1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
|
/* Support routines for Value Range Propagation (VRP).
Copyright (C) 2005-2024 Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "basic-block.h"
#include "bitmap.h"
#include "sbitmap.h"
#include "options.h"
#include "dominance.h"
#include "function.h"
#include "cfg.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "cfganal.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-into-ssa.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-ssa-propagate.h"
#include "domwalk.h"
#include "vr-values.h"
#include "gimple-array-bounds.h"
#include "gimple-range.h"
#include "gimple-range-path.h"
#include "value-pointer-equiv.h"
#include "gimple-fold.h"
#include "tree-dfa.h"
#include "tree-ssa-dce.h"
#include "alloc-pool.h"
#include "cgraph.h"
#include "symbol-summary.h"
#include "ipa-utils.h"
#include "sreal.h"
#include "ipa-cp.h"
#include "ipa-prop.h"
#include "attribs.h"
// This class is utilized by VRP and ranger to remove __builtin_unreachable
// calls, and reflect any resulting global ranges.
//
// maybe_register() is called on condition statements , and if that
// matches the pattern of one branch being a builtin_unreachable, either check
// for early removal or register the resulting executable edge in a list.
//
// During early/non-final processing, we check to see if ALL exports from the
// block can be safely updated with a new global value. If they can, then
// we rewrite the condition and update those values immediately. Otherwise
// the unreachable condition is left in the IL until the final pass.
//
// During final processing, after all blocks have been registered,
// remove_and_update_globals() will
// - check all exports from registered blocks
// - ensure the cache entry of each export is set with the appropriate range
// - rewrite the conditions to take the executable edge
// - perform DCE on any feeding instructions to those rewritten conditions
//
// Then each of the immediate use chain of each export is walked, and a new
// global range created by unioning the ranges at all remaining use locations.
class remove_unreachable {
public:
remove_unreachable (gimple_ranger &r, bool all) : m_ranger (r), final_p (all)
{ m_list.create (30); }
~remove_unreachable () { m_list.release (); }
void handle_early (gimple *s, edge e);
void maybe_register (gimple *s);
bool remove_and_update_globals ();
vec<std::pair<int, int> > m_list;
gimple_ranger &m_ranger;
bool final_p;
};
// Check if block BB has a __builtin_unreachable () call on one arm, and
// register the executable edge if so.
void
remove_unreachable::maybe_register (gimple *s)
{
gcc_checking_assert (gimple_code (s) == GIMPLE_COND);
basic_block bb = gimple_bb (s);
edge e0 = EDGE_SUCC (bb, 0);
basic_block bb0 = e0->dest;
bool un0 = EDGE_COUNT (bb0->succs) == 0
&& gimple_seq_unreachable_p (bb_seq (bb0));
edge e1 = EDGE_SUCC (bb, 1);
basic_block bb1 = e1->dest;
bool un1 = EDGE_COUNT (bb1->succs) == 0
&& gimple_seq_unreachable_p (bb_seq (bb1));
// If the 2 blocks are not different, ignore.
if (un0 == un1)
return;
// Constant expressions are ignored.
if (TREE_CODE (gimple_cond_lhs (s)) != SSA_NAME
&& TREE_CODE (gimple_cond_rhs (s)) != SSA_NAME)
return;
edge e = un0 ? e1 : e0;
if (!final_p)
handle_early (s, e);
else
m_list.safe_push (std::make_pair (e->src->index, e->dest->index));
}
// Return true if all uses of NAME are dominated by block BB. 1 use
// is allowed in block BB, This is one we hope to remove.
// ie
// _2 = _1 & 7;
// if (_2 != 0)
// goto <bb 3>; [0.00%]
// Any additional use of _1 or _2 in this block invalidates early replacement.
static bool
fully_replaceable (tree name, basic_block bb)
{
use_operand_p use_p;
imm_use_iterator iter;
bool saw_in_bb = false;
// If a name loads from memory, we may lose information used in
// commoning opportunities later. See tree-ssa/ssa-pre-34.c.
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
if (gimple_vuse (def_stmt))
return false;
FOR_EACH_IMM_USE_FAST (use_p, iter, name)
{
gimple *use_stmt = USE_STMT (use_p);
// Ignore debug stmts and the branch.
if (is_gimple_debug (use_stmt))
continue;
basic_block use_bb = gimple_bb (use_stmt);
// Only one use in the block allowed to avoid complicated cases.
if (use_bb == bb)
{
if (saw_in_bb)
return false;
else
saw_in_bb = true;
}
else if (!dominated_by_p (CDI_DOMINATORS, use_bb, bb))
return false;
}
return true;
}
// This routine is called to check builtin_unreachable calls during any
// time before final removal. The only way we can be sure it does not
// provide any additional information is to expect that we can update the
// global values of all exports from a block. This means the branch
// to the unreachable call must dominate all uses of those ssa-names, with
// the exception that there can be a single use in the block containing
// the branch. IF the name used in the branch is defined in the block, it may
// contain the name of something else that will be an export. And likewise
// that may also use another name that is an export etc.
