1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#include "config.h"
#ifdef HAVE_DL_ITERATE_PHDR
#include <link.h>
#endif
#include "runtime.h"
#include "arch.h"
#include "defs.h"
#ifdef USING_SPLIT_STACK
/* FIXME: These are not declared anywhere. */
extern void __splitstack_getcontext(void *context[10]);
extern void __splitstack_setcontext(void *context[10]);
extern void *__splitstack_makecontext(size_t, void *context[10], size_t *);
extern void * __splitstack_resetcontext(void *context[10], size_t *);
extern void __splitstack_releasecontext(void *context[10]);
extern void *__splitstack_find(void *, void *, size_t *, void **, void **,
void **);
extern void __splitstack_block_signals (int *, int *);
extern void __splitstack_block_signals_context (void *context[10], int *,
int *);
#endif
#ifndef PTHREAD_STACK_MIN
# define PTHREAD_STACK_MIN 8192
#endif
#if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK)
# define StackMin PTHREAD_STACK_MIN
#else
# define StackMin ((sizeof(char *) < 8) ? 2 * 1024 * 1024 : 4 * 1024 * 1024)
#endif
uintptr runtime_stacks_sys;
void gtraceback(G*)
__asm__(GOSYM_PREFIX "runtime.gtraceback");
static void gscanstack(G*);
#ifdef __rtems__
#define __thread
#endif
__thread G *g __asm__(GOSYM_PREFIX "runtime.g");
#ifndef SETCONTEXT_CLOBBERS_TLS
static inline void
initcontext(void)
{
}
static inline void
fixcontext(__go_context_t *c __attribute__ ((unused)))
{
}
#else
# if defined(__x86_64__) && defined(__sun__)
// x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs
// register to that of the thread which called getcontext. The effect
// is that the address of all __thread variables changes. This bug
// also affects pthread_self() and pthread_getspecific. We work
// around it by clobbering the context field directly to keep %fs the
// same.
static __thread greg_t fs;
static inline void
initcontext(void)
{
ucontext_t c;
getcontext(&c);
fs = c.uc_mcontext.gregs[REG_FSBASE];
}
static inline void
fixcontext(ucontext_t* c)
{
c->uc_mcontext.gregs[REG_FSBASE] = fs;
}
# elif defined(__NetBSD__)
// NetBSD has a bug: setcontext clobbers tlsbase, we need to save
// and restore it ourselves.
static __thread __greg_t tlsbase;
static inline void
initcontext(void)
{
ucontext_t c;
getcontext(&c);
tlsbase = c.uc_mcontext._mc_tlsbase;
}
static inline void
fixcontext(ucontext_t* c)
{
c->uc_mcontext._mc_tlsbase = tlsbase;
}
# elif defined(__sparc__)
static inline void
initcontext(void)
{
}
static inline void
fixcontext(ucontext_t *c)
{
/* ??? Using
register unsigned long thread __asm__("%g7");
c->uc_mcontext.gregs[REG_G7] = thread;
results in
error: variable ‘thread’ might be clobbered by \
‘longjmp’ or ‘vfork’ [-Werror=clobbered]
which ought to be false, as %g7 is a fixed register. */
if (sizeof (c->uc_mcontext.gregs[REG_G7]) == 8)
asm ("stx %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
else
asm ("st %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
}
# elif defined(_AIX)
static inline void
initcontext(void)
{
}
static inline void
fixcontext(ucontext_t* c)
{
// Thread pointer is in r13, per 64-bit ABI.
if (sizeof (c->uc_mcontext.jmp_context.gpr[13]) == 8)
asm ("std 13, %0" : "=m"(c->uc_mcontext.jmp_context.gpr[13]));
}
# else
# error unknown case for SETCONTEXT_CLOBBERS_TLS
# endif
#endif
// ucontext_arg returns a properly aligned ucontext_t value. On some
// systems a ucontext_t value must be aligned to a 16-byte boundary.
// The g structure that has fields of type ucontext_t is defined in
// Go, and Go has no simple way to align a field to such a boundary.
