1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
/* Support routines for vrange storage.
Copyright (C) 2022-2024 Free Software Foundation, Inc.
Contributed by Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "tree-pretty-print.h"
#include "fold-const.h"
#include "gimple-range.h"
#include "value-range-storage.h"
// Generic memory allocator to share one interface between GC and
// obstack allocators.
class vrange_internal_alloc
{
public:
vrange_internal_alloc () { }
virtual ~vrange_internal_alloc () { }
virtual void *alloc (size_t size) = 0;
virtual void free (void *) = 0;
private:
DISABLE_COPY_AND_ASSIGN (vrange_internal_alloc);
};
class vrange_obstack_alloc final: public vrange_internal_alloc
{
public:
vrange_obstack_alloc ()
{
obstack_init (&m_obstack);
}
virtual ~vrange_obstack_alloc () final override
{
obstack_free (&m_obstack, NULL);
}
virtual void *alloc (size_t size) final override
{
return obstack_alloc (&m_obstack, size);
}
virtual void free (void *) final override { }
private:
obstack m_obstack;
};
class vrange_ggc_alloc final: public vrange_internal_alloc
{
public:
vrange_ggc_alloc () { }
virtual ~vrange_ggc_alloc () final override { }
virtual void *alloc (size_t size) final override
{
return ggc_internal_alloc (size);
}
virtual void free (void *p) final override
{
return ggc_free (p);
}
};
vrange_allocator::vrange_allocator (bool gc)
{
if (gc)
m_alloc = new vrange_ggc_alloc;
else
m_alloc = new vrange_obstack_alloc;
}
vrange_allocator::~vrange_allocator ()
{
delete m_alloc;
}
void *
vrange_allocator::alloc (size_t size)
{
return m_alloc->alloc (size);
}
void
vrange_allocator::free (void *p)
{
m_alloc->free (p);
}
// Allocate a new vrange_storage object initialized to R and return
// it.
vrange_storage *
vrange_allocator::clone (const vrange &r)
{
return vrange_storage::alloc (*m_alloc, r);
}
vrange_storage *
vrange_allocator::clone_varying (tree type)
{
if (irange::supports_p (type))
return irange_storage::alloc (*m_alloc, int_range <1> (type));
if (frange::supports_p (type))
return frange_storage::alloc (*m_alloc, frange (type));
return NULL;
}
vrange_storage *
vrange_allocator::clone_undefined (tree type)
{
if (irange::supports_p (type))
return irange_storage::alloc (*m_alloc, int_range<1> ());
if (frange::supports_p (type))
return frange_storage::alloc (*m_alloc, frange ());
return NULL;
}
// Allocate a new vrange_storage object initialized to R and return
// it. Return NULL if R is unsupported.
vrange_storage *
vrange_storage::alloc (vrange_internal_alloc &allocator, const vrange &r)
{
if (is_a <irange> (r))
return irange_storage::alloc (allocator, as_a <irange> (r));
if (is_a <frange> (r))
return frange_storage::alloc (allocator, as_a <frange> (r));
return NULL;
}
// Set storage to R.
void
vrange_storage::set_vrange (const vrange &r)
{
if (is_a <irange> (r))
{
irange_storage *s = static_cast <irange_storage *> (this);
gcc_checking_assert (s->fits_p (as_a <irange> (r)));
s->set_irange (as_a <irange> (r));
}
else if (is_a <frange> (r))
{
frange_storage *s = static_cast <frange_storage *> (this);
gcc_checking_assert (s->fits_p (as_a <frange> (r)));
s->set_frange (as_a <frange> (r));
}
else
gcc_unreachable ();
}
// Restore R from storage.
void
vrange_storage::get_vrange (vrange &r, tree type) const
{
if (is_a <irange> (r))
{
const irange_storage *s = static_cast <const irange_storage *> (this);
s->get_irange (as_a <irange> (r), type);
}
else if (is_a <frange> (r))
{
const frange_storage *s = static_cast <const frange_storage *> (this);
s->get_frange (as_a <frange> (r), type);
}
else
gcc_unreachable ();
}
// Return TRUE if storage can fit R.
bool
vrange_storage::fits_p (const vrange &r) const
{
if (is_a <irange> (r))
{
const irange_storage *s = static_cast <const irange_storage *> (this);
return s->fits_p (as_a <irange> (r));
}
if (is_a <frange> (r))
{
const frange_storage *s = static_cast <const frange_storage *> (this);
return s->fits_p (as_a <frange> (r));
}
gcc_unreachable ();
return false;
}
// Return TRUE if the range in storage is equal to R. It is the
// caller's responsibility to verify that the type of the range in
// storage matches that of R.
