1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
|
// GNU D Compiler attribute support declarations.
// Copyright (C) 2021-2024 Free Software Foundation, Inc.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
module gcc.attributes;
// Private helper templates.
private struct Attribute(A...)
{
A arguments;
}
private enum bool isStringValue(alias T) = is(typeof(T) == string);
private enum bool isStringOrIntValue(alias T)
= is(typeof(T) == string) || is(typeof(T) == int);
private template allSatisfy(alias F, T...)
{
static if (T.length == 0)
enum allSatisfy = true;
else static if (T.length == 1)
enum allSatisfy = F!(T[0]);
else
{
enum allSatisfy = allSatisfy!(F, T[ 0 .. $/2])
&& allSatisfy!(F, T[$/2 .. $ ]);
}
}
/**
* Generic entrypoint for applying GCC attributes to a function or type.
* There is no type checking done, as well as no deprecation path for
* attributes removed from the compiler. So the recommendation is to use any
, of the other UDAs available unless it is a target-specific attribute.
*
* Function attributes introduced by the @attribute UDA are used in the
* declaration of a function, followed by an attribute name string and
* any arguments separated by commas enclosed in parentheses.
*
* Example:
* ---
* import gcc.attributes;
*
* @attribute("regparm", 1) int func(int size);
* ---
*/
@system
auto attribute(A...)(A arguments)
if (A.length > 0 && is(A[0] == string))
{
return Attribute!A(arguments);
}
///////////////////////////////////////////////////////////////////////////////
//
// Supported common attributes exposed by GDC.
//
///////////////////////////////////////////////////////////////////////////////
/**
* The `@alloc_size` attribute may be applied to a function that returns a
* pointer and takes at least one argument of an integer or enumerated type.
* It indicates that the returned pointer points to memory whose size is given
* by the function argument at `sizeArgIdx`, or by the product of the arguments
* at `sizeArgIdx` and `numArgIdx`. Meaningful sizes are positive values less
* than `ptrdiff_t.max`. Unless `zeroBasedNumbering` is true, argument
* numbering starts at one for ordinary functions, and at two for non-static
* member functions.
*
* If `numArgIdx` is less than `0`, it is taken to mean there is no argument
* specifying the element count.
*
* Example:
* ---
* import gcc.attributes;
*
* @alloc_size(1) extern(C) void* malloc(size_t size);
* @alloc_size(3,2) extern(C) void* reallocarray(void *ptr, size_t nmemb,
* size_t size);
* @alloc_size(1,2) void* my_calloc(size_t element_size, size_t count,
* bool irrelevant);
* ---
*/
auto alloc_size(int sizeArgIdx)
{
return attribute("alloc_size", sizeArgIdx);
}
/// ditto
auto alloc_size(int sizeArgIdx, int numArgIdx)
{
return attribute("alloc_size", sizeArgIdx, numArgIdx);
}
/// ditto
auto alloc_size(int sizeArgIdx, int numArgIdx, bool zeroBasedNumbering)
{
return attribute("alloc_size", sizeArgIdx, numArgIdx, zeroBasedNumbering);
}
auto alloc_size(A...)(A arguments)
{
assert(false, "alloc_size attribute argument value is not an integer constant");
}
/**
* The `@always_inline` attribute inlines the function independent of any
* restrictions that otherwise apply to inlining. Failure to inline such a
* function is diagnosed as an error.
*
* Example:
* ---
* import gcc.attributes;
*
* @always_inline int func();
* ---
*/
enum always_inline = attribute("always_inline");
/**
* The `@cold` attribute on functions is used to inform the compiler that the
* function is unlikely to be executed. The function is optimized for size
* rather than speed and on many targets it is placed into a special subsection
* of the text section so all cold functions appear close together, improving
* code locality of non-cold parts of program. The paths leading to calls of
* cold functions within code are considered to be cold too.