// So we make the field larger in runtime2.go and pick an appropriate
// offset within the field here.
static __go_context_t*
ucontext_arg(uintptr_t* go_ucontext)
{
uintptr_t p = (uintptr_t)go_ucontext;
size_t align = __alignof__(__go_context_t);
if(align > 16) {
// We only ensured space for up to a 16 byte alignment
// in libgo/go/runtime/runtime2.go.
runtime_throw("required alignment of __go_context_t too large");
}
p = (p + align - 1) &~ (uintptr_t)(align - 1);
return (__go_context_t*)p;
}
// We can not always refer to the TLS variables directly. The
// compiler will call tls_get_addr to get the address of the variable,
// and it may hold it in a register across a call to schedule. When
// we get back from the call we may be running in a different thread,
// in which case the register now points to the TLS variable for a
// different thread. We use non-inlinable functions to avoid this
// when necessary.
G* runtime_g(void) __attribute__ ((noinline, no_split_stack));
G*
runtime_g(void)
{
return g;
}
M* runtime_m(void) __attribute__ ((noinline, no_split_stack));
M*
runtime_m(void)
{
if(g == nil)
return nil;
return g->m;
}
// Set g.
void runtime_setg(G*) __attribute__ ((no_split_stack));
void
runtime_setg(G* gp)
{
g = gp;
}
void runtime_newosproc(M *)
__asm__(GOSYM_PREFIX "runtime.newosproc");
// Start a new thread.
void
runtime_newosproc(M *mp)
{
pthread_attr_t attr;
sigset_t clear, old;
pthread_t tid;
int tries;
int ret;
if(pthread_attr_init(&attr) != 0)
runtime_throw("pthread_attr_init");
if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0)
runtime_throw("pthread_attr_setdetachstate");
// Block signals during pthread_create so that the new thread
// starts with signals disabled. It will enable them in minit.
sigfillset(&clear);
#ifdef SIGTRAP
// Blocking SIGTRAP reportedly breaks gdb on Alpha GNU/Linux.
sigdelset(&clear, SIGTRAP);
#endif
sigemptyset(&old);
pthread_sigmask(SIG_BLOCK, &clear, &old);
for (tries = 0; tries < 20; tries++) {
ret = pthread_create(&tid, &attr, runtime_mstart, mp);
if (ret != EAGAIN) {
break;
}
runtime_usleep((tries + 1) * 1000); // Milliseconds.
}
pthread_sigmask(SIG_SETMASK, &old, nil);
if (ret != 0) {
runtime_printf("pthread_create failed: %d\n", ret);
runtime_throw("pthread_create");
}
if(pthread_attr_destroy(&attr) != 0)
runtime_throw("pthread_attr_destroy");
}
// Switch context to a different goroutine. This is like longjmp.
void runtime_gogo(G*) __attribute__ ((noinline));
void
runtime_gogo(G* newg)
{
#ifdef USING_SPLIT_STACK
__splitstack_setcontext((void*)(&newg->stackcontext[0]));
#endif
g = newg;
newg->fromgogo = true;
fixcontext(ucontext_arg(&newg->context[0]));
__go_setcontext(ucontext_arg(&newg->context[0]));
runtime_throw("gogo setcontext returned");
}
// Save context and call fn passing g as a parameter. This is like
// setjmp. Because getcontext always returns 0, unlike setjmp, we use
// g->fromgogo as a code. It will be true if we got here via
// setcontext. g == nil the first time this is called in a new m.
void runtime_mcall(FuncVal *) __attribute__ ((noinline));
void
runtime_mcall(FuncVal *fv)
{
M *mp;
G *gp;
#ifndef USING_SPLIT_STACK
void *afterregs;
#endif
// Ensure that all registers are on the stack for the garbage
// collector.
__builtin_unwind_init();
flush_registers_to_secondary_stack();
gp = g;
mp = gp->m;
if(gp == mp->g0)
runtime_throw("runtime: mcall called on m->g0 stack");
if(gp != nil) {
#ifdef USING_SPLIT_STACK
__splitstack_getcontext((void*)(&gp->stackcontext[0]));
#else
// We have to point to an address on the stack that is
// below the saved registers.
gp->gcnextsp = (uintptr)(&afterregs);
gp->gcnextsp2 = (uintptr)(secondary_stack_pointer());
#endif
gp->fromgogo = false;
__go_getcontext(ucontext_arg(&gp->context[0]));
// When we return from getcontext, we may be running
// in a new thread. That means that g may have
// changed. It is a global variables so we will
// reload it, but the address of g may be cached in
// our local stack frame, and that address may be
// wrong. Call the function to reload the value for
// this thread.
