1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
// Copyright (C) 2018-2024 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3. If not see
// <http://www.gnu.org/licenses/>.
// { dg-do run { target c++17 } }
#include <memory_resource>
#include <cstring>
#include <testsuite_allocator.h>
#include <testsuite_hooks.h>
void
test01()
{
__gnu_test::memory_resource test_mr;
{
std::pmr::unsynchronized_pool_resource r(&test_mr);
void* p1 = r.allocate(1, 1);
VERIFY( p1 != nullptr );
auto n = test_mr.number_of_active_allocations();
VERIFY( n > 0 );
// Ensure memory region can be written to (without corrupting heap!)
std::memset(p1, 0xff, 1);
void* p2 = r.allocate(1, 1);
VERIFY( p2 != nullptr );
VERIFY( p2 != p1 );
VERIFY( test_mr.number_of_active_allocations() == n );
std::memset(p1, 0xff, 1);
r.deallocate(p1, 1, 1);
// Returning single blocks to the pool doesn't return them upstream:
VERIFY( test_mr.number_of_active_allocations() == n );
r.deallocate(p2, 1, 1);
VERIFY( test_mr.number_of_active_allocations() == n );
}
VERIFY( test_mr.number_of_active_allocations() == 0 );
}
void
test02()
{
struct nullable_memory_resource : public std::pmr::memory_resource
{
void*
do_allocate(std::size_t bytes, std::size_t alignment) override
{ return upstream->allocate(bytes, alignment); }
void
do_deallocate(void* p, std::size_t bytes, std::size_t alignment) override
{ upstream->deallocate(p, bytes, alignment); }
bool
do_is_equal(const memory_resource& r) const noexcept override
{ return &r == this; }
std::pmr::memory_resource* upstream = std::pmr::get_default_resource();
};
nullable_memory_resource test_mr;
std::pmr::unsynchronized_pool_resource r(&test_mr);
void* p1 = r.allocate(8, 1);
VERIFY( p1 != nullptr );
std::memset(p1, 0xff, 8);
test_mr.upstream = nullptr;
void* p2 = r.allocate(8, 1); //should not need to replenish
VERIFY( p2 != nullptr );
VERIFY( p2 != p1 );
std::memset(p1, 0xff, 8);
r.deallocate(p1, 8, 1); // should not use upstream
r.deallocate(p2, 8, 1); // should not use upstream
// Destructor will return memory upstream, so restore the upstream resource:
test_mr.upstream = std::pmr::get_default_resource();
}
void
test03()
{
__gnu_test::memory_resource test_mr;
{
std::pmr::unsynchronized_pool_resource r({10, 16}, &test_mr);
std::size_t largest_pool = r.options().largest_required_pool_block;
void* p1 = r.allocate(2 * largest_pool);
VERIFY( p1 != nullptr );
const std::size_t n = test_mr.number_of_active_allocations();
// Allocation of pools + allocation of pmr::vector + oversize allocation:
VERIFY( n >= 1 );
std::memset(p1, 0xff, 2 * largest_pool);
void* p2 = r.allocate(3 * largest_pool);
VERIFY( p2 != nullptr );
VERIFY( p2 != p1 );
VERIFY( test_mr.number_of_active_allocations() == n + 1 );
std::memset(p2, 0xff, 3 * largest_pool);
r.deallocate(p1, 2 * largest_pool);
VERIFY( test_mr.number_of_active_allocations() == n );
r.deallocate(p2, 3 * largest_pool);
VERIFY( test_mr.number_of_active_allocations() == n - 1 );
}
VERIFY( test_mr.number_of_active_allocations() == 0 );
{
std::pmr::unsynchronized_pool_resource r({16, 16}, &test_mr);
(void) r.allocate(2);
(void) r.allocate(8);
(void) r.allocate(16);
(void) r.allocate(2);
(void) r.allocate(8);
(void) r.allocate(16);
(void) r.allocate(2 * r.options().largest_required_pool_block);
VERIFY( test_mr.number_of_active_allocations() != 0 );
// Destructor calls release()
}
VERIFY( test_mr.number_of_active_allocations() == 0 );
}
void
test04()
{
__gnu_test::memory_resource test_mr;
std::pmr::unsynchronized_pool_resource r({256, 256}, &test_mr);
// Check alignment
void* p1 = r.allocate(2, 64);
VERIFY( (std::uintptr_t)p1 % 64 == 0 );
void* p2 = r.allocate(2, 128);
VERIFY( (std::uintptr_t)p2 % 128 == 0 );
void* p3 = r.allocate(2, 256);
VERIFY( (std::uintptr_t)p3 % 256 == 0 );
const std::size_t largest_pool = r.options().largest_required_pool_block;
void* p4 = r.allocate(2 * largest_pool, 1024);
VERIFY( (std::uintptr_t)p4 % 1024 == 0 );
r.deallocate(p1, 2, 64);
r.deallocate(p2, 2, 128);
r.deallocate(p3, 2, 256);
r.deallocate(p4, 2 * largest_pool, 1024);
}
void
test05()
{
__gnu_test::memory_resource test_mr;
std::pmr::pool_options opts{};
opts.max_blocks_per_chunk = 1;
opts.largest_required_pool_block = 1;
std::pmr::unsynchronized_pool_resource r(opts, &test_mr);
opts = r.options();
// Test unpooled allocations
void** p = new void*[opts.largest_required_pool_block];
for (unsigned a : {64, 128, 256, 512})
{
for (unsigned i = 0; i < opts.largest_required_pool_block; ++i)
p[i] = r.allocate(i, a);
for (unsigned i = 0; i < opts.largest_required_pool_block; ++i)
r.deallocate(p[i], i, a);
}
delete[] p;
}
void
test06()
{
struct checking_mr : std::pmr::memory_resource
{
size_t expected_size = 0;
size_t expected_alignment = 0;
struct bad_size { };
struct bad_alignment { };
void* do_allocate(std::size_t bytes, std::size_t align)
{
// Internal data structures in unsynchronized_pool_resource need to
// allocate memory, so handle those normally:
if (align <= alignof(std::max_align_t))
return std::pmr::new_delete_resource()->allocate(bytes, align);
// This is a large, unpooled allocation. Check the arguments:
if (bytes < expected_size)
throw bad_size();
else if (align != expected_alignment)
{
if (bytes == std::numeric_limits<std::size_t>::max()
&& align == (1 + std::numeric_limits<std::size_t>::max() / 2))
{
// Pool resources request bytes=SIZE_MAX && align=bit_floor(SIZE_MAX)
// when they are unable to meet an allocation request.
