1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/* Software floating-point emulation.
Convert a _BitInt to _Decimal64.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "soft-fp.h"
#include "bitint.h"
#ifdef __BITINT_MAXWIDTH__
extern _Decimal64 __bid_floatbitintdd (const UBILtype *, SItype);
_Decimal64
__bid_floatbitintdd (const UBILtype *i, SItype iprec)
{
iprec = bitint_reduce_prec (&i, iprec);
USItype aiprec = iprec < 0 ? -iprec : iprec;
USItype in = (aiprec + BIL_TYPE_SIZE - 1) / BIL_TYPE_SIZE;
USItype idx = BITINT_END (0, in - 1);
UBILtype msb = i[idx];
UDItype mantissa;
SItype exponent = 0;
UBILtype inexact = 0;
union { _Decimal64 d; UDItype u; } u, ui;
if (aiprec % BIL_TYPE_SIZE)
{
if (iprec > 0)
msb &= ((UBILtype) 1 << (aiprec % BIL_TYPE_SIZE)) - 1;
else
msb |= (UBILtype) -1 << (aiprec % BIL_TYPE_SIZE);
}
if (iprec < 0)
{
SItype n = sizeof (0ULL) * __CHAR_BIT__ + 1 - __builtin_clzll (~msb);
aiprec = (in - 1) * BIL_TYPE_SIZE + n;
}
else if (msb == 0)
aiprec = 1;
else
{
SItype n = sizeof (0ULL) * __CHAR_BIT__ - __builtin_clzll (msb);
aiprec = (in - 1) * BIL_TYPE_SIZE + n;
}
/* Number of bits in (_BitInt(2048)) 9999999999999999e+369DD. */
if (aiprec > 1279 + (iprec < 0))
{
ovf:
if (iprec < 0)
u.d = -9000000000000000e+369DD;
else
u.d = 9000000000000000e+369DD;
__asm ("" : "+g" (u.d));
u.d += u.d;
__asm ("" : "+g" (u.d));
goto done;
}
/* Bit precision of 9999999999999999uwb. */
if (aiprec >= 54)
{
USItype pow10_limbs, q_limbs, q2_limbs, j;
USItype exp_bits = 0, e;
UDItype m;
UBILtype *buf;
/* First do a possibly large divide smaller enough such that
we only need to check remainder for 0 or non-0 and then
we'll do further division. */
if (aiprec >= 54 + 4 + 10)
{
exp_bits = (aiprec - 54 - 4) / 10;
exponent = exp_bits * 3;
/* Upper estimate for pow10 (exponent) bits. */
exp_bits = exp_bits * 10 - exp_bits / 30;
}
pow10_limbs = (exp_bits + BIL_TYPE_SIZE - 1) / BIL_TYPE_SIZE;
/* 72 is the highest number of quotient bits needed on
aiprec range of [68, 1279]. E.g. if aiprec is 1277,
exponent will be 363 and exp_bits 1206. 1277 - 1206 + 1
is 72. Unfortunately that means the result doesn't fit into
UDItype... */
q_limbs = (72 + BIL_TYPE_SIZE - 1) / BIL_TYPE_SIZE;
q2_limbs = 64 / BIL_TYPE_SIZE;
buf = __builtin_alloca ((q_limbs + pow10_limbs * 2 + q2_limbs + 2)
* sizeof (UBILtype));
if (exponent)
{
__bid_pow10bitint (buf + q_limbs, exp_bits, exponent);
__divmodbitint4 (buf, q_limbs * BIL_TYPE_SIZE,
buf + q_limbs + pow10_limbs,
pow10_limbs * BIL_TYPE_SIZE,
i, iprec < 0 ? -aiprec : aiprec,
buf + q_limbs, exp_bits);
if (iprec < 0)
bitint_negate (buf + BITINT_END (q_limbs - 1, 0),
buf + BITINT_END (q_limbs - 1, 0), q_limbs);
inexact = buf[q_limbs + pow10_limbs];
for (j = 1; j < pow10_limbs; ++j)
inexact |= buf[q_limbs + pow10_limbs + j];
}
else
{
__builtin_memcpy (buf + BITINT_END (q_limbs - in + 1, 0), i,
(in - 1) * sizeof (UBILtype));
buf[BITINT_END (q_limbs - in, in - 1)] = msb;
if (iprec < 0)
bitint_negate (buf + BITINT_END (q_limbs - 1, 0),
buf + BITINT_END (q_limbs - 1, 0), in);
if (q_limbs > in)