bool
vrange_storage::equal_p (const vrange &r) const
{
if (is_a <irange> (r))
{
const irange_storage *s = static_cast <const irange_storage *> (this);
return s->equal_p (as_a <irange> (r));
}
if (is_a <frange> (r))
{
const frange_storage *s = static_cast <const frange_storage *> (this);
return s->equal_p (as_a <frange> (r));
}
gcc_unreachable ();
}
//============================================================================
// irange_storage implementation
//============================================================================
unsigned short *
irange_storage::write_lengths_address ()
{
return (unsigned short *)&m_val[(m_num_ranges * 2 + 2)
* WIDE_INT_MAX_HWIS (m_precision)];
}
const unsigned short *
irange_storage::lengths_address () const
{
return const_cast <irange_storage *> (this)->write_lengths_address ();
}
// Allocate a new irange_storage object initialized to R.
irange_storage *
irange_storage::alloc (vrange_internal_alloc &allocator, const irange &r)
{
size_t size = irange_storage::size (r);
irange_storage *p = static_cast <irange_storage *> (allocator.alloc (size));
new (p) irange_storage (r);
return p;
}
// Initialize the storage with R.
irange_storage::irange_storage (const irange &r)
: m_max_ranges (r.num_pairs ())
{
m_num_ranges = m_max_ranges;
set_irange (r);
}
static inline void
write_wide_int (HOST_WIDE_INT *&val, unsigned short *&len, const wide_int &w)
{
*len = w.get_len ();
for (unsigned i = 0; i < *len; ++i)
*val++ = w.elt (i);
++len;
}
// Store R into the current storage.
void
irange_storage::set_irange (const irange &r)
{
gcc_checking_assert (fits_p (r));
if (r.undefined_p ())
{
m_kind = VR_UNDEFINED;
return;
}
if (r.varying_p ())
{
m_kind = VR_VARYING;
return;
}
m_precision = TYPE_PRECISION (r.type ());
m_num_ranges = r.num_pairs ();
m_kind = VR_RANGE;
HOST_WIDE_INT *val = &m_val[0];
unsigned short *len = write_lengths_address ();
for (unsigned i = 0; i < r.num_pairs (); ++i)
{
write_wide_int (val, len, r.lower_bound (i));
write_wide_int (val, len, r.upper_bound (i));
}
// TODO: We could avoid streaming out the value if the mask is -1.
irange_bitmask bm = r.m_bitmask;
write_wide_int (val, len, bm.value ());
write_wide_int (val, len, bm.mask ());
if (flag_checking)
{
int_range_max tmp;
get_irange (tmp, r.type ());
gcc_checking_assert (tmp == r);
}
}
static inline void
read_wide_int (wide_int &w,
const HOST_WIDE_INT *val, unsigned short len, unsigned prec)
{
trailing_wide_int_storage stow (prec, &len,
const_cast <HOST_WIDE_INT *> (val));
w = trailing_wide_int (stow);
}
// Restore a range of TYPE from storage into R.
void
irange_storage::get_irange (irange &r, tree type) const
{
if (m_kind == VR_UNDEFINED)
{
r.set_undefined ();
return;
}
if (m_kind == VR_VARYING)
{
r.set_varying (type);
return;
}
gcc_checking_assert (TYPE_PRECISION (type) == m_precision);
const HOST_WIDE_INT *val = &m_val[0];
const unsigned short *len = lengths_address ();
// Handle the common case where R can fit the new range.
if (r.m_max_ranges >= m_num_ranges)
{
r.m_kind = VR_RANGE;
r.m_num_ranges = m_num_ranges;
r.m_type = type;
for (unsigned i = 0; i < m_num_ranges * 2; ++i)
{
read_wide_int (r.m_base[i], val, *len, m_precision);
val += *len++;
}
}
// Otherwise build the range piecewise.
else
{
r.set_undefined ();
for (unsigned i = 0; i < m_num_ranges; ++i)
{
wide_int lb, ub;
read_wide_int (lb, val, *len, m_precision);
val += *len++;
read_wide_int (ub, val, *len, m_precision);
val += *len++;
int_range<1> tmp (type, lb, ub);
r.union_ (tmp);
}
}
wide_int bits_value, bits_mask;
read_wide_int (bits_value, val, *len, m_precision);
val += *len++;
read_wide_int (bits_mask, val, *len, m_precision);
r.m_bitmask = irange_bitmask (bits_value, bits_mask);
if (r.m_kind == VR_VARYING)
r.m_kind = VR_RANGE;
if (flag_checking)
r.verify_range ();
}
bool
irange_storage::equal_p (const irange &r) const
{
if (m_kind == VR_UNDEFINED || r.undefined_p ())
return m_kind == r.m_kind;
if (m_kind == VR_VARYING || r.varying_p ())
return m_kind == r.m_kind;
// ?? We could make this faster by doing the comparison in place,
// without going through get_irange.
