1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package strconv
import (
"math/bits"
)
// binary to decimal conversion using the Ryū algorithm.
//
// See Ulf Adams, "Ryū: Fast Float-to-String Conversion" (doi:10.1145/3192366.3192369)
//
// Fixed precision formatting is a variant of the original paper's
// algorithm, where a single multiplication by 10^k is required,
// sharing the same rounding guarantees.
// ryuFtoaFixed32 formats mant*(2^exp) with prec decimal digits.
func ryuFtoaFixed32(d *decimalSlice, mant uint32, exp int, prec int) {
if prec < 0 {
panic("ryuFtoaFixed32 called with negative prec")
}
if prec > 9 {
panic("ryuFtoaFixed32 called with prec > 9")
}
// Zero input.
if mant == 0 {
d.nd, d.dp = 0, 0
return
}
// Renormalize to a 25-bit mantissa.
e2 := exp
if b := bits.Len32(mant); b < 25 {
mant <<= uint(25 - b)
e2 += int(b) - 25
}
// Choose an exponent such that rounded mant*(2^e2)*(10^q) has
// at least prec decimal digits, i.e
// mant*(2^e2)*(10^q) >= 10^(prec-1)
// Because mant >= 2^24, it is enough to choose:
// 2^(e2+24) >= 10^(-q+prec-1)
// or q = -mulByLog2Log10(e2+24) + prec - 1
q := -mulByLog2Log10(e2+24) + prec - 1
// Now compute mant*(2^e2)*(10^q).
// Is it an exact computation?
// Only small positive powers of 10 are exact (5^28 has 66 bits).
exact := q <= 27 && q >= 0
di, dexp2, d0 := mult64bitPow10(mant, e2, q)
if dexp2 >= 0 {
panic("not enough significant bits after mult64bitPow10")
}
// As a special case, computation might still be exact, if exponent
// was negative and if it amounts to computing an exact division.
// In that case, we ignore all lower bits.
// Note that division by 10^11 cannot be exact as 5^11 has 26 bits.
if q < 0 && q >= -10 && divisibleByPower5(uint64(mant), -q) {
exact = true
d0 = true
}
// Remove extra lower bits and keep rounding info.
extra := uint(-dexp2)
extraMask := uint32(1<<extra - 1)
di, dfrac := di>>extra, di&extraMask
roundUp := false
if exact {
// If we computed an exact product, d + 1/2
// should round to d+1 if 'd' is odd.
roundUp = dfrac > 1<<(extra-1) ||
(dfrac == 1<<(extra-1) && !d0) ||
(dfrac == 1<<(extra-1) && d0 && di&1 == 1)
} else {
// otherwise, d+1/2 always rounds up because
// we truncated below.
roundUp = dfrac>>(extra-1) == 1
}
if dfrac != 0 {
d0 = false
}
// Proceed to the requested number of digits
formatDecimal(d, uint64(di), !d0, roundUp, prec)
// Adjust exponent
d.dp -= q
}
// ryuFtoaFixed64 formats mant*(2^exp) with prec decimal digits.
func ryuFtoaFixed64(d *decimalSlice, mant uint64, exp int, prec int) {
if prec > 18 {
panic("ryuFtoaFixed64 called with prec > 18")
}
// Zero input.
if mant == 0 {
d.nd, d.dp = 0, 0
return
}
// Renormalize to a 55-bit mantissa.
e2 := exp
if b := bits.Len64(mant); b < 55 {
mant = mant << uint(55-b)
e2 += int(b) - 55
}
// Choose an exponent such that rounded mant*(2^e2)*(10^q) has
// at least prec decimal digits, i.e
// mant*(2^e2)*(10^q) >= 10^(prec-1)
// Because mant >= 2^54, it is enough to choose:
// 2^(e2+54) >= 10^(-q+prec-1)
// or q = -mulByLog2Log10(e2+54) + prec - 1
//
// The minimal required exponent is -mulByLog2Log10(1025)+18 = -291
// The maximal required exponent is mulByLog2Log10(1074)+18 = 342
q := -mulByLog2Log10(e2+54) + prec - 1
// Now compute mant*(2^e2)*(10^q).
// Is it an exact computation?
// Only small positive powers of 10 are exact (5^55 has 128 bits).
exact := q <= 55 && q >= 0
di, dexp2, d0 := mult128bitPow10(mant, e2, q)
if dexp2 >= 0 {
panic("not enough significant bits after mult128bitPow10")
}
// As a special case, computation might still be exact, if exponent
// was negative and if it amounts to computing an exact division.
// In that case, we ignore all lower bits.
