1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ U T I L --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Casing; use Casing;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Aggr; use Exp_Aggr;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch7; use Exp_Ch7;
with Exp_Ch11; use Exp_Ch11;
with Ghost; use Ghost;
with Inline; use Inline;
with Itypes; use Itypes;
with Lib; use Lib;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch12; use Sem_Ch12;
with Sem_Ch13; use Sem_Ch13;
with Sem_Disp; use Sem_Disp;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Snames; use Snames;
with Stand; use Stand;
with Stringt; use Stringt;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Ttypes; use Ttypes;
with Urealp; use Urealp;
with Validsw; use Validsw;
with GNAT.HTable; use GNAT.HTable;
package body Exp_Util is
---------------------------------------------------------
-- Handling of inherited class-wide pre/postconditions --
---------------------------------------------------------
-- Following AI12-0113, the expression for a class-wide condition is
-- transformed for a subprogram that inherits it, by replacing calls
-- to primitive operations of the original controlling type into the
-- corresponding overriding operations of the derived type. The following
-- hash table manages this mapping, and is expanded on demand whenever
-- such inherited expression needs to be constructed.
-- The mapping is also used to check whether an inherited operation has
-- a condition that depends on overridden operations. For such an
-- operation we must create a wrapper that is then treated as a normal
-- overriding. In SPARK mode such operations are illegal.
-- For a given root type there may be several type extensions with their
-- own overriding operations, so at various times a given operation of
-- the root will be mapped into different overridings. The root type is
-- also mapped into the current type extension to indicate that its
-- operations are mapped into the overriding operations of that current
-- type extension.
Primitives_Mapping_Size : constant := 511;
subtype Num_Primitives is Integer range 0 .. Primitives_Mapping_Size - 1;
function Entity_Hash (E : Entity_Id) return Num_Primitives;
package Primitives_Mapping is new GNAT.HTable.Simple_HTable
(Header_Num => Num_Primitives,
Key => Entity_Id,
Element => Entity_Id,
No_element => Empty,
Hash => Entity_Hash,
Equal => "=");
-----------------------
-- Local Subprograms --
-----------------------
function Build_Task_Array_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
Dyn : Boolean := False) return Node_Id;
-- Build function to generate the image string for a task that is an array
-- component, concatenating the images of each index. To avoid storage
-- leaks, the string is built with successive slice assignments. The flag
-- Dyn indicates whether this is called for the initialization procedure of
-- an array of tasks, or for the name of a dynamically created task that is
-- assigned to an indexed component.
function Build_Task_Image_Function
(Loc : Source_Ptr;
Decls : List_Id;
Stats : List_Id;
Res : Entity_Id) return Node_Id;
-- Common processing for Task_Array_Image and Task_Record_Image. Build
-- function body that computes image.
procedure Build_Task_Image_Prefix
(Loc : Source_Ptr;
Len : out Entity_Id;
Res : out Entity_Id;
Pos : out Entity_Id;
Prefix : Entity_Id;
Sum : Node_Id;
Decls : List_Id;
Stats : List_Id);
-- Common processing for Task_Array_Image and Task_Record_Image. Create
-- local variables and assign prefix of name to result string.
function Build_Task_Record_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
Dyn : Boolean := False) return Node_Id;
-- Build function to generate the image string for a task that is a record
-- component. Concatenate name of variable with that of selector. The flag
-- Dyn indicates whether this is called for the initialization procedure of
-- record with task components, or for a dynamically created task that is
-- assigned to a selected component.
procedure Evaluate_Slice_Bounds (Slice : Node_Id);
-- Force evaluation of bounds of a slice, which may be given by a range
-- or by a subtype indication with or without a constraint.
function Find_DIC_Type (Typ : Entity_Id) return Entity_Id;
-- Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which
-- defines the Default_Initial_Condition pragma of type Typ. This is either
-- Typ itself or a parent type when the pragma is inherited.
function Make_CW_Equivalent_Type
(T : Entity_Id;
E : Node_Id) return Entity_Id;
-- T is a class-wide type entity, E is the initial expression node that
-- constrains T in case such as: " X: T := E" or "new T'(E)". This function
-- returns the entity of the Equivalent type and inserts on the fly the
-- necessary declaration such as:
--
-- type anon is record
-- _parent : Root_Type (T); constrained with E discriminants (if any)
-- Extension : String (1 .. expr to match size of E);
-- end record;
--
-- This record is compatible with any object of the class of T thanks to
-- the first field and has the same size as E thanks to the second.
function Make_Literal_Range
(Loc : Source_Ptr;
Literal_Typ : Entity_Id) return Node_Id;
-- Produce a Range node whose bounds are:
-- Low_Bound (Literal_Type) ..
-- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
-- this is used for expanding declarations like X : String := "sdfgdfg";
--
-- If the index type of the target array is not integer, we generate:
-- Low_Bound (Literal_Type) ..
-- Literal_Type'Val
-- (Literal_Type'Pos (Low_Bound (Literal_Type))
-- + (Length (Literal_Typ) -1))
function Make_Non_Empty_Check
(Loc : Source_Ptr;
N : Node_Id) return Node_Id;
-- Produce a boolean expression checking that the unidimensional array
-- node N is not empty.
function New_Class_Wide_Subtype
(CW_Typ : Entity_Id;
N : Node_Id) return Entity_Id;
-- Create an implicit subtype of CW_Typ attached to node N
function Requires_Cleanup_Actions
(L : List_Id;
Lib_Level : Boolean;
Nested_Constructs : Boolean) return Boolean;
-- Given a list L, determine whether it contains one of the following:
--
-- 1) controlled objects
-- 2) library-level tagged types
--
-- Lib_Level is True when the list comes from a construct at the library
-- level, and False otherwise. Nested_Constructs is True when any nested
-- packages declared in L must be processed, and False otherwise.
-------------------------------------
-- Activate_Atomic_Synchronization --
-------------------------------------
procedure Activate_Atomic_Synchronization (N : Node_Id) is
Msg_Node : Node_Id;
begin
case Nkind (Parent (N)) is
-- Check for cases of appearing in the prefix of a construct where we
-- don't need atomic synchronization for this kind of usage.
when
-- Nothing to do if we are the prefix of an attribute, since we
-- do not want an atomic sync operation for things like 'Size.
N_Attribute_Reference
-- The N_Reference node is like an attribute
| N_Reference
-- Nothing to do for a reference to a component (or components)
-- of a composite object. Only reads and updates of the object
-- as a whole require atomic synchronization (RM C.6 (15)).
| N_Indexed_Component
| N_Selected_Component
| N_Slice
=>
-- For all the above cases, nothing to do if we are the prefix
if Prefix (Parent (N)) = N then
return;
end if;
when others =>
null;
end case;
-- Nothing to do for the identifier in an object renaming declaration,
-- the renaming itself does not need atomic synchronization.
if Nkind (Parent (N)) = N_Object_Renaming_Declaration then
return;
end if;
-- Go ahead and set the flag
Set_Atomic_Sync_Required (N);
-- Generate info message if requested
if Warn_On_Atomic_Synchronization then
case Nkind (N) is
when N_Identifier =>
Msg_Node := N;
when N_Expanded_Name
| N_Selected_Component
=>
Msg_Node := Selector_Name (N);
when N_Explicit_Dereference
| N_Indexed_Component
=>
Msg_Node := Empty;
when others =>
pragma Assert (False);
return;
end case;
if Present (Msg_Node) then
Error_Msg_N
("info: atomic synchronization set for &?N?", Msg_Node);
else
Error_Msg_N
("info: atomic synchronization set?N?", N);
end if;
end if;
end Activate_Atomic_Synchronization;
----------------------
-- Adjust_Condition --
----------------------
procedure Adjust_Condition (N : Node_Id) is
begin
if No (N) then
return;
end if;
declare
Loc : constant Source_Ptr := Sloc (N);
T : constant Entity_Id := Etype (N);
Ti : Entity_Id;
begin
-- Defend against a call where the argument has no type, or has a
-- type that is not Boolean. This can occur because of prior errors.
if No (T) or else not Is_Boolean_Type (T) then
return;
end if;
-- Apply validity checking if needed
if Validity_Checks_On and Validity_Check_Tests then
Ensure_Valid (N);
end if;
-- Immediate return if standard boolean, the most common case,
-- where nothing needs to be done.
if Base_Type (T) = Standard_Boolean then
return;
end if;
-- Case of zero/non-zero semantics or non-standard enumeration
-- representation. In each case, we rewrite the node as:
-- ityp!(N) /= False'Enum_Rep
-- where ityp is an integer type with large enough size to hold any
-- value of type T.
if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
if Esize (T) <= Esize (Standard_Integer) then
Ti := Standard_Integer;
else
Ti := Standard_Long_Long_Integer;
end if;
Rewrite (N,
Make_Op_Ne (Loc,
Left_Opnd => Unchecked_Convert_To (Ti, N),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Enum_Rep,
Prefix =>
New_Occurrence_Of (First_Literal (T), Loc))));
Analyze_And_Resolve (N, Standard_Boolean);
else
Rewrite (N, Convert_To (Standard_Boolean, N));
Analyze_And_Resolve (N, Standard_Boolean);
end if;
end;
end Adjust_Condition;
------------------------
-- Adjust_Result_Type --
------------------------
procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
begin
-- Ignore call if current type is not Standard.Boolean
if Etype (N) /= Standard_Boolean then
return;
end if;
-- If result is already of correct type, nothing to do. Note that
-- this will get the most common case where everything has a type
-- of Standard.Boolean.
if Base_Type (T) = Standard_Boolean then
return;
else
declare
KP : constant Node_Kind := Nkind (Parent (N));
begin
-- If result is to be used as a Condition in the syntax, no need
-- to convert it back, since if it was changed to Standard.Boolean
-- using Adjust_Condition, that is just fine for this usage.
if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
return;
-- If result is an operand of another logical operation, no need
-- to reset its type, since Standard.Boolean is just fine, and
-- such operations always do Adjust_Condition on their operands.
elsif KP in N_Op_Boolean
or else KP in N_Short_Circuit
or else KP = N_Op_Not
then
return;
-- Otherwise we perform a conversion from the current type, which
-- must be Standard.Boolean, to the desired type. Use the base
-- type to prevent spurious constraint checks that are extraneous
-- to the transformation. The type and its base have the same
-- representation, standard or otherwise.
else
Set_Analyzed (N);
Rewrite (N, Convert_To (Base_Type (T), N));
Analyze_And_Resolve (N, Base_Type (T));
end if;
end;
end if;
end Adjust_Result_Type;
--------------------------
-- Append_Freeze_Action --
--------------------------
procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
Fnode : Node_Id;
begin
Ensure_Freeze_Node (T);
Fnode := Freeze_Node (T);
if No (Actions (Fnode)) then
Set_Actions (Fnode, New_List (N));
else
Append (N, Actions (Fnode));
end if;
end Append_Freeze_Action;
---------------------------
-- Append_Freeze_Actions --
---------------------------
procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
Fnode : Node_Id;
begin
if No (L) then
return;
end if;
Ensure_Freeze_Node (T);
Fnode := Freeze_Node (T);
if No (Actions (Fnode)) then
Set_Actions (Fnode, L);
else
Append_List (L, Actions (Fnode));
end if;
end Append_Freeze_Actions;
------------------------------------
-- Build_Allocate_Deallocate_Proc --
------------------------------------
procedure Build_Allocate_Deallocate_Proc
(N : Node_Id;
Is_Allocate : Boolean)
is
Desig_Typ : Entity_Id;
Expr : Node_Id;
Pool_Id : Entity_Id;
Proc_To_Call : Node_Id := Empty;
Ptr_Typ : Entity_Id;
function Find_Object (E : Node_Id) return Node_Id;
-- Given an arbitrary expression of an allocator, try to find an object
-- reference in it, otherwise return the original expression.
function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean;
-- Determine whether subprogram Subp denotes a custom allocate or
-- deallocate.
-----------------
-- Find_Object --
-----------------
function Find_Object (E : Node_Id) return Node_Id is
Expr : Node_Id;
begin
pragma Assert (Is_Allocate);
Expr := E;
loop
if Nkind (Expr) = N_Explicit_Dereference then
Expr := Prefix (Expr);
elsif Nkind (Expr) = N_Qualified_Expression then
Expr := Expression (Expr);
elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
-- When interface class-wide types are involved in allocation,
-- the expander introduces several levels of address arithmetic
-- to perform dispatch table displacement. In this scenario the
-- object appears as:
-- Tag_Ptr (Base_Address (<object>'Address))
-- Detect this case and utilize the whole expression as the
-- "object" since it now points to the proper dispatch table.
if Is_RTE (Etype (Expr), RE_Tag_Ptr) then
exit;
-- Continue to strip the object
else
Expr := Expression (Expr);
end if;
else
exit;
end if;
end loop;
return Expr;
end Find_Object;
---------------------------------
-- Is_Allocate_Deallocate_Proc --
---------------------------------
function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean is
begin
-- Look for a subprogram body with only one statement which is a
-- call to Allocate_Any_Controlled / Deallocate_Any_Controlled.
if Ekind (Subp) = E_Procedure
and then Nkind (Parent (Parent (Subp))) = N_Subprogram_Body
then
declare
HSS : constant Node_Id :=
Handled_Statement_Sequence (Parent (Parent (Subp)));
Proc : Entity_Id;
begin
if Present (Statements (HSS))
and then Nkind (First (Statements (HSS))) =
N_Procedure_Call_Statement
then
Proc := Entity (Name (First (Statements (HSS))));
return
Is_RTE (Proc, RE_Allocate_Any_Controlled)
or else Is_RTE (Proc, RE_Deallocate_Any_Controlled);
end if;
end;
end if;
return False;
end Is_Allocate_Deallocate_Proc;
-- Start of processing for Build_Allocate_Deallocate_Proc
begin
-- Obtain the attributes of the allocation / deallocation
if Nkind (N) = N_Free_Statement then
Expr := Expression (N);
Ptr_Typ := Base_Type (Etype (Expr));
Proc_To_Call := Procedure_To_Call (N);
else
if Nkind (N) = N_Object_Declaration then
Expr := Expression (N);
else
Expr := N;
end if;
-- In certain cases an allocator with a qualified expression may
-- be relocated and used as the initialization expression of a
-- temporary:
-- before:
-- Obj : Ptr_Typ := new Desig_Typ'(...);
-- after:
-- Tmp : Ptr_Typ := new Desig_Typ'(...);
-- Obj : Ptr_Typ := Tmp;
-- Since the allocator is always marked as analyzed to avoid infinite
-- expansion, it will never be processed by this routine given that
-- the designated type needs finalization actions. Detect this case
-- and complete the expansion of the allocator.
if Nkind (Expr) = N_Identifier
and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
and then Nkind (Expression (Parent (Entity (Expr)))) = N_Allocator
then
Build_Allocate_Deallocate_Proc (Parent (Entity (Expr)), True);
return;
end if;
-- The allocator may have been rewritten into something else in which
-- case the expansion performed by this routine does not apply.
if Nkind (Expr) /= N_Allocator then
return;
end if;
Ptr_Typ := Base_Type (Etype (Expr));
Proc_To_Call := Procedure_To_Call (Expr);
end if;
Pool_Id := Associated_Storage_Pool (Ptr_Typ);
Desig_Typ := Available_View (Designated_Type (Ptr_Typ));
-- Handle concurrent types
if Is_Concurrent_Type (Desig_Typ)
and then Present (Corresponding_Record_Type (Desig_Typ))
then
Desig_Typ := Corresponding_Record_Type (Desig_Typ);
end if;
-- Do not process allocations / deallocations without a pool
if No (Pool_Id) then
return;
-- Do not process allocations on / deallocations from the secondary
-- stack.
elsif Is_RTE (Pool_Id, RE_SS_Pool) then
return;
-- Optimize the case where we are using the default Global_Pool_Object,
-- and we don't need the heavy finalization machinery.
elsif Pool_Id = RTE (RE_Global_Pool_Object)
and then not Needs_Finalization (Desig_Typ)
then
return;
-- Do not replicate the machinery if the allocator / free has already
-- been expanded and has a custom Allocate / Deallocate.
elsif Present (Proc_To_Call)
and then Is_Allocate_Deallocate_Proc (Proc_To_Call)
then
return;
end if;
if Needs_Finalization (Desig_Typ) then
-- Certain run-time configurations and targets do not provide support
-- for controlled types.
if Restriction_Active (No_Finalization) then
return;
-- Do nothing if the access type may never allocate / deallocate
-- objects.
elsif No_Pool_Assigned (Ptr_Typ) then
return;
end if;
-- The allocation / deallocation of a controlled object must be
-- chained on / detached from a finalization master.
pragma Assert (Present (Finalization_Master (Ptr_Typ)));
-- The only other kind of allocation / deallocation supported by this
-- routine is on / from a subpool.
elsif Nkind (Expr) = N_Allocator
and then No (Subpool_Handle_Name (Expr))
then
return;
end if;
declare
Loc : constant Source_Ptr := Sloc (N);
Addr_Id : constant Entity_Id := Make_Temporary (Loc, 'A');
Alig_Id : constant Entity_Id := Make_Temporary (Loc, 'L');
Proc_Id : constant Entity_Id := Make_Temporary (Loc, 'P');
Size_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
Actuals : List_Id;
Fin_Addr_Id : Entity_Id;
Fin_Mas_Act : Node_Id;
Fin_Mas_Id : Entity_Id;
Proc_To_Call : Entity_Id;
Subpool : Node_Id := Empty;
begin
-- Step 1: Construct all the actuals for the call to library routine
-- Allocate_Any_Controlled / Deallocate_Any_Controlled.