int_range_max tmp;
get_irange (tmp, r.type ());
return tmp == r;
}
// Return the size in bytes to allocate storage that can hold R.
size_t
irange_storage::size (const irange &r)
{
if (r.undefined_p ())
return sizeof (irange_storage);
unsigned prec = TYPE_PRECISION (r.type ());
unsigned n = r.num_pairs () * 2 + 2;
unsigned hwi_size = ((n * WIDE_INT_MAX_HWIS (prec) - 1)
* sizeof (HOST_WIDE_INT));
unsigned len_size = n * sizeof (unsigned short);
return sizeof (irange_storage) + hwi_size + len_size;
}
// Return TRUE if R fits in the current storage.
bool
irange_storage::fits_p (const irange &r) const
{
return m_max_ranges >= r.num_pairs ();
}
void
irange_storage::dump () const
{
fprintf (stderr, "irange_storage (prec=%d, ranges=%d):\n",
m_precision, m_num_ranges);
if (m_num_ranges == 0)
return;
const HOST_WIDE_INT *val = &m_val[0];
const unsigned short *len = lengths_address ();
int i, j;
fprintf (stderr, " lengths = [ ");
for (i = 0; i < m_num_ranges * 2 + 2; ++i)
fprintf (stderr, "%d ", len[i]);
fprintf (stderr, "]\n");
for (i = 0; i < m_num_ranges; ++i)
{
for (j = 0; j < *len; ++j)
fprintf (stderr, " [PAIR %d] LB " HOST_WIDE_INT_PRINT_DEC "\n", i,
*val++);
++len;
for (j = 0; j < *len; ++j)
fprintf (stderr, " [PAIR %d] UB " HOST_WIDE_INT_PRINT_DEC "\n", i,
*val++);
++len;
}
// Dump value/mask pair.
for (j = 0; j < *len; ++j)
fprintf (stderr, " [VALUE] " HOST_WIDE_INT_PRINT_DEC "\n", *val++);
++len;
for (j = 0; j < *len; ++j)
fprintf (stderr, " [MASK] " HOST_WIDE_INT_PRINT_DEC "\n", *val++);
}
DEBUG_FUNCTION void
debug (const irange_storage &storage)
{
storage.dump ();
fprintf (stderr, "\n");
}
//============================================================================
// frange_storage implementation
//============================================================================
// Allocate a new frange_storage object initialized to R.
frange_storage *
frange_storage::alloc (vrange_internal_alloc &allocator, const frange &r)
{
size_t size = sizeof (frange_storage);
frange_storage *p = static_cast <frange_storage *> (allocator.alloc (size));
new (p) frange_storage (r);
return p;
}
void
frange_storage::set_frange (const frange &r)
{
gcc_checking_assert (fits_p (r));
m_kind = r.m_kind;
m_min = r.m_min;
m_max = r.m_max;
m_pos_nan = r.m_pos_nan;
m_neg_nan = r.m_neg_nan;
}
void
frange_storage::get_frange (frange &r, tree type) const
{
gcc_checking_assert (r.supports_type_p (type));
// Handle explicit NANs.
if (m_kind == VR_NAN)
{
if (HONOR_NANS (type))
{
if (m_pos_nan && m_neg_nan)
r.set_nan (type);
else
r.set_nan (type, m_neg_nan);
}
else
r.set_undefined ();
return;
}
if (m_kind == VR_UNDEFINED)
{
r.set_undefined ();
return;
}
// We use the constructor to create the new range instead of writing
// out the bits into the frange directly, because the global range
// being read may be being inlined into a function with different
// restrictions as when it was originally written. We want to make
// sure the resulting range is canonicalized correctly for the new
// consumer.
r = frange (type, m_min, m_max, m_kind);
// The constructor will set the NAN bits for HONOR_NANS, but we must
// make sure to set the NAN sign if known.
if (HONOR_NANS (type) && (m_pos_nan ^ m_neg_nan) == 1)
r.update_nan (m_neg_nan);
else if (!m_pos_nan && !m_neg_nan)
r.clear_nan ();
}
bool
frange_storage::equal_p (const frange &r) const
{
if (r.undefined_p ())
return m_kind == VR_UNDEFINED;
frange tmp;
get_frange (tmp, r.type ());
return tmp == r;
}
bool
frange_storage::fits_p (const frange &) const
{
return true;
}
static vrange_allocator ggc_vrange_allocator (true);
vrange_storage *ggc_alloc_vrange_storage (tree type)
{
return ggc_vrange_allocator.clone_varying (type);
}
vrange_storage *ggc_alloc_vrange_storage (const vrange &r)
{
return ggc_vrange_allocator.clone (r);
}
|