}
else
throw bad_alignment();
}
// Else just throw, don't really try to allocate:
throw std::bad_alloc();
}
void do_deallocate(void* p, std::size_t bytes, std::size_t align)
{ std::pmr::new_delete_resource()->deallocate(p, bytes, align); }
bool do_is_equal(const memory_resource&) const noexcept
{ return false; }
};
checking_mr c;
std::pmr::unsynchronized_pool_resource r({1, 1}, &c);
std::pmr::pool_options opts = r.options();
const std::size_t largest_pool = opts.largest_required_pool_block;
const std::size_t large_alignment = 1024;
// Ensure allocations won't fit in pools:
VERIFY( largest_pool < large_alignment );
// Ensure the vector of large allocations has some capacity
// and won't need to reallocate:
r.deallocate(r.allocate(largest_pool + 1, 1), largest_pool + 1, 1);
// Try allocating various very large sizes and ensure the size requested
// from the upstream allocator is at least as large as needed.
for (int i = 0; i < std::numeric_limits<std::size_t>::digits; ++i)
{
for (auto b : { -63, -5, -1, 0, 1, 3, std::numeric_limits<int>::max() })
{
std::size_t bytes = std::size_t(1) << i;
bytes += b; // For negative b this can wrap to a large positive value.
c.expected_size = bytes;
c.expected_alignment = large_alignment;
bool caught_bad_alloc = false;
try {
(void) r.allocate(bytes, large_alignment);
} catch (const std::bad_alloc&) {
// expect to catch bad_alloc
caught_bad_alloc = true;
} catch (checking_mr::bad_size) {
VERIFY( ! "allocation from upstream resource had expected size" );
} catch (checking_mr::bad_alignment) {
VERIFY( ! "allocation from upstream resource had expected alignment" );
}
VERIFY( caught_bad_alloc );
}
}
}
void
test07()
{
// Custom exception thrown on expected allocation failure.
struct very_bad_alloc : std::bad_alloc { };
struct careful_resource : __gnu_test::memory_resource
{
void* do_allocate(std::size_t bytes, std::size_t alignment)
{
// Need to allow normal allocations for the pool resource's internal
// data structures:
if (alignment < 1024)
return __gnu_test::memory_resource::do_allocate(bytes, alignment);
// pmr::unsynchronized_pool_resource::do_allocate is not allowed to
// throw an exception when asked for an allocation it can't satisfy.
// The libstdc++ implementation will ask upstream to allocate
// bytes=SIZE_MAX and alignment=bit_floor(SIZE_MAX) instead of throwing.
// Verify that we got those values:
if (bytes != std::numeric_limits<size_t>::max())
VERIFY( !"upstream allocation should request SIZE_MAX bytes" );
if (alignment != (1 + std::numeric_limits<size_t>::max() / 2))
VERIFY( !"upstream allocation should request SIZE_MAX/2 alignment" );
// A successful failure:
throw very_bad_alloc();
}
};
careful_resource cr;
std::pmr::unsynchronized_pool_resource upr(&cr);
try
{
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Walloc-size-larger-than="
// Try to allocate a ridiculous size (and use a large extended alignment
// so that careful_resource::do_allocate can distinguish this allocation
// from any required for the pool resource's internal data structures):
void* p = upr.allocate(std::size_t(-2), 1024);
#pragma GCC diagnostic pop
// Should not reach here!
VERIFY( !"attempt to allocate SIZE_MAX-1 should not have succeeded" );
throw p;
}
catch (const very_bad_alloc&)
{
// Should catch this exception from careful_resource::do_allocate
}
catch (const std::bad_alloc&)
{
VERIFY( !"unsynchronized_pool_resource::do_allocate is not allowed to throw" );
}
}
void
test08()
{
std::pmr::pool_options opts;
opts.largest_required_pool_block = 64;
// PR libstdc++/94160
// max_blocks_per_chunk=1 causes pool resources to return null pointers
for (int i = 0; i < 8; ++i)
{
opts.max_blocks_per_chunk = i;
std::pmr::unsynchronized_pool_resource upr(opts);
auto* p = (int*)upr.allocate(4);
VERIFY( p != nullptr );
*p = i;
upr.deallocate(p, 4);
}
}
int
main()
{
test01();
test02();
test03();
test04();
test05();
test06();
test07();
test08();
}
|