-- a) Storage pool
Actuals := New_List (New_Occurrence_Of (Pool_Id, Loc));
if Is_Allocate then
-- b) Subpool
if Nkind (Expr) = N_Allocator then
Subpool := Subpool_Handle_Name (Expr);
end if;
-- If a subpool is present it can be an arbitrary name, so make
-- the actual by copying the tree.
if Present (Subpool) then
Append_To (Actuals, New_Copy_Tree (Subpool, New_Sloc => Loc));
else
Append_To (Actuals, Make_Null (Loc));
end if;
-- c) Finalization master
if Needs_Finalization (Desig_Typ) then
Fin_Mas_Id := Finalization_Master (Ptr_Typ);
Fin_Mas_Act := New_Occurrence_Of (Fin_Mas_Id, Loc);
-- Handle the case where the master is actually a pointer to a
-- master. This case arises in build-in-place functions.
if Is_Access_Type (Etype (Fin_Mas_Id)) then
Append_To (Actuals, Fin_Mas_Act);
else
Append_To (Actuals,
Make_Attribute_Reference (Loc,
Prefix => Fin_Mas_Act,
Attribute_Name => Name_Unrestricted_Access));
end if;
else
Append_To (Actuals, Make_Null (Loc));
end if;
-- d) Finalize_Address
-- Primitive Finalize_Address is never generated in CodePeer mode
-- since it contains an Unchecked_Conversion.
if Needs_Finalization (Desig_Typ) and then not CodePeer_Mode then
Fin_Addr_Id := Finalize_Address (Desig_Typ);
pragma Assert (Present (Fin_Addr_Id));
Append_To (Actuals,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Fin_Addr_Id, Loc),
Attribute_Name => Name_Unrestricted_Access));
else
Append_To (Actuals, Make_Null (Loc));
end if;
end if;
-- e) Address
-- f) Storage_Size
-- g) Alignment
Append_To (Actuals, New_Occurrence_Of (Addr_Id, Loc));
Append_To (Actuals, New_Occurrence_Of (Size_Id, Loc));
if Is_Allocate or else not Is_Class_Wide_Type (Desig_Typ) then
Append_To (Actuals, New_Occurrence_Of (Alig_Id, Loc));
-- For deallocation of class-wide types we obtain the value of
-- alignment from the Type Specific Record of the deallocated object.
-- This is needed because the frontend expansion of class-wide types
-- into equivalent types confuses the back end.
else
-- Generate:
-- Obj.all'Alignment
-- ... because 'Alignment applied to class-wide types is expanded
-- into the code that reads the value of alignment from the TSD
-- (see Expand_N_Attribute_Reference)
Append_To (Actuals,
Unchecked_Convert_To (RTE (RE_Storage_Offset),
Make_Attribute_Reference (Loc,
Prefix =>
Make_Explicit_Dereference (Loc, Relocate_Node (Expr)),
Attribute_Name => Name_Alignment)));
end if;
-- h) Is_Controlled
if Needs_Finalization (Desig_Typ) then
declare
Flag_Id : constant Entity_Id := Make_Temporary (Loc, 'F');
Flag_Expr : Node_Id;
Param : Node_Id;
Temp : Node_Id;
begin
if Is_Allocate then
Temp := Find_Object (Expression (Expr));
else
Temp := Expr;
end if;
-- Processing for allocations where the expression is a subtype
-- indication.
if Is_Allocate
and then Is_Entity_Name (Temp)
and then Is_Type (Entity (Temp))
then
Flag_Expr :=
New_Occurrence_Of
(Boolean_Literals
(Needs_Finalization (Entity (Temp))), Loc);
-- The allocation / deallocation of a class-wide object relies
-- on a runtime check to determine whether the object is truly
-- controlled or not. Depending on this check, the finalization
-- machinery will request or reclaim extra storage reserved for
-- a list header.
elsif Is_Class_Wide_Type (Desig_Typ) then
-- Detect a special case where interface class-wide types
-- are involved as the object appears as:
-- Tag_Ptr (Base_Address (<object>'Address))
-- The expression already yields the proper tag, generate:
-- Temp.all
if Is_RTE (Etype (Temp), RE_Tag_Ptr) then
Param :=
Make_Explicit_Dereference (Loc,
Prefix => Relocate_Node (Temp));
-- In the default case, obtain the tag of the object about
-- to be allocated / deallocated. Generate:
-- Temp'Tag
else
Param :=
Make_Attribute_Reference (Loc,
Prefix => Relocate_Node (Temp),
Attribute_Name => Name_Tag);
end if;
-- Generate:
-- Needs_Finalization (<Param>)
Flag_Expr :=
Make_Function_Call (Loc,
Name =>
New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
Parameter_Associations => New_List (Param));
-- Processing for generic actuals
elsif Is_Generic_Actual_Type (Desig_Typ) then
Flag_Expr :=
New_Occurrence_Of (Boolean_Literals
(Needs_Finalization (Base_Type (Desig_Typ))), Loc);
-- The object does not require any specialized checks, it is
-- known to be controlled.
else
Flag_Expr := New_Occurrence_Of (Standard_True, Loc);
end if;
-- Create the temporary which represents the finalization state
-- of the expression. Generate:
--
-- F : constant Boolean := <Flag_Expr>;
Insert_Action (N,
Make_Object_Declaration (Loc,
Defining_Identifier => Flag_Id,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc),
Expression => Flag_Expr));
Append_To (Actuals, New_Occurrence_Of (Flag_Id, Loc));
end;
-- The object is not controlled
else
Append_To (Actuals, New_Occurrence_Of (Standard_False, Loc));
end if;
-- i) On_Subpool
if Is_Allocate then
Append_To (Actuals,
New_Occurrence_Of (Boolean_Literals (Present (Subpool)), Loc));
end if;
-- Step 2: Build a wrapper Allocate / Deallocate which internally
-- calls Allocate_Any_Controlled / Deallocate_Any_Controlled.
-- Select the proper routine to call
if Is_Allocate then
Proc_To_Call := RTE (RE_Allocate_Any_Controlled);
else
Proc_To_Call := RTE (RE_Deallocate_Any_Controlled);
end if;
-- Create a custom Allocate / Deallocate routine which has identical
-- profile to that of System.Storage_Pools.
Insert_Action (N,
Make_Subprogram_Body (Loc,
Specification =>
-- procedure Pnn
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => New_List (
-- P : Root_Storage_Pool
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Temporary (Loc, 'P'),
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc)),
-- A : [out] Address
Make_Parameter_Specification (Loc,
Defining_Identifier => Addr_Id,
Out_Present => Is_Allocate,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Address), Loc)),
-- S : Storage_Count
Make_Parameter_Specification (Loc,
Defining_Identifier => Size_Id,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Storage_Count), Loc)),
-- L : Storage_Count
Make_Parameter_Specification (Loc,
Defining_Identifier => Alig_Id,
Parameter_Type =>
New_Occurrence_Of (RTE (RE_Storage_Count), Loc)))),
Declarations => No_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_To_Call, Loc),
Parameter_Associations => Actuals)))));
-- The newly generated Allocate / Deallocate becomes the default
-- procedure to call when the back end processes the allocation /
-- deallocation.
if Is_Allocate then
Set_Procedure_To_Call (Expr, Proc_Id);
else
Set_Procedure_To_Call (N, Proc_Id);
end if;
end;
end Build_Allocate_Deallocate_Proc;
-------------------------------
-- Build_Abort_Undefer_Block --
-------------------------------
function Build_Abort_Undefer_Block
(Loc : Source_Ptr;
Stmts : List_Id;
Context : Node_Id) return Node_Id
is
Exceptions_OK : constant Boolean :=
not Restriction_Active (No_Exception_Propagation);
AUD : Entity_Id;
Blk : Node_Id;
Blk_Id : Entity_Id;
HSS : Node_Id;
begin
-- The block should be generated only when undeferring abort in the
-- context of a potential exception.
pragma Assert (Abort_Allowed and Exceptions_OK);
-- Generate:
-- begin
-- <Stmts>
-- at end
-- Abort_Undefer_Direct;
-- end;
AUD := RTE (RE_Abort_Undefer_Direct);
HSS :=
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts,
At_End_Proc => New_Occurrence_Of (AUD, Loc));
Blk :=
Make_Block_Statement (Loc,
Handled_Statement_Sequence => HSS);
Set_Is_Abort_Block (Blk);
Add_Block_Identifier (Blk, Blk_Id);
Expand_At_End_Handler (HSS, Blk_Id);
-- Present the Abort_Undefer_Direct function to the back end to inline
-- the call to the routine.
Add_Inlined_Body (AUD, Context);
return Blk;
end Build_Abort_Undefer_Block;
---------------------------------
-- Build_Class_Wide_Expression --
---------------------------------
procedure Build_Class_Wide_Expression
(Prag : Node_Id;
Subp : Entity_Id;
Par_Subp : Entity_Id;
Adjust_Sloc : Boolean)
is
function Replace_Entity (N : Node_Id) return Traverse_Result;
-- Replace reference to formal of inherited operation or to primitive
-- operation of root type, with corresponding entity for derived type,
-- when constructing the class-wide condition of an overriding
-- subprogram.
--------------------
-- Replace_Entity --
--------------------
function Replace_Entity (N : Node_Id) return Traverse_Result is
New_E : Entity_Id;
begin
if Adjust_Sloc then
Adjust_Inherited_Pragma_Sloc (N);
end if;
if Nkind (N) = N_Identifier
and then Present (Entity (N))
and then
(Is_Formal (Entity (N)) or else Is_Subprogram (Entity (N)))
and then
(Nkind (Parent (N)) /= N_Attribute_Reference
or else Attribute_Name (Parent (N)) /= Name_Class)
then
-- The replacement does not apply to dispatching calls within the
-- condition, but only to calls whose static tag is that of the
-- parent type.
if Is_Subprogram (Entity (N))
and then Nkind (Parent (N)) = N_Function_Call
and then Present (Controlling_Argument (Parent (N)))
then
return OK;
end if;
-- Determine whether entity has a renaming
New_E := Primitives_Mapping.Get (Entity (N));
if Present (New_E) then
Rewrite (N, New_Occurrence_Of (New_E, Sloc (N)));
end if;
-- Check that there are no calls left to abstract operations if
-- the current subprogram is not abstract.
if Nkind (Parent (N)) = N_Function_Call
and then N = Name (Parent (N))
then
if not Is_Abstract_Subprogram (Subp)
and then Is_Abstract_Subprogram (Entity (N))
then
Error_Msg_Sloc := Sloc (Current_Scope);
Error_Msg_NE
("cannot call abstract subprogram in inherited condition "
& "for&#", N, Current_Scope);
-- In SPARK mode, reject an inherited condition for an
-- inherited operation if it contains a call to an overriding
-- operation, because this implies that the pre/postconditions
-- of the inherited operation have changed silently.
elsif SPARK_Mode = On
and then Warn_On_Suspicious_Contract
and then Present (Alias (Subp))
and then Present (New_E)
and then Comes_From_Source (New_E)
then
Error_Msg_N
("cannot modify inherited condition (SPARK RM 6.1.1(1))",
Parent (Subp));
Error_Msg_Sloc := Sloc (New_E);
Error_Msg_Node_2 := Subp;
Error_Msg_NE
("\overriding of&# forces overriding of&",
Parent (Subp), New_E);
end if;
end if;
-- Update type of function call node, which should be the same as
-- the function's return type.
if Is_Subprogram (Entity (N))
and then Nkind (Parent (N)) = N_Function_Call
then
Set_Etype (Parent (N), Etype (Entity (N)));
end if;
-- The whole expression will be reanalyzed
elsif Nkind (N) in N_Has_Etype then
Set_Analyzed (N, False);
end if;
return OK;
end Replace_Entity;
procedure Replace_Condition_Entities is
new Traverse_Proc (Replace_Entity);
-- Local variables
Par_Formal : Entity_Id;
Subp_Formal : Entity_Id;
-- Start of processing for Build_Class_Wide_Expression
begin
-- Add mapping from old formals to new formals
Par_Formal := First_Formal (Par_Subp);
Subp_Formal := First_Formal (Subp);
while Present (Par_Formal) and then Present (Subp_Formal) loop
Primitives_Mapping.Set (Par_Formal, Subp_Formal);
Next_Formal (Par_Formal);
Next_Formal (Subp_Formal);
end loop;
Replace_Condition_Entities (Prag);
end Build_Class_Wide_Expression;
--------------------
-- Build_DIC_Call --
--------------------
function Build_DIC_Call
(Loc : Source_Ptr;
Obj_Id : Entity_Id;
Typ : Entity_Id) return Node_Id
is
Proc_Id : constant Entity_Id := DIC_Procedure (Typ);
Formal_Typ : constant Entity_Id := Etype (First_Formal (Proc_Id));
begin
return
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Id, Loc),
Parameter_Associations => New_List (
Make_Unchecked_Type_Conversion (Loc,
Subtype_Mark => New_Occurrence_Of (Formal_Typ, Loc),
Expression => New_Occurrence_Of (Obj_Id, Loc))));
end Build_DIC_Call;
------------------------------
-- Build_DIC_Procedure_Body --
------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Build_DIC_Procedure_Body (Typ : Entity_Id) is
procedure Add_DIC_Check
(DIC_Prag : Node_Id;
DIC_Expr : Node_Id;
Stmts : in out List_Id);
-- Subsidiary to all Add_xxx_DIC routines. Add a runtime check to verify
-- assertion expression DIC_Expr of pragma DIC_Prag. All generated code
-- is added to list Stmts.
procedure Add_Inherited_DIC
(DIC_Prag : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Stmts : in out List_Id);
-- Add a runtime check to verify the assertion expression of inherited
-- pragma DIC_Prag. Par_Typ is parent type, which is also the owner of
-- the DIC pragma. Deriv_Typ is the derived type inheriting the DIC
-- pragma. All generated code is added to list Stmts.
procedure Add_Inherited_Tagged_DIC
(DIC_Prag : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Stmts : in out List_Id);
-- Add a runtime check to verify assertion expression DIC_Expr of
-- inherited pragma DIC_Prag. This routine applies class-wide pre- and
-- postcondition-like runtime semantics to the check. Par_Typ is the
-- parent type whose DIC pragma is being inherited. Deriv_Typ is the
-- derived type inheriting the DIC pragma. All generated code is added
-- to list Stmts.
procedure Add_Own_DIC
(DIC_Prag : Node_Id;
DIC_Typ : Entity_Id;
Stmts : in out List_Id);
-- Add a runtime check to verify the assertion expression of pragma
-- DIC_Prag. DIC_Typ is the owner of the DIC pragma. All generated code
-- is added to list Stmts.
procedure Replace_Object_And_Primitive_References
(Expr : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Par_Obj : Entity_Id := Empty;
Deriv_Obj : Entity_Id := Empty);
-- Expr denotes an arbitrary expression. Par_Typ is a parent type in a
-- type hierarchy. Deriv_Typ is a type derived from Par_Typ. Par_Obj is
-- the formal parameter which emulates the current instance of Par_Typ.
