1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
|
/* Calculate branch probabilities, and basic block execution counts.
Copyright (C) 1990-2024 Free Software Foundation, Inc.
Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
based on some ideas from Dain Samples of UC Berkeley.
Further mangling by Bob Manson, Cygnus Support.
Converted to use trees by Dale Johannesen, Apple Computer.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Generate basic block profile instrumentation and auxiliary files.
Tree-based version. See profile.cc for overview. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "memmodel.h"
#include "backend.h"
#include "target.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "coverage.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "varasm.h"
#include "tree-nested.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-cfg.h"
#include "tree-into-ssa.h"
#include "value-prof.h"
#include "profile.h"
#include "tree-cfgcleanup.h"
#include "stringpool.h"
#include "attribs.h"
#include "tree-pretty-print.h"
#include "langhooks.h"
#include "stor-layout.h"
#include "xregex.h"
#include "alloc-pool.h"
#include "symbol-summary.h"
#include "symtab-thunks.h"
#include "cfganal.h"
static GTY(()) tree gcov_type_node;
static GTY(()) tree tree_interval_profiler_fn;
static GTY(()) tree tree_pow2_profiler_fn;
static GTY(()) tree tree_topn_values_profiler_fn;
static GTY(()) tree tree_indirect_call_profiler_fn;
static GTY(()) tree tree_average_profiler_fn;
static GTY(()) tree tree_ior_profiler_fn;
static GTY(()) tree tree_time_profiler_counter;
static GTY(()) tree ic_tuple_var;
static GTY(()) tree ic_tuple_counters_field;
static GTY(()) tree ic_tuple_callee_field;
/* Types of counter update methods.
By default, the counter updates are done for a single threaded system
(COUNTER_UPDATE_SINGLE_THREAD).
If the user selected atomic profile counter updates
(-fprofile-update=atomic), then the counter updates will be done atomically
on a best-effort basis. One of three methods to do the counter updates is
selected according to the target capabilities.
Ideally, the counter updates are done through atomic operations in hardware
(COUNTER_UPDATE_ATOMIC_BUILTIN).
If the target supports only 32-bit atomic increments and gcov_type_node is a
64-bit integer type, then for the profile edge counters the increment is
performed through two separate 32-bit atomic increments
(COUNTER_UPDATE_ATOMIC_SPLIT or COUNTER_UPDATE_ATOMIC_PARTIAL). If the
target supports libatomic (targetm.have_libatomic), then other counter
updates are carried out by libatomic calls (COUNTER_UPDATE_ATOMIC_SPLIT).
If the target does not support libatomic, then the other counter updates are
not done atomically (COUNTER_UPDATE_ATOMIC_PARTIAL) and a warning is
issued.
If the target does not support atomic operations in hardware, however, it
supports libatomic, then all updates are carried out by libatomic calls
(COUNTER_UPDATE_ATOMIC_BUILTIN). */
enum counter_update_method {
COUNTER_UPDATE_SINGLE_THREAD,
COUNTER_UPDATE_ATOMIC_BUILTIN,
COUNTER_UPDATE_ATOMIC_SPLIT,
COUNTER_UPDATE_ATOMIC_PARTIAL
};
static counter_update_method counter_update = COUNTER_UPDATE_SINGLE_THREAD;
/* These functions support measuring modified conditition/decision coverage
(MC/DC). MC/DC requires all of the below during testing:
- Each entry and exit point is invoked
- Each decision takes every possible outcome
- Each condition in a decision takes every possible outcome
- Each condition in a decision is shown to independently affect the outcome
of the decision
Independence of a condition is shown by recording it being evaluated to a
value (true/false) and not being made irrelevant ("masked") by a later term.
This feature adds some instrumentation code, a few bitwise operators, that
records the branches taken in conditions and applies a filter for the
masking effect. Masking is essentially short-circuiting in reverse: a
condition does not contribute to the outcome if it would short circuit the
(sub) expression if it was evaluated right-to-left, (_ && false) and (_ ||
true).
The program is essentially rewritten this way:
- if (a || b) { fn () }
+ if (a) { _t |= 0x1; goto _then; }
+ else { _f |= 0x1;
+ if (b) { _t |= 0x2; _mask |= 0x1; goto _then; }
+ else { _f |= 0x2; goto _else; }
+ _then:
+ _gcov_t |= (_t & _mask);
+ _gcov_f |= (_f & _mask);
+ fn (); goto _end;
+ _else:
+ _gcov_t |= (_t & _mask);
+ _gcov_f |= (_f & _mask);
+ fn ();
+ _end:
It is assumed the front end will provide discrimnators so that conditional
basic blocks (basic block with a conditional jump and outgoing true/false
edges) that belong to the same Boolean expression have the same
discriminator. Masking is determined by analyzing these expressions as a
reduced order binary decision diagram. */
namespace
{
/* Some context and reused instances between function calls. Large embedded
buffers are used to up-front request enough memory for most programs and
merge them into a single allocation at the cost of using more memory in the
average case. Some numbers from linux v5.13 which is assumed to be a
reasonably diverse code base: 75% of the functions in linux have less than
16 nodes in the CFG and approx 2.5% have more than 64 nodes. The functions
that go beyond a few dozen nodes tend to be very large (>100) and so 64
seems like a good balance.
This is really just a performance balance of the cost of allocation and
wasted memory. */
struct conds_ctx
{
/* This is both a reusable shared allocation which is also used to return
single expressions, which means it for most code should only hold a
couple of elements. */
auto_vec<basic_block, 64> blocks;
/* Index for the topological order indexed by basic_block->index to an
ordering so that expression (a || b && c) => top_index[a] < top_index[b]
< top_index[c]. */
auto_vec<int, 256> top_index;
/* Pre-allocate bitmaps and vectors for per-function book keeping. This is
pure instance reuse and the bitmaps carry no data between function
calls. */
auto_vec<basic_block, 64> B1;
auto_vec<basic_block, 64> B2;
auto_sbitmap G1;
auto_sbitmap G2;
auto_sbitmap G3;
explicit conds_ctx (unsigned size) noexcept (true) : G1 (size), G2 (size),
G3 (size)
{
}
};
/* Only instrument terms with fewer than number of bits in a (wide) gcov
integer, which is probably 64. The algorithm itself does not impose this
limitation, but it makes for a simpler implementation.
* Allocating the output data structure (coverage_counter_alloc ()) can
assume pairs of gcov_type_unsigned and not use a separate length field.
* A pair gcov_type_unsigned can be used as accumulators.
* Updating accumulators is can use the bitwise operations |=, &= and not
custom operators that work for arbitrary-sized bit-sets.
Most real-world code should be unaffected by this, but it is possible
(especially for generated code) to exceed this limit. */
#define CONDITIONS_MAX_TERMS (TYPE_PRECISION (gcov_type_node))
#define EDGE_CONDITION (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
/* Compare two basic blocks by their order in the expression i.e. for (a || b)
then topological_cmp (a, b, ...) < 0. The result is undefined if LHS, RHS
belong to different expressions. The TOP_INDEX argument should be the
top_index vector from ctx. */
int
topological_cmp (const void *lhs, const void *rhs, void *top_index)
{
const_basic_block l = *(const basic_block*) lhs;
const_basic_block r = *(const basic_block*) rhs;
const vec<int>* im = (const vec<int>*) top_index;
return (*im)[l->index] - (*im)[r->index];
}
/* Find the index of NEEDLE in BLOCKS; return -1 if not found. This has two
uses, sometimes for the index and sometimes for set member checks. Sets are
typically very small (number of conditions, >8 is uncommon) so linear search
should be very fast. */
int
index_of (const basic_block needle, array_slice<basic_block> blocks)
{
for (size_t i = 0; i < blocks.size (); i++)
if (blocks[i] == needle)
return int (i);
return -1;
}
/* Special cases of the single_*_p and single_*_edge functions in basic-block.h
that don't consider exception handling or other complex edges. This helps
create a view of the CFG with only normal edges - if a basic block has both
an outgoing fallthrough and exceptional edge, it should be considered a
single-successor. */
bool
single_p (const vec<edge, va_gc> *edges)
{
int n = EDGE_COUNT (edges);
if (n == 0)
return false;
for (edge e : edges)
if (e->flags & EDGE_COMPLEX)
n -= 1;
return n == 1;
}
/* Get the single, non-complex edge. Behavior is undefined edges have more
than 1 non-complex edges. */
edge
single_edge (const vec<edge, va_gc> *edges)
{
gcc_checking_assert (single_p (edges));
for (edge e : edges)
{
if (e->flags & EDGE_COMPLEX)
continue;
return e;
}
return NULL;
}
/* Sometimes, for example with function calls, goto labels, and C++
destructors, the CFG gets extra nodes that are essentially single-entry
single-exit in the middle of boolean expressions. For example:
x || can_throw (y)
A
/|
/ |
B |
| |
C |
/ \ |
/ \|
F T
Without the extra node inserted by the function + exception it becomes a
proper 2-term graph, not 2 single-term graphs.
