1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
// GNU D Compiler SIMD support functions and intrinsics.
// Copyright (C) 2022-2024 Free Software Foundation, Inc.
// GCC is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 3, or (at your option) any later
// version.
// GCC is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
module gcc.simd;
pure:
nothrow:
@safe:
@nogc:
pragma(inline, true):
/**
* Emit prefetch instruction.
* Params:
* address = address to be prefetched
* writeFetch = true for write fetch, false for read fetch
* locality = 0..3 (0 meaning least local, 3 meaning most local)
*/
void prefetch(bool writeFetch, ubyte locality)(const(void)* address)
{
static assert(locality < 4, "0..3 expected for locality");
import gcc.builtins : __builtin_prefetch;
__builtin_prefetch(address, writeFetch, locality);
}
/**
* Load unaligned vector from address.
* This is a compiler intrinsic.
* Params:
* p = pointer to vector
* Returns:
* vector
*/
V loadUnaligned(V)(const V* p) if (isVectorType!V);
/**
* Store vector to unaligned address.
* This is a compiler intrinsic.
* Params:
* p = pointer to vector
* value = value to store
* Returns:
* value
*/
V storeUnaligned(V)(V* p, V value) if (isVectorType!V);
/**
* Construct a permutation of elements from one or two vectors, returning a
* vector of the same type as the input vector(s). The `mask` is an integral
* vector with the same width and element count as the output vector.
* Params:
* op1 = input vector
* op2 = input vector
* mask = integer vector mask
* Returns:
* vector with the same type as `op1` and `op2`
* Example:
* ---
* int4 a = [1, 2, 3, 4];
* int4 b = [5, 6, 7, 8];
* int4 mask1 = [0, 1, 1, 3];
* int4 mask2 = [0, 4, 2, 5];
* assert(shuffle(a, mask1).array == [1, 2, 2, 4]);
* assert(shuffle(a, b, mask2).array == [1, 5, 3, 6]);
* ---
*/
template shuffle(V0, V1, M)
{
static assert(isVectorType!V0, "first argument must be vector");
static assert(isVectorType!V1, "second argument must be vector");
static assert(is(BaseType!V0 == BaseType!V1),
"first and second argument vectors must have the same element type");
static assert(isVectorType!M && is(BaseType!M : long),
"last argument must be an integer vector");
static assert(numElements!V0 == numElements!M && numElements!V1 == numElements!M,
"argument vectors and mask vector should have the same number of elements");
static assert(BaseType!V0.sizeof == BaseType!M.sizeof,
"argument vectors and mask vector should have the same element type size");
V0 shuffle(V0 op1, V1 op2, M mask);
}
/// Ditto
template shuffle(V, M)
{
static assert(isVectorType!V, "first argument must be a vector");
static assert(isVectorType!M && is(BaseType!M : long),
"last argument must be an integer vector");
static assert(numElements!V == numElements!M,
"argument vector and mask vector should have the same number of elements");
static assert(BaseType!V.sizeof == BaseType!M.sizeof,
"argument vector and mask vector should have the same element type size");
V shuffle(V op1, M mask)
{
return shuffle(op1, op1, mask);
}
}
/**
* Construct a permutation of elements from two vectors, returning a vector with
* the same element type as the input vector(s), and same length as the `mask`.
* Params:
* op1 = input vector
* op2 = input vector
* index = elements indices of the vectors that should be extracted and returned
* Returns:
* vector with the same element type as `op1` and `op2`, but has an element count
* equal to the number of indices in `index`.
* Example:
* ---
* int8 a = [1, -2, 3, -4, 5, -6, 7, -8];
* int4 b = shufflevector(a, a, 0, 2, 4, 6);
* assert(b.array == [1, 3, 5, 7]);
* int4 c = [-2, -4, -6, -8];
* int d = shufflevector(c, b, 4, 0, 5, 1, 6, 2, 7, 3);
* assert(d.array == a.array);
* ---
*/
template shufflevector(V1, V2, M...)
{
static assert(isVectorType!V1, "first argument must be vector");
static assert(isVectorType!V2, "second argument must be vector");
static assert(is(BaseType!V1 == BaseType!V2),
"first and second argument vectors must have the same element type");
static assert(isPowerOf2!(M.length),
"number of index arguments must be a power of 2");
__vector(BaseType!V1[M.length]) shufflevector(V1 op1, V2 op2, M index);
}
/// Ditto
template shufflevector(V, index...)
{
// Defined for compatibility with LDC.
static assert(isVectorType!V, "first argument must be a vector type");
static assert(numElements!V == index.length,
"number of index arguments must be the same number of vector elements");
private template ctfeConstants(m...)
{
static if (m.length == 0) enum ctfeConstants = 1;
else enum ctfeConstants = m[0] | ctfeConstants!(m[1 .. $]);
}
static assert(__traits(compiles, ctfeConstants!index),
"all index arguments must be compile time constants");
private template validIndexes(m...)
{
static if (m.length == 0) enum validIndexes = true;
else enum validIndexes = (cast(long)m[0] > -1) && validIndexes!(m[1 .. $]);
}
static assert(validIndexes!index,
"all index arguments must be greater than or equal to 0");
V shufflevector(V op1, V op2)
{
return shufflevector(op1, op2, index);
}
}
/**
* Extracts a single scalar element from a vector at a specified index.
* Defined for compatibility with LDC.
