pages 192-193. This version
has been customized for cgraph_nodes. The env parameter is because
it is recursive and there are no nested functions here. This
function should only be called from itself or
ipa_reduced_postorder. ENV is a stack env and would be
unnecessary if C had nested functions. V is the node to start
searching from. */
static void
searchc (struct searchc_env* env, struct cgraph_node *v,
bool (*ignore_edge) (struct cgraph_edge *))
{
struct cgraph_edge *edge;
struct ipa_dfs_info *v_info = (struct ipa_dfs_info *) v->aux;
/* mark node as old */
v_info->new_node = false;
splay_tree_remove (env->nodes_marked_new, v->get_uid ());
v_info->dfn_number = env->count;
v_info->low_link = env->count;
env->count++;
env->stack[(env->stack_size)++] = v;
v_info->on_stack = true;
for (edge = v->callees; edge; edge = edge->next_callee)
{
struct ipa_dfs_info * w_info;
enum availability avail;
struct cgraph_node *w = edge->callee->ultimate_alias_target (&avail);
if (!w || (ignore_edge && ignore_edge (edge)))
continue;
if (w->aux
&& (avail >= AVAIL_INTERPOSABLE))
{
w_info = (struct ipa_dfs_info *) w->aux;
if (w_info->new_node)
{
searchc (env, w, ignore_edge);
v_info->low_link =
(v_info->low_link < w_info->low_link) ?
v_info->low_link : w_info->low_link;
}
else
if ((w_info->dfn_number < v_info->dfn_number)
&& (w_info->on_stack))
v_info->low_link =
(w_info->dfn_number < v_info->low_link) ?
w_info->dfn_number : v_info->low_link;
}
}
if (v_info->low_link == v_info->dfn_number)
{
struct cgraph_node *last = NULL;
struct cgraph_node *x;
struct ipa_dfs_info *x_info;
do {
x = env->stack[--(env->stack_size)];
x_info = (struct ipa_dfs_info *) x->aux;
x_info->on_stack = false;
x_info->scc_no = v_info->dfn_number;
if (env->reduce)
{
x_info->next_cycle = last;
last = x;
}
else
env->result[env->order_pos++] = x;
}
while (v != x);
if (env->reduce)
env->result[env->order_pos++] = v;
}
}
/* Topsort the call graph by caller relation. Put the result in ORDER.
The REDUCE flag is true if you want the cycles reduced to single nodes.
You can use ipa_get_nodes_in_cycle to obtain a vector containing all real
call graph nodes in a reduced node.
Set ALLOW_OVERWRITABLE if nodes with such availability should be included.
IGNORE_EDGE, if non-NULL is a hook that may make some edges insignificant
for the topological sort. */
int
ipa_reduced_postorder (struct cgraph_node **order,
bool reduce,
bool (*ignore_edge) (struct cgraph_edge *))
{
struct cgraph_node *node;
struct searchc_env env;
splay_tree_node result;
env.stack = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
env.stack_size = 0;
env.result = order;
env.order_pos = 0;
env.nodes_marked_new = splay_tree_new (splay_tree_compare_ints, 0, 0);
env.count = 1;
env.reduce = reduce;
FOR_EACH_DEFINED_FUNCTION (node)
{
enum availability avail = node->get_availability ();
if (avail > AVAIL_INTERPOSABLE
|| avail == AVAIL_INTERPOSABLE)
{
/* Reuse the info if it is already there. */
struct ipa_dfs_info *info = (struct ipa_dfs_info *) node->aux;
if (!info)
info = XCNEW (struct ipa_dfs_info);
info->new_node = true;
info->on_stack = false;
info->next_cycle = NULL;
node->aux = info;
splay_tree_insert (env.nodes_marked_new,
(splay_tree_key)node->get_uid (),
(splay_tree_value)node);
}
else
node->aux = NULL;
}
result = splay_tree_min (env.nodes_marked_new);