A
/|
C |
/ \|
F T
This function finds the source edge of these paths. This is often the
identity function. */
edge
contract_edge_up (edge e)
{
while (true)
{
basic_block src = e->src;
if (!single_p (src->preds))
return e;
if (!single_p (src->succs))
return e;
e = single_edge (src->preds);
}
}
/* A simple struct for storing/returning outcome block pairs. Either both
blocks are set or both are NULL. */
struct outcomes
{
basic_block t = NULL;
basic_block f = NULL;
operator bool () const noexcept (true)
{
return t && f;
}
};
/* Get the true/false successors of a basic block. If b is not a conditional
block both edges are NULL. */
outcomes
conditional_succs (const basic_block b)
{
outcomes c;
for (edge e : b->succs)
{
if (e->flags & EDGE_TRUE_VALUE)
c.t = e->dest;
if (e->flags & EDGE_FALSE_VALUE)
c.f = e->dest;
}
gcc_assert ((c.t && c.f) || (!c.t && !c.f));
return c;
}
/* Get the index or offset of a conditional flag, 0 for true and 1 for false.
These indices carry no semantics but must be consistent as they are used to
index into data structures in code generation and gcov. */
unsigned
condition_index (unsigned flag)
{
return (flag & EDGE_CONDITION) == EDGE_TRUE_VALUE ? 0 : 1;
}
/* Returns the condition identifier for the basic block if set, otherwise 0.
This is only meaningful in GIMPLE and is used for condition coverage.
There may be conditions created that did not get an uid, such as those
implicitly created by destructors. We could include them in the condition
coverage for completeness (i.e. condition coverage implies (implicit) branch
coverage), but they have no natural buckets and should all be single-term.
For now these are ignored and given uid = 0, and branch coverage is left to
-fprofile-arcs.
Under optimization, COND_EXPRs may be folded, replaced with switches,
min-max, etc., which leaves ghost identifiers in basic blocks that do not
end with a conditional jump. They are not really meaningful for condition
coverage anymore, but since coverage is unreliable under optimization anyway
this is not a big problem.
The cond_uids map in FN cannot be expected to exist. It will only be
created if it is needed, and a function may have gconds even though there
are none in source. This can be seen in PR gcov-profile/114601, when
-finstrument-functions-once is used and the function has no conditions. */
unsigned
condition_uid (struct function *fn, basic_block b)
{
gimple *stmt = gsi_stmt (gsi_last_bb (b));
if (!safe_is_a <gcond*> (stmt) || !fn->cond_uids)
return 0;
unsigned *v = fn->cond_uids->get (as_a <gcond*> (stmt));
return v ? *v : 0;
}
/* Compute the masking table.
Masking and short circuiting are deeply connected - masking occurs when
control flow reaches a state that is also reachable with short circuiting.
In fact, masking corresponds to short circuiting for the reversed
expression. This means we can find the limits, the last term in preceeding
subexpressions, by following the edges that short circuit to the same
outcome. The algorithm treats the CFG as a reduced order binary decision
diagram (see Randall E. Bryant's Graph Based Algorithms for Boolean
Function Manipulation (1987)).
In the simplest case a || b:
a
|\
| b
|/ \
T F
T has multiple incoming edges and is the outcome of a short circuit,
with top = a, bot = b. The top node (a) is masked when the edge (b, T) is
taken.
The names "top" and "bot" refer to a pair of nodes with a shared
successor. The top is always the node corresponding to the left-most
operand of the two, and it holds that top < bot in a topological ordering.
Now consider (a && b) || (c && d) and its masking table:
a
|\
b \
|\|
| c
| |\
| d \
|/ \|
T F
a[0] = {}
a[1] = {}
b[0] = {a}
b[1] = {}
c[0] = {}
c[1] = {}
d[0] = {c}
d[1] = {a,b}
Note that 0 and 1 are indices and not boolean values - a[0] is the index in
the masking vector when a takes the true edge.
b[0] and d[0] are identical to the a || b example, and d[1] is the bot in
the triangle [d, b] -> T. b is the top node in the [d, b] relationship and
last term in (a && b). To find the other terms masked we use the fact that
all paths in an expression go through either of the outcomes, found by
collecting all non-complex edges that go out of the expression (the
neighborhood). In some cases the outgoing edge go through intermediate (or
bypass) nodes, and we collect these paths too (see contract_edge_up).
We find the terms by marking the outcomes (in this case c, T) and walk the
predecessors starting at top (in this case b) and masking nodes when both
successors are marked.
The masking table is represented as two bitfields per term in the expression
with the index corresponding to the term in the Boolean expression.
a || b && c becomes the term vector [a b c] and the masking table [a[0]
a[1] b[0] ...]. The kth bit of a masking vector is set if the kth term
is masked by taking the edge.
The out masks are in uint64_t (the practical maximum for gcov_type_node for
any target) as it has to be big enough to store the target size gcov types
independent of the host. */
void
masking_vectors (conds_ctx& ctx, array_slice<basic_block> blocks,
array_slice<sbitmap> maps, array_slice<uint64_t> masks)
{
gcc_assert (blocks.is_valid ());
gcc_assert (!blocks.empty ());
gcc_assert (maps.is_valid ());
gcc_assert (masks.is_valid ());
gcc_assert (sizeof (masks[0]) * BITS_PER_UNIT >= CONDITIONS_MAX_TERMS);
if (bitmap_count_bits (maps[0]) == 1)
return;
sbitmap marks = ctx.G1;
const sbitmap core = maps[0];
const sbitmap allg = maps[1];
vec<basic_block>& queue = ctx.B1;
vec<basic_block>& body = ctx.B2;
const vec<int>& top_index = ctx.top_index;
/* Set up for the iteration - include the outcome nodes in the traversal.
The algorithm compares pairs of nodes and is not really sensitive to
traversal order, but need to maintain topological order because the
index of masking nodes maps to the index in the accumulators. We must
also check the incoming-to-outcome pairs. These edges may in turn be
split (this happens with labels on top of then/else blocks) so we must
follow any single-in single-out path. The non-condition blocks do not
have to be in order as they are non-condition blocks and will not be
considered for the set-bit index. */
body.truncate (0);
body.reserve (blocks.size () + 2);
for (const basic_block b : blocks)
if (bitmap_bit_p (core, b->index))
body.quick_push (b);
for (basic_block b : blocks)
{
if (!bitmap_bit_p (core, b->index))
continue;
for (edge e : b->succs)
{
if (e->flags & EDGE_COMPLEX)
continue;
if (bitmap_bit_p (allg, e->dest->index))
continue;
body.safe_push (e->dest);
/* There may be multiple nodes between the condition edge and the
actual outcome, and we need to know when these paths join to
determine if there is short circuit/masking. This is
effectively creating a virtual edge from the condition node to
the real outcome. */
while (!(e->flags & EDGE_DFS_BACK) && single_p (e->dest->succs))
{
e = single_edge (e->dest->succs);
body.safe_push (e->dest);
}
}
}
/* Find the masking. The leftmost element cannot mask anything, so
start at 1. */
for (size_t i = 1; i != body.length (); i++)
{
const basic_block b = body[i];
for (edge e1 : b->preds)
for (edge e2 : b->preds)
{
if (e1 == e2)
continue;
if ((e1->flags | e2->flags) & EDGE_COMPLEX)
continue;
edge etop = contract_edge_up (e1);
edge ebot = contract_edge_up (e2);
gcc_assert (etop != ebot);
const basic_block top = etop->src;
const basic_block bot = ebot->src;
const unsigned cond = etop->flags & ebot->flags & EDGE_CONDITION;
if (!cond)
continue;
if (top_index[top->index] > top_index[bot->index])
continue;
if (!bitmap_bit_p (core, top->index))
continue;
if (!bitmap_bit_p (core, bot->index))
continue;
outcomes out = conditional_succs (top);
gcc_assert (out);
bitmap_clear (marks);
bitmap_set_bit (marks, out.t->index);
bitmap_set_bit (marks, out.f->index);
queue.truncate (0);
queue.safe_push (top);
// The edge bot -> outcome triggers the masking
const int m = 2*index_of (bot, body) + condition_index (cond);
gcc_assert (m >= 0);
while (!queue.is_empty ())
{
basic_block q = queue.pop ();
/* q may have been processed & completed by being added to the
queue multiple times, so check that there is still work to
do before continuing. */
if (bitmap_bit_p (marks, q->index))
continue;
outcomes succs = conditional_succs (q);
if (!bitmap_bit_p (marks, succs.t->index))
continue;
if (!bitmap_bit_p (marks, succs.f->index))
continue;
const int index = index_of (q, body);
gcc_assert (index != -1);
masks[m] |= uint64_t (1) << index;
bitmap_set_bit (marks, q->index);
for (edge e : q->preds)
{
e = contract_edge_up (e);
if (e->flags & EDGE_DFS_BACK)
continue;
if (bitmap_bit_p (marks, e->src->index))
continue;
if (!bitmap_bit_p (core, e->src->index))
continue;
queue.safe_push (e->src);
}
}
}
}
}
/* Emit LHS = RHS on edges. This is just a short hand that automates the
building of the assign and immediately puts it on the edge, which becomes
noisy. */
tree
emit_assign (edge e, tree lhs, tree rhs)
{
gassign *w = gimple_build_assign (lhs, rhs);
gsi_insert_on_edge (e, w);
return lhs;
}
/* Emit lhs = RHS on edges. The lhs is created. */
tree
emit_assign (edge e, tree rhs)
{
return emit_assign (e, make_ssa_name (gcov_type_node), rhs);
}
/* Emit LHS = OP1 <OP> OP2 on edges. */
tree
emit_bitwise_op (edge e, tree op1, tree_code op, tree op2 = NULL_TREE)
{
tree lhs = make_ssa_name (gcov_type_node);
gassign *w = gimple_build_assign (lhs, op, op1, op2);
gsi_insert_on_edge (e, w);
return lhs;
}
/* Visitor for make_top_index. */
void
make_top_index_visit (basic_block b, vec<basic_block>& L, vec<int>& marks)
{
if (marks[b->index])
return;
/* Follow the false edge first, if it exists, so that true paths are given
the lower index in the ordering. Any iteration order
would yield a valid and useful topological ordering, but making sure the
true branch has the lower index first makes reporting work better for
expressions with ternaries. Walk the false branch first because the
array will be reversed to finalize the topological order.