gp = runtime_g();
mp = gp->m;
if(gp->traceback != 0)
gtraceback(gp);
if(gp->scang != 0)
gscanstack(gp);
}
if (gp == nil || !gp->fromgogo) {
#ifdef USING_SPLIT_STACK
__splitstack_setcontext((void*)(&mp->g0->stackcontext[0]));
#endif
mp->g0->entry = fv;
mp->g0->param = gp;
// It's OK to set g directly here because this case
// can not occur if we got here via a setcontext to
// the getcontext call just above.
g = mp->g0;
fixcontext(ucontext_arg(&mp->g0->context[0]));
__go_setcontext(ucontext_arg(&mp->g0->context[0]));
runtime_throw("runtime: mcall function returned");
}
}
// Goroutine scheduler
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
//
// The main concepts are:
// G - goroutine.
// M - worker thread, or machine.
// P - processor, a resource that is required to execute Go code.
// M must have an associated P to execute Go code, however it can be
// blocked or in a syscall w/o an associated P.
//
// Design doc at http://golang.org/s/go11sched.
extern G* allocg(void)
__asm__ (GOSYM_PREFIX "runtime.allocg");
bool runtime_isarchive;
extern void kickoff(void)
__asm__(GOSYM_PREFIX "runtime.kickoff");
extern void minit(void)
__asm__(GOSYM_PREFIX "runtime.minit");
extern void mstart1()
__asm__(GOSYM_PREFIX "runtime.mstart1");
extern void stopm(void)
__asm__(GOSYM_PREFIX "runtime.stopm");
extern void mexit(bool)
__asm__(GOSYM_PREFIX "runtime.mexit");
extern void handoffp(P*)
__asm__(GOSYM_PREFIX "runtime.handoffp");
extern void wakep(void)
__asm__(GOSYM_PREFIX "runtime.wakep");
extern void stoplockedm(void)
__asm__(GOSYM_PREFIX "runtime.stoplockedm");
extern void schedule(void)
__asm__(GOSYM_PREFIX "runtime.schedule");
extern void execute(G*, bool)
__asm__(GOSYM_PREFIX "runtime.execute");
extern void reentersyscall(uintptr, uintptr)
__asm__(GOSYM_PREFIX "runtime.reentersyscall");
extern void reentersyscallblock(uintptr, uintptr)
__asm__(GOSYM_PREFIX "runtime.reentersyscallblock");
extern G* gfget(P*)
__asm__(GOSYM_PREFIX "runtime.gfget");
extern void acquirep(P*)
__asm__(GOSYM_PREFIX "runtime.acquirep");
extern P* releasep(void)
__asm__(GOSYM_PREFIX "runtime.releasep");
extern void incidlelocked(int32)
__asm__(GOSYM_PREFIX "runtime.incidlelocked");
extern void globrunqput(G*)
__asm__(GOSYM_PREFIX "runtime.globrunqput");
extern P* pidleget(void)
__asm__(GOSYM_PREFIX "runtime.pidleget");
extern struct mstats* getMemstats(void)
__asm__(GOSYM_PREFIX "runtime.getMemstats");
bool runtime_isstarted;
// Used to determine the field alignment.
struct field_align
{
char c;
Hchan *p;
};
void getTraceback(G*, G*) __asm__(GOSYM_PREFIX "runtime.getTraceback");
// getTraceback stores a traceback of gp in the g's traceback field
// and then returns to me. We expect that gp's traceback is not nil.
// It works by saving me's current context, and checking gp's traceback field.
// If gp's traceback field is not nil, it starts running gp.
// In places where we call getcontext, we check the traceback field.
// If it is not nil, we collect a traceback, and then return to the
// goroutine stored in the traceback field, which is me.
void getTraceback(G* me, G* gp)
{
M* holdm;
holdm = gp->m;
gp->m = me->m;
#ifdef USING_SPLIT_STACK
__splitstack_getcontext((void*)(&me->stackcontext[0]));
#endif
__go_getcontext(ucontext_arg(&me->context[0]));
if (gp->traceback != 0) {
runtime_gogo(gp);
}
gp->m = holdm;
}
// Do a stack trace of gp, and then restore the context to
// gp->traceback->gp.
void
gtraceback(G* gp)
{
Traceback* traceback;
traceback = (Traceback*)gp->traceback;
gp->traceback = 0;
traceback->c = runtime_callers(1, traceback->locbuf,
sizeof traceback->locbuf / sizeof traceback->locbuf[0], false);
runtime_gogo(traceback->gp);
}
void doscanstackswitch(G*, G*) __asm__(GOSYM_PREFIX "runtime.doscanstackswitch");
// Switch to gp and let it scan its stack.