-- Deriv_Obj is the formal parameter which emulates the current instance
-- of Deriv_Typ. Perform the following substitutions:
--
-- * Replace a reference to Par_Obj with a reference to Deriv_Obj if
-- applicable.
--
-- * Replace a call to an overridden parent primitive with a call to
-- the overriding derived type primitive.
--
-- * Replace a call to an inherited parent primitive with a call to
-- the internally-generated inherited derived type primitive.
procedure Replace_Type_References
(Expr : Node_Id;
Typ : Entity_Id;
Obj_Id : Entity_Id);
-- Substitute all references of the current instance of type Typ with
-- references to formal parameter Obj_Id within expression Expr.
-------------------
-- Add_DIC_Check --
-------------------
procedure Add_DIC_Check
(DIC_Prag : Node_Id;
DIC_Expr : Node_Id;
Stmts : in out List_Id)
is
Loc : constant Source_Ptr := Sloc (DIC_Prag);
Nam : constant Name_Id := Original_Aspect_Pragma_Name (DIC_Prag);
begin
-- The DIC pragma is ignored, nothing left to do
if Is_Ignored (DIC_Prag) then
null;
-- Otherwise the DIC expression must be checked at runtime. Generate:
-- pragma Check (<Nam>, <DIC_Expr>);
else
Append_New_To (Stmts,
Make_Pragma (Loc,
Pragma_Identifier =>
Make_Identifier (Loc, Name_Check),
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Nam)),
Make_Pragma_Argument_Association (Loc,
Expression => DIC_Expr))));
end if;
end Add_DIC_Check;
-----------------------
-- Add_Inherited_DIC --
-----------------------
procedure Add_Inherited_DIC
(DIC_Prag : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Stmts : in out List_Id)
is
Deriv_Proc : constant Entity_Id := DIC_Procedure (Deriv_Typ);
Deriv_Obj : constant Entity_Id := First_Entity (Deriv_Proc);
Par_Proc : constant Entity_Id := DIC_Procedure (Par_Typ);
Par_Obj : constant Entity_Id := First_Entity (Par_Proc);
Loc : constant Source_Ptr := Sloc (DIC_Prag);
begin
pragma Assert (Present (Deriv_Proc) and then Present (Par_Proc));
-- Verify the inherited DIC assertion expression by calling the DIC
-- procedure of the parent type.
-- Generate:
-- <Par_Typ>DIC (Par_Typ (_object));
Append_New_To (Stmts,
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Par_Proc, Loc),
Parameter_Associations => New_List (
Convert_To
(Typ => Etype (Par_Obj),
Expr => New_Occurrence_Of (Deriv_Obj, Loc)))));
end Add_Inherited_DIC;
------------------------------
-- Add_Inherited_Tagged_DIC --
------------------------------
procedure Add_Inherited_Tagged_DIC
(DIC_Prag : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Stmts : in out List_Id)
is
Deriv_Decl : constant Node_Id := Declaration_Node (Deriv_Typ);
Deriv_Proc : constant Entity_Id := DIC_Procedure (Deriv_Typ);
DIC_Args : constant List_Id :=
Pragma_Argument_Associations (DIC_Prag);
DIC_Arg : constant Node_Id := First (DIC_Args);
DIC_Expr : constant Node_Id := Expression_Copy (DIC_Arg);
Par_Proc : constant Entity_Id := DIC_Procedure (Par_Typ);
Expr : Node_Id;
begin
-- The processing of an inherited DIC assertion expression starts off
-- with a copy of the original parent expression where all references
-- to the parent type have already been replaced with references to
-- the _object formal parameter of the parent type's DIC procedure.
pragma Assert (Present (DIC_Expr));
Expr := New_Copy_Tree (DIC_Expr);
-- Perform the following substitutions:
-- * Replace a reference to the _object parameter of the parent
-- type's DIC procedure with a reference to the _object parameter
-- of the derived types' DIC procedure.
-- * Replace a call to an overridden parent primitive with a call
-- to the overriding derived type primitive.
-- * Replace a call to an inherited parent primitive with a call to
-- the internally-generated inherited derived type primitive.
-- Note that primitives defined in the private part are automatically
-- handled by the overriding/inheritance mechanism and do not require
-- an extra replacement pass.
pragma Assert (Present (Deriv_Proc) and then Present (Par_Proc));
Replace_Object_And_Primitive_References
(Expr => Expr,
Par_Typ => Par_Typ,
Deriv_Typ => Deriv_Typ,
Par_Obj => First_Formal (Par_Proc),
Deriv_Obj => First_Formal (Deriv_Proc));
-- Preanalyze the DIC expression to detect errors and at the same
-- time capture the visibility of the proper package part.
Set_Parent (Expr, Deriv_Decl);
Preanalyze_Assert_Expression (Expr, Any_Boolean);
-- Once the DIC assertion expression is fully processed, add a check
-- to the statements of the DIC procedure.
Add_DIC_Check
(DIC_Prag => DIC_Prag,
DIC_Expr => Expr,
Stmts => Stmts);
end Add_Inherited_Tagged_DIC;
-----------------
-- Add_Own_DIC --
-----------------
procedure Add_Own_DIC
(DIC_Prag : Node_Id;
DIC_Typ : Entity_Id;
Stmts : in out List_Id)
is
DIC_Args : constant List_Id :=
Pragma_Argument_Associations (DIC_Prag);
DIC_Arg : constant Node_Id := First (DIC_Args);
DIC_Asp : constant Node_Id := Corresponding_Aspect (DIC_Prag);
DIC_Expr : constant Node_Id := Get_Pragma_Arg (DIC_Arg);
DIC_Proc : constant Entity_Id := DIC_Procedure (DIC_Typ);
Obj_Id : constant Entity_Id := First_Formal (DIC_Proc);
procedure Preanalyze_Own_DIC_For_ASIS;
-- Preanalyze the original DIC expression of an aspect or a source
-- pragma for ASIS.
---------------------------------
-- Preanalyze_Own_DIC_For_ASIS --
---------------------------------
procedure Preanalyze_Own_DIC_For_ASIS is
Expr : Node_Id := Empty;
begin
-- The DIC pragma is a source construct, preanalyze the original
-- expression of the pragma.
if Comes_From_Source (DIC_Prag) then
Expr := DIC_Expr;
-- Otherwise preanalyze the expression of the corresponding aspect
elsif Present (DIC_Asp) then
Expr := Expression (DIC_Asp);
end if;
-- The expression must be subjected to the same substitutions as
-- the copy used in the generation of the runtime check.
if Present (Expr) then
Replace_Type_References
(Expr => Expr,
Typ => DIC_Typ,
Obj_Id => Obj_Id);
Preanalyze_Assert_Expression (Expr, Any_Boolean);
end if;
end Preanalyze_Own_DIC_For_ASIS;
-- Local variables
Typ_Decl : constant Node_Id := Declaration_Node (DIC_Typ);
Expr : Node_Id;
-- Start of processing for Add_Own_DIC
begin
Expr := New_Copy_Tree (DIC_Expr);
-- Perform the following substitution:
-- * Replace the current instance of DIC_Typ with a reference to
-- the _object formal parameter of the DIC procedure.
Replace_Type_References
(Expr => Expr,
Typ => DIC_Typ,
Obj_Id => Obj_Id);
-- Preanalyze the DIC expression to detect errors and at the same
-- time capture the visibility of the proper package part.
Set_Parent (Expr, Typ_Decl);
Preanalyze_Assert_Expression (Expr, Any_Boolean);
-- Save a copy of the expression with all replacements and analysis
-- already taken place in case a derived type inherits the pragma.
-- The copy will be used as the foundation of the derived type's own
-- version of the DIC assertion expression.
if Is_Tagged_Type (DIC_Typ) then
Set_Expression_Copy (DIC_Arg, New_Copy_Tree (Expr));
end if;
-- If the pragma comes from an aspect specification, replace the
-- saved expression because all type references must be substituted
-- for the call to Preanalyze_Spec_Expression in Check_Aspect_At_xxx
-- routines.
if Present (DIC_Asp) then
Set_Entity (Identifier (DIC_Asp), New_Copy_Tree (Expr));
end if;
-- Preanalyze the original DIC expression for ASIS
if ASIS_Mode then
Preanalyze_Own_DIC_For_ASIS;
end if;
-- Once the DIC assertion expression is fully processed, add a check
-- to the statements of the DIC procedure.
Add_DIC_Check
(DIC_Prag => DIC_Prag,
DIC_Expr => Expr,
Stmts => Stmts);
end Add_Own_DIC;
---------------------------------------------
-- Replace_Object_And_Primitive_References --
---------------------------------------------
procedure Replace_Object_And_Primitive_References
(Expr : Node_Id;
Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id;
Par_Obj : Entity_Id := Empty;
Deriv_Obj : Entity_Id := Empty)
is
function Replace_Ref (Ref : Node_Id) return Traverse_Result;
-- Substitute a reference to an entity with a reference to the
-- corresponding entity stored in in table Primitives_Mapping.
-----------------
-- Replace_Ref --
-----------------
function Replace_Ref (Ref : Node_Id) return Traverse_Result is
Context : constant Node_Id := Parent (Ref);
Loc : constant Source_Ptr := Sloc (Ref);
New_Id : Entity_Id;
New_Ref : Node_Id;
Ref_Id : Entity_Id;
Result : Traverse_Result;
begin
Result := OK;
-- The current node denotes a reference
if Nkind (Ref) in N_Has_Entity and then Present (Entity (Ref)) then
Ref_Id := Entity (Ref);
New_Id := Primitives_Mapping.Get (Ref_Id);
-- The reference mentions a parent type primitive which has a
-- corresponding derived type primitive.
if Present (New_Id) then
New_Ref := New_Occurrence_Of (New_Id, Loc);
-- The reference mentions the _object parameter of the parent
-- type's DIC procedure.
elsif Present (Par_Obj)
and then Present (Deriv_Obj)
and then Ref_Id = Par_Obj
then
New_Ref := New_Occurrence_Of (Deriv_Obj, Loc);
-- The reference to _object acts as an actual parameter in a
-- subprogram call which may be invoking a primitive of the
-- parent type:
-- Primitive (... _object ...);
-- The parent type primitive may not be overridden nor
-- inherited when it is declared after the derived type
-- definition:
-- type Parent is tagged private;
-- type Child is new Parent with private;
-- procedure Primitive (Obj : Parent);
-- In this scenario the _object parameter is converted to
-- the parent type.
if Nkind_In (Context, N_Function_Call,
N_Procedure_Call_Statement)
and then
No (Primitives_Mapping.Get (Entity (Name (Context))))
then
New_Ref := Convert_To (Par_Typ, New_Ref);
-- Do not process the generated type conversion because
-- both the parent type and the derived type are in the
-- Primitives_Mapping table. This will clobber the type
-- conversion by resetting its subtype mark.
Result := Skip;
end if;
-- Otherwise there is nothing to replace
else
New_Ref := Empty;
end if;
if Present (New_Ref) then
Rewrite (Ref, New_Ref);
-- Update the return type when the context of the reference
-- acts as the name of a function call. Note that the update
-- should not be performed when the reference appears as an
-- actual in the call.
if Nkind (Context) = N_Function_Call
and then Name (Context) = Ref
then
Set_Etype (Context, Etype (New_Id));
end if;
end if;
end if;
-- Reanalyze the reference due to potential replacements
if Nkind (Ref) in N_Has_Etype then
Set_Analyzed (Ref, False);
end if;
return Result;
end Replace_Ref;
procedure Replace_Refs is new Traverse_Proc (Replace_Ref);
-- Start of processing for Replace_Object_And_Primitive_References
begin
-- Map each primitive operation of the parent type to the proper
-- primitive of the derived type.
Update_Primitives_Mapping_Of_Types
(Par_Typ => Par_Typ,
Deriv_Typ => Deriv_Typ);
-- Inspect the input expression and perform substitutions where
-- necessary.
Replace_Refs (Expr);
end Replace_Object_And_Primitive_References;
-----------------------------
-- Replace_Type_References --
-----------------------------
procedure Replace_Type_References
(Expr : Node_Id;
Typ : Entity_Id;
Obj_Id : Entity_Id)
is
procedure Replace_Type_Ref (N : Node_Id);
-- Substitute a single reference of the current instance of type Typ
-- with a reference to Obj_Id.
----------------------
-- Replace_Type_Ref --
----------------------
procedure Replace_Type_Ref (N : Node_Id) is
Ref : Node_Id;
begin
-- Decorate the reference to Typ even though it may be rewritten
-- further down. This is done for two reasons:
-- 1) ASIS has all necessary semantic information in the
-- original tree.
-- 2) Routines which examine properties of the Original_Node
-- have some semantic information.
if Nkind (N) = N_Identifier then
Set_Entity (N, Typ);
Set_Etype (N, Typ);
elsif Nkind (N) = N_Selected_Component then
Analyze (Prefix (N));
Set_Entity (Selector_Name (N), Typ);
Set_Etype (Selector_Name (N), Typ);
end if;
-- Perform the following substitution:
-- Typ --> _object
Ref := Make_Identifier (Sloc (N), Chars (Obj_Id));
Set_Entity (Ref, Obj_Id);
Set_Etype (Ref, Typ);
Rewrite (N, Ref);
Set_Comes_From_Source (N, True);
end Replace_Type_Ref;
procedure Replace_Type_Refs is
new Replace_Type_References_Generic (Replace_Type_Ref);
-- Start of processing for Replace_Type_References
begin
Replace_Type_Refs (Expr, Typ);
end Replace_Type_References;
-- Local variables
Loc : constant Source_Ptr := Sloc (Typ);
DIC_Prag : Node_Id;
DIC_Typ : Entity_Id;
Dummy_1 : Entity_Id;
Dummy_2 : Entity_Id;
Mode : Ghost_Mode_Type;
Proc_Body : Node_Id;
Proc_Body_Id : Entity_Id;
Proc_Decl : Node_Id;
Proc_Id : Entity_Id;
Stmts : List_Id := No_List;
Work_Typ : Entity_Id;
-- The working type
-- Start of processing for Build_DIC_Procedure_Body
begin
Work_Typ := Base_Type (Typ);
-- Do not process class-wide types as these are Itypes, but lack a first
-- subtype (see below).
if Is_Class_Wide_Type (Work_Typ) then
return;
-- Do not process the underlying full view of a private type. There is
-- no way to get back to the partial view, plus the body will be built
-- by the full view or the base type.
elsif Is_Underlying_Full_View (Work_Typ) then
return;
-- Use the first subtype when dealing with various base types
elsif Is_Itype (Work_Typ) then
Work_Typ := First_Subtype (Work_Typ);
-- The input denotes the corresponding record type of a protected or a
-- task type. Work with the concurrent type because the corresponding
-- record type may not be visible to clients of the type.
elsif Ekind (Work_Typ) = E_Record_Type
and then Is_Concurrent_Record_Type (Work_Typ)
then
Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
end if;
-- The working type may be subject to pragma Ghost. Set the mode now to
-- ensure that the DIC procedure is properly marked as Ghost.