// Note that division by 10^23 cannot be exact as 5^23 has 54 bits.
if q < 0 && q >= -22 && divisibleByPower5(mant, -q) {
exact = true
d0 = true
}
// Remove extra lower bits and keep rounding info.
extra := uint(-dexp2)
extraMask := uint64(1<<extra - 1)
di, dfrac := di>>extra, di&extraMask
roundUp := false
if exact {
// If we computed an exact product, d + 1/2
// should round to d+1 if 'd' is odd.
roundUp = dfrac > 1<<(extra-1) ||
(dfrac == 1<<(extra-1) && !d0) ||
(dfrac == 1<<(extra-1) && d0 && di&1 == 1)
} else {
// otherwise, d+1/2 always rounds up because
// we truncated below.
roundUp = dfrac>>(extra-1) == 1
}
if dfrac != 0 {
d0 = false
}
// Proceed to the requested number of digits
formatDecimal(d, di, !d0, roundUp, prec)
// Adjust exponent
d.dp -= q
}
var uint64pow10 = [...]uint64{
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
}
// formatDecimal fills d with at most prec decimal digits
// of mantissa m. The boolean trunc indicates whether m
// is truncated compared to the original number being formatted.
func formatDecimal(d *decimalSlice, m uint64, trunc bool, roundUp bool, prec int) {
max := uint64pow10[prec]
trimmed := 0
for m >= max {
a, b := m/10, m%10
m = a
trimmed++
if b > 5 {
roundUp = true
} else if b < 5 {
roundUp = false
} else { // b == 5
// round up if there are trailing digits,
// or if the new value of m is odd (round-to-even convention)
roundUp = trunc || m&1 == 1
}
if b != 0 {
trunc = true
}
}
if roundUp {
m++
}
if m >= max {
// Happens if di was originally 99999....xx
m /= 10
trimmed++
}
// render digits (similar to formatBits)
n := uint(prec)
d.nd = int(prec)
v := m
for v >= 100 {
var v1, v2 uint64
if v>>32 == 0 {
v1, v2 = uint64(uint32(v)/100), uint64(uint32(v)%100)
} else {
v1, v2 = v/100, v%100
}
n -= 2
d.d[n+1] = smallsString[2*v2+1]
d.d[n+0] = smallsString[2*v2+0]
v = v1
}
if v > 0 {
n--
d.d[n] = smallsString[2*v+1]
}
if v >= 10 {
n--
d.d[n] = smallsString[2*v]
}
for d.d[d.nd-1] == '0' {
d.nd--
trimmed++
}
d.dp = d.nd + trimmed
}
// ryuFtoaShortest formats mant*2^exp with prec decimal digits.
func ryuFtoaShortest(d *decimalSlice, mant uint64, exp int, flt *floatInfo) {
if mant == 0 {
d.nd, d.dp = 0, 0
return
}
// If input is an exact integer with fewer bits than the mantissa,
// the previous and next integer are not admissible representations.
if exp <= 0 && bits.TrailingZeros64(mant) >= -exp {
mant >>= uint(-exp)
ryuDigits(d, mant, mant, mant, true, false)
return
}
ml, mc, mu, e2 := computeBounds(mant, exp, flt)
if e2 == 0 {
ryuDigits(d, ml, mc, mu, true, false)
return
}
// Find 10^q *larger* than 2^-e2
q := mulByLog2Log10(-e2) + 1
// We are going to multiply by 10^q using 128-bit arithmetic.
// The exponent is the same for all 3 numbers.
var dl, dc, du uint64
var dl0, dc0, du0 bool
if flt == &float32info {
var dl32, dc32, du32 uint32
dl32, _, dl0 = mult64bitPow10(uint32(ml), e2, q)
dc32, _, dc0 = mult64bitPow10(uint32(mc), e2, q)
du32, e2, du0 = mult64bitPow10(uint32(mu), e2, q)
dl, dc, du = uint64(dl32), uint64(dc32), uint64(du32)
} else {
dl, _, dl0 = mult128bitPow10(ml, e2, q)
dc, _, dc0 = mult128bitPow10(mc, e2, q)
du, e2, du0 = mult128bitPow10(mu, e2, q)
}
if e2 >= 0 {
panic("not enough significant bits after mult128bitPow10")
}
// Is it an exact computation?
if q > 55 {
// Large positive powers of ten are not exact
dl0, dc0, du0 = false, false, false
}
if q < 0 && q >= -24 {
// Division by a power of ten may be exact.
// (note that 5^25 is a 59-bit number so division by 5^25 is never exact).
if divisibleByPower5(ml, -q) {
dl0 = true
}
if divisibleByPower5(mc, -q) {
dc0 = true
}
if divisibleByPower5(mu, -q) {
du0 = true
}
}
// Express the results (dl, dc, du)*2^e2 as integers.