With the wrong ordering (a ? b : c) && d could become [a c b d], but the
(expected) order is really [a b c d]. */
const unsigned false_fwd = EDGE_DFS_BACK | EDGE_FALSE_VALUE;
for (edge e : b->succs)
if ((e->flags & false_fwd) == EDGE_FALSE_VALUE)
make_top_index_visit (e->dest, L, marks);
for (edge e : b->succs)
if (!(e->flags & false_fwd))
make_top_index_visit (e->dest, L, marks);
marks[b->index] = 1;
L.quick_push (b);
}
/* Find a topological sorting of the blocks in a function so that left operands
are before right operands including subexpressions. Sorting on block index
does not guarantee this property and the syntactical order of terms is very
important to the condition coverage. The sorting algorithm is from Cormen
et al (2001) but with back-edges ignored and thus there is no need for
temporary marks (for cycle detection). The L argument is a buffer/working
memory, and the output will be written to TOP_INDEX.
For the expression (a || (b && c) || d) the blocks should be [a b c d]. */
void
make_top_index (array_slice<basic_block> blocks, vec<basic_block>& L,
vec<int>& top_index)
{
L.truncate (0);
L.reserve (blocks.size ());
/* Use of the output map as a temporary for tracking visited status. */
top_index.truncate (0);
top_index.safe_grow_cleared (blocks.size ());
for (const basic_block b : blocks)
make_top_index_visit (b, L, top_index);
/* Insert canaries - if there are unreachable nodes (for example infinite
loops) then the unreachable nodes should never be needed for comparison,
and L.length () < max_index. An index mapping should also never be
recorded twice. */
for (unsigned i = 0; i != top_index.length (); i++)
top_index[i] = -1;
gcc_assert (blocks.size () == L.length ());
L.reverse ();
const unsigned nblocks = L.length ();
for (unsigned i = 0; i != nblocks; i++)
{
gcc_assert (L[i]->index != -1);
top_index[L[i]->index] = int (i);
}
}
/* Find all nodes including non-conditions in a Boolean expression. We need to
know the paths through the expression so that the masking and
instrumentation phases can limit searches and know what subgraphs must be
threaded through, but not counted, such as the (b || c) in
a && fn (b || c) && d.
It is essentially the intersection of downwards paths from the expression
nodes EXPR to the post-dominator and upwards from the post-dominator.
Finding the dominator is slightly more involved than picking the first/last,
particularly under optimization, because both incoming and outgoing paths
may have multiple entries/exits.
It is assumed GRAPH is an array_slice of the basic blocks of this function
sorted by the basic block index. */
vec<basic_block>&
paths_between (conds_ctx &ctx, array_slice<basic_block> graph,
const vec<basic_block>& expr)
{
if (expr.length () == 1)
{
ctx.blocks.truncate (0);
ctx.blocks.safe_push (expr[0]);
return ctx.blocks;
}
basic_block dom;
sbitmap up = ctx.G1;
sbitmap down = ctx.G2;
sbitmap paths = ctx.G3;
vec<basic_block>& queue = ctx.B1;
queue.truncate (0);
bitmap_clear (down);
dom = get_immediate_dominator (CDI_POST_DOMINATORS, expr[0]);
for (basic_block b : expr)
if (dom != b)
dom = nearest_common_dominator (CDI_POST_DOMINATORS, dom, b);
queue.safe_splice (expr);
while (!queue.is_empty ())
{
basic_block b = queue.pop ();
if (!bitmap_set_bit (down, b->index))
continue;
if (b == dom)
continue;
for (edge e : b->succs)
if (!(e->flags & (EDGE_COMPLEX | EDGE_DFS_BACK)))
queue.safe_push (e->dest);
}
queue.truncate (0);
bitmap_clear (up);
dom = expr[0];
for (basic_block b : expr)
if (dom != b)
dom = nearest_common_dominator (CDI_DOMINATORS, dom, b);
queue.safe_splice (expr);
while (!queue.is_empty ())
{
basic_block b = queue.pop ();
if (!bitmap_set_bit (up, b->index))
continue;
if (b == dom)
continue;
for (edge e : b->preds)
if (!(e->flags & (EDGE_COMPLEX | EDGE_DFS_BACK)))
queue.safe_push (e->src);
}
bitmap_and (paths, up, down);
vec<basic_block>& blocks = ctx.blocks;
blocks.truncate (0);
blocks.reserve (graph.size ());
sbitmap_iterator itr;
unsigned index;
EXECUTE_IF_SET_IN_BITMAP (paths, 0, index, itr)
blocks.quick_push (graph[index]);
return blocks;
}
}
/* Context object for the condition coverage. This stores conds_ctx (the
buffers reused when analyzing the cfg) and the output arrays. This is
designed to be heap allocated and aggressively preallocates large buffers to
avoid having to reallocate for most programs. */
struct condcov
{
explicit condcov (unsigned nblocks) noexcept (true) : ctx (nblocks),
m_maps (sbitmap_vector_alloc (2 * nblocks, nblocks))
{
bitmap_vector_clear (m_maps, 2 * nblocks);
}
auto_vec<size_t, 128> m_index;
auto_vec<basic_block, 256> m_blocks;
auto_vec<uint64_t, 512> m_masks;
conds_ctx ctx;
sbitmap *m_maps;
};
/* Get the length, that is the number of Boolean expression found. cov_length
is the one-past index for cov_{blocks,masks,maps}. */
size_t
cov_length (const struct condcov* cov)
{
if (cov->m_index.is_empty ())
return 0;
return cov->m_index.length () - 1;
}
/* The subgraph, exluding intermediates, for the nth Boolean expression. */
array_slice<basic_block>
cov_blocks (struct condcov* cov, size_t n)
{
if (n >= cov->m_index.length ())
return array_slice<basic_block>::invalid ();
basic_block *begin = cov->m_blocks.begin () + cov->m_index[n];
basic_block *end = cov->m_blocks.begin () + cov->m_index[n + 1];
return array_slice<basic_block> (begin, end - begin);
}
/* The masks for the nth Boolean expression. */
array_slice<uint64_t>
cov_masks (struct condcov* cov, size_t n)
{
if (n >= cov->m_index.length ())
return array_slice<uint64_t>::invalid ();
uint64_t *begin = cov->m_masks.begin () + 2*cov->m_index[n];
uint64_t *end = cov->m_masks.begin () + 2*cov->m_index[n + 1];
return array_slice<uint64_t> (begin, end - begin);
}
/* The maps for the nth Boolean expression. */
array_slice<sbitmap>
cov_maps (struct condcov* cov, size_t n)
{
if (n >= cov->m_index.length ())
return array_slice<sbitmap>::invalid ();
sbitmap *begin = cov->m_maps + 2*n;
sbitmap *end = begin + 2;
return array_slice<sbitmap> (begin, end - begin);
}
/* Deleter for condcov. */
void
cov_free (struct condcov* cov)
{
sbitmap_vector_free (cov->m_maps);
delete cov;
}
/* Condition coverage (MC/DC)
Whalen, Heimdahl, De Silva in "Efficient Test Coverage Measurement for
MC/DC" describe an algorithm for modified condition/decision coverage based
on AST analysis. This algorithm does analyzes the control flow graph
(interpreted as a binary decision diagram) to determine the masking vectors.
The individual phases are described in more detail closer to the
implementation.
The coverage only considers the positions, not the symbols, in a
conditional, e.g. !A || (!B && A) is a 3-term conditional even though A
appears twice. Subexpressions have no effect on term ordering:
(a && (b || (c && d)) || e) comes out as [a b c d e]. Functions whose
arguments are Boolean expressions are treated as separate expressions, that
is, a && fn (b || c) && d is treated as [a _fn d] and [b c], not [a b c d].