*
* Example:
* ---
* import gcc.attributes;
*
* @cold int func();
* ---
*/
enum cold = attribute("cold");
/**
* The `@flatten` attribute is used to inform the compiler that every call
* inside this function should be inlined, if possible. Functions declared with
* attribute `@noinline` and similar are not inlined.
*
* Example:
* ---
* import gcc.attributes;
*
* @flatten int func();
* ---
*/
enum flatten = attribute("flatten");
/**
* The `@no_icf` attribute prevents a functions from being merged with another
* semantically equivalent function.
*
* Example:
* ---
* import gcc.attributes;
*
* @no_icf int func();
* ---
*/
enum no_icf = attribute("no_icf");
/**
* The `@no_sanitize` attribute on functions is used to inform the compiler
* that it should not do sanitization of any option mentioned in
* sanitize_option. A list of values acceptable by the `-fsanitize` option
* can be provided.
*
* Example:
* ---
* import gcc.attributes;
*
* @no_sanitize("alignment", "object-size") void func1() { }
* @no_sanitize("alignment,object-size") void func2() { }
* ---
*/
auto no_sanitize(A...)(A arguments)
if (allSatisfy!(isStringValue, arguments))
{
return attribute("no_sanitize", arguments);
}
auto no_sanitize(A...)(A arguments)
if (!allSatisfy!(isStringValue, arguments))
{
assert(false, "no_sanitize attribute argument not a string constant");
}
/**
* The `@noclone` attribute prevents a function from being considered for
* cloning - a mechanism that produces specialized copies of functions and
* which is (currently) performed by interprocedural constant propagation.
*
* Example:
* ---
* import gcc.attributes;
*
* @noclone int func();
* ---
*/
enum noclone = attribute("noclone");
/**
* The `@noinline` attribute prevents a function from being considered for
* inlining. If the function does not have side effects, there are
* optimizations other than inlining that cause function calls to be optimized
* away, although the function call is live. To keep such calls from being
* optimized away, put `asm { ""; }` in the called function, to serve as a
* special side effect.
*
* Example:
* ---
* import gcc.attributes;
*
* @noinline int func();
* ---
*/
enum noinline = attribute("noinline");
/**
* The `@noipa` attribute disables interprocedural optimizations between the
* function with this attribute and its callers, as if the body of the function
* is not available when optimizing callers and the callers are unavailable when
* optimizing the body. This attribute implies `@noinline`, `@noclone`, and
* `@no_icf` attributes. However, this attribute is not equivalent to a
* combination of other attributes, because its purpose is to suppress existing
* and future optimizations employing interprocedural analysis, including those
* that do not have an attribute suitable for disabling them individually.
*
* This attribute is supported mainly for the purpose of testing the compiler.
*
* Example:
* ---
* import gcc.attributes;
*
* @noipa int func();
* ---
*/
enum noipa = attribute("noipa");
/**
* The `@optimize` attribute is used to specify that a function is to be
* compiled with different optimization options than specified on the command
* line. Valid `arguments` are constant non-negative integers and strings.
* Multiple arguments can be provided, separated by commas to specify multiple
* options. Each numeric argument specifies an optimization level. Each string
* argument that begins with the letter O refers to an optimization option such
* as `-O0` or `-Os`. Other options are taken as suffixes to the `-f` prefix
* jointly forming the name of an optimization option.
*
* Not every optimization option that starts with the `-f` prefix specified by
* the attribute necessarily has an effect on the function. The `@optimize`
* attribute should be used for debugging purposes only. It is not suitable in
* production code.
*
* Example:
* ---
* import gcc.attributes;
*
* @optimize(2) double fn0(double x);
* @optimize("2") double fn1(double x);
* @optimize("s") double fn2(double x);
* @optimize("Ofast") double fn3(double x);
* @optimize("-O2") double fn4(double x);
* @optimize("tree-vectorize") double fn5(double x);
* @optimize("-ftree-vectorize") double fn6(double x);
* @optimize("no-finite-math-only", 3) double fn7(double x);
* ---
*/
auto optimize(A...)(A arguments)
if (allSatisfy!(isStringOrIntValue, arguments))
{
return attribute("optimize", arguments);
}
auto optimize(A...)(A arguments)
if (!allSatisfy!(isStringOrIntValue, arguments))
{
assert(false, "optimize attribute argument not a string or integer constant");
}
/**
* The `@register` attribute specifies that a local or `__gshared` variable
* is to be given a register storage-class in the C99 sense of the term, and
* will be placed into a register named `registerName`.