while (result)
{
node = (struct cgraph_node *)result->value;
searchc (&env, node, ignore_edge);
result = splay_tree_min (env.nodes_marked_new);
}
splay_tree_delete (env.nodes_marked_new);
free (env.stack);
return env.order_pos;
}
/* Deallocate all ipa_dfs_info structures pointed to by the aux pointer of call
graph nodes. */
void
ipa_free_postorder_info (void)
{
struct cgraph_node *node;
FOR_EACH_DEFINED_FUNCTION (node)
{
/* Get rid of the aux information. */
if (node->aux)
{
free (node->aux);
node->aux = NULL;
}
}
}
/* Get the set of nodes for the cycle in the reduced call graph starting
from NODE. */
vec<cgraph_node *>
ipa_get_nodes_in_cycle (struct cgraph_node *node)
{
vec<cgraph_node *> v = vNULL;
struct ipa_dfs_info *node_dfs_info;
while (node)
{
v.safe_push (node);
node_dfs_info = (struct ipa_dfs_info *) node->aux;
node = node_dfs_info->next_cycle;
}
return v;
}
/* Return true iff the CS is an edge within a strongly connected component as
computed by ipa_reduced_postorder. */
bool
ipa_edge_within_scc (struct cgraph_edge *cs)
{
struct ipa_dfs_info *caller_dfs = (struct ipa_dfs_info *) cs->caller->aux;
struct ipa_dfs_info *callee_dfs;
struct cgraph_node *callee = cs->callee->function_symbol ();
callee_dfs = (struct ipa_dfs_info *) callee->aux;
return (caller_dfs
&& callee_dfs
&& caller_dfs->scc_no == callee_dfs->scc_no);
}
struct postorder_stack
{
struct cgraph_node *node;
struct cgraph_edge *edge;
int ref;
};
/* Fill array order with all nodes with output flag set in the reverse
topological order. Return the number of elements in the array.
FIXME: While walking, consider aliases, too. */
int
ipa_reverse_postorder (struct cgraph_node **order)
{
struct cgraph_node *node, *node2;
int stack_size = 0;
int order_pos = 0;
struct cgraph_edge *edge;
int pass;
struct ipa_ref *ref = NULL;
struct postorder_stack *stack =
XCNEWVEC (struct postorder_stack, symtab->cgraph_count);
/* We have to deal with cycles nicely, so use a depth first traversal
output algorithm. Ignore the fact that some functions won't need
to be output and put them into order as well, so we get dependencies
right through inline functions. */
FOR_EACH_FUNCTION (node)
node->aux = NULL;
for (pass = 0; pass < 2; pass++)
FOR_EACH_FUNCTION (node)
if (!node->aux
&& (pass
|| (!node->address_taken
&& !node->inlined_to
&& !node->alias && !node->thunk
&& !node->only_called_directly_p ())))
{
stack_size = 0;
stack[stack_size].node = node;
stack[stack_size].edge = node->callers;
stack[stack_size].ref = 0;
node->aux = (void *)(size_t)1;
while (stack_size >= 0)
{
while (true)
{
node2 = NULL;
while (stack[stack_size].edge && !node2)
{
edge = stack[stack_size].edge;
node2 = edge->caller;
stack[stack_size].edge = edge->next_caller;
}
for (; stack[stack_size].node->iterate_referring (
stack[stack_size].ref,
ref) && !node2;
stack[stack_size].ref++)
{
if (ref->use == IPA_REF_ALIAS)
node2 = dyn_cast <cgraph_node *> (ref->referring);
}
if (!node2)
break;
if (!node2->aux)
{
stack[++stack_size].node = node2;
stack[stack_size].edge = node2->callers;
stack[stack_size].ref = 0;
node2->aux = (void *)(size_t)1;
}
}
order[order_pos++] = stack[stack_size--].node;
}
}
free (stack);
FOR_EACH_FUNCTION (node)
node->aux = NULL;
return order_pos;
}
/* Given a memory reference T, will return the variable at the bottom