The output for gcov is a vector of pairs of unsigned integers, interpreted
as bit-sets, where the bit index corresponds to the index of the condition
in the expression.
The returned condcov should be released by the caller with cov_free. */
struct condcov*
find_conditions (struct function *fn)
{
mark_dfs_back_edges (fn);
const bool have_dom = dom_info_available_p (fn, CDI_DOMINATORS);
const bool have_post_dom = dom_info_available_p (fn, CDI_POST_DOMINATORS);
if (!have_dom)
calculate_dominance_info (CDI_DOMINATORS);
if (!have_post_dom)
calculate_dominance_info (CDI_POST_DOMINATORS);
const unsigned nblocks = n_basic_blocks_for_fn (fn);
basic_block *fnblocksp = basic_block_info_for_fn (fn)->address ();
condcov *cov = new condcov (nblocks);
conds_ctx& ctx = cov->ctx;
array_slice<basic_block> fnblocks (fnblocksp, nblocks);
make_top_index (fnblocks, ctx.B1, ctx.top_index);
/* Bin the Boolean expressions so that exprs[id] -> [x1, x2, ...]. */
hash_map<int_hash<unsigned, 0>, vec<basic_block>> exprs;
for (basic_block b : fnblocks)
{
const unsigned uid = condition_uid (fn, b);
if (uid == 0)
continue;
exprs.get_or_insert (uid).safe_push (b);
}
/* Visit all reachable nodes and collect conditions. Topological order is
important so the first node of a boolean expression is visited first
(it will mark subsequent terms). */
cov->m_index.safe_push (0);
for (auto expr : exprs)
{
vec<basic_block>& conds = expr.second;
if (conds.length () > CONDITIONS_MAX_TERMS)
{
location_t loc = gimple_location (gsi_stmt (gsi_last_bb (conds[0])));
warning_at (loc, OPT_Wcoverage_too_many_conditions,
"Too many conditions (found %u); giving up coverage",
conds.length ());
continue;
}
conds.sort (topological_cmp, &ctx.top_index);
vec<basic_block>& subgraph = paths_between (ctx, fnblocks, conds);
subgraph.sort (topological_cmp, &ctx.top_index);
const unsigned index = cov->m_index.length () - 1;
sbitmap condm = cov->m_maps[0 + 2*index];
sbitmap subgm = cov->m_maps[1 + 2*index];
for (basic_block b : conds)
bitmap_set_bit (condm, b->index);
for (basic_block b : subgraph)
bitmap_set_bit (subgm, b->index);
cov->m_blocks.safe_splice (subgraph);
cov->m_index.safe_push (cov->m_blocks.length ());
}
if (!have_dom)
free_dominance_info (fn, CDI_DOMINATORS);
if (!have_post_dom)
free_dominance_info (fn, CDI_POST_DOMINATORS);
cov->m_masks.safe_grow_cleared (2 * cov->m_index.last ());
const size_t length = cov_length (cov);
for (size_t i = 0; i != length; i++)
masking_vectors (ctx, cov_blocks (cov, i), cov_maps (cov, i),
cov_masks (cov, i));
return cov;
}
namespace
{
/* Stores the incoming edge and previous counters (in SSA form) on that edge
for the node e->deston that edge for the node e->dest. The counters record
the seen-true (0), seen-false (1), and current-mask (2). They are stored in
an array rather than proper members for access-by-index as the code paths
tend to be identical for the different counters. */
struct counters
{
edge e;
tree counter[3];
tree& operator [] (size_t i) { return counter[i]; }
};
/* Find the counters for the incoming edge e, or NULL if the edge has not been
recorded (could be for complex incoming edges). */
counters*
find_counters (vec<counters>& candidates, edge e)
{
for (counters& candidate : candidates)
if (candidate.e == e)
return &candidate;
return NULL;
}
/* Resolve the SSA for a specific counter KIND. If it is not modified by any
incoming edges, simply forward it, otherwise create a phi node of all the
candidate counters and return it. */
tree
resolve_counter (vec<counters>& cands, size_t kind)
{
gcc_assert (!cands.is_empty ());
gcc_assert (kind < 3);
counters& fst = cands[0];
if (!fst.e || fst.e->dest->preds->length () == 1)
{
gcc_assert (cands.length () == 1);
return fst[kind];
}
tree zero0 = build_int_cst (gcov_type_node, 0);
tree ssa = make_ssa_name (gcov_type_node);
gphi *phi = create_phi_node (ssa, fst.e->dest);
for (edge e : fst.e->dest->preds)
{
counters *prev = find_counters (cands, e);
if (prev)
add_phi_arg (phi, (*prev)[kind], e, UNKNOWN_LOCATION);
else
{
tree zero = make_ssa_name (gcov_type_node);
gimple_stmt_iterator gsi = gsi_after_labels (e->src);
gassign *set = gimple_build_assign (zero, zero0);
gsi_insert_before (&gsi, set, GSI_NEW_STMT);
add_phi_arg (phi, zero, e, UNKNOWN_LOCATION);
}
}
return ssa;
}
/* Resolve all the counters for a node. Note that the edge is undefined, as
the counters are intended to form the base to push to the successors, and
because the is only meaningful for nodes with a single predecessor. */
counters
resolve_counters (vec<counters>& cands)
{
counters next;
next[0] = resolve_counter (cands, 0);
next[1] = resolve_counter (cands, 1);
next[2] = resolve_counter (cands, 2);
return next;
}
}
/* Add instrumentation to a decision subgraph. EXPR should be the
(topologically sorted) block of nodes returned by cov_blocks, MAPS the
bitmaps returned by cov_maps, and MASKS the block of bitsets returned by
cov_masks. CONDNO should be the index of this condition in the function,
i.e. the same argument given to cov_{masks,graphs}. EXPR may contain nodes
in-between the conditions, e.g. when an operand contains a function call,
or there is a setjmp and the cfg is filled with complex edges.
Every node is annotated with three counters; the true, false, and mask
value. First, walk the graph and determine what if there are multiple
possible values for either accumulator depending on the path taken, in which
case a phi node is created and registered as the accumulator. Then, those
values are pushed as accumulators to the immediate successors. For some
very particular programs there may be multiple paths into the expression
(e.g. when prior terms are determined by a surrounding conditional) in which
case the default zero-counter is pushed, otherwise all predecessors will
have been considered before the successor because of topologically ordered
traversal. Finally, expr is traversed again to look for edges to the
outcomes, that is, edges with a destination outside of expr, and the local
accumulators are flushed to the global gcov counters on these edges. In
some cases there are edge splits that cause 3+ edges to the two outcome
nodes.
If a complex edge is taken (e.g. on a longjmp) the accumulators are
attempted poisoned so that there would be no change to the global counters,
but this has proven unreliable in the presence of undefined behavior, see
the setjmp003 test.