Set_Ghost_Mode (Work_Typ, Mode);
-- The working type must be either define a DIC pragma of its own or
-- inherit one from a parent type.
pragma Assert (Has_DIC (Work_Typ));
-- Recover the type which defines the DIC pragma. This is either the
-- working type itself or a parent type when the pragma is inherited.
DIC_Typ := Find_DIC_Type (Work_Typ);
pragma Assert (Present (DIC_Typ));
DIC_Prag := Get_Pragma (DIC_Typ, Pragma_Default_Initial_Condition);
pragma Assert (Present (DIC_Prag));
-- Nothing to do if pragma DIC appears without an argument or its sole
-- argument is "null".
if not Is_Verifiable_DIC_Pragma (DIC_Prag) then
goto Leave;
end if;
-- The working type may lack a DIC procedure declaration. This may be
-- due to several reasons:
-- * The working type's own DIC pragma does not contain a verifiable
-- assertion expression. In this case there is no need to build a
-- DIC procedure because there is nothing to check.
-- * The working type derives from a parent type. In this case a DIC
-- procedure should be built only when the inherited DIC pragma has
-- a verifiable assertion expression.
Proc_Id := DIC_Procedure (Work_Typ);
-- Build a DIC procedure declaration when the working type derives from
-- a parent type.
if No (Proc_Id) then
Build_DIC_Procedure_Declaration (Work_Typ);
Proc_Id := DIC_Procedure (Work_Typ);
end if;
-- At this point there should be a DIC procedure declaration
pragma Assert (Present (Proc_Id));
Proc_Decl := Unit_Declaration_Node (Proc_Id);
-- Nothing to do if the DIC procedure already has a body
if Present (Corresponding_Body (Proc_Decl)) then
goto Leave;
end if;
-- Emulate the environment of the DIC procedure by installing its scope
-- and formal parameters.
Push_Scope (Proc_Id);
Install_Formals (Proc_Id);
-- The working type defines its own DIC pragma. Replace the current
-- instance of the working type with the formal of the DIC procedure.
-- Note that there is no need to consider inherited DIC pragmas from
-- parent types because the working type's DIC pragma "hides" all
-- inherited DIC pragmas.
if Has_Own_DIC (Work_Typ) then
pragma Assert (DIC_Typ = Work_Typ);
Add_Own_DIC
(DIC_Prag => DIC_Prag,
DIC_Typ => DIC_Typ,
Stmts => Stmts);
-- Otherwise the working type inherits a DIC pragma from a parent type
else
pragma Assert (Has_Inherited_DIC (Work_Typ));
pragma Assert (DIC_Typ /= Work_Typ);
-- The working type is tagged. The verification of the assertion
-- expression is subject to the same semantics as class-wide pre-
-- and postconditions.
if Is_Tagged_Type (Work_Typ) then
Add_Inherited_Tagged_DIC
(DIC_Prag => DIC_Prag,
Par_Typ => DIC_Typ,
Deriv_Typ => Work_Typ,
Stmts => Stmts);
-- Otherwise the working type is not tagged. Verify the assertion
-- expression of the inherited DIC pragma by directly calling the
-- DIC procedure of the parent type.
else
Add_Inherited_DIC
(DIC_Prag => DIC_Prag,
Par_Typ => DIC_Typ,
Deriv_Typ => Work_Typ,
Stmts => Stmts);
end if;
end if;
End_Scope;
-- Produce an empty completing body in the following cases:
-- * Assertions are disabled
-- * The DIC Assertion_Policy is Ignore
-- * Pragma DIC appears without an argument
-- * Pragma DIC appears with argument "null"
if No (Stmts) then
Stmts := New_List (Make_Null_Statement (Loc));
end if;
-- Generate:
-- procedure <Work_Typ>DIC (_object : <Work_Typ>) is
-- begin
-- <Stmts>
-- end <Work_Typ>DIC;
Proc_Body :=
Make_Subprogram_Body (Loc,
Specification =>
Copy_Subprogram_Spec (Parent (Proc_Id)),
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => Stmts));
Proc_Body_Id := Defining_Entity (Proc_Body);
-- Perform minor decoration in case the body is not analyzed
Set_Ekind (Proc_Body_Id, E_Subprogram_Body);
Set_Etype (Proc_Body_Id, Standard_Void_Type);
Set_Scope (Proc_Body_Id, Current_Scope);
-- Link both spec and body to avoid generating duplicates
Set_Corresponding_Body (Proc_Decl, Proc_Body_Id);
Set_Corresponding_Spec (Proc_Body, Proc_Id);
-- The body should not be inserted into the tree when the context is
-- ASIS or a generic unit because it is not part of the template. Note
-- that the body must still be generated in order to resolve the DIC
-- assertion expression.
if ASIS_Mode or Inside_A_Generic then
null;
-- Semi-insert the body into the tree for GNATprove by setting its
-- Parent field. This allows for proper upstream tree traversals.
elsif GNATprove_Mode then
Set_Parent (Proc_Body, Parent (Declaration_Node (Work_Typ)));
-- Otherwise the body is part of the freezing actions of the working
-- type.
else
Append_Freeze_Action (Work_Typ, Proc_Body);
end if;
<<Leave>>
Restore_Ghost_Mode (Mode);
end Build_DIC_Procedure_Body;
-------------------------------------
-- Build_DIC_Procedure_Declaration --
-------------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Build_DIC_Procedure_Declaration (Typ : Entity_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
DIC_Prag : Node_Id;
DIC_Typ : Entity_Id;
Mode : Ghost_Mode_Type;
Proc_Decl : Node_Id;
Proc_Id : Entity_Id;
Typ_Decl : Node_Id;
CRec_Typ : Entity_Id;
-- The corresponding record type of Full_Typ
Full_Base : Entity_Id;
-- The base type of Full_Typ
Full_Typ : Entity_Id;
-- The full view of working type
Obj_Id : Entity_Id;
-- The _object formal parameter of the DIC procedure
Priv_Typ : Entity_Id;
-- The partial view of working type
Work_Typ : Entity_Id;
-- The working type
begin
Work_Typ := Base_Type (Typ);
-- Do not process class-wide types as these are Itypes, but lack a first
-- subtype (see below).
if Is_Class_Wide_Type (Work_Typ) then
return;
-- Do not process the underlying full view of a private type. There is
-- no way to get back to the partial view, plus the body will be built
-- by the full view or the base type.
elsif Is_Underlying_Full_View (Work_Typ) then
return;
-- Use the first subtype when dealing with various base types
elsif Is_Itype (Work_Typ) then
Work_Typ := First_Subtype (Work_Typ);
-- The input denotes the corresponding record type of a protected or a
-- task type. Work with the concurrent type because the corresponding
-- record type may not be visible to clients of the type.
elsif Ekind (Work_Typ) = E_Record_Type
and then Is_Concurrent_Record_Type (Work_Typ)
then
Work_Typ := Corresponding_Concurrent_Type (Work_Typ);
end if;
-- The working type may be subject to pragma Ghost. Set the mode now to
-- ensure that the DIC procedure is properly marked as Ghost.
Set_Ghost_Mode (Work_Typ, Mode);
-- The type must be either subject to a DIC pragma or inherit one from a
-- parent type.
pragma Assert (Has_DIC (Work_Typ));
-- Recover the type which defines the DIC pragma. This is either the
-- working type itself or a parent type when the pragma is inherited.
DIC_Typ := Find_DIC_Type (Work_Typ);
pragma Assert (Present (DIC_Typ));
DIC_Prag := Get_Pragma (DIC_Typ, Pragma_Default_Initial_Condition);
pragma Assert (Present (DIC_Prag));
-- Nothing to do if pragma DIC appears without an argument or its sole
-- argument is "null".
if not Is_Verifiable_DIC_Pragma (DIC_Prag) then
goto Leave;
-- Nothing to do if the type already has a DIC procedure
elsif Present (DIC_Procedure (Work_Typ)) then
goto Leave;
end if;
Proc_Id :=
Make_Defining_Identifier (Loc,
Chars =>
New_External_Name (Chars (Work_Typ), "Default_Initial_Condition"));
-- Perform minor decoration in case the declaration is not analyzed
Set_Ekind (Proc_Id, E_Procedure);
Set_Etype (Proc_Id, Standard_Void_Type);
Set_Scope (Proc_Id, Current_Scope);
Set_Is_DIC_Procedure (Proc_Id);
Set_DIC_Procedure (Work_Typ, Proc_Id);
-- The DIC procedure requires debug info when the assertion expression
-- is subject to Source Coverage Obligations.
if Opt.Generate_SCO then
Set_Needs_Debug_Info (Proc_Id);
end if;
-- Obtain all views of the input type
Get_Views (Work_Typ, Priv_Typ, Full_Typ, Full_Base, CRec_Typ);
-- Associate the DIC procedure and various relevant flags with all views
Propagate_DIC_Attributes (Priv_Typ, From_Typ => Work_Typ);
Propagate_DIC_Attributes (Full_Typ, From_Typ => Work_Typ);
Propagate_DIC_Attributes (Full_Base, From_Typ => Work_Typ);
Propagate_DIC_Attributes (CRec_Typ, From_Typ => Work_Typ);
-- The declaration of the DIC procedure must be inserted after the
-- declaration of the partial view as this allows for proper external
-- visibility.
if Present (Priv_Typ) then
Typ_Decl := Declaration_Node (Priv_Typ);
-- Derived types with the full view as parent do not have a partial
-- view. Insert the DIC procedure after the derived type.
else
Typ_Decl := Declaration_Node (Full_Typ);
end if;
-- The type should have a declarative node
pragma Assert (Present (Typ_Decl));
-- Create the formal parameter which emulates the variable-like behavior
-- of the type's current instance.
Obj_Id := Make_Defining_Identifier (Loc, Chars => Name_uObject);
-- Perform minor decoration in case the declaration is not analyzed
Set_Ekind (Obj_Id, E_In_Parameter);
Set_Etype (Obj_Id, Work_Typ);
Set_Scope (Obj_Id, Proc_Id);
Set_First_Entity (Proc_Id, Obj_Id);
-- Generate:
-- procedure <Work_Typ>DIC (_object : <Work_Typ>);
Proc_Decl :=
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Proc_Id,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Obj_Id,
Parameter_Type =>
New_Occurrence_Of (Work_Typ, Loc)))));
-- The declaration should not be inserted into the tree when the context
-- is ASIS or a generic unit because it is not part of the template.
if ASIS_Mode or Inside_A_Generic then
null;
-- Semi-insert the declaration into the tree for GNATprove by setting
-- its Parent field. This allows for proper upstream tree traversals.
elsif GNATprove_Mode then
Set_Parent (Proc_Decl, Parent (Typ_Decl));
-- Otherwise insert the declaration
else
Insert_After_And_Analyze (Typ_Decl, Proc_Decl);
end if;
<<Leave>>
Restore_Ghost_Mode (Mode);
end Build_DIC_Procedure_Declaration;
--------------------------
-- Build_Procedure_Form --
--------------------------
procedure Build_Procedure_Form (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Subp : constant Entity_Id := Defining_Entity (N);
Func_Formal : Entity_Id;
Proc_Formals : List_Id;
Proc_Decl : Node_Id;
begin
-- No action needed if this transformation was already done, or in case
-- of subprogram renaming declarations.
if Nkind (Specification (N)) = N_Procedure_Specification
or else Nkind (N) = N_Subprogram_Renaming_Declaration
then
return;
end if;
-- Ditto when dealing with an expression function, where both the
-- original expression and the generated declaration end up being
-- expanded here.
if Rewritten_For_C (Subp) then
return;
end if;
Proc_Formals := New_List;
-- Create a list of formal parameters with the same types as the
-- function.
Func_Formal := First_Formal (Subp);
while Present (Func_Formal) loop
Append_To (Proc_Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Chars (Func_Formal)),
Parameter_Type =>
New_Occurrence_Of (Etype (Func_Formal), Loc)));
Next_Formal (Func_Formal);
end loop;
-- Add an extra out parameter to carry the function result
Name_Len := 6;
Name_Buffer (1 .. Name_Len) := "RESULT";
Append_To (Proc_Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Chars => Name_Find),
Out_Present => True,
Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc)));
-- The new procedure declaration is inserted immediately after the
-- function declaration. The processing in Build_Procedure_Body_Form
-- relies on this order.
Proc_Decl :=
Make_Subprogram_Declaration (Loc,
Specification =>
Make_Procedure_Specification (Loc,
Defining_Unit_Name =>
Make_Defining_Identifier (Loc, Chars (Subp)),
Parameter_Specifications => Proc_Formals));
Insert_After_And_Analyze (Unit_Declaration_Node (Subp), Proc_Decl);
-- Entity of procedure must remain invisible so that it does not
-- overload subsequent references to the original function.
Set_Is_Immediately_Visible (Defining_Entity (Proc_Decl), False);
-- Mark the function as having a procedure form and link the function
-- and its internally built procedure.
Set_Rewritten_For_C (Subp);
Set_Corresponding_Procedure (Subp, Defining_Entity (Proc_Decl));
Set_Corresponding_Function (Defining_Entity (Proc_Decl), Subp);
end Build_Procedure_Form;
------------------------
-- Build_Runtime_Call --
------------------------
function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
begin
-- If entity is not available, we can skip making the call (this avoids
-- junk duplicated error messages in a number of cases).
if not RTE_Available (RE) then
return Make_Null_Statement (Loc);
else
return
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (RTE (RE), Loc));
end if;
end Build_Runtime_Call;
------------------------
-- Build_SS_Mark_Call --
------------------------
function Build_SS_Mark_Call
(Loc : Source_Ptr;
Mark : Entity_Id) return Node_Id
is
begin
-- Generate:
-- Mark : constant Mark_Id := SS_Mark;
return
Make_Object_Declaration (Loc,
Defining_Identifier => Mark,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (RTE (RE_Mark_Id), Loc),
Expression =>
Make_Function_Call (Loc,
Name => New_Occurrence_Of (RTE (RE_SS_Mark), Loc)));
end Build_SS_Mark_Call;
---------------------------
-- Build_SS_Release_Call --
---------------------------
function Build_SS_Release_Call
(Loc : Source_Ptr;
Mark : Entity_Id) return Node_Id
is
begin
-- Generate:
-- SS_Release (Mark);
return
Make_Procedure_Call_Statement (Loc,
Name =>
New_Occurrence_Of (RTE (RE_SS_Release), Loc),
Parameter_Associations => New_List (
New_Occurrence_Of (Mark, Loc)));
end Build_SS_Release_Call;
----------------------------
-- Build_Task_Array_Image --
----------------------------
-- This function generates the body for a function that constructs the
-- image string for a task that is an array component. The function is
-- local to the init proc for the array type, and is called for each one
-- of the components. The constructed image has the form of an indexed
-- component, whose prefix is the outer variable of the array type.
-- The n-dimensional array type has known indexes Index, Index2...
-- Id_Ref is an indexed component form created by the enclosing init proc.
-- Its successive indexes are Val1, Val2, ... which are the loop variables
-- in the loops that call the individual task init proc on each component.
-- The generated function has the following structure:
-- function F return String is
-- Pref : string renames Task_Name;
-- T1 : String := Index1'Image (Val1);
-- ...
-- Tn : String := indexn'image (Valn);
-- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
-- -- Len includes commas and the end parentheses.
-- Res : String (1..Len);
-- Pos : Integer := Pref'Length;
--
-- begin
-- Res (1 .. Pos) := Pref;
-- Pos := Pos + 1;
-- Res (Pos) := '(';
-- Pos := Pos + 1;
-- Res (Pos .. Pos + T1'Length - 1) := T1;
-- Pos := Pos + T1'Length;
-- Res (Pos) := '.';
-- Pos := Pos + 1;
-- ...
