1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
|
/* Copyright (C) 2019-2024 Free Software Foundation, Inc.
This file is part of LIBF7, which is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libf7.h"
#ifndef __AVR_TINY__
#define ALIAS(X, Y) \
F7_WEAK __attribute__((__alias__(F7_STRINGY(X)))) __typeof__(X) Y;
#define DALIAS(...) // empty
#define LALIAS(...) // empty
#ifndef IN_LIBGCC2
#include <stdio.h>
#include <assert.h>
#define in_libgcc false
_Static_assert (sizeof (f7_t) == 10 && F7_MANT_BYTES == 7,
"libf7 will only work with 7-byte mantissa.");
#else
#define in_libgcc true
#if __SIZEOF_DOUBLE__ == 8
#undef DALIAS
#define DALIAS(X,Y) \
F7_WEAK __attribute__((__alias__(F7_STRINGY(X)))) __typeof__(X) Y;
#endif
#if __SIZEOF_LONG_DOUBLE__ == 8
#undef LALIAS
#define LALIAS(X,Y) \
F7_WEAK __attribute__((__alias__(F7_STRINGY(X)))) __typeof__(X) Y;
#endif
#endif // in libgcc
static F7_INLINE
void f7_assert (bool x)
{
if (!in_libgcc && !x)
__builtin_abort();
}
static F7_INLINE
int16_t abs_ssat16 (int16_t a)
{
_Sat _Fract sa = __builtin_avr_rbits (a);
return __builtin_avr_bitsr (__builtin_avr_absr (sa));
}
static F7_INLINE
int16_t add_ssat16 (int16_t a, int16_t b)
{
_Sat _Fract sa = __builtin_avr_rbits (a);
_Sat _Fract sb = __builtin_avr_rbits (b);
return __builtin_avr_bitsr (sa + sb);
}
static F7_INLINE
int16_t sub_ssat16 (int16_t a, int16_t b)
{
_Sat _Fract sa = __builtin_avr_rbits (a);
_Sat _Fract sb = __builtin_avr_rbits (b);
return __builtin_avr_bitsr (sa - sb);
}
static F7_INLINE
int8_t ssat8_range (int16_t a, int8_t range)
{
if (a >= range)
return range;
if (a <= -range)
return -range;
return a;
}
#define IN_LIBF7_H
#define F7_CONST_DEF(NAME, FLAGS, M6, M5, M4, M3, M2, M1, M0, EXPO) \
F7_UNUSED static const uint8_t F7_(const_##NAME##_msb) = M6; \
F7_UNUSED static const int16_t F7_(const_##NAME##_expo) = EXPO;
#include "libf7-const.def"
#undef F7_CONST_DEF
#undef IN_LIBF7_H
/*
libgcc naming converntions for conversions:
__float<fmode><fmode> : Convert float modes.
__floatun<imode><fmode>: Convert unsigned integral to float.
__fix<fmode><imode> : Convert float to signed integral.
__fixuns<fmode><imode> : Convert float to unsigned integral.
*/
#ifdef F7MOD_floatundidf_
F7_WEAK
f7_double_t __floatundidf (uint64_t x)
{
f7_t xx;
f7_set_u64 (&xx, x);
return f7_get_double (&xx);
}
#endif // F7MOD_floatundidf_
#ifdef F7MOD_floatdidf_
F7_WEAK
f7_double_t __floatdidf (int64_t x)
{
f7_t xx;
f7_set_s64 (&xx, x);
return f7_get_double (&xx);
}
#endif // F7MOD_floatdidf_
#ifdef F7MOD_init_
f7_t* f7_init_impl (uint64_t mant, uint8_t flags, f7_t *cc, int16_t expo)
{
flags &= F7_FLAGS;
if (f7_class_number (flags))
{
uint8_t msb;
while ((__builtin_memcpy (&msb, (uint8_t*) &mant + 7, 1), msb))
{
mant >>= 1;
expo = add_ssat16 (expo, 1);
}
*(uint64_t*) cc->mant = mant;
cc->expo = add_ssat16 (expo, F7_MANT_BITS-1);
cc = f7_normalize_asm (cc);
}
cc->flags = flags;
return cc;
}
#endif // F7MOD_init_
#ifdef F7MOD_set_s16_
f7_t* f7_set_s16_impl (f7_t *cc, int16_t i16)
{
uint16_t u16 = (uint16_t) i16;
uint8_t flags = 0;
if (i16 < 0)
{
u16 = -u16;
flags = F7_FLAG_sign;
}
f7_set_u16_impl (cc, u16);
cc->flags = flags;
return cc;
}
#endif // F7MOD_set_s16_
#ifdef F7MOD_set_u16_
f7_t* f7_set_u16_impl (f7_t *cc, uint16_t u16)
{
f7_clr (cc);
F7_MANT_HI2 (cc) = u16;
cc->expo = 15;
return f7_normalize_asm (cc);
}
#endif // F7MOD_set_u16_
#ifdef F7MOD_set_s32_
f7_t* f7_set_s32 (f7_t *cc, int32_t i32)
{
uint32_t u32 = (uint32_t) i32;
uint8_t flags = 0;
if (i32 < 0)
{
u32 = -u32;
flags = F7_FLAG_sign;
}
cc = f7_set_u32 (cc, u32);
cc->flags = flags;
return cc;
}
ALIAS (f7_set_s32, f7_floatsidf)
#endif // F7MOD_set_s32_
#ifdef F7MOD_set_u32_
f7_t* f7_set_u32 (f7_t *cc, uint32_t u32)
{
f7_clr (cc);
F7_MANT_HI4 (cc) = u32;
cc->expo = 31;
return f7_normalize_asm (cc);
}
ALIAS (f7_set_u32, f7_floatunsidf)
#endif // F7MOD_set_u32_
// IEEE 754 single
// float = s bbbbbbbb mmmmmmmmmmmmmmmmmmmmmmm
// 31
// s = sign
// b = biased exponent, bias = 127
// m = mantissa
// +0 = 0 0 0
// -0 = 1 0 0
// Inf = S B 0 = S * Inf, B = 0xff
// NaN = S B M, B = 0xff, M != 0
// Sub-normal = S 0 M = S * 0.M * 2^{1 - bias}, M != 0
// Normal = S B M = S * 1.M * 2^{B - bias}, B = 1 ... 0xfe
#define FLT_DIG_EXP 8
#define FLT_DIG_MANT (31 - FLT_DIG_EXP)
#define FLT_MAX_EXP ((1 << FLT_DIG_EXP) - 1)
#define FLT_EXP_BIAS (FLT_MAX_EXP >> 1)
#ifdef F7MOD_set_float_
F7_WEAK
void f7_set_float (f7_t *cc, float f)
{
uint32_t val32;
_Static_assert (__SIZEOF_FLOAT__ == 4, "");
_Static_assert (__FLT_MANT_DIG__ == 24, "");
__builtin_memcpy (&val32, &f, __SIZEOF_FLOAT__);
uint16_t val16 = val32 >> 16;
val16 >>= FLT_DIG_MANT - 16;
uint8_t expo_biased = val16 & FLT_MAX_EXP;
bool sign = val16 & (1u << FLT_DIG_EXP);
f7_clr (cc);
uint32_t mant = val32 & ((1ul << FLT_DIG_MANT) -1);
if (mant == 0)
{
if (expo_biased == 0)
return;
if (expo_biased >= FLT_MAX_EXP)
return f7_set_inf (cc, sign);
}
if (expo_biased == 0)
expo_biased = 1; // Sub-normal: biased expo of 1 was encoded as 0.
else if (expo_biased < FLT_MAX_EXP)
mant |= (1ul << FLT_DIG_MANT);
else
return f7_set_nan (cc);
__builtin_memcpy (& F7_MANT_HI4 (cc), &mant, 4);
cc->expo = expo_biased - FLT_EXP_BIAS + 31 - FLT_DIG_MANT;
f7_normalize_asm (cc);
f7_set_sign (cc, sign);
}
ALIAS (f7_set_float, f7_extendsfdf2)
#endif // F7MOD_set_float_
#ifdef F7MOD_get_float_
static F7_INLINE
float make_float (uint32_t x)
{
float ff;
__builtin_memcpy (&ff, &x, 4);
return ff;
}
F7_WEAK
float f7_get_float (const f7_t *aa)
{
uint8_t a_class = f7_classify (aa);
if (f7_class_nan (a_class))
return make_float (0xffc00000 /* NaN: Biased expo = 0xff, mant != 0 */);
uint32_t mant;
__builtin_memcpy (&mant, &F7_MANT_CONST_HI4 (aa), 4);
uint8_t expo8 = 0;
uint8_t mant_offset = FLT_DIG_EXP;
int16_t c_expo = add_ssat16 (aa->expo, FLT_EXP_BIAS);
if (f7_class_zero (a_class) || c_expo <= -FLT_DIG_MANT)
{
// Zero or tiny.
return 0.0f;
}
else if (c_expo >= FLT_MAX_EXP || f7_class_inf (a_class))
{
// Inf or overflow.
expo8 = FLT_MAX_EXP;
mant = 0;
}
else if (c_expo > 0)
{
// Normal.
expo8 = c_expo;
}
else
{
// Sub-normal: -DIG_MANT < c_expo <= 0.
// Encoding of 0 represents a biased exponent of 1.