of the access. Unlike get_base_address, this will recurse through
INDIRECT_REFS. */
tree
get_base_var (tree t)
{
while (!SSA_VAR_P (t)
&& (!CONSTANT_CLASS_P (t))
&& TREE_CODE (t) != LABEL_DECL
&& TREE_CODE (t) != FUNCTION_DECL
&& TREE_CODE (t) != CONST_DECL
&& TREE_CODE (t) != CONSTRUCTOR)
{
t = TREE_OPERAND (t, 0);
}
return t;
}
/* Scale function of calls in NODE by ratio ORIG_COUNT/NODE->count. */
void
scale_ipa_profile_for_fn (struct cgraph_node *node, profile_count orig_count)
{
profile_count to = node->count;
profile_count::adjust_for_ipa_scaling (&to, &orig_count);
struct cgraph_edge *e;
for (e = node->callees; e; e = e->next_callee)
e->count = e->count.apply_scale (to, orig_count);
for (e = node->indirect_calls; e; e = e->next_callee)
e->count = e->count.apply_scale (to, orig_count);
}
/* SRC and DST are going to be merged. Take SRC's profile and merge it into
DST so it is not going to be lost. Possibly destroy SRC's body on the way
unless PRESERVE_BODY is set. */
void
ipa_merge_profiles (struct cgraph_node *dst,
struct cgraph_node *src,
bool preserve_body)
{
tree oldsrcdecl = src->decl;
struct function *srccfun, *dstcfun;
bool match = true;
bool copy_counts = false;
if (!src->definition
|| !dst->definition)
return;
if (src->frequency < dst->frequency)
src->frequency = dst->frequency;
/* Time profiles are merged. */
if (dst->tp_first_run > src->tp_first_run && src->tp_first_run)
dst->tp_first_run = src->tp_first_run;
if (src->profile_id && !dst->profile_id)
dst->profile_id = src->profile_id;
/* Merging zero profile to dst is no-op. */
if (src->count.ipa () == profile_count::zero ())
return;
/* FIXME when we merge in unknown profile, we ought to set counts as
unsafe. */
if (!src->count.initialized_p ()
|| !(src->count.ipa () == src->count))
return;
profile_count orig_count = dst->count;
/* Either sum the profiles if both are IPA and not global0, or
pick more informative one (that is nonzero IPA if other is
uninitialized, guessed or global0). */
if ((dst->count.ipa ().nonzero_p ()
|| src->count.ipa ().nonzero_p ())
&& dst->count.ipa ().initialized_p ()
&& src->count.ipa ().initialized_p ())
dst->count = dst->count.ipa () + src->count.ipa ();
else if (dst->count.ipa ().initialized_p ())
;
else if (src->count.ipa ().initialized_p ())
{
copy_counts = true;
dst->count = src->count.ipa ();
}
/* If no updating needed return early. */
if (dst->count == orig_count)
return;
if (symtab->dump_file)
{
fprintf (symtab->dump_file, "Merging profiles of %s count:",
src->dump_name ());
src->count.dump (symtab->dump_file);
fprintf (symtab->dump_file, " to %s count:",
dst->dump_name ());
orig_count.dump (symtab->dump_file);
fprintf (symtab->dump_file, " resulting count:");
dst->count.dump (symtab->dump_file);
fprintf (symtab->dump_file, "\n");
}
/* First handle functions with no gimple body. */
if (dst->thunk || dst->alias
|| src->thunk || src->alias)
{
scale_ipa_profile_for_fn (dst, orig_count);
return;
}
/* This is ugly. We need to get both function bodies into memory.
If declaration is merged, we need to duplicate it to be able
to load body that is being replaced. This makes symbol table
temporarily inconsistent. */
if (src->decl == dst->decl)
{
struct lto_in_decl_state temp;
struct lto_in_decl_state *state;
/* We are going to move the decl, we want to remove its file decl data.
