1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements nat-to-string conversion functions.
package big
import (
"errors"
"fmt"
"io"
"math"
"math/bits"
"sync"
)
const digits = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
// Note: MaxBase = len(digits), but it must remain an untyped rune constant
// for API compatibility.
// MaxBase is the largest number base accepted for string conversions.
const MaxBase = 10 + ('z' - 'a' + 1) + ('Z' - 'A' + 1)
const maxBaseSmall = 10 + ('z' - 'a' + 1)
// maxPow returns (b**n, n) such that b**n is the largest power b**n <= _M.
// For instance maxPow(10) == (1e19, 19) for 19 decimal digits in a 64bit Word.
// In other words, at most n digits in base b fit into a Word.
// TODO(gri) replace this with a table, generated at build time.
func maxPow(b Word) (p Word, n int) {
p, n = b, 1 // assuming b <= _M
for max := _M / b; p <= max; {
// p == b**n && p <= max
p *= b
n++
}
// p == b**n && p <= _M
return
}
// pow returns x**n for n > 0, and 1 otherwise.
func pow(x Word, n int) (p Word) {
// n == sum of bi * 2**i, for 0 <= i < imax, and bi is 0 or 1
// thus x**n == product of x**(2**i) for all i where bi == 1
// (Russian Peasant Method for exponentiation)
p = 1
for n > 0 {
if n&1 != 0 {
p *= x
}
x *= x
n >>= 1
}
return
}
// scan errors
var (
errNoDigits = errors.New("number has no digits")
errInvalSep = errors.New("'_' must separate successive digits")
)
// scan scans the number corresponding to the longest possible prefix
// from r representing an unsigned number in a given conversion base.
// scan returns the corresponding natural number res, the actual base b,
// a digit count, and a read or syntax error err, if any.
//
// For base 0, an underscore character ``_'' may appear between a base
// prefix and an adjacent digit, and between successive digits; such
// underscores do not change the value of the number, or the returned
// digit count. Incorrect placement of underscores is reported as an
// error if there are no other errors. If base != 0, underscores are
// not recognized and thus terminate scanning like any other character
// that is not a valid radix point or digit.
//
// number = mantissa | prefix pmantissa .
// prefix = "0" [ "b" | "B" | "o" | "O" | "x" | "X" ] .
// mantissa = digits "." [ digits ] | digits | "." digits .
// pmantissa = [ "_" ] digits "." [ digits ] | [ "_" ] digits | "." digits .
// digits = digit { [ "_" ] digit } .
// digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
//
// Unless fracOk is set, the base argument must be 0 or a value between
// 2 and MaxBase. If fracOk is set, the base argument must be one of
// 0, 2, 8, 10, or 16. Providing an invalid base argument leads to a run-
// time panic.
//
// For base 0, the number prefix determines the actual base: A prefix of
// ``0b'' or ``0B'' selects base 2, ``0o'' or ``0O'' selects base 8, and
// ``0x'' or ``0X'' selects base 16. If fracOk is false, a ``0'' prefix
// (immediately followed by digits) selects base 8 as well. Otherwise,
// the selected base is 10 and no prefix is accepted.
//
// If fracOk is set, a period followed by a fractional part is permitted.
// The result value is computed as if there were no period present; and
// the count value is used to determine the fractional part.
//
// For bases <= 36, lower and upper case letters are considered the same:
// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
// For bases > 36, the upper case letters 'A' to 'Z' represent the digit
// values 36 to 61.
//
// A result digit count > 0 corresponds to the number of (non-prefix) digits
// parsed. A digit count <= 0 indicates the presence of a period (if fracOk
// is set, only), and -count is the number of fractional digits found.
// In this case, the actual value of the scanned number is res * b**count.
//
func (z nat) scan(r io.ByteScanner, base int, fracOk bool) (res nat, b, count int, err error) {
// reject invalid bases
baseOk := base == 0 ||
!fracOk && 2 <= base && base <= MaxBase ||
fracOk && (base == 2 || base == 8 || base == 10 || base == 16)
if !baseOk {
panic(fmt.Sprintf("invalid number base %d", base))
}
// prev encodes the previously seen char: it is one
// of '_', '0' (a digit), or '.' (anything else). A
// valid separator '_' may only occur after a digit
// and if base == 0.
prev := '.'