-- Res (Pos .. Pos + Tn'Length - 1) := Tn;
-- Res (Len) := ')';
--
-- return Res;
-- end F;
--
-- Needless to say, multidimensional arrays of tasks are rare enough that
-- the bulkiness of this code is not really a concern.
function Build_Task_Array_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
Dyn : Boolean := False) return Node_Id
is
Dims : constant Nat := Number_Dimensions (A_Type);
-- Number of dimensions for array of tasks
Temps : array (1 .. Dims) of Entity_Id;
-- Array of temporaries to hold string for each index
Indx : Node_Id;
-- Index expression
Len : Entity_Id;
-- Total length of generated name
Pos : Entity_Id;
-- Running index for substring assignments
Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
-- Name of enclosing variable, prefix of resulting name
Res : Entity_Id;
-- String to hold result
Val : Node_Id;
-- Value of successive indexes
Sum : Node_Id;
-- Expression to compute total size of string
T : Entity_Id;
-- Entity for name at one index position
Decls : constant List_Id := New_List;
Stats : constant List_Id := New_List;
begin
-- For a dynamic task, the name comes from the target variable. For a
-- static one it is a formal of the enclosing init proc.
if Dyn then
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pref,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pref,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Name => Make_Identifier (Loc, Name_uTask_Name)));
end if;
Indx := First_Index (A_Type);
Val := First (Expressions (Id_Ref));
for J in 1 .. Dims loop
T := Make_Temporary (Loc, 'T');
Temps (J) := T;
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => T,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Image,
Prefix => New_Occurrence_Of (Etype (Indx), Loc),
Expressions => New_List (New_Copy_Tree (Val)))));
Next_Index (Indx);
Next (Val);
end loop;
Sum := Make_Integer_Literal (Loc, Dims + 1);
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Pref, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
for J in 1 .. Dims loop
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Temps (J), Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
end loop;
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value => UI_From_Int (Character'Pos ('(')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
for J in 1 .. Dims loop
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name =>
Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => New_Occurrence_Of (Pos, Loc),
High_Bound =>
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Temps (J), Loc),
Expressions =>
New_List (Make_Integer_Literal (Loc, 1)))),
Right_Opnd => Make_Integer_Literal (Loc, 1)))),
Expression => New_Occurrence_Of (Temps (J), Loc)));
if J < Dims then
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Temps (J), Loc),
Expressions =>
New_List (Make_Integer_Literal (Loc, 1))))));
Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value => UI_From_Int (Character'Pos (',')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
end if;
end loop;
Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name =>
Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Len, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value => UI_From_Int (Character'Pos (')')))));
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
end Build_Task_Array_Image;
----------------------------
-- Build_Task_Image_Decls --
----------------------------
function Build_Task_Image_Decls
(Loc : Source_Ptr;
Id_Ref : Node_Id;
A_Type : Entity_Id;
In_Init_Proc : Boolean := False) return List_Id
is
Decls : constant List_Id := New_List;
T_Id : Entity_Id := Empty;
Decl : Node_Id;
Expr : Node_Id := Empty;
Fun : Node_Id := Empty;
Is_Dyn : constant Boolean :=
Nkind (Parent (Id_Ref)) = N_Assignment_Statement
and then
Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
begin
-- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
-- generate a dummy declaration only.
if Restriction_Active (No_Implicit_Heap_Allocations)
or else Global_Discard_Names
then
T_Id := Make_Temporary (Loc, 'J');
Name_Len := 0;
return
New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => T_Id,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
if Nkind (Id_Ref) = N_Identifier
or else Nkind (Id_Ref) = N_Defining_Identifier
then
-- For a simple variable, the image of the task is built from
-- the name of the variable. To avoid possible conflict with the
-- anonymous type created for a single protected object, add a
-- numeric suffix.
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Id_Ref), 'T', 1));
Get_Name_String (Chars (Id_Ref));
Expr :=
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer);
elsif Nkind (Id_Ref) = N_Selected_Component then
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
elsif Nkind (Id_Ref) = N_Indexed_Component then
T_Id :=
Make_Defining_Identifier (Loc,
New_External_Name (Chars (A_Type), 'N'));
Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
end if;
end if;
if Present (Fun) then
Append (Fun, Decls);
Expr := Make_Function_Call (Loc,
Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
if not In_Init_Proc then
Set_Uses_Sec_Stack (Defining_Entity (Fun));
end if;
end if;
Decl := Make_Object_Declaration (Loc,
Defining_Identifier => T_Id,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Constant_Present => True,
Expression => Expr);
Append (Decl, Decls);
return Decls;
end Build_Task_Image_Decls;
-------------------------------
-- Build_Task_Image_Function --
-------------------------------
function Build_Task_Image_Function
(Loc : Source_Ptr;
Decls : List_Id;
Stats : List_Id;
Res : Entity_Id) return Node_Id
is
Spec : Node_Id;
begin
Append_To (Stats,
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (Res, Loc)));
Spec := Make_Function_Specification (Loc,
Defining_Unit_Name => Make_Temporary (Loc, 'F'),
Result_Definition => New_Occurrence_Of (Standard_String, Loc));
-- Calls to 'Image use the secondary stack, which must be cleaned up
-- after the task name is built.
return Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Decls,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
end Build_Task_Image_Function;
-----------------------------
-- Build_Task_Image_Prefix --
-----------------------------
procedure Build_Task_Image_Prefix
(Loc : Source_Ptr;
Len : out Entity_Id;
Res : out Entity_Id;
Pos : out Entity_Id;
Prefix : Entity_Id;
Sum : Node_Id;
Decls : List_Id;
Stats : List_Id)
is
begin
Len := Make_Temporary (Loc, 'L', Sum);
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Len,
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
Expression => Sum));
Res := Make_Temporary (Loc, 'R');
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Res,
Object_Definition =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints =>
New_List (
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound => New_Occurrence_Of (Len, Loc)))))));
-- Indicate that the result is an internal temporary, so it does not
-- receive a bogus initialization when declaration is expanded. This
-- is both efficient, and prevents anomalies in the handling of
-- dynamic objects on the secondary stack.
Set_Is_Internal (Res);
Pos := Make_Temporary (Loc, 'P');
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pos,
Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
-- Pos := Prefix'Length;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => New_Occurrence_Of (Prefix, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1)))));
-- Res (1 .. Pos) := Prefix;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name =>
Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound => New_Occurrence_Of (Pos, Loc))),
Expression => New_Occurrence_Of (Prefix, Loc)));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
end Build_Task_Image_Prefix;
-----------------------------
-- Build_Task_Record_Image --
-----------------------------
function Build_Task_Record_Image
(Loc : Source_Ptr;
Id_Ref : Node_Id;
Dyn : Boolean := False) return Node_Id
is
Len : Entity_Id;
-- Total length of generated name
Pos : Entity_Id;
-- Index into result
Res : Entity_Id;
-- String to hold result
Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
-- Name of enclosing variable, prefix of resulting name
Sum : Node_Id;
-- Expression to compute total size of string
Sel : Entity_Id;
-- Entity for selector name
Decls : constant List_Id := New_List;
Stats : constant List_Id := New_List;
begin
-- For a dynamic task, the name comes from the target variable. For a
-- static one it is a formal of the enclosing init proc.
if Dyn then
Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Pref,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
else
Append_To (Decls,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pref,
Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
Name => Make_Identifier (Loc, Name_uTask_Name)));
end if;
Sel := Make_Temporary (Loc, 'S');
Get_Name_String (Chars (Selector_Name (Id_Ref)));
Append_To (Decls,
Make_Object_Declaration (Loc,
Defining_Identifier => Sel,
Object_Definition => New_Occurrence_Of (Standard_String, Loc),
Expression =>
Make_String_Literal (Loc,
Strval => String_From_Name_Buffer)));
Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
Sum :=
Make_Op_Add (Loc,
Left_Opnd => Sum,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix =>
New_Occurrence_Of (Pref, Loc),
Expressions => New_List (Make_Integer_Literal (Loc, 1))));
Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
-- Res (Pos) := '.';
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Indexed_Component (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
Expression =>
Make_Character_Literal (Loc,
Chars => Name_Find,
Char_Literal_Value =>
UI_From_Int (Character'Pos ('.')))));
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Pos, Loc),
Expression =>
Make_Op_Add (Loc,
Left_Opnd => New_Occurrence_Of (Pos, Loc),
Right_Opnd => Make_Integer_Literal (Loc, 1))));
-- Res (Pos .. Len) := Selector;
Append_To (Stats,
Make_Assignment_Statement (Loc,
Name => Make_Slice (Loc,
Prefix => New_Occurrence_Of (Res, Loc),
Discrete_Range =>
Make_Range (Loc,
Low_Bound => New_Occurrence_Of (Pos, Loc),
High_Bound => New_Occurrence_Of (Len, Loc))),
Expression => New_Occurrence_Of (Sel, Loc)));
return Build_Task_Image_Function (Loc, Decls, Stats, Res);
end Build_Task_Record_Image;
---------------------------------------
-- Build_Transient_Object_Statements --
---------------------------------------
procedure Build_Transient_Object_Statements
(Obj_Decl : Node_Id;
Fin_Call : out Node_Id;
Hook_Assign : out Node_Id;
Hook_Clear : out Node_Id;
Hook_Decl : out Node_Id;
Ptr_Decl : out Node_Id;
Finalize_Obj : Boolean := True)
is
Loc : constant Source_Ptr := Sloc (Obj_Decl);
Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl);
Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
Desig_Typ : Entity_Id;
Hook_Expr : Node_Id;
Hook_Id : Entity_Id;
Obj_Ref : Node_Id;
Ptr_Typ : Entity_Id;
begin
-- Recover the type of the object
Desig_Typ := Obj_Typ;
if Is_Access_Type (Desig_Typ) then
Desig_Typ := Available_View (Designated_Type (Desig_Typ));
end if;
-- Create an access type which provides a reference to the transient
-- object. Generate:
-- type Ptr_Typ is access all Desig_Typ;
Ptr_Typ := Make_Temporary (Loc, 'A');
Set_Ekind (Ptr_Typ, E_General_Access_Type);
Set_Directly_Designated_Type (Ptr_Typ, Desig_Typ);
Ptr_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ptr_Typ,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication => New_Occurrence_Of (Desig_Typ, Loc)));
-- Create a temporary check which acts as a hook to the transient
-- object. Generate:
-- Hook : Ptr_Typ := null;
Hook_Id := Make_Temporary (Loc, 'T');
Set_Ekind (Hook_Id, E_Variable);
Set_Etype (Hook_Id, Ptr_Typ);
Hook_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Hook_Id,
Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc),
Expression => Make_Null (Loc));
-- Mark the temporary as a hook. This signals the machinery in
-- Build_Finalizer to recognize this special case.
Set_Status_Flag_Or_Transient_Decl (Hook_Id, Obj_Decl);
-- Hook the transient object to the temporary. Generate:
-- Hook := Ptr_Typ (Obj_Id);
-- <or>
-- Hool := Obj_Id'Unrestricted_Access;
if Is_Access_Type (Obj_Typ) then
Hook_Expr :=
Unchecked_Convert_To (Ptr_Typ, New_Occurrence_Of (Obj_Id, Loc));
else
Hook_Expr :=
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Obj_Id, Loc),
Attribute_Name => Name_Unrestricted_Access);
end if;
Hook_Assign :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Hook_Id, Loc),
Expression => Hook_Expr);
-- Crear the hook prior to finalizing the object. Generate:
-- Hook := null;
Hook_Clear :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Hook_Id, Loc),
Expression => Make_Null (Loc));
-- Finalize the object. Generate:
-- [Deep_]Finalize (Obj_Ref[.all]);
if Finalize_Obj then
Obj_Ref := New_Occurrence_Of (Obj_Id, Loc);
if Is_Access_Type (Obj_Typ) then
Obj_Ref := Make_Explicit_Dereference (Loc, Obj_Ref);
Set_Etype (Obj_Ref, Desig_Typ);
end if;
Fin_Call :=
Make_Final_Call
(Obj_Ref => Obj_Ref,
Typ => Desig_Typ);
-- Otherwise finalize the hook. Generate:
-- [Deep_]Finalize (Hook.all);
else
Fin_Call :=
Make_Final_Call (
Obj_Ref =>
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Hook_Id, Loc)),
Typ => Desig_Typ);
end if;
end Build_Transient_Object_Statements;
-----------------------------
-- Check_Float_Op_Overflow --
-----------------------------
procedure Check_Float_Op_Overflow (N : Node_Id) is
begin
-- Return if no check needed
if not Is_Floating_Point_Type (Etype (N))
or else not (Do_Overflow_Check (N) and then Check_Float_Overflow)
-- In CodePeer_Mode, rely on the overflow check flag being set instead
-- and do not expand the code for float overflow checking.
or else CodePeer_Mode
then
return;
end if;
-- Otherwise we replace the expression by
-- do Tnn : constant ftype := expression;
-- constraint_error when not Tnn'Valid;
-- in Tnn;
declare
Loc : constant Source_Ptr := Sloc (N);
Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
Typ : constant Entity_Id := Etype (N);
begin
-- Turn off the Do_Overflow_Check flag, since we are doing that work
-- right here. We also set the node as analyzed to prevent infinite
-- recursion from repeating the operation in the expansion.
Set_Do_Overflow_Check (N, False);
Set_Analyzed (N, True);
-- Do the rewrite to include the check
Rewrite (N,
Make_Expression_With_Actions (Loc,
Actions => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => Tnn,
Object_Definition => New_Occurrence_Of (Typ, Loc),
Constant_Present => True,
Expression => Relocate_Node (N)),
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_Op_Not (Loc,
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Tnn, Loc),
Attribute_Name => Name_Valid)),
Reason => CE_Overflow_Check_Failed)),
Expression => New_Occurrence_Of (Tnn, Loc)));
Analyze_And_Resolve (N, Typ);
end;
end Check_Float_Op_Overflow;
----------------------------------
-- Component_May_Be_Bit_Aligned --
----------------------------------
function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
UT : Entity_Id;
begin
-- If no component clause, then everything is fine, since the back end
-- never bit-misaligns by default, even if there is a pragma Packed for
-- the record.
if No (Comp) or else No (Component_Clause (Comp)) then
return False;
end if;
UT := Underlying_Type (Etype (Comp));
-- It is only array and record types that cause trouble
if not Is_Record_Type (UT) and then not Is_Array_Type (UT) then
return False;
-- If we know that we have a small (64 bits or less) record or small
-- bit-packed array, then everything is fine, since the back end can
-- handle these cases correctly.
elsif Esize (Comp) <= 64
and then (Is_Record_Type (UT) or else Is_Bit_Packed_Array (UT))
then
return False;
-- Otherwise if the component is not byte aligned, we know we have the
-- nasty unaligned case.
elsif Normalized_First_Bit (Comp) /= Uint_0
or else Esize (Comp) mod System_Storage_Unit /= Uint_0
then
return True;
-- If we are large and byte aligned, then OK at this level
else
return False;
end if;
end Component_May_Be_Bit_Aligned;
----------------------------------------
-- Containing_Package_With_Ext_Axioms --
----------------------------------------
function Containing_Package_With_Ext_Axioms
(E : Entity_Id) return Entity_Id
is
begin
-- E is the package or generic package which is externally axiomatized
if Ekind_In (E, E_Generic_Package, E_Package)
and then Has_Annotate_Pragma_For_External_Axiomatization (E)
then
return E;
end if;
-- If E's scope is axiomatized, E is axiomatized
if Present (Scope (E)) then
declare
First_Ax_Parent_Scope : constant Entity_Id :=
Containing_Package_With_Ext_Axioms (Scope (E));
begin
if Present (First_Ax_Parent_Scope) then
return First_Ax_Parent_Scope;
end if;
end;
end if;
-- Otherwise, if E is a package instance, it is axiomatized if the
-- corresponding generic package is axiomatized.
if Ekind (E) = E_Package then
declare
Par : constant Node_Id := Parent (E);
Decl : Node_Id;
begin
if Nkind (Par) = N_Defining_Program_Unit_Name then
Decl := Parent (Par);
else
Decl := Par;
end if;
if Present (Generic_Parent (Decl)) then
return
Containing_Package_With_Ext_Axioms (Generic_Parent (Decl));
end if;
end;
end if;
return Empty;
end Containing_Package_With_Ext_Axioms;
-------------------------------
-- Convert_To_Actual_Subtype --
-------------------------------
procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
Act_ST : Entity_Id;
begin
Act_ST := Get_Actual_Subtype (Exp);
if Act_ST = Etype (Exp) then
return;
else
Rewrite (Exp, Convert_To (Act_ST, Relocate_Node (Exp)));
Analyze_And_Resolve (Exp, Act_ST);
end if;
end Convert_To_Actual_Subtype;
-----------------------------------
-- Corresponding_Runtime_Package --
-----------------------------------
function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
function Has_One_Entry_And_No_Queue (T : Entity_Id) return Boolean;
-- Return True if protected type T has one entry and the maximum queue
-- length is one.
