1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
|
/* Lock-free btree for manually registered unwind frames. */
/* Copyright (C) 2022-2024 Free Software Foundation, Inc.
Contributed by Thomas Neumann
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_UNWIND_DW2_BTREE_H
#define GCC_UNWIND_DW2_BTREE_H
#include <stdbool.h>
// Common logic for version locks.
struct version_lock
{
// The lock itself. The lowest bit indicates an exclusive lock,
// the second bit indicates waiting threads. All other bits are
// used as counter to recognize changes.
// Overflows are okay here, we must only prevent overflow to the
// same value within one lock_optimistic/validate
// range. Even on 32 bit platforms that would require 1 billion
// frame registrations within the time span of a few assembler
// instructions.
uintptr_type version_lock;
};
#ifdef __GTHREAD_HAS_COND
// We should never get contention within the tree as it rarely changes.
// But if we ever do get contention we use these for waiting.
static __gthread_mutex_t version_lock_mutex = __GTHREAD_MUTEX_INIT;
static __gthread_cond_t version_lock_cond = __GTHREAD_COND_INIT;
#endif
// Initialize in locked state.
static inline void
version_lock_initialize_locked_exclusive (struct version_lock *vl)
{
vl->version_lock = 1;
}
// Try to lock the node exclusive.
static inline bool
version_lock_try_lock_exclusive (struct version_lock *vl)
{
uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
if (state & 1)
return false;
return __atomic_compare_exchange_n (&(vl->version_lock), &state, state | 1,
false, __ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST);
}
// Lock the node exclusive, blocking as needed.
static void
version_lock_lock_exclusive (struct version_lock *vl)
{
#ifndef __GTHREAD_HAS_COND
restart:
#endif
// We should virtually never get contention here, as frame
// changes are rare.
uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
if (!(state & 1))
{
if (__atomic_compare_exchange_n (&(vl->version_lock), &state, state | 1,
false, __ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST))
return;
}
// We did get contention, wait properly.
#ifdef __GTHREAD_HAS_COND
__gthread_mutex_lock (&version_lock_mutex);
state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
while (true)
{
// Check if the lock is still held.
if (!(state & 1))
{
if (__atomic_compare_exchange_n (&(vl->version_lock), &state,
state | 1, false, __ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST))
{
__gthread_mutex_unlock (&version_lock_mutex);
return;
}
else
{
continue;
}
}
// Register waiting thread.
if (!(state & 2))
{
if (!__atomic_compare_exchange_n (&(vl->version_lock), &state,
state | 2, false, __ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST))
continue;
}
// And sleep.
__gthread_cond_wait (&version_lock_cond, &version_lock_mutex);
state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
}
#else
// Spin if we do not have condition variables available.
// We expect no contention here, spinning should be okay.
goto restart;
#endif
}
// Release a locked node and increase the version lock.
static void
version_lock_unlock_exclusive (struct version_lock *vl)
{
// increase version, reset exclusive lock bits
uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
uintptr_type ns = (state + 4) & (~((uintptr_type) 3));
state = __atomic_exchange_n (&(vl->version_lock), ns, __ATOMIC_SEQ_CST);
#ifdef __GTHREAD_HAS_COND
if (state & 2)
{
// Wake up waiting threads. This should be extremely rare.
__gthread_mutex_lock (&version_lock_mutex);
__gthread_cond_broadcast (&version_lock_cond);
__gthread_mutex_unlock (&version_lock_mutex);
}
#endif
}
// Acquire an optimistic "lock". Note that this does not lock at all, it
// only allows for validation later.
static inline bool
version_lock_lock_optimistic (const struct version_lock *vl, uintptr_type *lock)
{
uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
*lock = state;
// Acquiring the lock fails when there is currently an exclusive lock.
return !(state & 1);
}
// Validate a previously acquired "lock".
static inline bool
version_lock_validate (const struct version_lock *vl, uintptr_type lock)
{
// Prevent the reordering of non-atomic loads behind the atomic load.
