1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include <errno.h>
#include <signal.h>
#include <unistd.h>
#if defined(__i386__) || defined(__x86_64__)
#include <cpuid.h>
#endif
#ifdef __linux__
#include <syscall.h>
#endif
#include "config.h"
#include "runtime.h"
#include "arch.h"
#include "array.h"
int32
runtime_atoi(const byte *p, intgo len)
{
int32 n;
n = 0;
while(len > 0 && '0' <= *p && *p <= '9') {
n = n*10 + *p++ - '0';
len--;
}
return n;
}
// A random number from the GNU/Linux auxv array.
static uint32 randomNumber;
// Set the random number from Go code.
void
setRandomNumber(uint32 r)
{
randomNumber = r;
}
#if defined(__i386__) || defined(__x86_64__) || defined (__s390__) || defined (__s390x__)
// When cputicks is just asm instructions, skip the split stack
// prologue for speed.
int64 runtime_cputicks(void) __attribute__((no_split_stack));
#endif
// Whether the processor supports SSE2.
#if defined (__i386__)
static _Bool hasSSE2;
// Force appropriate CPU level so that we can call the lfence/mfence
// builtins.
#pragma GCC push_options
#pragma GCC target("sse2")
#elif defined(__x86_64__)
#define hasSSE2 true
#endif
#if defined(__i386__) || defined(__x86_64__)
// Whether to use lfence, as opposed to mfence.
// Set based on cpuid.
static _Bool lfenceBeforeRdtsc;
#endif // defined(__i386__) || defined(__x86_64__)
int64
runtime_cputicks(void)
{
#if defined(__i386__) || defined(__x86_64__)
if (hasSSE2) {
if (lfenceBeforeRdtsc) {
__builtin_ia32_lfence();
} else {
__builtin_ia32_mfence();
}
}
return __builtin_ia32_rdtsc();
#elif defined (__s390__) || defined (__s390x__)
uint64 clock = 0;
/* stckf may not write the return variable in case of a clock error, so make
it read-write to prevent that the initialisation is optimised out.
Note: Targets below z9-109 will crash when executing store clock fast, i.e.
we don't support Go for machines older than that. */
asm volatile(".insn s,0xb27c0000,%0" /* stckf */ : "+Q" (clock) : : "cc" );
return (int64)clock;
#else
// Currently cputicks() is used in blocking profiler and to seed runtime·fastrand().
// runtime·nanotime() is a poor approximation of CPU ticks that is enough for the profiler.
// randomNumber provides better seeding of fastrand.
return runtime_nanotime1() + randomNumber;
#endif
}
#if defined(__i386__)
#pragma GCC pop_options
#endif
void
runtime_signalstack(byte *p, uintptr n)
{
stack_t st;
st.ss_sp = p;
st.ss_size = n;
st.ss_flags = 0;
if(p == nil)
st.ss_flags = SS_DISABLE;
if(sigaltstack(&st, nil) < 0)
abort();
}
int32 go_open(char *, int32, int32)
__asm__ (GOSYM_PREFIX "runtime.open");
int32
go_open(char *name, int32 mode, int32 perm)
{
return runtime_open(name, mode, perm);
}
int32 go_read(int32, void *, int32)
__asm__ (GOSYM_PREFIX "runtime.read");
int32
go_read(int32 fd, void *p, int32 n)
{
ssize_t r = runtime_read(fd, p, n);
if (r < 0)
r = - errno;
return (int32)r;
}
int32 go_write1(uintptr, void *, int32)
__asm__ (GOSYM_PREFIX "runtime.write1");
int32
go_write1(uintptr fd, void *p, int32 n)
{
ssize_t r = runtime_write(fd, p, n);
if (r < 0)
r = - errno;
return (int32)r;
}
int32 go_closefd(int32)
__asm__ (GOSYM_PREFIX "runtime.closefd");
int32
go_closefd(int32 fd)
{
return runtime_close(fd);
}
intgo go_errno(void)
__asm__ (GOSYM_PREFIX "runtime.errno");
intgo
go_errno()
{
return (intgo)errno;
}
uintptr getEnd(void)
__asm__ (GOSYM_PREFIX "runtime.getEnd");
uintptr
getEnd()
{
#ifdef _AIX
// mmap adresses range start at 0x30000000 on AIX for 32 bits processes
uintptr end = 0x30000000U;
#else
uintptr end = 0;
uintptr *pend;
pend = &__go_end;
if (pend != nil) {
end = *pend;
}
#endif
return end;
}
// Return an address that is before the read-only data section.
// Unfortunately there is no standard symbol for this so we use a text
// address.
uintptr getText(void)
__asm__ (GOSYM_PREFIX "runtime.getText");
extern void main_main(void*)
__asm__(GOSYM_PREFIX "main.main");
uintptr
getText(void)
{
return (uintptr)(const void *)(main_main);
}
// Return the end of the text segment, assumed to come after the
// read-only data section.
uintptr getEtext(void)
__asm__ (GOSYM_PREFIX "runtime.getEtext");
uintptr
getEtext(void)
{
const void *p;
p = __data_start;
if (p == nil)
p = __etext;
if (p == nil)
p = _etext;
return (uintptr)(p);
}
// Return the start of the BSS section.
uintptr getBSS(void)
__asm__ (GOSYM_PREFIX "runtime.getBSS");
uintptr
getBSS(void)
{
const void *p;
p = __edata;
if (p == NULL)
p = _edata;
if (p == NULL)
p = __bss_start;
return (uintptr)(p);
}
// CPU-specific initialization.
// Fetch CPUID info on x86.
void
runtime_cpuinit()
{
#if defined(__i386__) || defined(__x86_64__)
unsigned int eax, ebx, ecx, edx;
if (__get_cpuid(0, &eax, &ebx, &ecx, &edx)) {
if (eax != 0
&& ebx == 0x756E6547 // "Genu"
&& edx == 0x49656E69 // "ineI"
&& ecx == 0x6C65746E) { // "ntel"
lfenceBeforeRdtsc = true;
}
}
if (__get_cpuid(1, &eax, &ebx, &ecx, &edx)) {
#if defined(__i386__)
if ((edx & bit_SSE2) != 0) {
hasSSE2 = true;
}
#endif
}
#if defined(HAVE_AS_X86_AES)
setSupportAES(true);
#endif
#endif
}
// A publication barrier: a store/store barrier.
void publicationBarrier(void)
__asm__ (GOSYM_PREFIX "runtime.publicationBarrier");
void
publicationBarrier()
{
__atomic_thread_fence(__ATOMIC_RELEASE);
}
#ifdef __linux__
/* Currently sbrk0 is only called on GNU/Linux. */
uintptr sbrk0(void)
__asm__ (GOSYM_PREFIX "runtime.sbrk0");
uintptr
sbrk0()
{
return syscall(SYS_brk, (uintptr)(0));
}
#endif /* __linux__ */
|