// mant_offset in 9...31.
expo8 = 0;
mant_offset += 1 - c_expo;
}
uint16_t expo16 = expo8 << (FLT_DIG_MANT - 16);
if (f7_class_sign (a_class))
expo16 |= 1u << (FLT_DIG_EXP + FLT_DIG_MANT - 16);
mant >>= mant_offset;
__asm ("cbr %T0%t2, 1 << (7 & %2)" "\n\t"
"or %C0, %A1" "\n\t"
"or %D0, %B1"
: "+d" (mant)
: "r" (expo16), "n" (FLT_DIG_MANT));
return make_float (mant);
}
ALIAS (f7_get_float, f7_truncdfsf2)
#endif // F7MOD_get_float_
#define DBL_DIG_EXP 11
#define DBL_DIG_MANT (63 - DBL_DIG_EXP)
#define DBL_MAX_EXP ((1 << DBL_DIG_EXP) - 1)
#define DBL_EXP_BIAS (DBL_MAX_EXP >> 1)
#ifdef F7MOD_set_double_
void f7_set_double_impl (f7_double_t val64, f7_t *cc)
{
f7_clr (cc);
register uint64_t mant __asm ("r18") = val64 & ((1ull << DBL_DIG_MANT) -1);
uint16_t val16 = 3[(uint16_t*) & val64];
val16 >>= DBL_DIG_MANT - 48;
uint16_t expo_biased = val16 & DBL_MAX_EXP;
bool sign = val16 & (1u << DBL_DIG_EXP);
if (mant == 0)
{
if (expo_biased == 0)
return;
if (expo_biased >= DBL_MAX_EXP)
return f7_set_inf (cc, sign);
}
__asm ("" : "+r" (mant));
if (expo_biased == 0)
expo_biased = 1; // Sub-normal: biased expo of 1 was encoded as 0.
else if (expo_biased < DBL_MAX_EXP)
mant |= (1ull << DBL_DIG_MANT);
else
return f7_set_nan (cc);
*(uint64_t*) & cc->mant = mant;
cc->expo = expo_biased - DBL_EXP_BIAS + 63 - DBL_DIG_MANT - 8;
f7_normalize_asm (cc);
f7_set_sign (cc, sign);
}
#endif // F7MOD_set_double_
#ifdef F7MOD_set_pdouble_
void f7_set_pdouble (f7_t *cc, const f7_double_t *val64)
{
f7_set_double (cc, *val64);
}
#endif // F7MOD_set_pdouble_
#ifdef F7MOD_get_double_
static F7_INLINE
uint64_t clr_r18 (void)
{
extern void __clr_8 (void);
register uint64_t r18 __asm ("r18");
__asm ("%~call %x[f]" : "=r" (r18) : [f] "i" (__clr_8));
return r18;
}
static F7_INLINE
f7_double_t make_double (uint64_t x)
{
register f7_double_t r18 __asm ("r18") = x;
__asm ("" : "+r" (r18));
return r18;
}
F7_WEAK
f7_double_t f7_get_double (const f7_t *aa)
{
uint8_t a_class = f7_classify (aa);
if (f7_class_nan (a_class))
{
uint64_t nan = clr_r18() | (0x7fffull << 48);
return make_double (nan);
}
uint64_t mant;
__builtin_memcpy (&mant, & aa->mant, 8);
mant &= 0x00ffffffffffffff;
// FIXME: For subnormals, rounding is premature and should be
// done *after* the mantissa has been shifted into place
// (or the round value be shifted left accordingly).
// Round.
mant += 1u << (F7_MANT_BITS - (1 + DBL_DIG_MANT) - 1);
uint8_t dex;
register uint64_t r18 __asm ("r18") = mant;
// dex = Overflow ? 1 : 0.
__asm ("bst %T[mant]%T[bitno]" "\n\t"
"clr %0" "\n\t"
"bld %0,0"
: "=r" (dex), [mant] "+r" (r18)
: [bitno] "n" (64 - 8));
mant = r18 >> dex;
uint16_t expo16 = 0;
uint16_t mant_offset = DBL_DIG_EXP - 8;
int16_t c_expo = add_ssat16 (aa->expo, DBL_EXP_BIAS + dex);
if (f7_class_zero (a_class) || c_expo <= -DBL_DIG_MANT)
{
// Zero or tiny.
return make_double (clr_r18());
}
else if (c_expo >= DBL_MAX_EXP || f7_class_inf (a_class))
{
// Inf or overflow.
expo16 = DBL_MAX_EXP;
mant = clr_r18();
}
else if (c_expo > 0)
{
// Normal.
expo16 = c_expo;
}
else
{
// Sub-normal: -DIG_MANT < c_expo <= 0.
// Encoding expo of 0 represents a biased exponent of 1.
// mant_offset in 5...55 = 63-8.
mant_offset += 1 - c_expo;
}
expo16 <<= (DBL_DIG_MANT - 48);
if (f7_class_sign (a_class))
expo16 |= 1u << (DBL_DIG_EXP + DBL_DIG_MANT - 48);
// mant >>= mant_offset;
mant = f7_lshrdi3 (mant, mant_offset);
r18 = mant;
__asm ("cbr %T0%t2, 1 << (7 & %2)" "\n\t"
"or %r0+6, %A1" "\n\t"
"or %r0+7, %B1"
: "+r" (r18)
: "r" (expo16), "n" (DBL_DIG_MANT));
return make_double (r18);
}
#endif // F7MOD_get_double_
#ifdef F7MOD_fabs_
F7_WEAK
void f7_fabs (f7_t *cc, const f7_t *aa)
{
f7_abs (cc, aa);
}
#endif // F7MOD_fabs_
#ifdef F7MOD_neg_
F7_WEAK
f7_t* f7_neg (f7_t *cc, const f7_t *aa)
{
f7_copy (cc, aa);
uint8_t c_class = f7_classify (cc);
if (! f7_class_zero (c_class))
cc->sign = ! f7_class_sign (c_class);
return cc;
}
#endif // F7MOD_neg_
#ifdef F7MOD_frexp_
F7_WEAK
void f7_frexp (f7_t *cc, const f7_t *aa, int *expo)
{
uint8_t a_class = f7_classify (aa);
if (f7_class_nan (a_class))
return f7_set_nan (cc);
if (f7_class_inf (a_class) || aa->expo == INT16_MAX)
return f7_set_inf (cc, f7_class_sign (a_class));
if (! f7_msbit (aa))
{
*expo = 0;
return f7_clr (cc);
}
*expo = 1 + aa->expo;
cc->flags = a_class & F7_FLAG_sign;
cc->expo = -1;
f7_copy_mant (cc, aa);
}
#endif // F7MOD_frexp_
#ifdef F7MOD_get_s16_
F7_WEAK
int16_t f7_get_s16 (const f7_t *aa)
{
extern int16_t to_s16 (const f7_t*, uint8_t) F7ASM(f7_to_integer_asm);
return to_s16 (aa, 0xf);
}
#endif // F7MOD_get_s16_
#ifdef F7MOD_get_s32_
F7_WEAK
int32_t f7_get_s32 (const f7_t *aa)
{
extern int32_t to_s32 (const f7_t*, uint8_t) F7ASM(f7_to_integer_asm);
return to_s32 (aa, 0x1f);
}
ALIAS (f7_get_s32, f7_fixdfsi)
#endif // F7MOD_get_s32_
#ifdef F7MOD_get_s64_
F7_WEAK
int64_t f7_get_s64 (const f7_t *aa)
{
extern int64_t to_s64 (const f7_t*, uint8_t) F7ASM(f7_to_integer_asm);
return to_s64 (aa, 0x3f);
}
ALIAS (f7_get_s64, f7_fixdfdi)
#endif // F7MOD_get_s64_
#ifdef F7MOD_get_u16_
F7_WEAK
uint16_t f7_get_u16 (const f7_t *aa)
{
extern uint16_t to_u16 (const f7_t*, uint8_t) F7ASM(f7_to_unsigned_asm);
return to_u16 (aa, 0xf);
}
#endif // F7MOD_get_u16_
#ifdef F7MOD_get_u32_
F7_WEAK
uint32_t f7_get_u32 (const f7_t *aa)
{
extern uint32_t to_u32 (const f7_t*, uint8_t) F7ASM(f7_to_unsigned_asm);
return to_u32 (aa, 0x1f);
}
ALIAS (f7_get_u32, f7_fixunsdfsi)
#endif // F7MOD_get_u32_
#ifdef F7MOD_get_u64_
F7_WEAK
uint64_t f7_get_u64 (const f7_t *aa)
{
extern int64_t to_u64 (const f7_t*, uint8_t) F7ASM(f7_to_unsigned_asm);
return to_u64 (aa, 0x3f);
}
ALIAS (f7_get_u64, f7_fixunsdfdi)
#endif // F7MOD_get_u64_
#ifdef F7MOD_cmp_unordered_
F7_NOINLINE
static int8_t cmp_u8 (uint8_t a_class, uint8_t b_class, bool sign_a);
F7_WEAK
int8_t f7_cmp_unordered (const f7_t *aa, const f7_t *bb, bool with_sign)
{
uint8_t a_class = f7_classify (aa);
uint8_t b_class = f7_classify (bb);
uint8_t a_sign = f7_class_sign (a_class) & with_sign;
uint8_t b_sign = f7_class_sign (b_class) & with_sign;
uint8_t ab_class = a_class | b_class;
ab_class &= with_sign - 2;
if (f7_class_nan (ab_class))
return INT8_MIN;
if (a_sign != b_sign)
return b_sign - a_sign;
if (f7_class_inf (ab_class))
return cmp_u8 (a_class, b_class, a_sign);
if (f7_class_zero (ab_class))
return cmp_u8 (b_class, a_class, a_sign);
if (aa->expo < bb->expo)
return a_sign ? 1 : -1;
if (aa->expo > bb->expo)
return a_sign ? -1 : 1;
return cmp_u8 (1 + f7_cmp_mant (aa, bb), 1, a_sign);
}
int8_t cmp_u8 (uint8_t a_class, uint8_t b_class, bool sign_a)
{
int8_t c;
__asm ("sub %[a], %[b]" "\n\t"
"breq 1f" "\n\t"
"sbc %[c], %[c]" "\n\t"
"sbci %[c], -1" "\n\t"
"sbrc %[s], 0" "\n\t"
"neg %[c]" "\n\t"
"1:"
: [c] "=d" (c)
: [a] "0" (a_class), [b] "r" (b_class), [s] "r" (sign_a));
return c;
}
#endif // F7MOD_cmp_unordered_
#ifdef F7MOD_cmp_abs_
F7_WEAK
int8_t f7_cmp_abs (const f7_t *aa, const f7_t *bb)
{
return f7_cmp_unordered (aa, bb, false /* no signs */);
}
#endif // F7MOD_cmp_abs_
#ifdef F7MOD_cmp_
F7_WEAK
int8_t f7_cmp (const f7_t *aa, const f7_t *bb)
{
return f7_cmp_unordered (aa, bb, true /* with signs */);
}
#endif // F7MOD_cmp_
#ifdef F7MOD_abscmp_msb_ge_
// Compare absolute value of Number aa against a f7_t represented
// by msb and expo.