// Extra bits must be removed and rounding hints computed.
extra := uint(-e2)
extraMask := uint64(1<<extra - 1)
// Now compute the floored, integral base 10 mantissas.
dl, fracl := dl>>extra, dl&extraMask
dc, fracc := dc>>extra, dc&extraMask
du, fracu := du>>extra, du&extraMask
// Is it allowed to use 'du' as a result?
// It is always allowed when it is truncated, but also
// if it is exact and the original binary mantissa is even
// When disallowed, we can subtract 1.
uok := !du0 || fracu > 0
if du0 && fracu == 0 {
uok = mant&1 == 0
}
if !uok {
du--
}
// Is 'dc' the correctly rounded base 10 mantissa?
// The correct rounding might be dc+1
cup := false // don't round up.
if dc0 {
// If we computed an exact product, the half integer
// should round to next (even) integer if 'dc' is odd.
cup = fracc > 1<<(extra-1) ||
(fracc == 1<<(extra-1) && dc&1 == 1)
} else {
// otherwise, the result is a lower truncation of the ideal
// result.
cup = fracc>>(extra-1) == 1
}
// Is 'dl' an allowed representation?
// Only if it is an exact value, and if the original binary mantissa
// was even.
lok := dl0 && fracl == 0 && (mant&1 == 0)
if !lok {
dl++
}
// We need to remember whether the trimmed digits of 'dc' are zero.
c0 := dc0 && fracc == 0
// render digits
ryuDigits(d, dl, dc, du, c0, cup)
d.dp -= q
}
// mulByLog2Log10 returns math.Floor(x * log(2)/log(10)) for an integer x in
// the range -1600 <= x && x <= +1600.
//
// The range restriction lets us work in faster integer arithmetic instead of
// slower floating point arithmetic. Correctness is verified by unit tests.
func mulByLog2Log10(x int) int {
// log(2)/log(10) ≈ 0.30102999566 ≈ 78913 / 2^18
return (x * 78913) >> 18
}
// mulByLog10Log2 returns math.Floor(x * log(10)/log(2)) for an integer x in
// the range -500 <= x && x <= +500.
//
// The range restriction lets us work in faster integer arithmetic instead of
// slower floating point arithmetic. Correctness is verified by unit tests.
func mulByLog10Log2(x int) int {
// log(10)/log(2) ≈ 3.32192809489 ≈ 108853 / 2^15
return (x * 108853) >> 15
}
// computeBounds returns a floating-point vector (l, c, u)×2^e2
// where the mantissas are 55-bit (or 26-bit) integers, describing the interval
// represented by the input float64 or float32.
func computeBounds(mant uint64, exp int, flt *floatInfo) (lower, central, upper uint64, e2 int) {
if mant != 1<<flt.mantbits || exp == flt.bias+1-int(flt.mantbits) {
// regular case (or denormals)
lower, central, upper = 2*mant-1, 2*mant, 2*mant+1
e2 = exp - 1
return
} else {
// border of an exponent
lower, central, upper = 4*mant-1, 4*mant, 4*mant+2
e2 = exp - 2
return
}
}
func ryuDigits(d *decimalSlice, lower, central, upper uint64,
c0, cup bool) {
lhi, llo := divmod1e9(lower)
chi, clo := divmod1e9(central)
uhi, ulo := divmod1e9(upper)
if uhi == 0 {
// only low digits (for denormals)
ryuDigits32(d, llo, clo, ulo, c0, cup, 8)
} else if lhi < uhi {
// truncate 9 digits at once.
if llo != 0 {
lhi++
}
c0 = c0 && clo == 0
cup = (clo > 5e8) || (clo == 5e8 && cup)
ryuDigits32(d, lhi, chi, uhi, c0, cup, 8)
d.dp += 9
} else {
d.nd = 0
// emit high part
n := uint(9)
for v := chi; v > 0; {
v1, v2 := v/10, v%10
v = v1
n--
d.d[n] = byte(v2 + '0')
}
d.d = d.d[n:]
d.nd = int(9 - n)
// emit low part
ryuDigits32(d, llo, clo, ulo,
c0, cup, d.nd+8)
}
// trim trailing zeros
for d.nd > 0 && d.d[d.nd-1] == '0' {
d.nd--
}
// trim initial zeros
for d.nd > 0 && d.d[0] == '0' {
d.nd--
d.dp--
d.d = d.d[1:]
}
}
// ryuDigits32 emits decimal digits for a number less than 1e9.
func ryuDigits32(d *decimalSlice, lower, central, upper uint32,
c0, cup bool, endindex int) {
if upper == 0 {
d.dp = endindex + 1
return
}
trimmed := 0
// Remember last trimmed digit to check for round-up.