// Hans Boehm, Can Seqlocks Get Along with Programming Language Memory
// Models?, Section 4.
__atomic_thread_fence (__ATOMIC_ACQUIRE);
// Check that the node is still in the same state.
uintptr_type state = __atomic_load_n (&(vl->version_lock), __ATOMIC_SEQ_CST);
return (state == lock);
}
// The largest possible separator value.
static const uintptr_type max_separator = ~((uintptr_type) (0));
struct btree_node;
// Inner entry. The child tree contains all entries <= separator.
struct inner_entry
{
uintptr_type separator;
struct btree_node *child;
};
// Leaf entry. Stores an object entry.
struct leaf_entry
{
uintptr_type base, size;
struct object *ob;
};
// Node types.
enum node_type
{
btree_node_inner,
btree_node_leaf,
btree_node_free
};
// Node sizes. Chosen such that the result size is roughly 256 bytes.
#define max_fanout_inner 15
#define max_fanout_leaf 10
// A btree node.
struct btree_node
{
// The version lock used for optimistic lock coupling.
struct version_lock version_lock;
// The number of entries.
unsigned entry_count;
// The type.
enum node_type type;
// The payload.
union
{
// The inner nodes have fence keys, i.e., the right-most entry includes a
// separator.
struct inner_entry children[max_fanout_inner];
struct leaf_entry entries[max_fanout_leaf];
} content;
};
// Is an inner node?
static inline bool
btree_node_is_inner (const struct btree_node *n)
{
return n->type == btree_node_inner;
}
// Is a leaf node?
static inline bool
btree_node_is_leaf (const struct btree_node *n)
{
return n->type == btree_node_leaf;
}
// Should the node be merged?
static inline bool
btree_node_needs_merge (const struct btree_node *n)
{
return n->entry_count < (btree_node_is_inner (n) ? (max_fanout_inner / 2)
: (max_fanout_leaf / 2));
}
// Get the fence key for inner nodes.
static inline uintptr_type
btree_node_get_fence_key (const struct btree_node *n)
{
// For inner nodes we just return our right-most entry.
return n->content.children[n->entry_count - 1].separator;
}
// Find the position for a slot in an inner node.
static unsigned
btree_node_find_inner_slot (const struct btree_node *n, uintptr_type value)
{
for (unsigned index = 0, ec = n->entry_count; index != ec; ++index)
if (n->content.children[index].separator >= value)
return index;
return n->entry_count;
}
// Find the position for a slot in a leaf node.
static unsigned
btree_node_find_leaf_slot (const struct btree_node *n, uintptr_type value)
{
for (unsigned index = 0, ec = n->entry_count; index != ec; ++index)
if (n->content.entries[index].base + n->content.entries[index].size > value)
return index;
return n->entry_count;
}
// Try to lock the node exclusive.
static inline bool
btree_node_try_lock_exclusive (struct btree_node *n)
{
return version_lock_try_lock_exclusive (&(n->version_lock));
}
// Lock the node exclusive, blocking as needed.
static inline void
btree_node_lock_exclusive (struct btree_node *n)
{
version_lock_lock_exclusive (&(n->version_lock));
}
// Release a locked node and increase the version lock.
static inline void
btree_node_unlock_exclusive (struct btree_node *n)
{
version_lock_unlock_exclusive (&(n->version_lock));
}
// Acquire an optimistic "lock". Note that this does not lock at all, it
// only allows for validation later.
static inline bool
btree_node_lock_optimistic (const struct btree_node *n, uintptr_type *lock)
{
return version_lock_lock_optimistic (&(n->version_lock), lock);
}
// Validate a previously acquire lock.
static inline bool
btree_node_validate (const struct btree_node *n, uintptr_type lock)
{
return version_lock_validate (&(n->version_lock), lock);
}
// Insert a new separator after splitting.