//
// As long as there is only a single use, we can be sure that there are no other
// side effects (like being passed to a call, or stored to a global, etc.
// This means we will miss cases where there are 2 or more uses that have
// no interveneing statements that may had side effects, but it catches most
// of the caes we care about, and prevents expensive in depth analysis.
//
// Ranger will still reflect the proper ranges at other places in these missed
// cases, we simply will not remove/set globals early.
void
remove_unreachable::handle_early (gimple *s, edge e)
{
bool lhs_p = TREE_CODE (gimple_cond_lhs (s)) == SSA_NAME;
bool rhs_p = TREE_CODE (gimple_cond_rhs (s)) == SSA_NAME;
// Do not remove __builtin_unreachable if it confers a relation, or
// that relation may be lost in subsequent passes.
if (lhs_p && rhs_p)
return;
// Do not remove addresses early. ie if (x == &y)
if (lhs_p && TREE_CODE (gimple_cond_rhs (s)) == ADDR_EXPR)
return;
gcc_checking_assert (gimple_outgoing_range_stmt_p (e->src) == s);
gcc_checking_assert (!final_p);
// Check if every export use is dominated by this branch.
tree name;
FOR_EACH_GORI_EXPORT_NAME (m_ranger.gori (), e->src, name)
{
if (!fully_replaceable (name, e->src))
return;
}
// Set the global value for each.
FOR_EACH_GORI_EXPORT_NAME (m_ranger.gori (), e->src, name)
{
Value_Range r (TREE_TYPE (name));
m_ranger.range_on_entry (r, e->dest, name);
// Nothing at this late stage we can do if the write fails.
if (!set_range_info (name, r))
continue;
if (dump_file)
{
fprintf (dump_file, "Global Exported (via early unreachable): ");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " = ");
gimple_range_global (r, name);
r.dump (dump_file);
fputc ('\n', dump_file);
}
}
tree ssa = lhs_p ? gimple_cond_lhs (s) : gimple_cond_rhs (s);
// Rewrite the condition.
if (e->flags & EDGE_TRUE_VALUE)
gimple_cond_make_true (as_a<gcond *> (s));
else
gimple_cond_make_false (as_a<gcond *> (s));
update_stmt (s);
// If the name on S is defined in this block, see if there is DCE work to do.
if (gimple_bb (SSA_NAME_DEF_STMT (ssa)) == e->src)
{
auto_bitmap dce;
bitmap_set_bit (dce, SSA_NAME_VERSION (ssa));
simple_dce_from_worklist (dce);
}
}
// Process the edges in the list, change the conditions and removing any
// dead code feeding those conditions. Calculate the range of any
// names that may have been exported from those blocks, and determine if
// there is any updates to their global ranges..
// Return true if any builtin_unreachables/globals eliminated/updated.
bool
remove_unreachable::remove_and_update_globals ()
{
if (m_list.length () == 0)
return false;
// Ensure the cache in SCEV has been cleared before processing
// globals to be removed.
scev_reset ();
bool change = false;
tree name;
unsigned i;
bitmap_iterator bi;
auto_bitmap all_exports;
for (i = 0; i < m_list.length (); i++)
{
auto eb = m_list[i];
basic_block src = BASIC_BLOCK_FOR_FN (cfun, eb.first);
basic_block dest = BASIC_BLOCK_FOR_FN (cfun, eb.second);
if (!src || !dest)
continue;
edge e = find_edge (src, dest);
gimple *s = gimple_outgoing_range_stmt_p (e->src);
gcc_checking_assert (gimple_code (s) == GIMPLE_COND);
bool dominate_exit_p = true;
FOR_EACH_GORI_EXPORT_NAME (m_ranger.gori (), e->src, name)
{
// Ensure the cache is set for NAME in the succ block.
Value_Range r(TREE_TYPE (name));
Value_Range ex(TREE_TYPE (name));
m_ranger.range_on_entry (r, e->dest, name);
m_ranger.range_on_entry (ex, EXIT_BLOCK_PTR_FOR_FN (cfun), name);
// If the range produced by this __builtin_unreachacble expression
// is not fully reflected in the range at exit, then it does not
// dominate the exit of the function.
if (ex.intersect (r))
dominate_exit_p = false;
}
// If the exit is dominated, add to the export list. Otherwise if this
// isn't the final VRP pass, leave the call in the IL.
if (dominate_exit_p)
bitmap_ior_into (all_exports, m_ranger.gori ().exports (e->src));
else if (!final_p)
continue;
change = true;
// Rewrite the condition.
if (e->flags & EDGE_TRUE_VALUE)
gimple_cond_make_true (as_a<gcond *> (s));
else
gimple_cond_make_false (as_a<gcond *> (s));
update_stmt (s);
}
if (bitmap_empty_p (all_exports))
return false;
// Invoke DCE on all exported names to eliminate dead feeding defs.
auto_bitmap dce;
bitmap_copy (dce, all_exports);
// Don't attempt to DCE parameters.