// c0 will be used to remember zeroness of following digits.
cNextDigit := 0
for upper > 0 {
// Repeatedly compute:
// l = Ceil(lower / 10^k)
// c = Round(central / 10^k)
// u = Floor(upper / 10^k)
// and stop when c goes out of the (l, u) interval.
l := (lower + 9) / 10
c, cdigit := central/10, central%10
u := upper / 10
if l > u {
// don't trim the last digit as it is forbidden to go below l
// other, trim and exit now.
break
}
// Check that we didn't cross the lower boundary.
// The case where l < u but c == l-1 is essentially impossible,
// but may happen if:
// lower = ..11
// central = ..19
// upper = ..31
// and means that 'central' is very close but less than
// an integer ending with many zeros, and usually
// the "round-up" logic hides the problem.
if l == c+1 && c < u {
c++
cdigit = 0
cup = false
}
trimmed++
// Remember trimmed digits of c
c0 = c0 && cNextDigit == 0
cNextDigit = int(cdigit)
lower, central, upper = l, c, u
}
// should we round up?
if trimmed > 0 {
cup = cNextDigit > 5 ||
(cNextDigit == 5 && !c0) ||
(cNextDigit == 5 && c0 && central&1 == 1)
}
if central < upper && cup {
central++
}
// We know where the number ends, fill directly
endindex -= trimmed
v := central
n := endindex
for n > d.nd {
v1, v2 := v/100, v%100
d.d[n] = smallsString[2*v2+1]
d.d[n-1] = smallsString[2*v2+0]
n -= 2
v = v1
}
if n == d.nd {
d.d[n] = byte(v + '0')
}
d.nd = endindex + 1
d.dp = d.nd + trimmed
}
// mult64bitPow10 takes a floating-point input with a 25-bit
// mantissa and multiplies it with 10^q. The resulting mantissa
// is m*P >> 57 where P is a 64-bit element of the detailedPowersOfTen tables.
// It is typically 31 or 32-bit wide.
// The returned boolean is true if all trimmed bits were zero.
//
// That is:
// m*2^e2 * round(10^q) = resM * 2^resE + ε
// exact = ε == 0
func mult64bitPow10(m uint32, e2, q int) (resM uint32, resE int, exact bool) {
if q == 0 {
// P == 1<<63
return m << 6, e2 - 6, true
}
if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q {
// This never happens due to the range of float32/float64 exponent
panic("mult64bitPow10: power of 10 is out of range")
}
pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10][1]
if q < 0 {
// Inverse powers of ten must be rounded up.
pow += 1
}
hi, lo := bits.Mul64(uint64(m), pow)
e2 += mulByLog10Log2(q) - 63 + 57
return uint32(hi<<7 | lo>>57), e2, lo<<7 == 0
}
// mult128bitPow10 takes a floating-point input with a 55-bit
// mantissa and multiplies it with 10^q. The resulting mantissa
// is m*P >> 119 where P is a 128-bit element of the detailedPowersOfTen tables.
// It is typically 63 or 64-bit wide.
// The returned boolean is true is all trimmed bits were zero.
//
// That is:
// m*2^e2 * round(10^q) = resM * 2^resE + ε
// exact = ε == 0
func mult128bitPow10(m uint64, e2, q int) (resM uint64, resE int, exact bool) {
if q == 0 {
// P == 1<<127
return m << 8, e2 - 8, true
}
if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q {
// This never happens due to the range of float32/float64 exponent
panic("mult128bitPow10: power of 10 is out of range")
}
pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10]
if q < 0 {
// Inverse powers of ten must be rounded up.
pow[0] += 1
}
e2 += mulByLog10Log2(q) - 127 + 119
// long multiplication
l1, l0 := bits.Mul64(m, pow[0])
h1, h0 := bits.Mul64(m, pow[1])
mid, carry := bits.Add64(l1, h0, 0)
h1 += carry
return h1<<9 | mid>>55, e2, mid<<9 == 0 && l0 == 0
}
func divisibleByPower5(m uint64, k int) bool {
if m == 0 {
return true
}
for i := 0; i < k; i++ {
if m%5 != 0 {
return false
}
m /= 5
}
return true
}
// divmod1e9 computes quotient and remainder of division by 1e9,
// avoiding runtime uint64 division on 32-bit platforms.
func divmod1e9(x uint64) (uint32, uint32) {
if !host32bit {
return uint32(x / 1e9), uint32(x % 1e9)
}
// Use the same sequence of operations as the amd64 compiler.
hi, _ := bits.Mul64(x>>1, 0x89705f4136b4a598) // binary digits of 1e-9
q := hi >> 28
return uint32(q), uint32(x - q*1e9)
}
|