static void
btree_node_update_separator_after_split (struct btree_node *n,
uintptr_type old_separator,
uintptr_type new_separator,
struct btree_node *new_right)
{
unsigned slot = btree_node_find_inner_slot (n, old_separator);
for (unsigned index = n->entry_count; index > slot; --index)
n->content.children[index] = n->content.children[index - 1];
n->content.children[slot].separator = new_separator;
n->content.children[slot + 1].child = new_right;
n->entry_count++;
}
// A btree. Suitable for static initialization, all members are zero at the
// beginning.
struct btree
{
// The root of the btree.
struct btree_node *root;
// The free list of released node.
struct btree_node *free_list;
// The version lock used to protect the root.
struct version_lock root_lock;
};
// Initialize a btree. Not actually used, just for exposition.
static inline void
btree_init (struct btree *t)
{
t->root = NULL;
t->free_list = NULL;
t->root_lock.version_lock = 0;
};
static void
btree_release_tree_recursively (struct btree *t, struct btree_node *n);
// Destroy a tree and release all nodes.
static void
btree_destroy (struct btree *t)
{
// Disable the mechanism before cleaning up.
struct btree_node *old_root
= __atomic_exchange_n (&(t->root), NULL, __ATOMIC_SEQ_CST);
if (old_root)
btree_release_tree_recursively (t, old_root);
// Release all free nodes.
while (t->free_list)
{
struct btree_node *next = t->free_list->content.children[0].child;
free (t->free_list);
t->free_list = next;
}
}
// Allocate a node. This node will be returned in locked exclusive state.
static struct btree_node *
btree_allocate_node (struct btree *t, bool inner)
{
while (true)
{
// Try the free list first.
struct btree_node *next_free
= __atomic_load_n (&(t->free_list), __ATOMIC_SEQ_CST);
if (next_free)
{
if (!btree_node_try_lock_exclusive (next_free))
continue;
// The node might no longer be free, check that again after acquiring
// the exclusive lock.
if (next_free->type == btree_node_free)
{
struct btree_node *ex = next_free;
if (__atomic_compare_exchange_n (
&(t->free_list), &ex, next_free->content.children[0].child,
false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
{
next_free->entry_count = 0;
next_free->type = inner ? btree_node_inner : btree_node_leaf;
return next_free;
}
}
btree_node_unlock_exclusive (next_free);
continue;
}
// No free node available, allocate a new one.
struct btree_node *new_node
= (struct btree_node *) (malloc (sizeof (struct btree_node)));
version_lock_initialize_locked_exclusive (
&(new_node->version_lock)); // initialize the node in locked state.
new_node->entry_count = 0;
new_node->type = inner ? btree_node_inner : btree_node_leaf;
return new_node;
}
}
// Release a node. This node must be currently locked exclusively and will
// be placed in the free list.
static void
btree_release_node (struct btree *t, struct btree_node *node)
{
// We cannot release the memory immediately because there might still be
// concurrent readers on that node. Put it in the free list instead.
node->type = btree_node_free;
struct btree_node *next_free
= __atomic_load_n (&(t->free_list), __ATOMIC_SEQ_CST);
do
{
node->content.children[0].child = next_free;
} while (!__atomic_compare_exchange_n (&(t->free_list), &next_free, node,
false, __ATOMIC_SEQ_CST,
__ATOMIC_SEQ_CST));
btree_node_unlock_exclusive (node);
}
// Recursively release a tree. The btree is by design very shallow, thus
// we can risk recursion here.
static void
btree_release_tree_recursively (struct btree *t, struct btree_node *node)
{
btree_node_lock_exclusive (node);
if (btree_node_is_inner (node))
{
for (unsigned index = 0; index < node->entry_count; ++index)
btree_release_tree_recursively (t, node->content.children[index].child);
}
btree_release_node (t, node);
}
// Check if we are splitting the root.