EXECUTE_IF_SET_IN_BITMAP (all_exports, 0, i, bi)
if (!ssa_name (i) || SSA_NAME_IS_DEFAULT_DEF (ssa_name (i)))
bitmap_clear_bit (dce, i);
simple_dce_from_worklist (dce);
// Loop over all uses of each name and find maximal range. This is the
// new global range.
use_operand_p use_p;
imm_use_iterator iter;
EXECUTE_IF_SET_IN_BITMAP (all_exports, 0, i, bi)
{
name = ssa_name (i);
if (!name || SSA_NAME_IN_FREE_LIST (name))
continue;
Value_Range r (TREE_TYPE (name));
Value_Range exp_range (TREE_TYPE (name));
r.set_undefined ();
FOR_EACH_IMM_USE_FAST (use_p, iter, name)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (!m_ranger.range_of_expr (exp_range, name, use_stmt))
exp_range.set_varying (TREE_TYPE (name));
r.union_ (exp_range);
if (r.varying_p ())
break;
}
// Include the on-exit range to ensure non-dominated unreachables
// don't incorrectly impact the global range.
m_ranger.range_on_entry (exp_range, EXIT_BLOCK_PTR_FOR_FN (cfun), name);
r.union_ (exp_range);
if (r.varying_p () || r.undefined_p ())
continue;
if (!set_range_info (name, r))
continue;
change = true;
if (dump_file)
{
fprintf (dump_file, "Global Exported (via unreachable): ");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " = ");
gimple_range_global (r, name);
r.dump (dump_file);
fputc ('\n', dump_file);
}
}
return change;
}
/* VR_TYPE describes a range with minimum value *MIN and maximum
value *MAX. Restrict the range to the set of values that have
no bits set outside NONZERO_BITS. Update *MIN and *MAX and
return the new range type.
SGN gives the sign of the values described by the range. */
enum value_range_kind
intersect_range_with_nonzero_bits (enum value_range_kind vr_type,
wide_int *min, wide_int *max,
const wide_int &nonzero_bits,
signop sgn)
{
if (vr_type == VR_ANTI_RANGE)
{
/* The VR_ANTI_RANGE is equivalent to the union of the ranges
A: [-INF, *MIN) and B: (*MAX, +INF]. First use NONZERO_BITS
to create an inclusive upper bound for A and an inclusive lower
bound for B. */
wide_int a_max = wi::round_down_for_mask (*min - 1, nonzero_bits);
wide_int b_min = wi::round_up_for_mask (*max + 1, nonzero_bits);
/* If the calculation of A_MAX wrapped, A is effectively empty
and A_MAX is the highest value that satisfies NONZERO_BITS.
Likewise if the calculation of B_MIN wrapped, B is effectively
empty and B_MIN is the lowest value that satisfies NONZERO_BITS. */
bool a_empty = wi::ge_p (a_max, *min, sgn);
bool b_empty = wi::le_p (b_min, *max, sgn);
/* If both A and B are empty, there are no valid values. */
if (a_empty && b_empty)
return VR_UNDEFINED;
/* If exactly one of A or B is empty, return a VR_RANGE for the
other one. */
if (a_empty || b_empty)
{
*min = b_min;
*max = a_max;
gcc_checking_assert (wi::le_p (*min, *max, sgn));
return VR_RANGE;
}
/* Update the VR_ANTI_RANGE bounds. */
*min = a_max + 1;
*max = b_min - 1;
gcc_checking_assert (wi::le_p (*min, *max, sgn));
/* Now check whether the excluded range includes any values that
satisfy NONZERO_BITS. If not, switch to a full VR_RANGE. */
if (wi::round_up_for_mask (*min, nonzero_bits) == b_min)
{
unsigned int precision = min->get_precision ();
*min = wi::min_value (precision, sgn);
*max = wi::max_value (precision, sgn);
vr_type = VR_RANGE;
}
}
if (vr_type == VR_RANGE || vr_type == VR_VARYING)
{
*max = wi::round_down_for_mask (*max, nonzero_bits);
/* Check that the range contains at least one valid value. */
if (wi::gt_p (*min, *max, sgn))
return VR_UNDEFINED;
*min = wi::round_up_for_mask (*min, nonzero_bits);
gcc_checking_assert (wi::le_p (*min, *max, sgn));
}
return vr_type;
}
/* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
otherwise. We only handle additive operations and set NEG to true if the
symbol is negated and INV to the invariant part, if any. */
static tree
get_single_symbol (tree t, bool *neg, tree *inv)
{
bool neg_;
tree inv_;
*inv = NULL_TREE;
*neg = false;
if (TREE_CODE (t) == PLUS_EXPR
|| TREE_CODE (t) == POINTER_PLUS_EXPR
|| TREE_CODE (t) == MINUS_EXPR)
{
if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
{
neg_ = (TREE_CODE (t) == MINUS_EXPR);
inv_ = TREE_OPERAND (t, 0);
t = TREE_OPERAND (t, 1);
}
else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
{
neg_ = false;
inv_ = TREE_OPERAND (t, 1);
t = TREE_OPERAND (t, 0);
}
else
return NULL_TREE;
}
else
{
neg_ = false;
inv_ = NULL_TREE;
}
if (TREE_CODE (t) == NEGATE_EXPR)
{
t = TREE_OPERAND (t, 0);
neg_ = !neg_;
}
if (TREE_CODE (t) != SSA_NAME)
return NULL_TREE;
if (inv_ && TREE_OVERFLOW_P (inv_))
inv_ = drop_tree_overflow (inv_);
*neg = neg_;
*inv = inv_;
return t;
}
/* Compare two values VAL1 and VAL2. Return
-2 if VAL1 and VAL2 cannot be compared at compile-time,
-1 if VAL1 < VAL2,
0 if VAL1 == VAL2,
+1 if VAL1 > VAL2, and
+2 if VAL1 != VAL2
This is similar to tree_int_cst_compare but supports pointer values
and values that cannot be compared at compile time.