*
* The variable needs to boiled down to a data type that fits the target
* register. It also cannot have either thread-local or `extern` storage.
* It is an error to take the address of a register variable.
*
* Example:
* ---
* import gcc.attributes;
*
* @register("ebx") __gshared int ebx = void;
*
* void func() { @register("r10") long r10 = 0x2a; }
* ---
*/
auto register(string registerName)
{
return attribute("register", registerName);
}
auto register(A...)(A arguments)
{
assert(false, "register attribute argument not a string constant");
}
/**
* The `@restrict` attribute specifies that a function parameter is to be
* restrict-qualified in the C99 sense of the term. The parameter needs to
* boil down to either a pointer or reference type, such as a D pointer,
* class reference, or a `ref` parameter.
*
* Example:
* ---
* import gcc.attributes;
*
* void func(@restrict ref const float[16] array);
* ---
*/
enum restrict = attribute("restrict");
/**
* The `@section` attribute specifies that a function lives in a particular
* section. For when you need certain particular functions to appear in
* special sections.
*
* Some file formats do not support arbitrary sections so the section attribute
* is not available on all platforms. If you need to map the entire contents
* of a module to a particular section, consider using the facilities of the
* linker instead.
*
* Example:
* ---
* import gcc.attributes;
*
* @section("bar") extern void func();
* ---
*/
auto section(string sectionName)
{
return attribute("section", sectionName);
}
auto section(A...)(A arguments)
{
assert(false, "section attribute argument not a string constant");
}
/**
* The `@simd` attribute enables creation of one or more function versions that
* can process multiple arguments using SIMD instructions from a single
* invocation. Specifying this attribute allows compiler to assume that such
* versions are available at link time (provided in the same or another module).
* Generated versions are target-dependent and described in the corresponding
* Vector ABI document. For x86_64 target this document can be found here.
* https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt
*
* The `@simd_clones` attribute is the same as `@simd`, but also includes a
* `mask` argument. Valid masks values are `notinbranch` or `inbranch`, and
* instructs the compiler to generate non-masked or masked clones
* correspondingly.
*
* Example:
* ---
* import gcc.attributes;
*
* @simd double sqrt(double x);
* @simd("notinbranch") double atan2(double y, double x);
* ---
*/
enum simd = attribute("simd");
auto simd_clones(string mask)
{
if (mask == "notinbranch" || mask == "inbranch")
return attribute("simd", mask);
else
{
assert(false, "unrecognized parameter `" ~ mask
~ "` for `gcc.attribute.simd_clones`");
}
}
auto simd_clones(A...)(A arguments)
{
assert(false, "simd_clones attribute argument not a string constant");
}
/**
* The `@symver` attribute creates a symbol version on ELF targets. The syntax
* of the string parameter is `name@nodename`. The `name` part of the parameter
* is the actual name of the symbol by which it will be externally referenced.
* The `nodename` portion should be the name of a node specified in the version
* script supplied to the linker when building a shared library. Versioned
* symbol must be defined and must be exported with default visibility.
*
* Finally if the parameter is `name@@nodename` then in addition to creating a
* symbol version (as if `name@nodename` was used) the version will be also used
* to resolve `name` by the linker.
*
* Example:
* ---
* import gcc.attributes;
*
* @symver("foo@VERS_1") int foo_v1();
* ---
*/
auto symver(A...)(A arguments)
if (allSatisfy!(isStringValue, arguments))
{
return attribute("symver", arguments);
}
auto symver(A...)(A arguments)
if (!allSatisfy!(isStringValue, arguments))
{
assert(false, "symver attribute argument not a string constant");
}
/**
* The `@target` attribute is used to specify that a function is to be
* compiled with different target options than specified on the command line.