* Params:
* val = vector to extract element from
* idx = index indicating the position from which to extract the element
* Returns:
* scalar of the same type as the element type of val
* Example:
* ---
* int4 a = [0, 10, 20, 30];
* int k = extractelement!(int4, 2)(a);
* assert(k == 20);
* ---
*/
BaseType!V extractelement(V, int idx)(V val)
if (isVectorType!V && idx < numElements!V)
{
return val[idx];
}
/**
* Inserts a scalar element into a vector at a specified index.
* Defined for compatibility with LDC.
* Params:
* val = vector to assign element to
* elt = scalar whose type is the element type of val
* idx = index indicating the position from which to extract the element
* Returns:
* vector of the same type as val
* Example:
* ---
* int4 a = [0, 10, 20, 30];
* int4 b = insertelement!(int4, 2)(a, 50);
* assert(b.array == [0, 10, 50, 30]);
* ---
*/
V insertelement(V, int idx)(V val, BaseType!V elt)
if (isVectorType!V && idx < numElements!V)
{
val[idx] = elt;
return val;
}
/**
* Convert a vector from one integral or floating vector type to another.
* The result is an integral or floating vector that has had every element
* cast to the element type of the return type.
* Params:
* from = input vector
* Returns:
* converted vector
* Example:
* ---
* int4 a = [1, -2, 3, -4];
* float4 b = [1.5, -2.5, 3, 7];
* assert(convertvector!float4(a).array == [1, -2, 3, -4]);
* assert(convertvector!double4(a).array == [1, -2, 3, -4]);
* assert(convertvector!double4(b).array == [1.5, -2.5, 3, 7]);
* assert(convertvector!int4(b).array == [1, -2, 3, 7]);
* ---
*/
template convertvector(V, T)
{
static assert(isVectorType!V && (is(BaseType!V : long) || is(BaseType!V : real)),
"first argument must be an integer or floating vector type");
static assert(isVectorType!T && (is(BaseType!T : long) || is(BaseType!T : real)),
"second argument must be an integer or floating vector");
static assert(numElements!V == numElements!T,
"first and second argument vectors should have the same number of elements");
V convertvector(T);
}
/**
* Construct a conditional merge of elements from two vectors, returning a
* vector of the same type as the input vector(s). The `mask` is an integral
* vector with the same width and element count as the output vector.
* Params:
* op1 = input vector
* op2 = input vector
* mask = integer vector mask
* Returns:
* vector with the same type as `op1` and `op2`
* Example:
* ---
* int4 a = [1, 2, 3, 4];
* int4 b = [5, 6, 7, 8];
* int4 mask1 = [0, 1, 1, 3];
* int4 mask2 = [0, 4, 2, 5];
* assert(shuffle(a, mask1).array == [1, 2, 2, 4]);
* assert(shuffle(a, b, mask2).array == [1, 5, 3, 6]);
* ---
*/
template blendvector(V0, V1, M)
{
static assert(isVectorType!V0, "first argument must be vector");
static assert(isVectorType!V1, "second argument must be vector");
static assert(is(BaseType!V0 == BaseType!V1),
"first and second argument vectors must have the same element type");
static assert(isVectorType!M && is(BaseType!M : long),
"last argument must be an integer vector");
static assert(numElements!V0 == numElements!M && numElements!V1 == numElements!M,
"argument vectors and mask vector should have the same number of elements");
static assert(BaseType!V0.sizeof == BaseType!M.sizeof,
"argument vectors and mask vector should have the same element type size");
V0 blendvector(V0 op1, V1 op2, M mask);
}
/**
* Perform an element-wise comparison between two vectors, producing `0` when
* the comparison is false and `-1` (all bits are set to 1) otherwise.
* Params:
* op1 = input vector
* op2 = input vector
* Returns:
* vector of the same width and number of elements as the comparison
* operands with a signed integral element type
* Example:
* ---
* float4 a = [1, 3, 5, 7];
* float4 b = [2, 3, 4, 5];
* int4 c = greaterMask!float4(a, b);
* assert(c.array == [0, 0, -1, -1]);
* ---
*/
V equalMask(V)(V op1, V op2) if (isVectorType!V)
{
return op1 == op2;
}
/// Ditto
V notEqualMask(V)(V op1, V op2) if (isVectorType!V)
{
return op1 != op2;
}
/// Ditto
V greaterMask(V)(V op1, V op2) if (isVectorType!V)
{
return op1 > op2;
}
/// Ditto
V greaterOrEqualMask(V)(V op1, V op2) if (isVectorType!V)
{
return op1 >= op2;
}
/**
* Perform an element-wise logical comparison between two vectors, producing
* `0` when the comparison is false and `-1` (all bits are set to 1) otherwise.
* Params:
* op1 = input vector
* op2 = input vector
* Returns:
* vector of the same width and number of elements as the comparison
* operands with a signed integral element type
*/
V notMask(V)(V op1) if (isVectorType!V)
{
return op1 == 0;
}
/// Ditto
V andAndMask(V)(V op1, V op2) if (isVectorType!V)
{
return (op1 != 0) & (op2 != 0);
}
/// Ditto
V orOrMask(V)(V op1, V op2) if (isVectorType!V)
{
return (op1 != 0) | (op2 != 0);
}
// Private helper templates.
private:
enum bool isVectorType(T) = is(T : __vector(V[N]), V, size_t N);
template BaseType(V)
{
alias typeof(V.array[0]) BaseType;
}
template numElements(V)
{
enum numElements = V.sizeof / BaseType!(V).sizeof;
}
enum bool isPowerOf2(int Y) = Y && (Y & -Y) == Y;
|