// The first time gp->scang is set (to me). The second time here
// gp is done scanning, and has unset gp->scang, so we just return.
void
doscanstackswitch(G* me, G* gp)
{
M* holdm;
__go_assert(me->entry == nil);
me->fromgogo = false;
holdm = gp->m;
gp->m = me->m;
#ifdef USING_SPLIT_STACK
__splitstack_getcontext((void*)(&me->stackcontext[0]));
#endif
__go_getcontext(ucontext_arg(&me->context[0]));
if(me->entry != nil) {
// Got here from mcall.
// The stack scanning code may call systemstack, which calls
// mcall, which calls setcontext.
// Run the function, which at the end will switch back to gp.
FuncVal *fv = me->entry;
void (*pfn)(G*) = (void (*)(G*))fv->fn;
G* gp1 = (G*)me->param;
__go_assert(gp1 == gp);
me->entry = nil;
me->param = nil;
__builtin_call_with_static_chain(pfn(gp1), fv);
abort();
}
if (gp->scang != 0)
runtime_gogo(gp);
gp->m = holdm;
}
// Do a stack scan, then switch back to the g that triggers this scan.
// We come here from doscanstackswitch.
static void
gscanstack(G *gp)
{
G *oldg, *oldcurg;
oldg = (G*)gp->scang;
oldcurg = oldg->m->curg;
oldg->m->curg = gp;
gp->scang = 0;
doscanstack(gp, (void*)gp->scangcw);
gp->scangcw = 0;
oldg->m->curg = oldcurg;
runtime_gogo(oldg);
}
// Called by pthread_create to start an M.
void*
runtime_mstart(void *arg)
{
M* mp;
G* gp;
mp = (M*)(arg);
gp = mp->g0;
gp->m = mp;
g = gp;
gp->entry = nil;
gp->param = nil;
// We have to call minit before we call getcontext,
// because getcontext will copy the signal mask.
minit();
initcontext();
// Record top of stack for use by mcall.
// Once we call schedule we're never coming back,
// so other calls can reuse this stack space.
#ifdef USING_SPLIT_STACK
__splitstack_getcontext((void*)(&gp->stackcontext[0]));
#else
gp->gcinitialsp = &arg;
// Setting gcstacksize to 0 is a marker meaning that gcinitialsp
// is the top of the stack, not the bottom.
gp->gcstacksize = 0;
gp->gcnextsp = (uintptr)(&arg);
gp->gcinitialsp2 = secondary_stack_pointer();
gp->gcnextsp2 = (uintptr)(gp->gcinitialsp2);
#endif
// Save the currently active context. This will return
// multiple times via the setcontext call in mcall.
__go_getcontext(ucontext_arg(&gp->context[0]));
if(gp->traceback != 0) {
// Got here from getTraceback.
// I'm not sure this ever actually happens--getTraceback
// may always go to the getcontext call in mcall.
gtraceback(gp);
}
if(gp->scang != 0)
// Got here from doscanswitch. Should not happen.
runtime_throw("mstart with scang");
if(gp->entry != nil) {
// Got here from mcall.
FuncVal *fv = gp->entry;
void (*pfn)(G*) = (void (*)(G*))fv->fn;
G* gp1 = (G*)gp->param;
gp->entry = nil;
gp->param = nil;
__builtin_call_with_static_chain(pfn(gp1), fv);
abort();
}
if(mp->exiting) {
mexit(true);
return nil;
}
// Initial call to getcontext--starting thread.