--------------------------------
-- Has_One_Entry_And_No_Queue --
--------------------------------
function Has_One_Entry_And_No_Queue (T : Entity_Id) return Boolean is
Item : Entity_Id;
Is_First : Boolean := True;
begin
Item := First_Entity (T);
while Present (Item) loop
if Is_Entry (Item) then
-- The protected type has more than one entry
if not Is_First then
return False;
end if;
-- The queue length is not one
if not Restriction_Active (No_Entry_Queue)
and then Get_Max_Queue_Length (Item) /= Uint_1
then
return False;
end if;
Is_First := False;
end if;
Next_Entity (Item);
end loop;
return True;
end Has_One_Entry_And_No_Queue;
-- Local variables
Pkg_Id : RTU_Id := RTU_Null;
-- Start of processing for Corresponding_Runtime_Package
begin
pragma Assert (Is_Concurrent_Type (Typ));
if Ekind (Typ) in Protected_Kind then
if Has_Entries (Typ)
-- A protected type without entries that covers an interface and
-- overrides the abstract routines with protected procedures is
-- considered equivalent to a protected type with entries in the
-- context of dispatching select statements. It is sufficient to
-- check for the presence of an interface list in the declaration
-- node to recognize this case.
or else Present (Interface_List (Parent (Typ)))
-- Protected types with interrupt handlers (when not using a
-- restricted profile) are also considered equivalent to
-- protected types with entries. The types which are used
-- (Static_Interrupt_Protection and Dynamic_Interrupt_Protection)
-- are derived from Protection_Entries.
or else (Has_Attach_Handler (Typ) and then not Restricted_Profile)
or else Has_Interrupt_Handler (Typ)
then
if Abort_Allowed
or else Restriction_Active (No_Select_Statements) = False
or else not Has_One_Entry_And_No_Queue (Typ)
or else (Has_Attach_Handler (Typ)
and then not Restricted_Profile)
then
Pkg_Id := System_Tasking_Protected_Objects_Entries;
else
Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
end if;
else
Pkg_Id := System_Tasking_Protected_Objects;
end if;
end if;
return Pkg_Id;
end Corresponding_Runtime_Package;
-----------------------------------
-- Current_Sem_Unit_Declarations --
-----------------------------------
function Current_Sem_Unit_Declarations return List_Id is
U : Node_Id := Unit (Cunit (Current_Sem_Unit));
Decls : List_Id;
begin
-- If the current unit is a package body, locate the visible
-- declarations of the package spec.
if Nkind (U) = N_Package_Body then
U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
end if;
if Nkind (U) = N_Package_Declaration then
U := Specification (U);
Decls := Visible_Declarations (U);
if No (Decls) then
Decls := New_List;
Set_Visible_Declarations (U, Decls);
end if;
else
Decls := Declarations (U);
if No (Decls) then
Decls := New_List;
Set_Declarations (U, Decls);
end if;
end if;
return Decls;
end Current_Sem_Unit_Declarations;
-----------------------
-- Duplicate_Subexpr --
-----------------------
function Duplicate_Subexpr
(Exp : Node_Id;
Name_Req : Boolean := False;
Renaming_Req : Boolean := False) return Node_Id
is
begin
Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
return New_Copy_Tree (Exp);
end Duplicate_Subexpr;
---------------------------------
-- Duplicate_Subexpr_No_Checks --
---------------------------------
function Duplicate_Subexpr_No_Checks
(Exp : Node_Id;
Name_Req : Boolean := False;
Renaming_Req : Boolean := False;
Related_Id : Entity_Id := Empty;
Is_Low_Bound : Boolean := False;
Is_High_Bound : Boolean := False) return Node_Id
is
New_Exp : Node_Id;
begin
Remove_Side_Effects
(Exp => Exp,
Name_Req => Name_Req,
Renaming_Req => Renaming_Req,
Related_Id => Related_Id,
Is_Low_Bound => Is_Low_Bound,
Is_High_Bound => Is_High_Bound);
New_Exp := New_Copy_Tree (Exp);
Remove_Checks (New_Exp);
return New_Exp;
end Duplicate_Subexpr_No_Checks;
-----------------------------------
-- Duplicate_Subexpr_Move_Checks --
-----------------------------------
function Duplicate_Subexpr_Move_Checks
(Exp : Node_Id;
Name_Req : Boolean := False;
Renaming_Req : Boolean := False) return Node_Id
is
New_Exp : Node_Id;
begin
Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
New_Exp := New_Copy_Tree (Exp);
Remove_Checks (Exp);
return New_Exp;
end Duplicate_Subexpr_Move_Checks;
--------------------
-- Ensure_Defined --
--------------------
procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
IR : Node_Id;
begin
-- An itype reference must only be created if this is a local itype, so
-- that gigi can elaborate it on the proper objstack.
if Is_Itype (Typ) and then Scope (Typ) = Current_Scope then
IR := Make_Itype_Reference (Sloc (N));
Set_Itype (IR, Typ);
Insert_Action (N, IR);
end if;
end Ensure_Defined;
-----------------
-- Entity_Hash --
-----------------
function Entity_Hash (E : Entity_Id) return Num_Primitives is
begin
return Num_Primitives (E mod Primitives_Mapping_Size);
end Entity_Hash;
--------------------
-- Entry_Names_OK --
--------------------
function Entry_Names_OK return Boolean is
begin
return
not Restricted_Profile
and then not Global_Discard_Names
and then not Restriction_Active (No_Implicit_Heap_Allocations)
and then not Restriction_Active (No_Local_Allocators);
end Entry_Names_OK;
-------------------
-- Evaluate_Name --
-------------------
procedure Evaluate_Name (Nam : Node_Id) is
K : constant Node_Kind := Nkind (Nam);
begin
-- For an explicit dereference, we simply force the evaluation of the
-- name expression. The dereference provides a value that is the address
-- for the renamed object, and it is precisely this value that we want
-- to preserve.
if K = N_Explicit_Dereference then
Force_Evaluation (Prefix (Nam));
-- For a selected component, we simply evaluate the prefix
elsif K = N_Selected_Component then
Evaluate_Name (Prefix (Nam));
-- For an indexed component, or an attribute reference, we evaluate the
-- prefix, which is itself a name, recursively, and then force the
-- evaluation of all the subscripts (or attribute expressions).
elsif Nkind_In (K, N_Indexed_Component, N_Attribute_Reference) then
Evaluate_Name (Prefix (Nam));
declare
E : Node_Id;
begin
E := First (Expressions (Nam));
while Present (E) loop
Force_Evaluation (E);
if Original_Node (E) /= E then
Set_Do_Range_Check (E, Do_Range_Check (Original_Node (E)));
end if;
Next (E);
end loop;
end;
-- For a slice, we evaluate the prefix, as for the indexed component
-- case and then, if there is a range present, either directly or as the
-- constraint of a discrete subtype indication, we evaluate the two
-- bounds of this range.
elsif K = N_Slice then
Evaluate_Name (Prefix (Nam));
Evaluate_Slice_Bounds (Nam);
-- For a type conversion, the expression of the conversion must be the
-- name of an object, and we simply need to evaluate this name.
elsif K = N_Type_Conversion then
Evaluate_Name (Expression (Nam));
-- For a function call, we evaluate the call
elsif K = N_Function_Call then
Force_Evaluation (Nam);
-- The remaining cases are direct name, operator symbol and character
-- literal. In all these cases, we do nothing, since we want to
-- reevaluate each time the renamed object is used.
else
return;
end if;
end Evaluate_Name;
---------------------------
-- Evaluate_Slice_Bounds --
---------------------------
procedure Evaluate_Slice_Bounds (Slice : Node_Id) is
DR : constant Node_Id := Discrete_Range (Slice);
Constr : Node_Id;
Rexpr : Node_Id;
begin
if Nkind (DR) = N_Range then
Force_Evaluation (Low_Bound (DR));
Force_Evaluation (High_Bound (DR));
elsif Nkind (DR) = N_Subtype_Indication then
Constr := Constraint (DR);
if Nkind (Constr) = N_Range_Constraint then
Rexpr := Range_Expression (Constr);
Force_Evaluation (Low_Bound (Rexpr));
Force_Evaluation (High_Bound (Rexpr));
end if;
end if;
end Evaluate_Slice_Bounds;
---------------------
-- Evolve_And_Then --
---------------------
procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
begin
if No (Cond) then
Cond := Cond1;
else
Cond :=
Make_And_Then (Sloc (Cond1),
Left_Opnd => Cond,
Right_Opnd => Cond1);
end if;
end Evolve_And_Then;
--------------------
-- Evolve_Or_Else --
--------------------
procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
begin
if No (Cond) then
Cond := Cond1;
else
Cond :=
Make_Or_Else (Sloc (Cond1),
Left_Opnd => Cond,
Right_Opnd => Cond1);
end if;
end Evolve_Or_Else;
-----------------------------------------
-- Expand_Static_Predicates_In_Choices --
-----------------------------------------
procedure Expand_Static_Predicates_In_Choices (N : Node_Id) is
pragma Assert (Nkind_In (N, N_Case_Statement_Alternative, N_Variant));
Choices : constant List_Id := Discrete_Choices (N);
Choice : Node_Id;
Next_C : Node_Id;
P : Node_Id;
C : Node_Id;
begin
Choice := First (Choices);
while Present (Choice) loop
Next_C := Next (Choice);
-- Check for name of subtype with static predicate
if Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
and then Has_Predicates (Entity (Choice))
then
-- Loop through entries in predicate list, converting to choices
-- and inserting in the list before the current choice. Note that
-- if the list is empty, corresponding to a False predicate, then
-- no choices are inserted.
P := First (Static_Discrete_Predicate (Entity (Choice)));
while Present (P) loop
-- If low bound and high bounds are equal, copy simple choice
if Expr_Value (Low_Bound (P)) = Expr_Value (High_Bound (P)) then
C := New_Copy (Low_Bound (P));
-- Otherwise copy a range
else
C := New_Copy (P);
end if;
-- Change Sloc to referencing choice (rather than the Sloc of
-- the predicate declaration element itself).
Set_Sloc (C, Sloc (Choice));
Insert_Before (Choice, C);
Next (P);
end loop;
-- Delete the predicated entry
Remove (Choice);
end if;
-- Move to next choice to check
Choice := Next_C;
end loop;
end Expand_Static_Predicates_In_Choices;
------------------------------
-- Expand_Subtype_From_Expr --
------------------------------
-- This function is applicable for both static and dynamic allocation of
-- objects which are constrained by an initial expression. Basically it
-- transforms an unconstrained subtype indication into a constrained one.
-- The expression may also be transformed in certain cases in order to
-- avoid multiple evaluation. In the static allocation case, the general
-- scheme is:
-- Val : T := Expr;
-- is transformed into
-- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
--
-- Here are the main cases :
--
-- <if Expr is a Slice>
-- Val : T ([Index_Subtype (Expr)]) := Expr;
--
-- <elsif Expr is a String Literal>
-- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
--
-- <elsif Expr is Constrained>
-- subtype T is Type_Of_Expr
-- Val : T := Expr;
--
-- <elsif Expr is an entity_name>
-- Val : T (constraints taken from Expr) := Expr;
--
-- <else>
-- type Axxx is access all T;
-- Rval : Axxx := Expr'ref;
-- Val : T (constraints taken from Rval) := Rval.all;
-- ??? note: when the Expression is allocated in the secondary stack
-- we could use it directly instead of copying it by declaring
-- Val : T (...) renames Rval.all
procedure Expand_Subtype_From_Expr
(N : Node_Id;
Unc_Type : Entity_Id;
Subtype_Indic : Node_Id;
Exp : Node_Id;
Related_Id : Entity_Id := Empty)
is
Loc : constant Source_Ptr := Sloc (N);
Exp_Typ : constant Entity_Id := Etype (Exp);
T : Entity_Id;
begin
-- In general we cannot build the subtype if expansion is disabled,
-- because internal entities may not have been defined. However, to
-- avoid some cascaded errors, we try to continue when the expression is
-- an array (or string), because it is safe to compute the bounds. It is
-- in fact required to do so even in a generic context, because there
-- may be constants that depend on the bounds of a string literal, both
-- standard string types and more generally arrays of characters.
-- In GNATprove mode, these extra subtypes are not needed
if GNATprove_Mode then
return;
end if;
if not Expander_Active
and then (No (Etype (Exp)) or else not Is_String_Type (Etype (Exp)))
then
return;
end if;
if Nkind (Exp) = N_Slice then
declare
Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
begin
Rewrite (Subtype_Indic,
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List
(New_Occurrence_Of (Slice_Type, Loc)))));
-- This subtype indication may be used later for constraint checks
-- we better make sure that if a variable was used as a bound of
-- of the original slice, its value is frozen.
Evaluate_Slice_Bounds (Exp);
end;
elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
Rewrite (Subtype_Indic,
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => New_List (
Make_Literal_Range (Loc,
Literal_Typ => Exp_Typ)))));
-- If the type of the expression is an internally generated type it
-- may not be necessary to create a new subtype. However there are two
-- exceptions: references to the current instances, and aliased array
-- object declarations for which the back end has to create a template.
elsif Is_Constrained (Exp_Typ)
and then not Is_Class_Wide_Type (Unc_Type)
and then
(Nkind (N) /= N_Object_Declaration
or else not Is_Entity_Name (Expression (N))
or else not Comes_From_Source (Entity (Expression (N)))
or else not Is_Array_Type (Exp_Typ)
or else not Aliased_Present (N))
then
if Is_Itype (Exp_Typ) then
-- Within an initialization procedure, a selected component
-- denotes a component of the enclosing record, and it appears as
-- an actual in a call to its own initialization procedure. If
-- this component depends on the outer discriminant, we must
-- generate the proper actual subtype for it.
if Nkind (Exp) = N_Selected_Component
and then Within_Init_Proc
then
declare
Decl : constant Node_Id :=
Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
begin
if Present (Decl) then
Insert_Action (N, Decl);
T := Defining_Identifier (Decl);
else
T := Exp_Typ;
end if;
end;
-- No need to generate a new subtype
else
T := Exp_Typ;
end if;
else
T := Make_Temporary (Loc, 'T');
Insert_Action (N,
Make_Subtype_Declaration (Loc,
Defining_Identifier => T,
Subtype_Indication => New_Occurrence_Of (Exp_Typ, Loc)));
-- This type is marked as an itype even though it has an explicit
-- declaration since otherwise Is_Generic_Actual_Type can get
-- set, resulting in the generation of spurious errors. (See
-- sem_ch8.Analyze_Package_Renaming and sem_type.covers)
Set_Is_Itype (T);
Set_Associated_Node_For_Itype (T, Exp);
end if;
Rewrite (Subtype_Indic, New_Occurrence_Of (T, Loc));
-- Nothing needs to be done for private types with unknown discriminants
-- if the underlying type is not an unconstrained composite type or it
-- is an unchecked union.
elsif Is_Private_Type (Unc_Type)
and then Has_Unknown_Discriminants (Unc_Type)
and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
or else Is_Constrained (Underlying_Type (Unc_Type))
or else Is_Unchecked_Union (Underlying_Type (Unc_Type)))
then
null;
-- Case of derived type with unknown discriminants where the parent type
-- also has unknown discriminants.
elsif Is_Record_Type (Unc_Type)
and then not Is_Class_Wide_Type (Unc_Type)
and then Has_Unknown_Discriminants (Unc_Type)
and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
then
-- Nothing to be done if no underlying record view available
-- If this is a limited type derived from a type with unknown
-- discriminants, do not expand either, so that subsequent expansion
-- of the call can add build-in-place parameters to call.
if No (Underlying_Record_View (Unc_Type))
or else Is_Limited_Type (Unc_Type)
then
null;
-- Otherwise use the Underlying_Record_View to create the proper
-- constrained subtype for an object of a derived type with unknown
-- discriminants.
else
Remove_Side_Effects (Exp);
Rewrite (Subtype_Indic,
Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type)));
end if;
-- Renamings of class-wide interface types require no equivalent
-- constrained type declarations because we only need to reference
-- the tag component associated with the interface. The same is
-- presumably true for class-wide types in general, so this test
-- is broadened to include all class-wide renamings, which also
-- avoids cases of unbounded recursion in Remove_Side_Effects.
