1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/*
PERMUTE_ARGS: -O
*/
/*
WHETSTONE BENCHMARK PROGRAM
This program uses a carefully chosen mix of instructions typical of
scientific (floating point) calculations.
See H.J. Curnow and B.A. Wichmann,
"A Synthetic Benchmark", Computer J., V19 #1, Feb. 1976, pp. 43-49.
Table of times for various computers in <info-ibmpc>whetst.answers
compiled by Richard Gillmann (GILLMANN@ISIB)
Whetstone Fortran Benchmark
(I=10, optimization off, CPU seconds)
DEC 1.1 sec DECsystem 2060 (TOPS-20 v4, F66)
PR1ME 1.4 sec PR1ME 750 (PRIMOS v18.1, F66)
PR1ME 1.5 sec PR1ME 750 (PRIMOS v18.1, F77)
DEC 2.1 sec VAX 11/780 (Unix, F77)
Apollo 6.2 sec 10 MHz MC68000 w/hardware float. point (AEGIS v4.0, F77)
Apollo 13.1 sec 10 MHz MC68000 w/software float. point (AEGIS v4.0, F77)
Intel 16.0 sec 8086/8087 (286WD Micro Development System,Intel FORTRAN)
IBM 16.0 sec 4.77 MHz 8088 PC w/8087 (DOS 2, Microsoft F77/3.10)
Z80 124.0 sec 4 MHz Z80 with Microsoft Fortran, CP/M
IBM 268.9 sec 4.77 MHz 8088 PC ($NODEBUG) (DOS 1, Microsoft F77/1.0)
Intel 390.0 sec 8086 alone (286WD Micro Development System,Intel FORTRAN)
Table compiled by Richard Gillmann (Gillmann@ISIB).
*/
import core.stdc.stdio;
import core.stdc.time;
import core.stdc.math;
double t, t1, t2;
double[5] e1;
int j, k, l;
int main()
{
clock_t start, stop;
double x1, x2, x3, x4, x, y, z;
int i, isave, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12;
start = clock();
/* I=10 CORRESPONDS TO ONE MILLION WHETSTONE INSTRUCTIONS */
i = 10;
t1 = 0.50025000;
t = 0.499975000;
t2 = 2.0000;
isave = i;
n1 = 0;
n2 = 12 * i;
n3 = 14 * i;
n4 = 348 * i;
n5 = 0;
n6 = 210 * i;
n7 = 32 * i;
n8 = 899 * i;
n9 = 516 * i;
n10 = 0;
n11 = 93 * i;
n12 = 0;
x1 = 1.0;
x2 = -1.0;
x3 = -1.0;
x4 = -1.0;
for (i = 1; i <= n1; i++)
{
x1 = (x1+x2+x3-x4)*t;
x2 = (x1+x2-x3+x4)*t;
x3 = (x1-x2+x3+x4)*t;
x4 = (-x1+x2+x3+x4)*t;
}
auto s = pout(n1,n1,n1,x1,x2,x3,x4);
assert(s[] == " 0 0 0 1.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00");
e1[1] = 1.0;
e1[2] = -1.0;
e1[3] = -1.0;
e1[4] = -1.0;
for (i = 1; i <= n2; i++)
{
e1[1] = (e1[1]+e1[2]+e1[3]-e1[4])*t;
e1[2] = (e1[1]+e1[2]-e1[3]+e1[4])*t;
e1[3] = (e1[1]-e1[2]+e1[3]+e1[4])*t;
e1[4] = (-e1[1]+e1[2]+e1[3]+e1[4])*t;
}
pout(n2,n3,n2,e1[1],e1[2],e1[3],e1[4]);
assert(s == " 120 140 120 -6.8342e-02 -4.6264e-01 -7.2972e-01 -1.1240e+00");
for (i = 1; i <= n3; i++)