__builtin_memset (buf + BITINT_END (0, in), '\0',
(q_limbs - in) * sizeof (UBILtype));
}
e = 0;
#if BIL_TYPE_SIZE == 64
m = buf[BITINT_END (1, 0)];
#elif BIL_TYPE_SIZE == 32
m = (UDItype) buf[1] << 32 | buf[BITINT_END (2, 0)];
#else
# error Unsupported BIL_TYPE_SIZE
#endif
if (buf[BITINT_END (0, q_limbs - 1)])
{
if (buf[BITINT_END (0, q_limbs - 1)] > 0x5)
{
/* 1000000000000000000000wb */
if (buf[BITINT_END (0, q_limbs - 1)] > 0x36
|| (buf[BITINT_END (0, q_limbs - 1)] == 0x36
&& m >= (UDItype) 0x35c9adc5dea00000))
e = 6;
else
e = 5;
}
/* 100000000000000000000wb */
else if (buf[BITINT_END (0, q_limbs - 1)] == 0x5
&& m >= (UDItype) 0x6bc75e2d63100000)
e = 5;
else
e = 4;
}
else if (m >= (UDItype) 1000000000000000000)
{
if (m >= (UDItype) 10000000000000000000ULL)
e = 4;
else
e = 3;
}
else if (m >= (UDItype) 100000000000000000)
e = 2;
else if (m >= (UDItype) 10000000000000000)
e = 1;
exponent += e;
if (exponent > 369)
goto ovf;
if (e)
{
UBILtype rem, half;
__bid_pow10bitint (buf + q_limbs + pow10_limbs * 2,
BIL_TYPE_SIZE, e);
__divmodbitint4 (buf + q_limbs + pow10_limbs * 2 + 1,
q2_limbs * BIL_TYPE_SIZE,
buf + q_limbs + pow10_limbs * 2 + 1 + q2_limbs,
BIL_TYPE_SIZE,
buf, q_limbs * BIL_TYPE_SIZE,
buf + q_limbs + pow10_limbs * 2, BIL_TYPE_SIZE);
half = buf[q_limbs + pow10_limbs * 2] / 2;
rem = buf[q_limbs + pow10_limbs * 2 + 1 + q2_limbs];
if (inexact)
{
/* If first division discovered some non-0 digits
and this second division is by 10, e.g.
for XXXXXX5499999999999 or XXXXXX5000000000001
if first division is by 10^12 and second by 10^1,
doing rem |= 1 wouldn't change the 5. Similarly
for rem 4 doing rem |= 1 would change it to 5,
but we don't want to change it in that case. */
if (e == 1)
{
if (rem == 5)
rem = 6;
else if (rem != 4)
rem |= 1;
}
else
rem |= 1;
}
/* Set inexact to 0, 1, 2, 3 depending on if remainder
of the divisions is exact 0, smaller than 10^exponent / 2,
exactly 10^exponent / 2 or greater than that. */
if (rem >= half)
inexact = 2 + (rem > half);
else
inexact = (rem != 0);
#if BIL_TYPE_SIZE == 64
mantissa = buf[q_limbs + pow10_limbs * 2 + 1];
#else
mantissa
= ((UDItype)
buf[q_limbs + pow10_limbs * 2 + 1 + BITINT_END (0, 1)] << 32
| buf[q_limbs + pow10_limbs * 2 + 1 + BITINT_END (1, 0)]);
#endif
}
else
#if BIL_TYPE_SIZE == 64
mantissa = buf[BITINT_END (1, 0)];
#else
mantissa = (UDItype) buf[1] << 32 | buf[BITINT_END (2, 0)];
#endif
}
else
{
#if BIL_TYPE_SIZE == 64
mantissa = msb;
#else
if (in == 1)
mantissa = iprec < 0 ? (UDItype) (BILtype) msb : (UDItype) msb;
else
mantissa = (UDItype) msb << 32 | i[BITINT_END (1, 0)];
#endif
if (iprec < 0)
mantissa = -mantissa;
}
exponent += 398;
if (mantissa >= (UDItype) 0x20000000000000)
u.u = (((((iprec < 0) << 2) | (UDItype) 3) << 61)
| (((UDItype) exponent) << 51)
| (mantissa ^ (UDItype) 0x20000000000000));
else
u.u = ((((UDItype) (iprec < 0)) << 63)
| (((UDItype) exponent) << 53)
| mantissa);
if (inexact)
{
ui.u = ((((UDItype) (iprec < 0)) << 63)
| (((UDItype) (exponent - 1)) << 53)
| (inexact + 3));
__asm ("" : "+g" (u.d));
__asm ("" : "+g" (ui.d));
u.d += ui.d;
__asm ("" : "+g" (u.d));
}
done:
return u.d;
}
#endif
|