If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
true if the return value is only valid if we assume that signed
overflow is undefined. */
int
compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
{
if (val1 == val2)
return 0;
/* Below we rely on the fact that VAL1 and VAL2 are both pointers or
both integers. */
gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
== POINTER_TYPE_P (TREE_TYPE (val2)));
/* Convert the two values into the same type. This is needed because
sizetype causes sign extension even for unsigned types. */
if (!useless_type_conversion_p (TREE_TYPE (val1), TREE_TYPE (val2)))
val2 = fold_convert (TREE_TYPE (val1), val2);
const bool overflow_undefined
= INTEGRAL_TYPE_P (TREE_TYPE (val1))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
tree inv1, inv2;
bool neg1, neg2;
tree sym1 = get_single_symbol (val1, &neg1, &inv1);
tree sym2 = get_single_symbol (val2, &neg2, &inv2);
/* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
if (sym1 && sym2)
{
/* Both values must use the same name with the same sign. */
if (sym1 != sym2 || neg1 != neg2)
return -2;
/* [-]NAME + CST == [-]NAME + CST. */
if (inv1 == inv2)
return 0;
/* If overflow is defined we cannot simplify more. */
if (!overflow_undefined)
return -2;
if (strict_overflow_p != NULL
/* Symbolic range building sets the no-warning bit to declare
that overflow doesn't happen. */
&& (!inv1 || !warning_suppressed_p (val1, OPT_Woverflow))
&& (!inv2 || !warning_suppressed_p (val2, OPT_Woverflow)))
*strict_overflow_p = true;
if (!inv1)
inv1 = build_int_cst (TREE_TYPE (val1), 0);
if (!inv2)
inv2 = build_int_cst (TREE_TYPE (val2), 0);
return wi::cmp (wi::to_wide (inv1), wi::to_wide (inv2),
TYPE_SIGN (TREE_TYPE (val1)));
}
const bool cst1 = is_gimple_min_invariant (val1);
const bool cst2 = is_gimple_min_invariant (val2);
/* If one is of the form '[-]NAME + CST' and the other is constant, then
it might be possible to say something depending on the constants. */
if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
{
if (!overflow_undefined)
return -2;
if (strict_overflow_p != NULL
/* Symbolic range building sets the no-warning bit to declare
that overflow doesn't happen. */
&& (!sym1 || !warning_suppressed_p (val1, OPT_Woverflow))
&& (!sym2 || !warning_suppressed_p (val2, OPT_Woverflow)))
*strict_overflow_p = true;
const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
tree cst = cst1 ? val1 : val2;
tree inv = cst1 ? inv2 : inv1;
/* Compute the difference between the constants. If it overflows or
underflows, this means that we can trivially compare the NAME with
it and, consequently, the two values with each other. */
wide_int diff = wi::to_wide (cst) - wi::to_wide (inv);
if (wi::cmp (0, wi::to_wide (inv), sgn)
!= wi::cmp (diff, wi::to_wide (cst), sgn))
{
const int res = wi::cmp (wi::to_wide (cst), wi::to_wide (inv), sgn);
return cst1 ? res : -res;
}
return -2;
}
/* We cannot say anything more for non-constants. */
if (!cst1 || !cst2)
return -2;
if (!POINTER_TYPE_P (TREE_TYPE (val1)))
{
/* We cannot compare overflowed values. */
if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
return -2;
if (TREE_CODE (val1) == INTEGER_CST
&& TREE_CODE (val2) == INTEGER_CST)
return tree_int_cst_compare (val1, val2);
if (poly_int_tree_p (val1) && poly_int_tree_p (val2))
{
if (known_eq (wi::to_poly_widest (val1),
wi::to_poly_widest (val2)))
return 0;
if (known_lt (wi::to_poly_widest (val1),
wi::to_poly_widest (val2)))
return -1;
if (known_gt (wi::to_poly_widest (val1),
wi::to_poly_widest (val2)))
return 1;
}
return -2;
}
else
{
if (TREE_CODE (val1) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
{
/* We cannot compare overflowed values. */
if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
return -2;
return tree_int_cst_compare (val1, val2);
}
/* First see if VAL1 and VAL2 are not the same. */
if (operand_equal_p (val1, val2, 0))
return 0;
fold_defer_overflow_warnings ();