invalSep := false
// one char look-ahead
ch, err := r.ReadByte()
// determine actual base
b, prefix := base, 0
if base == 0 {
// actual base is 10 unless there's a base prefix
b = 10
if err == nil && ch == '0' {
prev = '0'
count = 1
ch, err = r.ReadByte()
if err == nil {
// possibly one of 0b, 0B, 0o, 0O, 0x, 0X
switch ch {
case 'b', 'B':
b, prefix = 2, 'b'
case 'o', 'O':
b, prefix = 8, 'o'
case 'x', 'X':
b, prefix = 16, 'x'
default:
if !fracOk {
b, prefix = 8, '0'
}
}
if prefix != 0 {
count = 0 // prefix is not counted
if prefix != '0' {
ch, err = r.ReadByte()
}
}
}
}
}
// convert string
// Algorithm: Collect digits in groups of at most n digits in di
// and then use mulAddWW for every such group to add them to the
// result.
z = z[:0]
b1 := Word(b)
bn, n := maxPow(b1) // at most n digits in base b1 fit into Word
di := Word(0) // 0 <= di < b1**i < bn
i := 0 // 0 <= i < n
dp := -1 // position of decimal point
for err == nil {
if ch == '.' && fracOk {
fracOk = false
if prev == '_' {
invalSep = true
}
prev = '.'
dp = count
} else if ch == '_' && base == 0 {
if prev != '0' {
invalSep = true
}
prev = '_'
} else {
// convert rune into digit value d1
var d1 Word
switch {
case '0' <= ch && ch <= '9':
d1 = Word(ch - '0')
case 'a' <= ch && ch <= 'z':
d1 = Word(ch - 'a' + 10)
case 'A' <= ch && ch <= 'Z':
if b <= maxBaseSmall {
d1 = Word(ch - 'A' + 10)
} else {
d1 = Word(ch - 'A' + maxBaseSmall)
}
default:
d1 = MaxBase + 1
}
if d1 >= b1 {
r.UnreadByte() // ch does not belong to number anymore
break
}
prev = '0'
count++
// collect d1 in di
di = di*b1 + d1
i++
// if di is "full", add it to the result
if i == n {
z = z.mulAddWW(z, bn, di)
di = 0
i = 0
}
}
ch, err = r.ReadByte()
}
if err == io.EOF {
err = nil
}
// other errors take precedence over invalid separators
if err == nil && (invalSep || prev == '_') {
err = errInvalSep
}
if count == 0 {
// no digits found
if prefix == '0' {
// there was only the octal prefix 0 (possibly followed by separators and digits > 7);
// interpret as decimal 0
return z[:0], 10, 1, err
}
err = errNoDigits // fall through; result will be 0
}
// add remaining digits to result
if i > 0 {
z = z.mulAddWW(z, pow(b1, i), di)
}
res = z.norm()
// adjust count for fraction, if any
if dp >= 0 {
// 0 <= dp <= count
count = dp - count
}
return
}
// utoa converts x to an ASCII representation in the given base;
// base must be between 2 and MaxBase, inclusive.
func (x nat) utoa(base int) []byte {
return x.itoa(false, base)
}
// itoa is like utoa but it prepends a '-' if neg && x != 0.
func (x nat) itoa(neg bool, base int) []byte {
if base < 2 || base > MaxBase {
panic("invalid base")
}
// x == 0
if len(x) == 0 {
return []byte("0")
}
// len(x) > 0
// allocate buffer for conversion
i := int(float64(x.bitLen())/math.Log2(float64(base))) + 1 // off by 1 at most
if neg {
i++
}
s := make([]byte, i)
// convert power of two and non power of two bases separately
if b := Word(base); b == b&-b {
// shift is base b digit size in bits
shift := uint(bits.TrailingZeros(uint(b))) // shift > 0 because b >= 2
mask := Word(1<<shift - 1)
w := x[0] // current word
nbits := uint(_W) // number of unprocessed bits in w
// convert less-significant words (include leading zeros)
for k := 1; k < len(x); k++ {
// convert full digits
for nbits >= shift {
i--
s[i] = digits[w&mask]
w >>= shift
nbits -= shift
}
// convert any partial leading digit and advance to next word
if nbits == 0 {
// no partial digit remaining, just advance
w = x[k]
nbits = _W
} else {
// partial digit in current word w (== x[k-1]) and next word x[k]
w |= x[k] << nbits
i--
s[i] = digits[w&mask]
// advance
w = x[k] >> (shift - nbits)
nbits = _W - (shift - nbits)
}
}
// convert digits of most-significant word w (omit leading zeros)
for w != 0 {
i--
s[i] = digits[w&mask]
w >>= shift
}
} else {
bb, ndigits := maxPow(b)
// construct table of successive squares of bb*leafSize to use in subdivisions
// result (table != nil) <=> (len(x) > leafSize > 0)
table := divisors(len(x), b, ndigits, bb)
// preserve x, create local copy for use by convertWords
q := nat(nil).set(x)
// convert q to string s in base b
q.convertWords(s, b, ndigits, bb, table)
// strip leading zeros
// (x != 0; thus s must contain at least one non-zero digit
// and the loop will terminate)
i = 0
for s[i] == '0' {
i++
}
}
if neg {
i--
s[i] = '-'
}
return s[i:]
}
// Convert words of q to base b digits in s. If q is large, it is recursively "split in half"
// by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using
// repeated nat/Word division.