{
pa(e1);
}
pout(n3,n2,n2,e1[1],e1[2],e1[3],e1[4]);
assert(s == " 140 120 120 -5.5336e-02 -4.4744e-01 -7.1097e-01 -1.1031e+00");
j = 1;
for (i = 1; i <= n4; i++)
{
j = (j-1) ? 3 : 2;
j = (j-2 < 0) ? 0 : 1;
j = (j-1 < 0) ? 1 : 0;
}
pout(n4, j, j, x1, x2, x3, x4);
assert(s == " 3480 0 0 1.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00");
j = 1;
k = 2;
l = 3;
for (i = 1; i <= n6; i++)
{
j = j*(k-j)*(l-k);
k = l*k-(l-j)*k;
l = (l-k)*(k+j);
e1[l-1] = j+k+l;
e1[k-1] = j*k*l;
}
pout(n6,j,k,e1[1],e1[2],e1[3],e1[4]);
assert(s == " 2100 1 2 6.0000e+00 6.0000e+00 -7.1097e-01 -1.1031e+00");
x = 0.5;
y = 0.5;
for (i = 1; i <= n7; i++)
{
x = t * atan(t2* sin(x)* cos(x) /
( cos(x+y)+ cos(x-y)-1.0 ));
y = t * atan(t2* sin(y)* cos(y) /
( cos(x+y)+ cos(x-y)-1.0 ));
}
pout(n7, j, k, x, x, y, y);
assert(s == " 320 1 2 4.9041e-01 4.9041e-01 4.9039e-01 4.9039e-01");
x = 1.0;
y = 1.0;
z = 1.0;
for (i = 1; i <= n8; i++)
{
z = p3(x, y);
}
pout(n8, j, k, x, y, z, z);
assert(s == " 8990 1 2 1.0000e+00 1.0000e+00 9.9994e-01 9.9994e-01");
j = 1;
k = 2;
l = 3;
e1[1] = 1.0;
e1[2] = 2.0;
e1[3] = 3.0;
for (i = 1; i <= n9; i++)
{
p0();
}
pout(n9, j, k, e1[1], e1[2], e1[3], e1[4]);
assert(s == " 5160 1 2 3.0000e+00 2.0000e+00 3.0000e+00 -1.1031e+00");
j = 2;
k = 3;
for (i = 1; i <= n10; i++)
{
j = j + k;
k = j + k;
j = j - k;
k = k - j - j;
}
pout(n10, j, k, x1, x2, x3, x4);
assert(s == " 0 2 3 1.0000e+00 -1.0000e+00 -1.0000e+00 -1.0000e+00");
x = 0.75;
for (i = 1; i <= n11; i++)
{
x = sqrt( exp( log(x) / t1));
}
pout(n11,j,k,x,x,x,x);
assert(s == " 930 2 3 8.3467e-01 8.3467e-01 8.3467e-01 8.3467e-01");
stop = clock();
version (none)
printf("Elapsed time = %d.%02d seconds\n",
cast(int)(stop - start)/CLOCKS_PER_SEC,
cast(int)(stop - start)%CLOCKS_PER_SEC);
return 0;
}
void pa(double[] e)
{
for (j = 0; j < 6; j++)
{
e[1] = (e[1] + e[2] + e[3] - e[4]) * t;
e[2] = (e[1] + e[2] - e[3] + e[4]) * t;
e[3] = (e[1] - e[2] + e[3] + e[4]) * t;
e[4] = (-e[1] + e[2] + e[3] + e[4]) / t2;
}
}
void p0()
{
e1[j] = e1[k];
e1[k] = e1[l];
e1[l] = e1[j];
}
double p3(double x, double y)
{
x = t * (x + y);
y = t * (x + y);
return (x + y) / t2;
}
char[] pout(int n, int j, int k, double x1, double x2, double x3, double x4)
{
__gshared char[80] result;
const len = sprintf(result.ptr, " %7d %7d %7d %12.4e %12.4e %12.4e %12.4e",
n, j, k, x1, x2, x3, x4);
printf("%s\n", result.ptr);
return result[0 .. len];
}
|