/* If VAL1 is a lower address than VAL2, return -1. */
tree t = fold_binary_to_constant (LT_EXPR, boolean_type_node, val1, val2);
if (t && integer_onep (t))
{
fold_undefer_and_ignore_overflow_warnings ();
return -1;
}
/* If VAL1 is a higher address than VAL2, return +1. */
t = fold_binary_to_constant (LT_EXPR, boolean_type_node, val2, val1);
if (t && integer_onep (t))
{
fold_undefer_and_ignore_overflow_warnings ();
return 1;
}
/* If VAL1 is different than VAL2, return +2. */
t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
fold_undefer_and_ignore_overflow_warnings ();
if (t && integer_onep (t))
return 2;
return -2;
}
}
/* Compare values like compare_values_warnv. */
int
compare_values (tree val1, tree val2)
{
bool sop;
return compare_values_warnv (val1, val2, &sop);
}
/* Helper for overflow_comparison_p
OP0 CODE OP1 is a comparison. Examine the comparison and potentially
OP1's defining statement to see if it ultimately has the form
OP0 CODE (OP0 PLUS INTEGER_CST)
If so, return TRUE indicating this is an overflow test and store into
*NEW_CST an updated constant that can be used in a narrowed range test.
REVERSED indicates if the comparison was originally:
OP1 CODE' OP0.
This affects how we build the updated constant. */
static bool
overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
bool reversed, tree *new_cst)
{
/* See if this is a relational operation between two SSA_NAMES with
unsigned, overflow wrapping values. If so, check it more deeply. */
if ((code == LT_EXPR || code == LE_EXPR
|| code == GE_EXPR || code == GT_EXPR)
&& TREE_CODE (op0) == SSA_NAME
&& TREE_CODE (op1) == SSA_NAME
&& INTEGRAL_TYPE_P (TREE_TYPE (op0))
&& TYPE_UNSIGNED (TREE_TYPE (op0))
&& TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
{
gimple *op1_def = SSA_NAME_DEF_STMT (op1);
/* Now look at the defining statement of OP1 to see if it adds
or subtracts a nonzero constant from another operand. */
if (op1_def
&& is_gimple_assign (op1_def)
&& gimple_assign_rhs_code (op1_def) == PLUS_EXPR
&& TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
&& !integer_zerop (gimple_assign_rhs2 (op1_def)))
{
tree target = gimple_assign_rhs1 (op1_def);
/* If we did not find our target SSA_NAME, then this is not
an overflow test. */
if (op0 != target)
return false;
tree type = TREE_TYPE (op0);
wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
tree inc = gimple_assign_rhs2 (op1_def);
if (reversed)
*new_cst = wide_int_to_tree (type, max + wi::to_wide (inc));
else
*new_cst = wide_int_to_tree (type, max - wi::to_wide (inc));
return true;
}
}
return false;
}
/* OP0 CODE OP1 is a comparison. Examine the comparison and potentially
OP1's defining statement to see if it ultimately has the form
OP0 CODE (OP0 PLUS INTEGER_CST)
If so, return TRUE indicating this is an overflow test and store into
*NEW_CST an updated constant that can be used in a narrowed range test.
These statements are left as-is in the IL to facilitate discovery of
{ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But
the alternate range representation is often useful within VRP. */
bool
overflow_comparison_p (tree_code code, tree name, tree val, tree *new_cst)
{
if (overflow_comparison_p_1 (code, name, val, false, new_cst))
return true;
return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
true, new_cst);
}
/* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
that includes the value VAL. The search is restricted to the range
[START_IDX, n - 1] where n is the size of VEC.
If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
returned.
If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
it is placed in IDX and false is returned.
If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
returned. */
bool
find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
{
size_t n = gimple_switch_num_labels (stmt);
size_t low, high;
/* Find case label for minimum of the value range or the next one.