and link these with the new decl. */
temp.fn_decl = src->decl;
lto_in_decl_state **slot
= src->lto_file_data->function_decl_states->find_slot (&temp,
NO_INSERT);
state = *slot;
src->lto_file_data->function_decl_states->clear_slot (slot);
gcc_assert (state);
/* Duplicate the decl and be sure it does not link into body of DST. */
src->decl = copy_node (src->decl);
DECL_STRUCT_FUNCTION (src->decl) = NULL;
DECL_ARGUMENTS (src->decl) = NULL;
DECL_INITIAL (src->decl) = NULL;
DECL_RESULT (src->decl) = NULL;
/* Associate the decl state with new declaration, so LTO streamer
can look it up. */
state->fn_decl = src->decl;
slot
= src->lto_file_data->function_decl_states->find_slot (state, INSERT);
gcc_assert (!*slot);
*slot = state;
}
src->get_untransformed_body ();
dst->get_untransformed_body ();
srccfun = DECL_STRUCT_FUNCTION (src->decl);
dstcfun = DECL_STRUCT_FUNCTION (dst->decl);
if (n_basic_blocks_for_fn (srccfun)
!= n_basic_blocks_for_fn (dstcfun))
{
if (symtab->dump_file)
fprintf (symtab->dump_file,
"Giving up; number of basic block mismatch.\n");
match = false;
}
else if (last_basic_block_for_fn (srccfun)
!= last_basic_block_for_fn (dstcfun))
{
if (symtab->dump_file)
fprintf (symtab->dump_file,
"Giving up; last block mismatch.\n");
match = false;
}
else
{
basic_block srcbb, dstbb;
struct cgraph_edge *e, *e2;
for (e = dst->callees, e2 = src->callees; e && e2 && match;
e2 = e2->next_callee, e = e->next_callee)
{
if (gimple_bb (e->call_stmt)->index
!= gimple_bb (e2->call_stmt)->index)
{
if (symtab->dump_file)
fprintf (symtab->dump_file,
"Giving up; call stmt mismatch.\n");
match = false;
}
}
if (e || e2)
{
if (symtab->dump_file)
fprintf (symtab->dump_file,
"Giving up; number of calls differs.\n");
match = false;
}
for (e = dst->indirect_calls, e2 = src->indirect_calls; e && e2 && match;
e2 = e2->next_callee, e = e->next_callee)
{
if (gimple_bb (e->call_stmt)->index
!= gimple_bb (e2->call_stmt)->index)
{
if (symtab->dump_file)
fprintf (symtab->dump_file,
"Giving up; indirect call stmt mismatch.\n");
match = false;
}
}
if (e || e2)
{
if (symtab->dump_file)
fprintf (symtab->dump_file,
"Giving up; number of indirect calls differs.\n");
match=false;
}
if (match)
FOR_ALL_BB_FN (srcbb, srccfun)
{
unsigned int i;
dstbb = BASIC_BLOCK_FOR_FN (dstcfun, srcbb->index);
if (dstbb == NULL)
{
if (symtab->dump_file)
fprintf (symtab->dump_file,
"No matching block for bb %i.\n",
srcbb->index);
match = false;
break;
}
if (EDGE_COUNT (srcbb->succs) != EDGE_COUNT (dstbb->succs))
{
if (symtab->dump_file)
fprintf (symtab->dump_file,
"Edge count mismatch for bb %i.\n",
srcbb->index);
match = false;
break;
}
for (i = 0; i < EDGE_COUNT (srcbb->succs); i++)
{
edge srce = EDGE_SUCC (srcbb, i);
edge dste = EDGE_SUCC (dstbb, i);
if (srce->dest->index != dste->dest->index)
{
if (symtab->dump_file)
fprintf (symtab->dump_file,
"Succ edge mismatch for bb %i.\n",
srce->dest->index);
match = false;
break;
}
}
}
}
if (match)
{
struct cgraph_edge *e, *e2;
basic_block srcbb, dstbb;
/* Function and global profile may be out of sync. First scale it same
way as fixup_cfg would. */
profile_count srcnum = src->count;
profile_count srcden = ENTRY_BLOCK_PTR_FOR_FN (srccfun)->count;
bool srcscale = srcnum.initialized_p () && !(srcnum == srcden);
profile_count dstnum = orig_count;
profile_count dstden = ENTRY_BLOCK_PTR_FOR_FN (dstcfun)->count;
bool dstscale = !copy_counts
&& dstnum.initialized_p () && !(dstnum == dstden);
/* TODO: merge also statement histograms. */
FOR_ALL_BB_FN (srcbb, srccfun)
{
unsigned int i;
dstbb = BASIC_BLOCK_FOR_FN (dstcfun, srcbb->index);
profile_count srccount = srcbb->count;
if (srcscale)
srccount = srccount.apply_scale (srcnum, srcden);
if (dstscale)
dstbb->count = dstbb->count.apply_scale (dstnum, dstden);
if (copy_counts)
{
dstbb->count = srccount;
for (i = 0; i < EDGE_COUNT (srcbb->succs); i++)
