1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package big
import (
"fmt"
"strings"
"testing"
"unicode"
)
var primes = []string{
"2",
"3",
"5",
"7",
"11",
"13756265695458089029",
"13496181268022124907",
"10953742525620032441",
"17908251027575790097",
// https://golang.org/issue/638
"18699199384836356663",
"98920366548084643601728869055592650835572950932266967461790948584315647051443",
"94560208308847015747498523884063394671606671904944666360068158221458669711639",
// https://primes.utm.edu/lists/small/small3.html
"449417999055441493994709297093108513015373787049558499205492347871729927573118262811508386655998299074566974373711472560655026288668094291699357843464363003144674940345912431129144354948751003607115263071543163",
"230975859993204150666423538988557839555560243929065415434980904258310530753006723857139742334640122533598517597674807096648905501653461687601339782814316124971547968912893214002992086353183070342498989426570593",
"5521712099665906221540423207019333379125265462121169655563495403888449493493629943498064604536961775110765377745550377067893607246020694972959780839151452457728855382113555867743022746090187341871655890805971735385789993",
"203956878356401977405765866929034577280193993314348263094772646453283062722701277632936616063144088173312372882677123879538709400158306567338328279154499698366071906766440037074217117805690872792848149112022286332144876183376326512083574821647933992961249917319836219304274280243803104015000563790123",
// ECC primes: https://tools.ietf.org/html/draft-ladd-safecurves-02
"3618502788666131106986593281521497120414687020801267626233049500247285301239", // Curve1174: 2^251-9
"57896044618658097711785492504343953926634992332820282019728792003956564819949", // Curve25519: 2^255-19
"9850501549098619803069760025035903451269934817616361666987073351061430442874302652853566563721228910201656997576599", // E-382: 2^382-105
"42307582002575910332922579714097346549017899709713998034217522897561970639123926132812109468141778230245837569601494931472367", // Curve41417: 2^414-17
"6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151", // E-521: 2^521-1
}
var composites = []string{
"0",
"1",
"21284175091214687912771199898307297748211672914763848041968395774954376176754",
"6084766654921918907427900243509372380954290099172559290432744450051395395951",
"84594350493221918389213352992032324280367711247940675652888030554255915464401",
"82793403787388584738507275144194252681",
// Arnault, "Rabin-Miller Primality Test: Composite Numbers Which Pass It",
// Mathematics of Computation, 64(209) (January 1995), pp. 335-361.
"1195068768795265792518361315725116351898245581", // strong pseudoprime to prime bases 2 through 29
// strong pseudoprime to all prime bases up to 200
`
80383745745363949125707961434194210813883768828755814583748891752229
74273765333652186502336163960045457915042023603208766569966760987284
0439654082329287387918508691668573282677617710293896977394701670823
0428687109997439976544144845341155872450633409279022275296229414984
2306881685404326457534018329786111298960644845216191652872597534901`,
// Extra-strong Lucas pseudoprimes. https://oeis.org/A217719
"989",
"3239",
"5777",
"10877",
"27971",
"29681",
"30739",
"31631",
"39059",
"72389",
"73919",
"75077",
"100127",
"113573",
"125249",
"137549",
"137801",
"153931",
"155819",
"161027",
"162133",
"189419",
"218321",
"231703",
"249331",
"370229",
"429479",
"430127",
"459191",
"473891",
"480689",
"600059",
"621781",
"632249",
"635627",
"3673744903",
"3281593591",
"2385076987",
"2738053141",
"2009621503",
"1502682721",
"255866131",
"117987841",
"587861",
"6368689",
"8725753",
"80579735209",
"105919633",
}
func cutSpace(r rune) rune {
if unicode.IsSpace(r) {
return -1
}
return r
}
func TestProbablyPrime(t *testing.T) {
nreps := 20
if testing.Short() {
nreps = 1
}
for i, s := range primes {
p, _ := new(Int).SetString(s, 10)
if !p.ProbablyPrime(nreps) || nreps != 1 && !p.ProbablyPrime(1) || !p.ProbablyPrime(0) {
t.Errorf("#%d prime found to be non-prime (%s)", i, s)
}
}
for i, s := range composites {
s = strings.Map(cutSpace, s)
c, _ := new(Int).SetString(s, 10)
if c.ProbablyPrime(nreps) || nreps != 1 && c.ProbablyPrime(1) || c.ProbablyPrime(0) {
t.Errorf("#%d composite found to be prime (%s)", i, s)
}
}
// check that ProbablyPrime panics if n <= 0
c := NewInt(11) // a prime
for _, n := range []int{-1, 0, 1} {
func() {
defer func() {
if n < 0 && recover() == nil {
t.Fatalf("expected panic from ProbablyPrime(%d)", n)
}
}()
if !c.ProbablyPrime(n) {
t.Fatalf("%v should be a prime", c)
}
}()
}
}
func BenchmarkProbablyPrime(b *testing.B) {
p, _ := new(Int).SetString("203956878356401977405765866929034577280193993314348263094772646453283062722701277632936616063144088173312372882677123879538709400158306567338328279154499698366071906766440037074217117805690872792848149112022286332144876183376326512083574821647933992961249917319836219304274280243803104015000563790123", 10)
for _, n := range []int{0, 1, 5, 10, 20} {
b.Run(fmt.Sprintf("n=%d", n), func(b *testing.B) {
for i := 0; i < b.N; i++ {
p.ProbablyPrime(n)
}
})
}
b.Run("Lucas", func(b *testing.B) {
for i := 0; i < b.N; i++ {
p.abs.probablyPrimeLucas()
}
})
b.Run("MillerRabinBase2", func(b *testing.B) {
for i := 0; i < b.N; i++ {
p.abs.probablyPrimeMillerRabin(1, true)
}
})
}
func TestMillerRabinPseudoprimes(t *testing.T) {
testPseudoprimes(t, "probablyPrimeMillerRabin",
func(n nat) bool { return n.probablyPrimeMillerRabin(1, true) && !n.probablyPrimeLucas() },
// https://oeis.org/A001262
[]int{2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, 52633, 65281, 74665, 80581, 85489, 88357, 90751})
}
func TestLucasPseudoprimes(t *testing.T) {
testPseudoprimes(t, "probablyPrimeLucas",
func(n nat) bool { return n.probablyPrimeLucas() && !n.probablyPrimeMillerRabin(1, true) },
// https://oeis.org/A217719
[]int{989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059, 72389, 73919, 75077})
}
func testPseudoprimes(t *testing.T, name string, cond func(nat) bool, want []int) {
n := nat{1}
for i := 3; i < 100000; i += 2 {
if testing.Short() {
if len(want) == 0 {
break
}
if i < want[0]-2 {
i = want[0] - 2
}
}
n[0] = Word(i)
pseudo := cond(n)
if pseudo && (len(want) == 0 || i != want[0]) {
t.Errorf("%s(%v, base=2) = true, want false", name, i)
} else if !pseudo && len(want) >= 1 && i == want[0] {
t.Errorf("%s(%v, base=2) = false, want true", name, i)
}
if len(want) > 0 && i == want[0] {
want = want[1:]
}
}
if len(want) > 0 {
t.Fatalf("forgot to test %v", want)
}
}
|