It is important that the flushes happen on the basic condition outgoing
edge, otherwise flushes could be lost to exception handling or other
abnormal control flow. */
size_t
instrument_decisions (array_slice<basic_block> expr, size_t condno,
array_slice<sbitmap> maps, array_slice<uint64_t> masks)
{
tree zero = build_int_cst (gcov_type_node, 0);
tree poison = build_int_cst (gcov_type_node, ~0ULL);
const sbitmap core = maps[0];
const sbitmap allg = maps[1];
hash_map<basic_block, vec<counters>> table;
counters zerocounter;
zerocounter.e = NULL;
zerocounter[0] = zero;
zerocounter[1] = zero;
zerocounter[2] = zero;
unsigned xi = 0;
bool increment = false;
tree rhs = build_int_cst (gcov_type_node, 1ULL << xi);
for (basic_block current : expr)
{
vec<counters>& candidates = table.get_or_insert (current);
if (candidates.is_empty ())
candidates.safe_push (zerocounter);
counters prev = resolve_counters (candidates);
if (increment)
{
xi += 1;
gcc_checking_assert (xi < sizeof (uint64_t) * BITS_PER_UNIT);
rhs = build_int_cst (gcov_type_node, 1ULL << xi);
increment = false;
}
for (edge e : current->succs)
{
counters next = prev;
next.e = e;
if (bitmap_bit_p (core, e->src->index) && (e->flags & EDGE_CONDITION))
{
const int k = condition_index (e->flags);
next[k] = emit_bitwise_op (e, prev[k], BIT_IOR_EXPR, rhs);
if (masks[2*xi + k])
{
tree m = build_int_cst (gcov_type_node, masks[2*xi + k]);
next[2] = emit_bitwise_op (e, prev[2], BIT_IOR_EXPR, m);
}
increment = true;
}
else if (e->flags & EDGE_COMPLEX)
{
/* A complex edge has been taken - wipe the accumulators and
poison the mask so that this path does not contribute to
coverage. */
next[0] = poison;
next[1] = poison;
next[2] = poison;
}
table.get_or_insert (e->dest).safe_push (next);
}
}
/* Since this is also the return value, the number of conditions, make sure
to include the increment of the last basic block. */
if (increment)
xi += 1;
gcc_assert (xi == bitmap_count_bits (core));
const tree relaxed = build_int_cst (integer_type_node, MEMMODEL_RELAXED);
const bool atomic = flag_profile_update == PROFILE_UPDATE_ATOMIC;
const tree atomic_ior = builtin_decl_explicit
(TYPE_PRECISION (gcov_type_node) > 32
? BUILT_IN_ATOMIC_FETCH_OR_8
: BUILT_IN_ATOMIC_FETCH_OR_4);
/* Flush to the gcov accumulators. */
for (const basic_block b : expr)
{
if (!bitmap_bit_p (core, b->index))
continue;
for (edge e : b->succs)
{
/* Flush the accumulators on leaving the Boolean function. The
destination may be inside the function only when it returns to
the loop header, such as do { ... } while (x); */
if (bitmap_bit_p (allg, e->dest->index)) {
if (!(e->flags & EDGE_DFS_BACK))
continue;
if (e->dest != expr[0])
continue;
}
vec<counters> *cands = table.get (e->dest);
gcc_assert (cands);
counters *prevp = find_counters (*cands, e);
gcc_assert (prevp);
counters prev = *prevp;
/* _true &= ~mask, _false &= ~mask */
counters next;
next[2] = emit_bitwise_op (e, prev[2], BIT_NOT_EXPR);
next[0] = emit_bitwise_op (e, prev[0], BIT_AND_EXPR, next[2]);
next[1] = emit_bitwise_op (e, prev[1], BIT_AND_EXPR, next[2]);
/* _global_true |= _true, _global_false |= _false */
for (size_t k = 0; k != 2; ++k)
{
tree ref = tree_coverage_counter_ref (GCOV_COUNTER_CONDS,
2*condno + k);
if (atomic)
{
ref = unshare_expr (ref);
gcall *flush = gimple_build_call (atomic_ior, 3,
build_addr (ref),
next[k], relaxed);
gsi_insert_on_edge (e, flush);
}
else
{
tree get = emit_assign (e, ref);
tree put = emit_bitwise_op (e, next[k], BIT_IOR_EXPR, get);
emit_assign (e, unshare_expr (ref), put);
}
}
}
}
return xi;
}
#undef CONDITIONS_MAX_TERMS
#undef EDGE_CONDITION
/* Do initialization work for the edge profiler. */
/* Add code:
__thread gcov* __gcov_indirect_call.counters; // pointer to actual counter
__thread void* __gcov_indirect_call.callee; // actual callee address
__thread int __gcov_function_counter; // time profiler function counter
*/
static void
init_ic_make_global_vars (void)
{
tree gcov_type_ptr;
gcov_type_ptr = build_pointer_type (get_gcov_type ());
tree tuple_type = lang_hooks.types.make_type (RECORD_TYPE);
/* callee */
ic_tuple_callee_field = build_decl (BUILTINS_LOCATION, FIELD_DECL, NULL_TREE,
ptr_type_node);
/* counters */
ic_tuple_counters_field = build_decl (BUILTINS_LOCATION, FIELD_DECL,
NULL_TREE, gcov_type_ptr);
DECL_CHAIN (ic_tuple_counters_field) = ic_tuple_callee_field;
finish_builtin_struct (tuple_type, "indirect_call_tuple",
ic_tuple_counters_field, NULL_TREE);
ic_tuple_var
= build_decl (UNKNOWN_LOCATION, VAR_DECL,
get_identifier ("__gcov_indirect_call"), tuple_type);
TREE_PUBLIC (ic_tuple_var) = 1;
DECL_ARTIFICIAL (ic_tuple_var) = 1;
DECL_INITIAL (ic_tuple_var) = NULL;
DECL_EXTERNAL (ic_tuple_var) = 1;
if (targetm.have_tls)
set_decl_tls_model (ic_tuple_var, decl_default_tls_model (ic_tuple_var));
}
/* Create the type and function decls for the interface with gcov. */
void
gimple_init_gcov_profiler (void)
{
tree interval_profiler_fn_type;
tree pow2_profiler_fn_type;
tree topn_values_profiler_fn_type;
tree gcov_type_ptr;
tree ic_profiler_fn_type;
tree average_profiler_fn_type;
const char *fn_name;
if (!gcov_type_node)
{
const char *fn_suffix
= flag_profile_update == PROFILE_UPDATE_ATOMIC ? "_atomic" : "";
gcov_type_node = get_gcov_type ();
gcov_type_ptr = build_pointer_type (gcov_type_node);
/* void (*) (gcov_type *, gcov_type, int, unsigned) */
interval_profiler_fn_type
= build_function_type_list (void_type_node,
gcov_type_ptr, gcov_type_node,
integer_type_node,
unsigned_type_node, NULL_TREE);
fn_name = concat ("__gcov_interval_profiler", fn_suffix, NULL);
tree_interval_profiler_fn = build_fn_decl (fn_name,
interval_profiler_fn_type);
free (CONST_CAST (char *, fn_name));
TREE_NOTHROW (tree_interval_profiler_fn) = 1;
DECL_ATTRIBUTES (tree_interval_profiler_fn)
= tree_cons (get_identifier ("leaf"), NULL,
DECL_ATTRIBUTES (tree_interval_profiler_fn));
/* void (*) (gcov_type *, gcov_type) */
pow2_profiler_fn_type
= build_function_type_list (void_type_node,
gcov_type_ptr, gcov_type_node,
NULL_TREE);
fn_name = concat ("__gcov_pow2_profiler", fn_suffix, NULL);
tree_pow2_profiler_fn = build_fn_decl (fn_name, pow2_profiler_fn_type);
free (CONST_CAST (char *, fn_name));
TREE_NOTHROW (tree_pow2_profiler_fn) = 1;
DECL_ATTRIBUTES (tree_pow2_profiler_fn)
= tree_cons (get_identifier ("leaf"), NULL,
DECL_ATTRIBUTES (tree_pow2_profiler_fn));
/* void (*) (gcov_type *, gcov_type) */
topn_values_profiler_fn_type
= build_function_type_list (void_type_node,
gcov_type_ptr, gcov_type_node,
NULL_TREE);
fn_name = concat ("__gcov_topn_values_profiler", fn_suffix, NULL);
tree_topn_values_profiler_fn
= build_fn_decl (fn_name, topn_values_profiler_fn_type);
free (CONST_CAST (char *, fn_name));
TREE_NOTHROW (tree_topn_values_profiler_fn) = 1;
DECL_ATTRIBUTES (tree_topn_values_profiler_fn)
= tree_cons (get_identifier ("leaf"), NULL,
DECL_ATTRIBUTES (tree_topn_values_profiler_fn));
init_ic_make_global_vars ();
/* void (*) (gcov_type, void *) */
ic_profiler_fn_type
= build_function_type_list (void_type_node,
gcov_type_node,
ptr_type_node,
NULL_TREE);
fn_name = concat ("__gcov_indirect_call_profiler_v4", fn_suffix, NULL);
tree_indirect_call_profiler_fn
= build_fn_decl (fn_name, ic_profiler_fn_type);
free (CONST_CAST (char *, fn_name));
TREE_NOTHROW (tree_indirect_call_profiler_fn) = 1;
DECL_ATTRIBUTES (tree_indirect_call_profiler_fn)
= tree_cons (get_identifier ("leaf"), NULL,
DECL_ATTRIBUTES (tree_indirect_call_profiler_fn));
tree_time_profiler_counter
= build_decl (UNKNOWN_LOCATION, VAR_DECL,
get_identifier ("__gcov_time_profiler_counter"),
get_gcov_type ());
TREE_PUBLIC (tree_time_profiler_counter) = 1;
DECL_EXTERNAL (tree_time_profiler_counter) = 1;
TREE_STATIC (tree_time_profiler_counter) = 1;
DECL_ARTIFICIAL (tree_time_profiler_counter) = 1;
DECL_INITIAL (tree_time_profiler_counter) = NULL;
/* void (*) (gcov_type *, gcov_type) */
average_profiler_fn_type
= build_function_type_list (void_type_node,
gcov_type_ptr, gcov_type_node, NULL_TREE);
fn_name = concat ("__gcov_average_profiler", fn_suffix, NULL);