F7_WEAK
bool f7_abscmp_msb_ge (const f7_t *aa, uint8_t msb, int16_t expo)
{
uint8_t a_msb = aa->mant[F7_MANT_BYTES - 1];
if (0 == (0x80 & a_msb))
// 0 or subnormal.
return false;
return aa->expo == expo
? a_msb >= msb
: aa->expo > expo;
}
#endif // F7MOD_abscmp_msb_ge_
#ifdef F7MOD_lt_
F7_WEAK
bool f7_lt_impl (const f7_t *aa, const f7_t *bb)
{
return f7_lt (aa, bb);
}
#endif // F7MOD_lt_
#ifdef F7MOD_le_
F7_WEAK
bool f7_le_impl (const f7_t *aa, const f7_t *bb)
{
return f7_le (aa, bb);
}
#endif // F7MOD_le_
#ifdef F7MOD_gt_
F7_WEAK
bool f7_gt_impl (const f7_t *aa, const f7_t *bb)
{
return f7_gt (aa, bb);
}
#endif // F7MOD_gt_
#ifdef F7MOD_ge_
F7_WEAK
bool f7_ge_impl (const f7_t *aa, const f7_t *bb)
{
return f7_ge (aa, bb);
}
#endif // F7MOD_ge_
#ifdef F7MOD_ne_
F7_WEAK
bool f7_ne_impl (const f7_t *aa, const f7_t *bb)
{
return f7_ne (aa, bb);
}
#endif // F7MOD_ne_
#ifdef F7MOD_eq_
F7_WEAK
bool f7_eq_impl (const f7_t *aa, const f7_t *bb)
{
return f7_eq (aa, bb);
}
#endif // F7MOD_eq_
#ifdef F7MOD_unord_
F7_WEAK
bool f7_unord_impl (const f7_t *aa, const f7_t *bb)
{
return f7_unordered (aa, bb);
}
#endif // F7MOD_unord_
#ifdef F7MOD_minmax_
F7_WEAK
f7_t* f7_minmax (f7_t *cc, const f7_t *aa, const f7_t *bb, bool do_min)
{
int8_t cmp = f7_cmp_unordered (aa, bb, true /* with signs */);
if (cmp == INT8_MIN)
return (f7_set_nan (cc), cc);
if (do_min)
cmp = -cmp;
return f7_copy (cc, cmp >= 0 ? aa : bb);
}
#endif // F7MOD_minmax_
#ifdef F7MOD_fmax_
F7_WEAK
f7_t* f7_fmax (f7_t *cc, const f7_t *aa, const f7_t *bb)
{
return f7_minmax (cc, aa, bb, false);
}
ALIAS (f7_fmax, f7_max)
#endif // F7MOD_fmax_
#ifdef F7MOD_fmin_
F7_WEAK
f7_t* f7_fmin (f7_t *cc, const f7_t *aa, const f7_t *bb)
{
return f7_minmax (cc, aa, bb, true);
}
ALIAS (f7_fmin, f7_min)
#endif // F7MOD_fmin_
#ifdef F7MOD_mulx_
F7_WEAK
uint8_t f7_mulx (f7_t *cc, const f7_t *aa, const f7_t *bb, bool no_rounding)
{
uint8_t a_class = f7_classify (aa);
uint8_t b_class = f7_classify (bb);
// From this point on, no more access aa->flags or bb->flags
// to avoid early-clobber when writing cc->flags.
uint8_t ab_class = a_class | b_class;
// If either value is NaN, return NaN.
if (f7_class_nan (ab_class)
// Any combination of Inf and 0.
|| (f7_class_zero (ab_class) && f7_class_inf (ab_class)))
{
cc->flags = F7_FLAG_nan;
return 0;
}
// If either value is 0.0, return 0.0.
if (f7_class_zero (ab_class))
{
f7_clr (cc);
return 0;
}
// We have 2 non-zero numbers-or-INF.
uint8_t c_sign = (a_class ^ b_class) & F7_FLAG_sign;
uint8_t c_inf = ab_class & F7_FLAG_inf;
cc->flags = c_sign | c_inf;
if (c_inf)
return 0;
int16_t expo = add_ssat16 (aa->expo, bb->expo);
// Store expo and handle expo = INT16_MIN and INT16_MAX.
if (f7_store_expo (cc, expo))
return 0;
return f7_mul_mant_asm (cc, aa, bb, no_rounding);
}
#endif // F7MOD_mulx_
#ifdef F7MOD_square_
F7_WEAK
void f7_square (f7_t *cc, const f7_t *aa)
{
f7_mul (cc, aa, aa);
}
#endif // F7MOD_square_
#ifdef F7MOD_mul_
F7_WEAK
void f7_mul (f7_t *cc, const f7_t *aa, const f7_t *bb)
{
f7_mulx (cc, aa, bb, false);
}
#endif // F7MOD_mul_
#ifdef F7MOD_Iadd_
F7_WEAK void f7_Iadd (f7_t *cc, const f7_t *aa) { f7_add (cc, cc, aa); }
#endif
#ifdef F7MOD_Isub_
F7_WEAK void f7_Isub (f7_t *cc, const f7_t *aa) { f7_sub (cc, cc, aa); }
#endif
#ifdef F7MOD_Imul_
F7_WEAK void f7_Imul (f7_t *cc, const f7_t *aa) { f7_mul (cc, cc, aa); }
#endif
#ifdef F7MOD_Idiv_
F7_WEAK void f7_Idiv (f7_t *cc, const f7_t *aa) { f7_div (cc, cc, aa); }
#endif
#ifdef F7MOD_IRsub_
F7_WEAK void f7_IRsub (f7_t *cc, const f7_t *aa) { f7_sub (cc, aa, cc); }
#endif
#ifdef F7MOD_Ineg_
F7_WEAK void f7_Ineg (f7_t *cc) { f7_neg (cc, cc); }
#endif
#ifdef F7MOD_Isqrt_
F7_WEAK void f7_Isqrt (f7_t *cc) { f7_sqrt (cc, cc); }
#endif
#ifdef F7MOD_Isquare_
F7_WEAK void f7_Isquare (f7_t *cc) { f7_square (cc, cc); }
#endif
#ifdef F7MOD_Ildexp_
F7_WEAK f7_t* f7_Ildexp (f7_t *cc, int ex) { return f7_ldexp (cc, cc, ex); }
#endif
#ifdef F7MOD_add_
F7_WEAK
void f7_add (f7_t *cc, const f7_t *aa, const f7_t *bb)
{
f7_addsub (cc, aa, bb, false);
}
#endif // F7MOD_add_
#ifdef F7MOD_sub_
F7_WEAK
void f7_sub (f7_t *cc, const f7_t *aa, const f7_t *bb)
{
f7_addsub (cc, aa, bb, true);
}
#endif // F7MOD_sub_
#ifdef F7MOD_addsub_
static void return_with_sign (f7_t *cc, const f7_t *aa, int8_t c_sign)
{
__asm (";;; return with sign");
f7_copy (cc, aa);
if (c_sign != -1)
f7_set_sign (cc, c_sign);
}
F7_WEAK
void f7_addsub (f7_t *cc, const f7_t *aa, const f7_t *bb, bool neg_b)
{
uint8_t a_class = f7_classify (aa);
uint8_t b_class = f7_classify (bb);
// From this point on, no more access aa->flags or bb->flags
// to avoid early-clobber when writing cc->flags.
// Hande NaNs.
if (f7_class_nan (a_class | b_class))
return f7_set_nan (cc);
bool a_sign = f7_class_sign (a_class);
bool b_sign = f7_class_sign (b_class) ^ neg_b;
// Add the mantissae?
bool do_add = a_sign == b_sign;
// Handle +Infs and -Infs.
bool a_inf = f7_class_inf (a_class);
bool b_inf = f7_class_inf (b_class);
if (a_inf && b_inf)
{
if (do_add)
return f7_set_inf (cc, a_sign);
else
return f7_set_nan (cc);
}
else if (a_inf)
return f7_set_inf (cc, a_sign);
else if (b_inf)
return f7_set_inf (cc, b_sign);
int16_t shift16 = sub_ssat16 (aa->expo, bb->expo);
// aa + 0 = aa.