* One or more strings can be provided as arguments, separated by commas to
* specify multiple options. Each string consists of one or more
* comma-separated suffixes to the `-m` prefix jointly forming the name of a
* machine-dependent option.
*
* The target attribute can be used for instance to have a function compiled
* with a different ISA (instruction set architecture) than the default.
*
* The options supported are specific to each target.
*
* Example:
* ---
* import gcc.attributes;
*
* @target("arch=core2") void core2_func();
* @target("sse3") void sse3_func();
* ---
*/
auto target(A...)(A arguments)
if (allSatisfy!(isStringValue, arguments))
{
return attribute("target", arguments);
}
auto target(A...)(A arguments)
if (!allSatisfy!(isStringValue, arguments))
{
assert(false, "target attribute argument not a string constant");
}
/**
* The `@target_clones` attribute is used to specify that a function be cloned
* into multiple versions compiled with different target `options` than
* specified on the command line. The supported options and restrictions are
* the same as for `@target` attribute.
*
* It also creates a resolver function that dynamically selects a clone suitable
* for current architecture. The resolver is created only if there is a usage
* of a function with `@target_clones` attribute.
*
* Example:
* ---
* import gcc.attributes;
*
* @target_clones("sse4.1,avx,default") double func(double x);
* ---
*/
auto target_clones(A...)(A arguments)
if (allSatisfy!(isStringValue, arguments))
{
return attribute("target_clones", arguments);
}
auto target_clones(A...)(A arguments)
if (!allSatisfy!(isStringValue, arguments))
{
assert(false, "target attribute argument not a string constant");
}
/**
* The `@used` attribute, annotated to a function, means that code must be
* emitted for the function even if it appears that the function is not
* referenced. This is useful, for example, when the function is referenced
* only in inline assembly.
*
* Example:
* ---
* import gcc.attributes;
*
* @used __gshared int var = 0x1000;
* ---
*/
enum used = attribute("used");
/**
* The `@visibility` attribute affects the linkage of the declaration to which
* it is attached. It can be applied to variables, types, and functions.
*
* There are four supported visibility_type values: `default`, `hidden`,
* `protected`, or `internal` visibility.
*
* Example:
* ---
* import gcc.attributes;
*
* @visibility("protected") void func() { }
* ---
*/
auto visibility(string visibilityName)
{
return attribute("visibility", visibilityName);
}
auto visibility(A...)(A arguments)
{
assert(false, "visibility attribute argument not a string constant");
}
/**
* The `@weak` attribute causes a declaration of an external symbol to be
* emitted as a weak symbol rather than a global. This is primarily useful in
* defining library functions that can be overridden in user code, though it can
* also be used with non-function declarations. The overriding symbol must have
* the same type as the weak symbol. In addition, if it designates a variable
* it must also have the same size and alignment as the weak symbol.
*
* Weak symbols are supported for ELF targets, and also for a.out targets when
* using the GNU assembler and linker.
*
* Example:
* ---
* import gcc.attributes;
*
* @weak int func() { return 1; }
* ---
*/
enum weak = attribute("weak");
/**
* The `@noplt` attribute is the counterpart to option `-fno-plt`. Calls to
* functions marked with this attribute in position-independent code do not use
* the PLT in position-independent code.
*
* In position-dependant code, a few targets also convert call to functions
* that are marked to not use the PLT to use the GOT instead.
*
* Example:
* ---
* import gcc.attributes;
*
* @noplt int func();
*
* ---
*/
enum noplt = attribute("noplt");
///////////////////////////////////////////////////////////////////////////////
//
// Attributes defined for compatibility with LDC.
//
///////////////////////////////////////////////////////////////////////////////
/**
* Specifies that the function returns `null` or a pointer to at least a
* certain number of allocated bytes. `sizeArgIdx` and `numArgIdx` specify
* the 0-based index of the function arguments that should be used to calculate
* the number of bytes returned.