{
edge srce = EDGE_SUCC (srcbb, i);
edge dste = EDGE_SUCC (dstbb, i);
if (srce->probability.initialized_p ())
dste->probability = srce->probability;
}
}
else
{
for (i = 0; i < EDGE_COUNT (srcbb->succs); i++)
{
edge srce = EDGE_SUCC (srcbb, i);
edge dste = EDGE_SUCC (dstbb, i);
profile_count sum =
dstbb->count.ipa () + srccount.ipa ();
if (sum.nonzero_p ())
dste->probability =
dste->probability * dstbb->count.ipa ().probability_in
(sum)
+ srce->probability * srcbb->count.ipa ().probability_in
(sum);
}
dstbb->count = dstbb->count.ipa () + srccount.ipa ();
}
}
push_cfun (dstcfun);
update_max_bb_count ();
compute_function_frequency ();
pop_cfun ();
for (e = dst->callees; e; e = e->next_callee)
{
if (e->speculative)
continue;
e->count = gimple_bb (e->call_stmt)->count;
}
for (e = dst->indirect_calls, e2 = src->indirect_calls; e;
e2 = (e2 ? e2->next_callee : NULL), e = e->next_callee)
{
if (!e->speculative && !e2->speculative)
{
/* FIXME: we need to also merge ipa-profile histograms
because with LTO merging happens from lto-symtab before
these are converted to indirect edges. */
e->count = gimple_bb (e->call_stmt)->count;
continue;
}
/* When copying just remove all speuclations on dst and then copy
one from src. */
if (copy_counts)
{
while (e->speculative)
cgraph_edge::resolve_speculation (e, NULL);
e->count = gimple_bb (e->call_stmt)->count;
if (e2->speculative)
{
for (cgraph_edge *e3 = e2->first_speculative_call_target ();
e3;
e3 = e3->next_speculative_call_target ())
{
cgraph_edge *ns;
ns = e->make_speculative
(dyn_cast <cgraph_node *>
(e3->speculative_call_target_ref ()->referred),
e3->count, e3->speculative_id);
/* Target may differ from ref (for example it may be
redirected to local alias. */
ns->redirect_callee (e3->callee);
}
}
continue;
}
/* Iterate all speculations in SRC, see if corresponding ones exist
int DST and if so, sum the counts. Otherwise create new
speculation. */
int max_spec = 0;
for (cgraph_edge *e3 = e->first_speculative_call_target ();
e3;
e3 = e3->next_speculative_call_target ())
if (e3->speculative_id > max_spec)
max_spec = e3->speculative_id;
for (cgraph_edge *e3 = e2->first_speculative_call_target ();
e3;
e3 = e3->next_speculative_call_target ())
{
cgraph_edge *te
= e->speculative_call_for_target
(dyn_cast <cgraph_node *>
(e3->speculative_call_target_ref ()->referred));
if (te)
te->count = te->count + e3->count;
else
{
e->count = e->count + e3->count;
cgraph_edge *ns;
ns = e->make_speculative
(dyn_cast <cgraph_node *>
(e3->speculative_call_target_ref ()
->referred),
e3->count,
e3->speculative_id + max_spec + 1);
/* Target may differ from ref (for example it may be
redirected to local alias. */
ns->redirect_callee (e3->callee);
}
}
}
if (!preserve_body)
src->release_body ();
/* Update summary. */
compute_fn_summary (dst, 0);
}
/* We can't update CFG profile, but we can scale IPA profile. CFG
will be scaled according to dst->count after IPA passes. */
else
scale_ipa_profile_for_fn (dst, orig_count);
src->decl = oldsrcdecl;
}
/* Return true if call to DEST is known to be self-recusive
call withing FUNC. */
bool
recursive_call_p (tree func, tree dest)
{
struct cgraph_node *dest_node = cgraph_node::get_create (dest);
struct cgraph_node *cnode = cgraph_node::get_create (func);
ipa_ref *alias;
enum availability avail;
gcc_assert (!cnode->alias);
if (cnode != dest_node->ultimate_alias_target (&avail))
return false;
if (avail >= AVAIL_AVAILABLE)
return true;
if (!dest_node->semantically_equivalent_p (cnode))
return false;
/* If there is only one way to call the fuction or we know all of them
are semantically equivalent, we still can consider call recursive. */
FOR_EACH_ALIAS (cnode, alias)
if (!dest_node->semantically_equivalent_p (alias->referring))
return false;
return true;
}
/* Return true if stmt may terminate execution of function.