// Also check MSBit to get rid of Subnormals and 0.
if (shift16 > F7_MANT_BITS || f7_is0 (bb))
return return_with_sign (cc, aa, -1);
// 0 + bb = bb.
// 0 - bb = -bb.
// Also check MSBit to get rid of Subnormals and 0.
if (shift16 < -F7_MANT_BITS || f7_is0 (aa))
return return_with_sign (cc, bb, b_sign);
// Now aa and bb are non-zero, non-NaN, non-Inf.
// shift > 0 ==> |a| > |b|
// shift < 0 ==> |a| < |b|
int8_t shift = (int8_t) shift16;
bool c_sign = a_sign;
if (shift < 0
|| (shift == 0 && f7_cmp_mant (aa, bb) < 0))
{
const f7_t *p = aa; aa = bb; bb = p;
c_sign = b_sign;
shift = -shift;
}
uint8_t shift2 = (uint8_t) (shift << 1);
cc->expo = aa->expo;
// From this point on, no more access aa->expo or bb->expo
// to avoid early-clobber when writing cc->expo.
cc->flags = c_sign; _Static_assert (F7_FLAGNO_sign == 0, "");
// This function uses neither .expo nor .flags from either aa or bb,
// hence there is early-clobber for cc->expo and cc->flags.
f7_addsub_mant_scaled_asm (cc, aa, bb, shift2 | do_add);
}
#endif // F7MOD_addsub_
#ifdef F7MOD_madd_msub_
F7_WEAK
void f7_madd_msub (f7_t *cc, const f7_t *aa, const f7_t *bb, const f7_t *dd,
bool neg_d)
{
f7_t xx7, *xx = &xx7;
uint8_t x_lsb = f7_mulx (xx, aa, bb, true /* no rounding */);
uint8_t x_sign = f7_signbit (xx);
int16_t x_expo = xx->expo;
f7_addsub (xx, xx, dd, neg_d);
// Now add LSB. If cancellation occured in the add / sub, then we have the
// chance of extra 8 bits of precision. Turn LSByte into f7_t.
f7_clr (cc);
cc->expo = sub_ssat16 (x_expo, F7_MANT_BITS);
cc->mant[F7_MANT_BYTES - 1] = x_lsb;
cc = f7_normalize_asm (cc);
cc->flags = x_sign;
f7_Iadd (cc, xx);
}
#endif // F7MOD_madd_msub_
#ifdef F7MOD_madd_
F7_WEAK
void f7_madd (f7_t *cc, const f7_t *aa, const f7_t *bb, const f7_t *dd)
{
f7_madd_msub (cc, aa, bb, dd, false);
}
#endif // F7MOD_madd_
#ifdef F7MOD_msub_
F7_WEAK
void f7_msub (f7_t *cc, const f7_t *aa, const f7_t *bb, const f7_t *dd)
{
f7_madd_msub (cc, aa, bb, dd, true);
}
#endif // F7MOD_msub_
#ifdef F7MOD_ldexp_
F7_WEAK
f7_t* f7_ldexp (f7_t *cc, const f7_t *aa, int delta)
{
uint8_t a_class = f7_classify (aa);
cc->flags = a_class;
// Inf and NaN.
if (! f7_class_number (a_class))
return cc;
if (f7_msbit (aa) == 0)
return (f7_clr (cc), cc);
int16_t expo = add_ssat16 (delta, aa->expo);
// Store expo and handle expo = INT16_MIN and INT16_MAX.
if (! f7_store_expo (cc, expo))
f7_copy_mant (cc, aa);
return cc;
}
#endif // F7MOD_ldexp_
#if USE_LPM
#elif USE_LD
#else
#error need include "asm-defs.h"
#endif // USE_LPM
/*
Handling constants:
F7_PCONST (PVAR, X)
Set f7_t [const] *PVAR to an LD address for one
of the f7_const_X[_P] constants.
PVAR might be set to point to a local auto that serves
as temporary storage for f7_const_X_P. PVAR is only
valid in the current block.
const f7_t* F7_PCONST_U16 (PVAR, <ident> X) // USE_LD
f7_t* F7_PCONST_U16 (PVAR, uint16_t X) // USE_LPM
Set f7_t [const] *PVAR to an LD address for one of the
f7_const_X[_P] constants. PVAR might be set to point to a
local auto that serves as temporary storage for X. PVAR is
only valid in the current block.
F7_PCONST_VAR (PVAR, VAR)
VAR is a pointer variable holding the address of some f7_const_X[_P]
constant. Set [const] f7_t *PVAR to a respective LD address.
PVAR might be set to point to a local auto that serves
as temporary storage for f7_const_X_P. PVAR is only
valid in the current block.
F7_CONST_ADDR (<ident> CST, f7_t* PTMP)
Return an LD address to some f7_const_X[_P] constant.
*PTMP might be needed to hold a copy of f7_const_X_P in RAM.
f7_t* F7_U16_ADDR (uint16_t X, f7_t* PTMP) // USE_LPM
const f7_t* F7_U16_ADDR (<cst-ident> X, <unused>) // USE_LD
Return an LD address to compile-time constant uint16_t X which is
also known as f7_const_X[_P]. *PTMP might be set to (f7_t) X.
f7_t* f7_const (f7_t *PVAR, <cst-ident> X)
Copy f7_const_X[_P] to *PVAR.
f7_t* f7_copy_flash (f7_t *DST, const f7_t *SRC)
Copy to *DST with LD (from .rodata in flash) if the address
space is linear, or with LPM (from .progmem.data) if the
address space is not linear.
f7_t* f7_copy (f7_t *DST, const f7_t* SRC)
Copy to RAM using LD.
f7_t* f7_copy_P (f7_t *DST, const f7_t *SRC)
Copy to RAM using LPM.
*/
#if USE_LPM
#define F7_RAW_CONST_ADDR(CST) \
& F7_(const_##CST##_P)
#define F7_PCONST(PVAR, CST) \
f7_t _var_for_##CST; \
f7_copy_P (& _var_for_##CST, & F7_(const_##CST##_P)); \
PVAR = & _var_for_##CST
#define F7_PCONST_U16(PVAR, CST) \
f7_t _var_for_##CST; \
PVAR = f7_set_u16 (& _var_for_##CST, CST)
#define F7_PCONST_VAR(PVAR, VAR) \
f7_t _var_for_##VAR; \
f7_copy_P (& _var_for_##VAR, VAR); \
PVAR = & _var_for_##VAR
#define MAYBE_const // empty
#define F7_CONST_ADDR(CST, PTMP) \
f7_copy_P ((PTMP), & F7_(const_##CST##_P))
#define F7_U16_ADDR(CST, PTMP) \
f7_set_u16 ((PTMP), CST)
#elif USE_LD
#define F7_RAW_CONST_ADDR(CST) \
& F7_(const_##CST)
#define F7_PCONST(PVAR, CST) \
PVAR = & F7_(const_##CST)
#define F7_PCONST_U16(PVAR, CST) \
PVAR = & F7_(const_##CST)
#define F7_PCONST_VAR(PVAR, VAR) \
PVAR = (VAR)
#define F7_CONST_ADDR(CST, PTMP) \
(& F7_(const_##CST))
#define F7_U16_ADDR(CST, PTMP) \
(& F7_(const_##CST))
#define MAYBE_const const
#endif
#define DD(str, X) \
do { \
LOG_PSTR (PSTR (str)); \
f7_dump (X); \
} while (0)
#undef DD
#define DD(...) (void) 0
#ifdef F7MOD_sqrt_
F7_WEAK
void f7_sqrt (f7_t *cc, const f7_t *aa)
{
uint8_t a_class = f7_classify (aa);
if (f7_class_nan (a_class) || f7_class_sign (a_class))
return f7_set_nan (cc);
if (f7_class_inf (a_class))
return f7_set_inf (cc, 0);
if (f7_class_zero (a_class))
return f7_clr (cc);
f7_sqrt_approx_asm (cc, aa);
}
#endif // F7MOD_sqrt_
#ifdef F7MOD_hypot_
F7_WEAK
void f7_hypot (f7_t *cc, const f7_t *aa, const f7_t *bb)
{
f7_t xx7, *xx = &xx7;
f7_square (xx, aa);
f7_square (cc, bb);
f7_Iadd (cc, xx);
f7_Isqrt (cc);
}
#endif // F7MOD_hypot_
#ifdef F7MOD_const_m1_
#include "libf7-constdef.h"
#endif // -1
#ifdef F7MOD_const_1_2_
#include "libf7-constdef.h"
#endif // 1/2
#ifdef F7MOD_const_1_3_
#include "libf7-constdef.h"
#endif // 1/3
#ifdef F7MOD_const_ln2_
#include "libf7-constdef.h"
#endif // ln2
#ifdef F7MOD_const_1_ln2_
#include "libf7-constdef.h"
#endif // 1_ln2
#ifdef F7MOD_const_ln10_
#include "libf7-constdef.h"
#endif // ln10
#ifdef F7MOD_const_1_ln10_
#include "libf7-constdef.h"
#endif // 1_ln10
#ifdef F7MOD_const_1_
#include "libf7-constdef.h"
#endif // 1
#ifdef F7MOD_const_sqrt2_
#include "libf7-constdef.h"
#endif // sqrt2
#ifdef F7MOD_const_2_
#include "libf7-constdef.h"
#endif // 2
#ifdef F7MOD_const_pi_
#include "libf7-constdef.h"
#endif // pi
#ifdef F7MOD_divx_
// C /= A
extern void f7_div_asm (f7_t*, const f7_t*, uint8_t);
F7_WEAK
void f7_divx (f7_t *cc, const f7_t *aa, const f7_t *bb, uint8_t quot_bits)
{
uint8_t a_class = f7_classify (aa);
uint8_t b_class = f7_classify (bb);
// From this point on, no more access aa->flags or bb->flags
// to avoid early-clobber when writing cc->flags.