tree_average_profiler_fn = build_fn_decl (fn_name,
average_profiler_fn_type);
free (CONST_CAST (char *, fn_name));
TREE_NOTHROW (tree_average_profiler_fn) = 1;
DECL_ATTRIBUTES (tree_average_profiler_fn)
= tree_cons (get_identifier ("leaf"), NULL,
DECL_ATTRIBUTES (tree_average_profiler_fn));
fn_name = concat ("__gcov_ior_profiler", fn_suffix, NULL);
tree_ior_profiler_fn = build_fn_decl (fn_name, average_profiler_fn_type);
free (CONST_CAST (char *, fn_name));
TREE_NOTHROW (tree_ior_profiler_fn) = 1;
DECL_ATTRIBUTES (tree_ior_profiler_fn)
= tree_cons (get_identifier ("leaf"), NULL,
DECL_ATTRIBUTES (tree_ior_profiler_fn));
/* LTO streamer needs assembler names. Because we create these decls
late, we need to initialize them by hand. */
DECL_ASSEMBLER_NAME (tree_interval_profiler_fn);
DECL_ASSEMBLER_NAME (tree_pow2_profiler_fn);
DECL_ASSEMBLER_NAME (tree_topn_values_profiler_fn);
DECL_ASSEMBLER_NAME (tree_indirect_call_profiler_fn);
DECL_ASSEMBLER_NAME (tree_average_profiler_fn);
DECL_ASSEMBLER_NAME (tree_ior_profiler_fn);
}
}
/* If RESULT is not null, then output instructions as GIMPLE trees to assign
the updated counter from CALL of FUNC to RESULT. Insert the CALL and the
optional assignment instructions to GSI. Use NAME for temporary values. */
static inline void
gen_assign_counter_update (gimple_stmt_iterator *gsi, gcall *call, tree func,
tree result, const char *name)
{
if (result)
{
tree result_type = TREE_TYPE (TREE_TYPE (func));
tree tmp1 = make_temp_ssa_name (result_type, NULL, name);
gimple_set_lhs (call, tmp1);
gsi_insert_after (gsi, call, GSI_NEW_STMT);
tree tmp2 = make_temp_ssa_name (TREE_TYPE (result), NULL, name);
gassign *assign = gimple_build_assign (tmp2, NOP_EXPR, tmp1);
gsi_insert_after (gsi, assign, GSI_NEW_STMT);
assign = gimple_build_assign (result, tmp2);
gsi_insert_after (gsi, assign, GSI_NEW_STMT);
}
else
gsi_insert_after (gsi, call, GSI_NEW_STMT);
}
/* Output instructions as GIMPLE trees to increment the COUNTER. If RESULT is
not null, then assign the updated counter value to RESULT. Insert the
instructions to GSI. Use NAME for temporary values. */
static inline void
gen_counter_update (gimple_stmt_iterator *gsi, tree counter, tree result,
const char *name)
{
tree type = gcov_type_node;
tree addr = build_fold_addr_expr (counter);
tree one = build_int_cst (type, 1);
tree relaxed = build_int_cst (integer_type_node, MEMMODEL_RELAXED);
if (counter_update == COUNTER_UPDATE_ATOMIC_BUILTIN
|| (result && counter_update == COUNTER_UPDATE_ATOMIC_SPLIT))
{
/* __atomic_fetch_add (&counter, 1, MEMMODEL_RELAXED); */
tree f = builtin_decl_explicit (TYPE_PRECISION (type) > 32
? BUILT_IN_ATOMIC_ADD_FETCH_8
: BUILT_IN_ATOMIC_ADD_FETCH_4);
gcall *call = gimple_build_call (f, 3, addr, one, relaxed);
gen_assign_counter_update (gsi, call, f, result, name);
}
else if (!result && (counter_update == COUNTER_UPDATE_ATOMIC_SPLIT
|| counter_update == COUNTER_UPDATE_ATOMIC_PARTIAL))
{
/* low = __atomic_add_fetch_4 (addr, 1, MEMMODEL_RELAXED);
high_inc = low == 0 ? 1 : 0;
__atomic_add_fetch_4 (addr_high, high_inc, MEMMODEL_RELAXED); */
tree zero32 = build_zero_cst (uint32_type_node);
tree one32 = build_one_cst (uint32_type_node);
tree addr_high = make_temp_ssa_name (TREE_TYPE (addr), NULL, name);
tree four = build_int_cst (size_type_node, 4);
gassign *assign1 = gimple_build_assign (addr_high, POINTER_PLUS_EXPR,
addr, four);
gsi_insert_after (gsi, assign1, GSI_NEW_STMT);
if (WORDS_BIG_ENDIAN)
std::swap (addr, addr_high);
tree f = builtin_decl_explicit (BUILT_IN_ATOMIC_ADD_FETCH_4);
gcall *call1 = gimple_build_call (f, 3, addr, one, relaxed);
tree low = make_temp_ssa_name (uint32_type_node, NULL, name);
gimple_call_set_lhs (call1, low);
gsi_insert_after (gsi, call1, GSI_NEW_STMT);
tree is_zero = make_temp_ssa_name (boolean_type_node, NULL, name);
gassign *assign2 = gimple_build_assign (is_zero, EQ_EXPR, low,
zero32);
gsi_insert_after (gsi, assign2, GSI_NEW_STMT);
tree high_inc = make_temp_ssa_name (uint32_type_node, NULL, name);
gassign *assign3 = gimple_build_assign (high_inc, COND_EXPR,
is_zero, one32, zero32);
gsi_insert_after (gsi, assign3, GSI_NEW_STMT);
gcall *call2 = gimple_build_call (f, 3, addr_high, high_inc,
relaxed);
gsi_insert_after (gsi, call2, GSI_NEW_STMT);
}
else
{
tree tmp1 = make_temp_ssa_name (type, NULL, name);
gassign *assign1 = gimple_build_assign (tmp1, counter);
gsi_insert_after (gsi, assign1, GSI_NEW_STMT);
tree tmp2 = make_temp_ssa_name (type, NULL, name);
gassign *assign2 = gimple_build_assign (tmp2, PLUS_EXPR, tmp1, one);
gsi_insert_after (gsi, assign2, GSI_NEW_STMT);
gassign *assign3 = gimple_build_assign (unshare_expr (counter), tmp2);
gsi_insert_after (gsi, assign3, GSI_NEW_STMT);
if (result)
{
gassign *assign4 = gimple_build_assign (result, tmp2);
gsi_insert_after (gsi, assign4, GSI_NEW_STMT);
}
}
}
/* Output instructions as GIMPLE trees to increment the edge
execution count, and insert them on E. */
void
gimple_gen_edge_profiler (int edgeno, edge e)
{
gimple_stmt_iterator gsi = gsi_last (PENDING_STMT (e));
tree counter = tree_coverage_counter_ref (GCOV_COUNTER_ARCS, edgeno);
gen_counter_update (&gsi, counter, NULL_TREE, "PROF_edge_counter");
}
/* Emits code to get VALUE to instrument at GSI, and returns the
variable containing the value. */
static tree
prepare_instrumented_value (gimple_stmt_iterator *gsi, histogram_value value)
{
tree val = value->hvalue.value;
if (POINTER_TYPE_P (TREE_TYPE (val)))
val = fold_convert (build_nonstandard_integer_type
(TYPE_PRECISION (TREE_TYPE (val)), 1), val);
return force_gimple_operand_gsi (gsi, fold_convert (gcov_type_node, val),
true, NULL_TREE, true, GSI_SAME_STMT);
}
/* Output instructions as GIMPLE trees to increment the interval histogram
counter. VALUE is the expression whose value is profiled. TAG is the
tag of the section for counters, BASE is offset of the counter position. */
void
gimple_gen_interval_profiler (histogram_value value, unsigned tag)
{
gimple *stmt = value->hvalue.stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
tree ref = tree_coverage_counter_ref (tag, 0), ref_ptr;
gcall *call;
tree val;
tree start = build_int_cst_type (integer_type_node,
value->hdata.intvl.int_start);
tree steps = build_int_cst_type (unsigned_type_node,
value->hdata.intvl.steps);
ref_ptr = force_gimple_operand_gsi (&gsi,
build_addr (ref),
true, NULL_TREE, true, GSI_SAME_STMT);
val = prepare_instrumented_value (&gsi, value);
call = gimple_build_call (tree_interval_profiler_fn, 4,
ref_ptr, val, start, steps);
gsi_insert_before (&gsi, call, GSI_NEW_STMT);
}
/* Output instructions as GIMPLE trees to increment the power of two histogram
counter. VALUE is the expression whose value is profiled. TAG is the tag
of the section for counters. */
void
gimple_gen_pow2_profiler (histogram_value value, unsigned tag)
{
gimple *stmt = value->hvalue.stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
tree ref_ptr = tree_coverage_counter_addr (tag, 0);
gcall *call;
tree val;
ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr,
true, NULL_TREE, true, GSI_SAME_STMT);
val = prepare_instrumented_value (&gsi, value);
call = gimple_build_call (tree_pow2_profiler_fn, 2, ref_ptr, val);
gsi_insert_before (&gsi, call, GSI_NEW_STMT);
}
/* Output instructions as GIMPLE trees for code to find the most N common
values. VALUE is the expression whose value is profiled. TAG is the tag
of the section for counters. */
void
gimple_gen_topn_values_profiler (histogram_value value, unsigned tag)
{
gimple *stmt = value->hvalue.stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
tree ref_ptr = tree_coverage_counter_addr (tag, 0);
gcall *call;
tree val;
ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr,
true, NULL_TREE, true, GSI_SAME_STMT);
val = prepare_instrumented_value (&gsi, value);
call = gimple_build_call (tree_topn_values_profiler_fn, 2, ref_ptr, val);
gsi_insert_before (&gsi, call, GSI_NEW_STMT);
}
/* Output instructions as GIMPLE trees for code to find the most
common called function in indirect call.