At each iteration we are searching in [low, high - 1]. */
for (low = start_idx, high = n; high != low; )
{
tree t;
int cmp;
/* Note that i != high, so we never ask for n. */
size_t i = (high + low) / 2;
t = gimple_switch_label (stmt, i);
/* Cache the result of comparing CASE_LOW and val. */
cmp = tree_int_cst_compare (CASE_LOW (t), val);
if (cmp == 0)
{
/* Ranges cannot be empty. */
*idx = i;
return true;
}
else if (cmp > 0)
high = i;
else
{
low = i + 1;
if (CASE_HIGH (t) != NULL
&& tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
{
*idx = i;
return true;
}
}
}
*idx = high;
return false;
}
/* Searches the case label vector VEC for the range of CASE_LABELs that is used
for values between MIN and MAX. The first index is placed in MIN_IDX. The
last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
then MAX_IDX < MIN_IDX.
Returns true if the default label is not needed. */
bool
find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
size_t *max_idx)
{
size_t i, j;
bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
bool max_take_default = !find_case_label_index (stmt, i, max, &j);
if (i == j
&& min_take_default
&& max_take_default)
{
/* Only the default case label reached.
Return an empty range. */
*min_idx = 1;
*max_idx = 0;
return false;
}
else
{
bool take_default = min_take_default || max_take_default;
tree low, high;
size_t k;
if (max_take_default)
j--;
/* If the case label range is continuous, we do not need
the default case label. Verify that. */
high = CASE_LOW (gimple_switch_label (stmt, i));
if (CASE_HIGH (gimple_switch_label (stmt, i)))
high = CASE_HIGH (gimple_switch_label (stmt, i));
for (k = i + 1; k <= j; ++k)
{
low = CASE_LOW (gimple_switch_label (stmt, k));
if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
{
take_default = true;
break;
}
high = low;
if (CASE_HIGH (gimple_switch_label (stmt, k)))
high = CASE_HIGH (gimple_switch_label (stmt, k));
}
*min_idx = i;
*max_idx = j;
return !take_default;
}
}
/* Given a SWITCH_STMT, return the case label that encompasses the
known possible values for the switch operand. RANGE_OF_OP is a
range for the known values of the switch operand. */
tree
find_case_label_range (gswitch *switch_stmt, const irange *range_of_op)
{
if (range_of_op->undefined_p ()
|| range_of_op->varying_p ())
return NULL_TREE;
size_t i, j;
tree op = gimple_switch_index (switch_stmt);
tree type = TREE_TYPE (op);
tree tmin = wide_int_to_tree (type, range_of_op->lower_bound ());
tree tmax = wide_int_to_tree (type, range_of_op->upper_bound ());
find_case_label_range (switch_stmt, tmin, tmax, &i, &j);
if (i == j)
{
/* Look for exactly one label that encompasses the range of
the operand. */
tree label = gimple_switch_label (switch_stmt, i);
tree case_high
= CASE_HIGH (label) ? CASE_HIGH (label) : CASE_LOW (label);
wide_int wlow = wi::to_wide (CASE_LOW (label));
wide_int whigh = wi::to_wide (case_high);
int_range_max label_range (TREE_TYPE (case_high), wlow, whigh);
if (!types_compatible_p (label_range.type (), range_of_op->type ()))
range_cast (label_range, range_of_op->type ());
label_range.intersect (*range_of_op);
if (label_range == *range_of_op)
return label;
}
else if (i > j)
{
/* If there are no labels at all, take the default. */
return gimple_switch_label (switch_stmt, 0);
}
else
{
/* Otherwise, there are various labels that can encompass
the range of operand. In which case, see if the range of
the operand is entirely *outside* the bounds of all the
(non-default) case labels. If so, take the default. */
unsigned n = gimple_switch_num_labels (switch_stmt);
tree min_label = gimple_switch_label (switch_stmt, 1);
tree max_label = gimple_switch_label (switch_stmt, n - 1);
tree case_high = CASE_HIGH (max_label);
if (!case_high)
case_high = CASE_LOW (max_label);
int_range_max label_range (TREE_TYPE (CASE_LOW (min_label)),
wi::to_wide (CASE_LOW (min_label)),
wi::to_wide (case_high));
if (!types_compatible_p (label_range.type (), range_of_op->type ()))
range_cast (label_range, range_of_op->type ());
label_range.intersect (*range_of_op);
if (label_range.undefined_p ())
return gimple_switch_label (switch_stmt, 0);
}
return NULL_TREE;
}
struct case_info
{
tree expr;
basic_block bb;
};
// This is a ranger based folder which continues to use the dominator
// walk to access the substitute and fold machinery. Ranges are calculated
// on demand.
class rvrp_folder : public substitute_and_fold_engine
{
public:
rvrp_folder (gimple_ranger *r, bool all)
: substitute_and_fold_engine (),
m_unreachable (*r, all),
m_simplifier (r, r->non_executable_edge_flag)
{
m_ranger = r;
m_pta = new pointer_equiv_analyzer (m_ranger);
m_last_bb_stmt = NULL;
}
~rvrp_folder ()
{
delete m_pta;
}
tree value_of_expr (tree name, gimple *s = NULL) override
{
// Shortcircuit subst_and_fold callbacks for abnormal ssa_names.