// If either value is NaN, return NaN.
if (f7_class_nan (a_class | b_class)
// If both values are Inf or both are 0, return NaN.
|| f7_class_zero (a_class & b_class)
|| f7_class_inf (a_class & b_class)
// Inf / 0 = NaN.
|| (f7_class_inf (a_class) && f7_class_zero (b_class)))
{
return f7_set_nan (cc);
}
// 0 / B = 0 for non-zero, non-NaN B.
// A / Inf = 0 for non-zero numbers A.
if (f7_class_zero (a_class) || f7_class_inf (b_class))
return f7_clr (cc);
uint8_t c_sign = (a_class ^ b_class) & F7_FLAG_sign;
if (f7_class_inf (a_class) || f7_class_zero (b_class))
return f7_set_inf (cc, c_sign);
cc->flags = c_sign; _Static_assert (F7_FLAGNO_sign == 0, "");
int16_t expo = sub_ssat16 (aa->expo, bb->expo);
// Store expo and handle expo = INT16_MIN and INT16_MAX.
if (f7_store_expo (cc, expo))
return;
f7_t ss7, *ss = &ss7;
ss->flags = cc->flags;
ss->expo = cc->expo;
f7_copy_mant (ss, aa);
f7_div_asm (ss, bb, quot_bits);
f7_copy (cc, ss);
}
#endif // F7MOD_divx_
#ifdef F7MOD_div_
F7_WEAK
void f7_div (f7_t *cc, const f7_t *aa, const f7_t *bb)
{
/* When f7_divx calls f7_div_asm, dividend and divisor are valid
mantissae, i.e. their MSBit is set. Therefore, the quotient will
be in [0x0.ff..., 0x0.40...] and to adjust it, at most 1 left-shift
is needed. Compute F7_MANT_BITS + 2 bits of the quotient:
One bit is used for rounding, and one bit might be consumed by the
mentioned left-shift. */
f7_divx (cc, aa, bb, 2 + F7_MANT_BITS);
}
#endif // F7MOD_div_
#ifdef F7MOD_div1_
F7_WEAK
void f7_div1 (f7_t *cc, const f7_t *aa)
{
F7_PCONST_U16 (const f7_t *one, 1);
f7_div (cc, one, aa);
}
#endif // F7MOD_div_
#ifdef F7MOD_fmod_
F7_WEAK
void f7_fmod (f7_t *cc, const f7_t *aa, const f7_t *bb)
{
uint8_t a_class = f7_classify (aa);
uint8_t b_class = f7_classify (bb);
if (! f7_class_number (a_class)
|| f7_class_nan (b_class)
|| f7_class_zero (b_class))
{
return f7_set_nan (cc);
}
// A == 0 and B != 0 => 0.
if (f7_class_zero (a_class))
return f7_clr (cc);
f7_t zz7, *zz = & zz7;
f7_div (zz, aa, bb);
// Z in Z, |Z| <= |A/B|.
f7_trunc (zz, zz);
// C = A - Z * B.
f7_msub (cc, zz, bb, aa);
cc->flags ^= F7_FLAG_sign;
}
#endif // F7MOD_fmod_
#ifdef F7MOD_truncx_
F7_WEAK
f7_t* f7_truncx (f7_t *cc, const f7_t *aa, bool do_floor)
{
uint8_t a_class = f7_classify (aa);
if (! f7_class_nonzero (a_class))
return f7_copy (cc, aa);
bool sign = f7_class_sign (a_class);
int16_t a_expo = aa->expo;
if (a_expo < 0)
{
// |A| < 1.
if (sign & do_floor)
return f7_set_s16 (cc, -1);
f7_clr (cc);
return cc;
}
else if (a_expo >= F7_MANT_BITS - 1)
// A == floor (A).
return f7_copy (cc, aa);
f7_t tmp7, *tmp = &tmp7;
// Needed if aa === cc.
f7_copy (tmp, aa);
cc->flags = sign;
cc->expo = a_expo;
f7_clr_mant_lsbs (cc, aa, F7_MANT_BITS - 1 - a_expo);
if (do_floor && cc->sign && f7_cmp_mant (cc, tmp) != 0)
{
F7_PCONST_U16 (const f7_t *one, 1);
f7_Isub (cc, one);
}
return cc;
}
#endif // F7MOD_truncx_
#ifdef F7MOD_floor_
F7_WEAK
f7_t* f7_floor (f7_t *cc, const f7_t *aa)
{
return f7_truncx (cc, aa, true);
}
#endif // F7MOD_floor_
#ifdef F7MOD_trunc_
F7_WEAK
f7_t* f7_trunc (f7_t *cc, const f7_t *aa)
{
return f7_truncx (cc, aa, false);
}
#endif // F7MOD_trunc_
#ifdef F7MOD_ceil_
F7_WEAK
void f7_ceil (f7_t *cc, const f7_t *aa)
{
cc = f7_copy (cc, aa);
cc->flags ^= F7_FLAG_sign;
cc = f7_floor (cc, cc);
f7_Ineg (cc);
}
#endif // F7MOD_ceil_
#ifdef F7MOD_round_
F7_WEAK
void f7_round (f7_t *cc, const f7_t *aa)
{
f7_t tmp;
(void) tmp;
const f7_t *half = F7_CONST_ADDR (1_2, &tmp);
f7_addsub (cc, aa, half, f7_signbit (aa));
f7_trunc (cc, cc);
}
#endif // F7MOD_round_
#ifdef F7MOD_horner_
// Assertion when using this function is that either cc != xx,
// or if cc == xx, then tmp1 must be non-NULL and tmp1 != xx.
// In General, the calling functions have a spare f7_t object available
// and can pass it down to save some stack.
// Moreover, the power series must have degree 1 at least.
F7_WEAK
void f7_horner (f7_t *cc, const f7_t *xx, uint8_t n_coeff, const f7_t *coeff,
f7_t *tmp1)
{
f7_assert (n_coeff > 1);
if (cc != xx)
tmp1 = cc;
else
f7_assert (tmp1 != NULL && tmp1 != xx);
f7_t *yy = tmp1;
f7_t tmp27, *tmp2 = &tmp27;
n_coeff--;
const f7_t *pcoeff = coeff + n_coeff;
f7_copy_flash (yy, pcoeff);
if (yy->flags & F7_FLAG_plusx)
f7_Iadd (yy, xx);
while (1)
{
--pcoeff;
#if 1
f7_Imul (yy, xx);
const f7_t *cst = USE_LD ? pcoeff : f7_copy_P (tmp2, pcoeff);
if (coeff == pcoeff)
return f7_add (cc, yy, cst);
f7_Iadd (yy, cst);
#else
const f7_t *cst = USE_LD ? pcoeff : f7_copy_P (tmp2, pcoeff);
f7_madd (yy, yy, xx, cst);
if (coeff == pcoeff)
{
f7_copy (cc, yy);
return;
}
#endif
}
__builtin_unreachable();
}
#endif // F7MOD_horner_
#ifdef F7MOD_log_
F7_WEAK
void f7_log (f7_t *cc, const f7_t *aa)
{
f7_logx (cc, aa, NULL);
}
#endif // F7MOD_log_
#ifdef F7MOD_log2_
F7_WEAK
void f7_log2 (f7_t *cc, const f7_t *aa)
{
f7_logx (cc, aa, F7_RAW_CONST_ADDR (1_ln2));
}
#endif // F7MOD_log2_
#ifdef F7MOD_log10_
F7_WEAK
void f7_log10 (f7_t *cc, const f7_t *aa)
{
f7_logx (cc, aa, F7_RAW_CONST_ADDR (1_ln10));
}
#endif // F7MOD_log10_
#ifdef F7MOD_logx_
#define ARRAY_NAME coeff_artanh
#include "libf7-array.def"
#undef ARRAY_NAME
// Compute P * ln(A) if P != NULL and ln(A), otherwise.
// P is a LD-address if USE_LD and a LPM-address if USE_LPM.
// Assumption is that P > 0.