If assume_return_or_eh we can further assume that the function ends
either by retrn statement or EH (no trapping or infinite loops). */
bool
stmt_may_terminate_function_p (function *fun, gimple *stmt, bool assume_return_or_eh)
{
if (stmt_can_throw_external (fun, stmt))
return true;
if (assume_return_or_eh)
return false;
gasm *astmt = dyn_cast <gasm *> (stmt);
if (astmt && gimple_asm_volatile_p (astmt))
return true;
if (gimple_could_trap_p (stmt))
return true;
if (gcall *call = dyn_cast <gcall *> (stmt))
{
int flags = gimple_call_flags (call);
if (flags & (ECF_PURE | ECF_CONST) && ! (flags & ECF_LOOPING_CONST_OR_PURE))
return false;
modref_summary *s = get_modref_function_summary (call, NULL);
if (s && !s->side_effects)
return false;
return true;
}
return false;
}
/* Return bitmap of all basic blocks whose first statements are known to
execute on every invocation of the function.
If assume_return_or_eh we can further assume that the function ends
either by retrn statement or EH (no trapping or infinite loops).
This is useful when sumarizing function in passes like ipa-modref.
Seeing assume_return_or_eh to false is used to prove that given
statmeent will be executed even if the function gets into infinite
loop or trap. */
bitmap
find_always_executed_bbs (function *fun, bool assume_return_or_eh)
{
auto_vec<basic_block, 20> stack;
auto_vec<basic_block, 20> terminating_bbs;
hash_set<basic_block> visited;
hash_set<basic_block> terminating_bbs_set;
edge e;
edge_iterator ei;
int flags = flags_from_decl_or_type (fun->decl);
/* PUre and const functions always return. */
assume_return_or_eh |= (flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE);
if (!assume_return_or_eh)
mark_dfs_back_edges (fun);
/* First walk all BBs reachable from entry stopping on statements that may
terminate execution. Everything past this statement is not going to be executed
each invocation. */
stack.safe_push (ENTRY_BLOCK_PTR_FOR_FN (fun));
while (!stack.is_empty ())
{
basic_block bb = stack.pop ();
bool found = false, found_exit = false;
if (bb->index == EXIT_BLOCK)
continue;
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (fun))
{
found_exit = true;
break;
}
/* Watch for infinite loops. */
if (!found
&& !assume_return_or_eh && (e->flags & EDGE_DFS_BACK))
{
if (!dom_info_available_p (CDI_DOMINATORS))
calculate_dominance_info (CDI_DOMINATORS);
/* If this is not a loop latch edge it is an irreducible region.
Assume that it is infinite.
TODO: with C++ forced progression we can still walk the
irreducible region and see if it contains any side effects.
Similarly for loops. -ffinite-loops does not really imply
this since we allow inlining across -ffinite-loops bondary
and thus it can be used only as a loop flag. */
if (e->dest->loop_father->header != e->dest
|| !dominated_by_p (CDI_DOMINATORS, bb, e->dest))
found = true;
else if (!finite_loop_p (e->dest->loop_father))
found = true;
}
}
if (!assume_return_or_eh
&& (EDGE_COUNT (bb->succs) == 0 || (bb->flags & BB_IRREDUCIBLE_LOOP)))
found = true;
for (gimple_stmt_iterator si = gsi_start_nondebug_after_labels_bb (bb);
!gsi_end_p (si) && !found; gsi_next_nondebug (&si))
if (stmt_may_terminate_function_p (fun, gsi_stmt (si), assume_return_or_eh))
{
found = true;
break;
}
if (found)
{
visited.add (EXIT_BLOCK_PTR_FOR_FN (fun));
if (!found_exit)
{
terminating_bbs.safe_push (bb);
terminating_bbs_set.add (bb);
}
}
else
FOR_EACH_EDGE (e, ei, bb->succs)
if (!visited.add (e->dest))
stack.safe_push (e->dest);
}
/* Next walk from exit block and find all articulations in the CFG.