if (TREE_CODE (name) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
return NULL;
tree ret = m_ranger->value_of_expr (name, s);
if (!ret && supported_pointer_equiv_p (name))
ret = m_pta->get_equiv (name);
return ret;
}
tree value_on_edge (edge e, tree name) override
{
// Shortcircuit subst_and_fold callbacks for abnormal ssa_names.
if (TREE_CODE (name) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
return NULL;
tree ret = m_ranger->value_on_edge (e, name);
if (!ret && supported_pointer_equiv_p (name))
ret = m_pta->get_equiv (name);
return ret;
}
tree value_of_stmt (gimple *s, tree name = NULL) override
{
// Shortcircuit subst_and_fold callbacks for abnormal ssa_names.
if (TREE_CODE (name) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
return NULL;
return m_ranger->value_of_stmt (s, name);
}
void pre_fold_bb (basic_block bb) override
{
m_pta->enter (bb);
for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
m_ranger->register_inferred_ranges (gsi.phi ());
m_last_bb_stmt = last_nondebug_stmt (bb);
}
void post_fold_bb (basic_block bb) override
{
m_pta->leave (bb);
}
void pre_fold_stmt (gimple *stmt) override
{
m_pta->visit_stmt (stmt);
// If this is the last stmt and there are inferred ranges, reparse the
// block for transitive inferred ranges that occur earlier in the block.
if (stmt == m_last_bb_stmt)
{
m_ranger->register_transitive_inferred_ranges (gimple_bb (stmt));
// Also check for builtin_unreachable calls.
if (cfun->after_inlining && gimple_code (stmt) == GIMPLE_COND)
m_unreachable.maybe_register (stmt);
}
}
bool fold_stmt (gimple_stmt_iterator *gsi) override
{
bool ret = m_simplifier.simplify (gsi);
if (!ret)
ret = m_ranger->fold_stmt (gsi, follow_single_use_edges);
m_ranger->register_inferred_ranges (gsi_stmt (*gsi));
return ret;
}
remove_unreachable m_unreachable;
private:
DISABLE_COPY_AND_ASSIGN (rvrp_folder);
gimple_ranger *m_ranger;
simplify_using_ranges m_simplifier;
pointer_equiv_analyzer *m_pta;
gimple *m_last_bb_stmt;
};
/* Main entry point for a VRP pass using just ranger. This can be called
from anywhere to perform a VRP pass, including from EVRP. */
unsigned int
execute_ranger_vrp (struct function *fun, bool warn_array_bounds_p,
bool final_p)
{
loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
scev_initialize ();
calculate_dominance_info (CDI_DOMINATORS);
set_all_edges_as_executable (fun);
gimple_ranger *ranger = enable_ranger (fun, false);
rvrp_folder folder (ranger, final_p);
phi_analysis_initialize (ranger->const_query ());
folder.substitute_and_fold ();
// Remove tagged builtin-unreachable and maybe update globals.
folder.m_unreachable.remove_and_update_globals ();
if (dump_file && (dump_flags & TDF_DETAILS))
ranger->dump (dump_file);
if ((warn_array_bounds || warn_strict_flex_arrays) && warn_array_bounds_p)
{
// Set all edges as executable, except those ranger says aren't.
int non_exec_flag = ranger->non_executable_edge_flag;
basic_block bb;
FOR_ALL_BB_FN (bb, fun)
{
edge_iterator ei;
edge e;
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->flags & non_exec_flag)
e->flags &= ~EDGE_EXECUTABLE;
else
e->flags |= EDGE_EXECUTABLE;
}
scev_reset ();
array_bounds_checker array_checker (fun, ranger);
array_checker.check ();
}
if (Value_Range::supports_type_p (TREE_TYPE
(TREE_TYPE (current_function_decl)))
&& flag_ipa_vrp
&& !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl)))
{
edge e;
edge_iterator ei;
bool found = false;
Value_Range return_range (TREE_TYPE (TREE_TYPE (current_function_decl)));
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
if (greturn *ret = dyn_cast <greturn *> (*gsi_last_bb (e->src)))
{
tree retval = gimple_return_retval (ret);
if (!retval)
{
return_range.set_varying (TREE_TYPE (TREE_TYPE (current_function_decl)));
found = true;
continue;
}
Value_Range r (TREE_TYPE (retval));
if (ranger->range_of_expr (r, retval, ret)
&& !r.undefined_p ()
&& !r.varying_p ())
{
if (!found)
return_range = r;
else
return_range.union_ (r);
}
else
return_range.set_varying (TREE_TYPE (retval));
found = true;
}
if (found && !return_range.varying_p ())
{
ipa_record_return_value_range (return_range);
if (POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl)))
&& return_range.nonzero_p ()
&& cgraph_node::get (current_function_decl)
->add_detected_attribute ("returns_nonnull"))
warn_function_returns_nonnull (current_function_decl);
}
}
phi_analysis_finalize ();
disable_ranger (fun);
scev_finalize ();
loop_optimizer_finalize ();
return 0;
}
// Implement a Fast VRP folder. Not quite as effective but faster.
