1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package strings
import (
"io"
"sync"
)
// Replacer replaces a list of strings with replacements.
// It is safe for concurrent use by multiple goroutines.
type Replacer struct {
once sync.Once // guards buildOnce method
r replacer
oldnew []string
}
// replacer is the interface that a replacement algorithm needs to implement.
type replacer interface {
Replace(s string) string
WriteString(w io.Writer, s string) (n int, err error)
}
// NewReplacer returns a new Replacer from a list of old, new string
// pairs. Replacements are performed in the order they appear in the
// target string, without overlapping matches. The old string
// comparisons are done in argument order.
//
// NewReplacer panics if given an odd number of arguments.
func NewReplacer(oldnew ...string) *Replacer {
if len(oldnew)%2 == 1 {
panic("strings.NewReplacer: odd argument count")
}
return &Replacer{oldnew: append([]string(nil), oldnew...)}
}
func (r *Replacer) buildOnce() {
r.r = r.build()
r.oldnew = nil
}
func (b *Replacer) build() replacer {
oldnew := b.oldnew
if len(oldnew) == 2 && len(oldnew[0]) > 1 {
return makeSingleStringReplacer(oldnew[0], oldnew[1])
}
allNewBytes := true
for i := 0; i < len(oldnew); i += 2 {
if len(oldnew[i]) != 1 {
return makeGenericReplacer(oldnew)
}
if len(oldnew[i+1]) != 1 {
allNewBytes = false
}
}
if allNewBytes {
r := byteReplacer{}
for i := range r {
r[i] = byte(i)
}
// The first occurrence of old->new map takes precedence
// over the others with the same old string.
for i := len(oldnew) - 2; i >= 0; i -= 2 {
o := oldnew[i][0]
n := oldnew[i+1][0]
r[o] = n
}
return &r
}
r := byteStringReplacer{toReplace: make([]string, 0, len(oldnew)/2)}
// The first occurrence of old->new map takes precedence
// over the others with the same old string.
for i := len(oldnew) - 2; i >= 0; i -= 2 {
o := oldnew[i][0]
n := oldnew[i+1]
// To avoid counting repetitions multiple times.
if r.replacements[o] == nil {
// We need to use string([]byte{o}) instead of string(o),
// to avoid utf8 encoding of o.
// E. g. byte(150) produces string of length 2.
r.toReplace = append(r.toReplace, string([]byte{o}))
}
r.replacements[o] = []byte(n)
}
return &r
}
// Replace returns a copy of s with all replacements performed.
func (r *Replacer) Replace(s string) string {
r.once.Do(r.buildOnce)
return r.r.Replace(s)
}
// WriteString writes s to w with all replacements performed.
func (r *Replacer) WriteString(w io.Writer, s string) (n int, err error) {
r.once.Do(r.buildOnce)
return r.r.WriteString(w, s)
}
// trieNode is a node in a lookup trie for prioritized key/value pairs. Keys
// and values may be empty. For example, the trie containing keys "ax", "ay",
// "bcbc", "x" and "xy" could have eight nodes:
//
// n0 -
// n1 a-
// n2 .x+
// n3 .y+
// n4 b-
// n5 .cbc+
// n6 x+
// n7 .y+
//
// n0 is the root node, and its children are n1, n4 and n6; n1's children are
// n2 and n3; n4's child is n5; n6's child is n7. Nodes n0, n1 and n4 (marked
// with a trailing "-") are partial keys, and nodes n2, n3, n5, n6 and n7
// (marked with a trailing "+") are complete keys.
type trieNode struct {
// value is the value of the trie node's key/value pair. It is empty if
// this node is not a complete key.
value string
// priority is the priority (higher is more important) of the trie node's
// key/value pair; keys are not necessarily matched shortest- or longest-
// first. Priority is positive if this node is a complete key, and zero
// otherwise. In the example above, positive/zero priorities are marked
// with a trailing "+" or "-".
priority int
// A trie node may have zero, one or more child nodes:
// * if the remaining fields are zero, there are no children.
// * if prefix and next are non-zero, there is one child in next.
// * if table is non-zero, it defines all the children.
//
// Prefixes are preferred over tables when there is one child, but the
// root node always uses a table for lookup efficiency.
// prefix is the difference in keys between this trie node and the next.
// In the example above, node n4 has prefix "cbc" and n4's next node is n5.
// Node n5 has no children and so has zero prefix, next and table fields.
prefix string
next *trieNode
// table is a lookup table indexed by the next byte in the key, after
// remapping that byte through genericReplacer.mapping to create a dense
// index. In the example above, the keys only use 'a', 'b', 'c', 'x' and
// 'y', which remap to 0, 1, 2, 3 and 4. All other bytes remap to 5, and
// genericReplacer.tableSize will be 5. Node n0's table will be
// []*trieNode{ 0:n1, 1:n4, 3:n6 }, where the 0, 1 and 3 are the remapped
// 'a', 'b' and 'x'.
table []*trieNode
}
func (t *trieNode) add(key, val string, priority int, r *genericReplacer) {
if key == "" {
if t.priority == 0 {
t.value = val
t.priority = priority
}
return
}
if t.prefix != "" {
// Need to split the prefix among multiple nodes.