static void
btree_handle_root_split (struct btree *t, struct btree_node **node,
struct btree_node **parent)
{
// We want to keep the root pointer stable to allow for contention
// free reads. Thus, we split the root by first moving the content
// of the root node to a new node, and then split that new node.
if (!*parent)
{
// Allocate a new node, this guarantees us that we will have a parent
// afterwards.
struct btree_node *new_node
= btree_allocate_node (t, btree_node_is_inner (*node));
struct btree_node *old_node = *node;
new_node->entry_count = old_node->entry_count;
new_node->content = old_node->content;
old_node->content.children[0].separator = max_separator;
old_node->content.children[0].child = new_node;
old_node->entry_count = 1;
old_node->type = btree_node_inner;
*parent = old_node;
*node = new_node;
}
}
// Split an inner node.
static void
btree_split_inner (struct btree *t, struct btree_node **inner,
struct btree_node **parent, uintptr_type target)
{
// Check for the root.
btree_handle_root_split (t, inner, parent);
// Create two inner node.
uintptr_type right_fence = btree_node_get_fence_key (*inner);
struct btree_node *left_inner = *inner;
struct btree_node *right_inner = btree_allocate_node (t, true);
unsigned split = left_inner->entry_count / 2;
right_inner->entry_count = left_inner->entry_count - split;
for (unsigned index = 0; index < right_inner->entry_count; ++index)
right_inner->content.children[index]
= left_inner->content.children[split + index];
left_inner->entry_count = split;
uintptr_type left_fence = btree_node_get_fence_key (left_inner);
btree_node_update_separator_after_split (*parent, right_fence, left_fence,
right_inner);
if (target <= left_fence)
{
*inner = left_inner;
btree_node_unlock_exclusive (right_inner);
}
else
{
*inner = right_inner;
btree_node_unlock_exclusive (left_inner);
}
}
// Split a leaf node.
static void
btree_split_leaf (struct btree *t, struct btree_node **leaf,
struct btree_node **parent, uintptr_type fence,
uintptr_type target)
{
// Check for the root.
btree_handle_root_split (t, leaf, parent);
// Create two leaf nodes.
uintptr_type right_fence = fence;
struct btree_node *left_leaf = *leaf;
struct btree_node *right_leaf = btree_allocate_node (t, false);
unsigned split = left_leaf->entry_count / 2;
right_leaf->entry_count = left_leaf->entry_count - split;
for (unsigned index = 0; index != right_leaf->entry_count; ++index)
right_leaf->content.entries[index]
= left_leaf->content.entries[split + index];
left_leaf->entry_count = split;
uintptr_type left_fence = right_leaf->content.entries[0].base - 1;
btree_node_update_separator_after_split (*parent, right_fence, left_fence,
right_leaf);
if (target <= left_fence)
{
*leaf = left_leaf;
btree_node_unlock_exclusive (right_leaf);
}
else
{
*leaf = right_leaf;
btree_node_unlock_exclusive (left_leaf);
}
}
// Merge (or balance) child nodes.
static struct btree_node *
btree_merge_node (struct btree *t, unsigned child_slot,
struct btree_node *parent, uintptr_type target)
{
// Choose the emptiest neighbor and lock both. The target child is already
// locked.
unsigned left_slot;
struct btree_node *left_node, *right_node;
if ((child_slot == 0)
|| (((child_slot + 1) < parent->entry_count)
&& (parent->content.children[child_slot + 1].child->entry_count
< parent->content.children[child_slot - 1].child->entry_count)))
{
left_slot = child_slot;
left_node = parent->content.children[left_slot].child;
right_node = parent->content.children[left_slot + 1].child;
btree_node_lock_exclusive (right_node);
}
else
{
left_slot = child_slot - 1;
left_node = parent->content.children[left_slot].child;
right_node = parent->content.children[left_slot + 1].child;
btree_node_lock_exclusive (left_node);
}
// Can we merge both nodes into one node?