VALUE is the call expression whose indirect callee is profiled.
TAG is the tag of the section for counters. */
void
gimple_gen_ic_profiler (histogram_value value, unsigned tag)
{
tree tmp1;
gassign *stmt1, *stmt2, *stmt3;
gimple *stmt = value->hvalue.stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
tree ref_ptr = tree_coverage_counter_addr (tag, 0);
ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr,
true, NULL_TREE, true, GSI_SAME_STMT);
/* Insert code:
stmt1: __gcov_indirect_call.counters = get_relevant_counter_ptr ();
stmt2: tmp1 = (void *) (indirect call argument value)
stmt3: __gcov_indirect_call.callee = tmp1;
Example:
f_1 = foo;
__gcov_indirect_call.counters = &__gcov4.main[0];
PROF_fn_9 = f_1;
__gcov_indirect_call.callee = PROF_fn_9;
_4 = f_1 ();
*/
tree gcov_type_ptr = build_pointer_type (get_gcov_type ());
tree counter_ref = build3 (COMPONENT_REF, gcov_type_ptr,
ic_tuple_var, ic_tuple_counters_field, NULL_TREE);
stmt1 = gimple_build_assign (counter_ref, ref_ptr);
tmp1 = make_temp_ssa_name (ptr_type_node, NULL, "PROF_fn");
stmt2 = gimple_build_assign (tmp1, unshare_expr (value->hvalue.value));
tree callee_ref = build3 (COMPONENT_REF, ptr_type_node,
ic_tuple_var, ic_tuple_callee_field, NULL_TREE);
stmt3 = gimple_build_assign (callee_ref, tmp1);
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
}
/* Output instructions as GIMPLE trees for code to find the most
common called function in indirect call. Insert instructions at the
beginning of every possible called function.
*/
void
gimple_gen_ic_func_profiler (void)
{
struct cgraph_node * c_node = cgraph_node::get (current_function_decl);
gcall *stmt1;
tree tree_uid, cur_func, void0;
/* Disable indirect call profiling for an IFUNC resolver and its
callees since it requires TLS which hasn't been set up yet when
the dynamic linker is resolving IFUNC symbols. See
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=114115
*/
if (c_node->only_called_directly_p ()
|| c_node->called_by_ifunc_resolver)
return;
gimple_init_gcov_profiler ();
basic_block entry = ENTRY_BLOCK_PTR_FOR_FN (cfun);
basic_block cond_bb = split_edge (single_succ_edge (entry));
basic_block update_bb = split_edge (single_succ_edge (cond_bb));
/* We need to do an extra split in order to not create an input
for a possible PHI node. */
split_edge (single_succ_edge (update_bb));
edge true_edge = single_succ_edge (cond_bb);
true_edge->flags = EDGE_TRUE_VALUE;
profile_probability probability;
if (DECL_VIRTUAL_P (current_function_decl))
probability = profile_probability::very_likely ();
else
probability = profile_probability::unlikely ();
true_edge->probability = probability;
edge e = make_edge (cond_bb, single_succ_edge (update_bb)->dest,
EDGE_FALSE_VALUE);
e->probability = true_edge->probability.invert ();
/* Insert code:
if (__gcov_indirect_call.callee != NULL)
__gcov_indirect_call_profiler_v3 (profile_id, ¤t_function_decl);
The function __gcov_indirect_call_profiler_v3 is responsible for
resetting __gcov_indirect_call.callee to NULL. */
gimple_stmt_iterator gsi = gsi_start_bb (cond_bb);
void0 = build_int_cst (ptr_type_node, 0);
tree callee_ref = build3 (COMPONENT_REF, ptr_type_node,
ic_tuple_var, ic_tuple_callee_field, NULL_TREE);
tree ref = force_gimple_operand_gsi (&gsi, callee_ref, true, NULL_TREE,
true, GSI_SAME_STMT);
gcond *cond = gimple_build_cond (NE_EXPR, ref,
void0, NULL, NULL);
gsi_insert_before (&gsi, cond, GSI_NEW_STMT);
gsi = gsi_after_labels (update_bb);
cur_func = force_gimple_operand_gsi (&gsi,
build_addr (current_function_decl),
true, NULL_TREE,
true, GSI_SAME_STMT);
tree_uid = build_int_cst
(gcov_type_node,
cgraph_node::get (current_function_decl)->profile_id);
stmt1 = gimple_build_call (tree_indirect_call_profiler_fn, 2,
tree_uid, cur_func);
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
}
/* Output instructions as GIMPLE tree at the beginning for each function.
TAG is the tag of the section for counters, BASE is offset of the
counter position and GSI is the iterator we place the counter. */
void
gimple_gen_time_profiler (unsigned tag)
{
tree type = get_gcov_type ();
basic_block entry = ENTRY_BLOCK_PTR_FOR_FN (cfun);
basic_block cond_bb = split_edge (single_succ_edge (entry));
basic_block update_bb = split_edge (single_succ_edge (cond_bb));
/* We need to do an extra split in order to not create an input
for a possible PHI node. */
split_edge (single_succ_edge (update_bb));
edge true_edge = single_succ_edge (cond_bb);
true_edge->flags = EDGE_TRUE_VALUE;
true_edge->probability = profile_probability::unlikely ();
edge e
= make_edge (cond_bb, single_succ_edge (update_bb)->dest, EDGE_FALSE_VALUE);
e->probability = true_edge->probability.invert ();
gimple_stmt_iterator gsi = gsi_start_bb (cond_bb);
tree original_ref = tree_coverage_counter_ref (tag, 0);
tree ref = force_gimple_operand_gsi (&gsi, original_ref, true, NULL_TREE,
true, GSI_SAME_STMT);
/* Emit: if (counters[0] != 0). */
gcond *cond = gimple_build_cond (EQ_EXPR, ref, build_int_cst (type, 0),
NULL, NULL);
gsi_insert_before (&gsi, cond, GSI_NEW_STMT);
/* Emit: counters[0] = ++__gcov_time_profiler_counter. */
gsi = gsi_start_bb (update_bb);
gen_counter_update (&gsi, tree_time_profiler_counter, original_ref,
"PROF_time_profile");
}
/* Output instructions as GIMPLE trees to increment the average histogram
counter. VALUE is the expression whose value is profiled. TAG is the
tag of the section for counters, BASE is offset of the counter position. */
void
gimple_gen_average_profiler (histogram_value value, unsigned tag)
{
gimple *stmt = value->hvalue.stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
tree ref_ptr = tree_coverage_counter_addr (tag, 0);
gcall *call;
tree val;
ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr,
true, NULL_TREE,
true, GSI_SAME_STMT);
val = prepare_instrumented_value (&gsi, value);
call = gimple_build_call (tree_average_profiler_fn, 2, ref_ptr, val);
gsi_insert_before (&gsi, call, GSI_NEW_STMT);
}
/* Output instructions as GIMPLE trees to increment the ior histogram
counter. VALUE is the expression whose value is profiled. TAG is the
tag of the section for counters, BASE is offset of the counter position. */
void
gimple_gen_ior_profiler (histogram_value value, unsigned tag)
{
gimple *stmt = value->hvalue.stmt;
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
tree ref_ptr = tree_coverage_counter_addr (tag, 0);
gcall *call;
tree val;
ref_ptr = force_gimple_operand_gsi (&gsi, ref_ptr,
true, NULL_TREE, true, GSI_SAME_STMT);
val = prepare_instrumented_value (&gsi, value);
call = gimple_build_call (tree_ior_profiler_fn, 2, ref_ptr, val);
gsi_insert_before (&gsi, call, GSI_NEW_STMT);
}
static vec<regex_t> profile_filter_files;
static vec<regex_t> profile_exclude_files;
/* Parse list of provided REGEX (separated with semi-collon) and
create expressions (of type regex_t) and save them into V vector.