var n int // length of the longest common prefix
for ; n < len(t.prefix) && n < len(key); n++ {
if t.prefix[n] != key[n] {
break
}
}
if n == len(t.prefix) {
t.next.add(key[n:], val, priority, r)
} else if n == 0 {
// First byte differs, start a new lookup table here. Looking up
// what is currently t.prefix[0] will lead to prefixNode, and
// looking up key[0] will lead to keyNode.
var prefixNode *trieNode
if len(t.prefix) == 1 {
prefixNode = t.next
} else {
prefixNode = &trieNode{
prefix: t.prefix[1:],
next: t.next,
}
}
keyNode := new(trieNode)
t.table = make([]*trieNode, r.tableSize)
t.table[r.mapping[t.prefix[0]]] = prefixNode
t.table[r.mapping[key[0]]] = keyNode
t.prefix = ""
t.next = nil
keyNode.add(key[1:], val, priority, r)
} else {
// Insert new node after the common section of the prefix.
next := &trieNode{
prefix: t.prefix[n:],
next: t.next,
}
t.prefix = t.prefix[:n]
t.next = next
next.add(key[n:], val, priority, r)
}
} else if t.table != nil {
// Insert into existing table.
m := r.mapping[key[0]]
if t.table[m] == nil {
t.table[m] = new(trieNode)
}
t.table[m].add(key[1:], val, priority, r)
} else {
t.prefix = key
t.next = new(trieNode)
t.next.add("", val, priority, r)
}
}
func (r *genericReplacer) lookup(s string, ignoreRoot bool) (val string, keylen int, found bool) {
// Iterate down the trie to the end, and grab the value and keylen with
// the highest priority.
bestPriority := 0
node := &r.root
n := 0
for node != nil {
if node.priority > bestPriority && !(ignoreRoot && node == &r.root) {
bestPriority = node.priority
val = node.value
keylen = n
found = true
}
if s == "" {
break
}
if node.table != nil {
index := r.mapping[s[0]]
if int(index) == r.tableSize {
break
}
node = node.table[index]
s = s[1:]
n++
} else if node.prefix != "" && HasPrefix(s, node.prefix) {
n += len(node.prefix)
s = s[len(node.prefix):]
node = node.next
} else {
break
}
}
return
}
// genericReplacer is the fully generic algorithm.
// It's used as a fallback when nothing faster can be used.
type genericReplacer struct {
root trieNode
// tableSize is the size of a trie node's lookup table. It is the number
// of unique key bytes.
tableSize int
// mapping maps from key bytes to a dense index for trieNode.table.
mapping [256]byte
}
func makeGenericReplacer(oldnew []string) *genericReplacer {
r := new(genericReplacer)
// Find each byte used, then assign them each an index.
for i := 0; i < len(oldnew); i += 2 {
key := oldnew[i]
for j := 0; j < len(key); j++ {
r.mapping[key[j]] = 1
}
}
for _, b := range r.mapping {
r.tableSize += int(b)
}
var index byte
for i, b := range r.mapping {
if b == 0 {
r.mapping[i] = byte(r.tableSize)
} else {
r.mapping[i] = index
index++
}
}
// Ensure root node uses a lookup table (for performance).
r.root.table = make([]*trieNode, r.tableSize)
for i := 0; i < len(oldnew); i += 2 {
r.root.add(oldnew[i], oldnew[i+1], len(oldnew)-i, r)
}
return r
}
type appendSliceWriter []byte
// Write writes to the buffer to satisfy io.Writer.
func (w *appendSliceWriter) Write(p []byte) (int, error) {
*w = append(*w, p...)
return len(p), nil
}
// WriteString writes to the buffer without string->[]byte->string allocations.
func (w *appendSliceWriter) WriteString(s string) (int, error) {
*w = append(*w, s...)
return len(s), nil
}
type stringWriter struct {
w io.Writer
}
func (w stringWriter) WriteString(s string) (int, error) {
return w.w.Write([]byte(s))
}
func getStringWriter(w io.Writer) io.StringWriter {
sw, ok := w.(io.StringWriter)
if !ok {
sw = stringWriter{w}
}
return sw
}
func (r *genericReplacer) Replace(s string) string {
buf := make(appendSliceWriter, 0, len(s))
r.WriteString(&buf, s)
return string(buf)
}
func (r *genericReplacer) WriteString(w io.Writer, s string) (n int, err error) {
sw := getStringWriter(w)
var last, wn int
var prevMatchEmpty bool
for i := 0; i <= len(s); {
// Fast path: s[i] is not a prefix of any pattern.
if i != len(s) && r.root.priority == 0 {
index := int(r.mapping[s[i]])
if index == r.tableSize || r.root.table[index] == nil {
i++
continue
}
}
// Ignore the empty match iff the previous loop found the empty match.