unsigned total_count = left_node->entry_count + right_node->entry_count;
unsigned max_count
= btree_node_is_inner (left_node) ? max_fanout_inner : max_fanout_leaf;
if (total_count <= max_count)
{
// Merge into the parent?
if (parent->entry_count == 2)
{
// Merge children into parent. This can only happen at the root.
if (btree_node_is_inner (left_node))
{
for (unsigned index = 0; index != left_node->entry_count; ++index)
parent->content.children[index]
= left_node->content.children[index];
for (unsigned index = 0; index != right_node->entry_count;
++index)
parent->content.children[index + left_node->entry_count]
= right_node->content.children[index];
}
else
{
parent->type = btree_node_leaf;
for (unsigned index = 0; index != left_node->entry_count; ++index)
parent->content.entries[index]
= left_node->content.entries[index];
for (unsigned index = 0; index != right_node->entry_count;
++index)
parent->content.entries[index + left_node->entry_count]
= right_node->content.entries[index];
}
parent->entry_count = total_count;
btree_release_node (t, left_node);
btree_release_node (t, right_node);
return parent;
}
else
{
// Regular merge.
if (btree_node_is_inner (left_node))
{
for (unsigned index = 0; index != right_node->entry_count;
++index)
left_node->content.children[left_node->entry_count++]
= right_node->content.children[index];
}
else
{
for (unsigned index = 0; index != right_node->entry_count;
++index)
left_node->content.entries[left_node->entry_count++]
= right_node->content.entries[index];
}
parent->content.children[left_slot].separator
= parent->content.children[left_slot + 1].separator;
for (unsigned index = left_slot + 1; index + 1 < parent->entry_count;
++index)
parent->content.children[index]
= parent->content.children[index + 1];
parent->entry_count--;
btree_release_node (t, right_node);
btree_node_unlock_exclusive (parent);
return left_node;
}
}
// No merge possible, rebalance instead.
if (left_node->entry_count > right_node->entry_count)
{
// Shift from left to right.
unsigned to_shift
= (left_node->entry_count - right_node->entry_count) / 2;
if (btree_node_is_inner (left_node))
{
for (unsigned index = 0; index != right_node->entry_count; ++index)
{
unsigned pos = right_node->entry_count - 1 - index;
right_node->content.children[pos + to_shift]
= right_node->content.children[pos];
}
for (unsigned index = 0; index != to_shift; ++index)
right_node->content.children[index]
= left_node->content
.children[left_node->entry_count - to_shift + index];
}
else
{
for (unsigned index = 0; index != right_node->entry_count; ++index)
{
unsigned pos = right_node->entry_count - 1 - index;
right_node->content.entries[pos + to_shift]
= right_node->content.entries[pos];
}
for (unsigned index = 0; index != to_shift; ++index)
right_node->content.entries[index]
= left_node->content
.entries[left_node->entry_count - to_shift + index];
}
left_node->entry_count -= to_shift;
right_node->entry_count += to_shift;
}
else
{
// Shift from right to left.
unsigned to_shift
= (right_node->entry_count - left_node->entry_count) / 2;
if (btree_node_is_inner (left_node))
{
for (unsigned index = 0; index != to_shift; ++index)
left_node->content.children[left_node->entry_count + index]
= right_node->content.children[index];
for (unsigned index = 0; index != right_node->entry_count - to_shift;
++index)
right_node->content.children[index]
= right_node->content.children[index + to_shift];
}
else
{
for (unsigned index = 0; index != to_shift; ++index)
left_node->content.entries[left_node->entry_count + index]
= right_node->content.entries[index];
for (unsigned index = 0; index != right_node->entry_count - to_shift;
++index)
right_node->content.entries[index]
= right_node->content.entries[index + to_shift];
}
left_node->entry_count += to_shift;
right_node->entry_count -= to_shift;
}
uintptr_type left_fence;
if (btree_node_is_leaf (left_node))
{
left_fence = right_node->content.entries[0].base - 1;
}
else
{
left_fence = btree_node_get_fence_key (left_node);
}
parent->content.children[left_slot].separator = left_fence;
btree_node_unlock_exclusive (parent);
if (target <= left_fence)
{
btree_node_unlock_exclusive (right_node);
return left_node;
}
else
{
btree_node_unlock_exclusive (left_node);
return right_node;
}
}
// Insert an entry.