-- (Is this really correct, or are there some cases of class-wide
-- renamings that require action in this procedure???)
elsif Present (N)
and then Nkind (N) = N_Object_Renaming_Declaration
and then Is_Class_Wide_Type (Unc_Type)
then
null;
-- In Ada 95 nothing to be done if the type of the expression is limited
-- because in this case the expression cannot be copied, and its use can
-- only be by reference.
-- In Ada 2005 the context can be an object declaration whose expression
-- is a function that returns in place. If the nominal subtype has
-- unknown discriminants, the call still provides constraints on the
-- object, and we have to create an actual subtype from it.
-- If the type is class-wide, the expression is dynamically tagged and
-- we do not create an actual subtype either. Ditto for an interface.
-- For now this applies only if the type is immutably limited, and the
-- function being called is build-in-place. This will have to be revised
-- when build-in-place functions are generalized to other types.
elsif Is_Limited_View (Exp_Typ)
and then
(Is_Class_Wide_Type (Exp_Typ)
or else Is_Interface (Exp_Typ)
or else not Has_Unknown_Discriminants (Exp_Typ)
or else not Is_Composite_Type (Unc_Type))
then
null;
-- For limited objects initialized with build in place function calls,
-- nothing to be done; otherwise we prematurely introduce an N_Reference
-- node in the expression initializing the object, which breaks the
-- circuitry that detects and adds the additional arguments to the
-- called function.
elsif Is_Build_In_Place_Function_Call (Exp) then
null;
else
Remove_Side_Effects (Exp);
Rewrite (Subtype_Indic,
Make_Subtype_From_Expr (Exp, Unc_Type, Related_Id));
end if;
end Expand_Subtype_From_Expr;
----------------------
-- Finalize_Address --
----------------------
function Finalize_Address (Typ : Entity_Id) return Entity_Id is
Utyp : Entity_Id := Typ;
begin
-- Handle protected class-wide or task class-wide types
if Is_Class_Wide_Type (Utyp) then
if Is_Concurrent_Type (Root_Type (Utyp)) then
Utyp := Root_Type (Utyp);
elsif Is_Private_Type (Root_Type (Utyp))
and then Present (Full_View (Root_Type (Utyp)))
and then Is_Concurrent_Type (Full_View (Root_Type (Utyp)))
then
Utyp := Full_View (Root_Type (Utyp));
end if;
end if;
-- Handle private types
if Is_Private_Type (Utyp) and then Present (Full_View (Utyp)) then
Utyp := Full_View (Utyp);
end if;
-- Handle protected and task types
if Is_Concurrent_Type (Utyp)
and then Present (Corresponding_Record_Type (Utyp))
then
Utyp := Corresponding_Record_Type (Utyp);
end if;
Utyp := Underlying_Type (Base_Type (Utyp));
-- Deal with untagged derivation of private views. If the parent is
-- now known to be protected, the finalization routine is the one
-- defined on the corresponding record of the ancestor (corresponding
-- records do not automatically inherit operations, but maybe they
-- should???)
if Is_Untagged_Derivation (Typ) then
if Is_Protected_Type (Typ) then
Utyp := Corresponding_Record_Type (Root_Type (Base_Type (Typ)));
else
Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
if Is_Protected_Type (Utyp) then
Utyp := Corresponding_Record_Type (Utyp);
end if;
end if;
end if;
-- If the underlying_type is a subtype, we are dealing with the
-- completion of a private type. We need to access the base type and
-- generate a conversion to it.
if Utyp /= Base_Type (Utyp) then
pragma Assert (Is_Private_Type (Typ));
Utyp := Base_Type (Utyp);
end if;
-- When dealing with an internally built full view for a type with
-- unknown discriminants, use the original record type.
if Is_Underlying_Record_View (Utyp) then
Utyp := Etype (Utyp);
end if;
return TSS (Utyp, TSS_Finalize_Address);
end Finalize_Address;
-------------------
-- Find_DIC_Type --
-------------------
function Find_DIC_Type (Typ : Entity_Id) return Entity_Id is
Curr_Typ : Entity_Id;
-- The current type being examined in the parent hierarchy traversal
DIC_Typ : Entity_Id;
-- The type which carries the DIC pragma. This variable denotes the
-- partial view when private types are involved.
Par_Typ : Entity_Id;
-- The parent type of the current type. This variable denotes the full
-- view when private types are involved.
begin
-- The input type defines its own DIC pragma, therefore it is the owner
if Has_Own_DIC (Typ) then
DIC_Typ := Typ;
-- Otherwise the DIC pragma is inherited from a parent type
else
pragma Assert (Has_Inherited_DIC (Typ));
-- Climb the parent chain
Curr_Typ := Typ;
loop
-- Inspect the parent type. Do not consider subtypes as they
-- inherit the DIC attributes from their base types.
DIC_Typ := Base_Type (Etype (Curr_Typ));
-- Look at the full view of a private type because the type may
-- have a hidden parent introduced in the full view.
Par_Typ := DIC_Typ;
if Is_Private_Type (Par_Typ)
and then Present (Full_View (Par_Typ))
then
Par_Typ := Full_View (Par_Typ);
end if;
-- Stop the climb once the nearest parent type which defines a DIC
-- pragma of its own is encountered or when the root of the parent
-- chain is reached.
exit when Has_Own_DIC (DIC_Typ) or else Curr_Typ = Par_Typ;
Curr_Typ := Par_Typ;
end loop;
end if;
return DIC_Typ;
end Find_DIC_Type;
------------------------
-- Find_Interface_ADT --
------------------------
function Find_Interface_ADT
(T : Entity_Id;
Iface : Entity_Id) return Elmt_Id
is
ADT : Elmt_Id;
Typ : Entity_Id := T;
begin
pragma Assert (Is_Interface (Iface));
-- Handle private types
if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
Typ := Full_View (Typ);
end if;
-- Handle access types
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
end if;
-- Handle task and protected types implementing interfaces
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
pragma Assert
(not Is_Class_Wide_Type (Typ)
and then Ekind (Typ) /= E_Incomplete_Type);
if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
return First_Elmt (Access_Disp_Table (Typ));
else
ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
while Present (ADT)
and then Present (Related_Type (Node (ADT)))
and then Related_Type (Node (ADT)) /= Iface
and then not Is_Ancestor (Iface, Related_Type (Node (ADT)),
Use_Full_View => True)
loop
Next_Elmt (ADT);
end loop;
pragma Assert (Present (Related_Type (Node (ADT))));
return ADT;
end if;
end Find_Interface_ADT;
------------------------
-- Find_Interface_Tag --
------------------------
function Find_Interface_Tag
(T : Entity_Id;
Iface : Entity_Id) return Entity_Id
is
AI_Tag : Entity_Id;
Found : Boolean := False;
Typ : Entity_Id := T;
procedure Find_Tag (Typ : Entity_Id);
-- Internal subprogram used to recursively climb to the ancestors
--------------
-- Find_Tag --
--------------
procedure Find_Tag (Typ : Entity_Id) is
AI_Elmt : Elmt_Id;
AI : Node_Id;
begin
-- This routine does not handle the case in which the interface is an
-- ancestor of Typ. That case is handled by the enclosing subprogram.
pragma Assert (Typ /= Iface);
-- Climb to the root type handling private types
if Present (Full_View (Etype (Typ))) then
if Full_View (Etype (Typ)) /= Typ then
Find_Tag (Full_View (Etype (Typ)));
end if;
elsif Etype (Typ) /= Typ then
Find_Tag (Etype (Typ));
end if;
-- Traverse the list of interfaces implemented by the type
if not Found
and then Present (Interfaces (Typ))
and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
then
-- Skip the tag associated with the primary table
pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
pragma Assert (Present (AI_Tag));
AI_Elmt := First_Elmt (Interfaces (Typ));
while Present (AI_Elmt) loop
AI := Node (AI_Elmt);
if AI = Iface
or else Is_Ancestor (Iface, AI, Use_Full_View => True)
then
Found := True;
return;
end if;
AI_Tag := Next_Tag_Component (AI_Tag);
Next_Elmt (AI_Elmt);
end loop;
end if;
end Find_Tag;
-- Start of processing for Find_Interface_Tag
begin
pragma Assert (Is_Interface (Iface));
-- Handle access types
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
end if;
-- Handle class-wide types
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
-- Handle private types
if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
Typ := Full_View (Typ);
end if;
-- Handle entities from the limited view
if Ekind (Typ) = E_Incomplete_Type then
pragma Assert (Present (Non_Limited_View (Typ)));
Typ := Non_Limited_View (Typ);
end if;
-- Handle task and protected types implementing interfaces
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
-- If the interface is an ancestor of the type, then it shared the
-- primary dispatch table.
if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
return First_Tag_Component (Typ);
-- Otherwise we need to search for its associated tag component
else
Find_Tag (Typ);
pragma Assert (Found);
return AI_Tag;
end if;
end Find_Interface_Tag;
---------------------------
-- Find_Optional_Prim_Op --
---------------------------
function Find_Optional_Prim_Op
(T : Entity_Id; Name : Name_Id) return Entity_Id
is
Prim : Elmt_Id;
Typ : Entity_Id := T;
Op : Entity_Id;
begin
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
Typ := Underlying_Type (Typ);
-- Loop through primitive operations
Prim := First_Elmt (Primitive_Operations (Typ));
while Present (Prim) loop
Op := Node (Prim);
-- We can retrieve primitive operations by name if it is an internal
-- name. For equality we must check that both of its operands have
-- the same type, to avoid confusion with user-defined equalities
-- than may have a non-symmetric signature.
exit when Chars (Op) = Name
and then
(Name /= Name_Op_Eq
or else Etype (First_Formal (Op)) = Etype (Last_Formal (Op)));
Next_Elmt (Prim);
end loop;
return Node (Prim); -- Empty if not found
end Find_Optional_Prim_Op;
---------------------------
-- Find_Optional_Prim_Op --
---------------------------
function Find_Optional_Prim_Op
(T : Entity_Id;
Name : TSS_Name_Type) return Entity_Id
is
Inher_Op : Entity_Id := Empty;
Own_Op : Entity_Id := Empty;
Prim_Elmt : Elmt_Id;
Prim_Id : Entity_Id;
Typ : Entity_Id := T;
begin
if Is_Class_Wide_Type (Typ) then
Typ := Root_Type (Typ);
end if;
Typ := Underlying_Type (Typ);
-- This search is based on the assertion that the dispatching version
-- of the TSS routine always precedes the real primitive.
Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
while Present (Prim_Elmt) loop
Prim_Id := Node (Prim_Elmt);
if Is_TSS (Prim_Id, Name) then
if Present (Alias (Prim_Id)) then
Inher_Op := Prim_Id;
else
Own_Op := Prim_Id;
end if;
end if;
Next_Elmt (Prim_Elmt);
end loop;
if Present (Own_Op) then
return Own_Op;
elsif Present (Inher_Op) then
return Inher_Op;
else
return Empty;
end if;
end Find_Optional_Prim_Op;
------------------
-- Find_Prim_Op --
------------------
function Find_Prim_Op
(T : Entity_Id; Name : Name_Id) return Entity_Id
is
Result : constant Entity_Id := Find_Optional_Prim_Op (T, Name);
begin
if No (Result) then
raise Program_Error;
end if;
return Result;
end Find_Prim_Op;
------------------
-- Find_Prim_Op --
------------------
function Find_Prim_Op
(T : Entity_Id;
Name : TSS_Name_Type) return Entity_Id
is
Result : constant Entity_Id := Find_Optional_Prim_Op (T, Name);
begin
if No (Result) then
raise Program_Error;
end if;
return Result;
end Find_Prim_Op;
----------------------------
-- Find_Protection_Object --
----------------------------
function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
S : Entity_Id;
begin
S := Scop;
while Present (S) loop
if Ekind_In (S, E_Entry, E_Entry_Family, E_Function, E_Procedure)
and then Present (Protection_Object (S))
then
return Protection_Object (S);
end if;
S := Scope (S);
end loop;
-- If we do not find a Protection object in the scope chain, then
-- something has gone wrong, most likely the object was never created.
raise Program_Error;
end Find_Protection_Object;
--------------------------
-- Find_Protection_Type --
--------------------------
function Find_Protection_Type (Conc_Typ : Entity_Id) return Entity_Id is
Comp : Entity_Id;
Typ : Entity_Id := Conc_Typ;
begin
if Is_Concurrent_Type (Typ) then
Typ := Corresponding_Record_Type (Typ);
end if;
-- Since restriction violations are not considered serious errors, the
-- expander remains active, but may leave the corresponding record type
-- malformed. In such cases, component _object is not available so do
-- not look for it.
if not Analyzed (Typ) then
return Empty;
end if;
Comp := First_Component (Typ);
while Present (Comp) loop
if Chars (Comp) = Name_uObject then
return Base_Type (Etype (Comp));
end if;
Next_Component (Comp);
end loop;
-- The corresponding record of a protected type should always have an
-- _object field.
raise Program_Error;
end Find_Protection_Type;
-----------------------
-- Find_Hook_Context --
-----------------------
function Find_Hook_Context (N : Node_Id) return Node_Id is
Par : Node_Id;
Top : Node_Id;
Wrapped_Node : Node_Id;
-- Note: if we are in a transient scope, we want to reuse it as
-- the context for actions insertion, if possible. But if N is itself
-- part of the stored actions for the current transient scope,
-- then we need to insert at the appropriate (inner) location in
-- the not as an action on Node_To_Be_Wrapped.
In_Cond_Expr : constant Boolean := Within_Case_Or_If_Expression (N);
begin
-- When the node is inside a case/if expression, the lifetime of any
-- temporary controlled object is extended. Find a suitable insertion
-- node by locating the topmost case or if expressions.
if In_Cond_Expr then
Par := N;
Top := N;
while Present (Par) loop
if Nkind_In (Original_Node (Par), N_Case_Expression,
N_If_Expression)
then
Top := Par;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
-- The topmost case or if expression is now recovered, but it may
-- still not be the correct place to add generated code. Climb to
-- find a parent that is part of a declarative or statement list,
-- and is not a list of actuals in a call.