val, keylen, match := r.lookup(s[i:], prevMatchEmpty)
prevMatchEmpty = match && keylen == 0
if match {
wn, err = sw.WriteString(s[last:i])
n += wn
if err != nil {
return
}
wn, err = sw.WriteString(val)
n += wn
if err != nil {
return
}
i += keylen
last = i
continue
}
i++
}
if last != len(s) {
wn, err = sw.WriteString(s[last:])
n += wn
}
return
}
// singleStringReplacer is the implementation that's used when there is only
// one string to replace (and that string has more than one byte).
type singleStringReplacer struct {
finder *stringFinder
// value is the new string that replaces that pattern when it's found.
value string
}
func makeSingleStringReplacer(pattern string, value string) *singleStringReplacer {
return &singleStringReplacer{finder: makeStringFinder(pattern), value: value}
}
func (r *singleStringReplacer) Replace(s string) string {
var buf Builder
i, matched := 0, false
for {
match := r.finder.next(s[i:])
if match == -1 {
break
}
matched = true
buf.Grow(match + len(r.value))
buf.WriteString(s[i : i+match])
buf.WriteString(r.value)
i += match + len(r.finder.pattern)
}
if !matched {
return s
}
buf.WriteString(s[i:])
return buf.String()
}
func (r *singleStringReplacer) WriteString(w io.Writer, s string) (n int, err error) {
sw := getStringWriter(w)
var i, wn int
for {
match := r.finder.next(s[i:])
if match == -1 {
break
}
wn, err = sw.WriteString(s[i : i+match])
n += wn
if err != nil {
return
}
wn, err = sw.WriteString(r.value)
n += wn
if err != nil {
return
}
i += match + len(r.finder.pattern)
}
wn, err = sw.WriteString(s[i:])
n += wn
return
}
// byteReplacer is the implementation that's used when all the "old"
// and "new" values are single ASCII bytes.
// The array contains replacement bytes indexed by old byte.
type byteReplacer [256]byte
func (r *byteReplacer) Replace(s string) string {
var buf []byte // lazily allocated
for i := 0; i < len(s); i++ {
b := s[i]
if r[b] != b {
if buf == nil {
buf = []byte(s)
}
buf[i] = r[b]
}
}
if buf == nil {
return s
}
return string(buf)
}
func (r *byteReplacer) WriteString(w io.Writer, s string) (n int, err error) {
// TODO(bradfitz): use io.WriteString with slices of s, avoiding allocation.
bufsize := 32 << 10
if len(s) < bufsize {
bufsize = len(s)
}
buf := make([]byte, bufsize)
for len(s) > 0 {
ncopy := copy(buf, s)
s = s[ncopy:]
for i, b := range buf[:ncopy] {
buf[i] = r[b]
}
wn, err := w.Write(buf[:ncopy])
n += wn
if err != nil {
return n, err
}
}
return n, nil
}
// byteStringReplacer is the implementation that's used when all the
// "old" values are single ASCII bytes but the "new" values vary in size.
type byteStringReplacer struct {
// replacements contains replacement byte slices indexed by old byte.
// A nil []byte means that the old byte should not be replaced.
replacements [256][]byte
// toReplace keeps a list of bytes to replace. Depending on length of toReplace
// and length of target string it may be faster to use Count, or a plain loop.
// We store single byte as a string, because Count takes a string.
toReplace []string
}
// countCutOff controls the ratio of a string length to a number of replacements
// at which (*byteStringReplacer).Replace switches algorithms.
// For strings with higher ration of length to replacements than that value,
// we call Count, for each replacement from toReplace.
// For strings, with a lower ratio we use simple loop, because of Count overhead.
// countCutOff is an empirically determined overhead multiplier.
// TODO(tocarip) revisit once we have register-based abi/mid-stack inlining.
const countCutOff = 8
func (r *byteStringReplacer) Replace(s string) string {
newSize := len(s)
anyChanges := false
// Is it faster to use Count?
if len(r.toReplace)*countCutOff <= len(s) {
for _, x := range r.toReplace {
if c := Count(s, x); c != 0 {
// The -1 is because we are replacing 1 byte with len(replacements[b]) bytes.
newSize += c * (len(r.replacements[x[0]]) - 1)
anyChanges = true
}
}
} else {
for i := 0; i < len(s); i++ {
b := s[i]
if r.replacements[b] != nil {
// See above for explanation of -1
newSize += len(r.replacements[b]) - 1
anyChanges = true
}
}
}
if !anyChanges {
return s
}
buf := make([]byte, newSize)
j := 0
for i := 0; i < len(s); i++ {
b := s[i]
if r.replacements[b] != nil {
j += copy(buf[j:], r.replacements[b])
} else {
buf[j] = b
j++
}
}
return string(buf)
}
func (r *byteStringReplacer) WriteString(w io.Writer, s string) (n int, err error) {
sw := getStringWriter(w)
last := 0
for i := 0; i < len(s); i++ {
b := s[i]
if r.replacements[b] == nil {
continue
}
if last != i {
nw, err := sw.WriteString(s[last:i])
n += nw
if err != nil {
return n, err
}
}
last = i + 1
nw, err := w.Write(r.replacements[b])
n += nw
if err != nil {
return n, err
}
}
if last != len(s) {
var nw int
nw, err = sw.WriteString(s[last:])
n += nw
}
return
}
|