If there is a regular expression parsing error, error message is
printed for FLAG_NAME. */
static void
parse_profile_filter (const char *regex, vec<regex_t> *v,
const char *flag_name)
{
v->create (4);
if (regex != NULL)
{
char *str = xstrdup (regex);
for (char *p = strtok (str, ";"); p != NULL; p = strtok (NULL, ";"))
{
regex_t r;
if (regcomp (&r, p, REG_EXTENDED | REG_NOSUB) != 0)
{
error ("invalid regular expression %qs in %qs",
p, flag_name);
return;
}
v->safe_push (r);
}
}
}
/* Parse values of -fprofile-filter-files and -fprofile-exclude-files
options. */
static void
parse_profile_file_filtering ()
{
parse_profile_filter (flag_profile_filter_files, &profile_filter_files,
"-fprofile-filter-files");
parse_profile_filter (flag_profile_exclude_files, &profile_exclude_files,
"-fprofile-exclude-files");
}
/* Parse vectors of regular expressions. */
static void
release_profile_file_filtering ()
{
profile_filter_files.release ();
profile_exclude_files.release ();
}
/* Return true when FILENAME should be instrumented based on
-fprofile-filter-files and -fprofile-exclude-files options. */
static bool
include_source_file_for_profile (const char *filename)
{
/* First check whether file is included in flag_profile_exclude_files. */
for (unsigned i = 0; i < profile_exclude_files.length (); i++)
if (regexec (&profile_exclude_files[i],
filename, 0, NULL, 0) == REG_NOERROR)
return false;
/* For non-empty flag_profile_filter_files include only files matching a
regex in the flag. */
if (profile_filter_files.is_empty ())
return true;
for (unsigned i = 0; i < profile_filter_files.length (); i++)
if (regexec (&profile_filter_files[i], filename, 0, NULL, 0) == REG_NOERROR)
return true;
return false;
}
#ifndef HAVE_sync_compare_and_swapsi
#define HAVE_sync_compare_and_swapsi 0
#endif
#ifndef HAVE_atomic_compare_and_swapsi
#define HAVE_atomic_compare_and_swapsi 0
#endif
#ifndef HAVE_sync_compare_and_swapdi
#define HAVE_sync_compare_and_swapdi 0
#endif
#ifndef HAVE_atomic_compare_and_swapdi
#define HAVE_atomic_compare_and_swapdi 0
#endif
/* Profile all functions in the callgraph. */
static unsigned int
tree_profiling (void)
{
struct cgraph_node *node;
/* Verify whether we can utilize atomic update operations. */
bool can_support_atomic = targetm.have_libatomic;
unsigned HOST_WIDE_INT gcov_type_size
= tree_to_uhwi (TYPE_SIZE_UNIT (get_gcov_type ()));
bool have_atomic_4
= HAVE_sync_compare_and_swapsi || HAVE_atomic_compare_and_swapsi;
bool have_atomic_8
= HAVE_sync_compare_and_swapdi || HAVE_atomic_compare_and_swapdi;
bool needs_split = gcov_type_size == 8 && !have_atomic_8 && have_atomic_4;
if (!can_support_atomic)
{
if (gcov_type_size == 4)
can_support_atomic = have_atomic_4;
else if (gcov_type_size == 8)
can_support_atomic = have_atomic_8;
}
if (flag_profile_update != PROFILE_UPDATE_SINGLE && needs_split)
counter_update = COUNTER_UPDATE_ATOMIC_PARTIAL;
if (flag_profile_update == PROFILE_UPDATE_ATOMIC
&& !can_support_atomic)
{
warning (0, "target does not support atomic profile update, "
"single mode is selected");
flag_profile_update = PROFILE_UPDATE_SINGLE;
}
else if (flag_profile_update == PROFILE_UPDATE_PREFER_ATOMIC)
flag_profile_update
= can_support_atomic ? PROFILE_UPDATE_ATOMIC : PROFILE_UPDATE_SINGLE;
if (flag_profile_update == PROFILE_UPDATE_ATOMIC)
{
if (needs_split)
counter_update = COUNTER_UPDATE_ATOMIC_SPLIT;
else
counter_update = COUNTER_UPDATE_ATOMIC_BUILTIN;
}
/* This is a small-ipa pass that gets called only once, from
cgraphunit.cc:ipa_passes(). */
gcc_assert (symtab->state == IPA_SSA);
init_node_map (true);
parse_profile_file_filtering ();
FOR_EACH_DEFINED_FUNCTION (node)
{
bool thunk = false;
if (!gimple_has_body_p (node->decl) && !node->thunk)
continue;
/* Don't profile functions produced for builtin stuff. */
if (DECL_SOURCE_LOCATION (node->decl) == BUILTINS_LOCATION)
continue;
if (lookup_attribute ("no_profile_instrument_function",
DECL_ATTRIBUTES (node->decl)))
continue;
/* Do not instrument extern inline functions when testing coverage.
While this is not perfectly consistent (early inlined extern inlines
will get acocunted), testsuite expects that. */
if (DECL_EXTERNAL (node->decl)
&& flag_test_coverage)
continue;
const char *file = LOCATION_FILE (DECL_SOURCE_LOCATION (node->decl));
if (!include_source_file_for_profile (file))
continue;
if (node->thunk)
{
/* We cannot expand variadic thunks to Gimple. */
if (stdarg_p (TREE_TYPE (node->decl)))
continue;
thunk = true;
/* When generate profile, expand thunk to gimple so it can be
instrumented same way as other functions. */
if (profile_arc_flag || condition_coverage_flag)
expand_thunk (node, false, true);
/* Read cgraph profile but keep function as thunk at profile-use
time. */
else
{
read_thunk_profile (node);
continue;
}
}
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
if (dump_file)
dump_function_header (dump_file, cfun->decl, dump_flags);
/* Local pure-const may imply need to fixup the cfg. */
if (gimple_has_body_p (node->decl)
&& (execute_fixup_cfg () & TODO_cleanup_cfg))
cleanup_tree_cfg ();
branch_prob (thunk);
if (! flag_branch_probabilities
&& flag_profile_values)
gimple_gen_ic_func_profiler ();
if (flag_branch_probabilities
&& !thunk
&& flag_profile_values
&& flag_value_profile_transformations
&& profile_status_for_fn (cfun) == PROFILE_READ)
gimple_value_profile_transformations ();
/* The above could hose dominator info. Currently there is
none coming in, this is a safety valve. It should be
easy to adjust it, if and when there is some. */
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
pop_cfun ();
}
release_profile_file_filtering ();
/* Drop pure/const flags from instrumented functions. */
if (profile_arc_flag || condition_coverage_flag || flag_test_coverage)
FOR_EACH_DEFINED_FUNCTION (node)
{
if (!gimple_has_body_p (node->decl)
|| !(!node->clone_of
|| node->decl != node->clone_of->decl))
continue;
/* Don't profile functions produced for builtin stuff. */
if (DECL_SOURCE_LOCATION (node->decl) == BUILTINS_LOCATION)
continue;
node->set_const_flag (false, false);
node->set_pure_flag (false, false);
}
/* Update call statements and rebuild the cgraph. */
FOR_EACH_DEFINED_FUNCTION (node)
{
basic_block bb;
if (!gimple_has_body_p (node->decl)
|| !(!node->clone_of
|| node->decl != node->clone_of->decl))
continue;
/* Don't profile functions produced for builtin stuff. */
if (DECL_SOURCE_LOCATION (node->decl) == BUILTINS_LOCATION)
continue;
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
if (profile_arc_flag || condition_coverage_flag || flag_test_coverage)
FOR_EACH_BB_FN (bb, cfun)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gcall *call = dyn_cast <gcall *> (gsi_stmt (gsi));
if (!call || gimple_call_internal_p (call))
continue;
/* We do not clear pure/const on decls without body. */
tree fndecl = gimple_call_fndecl (call);
cgraph_node *callee;
if (fndecl
&& (callee = cgraph_node::get (fndecl))
&& callee->get_availability (node) == AVAIL_NOT_AVAILABLE)
continue;
/* Drop the const attribute from the call type (the pure
attribute is not available on types). */
tree fntype = gimple_call_fntype (call);
if (fntype && TYPE_READONLY (fntype))
{
int quals = TYPE_QUALS (fntype) & ~TYPE_QUAL_CONST;
fntype = build_qualified_type (fntype, quals);
gimple_call_set_fntype (call, fntype);
}
/* Update virtual operands of calls to no longer const/pure
functions. */
update_stmt (call);
}
}
/* re-merge split blocks. */
cleanup_tree_cfg ();
update_ssa (TODO_update_ssa);
cgraph_edge::rebuild_edges ();
pop_cfun ();
}
handle_missing_profiles ();
del_node_map ();
return 0;
}
namespace {
const pass_data pass_data_ipa_tree_profile =
{
SIMPLE_IPA_PASS, /* type */
"profile", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_IPA_PROFILE, /* tv_id */
0, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_symtab, /* todo_flags_finish */
};
class pass_ipa_tree_profile : public simple_ipa_opt_pass
{
public:
pass_ipa_tree_profile (gcc::context *ctxt)
: simple_ipa_opt_pass (pass_data_ipa_tree_profile, ctxt)
{}
/* opt_pass methods: */
bool gate (function *) final override;
unsigned int execute (function *) final override { return tree_profiling (); }
}; // class pass_ipa_tree_profile
bool
pass_ipa_tree_profile::gate (function *)
{
/* When profile instrumentation, use or test coverage shall be performed.
But for AutoFDO, this there is no instrumentation, thus this pass is
disabled. */
return (!in_lto_p && !flag_auto_profile
&& (flag_branch_probabilities || flag_test_coverage
|| profile_arc_flag || condition_coverage_flag));
}
} // anon namespace
simple_ipa_opt_pass *
make_pass_ipa_tree_profile (gcc::context *ctxt)
{
return new pass_ipa_tree_profile (ctxt);
}
#include "gt-tree-profile.h"
|