class fvrp_folder : public substitute_and_fold_engine
{
public:
fvrp_folder (dom_ranger *dr) : substitute_and_fold_engine (),
m_simplifier (dr)
{ m_dom_ranger = dr; }
~fvrp_folder () { }
tree value_of_expr (tree name, gimple *s = NULL) override
{
// Shortcircuit subst_and_fold callbacks for abnormal ssa_names.
if (TREE_CODE (name) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
return NULL;
return m_dom_ranger->value_of_expr (name, s);
}
tree value_on_edge (edge e, tree name) override
{
// Shortcircuit subst_and_fold callbacks for abnormal ssa_names.
if (TREE_CODE (name) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
return NULL;
return m_dom_ranger->value_on_edge (e, name);
}
tree value_of_stmt (gimple *s, tree name = NULL) override
{
// Shortcircuit subst_and_fold callbacks for abnormal ssa_names.
if (TREE_CODE (name) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
return NULL;
return m_dom_ranger->value_of_stmt (s, name);
}
void pre_fold_bb (basic_block bb) override
{
m_dom_ranger->pre_bb (bb);
// Now process the PHIs in advance.
gphi_iterator psi = gsi_start_phis (bb);
for ( ; !gsi_end_p (psi); gsi_next (&psi))
{
tree name = gimple_range_ssa_p (PHI_RESULT (psi.phi ()));
if (name)
{
Value_Range vr(TREE_TYPE (name));
m_dom_ranger->range_of_stmt (vr, psi.phi (), name);
}
}
}
void post_fold_bb (basic_block bb) override
{
m_dom_ranger->post_bb (bb);
}
void pre_fold_stmt (gimple *s) override
{
// Ensure range_of_stmt has been called.
tree type = gimple_range_type (s);
if (type)
{
Value_Range vr(type);
m_dom_ranger->range_of_stmt (vr, s);
}
}
bool fold_stmt (gimple_stmt_iterator *gsi) override
{
bool ret = m_simplifier.simplify (gsi);
if (!ret)
ret = ::fold_stmt (gsi, follow_single_use_edges);
return ret;
}
private:
DISABLE_COPY_AND_ASSIGN (fvrp_folder);
simplify_using_ranges m_simplifier;
dom_ranger *m_dom_ranger;
};
// Main entry point for a FAST VRP pass using a dom ranger.
unsigned int
execute_fast_vrp (struct function *fun)
{
calculate_dominance_info (CDI_DOMINATORS);
dom_ranger dr;
fvrp_folder folder (&dr);
gcc_checking_assert (!fun->x_range_query);
fun->x_range_query = &dr;
folder.substitute_and_fold ();
fun->x_range_query = NULL;
return 0;
}
namespace {
const pass_data pass_data_vrp =
{
GIMPLE_PASS, /* type */
"vrp", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_VRP, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
};
const pass_data pass_data_early_vrp =
{
GIMPLE_PASS, /* type */
"evrp", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_EARLY_VRP, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
( TODO_cleanup_cfg | TODO_update_ssa | TODO_verify_all ),
};
const pass_data pass_data_fast_vrp =
{
GIMPLE_PASS, /* type */
"fvrp", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_FAST_VRP, /* tv_id */
PROP_ssa, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
( TODO_cleanup_cfg | TODO_update_ssa | TODO_verify_all ),
};
class pass_vrp : public gimple_opt_pass
{
public:
pass_vrp (gcc::context *ctxt, const pass_data &data_, bool warn_p)
: gimple_opt_pass (data_, ctxt), data (data_),
warn_array_bounds_p (warn_p), final_p (false)
{ }
/* opt_pass methods: */
opt_pass * clone () final override
{ return new pass_vrp (m_ctxt, data, false); }
void set_pass_param (unsigned int n, bool param) final override
{
gcc_assert (n == 0);
final_p = param;
}
bool gate (function *) final override { return flag_tree_vrp != 0; }
unsigned int execute (function *fun) final override
{
// Check for fast vrp.
if (&data == &pass_data_fast_vrp)
return execute_fast_vrp (fun);
return execute_ranger_vrp (fun, warn_array_bounds_p, final_p);
}
private:
const pass_data &data;
bool warn_array_bounds_p;
bool final_p;
}; // class pass_vrp
} // anon namespace
gimple_opt_pass *
make_pass_vrp (gcc::context *ctxt)
{
return new pass_vrp (ctxt, pass_data_vrp, true);
}
gimple_opt_pass *
make_pass_early_vrp (gcc::context *ctxt)
{
return new pass_vrp (ctxt, pass_data_early_vrp, false);
}
gimple_opt_pass *
make_pass_fast_vrp (gcc::context *ctxt)
{
return new pass_vrp (ctxt, pass_data_fast_vrp, false);
}
|