static bool
btree_insert (struct btree *t, uintptr_type base, uintptr_type size,
struct object *ob)
{
// Sanity check.
if (!size)
return false;
// Access the root.
struct btree_node *iter, *parent = NULL;
{
version_lock_lock_exclusive (&(t->root_lock));
iter = t->root;
if (iter)
{
btree_node_lock_exclusive (iter);
}
else
{
t->root = iter = btree_allocate_node (t, false);
}
version_lock_unlock_exclusive (&(t->root_lock));
}
// Walk down the btree with classic lock coupling and eager splits.
// Strictly speaking this is not performance optimal, we could use
// optimistic lock coupling until we hit a node that has to be modified.
// But that is more difficult to implement and frame registration is
// rare anyway, we use simple locking for now.
uintptr_type fence = max_separator;
while (btree_node_is_inner (iter))
{
// Use eager splits to avoid lock coupling up.
if (iter->entry_count == max_fanout_inner)
btree_split_inner (t, &iter, &parent, base);
unsigned slot = btree_node_find_inner_slot (iter, base);
if (parent)
btree_node_unlock_exclusive (parent);
parent = iter;
fence = iter->content.children[slot].separator;
iter = iter->content.children[slot].child;
btree_node_lock_exclusive (iter);
}
// Make sure we have space.
if (iter->entry_count == max_fanout_leaf)
btree_split_leaf (t, &iter, &parent, fence, base);
if (parent)
btree_node_unlock_exclusive (parent);
// Insert in node.
unsigned slot = btree_node_find_leaf_slot (iter, base);
if ((slot < iter->entry_count) && (iter->content.entries[slot].base == base))
{
// Duplicate entry, this should never happen.
btree_node_unlock_exclusive (iter);
return false;
}
for (unsigned index = iter->entry_count; index > slot; --index)
iter->content.entries[index] = iter->content.entries[index - 1];
struct leaf_entry *e = &(iter->content.entries[slot]);
e->base = base;
e->size = size;
e->ob = ob;
iter->entry_count++;
btree_node_unlock_exclusive (iter);
return true;
}
// Remove an entry.
static struct object *
btree_remove (struct btree *t, uintptr_type base)
{
// Access the root.
version_lock_lock_exclusive (&(t->root_lock));
struct btree_node *iter = t->root;
if (iter)
btree_node_lock_exclusive (iter);
version_lock_unlock_exclusive (&(t->root_lock));
if (!iter)
return NULL;
// Same strategy as with insert, walk down with lock coupling and
// merge eagerly.
while (btree_node_is_inner (iter))
{
unsigned slot = btree_node_find_inner_slot (iter, base);
struct btree_node *next = iter->content.children[slot].child;
btree_node_lock_exclusive (next);
if (btree_node_needs_merge (next))
{
// Use eager merges to avoid lock coupling up.
iter = btree_merge_node (t, slot, iter, base);
}
else
{
btree_node_unlock_exclusive (iter);
iter = next;
}
}
// Remove existing entry.
unsigned slot = btree_node_find_leaf_slot (iter, base);
if ((slot >= iter->entry_count) || (iter->content.entries[slot].base != base))
{
// Not found, this should never happen.
btree_node_unlock_exclusive (iter);
return NULL;
}
struct object *ob = iter->content.entries[slot].ob;
for (unsigned index = slot; index + 1 < iter->entry_count; ++index)
iter->content.entries[index] = iter->content.entries[index + 1];
iter->entry_count--;
btree_node_unlock_exclusive (iter);
return ob;
}
// Find the corresponding entry for the given address.
static struct object *
btree_lookup (const struct btree *t, uintptr_type target_addr)
{
// Within this function many loads are relaxed atomic loads.