#ifdef USING_SPLIT_STACK
{
int dont_block_signals = 0;
__splitstack_block_signals(&dont_block_signals, nil);
}
#endif
mstart1();
// mstart1 does not return, but we need a return statement
// here to avoid a compiler warning.
return nil;
}
typedef struct CgoThreadStart CgoThreadStart;
struct CgoThreadStart
{
M *m;
G *g;
uintptr *tls;
void (*fn)(void);
};
void setGContext(void) __asm__ (GOSYM_PREFIX "runtime.setGContext");
// setGContext sets up a new goroutine context for the current g.
void
setGContext(void)
{
int val;
G *gp;
initcontext();
gp = g;
gp->entry = nil;
gp->param = nil;
#ifdef USING_SPLIT_STACK
__splitstack_getcontext((void*)(&gp->stackcontext[0]));
val = 0;
__splitstack_block_signals(&val, nil);
#else
gp->gcinitialsp = &val;
gp->gcstack = 0;
gp->gcstacksize = 0;
gp->gcnextsp = (uintptr)(&val);
gp->gcinitialsp2 = secondary_stack_pointer();
gp->gcnextsp2 = (uintptr)(gp->gcinitialsp2);
#endif
__go_getcontext(ucontext_arg(&gp->context[0]));
if(gp->entry != nil) {
// Got here from mcall.
FuncVal *fv = gp->entry;
void (*pfn)(G*) = (void (*)(G*))fv->fn;
G* gp1 = (G*)gp->param;
gp->entry = nil;
gp->param = nil;
__builtin_call_with_static_chain(pfn(gp1), fv);
abort();
}
}
void makeGContext(G*, byte*, uintptr)
__asm__(GOSYM_PREFIX "runtime.makeGContext");
// makeGContext makes a new context for a g.
void
makeGContext(G* gp, byte* sp, uintptr spsize) {
__go_context_t *uc;
uc = ucontext_arg(&gp->context[0]);
__go_getcontext(uc);
__go_makecontext(uc, kickoff, sp, (size_t)spsize);
}
// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library and cgocall,
// not from the low-level system calls used by the runtime.
//
// Entersyscall cannot split the stack: the runtime_gosave must
// make g->sched refer to the caller's stack segment, because
// entersyscall is going to return immediately after.
void runtime_entersyscall() __attribute__ ((no_split_stack));
static void doentersyscall(uintptr, uintptr)
__attribute__ ((no_split_stack, noinline));
void
runtime_entersyscall()
{
// Save the registers in the g structure so that any pointers
// held in registers will be seen by the garbage collector.
if (!runtime_usestackmaps)
__go_getcontext(ucontext_arg(&g->gcregs[0]));
// Note that if this function does save any registers itself,
// we might store the wrong value in the call to getcontext.
// FIXME: This assumes that we do not need to save any
// callee-saved registers to access the TLS variable g. We
// don't want to put the ucontext_t on the stack because it is
// large and we can not split the stack here.
doentersyscall((uintptr)runtime_getcallerpc(),
(uintptr)runtime_getcallersp());
}
static void
doentersyscall(uintptr pc, uintptr sp)
{
// Leave SP around for GC and traceback.
#ifdef USING_SPLIT_STACK
{
size_t gcstacksize;
g->gcstack = (uintptr)(__splitstack_find(nil, nil, &gcstacksize,
(void**)(&g->gcnextsegment),
(void**)(&g->gcnextsp),
&g->gcinitialsp));
g->gcstacksize = (uintptr)gcstacksize;
}
#else
{
void *v;
g->gcnextsp = (uintptr)(&v);
g->gcnextsp2 = (uintptr)(secondary_stack_pointer());
}
#endif
reentersyscall(pc, sp);
}
static void doentersyscallblock(uintptr, uintptr)
__attribute__ ((no_split_stack, noinline));
// The same as runtime_entersyscall(), but with a hint that the syscall is blocking.
void
runtime_entersyscallblock()
{
// Save the registers in the g structure so that any pointers
// held in registers will be seen by the garbage collector.
if (!runtime_usestackmaps)
__go_getcontext(ucontext_arg(&g->gcregs[0]));
// See comment in runtime_entersyscall.
doentersyscallblock((uintptr)runtime_getcallerpc(),
(uintptr)runtime_getcallersp());
}
static void
doentersyscallblock(uintptr pc, uintptr sp)
{
// Leave SP around for GC and traceback.