F7_WEAK
void f7_logx (f7_t *cc, const f7_t *aa, const f7_t *p)
{
uint8_t a_class = f7_classify (aa);
if (f7_class_nan (a_class) || f7_class_sign (a_class))
return f7_set_nan (cc);
if (f7_class_inf (a_class))
return f7_set_inf (cc, 0);
if (f7_class_zero (a_class))
return f7_set_inf (cc, 1);
f7_t *yy = cc;
f7_t xx7, *xx = &xx7;
f7_t tmp7, *tmp = &tmp7;
// Y in [1, 2] = A * 2 ^ (-a_expo).
int16_t a_expo = aa->expo;
f7_copy (yy, aa);
yy->expo = 0;
// Y in [1 / sqrt2, sqrt2].
if (f7_abscmp_msb_ge (yy, F7_(const_sqrt2_msb), F7_(const_sqrt2_expo)))
{
yy->expo = -1;
a_expo = add_ssat16 (a_expo, 1);
}
const f7_t *one = F7_U16_ADDR (1, & tmp7);
// X := (Y - 1) / (Y + 1), |X| <= (sqrt2 - 1) / (sqrt2 + 1) ~ 0.172.
f7_sub (xx, yy, one);
f7_Iadd (yy, one);
f7_Idiv (xx, yy);
// Y := X^2, |Y| < 0.03.
f7_square (yy, xx);
// Y := artanh (X^2) / X
f7_horner (yy, yy, n_coeff_artanh, coeff_artanh, tmp);
// C = X * Y = ln A - a_expo * ln2.
f7_mul (cc, xx, yy);
// X := a_expo * ln2.
f7_set_s16 (xx, a_expo);
f7_Imul (xx, F7_CONST_ADDR (ln2, & tmp7));
// C = ln A.
f7_Iadd (cc, xx);
if (p && USE_LPM)
f7_Imul (cc, f7_copy_P (tmp, p));
if (p && USE_LD)
f7_Imul (cc, p);
}
#endif // F7MOD_logx_
#ifdef F7MOD_exp_
#define ARRAY_NAME coeff_exp
#include "libf7-array.def"
#undef ARRAY_NAME
#define STATIC static
#include "libf7-constdef.h" // ln2_low
#undef STATIC
F7_WEAK
void f7_exp (f7_t *cc, const f7_t *aa)
{
uint8_t a_class = f7_classify (aa);
if (f7_class_nan (a_class))
return f7_set_nan (cc);
/* The maximal exponent of 2 for a double is 1023, hence we may limit
to |A| < 1023 * ln2 ~ 709. We limit to 1024 ~ 1.99 * 2^9 */
if (f7_class_inf (a_class)
|| (f7_class_nonzero (a_class) && aa->expo >= 9))
{
if (f7_class_sign (a_class))
return f7_clr (cc);
else
return f7_set_inf (cc, 0);
}
f7_t const *cst;
f7_t qq7, *qq = &qq7;
F7_PCONST (cst, ln2);
// We limited |A| to 1024 and are now dividing by ln2, hence Q will
// be at most 1024 / ln2 ~ 1477 and fit into 11 bits. We will
// round Q anyway, hence only request 11 bits from the division and
// one additional bit that might be needed to normalize the quotient.
f7_divx (qq, aa, cst, 1 + 11);
// Use the smallest (by absolute value) remainder system.
f7_round (qq, qq);
int16_t q = f7_get_s16 (qq);
// Reducing A mod ln2 gives |C| <= ln2 / 2, C = -A mod ln2.
f7_msub (cc, qq, cst, aa);
// Corrigendum: We added Q * ln2; now add Q times the low part of ln2
// for better precision. Due to |C| < |A| this is not a no-op in general.
const f7_t *yy = F7_CONST_ADDR (ln2_low, &_var_for_ln2);
f7_madd (cc, qq, yy, cc);
// Because we computed C = -A mod ...
cc->flags ^= F7_FLAG_sign;
// Reduce further to |C| < ln2 / 8 which is the range of our MiniMax poly.
const uint8_t MAX_LN2_RED = 3;
int8_t scal2 = 0;
while (f7_abscmp_msb_ge (cc, F7_(const_ln2_msb),
F7_(const_ln2_expo) - MAX_LN2_RED))
{
scal2++;
cc->expo--;
}
f7_horner (cc, cc, n_coeff_exp, coeff_exp, qq);
while (--scal2 >= 0)
f7_Isquare (cc);
f7_Ildexp (cc, q);
}
#endif // F7MOD_exp_
#ifdef F7MOD_pow10_
F7_WEAK
void f7_pow10 (f7_t *cc, const f7_t *aa)
{
const f7_t *p_ln10;
F7_PCONST (p_ln10, ln10);
f7_mul (cc, aa, p_ln10);
f7_exp (cc, cc);
}
ALIAS (f7_pow10, f7_exp10)
#endif // F7MOD_pow10_
#ifdef F7MOD_cbrt_
F7_WEAK
void f7_cbrt (f7_t *cc, const f7_t *aa)
{
f7_copy (cc, aa);
const f7_t *p_1_3;
uint8_t c_flags = cc->flags;
cc->flags &= ~F7_FLAG_sign;
f7_log (cc, cc);
F7_PCONST (p_1_3, 1_3);
f7_Imul (cc, p_1_3);
f7_exp (cc, cc);
if (c_flags & F7_FLAG_sign)
cc->flags |= F7_FLAG_sign;
}
#endif // F7MOD_cbrt_
#ifdef F7MOD_pow_
F7_WEAK
void f7_pow (f7_t *cc, const f7_t *aa, const f7_t *bb)
{
#if 0
f7_t slots[cc == bb];
f7_t *yy = cc == bb ? slots : cc;
#else
f7_t yy7, *yy = &yy7;
#endif
f7_log (yy, aa);
f7_Imul (yy, bb);
f7_exp (cc, yy);
}
#endif // F7MOD_pow_
#ifdef F7MOD_powi_
F7_WEAK
void f7_powi (f7_t *cc, const f7_t *aa, int ii)
{
uint16_t u16 = ii;
f7_t xx27, *xx2 = &xx27;
bool cc_is_one = true;
bool expo_is_neg = false;
if (ii < 0)
{
u16 = -u16;
expo_is_neg = true;
}
f7_copy (xx2, aa);
while (1)
{
if (u16 & 1)
{
if (cc_is_one)
{
// C *= X2 simplifies to C = X2.
f7_copy (cc, xx2);
cc_is_one = false;
}
else
f7_Imul (cc, xx2);
}
if (! cc_is_one
&& ! f7_is_nonzero (cc))
break;
u16 >>= 1;
if (u16 == 0)
break;
f7_Isquare (xx2);
}
if (cc_is_one)
f7_set_u16 (cc, 1);
else if (expo_is_neg)
f7_div1 (cc, cc);
}
#endif // F7MOD_powi_
#ifdef F7MOD_sincos_
#define ARRAY_NAME coeff_sin
#define FOR_SIN
#include "libf7-array.def"
#undef FOR_SIN
#undef ARRAY_NAME
#define ARRAY_NAME coeff_cos
#define FOR_COS
#include "libf7-array.def"
#undef FOR_COS
#undef ARRAY_NAME
#define STATIC static
#include "libf7-constdef.h" // pi_low
#undef STATIC
typedef union
{
struct
{
bool neg_sin : 1; // Must be bit F7_FLAGNO_sign.
bool neg_cos : 1;
bool do_sin: 1;
bool do_cos: 1;
bool swap_sincos : 1;
uint8_t res : 3;
};
uint8_t bits;
} sincos_t;
F7_WEAK
void f7_sincos (f7_t *ss, f7_t *cc, const f7_t *aa)
{
uint8_t a_class = f7_classify (aa);
sincos_t sc = { .bits = a_class & F7_FLAG_sign };
if (ss != NULL) sc.do_sin = 1;
if (cc != NULL) sc.do_cos = 1;
if (f7_class_nan (a_class) || f7_class_inf (a_class))
{
if (sc.do_sin) f7_set_nan (ss);
if (sc.do_cos) f7_set_nan (cc);
return;
}
f7_t pi7, *pi = &pi7;
f7_t xx7, *xx = &xx7;
f7_t yy7, *yy = &yy7;
f7_t *hh = sc.do_sin ? ss : cc;
// X = |A|
f7_copy (xx, aa);
xx->flags = 0;
// Y is how often we subtract PI from X.
f7_clr (yy);
f7_const (pi, pi);
if (f7_abscmp_msb_ge (xx, F7_(const_pi_msb), F7_(const_pi_expo) + 1))
{
pi->expo = 1 + F7_(const_pi_expo); // 2*pi
// Y = X / 2pi.
f7_div (yy, xx, pi);
// The integral part of |A| / pi mod 2 is bit 55 - x_expo.
if (yy->expo >= F7_MANT_BITS && !f7_is_zero (yy))
{
// Too big for sensible calculation: Should this be NaN instead?
if (sc.do_sin) f7_clr (ss);
if (sc.do_cos) f7_clr (cc);
return;
}
// X -= 2pi * [ X / 2pi ]
f7_floor (yy, yy);
f7_msub (xx, yy, pi, xx);
xx->flags ^= F7_FLAG_sign;
// We divided by 2pi, but Y should count times we subtracted pi.
yy->expo++;
}
pi->expo = F7_(const_pi_expo); // pi
f7_sub (hh, xx, pi);
if (!f7_signbit (hh))
{
// H = X - pi >= 0 => X >= pi
// sin(x) = -sin(x - pi)
// cos(x) = -cos(x - pi)
f7_copy (xx, hh);
// Y: We subtracted pi one more time.
f7_Iadd (yy, f7_set_u16 (hh, 1));
sc.neg_sin ^= 1;
sc.neg_cos ^= 1;
}
pi->expo = F7_(const_pi_expo) - 1; // pi/2
if (f7_gt (xx, pi))
{
// x > pi/2
// sin(x) = sin(pi - x)
// cos(x) = -cos(pi - x)
pi->expo = F7_(const_pi_expo); // pi
f7_IRsub (xx, pi);
// Y: We subtracted pi one more time (and then negated).
f7_Iadd (yy, f7_set_u16 (hh, 1));
yy->flags ^= F7_FLAG_sign;
sc.neg_cos ^= 1;
}
pi->expo = F7_(const_pi_expo) - 2; // pi/4
if (f7_gt (xx, pi))
{
// x > pi/4
// sin(x) = cos(pi/2 - x)
// cos(x) = sin(pi/2 - x)
pi->expo = F7_(const_pi_expo) - 1; // pi/2
f7_IRsub (xx, pi);
// Y: We subtracted pi/2 one more time (and then negated).
f7_Iadd (yy, f7_set_1pow2 (hh, -1, 0));
yy->flags ^= F7_FLAG_sign;
sc.swap_sincos = 1;
}
if (!f7_is0 (yy))
{
// Y counts how often we subtracted pi from X in order to
// get 0 <= X < pi/4 as small as possible (Y is 0 mod 0.5).