// Use a macro to keep the code reasonable.
#define RLOAD(x) __atomic_load_n (&(x), __ATOMIC_RELAXED)
// For targets where unwind info is usually not registered through these
// APIs anymore, avoid any sequential consistent atomics.
// Use relaxed MO here, it is up to the app to ensure that the library
// loading/initialization happens-before using that library in other
// threads (in particular unwinding with that library's functions
// appearing in the backtraces). Calling that library's functions
// without waiting for the library to initialize would be racy.
if (__builtin_expect (!RLOAD (t->root), 1))
return NULL;
// The unwinding tables are mostly static, they only change when
// frames are added or removed. This makes it extremely unlikely that they
// change during a given unwinding sequence. Thus, we optimize for the
// contention free case and use optimistic lock coupling. This does not
// require any writes to shared state, instead we validate every read. It is
// important that we do not trust any value that we have read until we call
// validate again. Data can change at arbitrary points in time, thus we always
// copy something into a local variable and validate again before acting on
// the read. In the unlikely event that we encounter a concurrent change we
// simply restart and try again.
restart:
struct btree_node *iter;
uintptr_type lock;
{
// Accessing the root node requires defending against concurrent pointer
// changes Thus we couple rootLock -> lock on root node -> validate rootLock
if (!version_lock_lock_optimistic (&(t->root_lock), &lock))
goto restart;
iter = RLOAD (t->root);
if (!version_lock_validate (&(t->root_lock), lock))
goto restart;
if (!iter)
return NULL;
uintptr_type child_lock;
if ((!btree_node_lock_optimistic (iter, &child_lock))
|| (!version_lock_validate (&(t->root_lock), lock)))
goto restart;
lock = child_lock;
}
// Now we can walk down towards the right leaf node.
while (true)
{
enum node_type type = RLOAD (iter->type);
unsigned entry_count = RLOAD (iter->entry_count);
if (!btree_node_validate (iter, lock))
goto restart;
if (!entry_count)
return NULL;
if (type == btree_node_inner)
{
// We cannot call find_inner_slot here because we need (relaxed)
// atomic reads here.
unsigned slot = 0;
while (
((slot + 1) < entry_count)
&& (RLOAD (iter->content.children[slot].separator) < target_addr))
++slot;
struct btree_node *child = RLOAD (iter->content.children[slot].child);
if (!btree_node_validate (iter, lock))
goto restart;
// The node content can change at any point in time, thus we must
// interleave parent and child checks.
uintptr_type child_lock;
if (!btree_node_lock_optimistic (child, &child_lock))
goto restart;
if (!btree_node_validate (iter, lock))
goto restart; // make sure we still point to the correct node after
// acquiring the optimistic lock.
// Go down
iter = child;
lock = child_lock;
}
else
{
// We cannot call find_leaf_slot here because we need (relaxed)
// atomic reads here.
unsigned slot = 0;
while (((slot + 1) < entry_count)
&& (RLOAD (iter->content.entries[slot].base)
+ RLOAD (iter->content.entries[slot].size)
<= target_addr))
++slot;
struct leaf_entry entry;
entry.base = RLOAD (iter->content.entries[slot].base);
entry.size = RLOAD (iter->content.entries[slot].size);
entry.ob = RLOAD (iter->content.entries[slot].ob);
if (!btree_node_validate (iter, lock))
goto restart;
// Check if we have a hit.
if ((entry.base <= target_addr)
&& (target_addr < entry.base + entry.size))
{
return entry.ob;
}
return NULL;
}
}
#undef RLOAD
}
#endif /* unwind-dw2-btree.h */
|