#ifdef USING_SPLIT_STACK
{
size_t gcstacksize;
g->gcstack = (uintptr)(__splitstack_find(nil, nil, &gcstacksize,
(void**)(&g->gcnextsegment),
(void**)(&g->gcnextsp),
&g->gcinitialsp));
g->gcstacksize = (uintptr)gcstacksize;
}
#else
{
void *v;
g->gcnextsp = (uintptr)(&v);
g->gcnextsp2 = (uintptr)(secondary_stack_pointer());
}
#endif
reentersyscallblock(pc, sp);
}
// Allocate a new g, with a stack big enough for stacksize bytes.
G*
runtime_malg(bool allocatestack, bool signalstack, byte** ret_stack, uintptr* ret_stacksize)
{
uintptr stacksize;
G *newg;
byte* unused_stack;
uintptr unused_stacksize;
#ifdef USING_SPLIT_STACK
int dont_block_signals = 0;
size_t ss_stacksize;
#endif
if (ret_stack == nil) {
ret_stack = &unused_stack;
}
if (ret_stacksize == nil) {
ret_stacksize = &unused_stacksize;
}
newg = allocg();
if(allocatestack) {
stacksize = StackMin;
if(signalstack) {
stacksize = 32 * 1024; // OS X wants >= 8K, GNU/Linux >= 2K
#ifdef SIGSTKSZ
if(stacksize < (uintptr)(SIGSTKSZ))
stacksize = (uintptr)(SIGSTKSZ);
#endif
}
#ifdef USING_SPLIT_STACK
*ret_stack = __splitstack_makecontext(stacksize,
(void*)(&newg->stackcontext[0]),
&ss_stacksize);
*ret_stacksize = (uintptr)ss_stacksize;
__splitstack_block_signals_context((void*)(&newg->stackcontext[0]),
&dont_block_signals, nil);
#else
// In 64-bit mode, the maximum Go allocation space is
// 128G. Our stack size is 4M, which only permits 32K
// goroutines. In order to not limit ourselves,
// allocate the stacks out of separate memory. In
// 32-bit mode, the Go allocation space is all of
// memory anyhow.
if(sizeof(void*) == 8) {
void *p = runtime_sysAlloc(stacksize, &getMemstats()->stacks_sys);
if(p == nil)
runtime_throw("runtime: cannot allocate memory for goroutine stack");
*ret_stack = (byte*)p;
} else {
*ret_stack = runtime_mallocgc(stacksize, nil, false);
runtime_xadd(&runtime_stacks_sys, stacksize);
}
*ret_stacksize = (uintptr)stacksize;
newg->gcinitialsp = *ret_stack;
newg->gcstacksize = (uintptr)stacksize;
newg->gcinitialsp2 = initial_secondary_stack_pointer(*ret_stack);
#endif
}
return newg;
}
void stackfree(G*)
__asm__(GOSYM_PREFIX "runtime.stackfree");
// stackfree frees the stack of a g.
void
stackfree(G* gp)
{
#ifdef USING_SPLIT_STACK
__splitstack_releasecontext((void*)(&gp->stackcontext[0]));
#else
// If gcstacksize is 0, the stack is allocated by libc and will be
// released when the thread exits. Otherwise, in 64-bit mode it was
// allocated using sysAlloc and in 32-bit mode it was allocated
// using garbage collected memory.
if (gp->gcstacksize != 0) {
if (sizeof(void*) == 8) {
runtime_sysFree(gp->gcinitialsp, gp->gcstacksize, &getMemstats()->stacks_sys);
}
gp->gcinitialsp = nil;
gp->gcstacksize = 0;
}
#endif
}
void resetNewG(G*, void **, uintptr*)
__asm__(GOSYM_PREFIX "runtime.resetNewG");
// Reset stack information for g pulled out of the cache to start a
// new goroutine.
void
resetNewG(G *newg, void **sp, uintptr *spsize)
{
#ifdef USING_SPLIT_STACK
int dont_block_signals = 0;
size_t ss_spsize;
*sp = __splitstack_resetcontext((void*)(&newg->stackcontext[0]), &ss_spsize);
*spsize = ss_spsize;
__splitstack_block_signals_context((void*)(&newg->stackcontext[0]),
&dont_block_signals, nil);
#else
*sp = newg->gcinitialsp;
*spsize = newg->gcstacksize;
if(*spsize == 0)
runtime_throw("bad spsize in resetNewG");
newg->gcnextsp = (uintptr)(*sp);
newg->gcnextsp2 = (uintptr)(newg->gcinitialsp2);
#endif
}
|