Add all terminating basic blocks as "fake" predecessors of the
exit block. */
bitmap ret = BITMAP_ALLOC (NULL);
/* A degenerated case when there is no path to exit. */
if (!visited.contains (EXIT_BLOCK_PTR_FOR_FN (fun)))
{
bitmap_set_bit (ret,
single_succ_edge
(ENTRY_BLOCK_PTR_FOR_FN (fun))->dest->index);
return ret;
}
struct astate
{
unsigned int dfs_preorder;
unsigned int dfs_postorder;
unsigned int low, high;
};
struct worklist
{
basic_block bb;
astate *cstate;
};
struct obstack state_obstack;
gcc_obstack_init (&state_obstack);
hash_map<basic_block, astate *> state;
auto_vec<worklist, 32> worklist_vec;
unsigned int next_dfs_num = 1;
/* Always executed blocks are blocks that are on every path from entry to exit.
We proceed in two steps. First we do backward DFS walk (so we know that entry
is always reached) and record preorder and postorder visiting times.
In second step we proceed in postorder and for every block A we compute
minimal preorder (A.low) and maximal postorder (A.high) of block reachable
from the BBs in DFS subtree of A. If A is always executed there are no
edges out of this subtree. This can be tested by checking that A.low == A.preorder
and B.high == A.postorder.
This is first step. Do backward DFS walk and record preorder, postorder
and predecessor info. Initialize stack in postorder. */
worklist we = {EXIT_BLOCK_PTR_FOR_FN (fun), NULL};
worklist_vec.safe_push (we);
while (!worklist_vec.is_empty ())
{
worklist &w = worklist_vec.last ();
basic_block bb = w.bb;
astate *cstate = w.cstate;
if (!cstate)
{
astate **slot = &state.get_or_insert (bb);
cstate = *slot;
/* Already processed by DFS? */
if (cstate)
{
worklist_vec.pop ();
continue;
}
/* DFS is visiting BB for first time. */
*slot = cstate = XOBNEW (&state_obstack, struct astate);
cstate->low = cstate->high = cstate->dfs_preorder = next_dfs_num++;
w.cstate = cstate;
/* Exit block is special; process all fake edges we identified. */
if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
for (basic_block bb2 : terminating_bbs)
{
worklist we = {bb2, NULL};
worklist_vec.safe_push (we);
}
FOR_EACH_EDGE (e, ei, bb->preds)
if (visited.contains (e->src))
{
worklist we = {e->src, NULL};
worklist_vec.safe_push (we);
}
/* Keep BB on worklist so we process it last time. */
continue;
}
/* We are finished with processing reachable BBs, see if we have articulation. */
worklist_vec.pop ();
cstate->high = cstate->dfs_postorder = next_dfs_num++;
stack.safe_push (bb);
}
/* This is the final postorder walk. Determine low and high values and mark
always executed blocks. */
for (basic_block bb : stack)
{
astate *cstate = *state.get (bb);
FOR_EACH_EDGE (e, ei, bb->preds)
{
astate **cstate2 = state.get (e->src);
/* We skip walking part of CFG reached only after first edge to exit.
No BB reachable from the skipped part is always executed */
if (!cstate2)
{
if (e->src != ENTRY_BLOCK_PTR_FOR_FN (fun))
cstate->low = 0;
continue;
}
cstate->low = MIN (cstate->low, (*cstate2)->low);
cstate->high = MAX (cstate->high, (*cstate2)->high);
}
if (dump_file && (dump_flags & TDF_DETAILS) && bb != EXIT_BLOCK_PTR_FOR_FN (fun))
fprintf (dump_file, "BB %i %s preorder %i posorder %i low %i high %i\n",
bb->index, terminating_bbs_set.contains (bb) ? "(terminating)": "",
cstate->dfs_preorder, cstate->dfs_postorder, cstate->low, cstate->high);
if (cstate->low == cstate->dfs_preorder && cstate->high == cstate->dfs_postorder
&& bb != EXIT_BLOCK_PTR_FOR_FN (fun))
bitmap_set_bit (ret, bb->index);
if (terminating_bbs_set.contains (bb))
cstate->low = 0;
else
FOR_EACH_EDGE (e, ei, bb->succs)
{
astate **cstate2 = state.get (e->dest);
if (!cstate2)
continue;
cstate->low = MIN (cstate->low, (*cstate2)->low);
cstate->high = MAX (cstate->high, (*cstate2)->high);
}
}
obstack_free (&state_obstack, NULL);
if (dump_file)
{
fprintf (dump_file, "Always executed bbbs %s: ",
assume_return_or_eh ? "(assuming return or EH)": "");
bitmap_print (dump_file, ret, "", "\n");
}
return ret;
}
|