1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
/* { dg-require-effective-target vect_int } */
/* { dg-require-effective-target vect_float } */
/* { dg-add-options bind_pic_locally } */
#include <stdarg.h>
#include "tree-vect.h"
#define N 128
int iadd_results[N];
float fadd_results[N];
float fmul_results[N];
float fresults1[N];
float fresults2[N];
/****************************************************/
__attribute__ ((noinline))
void icheck_results (int *a, int *results)
{
int i;
#pragma GCC novector
for (i = 0; i < N; i++)
{
if (a[i] != results[i])
abort ();
}
}
__attribute__ ((noinline))
void fcheck_results (float *a, float *results)
{
int i;
#pragma GCC novector
for (i = 0; i < N; i++)
{
if (a[i] != results[i])
abort ();
}
}
__attribute__ ((noinline)) void
fbar_mul (float *a)
{
fcheck_results (a, fmul_results);
}
__attribute__ ((noinline)) void
fbar_add (float *a)
{
fcheck_results (a, fadd_results);
}
__attribute__ ((noinline)) void
ibar_add (int *a)
{
icheck_results (a, iadd_results);
}
__attribute__ ((noinline)) void
fbar1 (float *a)
{
fcheck_results (a, fresults1);
}
__attribute__ ((noinline)) void
fbar2 (float *a)
{
fcheck_results (a, fresults2);
}
float a[N];
float e[N];
float b[N] = {0,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45};
float c[N] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
float d[N] = {0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30};
int ic[N] = {0,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45};
int ib[N] = {0,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45};
int ia[N];
char cb[N] = {0,3,6,9,12,15,18,21,24,27,30,33,36,39,42,45};
char ca[N];
short sa[N];
/* All of the loops below are currently vectorizable, except
initialization ones. */
__attribute__ ((noinline)) int
main1 ()
{
int i,j;
/* Initialization. */
for (i = 0; i < N; i++)
{
b[i] = i*3;
c[i] = i;
d[i] = i*2;
ic[i] = i*3;
ib[i] = i*3;
cb[i] = i*3;
fadd_results[i] = b[i] + c[i] + d[i];
iadd_results[i] = ib[i] + ic[i];
fmul_results[i] = b[i] * c[i];
fresults1[i] = 0;
fresults2[i] = 0;
asm volatile ("" ::: "memory");
}
/* Test 1: copy chars. */
for (i = 0; i < N; i++)
{
ca[i] = cb[i];
}
/* check results: */
#pragma GCC novector
for (i = 0; i < N; i++)
{
if (ca[i] != cb[i])
abort ();
}
/* Test 2: fp mult. */
for (i = 0; i < N; i++)
{
a[i] = b[i] * c[i];
}
fbar_mul (a);
/* Test 3: mixed types (int, fp), same nunits in vector. */
for (i = 0; i < N; i++)
{
a[i] = b[i] + c[i] + d[i];
e[i] = b[i] + c[i] + d[i];
ia[i] = ib[i] + ic[i];
}
ibar_add (ia);
fbar_add (a);
fbar_add (e);
/* Initialization. */
for (i = 0; i < N; i++)
{
fresults1[i] = a[i];
fresults2[i] = e[i];
asm volatile ("" ::: "memory");
}
for (i = 0; i < N/2; i++)
{
fresults1[i] = b[i+N/2] * c[i+N/2] - b[i] * c[i];
fresults2[i+N/2] = b[i] * c[i+N/2] + b[i+N/2] * c[i];
asm volatile ("" ::: "memory");
}
/* Test 4: access with offset. */
for (i = 0; i < N/2; i++)
{
a[i] = b[i+N/2] * c[i+N/2] - b[i] * c[i];
e[i+N/2] = b[i] * c[i+N/2] + b[i+N/2] * c[i];
}
fbar1 (a);
fbar2 (e);
/* Test 5: access with offset. */
for (i = 1; i <=N-4; i++)
{
a[i+3] = b[i-1];
}
/* check results: */
#pragma GCC novector
for (i = 1; i <=N-4; i++)
{
if (a[i+3] != b[i-1])
abort ();
}
/* Test 6 - loop induction with stride != 1. */
i = 0;
j = 0;
while (i < 5*N)
{
a[j] = c[j];
i += 5;
j++;
}
/* check results: */
#pragma GCC novector
for (i = 0; i <N; i++)
{
if (a[i] != c[i])
abort ();
}
/* Test 7 - reverse access. */
for (i = N; i > 0; i--)
{
a[N-i] = d[N-i];
}
/* check results: */
#pragma GCC novector
for (i = 0; i <N; i++)
{
if (a[i] != d[i])
abort ();
}
/* Tests 8,9,10 - constants. */
for (i = 0; i < N; i++)
{
a[i] = 5.0;
}
/* check results: */
#pragma GCC novector
for (i = 0; i < N; i++)
{
if (a[i] != 5.0)
abort ();
}
for (i = 0; i < N; i++)
{
sa[i] = 5;
}
/* check results: */
#pragma GCC novector
for (i = 0; i < N; i++)
{
if (sa[i] != 5)
abort ();
}
for (i = 0; i < N; i++)
{
ia[i] = ib[i] + 5;
}
/* check results: */
#pragma GCC novector
for (i = 0; i < N; i++)
{
if (ia[i] != ib[i] + 5)
abort ();
}
return 0;
}
int main (void)
{
check_vect ();
return main1 ();
}
/* { dg-final { scan-tree-dump-times "vectorized 10 loops" 1 "vect" } } */
/* { dg-final { scan-tree-dump-times "Vectorizing an unaligned access" 0 "vect" { target { { vect_aligned_arrays } && {! vect_sizes_32B_16B} } } } } */
/* { dg-final { scan-tree-dump-times "Vectorizing an unaligned access" 1 "vect" { target { {! vect_aligned_arrays } && {vect_sizes_32B_16B} } } } } */
/* { dg-final { scan-tree-dump-times "Alignment of access forced using peeling" 0 "vect" } } */
|