// Now also subtract the low part of pi:
// f7_const_pi_low = pi - f7_const_pi in order to get more precise
// results in the cases where the final result is close to 0.
const f7_t *pi_low = F7_CONST_ADDR (pi_low, pi);
//f7_const (pi, pi_low);
f7_Imul (yy, pi_low);
f7_Isub (xx, yy);
}
// X in [0, pi/4].
// X^2 in [0, pi^2/16] ~ [0, 0.6169]
f7_square (yy, xx);
f7_t *x_sin = xx;
f7_t *x_cos = yy;
if ((sc.do_sin && !sc.swap_sincos)
|| (sc.do_cos && sc.swap_sincos))
{
f7_horner (hh, yy, n_coeff_sin, coeff_sin, NULL);
f7_mul (x_sin, hh, xx);
}
if ((sc.do_cos && !sc.swap_sincos)
|| (sc.do_sin && sc.swap_sincos))
{
f7_horner (x_cos, yy, n_coeff_cos, coeff_cos, hh);
}
if (sc.swap_sincos)
{
x_sin = yy;
x_cos = xx;
}
if (sc.do_sin)
{
x_sin->flags ^= sc.bits;
x_sin->flags &= F7_FLAG_sign;
f7_copy (ss, x_sin);
}
if (sc.do_cos)
{
x_cos->flags = sc.neg_cos;
f7_copy (cc, x_cos);
}
}
#endif // F7MOD_sincos_
#ifdef F7MOD_sin_
F7_WEAK
void f7_sin (f7_t *ss, const f7_t *aa)
{
f7_sincos (ss, NULL, aa);
}
#endif // F7MOD_sin_
#ifdef F7MOD_cos_
F7_WEAK
void f7_cos (f7_t *cc, const f7_t *aa)
{
f7_sincos (NULL, cc, aa);
}
#endif // F7MOD_cos_
#ifdef F7MOD_tan_
F7_WEAK
void f7_tan (f7_t *tt, const f7_t *aa)
{
f7_t xcos;
f7_sincos (tt, & xcos, aa);
f7_Idiv (tt, & xcos);
}
#endif // F7MOD_tan_
#ifdef F7MOD_cotan_
F7_WEAK
void f7_cotan (f7_t *ct, const f7_t *aa)
{
f7_t xcos;
f7_sincos (ct, & xcos, aa);
f7_div (ct, & xcos, ct);
}
#endif // F7MOD_cotan_
#ifdef F7MOD_sinhcosh_
F7_WEAK
void f7_sinhcosh (f7_t *cc, const f7_t *aa, bool do_sinh)
{
f7_t xx7, *xx = &xx7;
// C = exp(A)
f7_exp (cc, aa);
// X = exp(-A)
f7_div (xx, f7_set_u16 (xx, 1), cc);
// sinh(A) = (exp(A) - exp(-A)) / 2
// cosh(A) = (exp(A) + exp(-A)) / 2
f7_addsub (cc, cc, xx, do_sinh);
cc->expo--;
}
#endif // F7MOD_sinhcosh_
#ifdef F7MOD_sinh_
#define ARRAY_NAME coeff_sinh
#include "libf7-array.def"
#undef ARRAY_NAME
F7_WEAK
void f7_sinh (f7_t *cc, const f7_t *aa)
{
if (aa->expo <= -2)
{
// For small values, exp(A) - exp(-A) suffers from cancellation, hence
// use a MiniMax polynomial for |A| < 0.5.
f7_t xx7, *xx = &xx7;
f7_t hh7, *hh = &hh7;
f7_square (xx, aa);
f7_horner (hh, xx, n_coeff_sinh, coeff_sinh, NULL);
f7_mul (cc, aa, hh);
return;
}
f7_sinhcosh (cc, aa, true);
}
#endif // F7MOD_sinh_
#ifdef F7MOD_cosh_
F7_WEAK
void f7_cosh (f7_t *cc, const f7_t *aa)
{
f7_sinhcosh (cc, aa, false);
}
#endif // F7MOD_cosh_
#ifdef F7MOD_tanh_
F7_WEAK
void f7_tanh (f7_t *cc, const f7_t *aa)
{
// tanh(A) = (exp(2A) - 1) / (exp(2A) + 1)
f7_t xx7, *xx = &xx7;
F7_PCONST_U16 (const f7_t *one, 1);
// C = 2A
f7_copy (cc, aa);
cc->expo++;
// C = exp(2A)
f7_exp (cc, cc);
// X = exp(2A) + 1
f7_add (xx, cc, one);
// C = exp(2A) - 1
f7_Isub (cc, one);
// C = tanh(A)
f7_Idiv (cc, xx);
}
#endif // F7MOD_tanh_
#ifdef F7MOD_atan_
#define MINIMAX_6_6_IN_0_1
#define ARRAY_NAME coeff_atan_zahler
#define FOR_NUMERATOR
#include "libf7-array.def"
#undef FOR_NUMERATOR
#undef ARRAY_NAME
#define ARRAY_NAME coeff_atan_nenner
#define FOR_DENOMINATOR
#include "libf7-array.def"
#undef FOR_DENOMINATOR
#undef ARRAY_NAME
#include "libf7-constdef.h"
F7_WEAK
void f7_atan (f7_t *cc, const f7_t *aa)
{
uint8_t a_class = f7_classify (aa);
uint8_t flags = a_class & F7_FLAG_sign;
if (f7_class_nan (a_class))
return f7_set_nan (cc);
f7_t yy7, *yy = &yy7;
f7_t zz7, *zz = &zz7;
if (f7_class_inf (a_class))
{
f7_set_u16 (cc, 0);
goto do_Inf;
}
// C = |A|
f7_copy (cc, aa);
cc->flags = 0;
if (!f7_class_zero (a_class) && cc->expo >= 0)
{
// C >= 1: use atan (x) + atan (1/x) = pi / 2 to reduce to [0, 1].
flags |= 1 << 1;
f7_div (cc, f7_set_u16 (yy, 1), cc);
}
#if !defined (MINIMAX_6_6_IN_0_1)
const uint8_t const_a_msb = 0x89;
const int16_t const_a_expo = -2;
if (f7_abscmp_msb_ge (cc, const_a_msb, const_a_expo))
{
// We have C in [0, 1] and we want to use argument reduction by means
// of addition theorem atan(x) - atan(y) = atan((x - y) / (1 + xy)).
// We want to split [0, 1] into [0, a] u [a, 1] in such a way that
// the upper interval will be mapped to [-a, a]. The system is easy
// to solve and yiels
// y = 1 / sqrt (3) ~ 0.57735 atan(y) = pi / 6
// a = (1 - y) / (1 + y) ~ 0.26795 ~ 0x0.8930A2F * 2^-1.
flags |= 1 << 2;
// C <- (C - Y) / (1 + C * Y) in [-a, a]
const f7_t *cst = F7_CONST_ADDR (1_sqrt3, zz);
f7_mul (yy, cc, cst);
f7_Isub (cc, cst);
f7_Iadd (yy, F7_U16_ADDR (1, zz));
f7_Idiv (cc, yy);
}
#endif
// C <- C * p(C^2) / q(C^2)
f7_square (yy, cc);
f7_horner (zz, yy, n_coeff_atan_zahler, coeff_atan_zahler, NULL);
f7_Imul (zz, cc);
f7_horner (cc, yy, n_coeff_atan_nenner, coeff_atan_nenner, NULL);
f7_div (cc, zz, cc);
#if !defined (MINIMAX_6_6_IN_0_1)
if (flags & (1 << 2))
f7_Iadd (cc, F7_CONST_ADDR (pi_6, yy));
#endif
if (flags & (1 << 1))
{
do_Inf:;
// Y = pi / 2
f7_const (yy, pi);
yy->expo = F7_(const_pi_expo) - 1;
f7_IRsub (cc, yy);
}
cc->flags = a_class & F7_FLAG_sign;
}
#undef MINIMAX_6_6_IN_0_1
#endif // F7MOD_atan_
#ifdef F7MOD_atan2_
F7_WEAK
void f7_atan2 (f7_t *cc, const f7_t *yy, const f7_t *xx)
{
uint8_t y_class = f7_classify (yy);
uint8_t x_class = f7_classify (xx);
// (NaN, *) -> NaN
// (*, NaN) -> NaN
if (f7_class_nan (y_class | x_class))
return f7_set_nan (cc);
// (0, 0) -> 0
if (f7_class_zero (y_class & x_class))
return f7_clr (cc);
f7_t pi7, *pi = &pi7;
f7_const (pi, pi);
// (Inf, +Inf) -> +pi/4; (-Inf, +Inf) -> +3pi/4
// (Inf, -Inf) -> -pi/4; (-Inf, -Inf) -> -3pi/4
if (f7_class_inf (y_class & x_class))
{
f7_copy (cc, pi);
if (! f7_class_sign (x_class))
cc->expo = F7_(const_pi_expo) - 1; // pi / 2
pi->expo = F7_(const_pi_expo) - 2; // pi / 4
f7_Isub (cc, pi);
cc->flags = y_class & F7_FLAG_sign;
return;
}
// sign(pi) := sign(y)
pi->flags = y_class & F7_FLAG_sign;
// Only use atan(*) with |*| <= 1.