*
* Example:
* ---
* import gcc.attributes;
*
* @allocSize(0) extern(C) void* malloc(size_t size);
* @allocSize(2,1) extern(C) void* reallocarray(void *ptr, size_t nmemb,
* size_t size);
* @allocSize(0,1) void* my_calloc(size_t element_size, size_t count,
* bool irrelevant);
* ---
*/
auto allocSize(int sizeArgIdx, int numArgIdx = int.min)
{
return alloc_size(sizeArgIdx, numArgIdx, true);
}
auto allocSize(A...)(A arguments)
{
assert(false, "allocSize attribute argument value is not an integer constant");
}
/**
* When applied to a global symbol, the compiler, assembler, and linker are
* required to treat the symbol as if there is a reference to the symbol that
* it cannot see (which is why they have to be named). For example, it
* prevents the deletion by the linker of an unreferenced symbol.
*
* Example:
* ---
* import gcc.attributes;
*
* @assumeUsed __gshared int var = 0x1000;
* ---
*/
alias assumeUsed = used;
/// This attribute has no effect.
enum dynamicCompile = false;
/// ditto
enum dynamicCompileConst = false;
/// ditto
enum dynamicCompileEmit = false;
/**
* Explicitly sets "fast-math" for a function, enabling aggressive math
* optimizations. These optimizations may dramatically change the outcome of
* floating point calculations (e.g. because of reassociation).
*
* Example:
* ---
* import gcc.attributes;
*
* @fastmath
* double dot(double[] a, double[] b) {
* double s = 0;
* foreach(size_t i; 0..a.length)
* {
* // will result in vectorized fused-multiply-add instructions
* s += a * b;
* }
* return s;
* }
* ---
*/
enum fastmath = optimize("Ofast");
/**
* Sets the visibility of a function or global variable to "hidden".
* Such symbols aren't directly accessible from outside the DSO
* (executable or DLL/.so/.dylib) and are resolved inside the DSO
* during linking. If unreferenced within the DSO, the linker can
* strip a hidden symbol.
* An `export` visibility overrides this attribute.
*/
enum hidden = visibility("hidden");
/**
* Adds GCC's "naked" attribute to a function, disabling function prologue /
* epilogue emission.
* Intended to be used in combination with basic `asm` statement. While using
* extended `asm` or a mixture of basic `asm` and D code may appear to work,
* they cannot be depended upon to work reliably and are not supported.
*
* Example:
* ---
* import gcc.attributes;
*
* @naked void abort() {
* asm { "ud2"; }
* }
* ---
*/
enum naked = attribute("naked");
/**
* Disables a particular sanitizer for this function.
* Valid sanitizer names are all names accepted by `-fsanitize=` commandline option.
* Multiple sanitizers can be disabled by applying this UDA multiple times, e.g.
* `@noSanitize("address") `@noSanitize("thread")` to disable both ASan and TSan.
*/
alias noSanitize = no_sanitize;
/**
* Sets the optimization strategy for a function.
* Valid strategies are "none", "optsize", "minsize". The strategies are
* mutually exclusive.
*
* Example:
* ---
* import gcc.attributes;
*
* @optStrategy("none")
* int func() {
* return call();
* }
* ---
*/
auto optStrategy(string strategy)
{
if (strategy == "none")
return optimize("O0");
else if (strategy == "optsize" || strategy == "minsize")
return optimize("Os");
else
{
assert(false, "unrecognized parameter `" ~ strategy
~ "` for `gcc.attribute.optStrategy`");
}
}
auto optStrategy(A...)(A arguments)
{
assert(false, "optStrategy attribute argument value is not a string constant");
}
/**
* When applied to a function, specifies that the function should be optimzed
* by Graphite, GCC's polyhedral optimizer. Useful for optimizing loops for
* data locality, vectorization and parallelism.
*
* Experimental!
*
* Only effective when GDC was built with ISL included.
*/
enum polly = optimize("loop-parallelize-all", "loop-nest-optimize");
|