//
// The iterative method processes n Words by n divW() calls, each of which visits every Word in the
// incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s.
// Recursive conversion divides q by its approximate square root, yielding two parts, each half
// the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s
// plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and
// is made better by splitting the subblocks recursively. Best is to split blocks until one more
// split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the
// iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the
// range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and
// ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for
// specific hardware.
//
func (q nat) convertWords(s []byte, b Word, ndigits int, bb Word, table []divisor) {
// split larger blocks recursively
if table != nil {
// len(q) > leafSize > 0
var r nat
index := len(table) - 1
for len(q) > leafSize {
// find divisor close to sqrt(q) if possible, but in any case < q
maxLength := q.bitLen() // ~= log2 q, or at of least largest possible q of this bit length
minLength := maxLength >> 1 // ~= log2 sqrt(q)
for index > 0 && table[index-1].nbits > minLength {
index-- // desired
}
if table[index].nbits >= maxLength && table[index].bbb.cmp(q) >= 0 {
index--
if index < 0 {
panic("internal inconsistency")
}
}
// split q into the two digit number (q'*bbb + r) to form independent subblocks
q, r = q.div(r, q, table[index].bbb)
// convert subblocks and collect results in s[:h] and s[h:]
h := len(s) - table[index].ndigits
r.convertWords(s[h:], b, ndigits, bb, table[0:index])
s = s[:h] // == q.convertWords(s, b, ndigits, bb, table[0:index+1])
}
}
// having split any large blocks now process the remaining (small) block iteratively
i := len(s)
var r Word
if b == 10 {
// hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants)
for len(q) > 0 {
// extract least significant, base bb "digit"
q, r = q.divW(q, bb)
for j := 0; j < ndigits && i > 0; j++ {
i--
// avoid % computation since r%10 == r - int(r/10)*10;
// this appears to be faster for BenchmarkString10000Base10
// and smaller strings (but a bit slower for larger ones)
t := r / 10
s[i] = '0' + byte(r-t*10)
r = t
}
}
} else {
for len(q) > 0 {
// extract least significant, base bb "digit"
q, r = q.divW(q, bb)
for j := 0; j < ndigits && i > 0; j++ {
i--
s[i] = digits[r%b]
r /= b
}
}
}
// prepend high-order zeros
for i > 0 { // while need more leading zeros
i--
s[i] = '0'
}
}
// Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion)
// Benchmark and configure leafSize using: go test -bench="Leaf"
// 8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines)
// 8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPU
var leafSize int = 8 // number of Word-size binary values treat as a monolithic block
type divisor struct {
bbb nat // divisor
nbits int // bit length of divisor (discounting leading zeros) ~= log2(bbb)
ndigits int // digit length of divisor in terms of output base digits
}
var cacheBase10 struct {
sync.Mutex
table [64]divisor // cached divisors for base 10
}
// expWW computes x**y
func (z nat) expWW(x, y Word) nat {
return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil)
}
// construct table of powers of bb*leafSize to use in subdivisions
func divisors(m int, b Word, ndigits int, bb Word) []divisor {
// only compute table when recursive conversion is enabled and x is large
if leafSize == 0 || m <= leafSize {
return nil
}
// determine k where (bb**leafSize)**(2**k) >= sqrt(x)
k := 1
for words := leafSize; words < m>>1 && k < len(cacheBase10.table); words <<= 1 {
k++
}
// reuse and extend existing table of divisors or create new table as appropriate
var table []divisor // for b == 10, table overlaps with cacheBase10.table
if b == 10 {
cacheBase10.Lock()
table = cacheBase10.table[0:k] // reuse old table for this conversion
} else {
table = make([]divisor, k) // create new table for this conversion
}
// extend table
if table[k-1].ndigits == 0 {
// add new entries as needed
var larger nat
for i := 0; i < k; i++ {
if table[i].ndigits == 0 {
if i == 0 {
table[0].bbb = nat(nil).expWW(bb, Word(leafSize))
table[0].ndigits = ndigits * leafSize
} else {
table[i].bbb = nat(nil).sqr(table[i-1].bbb)
table[i].ndigits = 2 * table[i-1].ndigits
}
// optimization: exploit aggregated extra bits in macro blocks
larger = nat(nil).set(table[i].bbb)
for mulAddVWW(larger, larger, b, 0) == 0 {
table[i].bbb = table[i].bbb.set(larger)
table[i].ndigits++
}
table[i].nbits = table[i].bbb.bitLen()
}
}
}
if b == 10 {
cacheBase10.Unlock()
}
return table
}
|