if (f7_cmp_abs (yy, xx) > 0)
{
// |y| > |x|: atan2 = sgn(y) * pi/2 - atan (x / y);
pi->expo = F7_(const_pi_expo) - 1; // +- pi / 2
f7_div (cc, xx, yy);
f7_atan (cc, cc);
f7_IRsub (cc, pi);
}
else
{
// x > |y|: atan2 = atan (y / x)
// x < -|y|: atan2 = atan (y / x) +- pi
f7_div (cc, yy, xx);
f7_atan (cc, cc);
if (f7_class_sign (x_class))
f7_Iadd (cc, pi);
}
}
#endif // F7MOD_atan2_
#ifdef F7MOD_asinacos_
#define ARRAY_NAME coeff_func_a_zahler
#define FOR_NUMERATOR
#include "libf7-array.def"
#undef FOR_NUMERATOR
#undef ARRAY_NAME
#define ARRAY_NAME coeff_func_a_nenner
#define FOR_DENOMINATOR
#include "libf7-array.def"
#undef FOR_DENOMINATOR
#undef ARRAY_NAME
typedef union
{
struct
{
bool sign : 1; // Must be bit F7_FLAGNO_sign.
bool do_acos : 1; // From caller.
bool have_acos : 1; // What we compute from rational approx p/q.
uint8_t res : 5;
};
uint8_t bits;
} asinacos_t;
F7_WEAK
void f7_asinacos (f7_t *cc, const f7_t *aa, uint8_t what)
{
f7_t xx7, *xx = &xx7;
f7_t xx27, *xx2 = &xx27;
asinacos_t flags = { .bits = what | f7_signbit (aa) };
f7_abs (xx, aa);
int8_t cmp = f7_cmp (xx, f7_set_u16 (cc, 1));
if (cmp == INT8_MIN
|| cmp > 0)
{
return f7_set_nan (cc);
}
if (xx->expo <= -2 || f7_is_zero (xx))
{
// |A| < 1/2: asin(x) = x * a(2*x^2)
f7_square (xx2, xx);
xx2->expo ++;
}
else
{
// |A| > 1/2: acos (1-x) = sqrt(2*x) * a(x)
// C is 1 from above.
f7_IRsub (xx, cc);
f7_copy (xx2, xx);
flags.have_acos = 1;
}
// MiniMax [5/4] numerator.
f7_horner (cc, xx2, n_coeff_func_a_zahler, coeff_func_a_zahler, NULL);
if (flags.have_acos)
{
xx->expo ++;
f7_Isqrt (xx);
}
f7_Imul (cc, xx);
// MiniMax [5/4] denominator.
f7_horner (xx, xx2, n_coeff_func_a_nenner, coeff_func_a_nenner, NULL);
f7_Idiv (cc, xx);
/*
With the current value of C, we have:
| | do_asin | do_acos
| C | A <= 0 | A >= 0 | A <= 0 | A >= 0
----------+------------+-----------+----------+----------+----------
have_asin | asin (|A|) | -C | C | pi/2 + C | pi/2 - C
have_acos | acos (|A|) | -pi/2 + C | pi/2 - C | pi - C | C
Result = n_pi2 * pi/2 + C * (c_sign ? -1 : 1)
Result (A, do_asin) = asin (A)
Result (A, do_acos) = acos (A)
with
c_sign = do_acos ^ have_acos ^ a_sign
n_pi2 = do_acos + have_acos * (a_sign ^ do_acos) ? (-1 : 1)
n_pi2 in { -1, 0, 1, 2 }
*/
// All what matters for c_sign is bit 0.
uint8_t c_sign = flags.bits;
int8_t n_pi2 = flags.do_acos;
c_sign ^= flags.do_acos;
if (flags.have_acos)
{
n_pi2++;
__asm ("" : "+r" (n_pi2));
if (c_sign & 1) // c_sign & 1 = a_sign ^ do_acos
n_pi2 -= 2;
c_sign++;
}
cc->flags = c_sign & F7_FLAG_sign;
if (n_pi2)
{
f7_const (xx, pi);
if (n_pi2 < 0)
xx->sign = 1;
if (n_pi2 != 2)
xx->expo = F7_(const_pi_expo) - 1;
f7_Iadd (cc, xx);
}
}
#endif // F7MOD_asinacos_
#ifdef F7MOD_asin_
F7_WEAK
void f7_asin (f7_t *cc, const f7_t *aa)
{
f7_asinacos (cc, aa, 0);
}
#endif // F7MOD_asin_
#ifdef F7MOD_acos_
F7_WEAK
void f7_acos (f7_t *cc, const f7_t *aa)
{
f7_asinacos (cc, aa, 1 << 1);
}
#endif // F7MOD_acos_
#ifndef IN_LIBGCC2
#ifdef F7MOD_put_C_
#include <stdio.h>
#include <avr/pgmspace.h>
static F7_INLINE
uint8_t f7_hex_digit (uint8_t nibble)
{
nibble = (uint8_t) (nibble + '0');
if (nibble > '9')
nibble = (uint8_t) (nibble + ('a' - '0' - 10));
return nibble;
}
static void f7_put_hex2 (uint8_t x, FILE *stream)
{
putc ('0', stream);
if (x)
{
putc ('x', stream);
putc (f7_hex_digit (x >> 4), stream);
putc (f7_hex_digit (x & 0xf), stream);
}
}
#define XPUT(str) \
fputs_P (PSTR (str), stream)
// Write to STREAM a line that is appropriate for usage in libf7-const.def.
F7_WEAK
void f7_put_CDEF (const char *name, const f7_t *aa, FILE *stream)
{
char buf[7];
XPUT ("F7_CONST_DEF (");
fputs (name, stream);
XPUT (",\t");
uint8_t a_class = f7_classify (aa);
if (! f7_class_nonzero (a_class))
{
f7_put_hex2 (a_class & F7_FLAGS, stream);
XPUT (",\t0,0,0,0,0,0,0,\t0)");
return;
}
putc ('0' + (a_class & F7_FLAGS), stream);
XPUT (",\t");
for (uint8_t i = 0; i < F7_MANT_BYTES; i++)
{
f7_put_hex2 (aa->mant[F7_MANT_BYTES-1 - i], stream);
putc (',', stream);
}
putc ('\t', stream);
itoa (aa->expo, buf, 10);
fputs (buf, stream);
XPUT (")");
}
void f7_put_C (const f7_t *aa, FILE *stream)
{
char buf[7];
uint8_t a_class = f7_classify (aa);
if (f7_class_nan (a_class))
{
XPUT ("{ .is_nan = 1 }");
return;
}
bool sign = a_class & F7_FLAG_sign;
if (f7_class_inf (a_class))
{
XPUT ("{ .is_nan = 1, .sign = ");
putc ('0' + sign, stream);
XPUT (" }");
return;
}
XPUT ("{ .sign = ");
putc ('0' + sign, stream);
XPUT (", .mant = { ");
for (uint8_t i = 0; i < F7_MANT_BYTES; i++)
{
f7_put_hex2 (aa->mant[F7_MANT_BYTES-1 - i], stream);
if (i != F7_MANT_BYTES - 1)
putc (',', stream);
}
XPUT (" }, .expo = ");
itoa (aa->expo, buf, 10);
fputs (buf, stream);
XPUT (" }");
}
#endif //F7MOD_put_C_
#ifdef F7MOD_dump_
#include <avr/pgmspace.h>
#ifndef AVRTEST_H
#include <stdio.h>
static void LOG_PSTR (const char *str)
{
fputs_P (str, stdout);
}
static void LOG_PFMT_U16 (const char *fmt, uint16_t x)
{
printf_P (fmt, x);
}
static void LOG_PFMT_FLOAT (const char *fmt, float x)
{
printf_P (fmt, x);
}
#define LOG_X8(X) LOG_PFMT_U16 (PSTR (" 0x%02x "), (uint8_t)(X))
#define LOG_PFMT_S16(FMT, X) LOG_PFMT_U16 (FMT, (unsigned)(X))
#define LOG_PFMT_ADDR(FMT, X) LOG_PFMT_U16 (FMT, (unsigned)(X))
#endif // AVRTEST_H
static void dump_byte (uint8_t b)
{
LOG_PSTR (PSTR (" "));
for (uint8_t i = 0; i < 8; i++)
{
LOG_PSTR ((b & 0x80) ? PSTR ("1") : PSTR ("0"));
b = (uint8_t) (b << 1);
}
}
void f7_dump_mant (const f7_t *aa)
{
LOG_PSTR (PSTR ("\tmant ="));
for (int i = F7_MANT_BYTES - 1; i >= 0; i--)
LOG_X8 (aa->mant[i]);
LOG_PSTR (PSTR ("\n\t ="));
for (int i = F7_MANT_BYTES - 1; i >= 0; i--)
dump_byte (aa->mant[i]);
LOG_PSTR (PSTR ("\n"));
}
void f7_dump (const f7_t *aa)
{
LOG_PFMT_ADDR (PSTR ("\n0x%04x\tflags = "), aa);
dump_byte (aa->flags);
uint8_t a_class = f7_classify (aa);
LOG_PSTR (PSTR (" = "));
LOG_PSTR (f7_class_sign (a_class) ? PSTR ("-") : PSTR ("+"));
if (f7_class_inf (a_class)) LOG_PSTR (PSTR ("Inf "));
if (f7_class_nan (a_class)) LOG_PSTR (PSTR ("NaN "));
if (f7_class_zero (a_class)) LOG_PSTR (PSTR ("0 "));
if (f7_class_number (a_class)) LOG_PSTR (PSTR ("Number "));
LOG_PFMT_FLOAT (PSTR (" = %.10g\n"), f7_get_float (aa));
LOG_PFMT_S16 (PSTR ("\texpo = %d\n"), aa->expo);
f7_dump_mant (aa);
}
#endif // F7MOD_dump_
#endif // ! libgcc
#endif // !AVR_TINY
|