Par := Top;
while Present (Par) loop
if Is_List_Member (Par)
and then not Nkind_In (Par, N_Component_Association,
N_Discriminant_Association,
N_Parameter_Association,
N_Pragma_Argument_Association)
and then not Nkind_In (Parent (Par), N_Function_Call,
N_Procedure_Call_Statement,
N_Entry_Call_Statement)
then
return Par;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
return Par;
else
Par := N;
while Present (Par) loop
-- Keep climbing past various operators
if Nkind (Parent (Par)) in N_Op
or else Nkind_In (Parent (Par), N_And_Then, N_Or_Else)
then
Par := Parent (Par);
else
exit;
end if;
end loop;
Top := Par;
-- The node may be located in a pragma in which case return the
-- pragma itself:
-- pragma Precondition (... and then Ctrl_Func_Call ...);
-- Similar case occurs when the node is related to an object
-- declaration or assignment:
-- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
-- Another case to consider is when the node is part of a return
-- statement:
-- return ... and then Ctrl_Func_Call ...;
-- Another case is when the node acts as a formal in a procedure
-- call statement:
-- Proc (... and then Ctrl_Func_Call ...);
if Scope_Is_Transient then
Wrapped_Node := Node_To_Be_Wrapped;
else
Wrapped_Node := Empty;
end if;
while Present (Par) loop
if Par = Wrapped_Node
or else Nkind_In (Par, N_Assignment_Statement,
N_Object_Declaration,
N_Pragma,
N_Procedure_Call_Statement,
N_Simple_Return_Statement)
then
return Par;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
exit;
end if;
Par := Parent (Par);
end loop;
-- Return the topmost short circuit operator
return Top;
end if;
end Find_Hook_Context;
------------------------------
-- Following_Address_Clause --
------------------------------
function Following_Address_Clause (D : Node_Id) return Node_Id is
Id : constant Entity_Id := Defining_Identifier (D);
Result : Node_Id;
Par : Node_Id;
function Check_Decls (D : Node_Id) return Node_Id;
-- This internal function differs from the main function in that it
-- gets called to deal with a following package private part, and
-- it checks declarations starting with D (the main function checks
-- declarations following D). If D is Empty, then Empty is returned.
-----------------
-- Check_Decls --
-----------------
function Check_Decls (D : Node_Id) return Node_Id is
Decl : Node_Id;
begin
Decl := D;
while Present (Decl) loop
if Nkind (Decl) = N_At_Clause
and then Chars (Identifier (Decl)) = Chars (Id)
then
return Decl;
elsif Nkind (Decl) = N_Attribute_Definition_Clause
and then Chars (Decl) = Name_Address
and then Chars (Name (Decl)) = Chars (Id)
then
return Decl;
end if;
Next (Decl);
end loop;
-- Otherwise not found, return Empty
return Empty;
end Check_Decls;
-- Start of processing for Following_Address_Clause
begin
-- If parser detected no address clause for the identifier in question,
-- then the answer is a quick NO, without the need for a search.
if not Get_Name_Table_Boolean1 (Chars (Id)) then
return Empty;
end if;
-- Otherwise search current declarative unit
Result := Check_Decls (Next (D));
if Present (Result) then
return Result;
end if;
-- Check for possible package private part following
Par := Parent (D);
if Nkind (Par) = N_Package_Specification
and then Visible_Declarations (Par) = List_Containing (D)
and then Present (Private_Declarations (Par))
then
-- Private part present, check declarations there
return Check_Decls (First (Private_Declarations (Par)));
else
-- No private part, clause not found, return Empty
return Empty;
end if;
end Following_Address_Clause;
----------------------
-- Force_Evaluation --
----------------------
procedure Force_Evaluation
(Exp : Node_Id;
Name_Req : Boolean := False;
Related_Id : Entity_Id := Empty;
Is_Low_Bound : Boolean := False;
Is_High_Bound : Boolean := False;
Mode : Force_Evaluation_Mode := Relaxed)
is
begin
Remove_Side_Effects
(Exp => Exp,
Name_Req => Name_Req,
Variable_Ref => True,
Renaming_Req => False,
Related_Id => Related_Id,
Is_Low_Bound => Is_Low_Bound,
Is_High_Bound => Is_High_Bound,
Check_Side_Effects =>
Is_Static_Expression (Exp)
or else Mode = Relaxed);
end Force_Evaluation;
---------------------------------
-- Fully_Qualified_Name_String --
---------------------------------
function Fully_Qualified_Name_String
(E : Entity_Id;
Append_NUL : Boolean := True) return String_Id
is
procedure Internal_Full_Qualified_Name (E : Entity_Id);
-- Compute recursively the qualified name without NUL at the end, adding
-- it to the currently started string being generated
----------------------------------
-- Internal_Full_Qualified_Name --
----------------------------------
procedure Internal_Full_Qualified_Name (E : Entity_Id) is
Ent : Entity_Id;
begin
-- Deal properly with child units
if Nkind (E) = N_Defining_Program_Unit_Name then
Ent := Defining_Identifier (E);
else
Ent := E;
end if;
-- Compute qualification recursively (only "Standard" has no scope)
if Present (Scope (Scope (Ent))) then
Internal_Full_Qualified_Name (Scope (Ent));
Store_String_Char (Get_Char_Code ('.'));
end if;
-- Every entity should have a name except some expanded blocks
-- don't bother about those.
if Chars (Ent) = No_Name then
return;
end if;
-- Generates the entity name in upper case
Get_Decoded_Name_String (Chars (Ent));
Set_All_Upper_Case;
Store_String_Chars (Name_Buffer (1 .. Name_Len));
return;
end Internal_Full_Qualified_Name;
-- Start of processing for Full_Qualified_Name
begin
Start_String;
Internal_Full_Qualified_Name (E);
if Append_NUL then
Store_String_Char (Get_Char_Code (ASCII.NUL));
end if;
return End_String;
end Fully_Qualified_Name_String;
------------------------
-- Generate_Poll_Call --
------------------------
procedure Generate_Poll_Call (N : Node_Id) is
begin
-- No poll call if polling not active
if not Polling_Required then
return;
-- Otherwise generate require poll call
else
Insert_Before_And_Analyze (N,
Make_Procedure_Call_Statement (Sloc (N),
Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
end if;
end Generate_Poll_Call;
---------------------------------
-- Get_Current_Value_Condition --
---------------------------------
-- Note: the implementation of this procedure is very closely tied to the
-- implementation of Set_Current_Value_Condition. In the Get procedure, we
-- interpret Current_Value fields set by the Set procedure, so the two
-- procedures need to be closely coordinated.
procedure Get_Current_Value_Condition
(Var : Node_Id;
Op : out Node_Kind;
Val : out Node_Id)
is
Loc : constant Source_Ptr := Sloc (Var);
Ent : constant Entity_Id := Entity (Var);
procedure Process_Current_Value_Condition
(N : Node_Id;
S : Boolean);
-- N is an expression which holds either True (S = True) or False (S =
-- False) in the condition. This procedure digs out the expression and
-- if it refers to Ent, sets Op and Val appropriately.
-------------------------------------
-- Process_Current_Value_Condition --
-------------------------------------
procedure Process_Current_Value_Condition
(N : Node_Id;
S : Boolean)
is
Cond : Node_Id;
Prev_Cond : Node_Id;
Sens : Boolean;
begin
Cond := N;
Sens := S;
loop
Prev_Cond := Cond;
-- Deal with NOT operators, inverting sense
while Nkind (Cond) = N_Op_Not loop
Cond := Right_Opnd (Cond);
Sens := not Sens;
end loop;
-- Deal with conversions, qualifications, and expressions with
-- actions.
while Nkind_In (Cond,
N_Type_Conversion,
N_Qualified_Expression,
N_Expression_With_Actions)
loop
Cond := Expression (Cond);
end loop;
exit when Cond = Prev_Cond;
end loop;
-- Deal with AND THEN and AND cases
if Nkind_In (Cond, N_And_Then, N_Op_And) then
-- Don't ever try to invert a condition that is of the form of an
-- AND or AND THEN (since we are not doing sufficiently general
-- processing to allow this).
if Sens = False then
Op := N_Empty;
Val := Empty;
return;
end if;
-- Recursively process AND and AND THEN branches
Process_Current_Value_Condition (Left_Opnd (Cond), True);
if Op /= N_Empty then
return;
end if;
Process_Current_Value_Condition (Right_Opnd (Cond), True);
return;
-- Case of relational operator
elsif Nkind (Cond) in N_Op_Compare then
Op := Nkind (Cond);
-- Invert sense of test if inverted test
if Sens = False then
case Op is
when N_Op_Eq => Op := N_Op_Ne;
when N_Op_Ne => Op := N_Op_Eq;
when N_Op_Lt => Op := N_Op_Ge;
when N_Op_Gt => Op := N_Op_Le;
when N_Op_Le => Op := N_Op_Gt;
when N_Op_Ge => Op := N_Op_Lt;
when others => raise Program_Error;
end case;
end if;
-- Case of entity op value
if Is_Entity_Name (Left_Opnd (Cond))
and then Ent = Entity (Left_Opnd (Cond))
and then Compile_Time_Known_Value (Right_Opnd (Cond))
then
Val := Right_Opnd (Cond);
-- Case of value op entity
elsif Is_Entity_Name (Right_Opnd (Cond))
and then Ent = Entity (Right_Opnd (Cond))
and then Compile_Time_Known_Value (Left_Opnd (Cond))
then
Val := Left_Opnd (Cond);
-- We are effectively swapping operands
case Op is
when N_Op_Eq => null;
when N_Op_Ne => null;
when N_Op_Lt => Op := N_Op_Gt;
when N_Op_Gt => Op := N_Op_Lt;
when N_Op_Le => Op := N_Op_Ge;
when N_Op_Ge => Op := N_Op_Le;
when others => raise Program_Error;
end case;
else
Op := N_Empty;
end if;
return;
elsif Nkind_In (Cond,
N_Type_Conversion,
N_Qualified_Expression,
N_Expression_With_Actions)
then
Cond := Expression (Cond);
-- Case of Boolean variable reference, return as though the
-- reference had said var = True.
else
if Is_Entity_Name (Cond) and then Ent = Entity (Cond) then
Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
if Sens = False then
Op := N_Op_Ne;
else
Op := N_Op_Eq;
end if;
end if;
end if;
end Process_Current_Value_Condition;
-- Start of processing for Get_Current_Value_Condition
begin
Op := N_Empty;
Val := Empty;
-- Immediate return, nothing doing, if this is not an object
if Ekind (Ent) not in Object_Kind then
return;
end if;
-- Otherwise examine current value
declare
CV : constant Node_Id := Current_Value (Ent);
Sens : Boolean;
Stm : Node_Id;
begin
-- If statement. Condition is known true in THEN section, known False
-- in any ELSIF or ELSE part, and unknown outside the IF statement.
if Nkind (CV) = N_If_Statement then
-- Before start of IF statement
if Loc < Sloc (CV) then
return;
-- After end of IF statement
elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
return;
end if;
-- At this stage we know that we are within the IF statement, but
-- unfortunately, the tree does not record the SLOC of the ELSE so
-- we cannot use a simple SLOC comparison to distinguish between
-- the then/else statements, so we have to climb the tree.
declare
N : Node_Id;
begin
N := Parent (Var);
while Parent (N) /= CV loop
N := Parent (N);
-- If we fall off the top of the tree, then that's odd, but
-- perhaps it could occur in some error situation, and the
-- safest response is simply to assume that the outcome of
-- the condition is unknown. No point in bombing during an
-- attempt to optimize things.
if No (N) then
return;
end if;
end loop;
-- Now we have N pointing to a node whose parent is the IF
-- statement in question, so now we can tell if we are within
-- the THEN statements.
if Is_List_Member (N)
and then List_Containing (N) = Then_Statements (CV)
then
Sens := True;
-- If the variable reference does not come from source, we
-- cannot reliably tell whether it appears in the else part.
-- In particular, if it appears in generated code for a node
-- that requires finalization, it may be attached to a list
-- that has not been yet inserted into the code. For now,
-- treat it as unknown.
elsif not Comes_From_Source (N) then
return;
-- Otherwise we must be in ELSIF or ELSE part
else
Sens := False;
end if;
end;
-- ELSIF part. Condition is known true within the referenced
-- ELSIF, known False in any subsequent ELSIF or ELSE part,
-- and unknown before the ELSE part or after the IF statement.
elsif Nkind (CV) = N_Elsif_Part then
-- if the Elsif_Part had condition_actions, the elsif has been
-- rewritten as a nested if, and the original elsif_part is
-- detached from the tree, so there is no way to obtain useful
-- information on the current value of the variable.
-- Can this be improved ???
if No (Parent (CV)) then
return;
end if;
Stm := Parent (CV);
-- If the tree has been otherwise rewritten there is nothing
-- else to be done either.
if Nkind (Stm) /= N_If_Statement then
return;
end if;
-- Before start of ELSIF part
if Loc < Sloc (CV) then
return;
-- After end of IF statement
elsif Loc >= Sloc (Stm) +
Text_Ptr (UI_To_Int (End_Span (Stm)))
then
return;
end if;
-- Again we lack the SLOC of the ELSE, so we need to climb the
-- tree to see if we are within the ELSIF part in question.
declare
N : Node_Id;
begin
N := Parent (Var);
while Parent (N) /= Stm loop
N := Parent (N);
-- If we fall off the top of the tree, then that's odd, but
-- perhaps it could occur in some error situation, and the
-- safest response is simply to assume that the outcome of
-- the condition is unknown. No point in bombing during an
-- attempt to optimize things.
if No (N) then
return;
end if;
end loop;
-- Now we have N pointing to a node whose parent is the IF
-- statement in question, so see if is the ELSIF part we want.
-- the THEN statements.
if N = CV then
Sens := True;
-- Otherwise we must be in subsequent ELSIF or ELSE part
else
Sens := False;
end if;
end;
-- Iteration scheme of while loop. The condition is known to be
-- true within the body of the loop.
elsif Nkind (CV) = N_Iteration_Scheme then
declare
Loop_Stmt : constant Node_Id := Parent (CV);
begin
-- Before start of body of loop
if Loc < Sloc (Loop_Stmt) then
return;
-- After end of LOOP statement
elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
return;
-- We are within the body of the loop
else
Sens := True;
end if;
end;
-- All other cases of Current_Value settings
else
return;
end if;
-- If we fall through here, then we have a reportable condition, Sens
-- is True if the condition is true and False if it needs inverting.
Process_Current_Value_Condition (Condition (CV), Sens);
end;
end Get_Current_Value_Condition;
---------------------
-- Get_Stream_Size --
---------------------
function Get_Stream_Size (E : Entity_Id) return Uint is
begin
-- If we have a Stream_Size clause for this type use it
if Has_Stream_Size_Clause (E) then
return Static_Integer (Expression (Stream_Size_Clause (E)));
-- Otherwise the Stream_Size if the size of the type
else
return Esize (E);
end if;
end Get_Stream_Size;
---------------------------
-- Has_Access_Constraint --
---------------------------
function Has_Access_Constraint (E : Entity_Id) return Boolean is
Disc : Entity_Id;
T : constant Entity_Id := Etype (E);
begin
if Has_Per_Object_Constraint (E) and then Has_Discriminants (T) then
Disc := First_Discriminant (T);
while Present (Disc) loop
if Is_Access_Type (Etype (Disc)) then
return True;
end if;
Next_Discriminant (Disc);
end loop;
return False;
else
return False;
end if;
end Has_Access_Constraint;
-----------------------------------------------------
-- Has_Annotate_Pragma_For_External_Axiomatization --
-----------------------------------------------------
function Has_Annotate_Pragma_For_External_Axiomatization
(E : Entity_Id) return Boolean
is
function Is_Annotate_Pragma_For_External_Axiomatization
(N : Node_Id) return Boolean;
-- Returns whether N is
-- pragma Annotate (GNATprove, External_Axiomatization);
----------------------------------------------------
-- Is_Annotate_Pragma_For_External_Axiomatization --
----------------------------------------------------
-- The general form of pragma Annotate is
-- pragma Annotate (IDENTIFIER [, IDENTIFIER {, ARG}]);
-- ARG ::= NAME | EXPRESSION
-- The first two arguments are by convention intended to refer to an
-- external tool and a tool-specific function. These arguments are
-- not analyzed.
-- The following is used to annotate a package specification which
-- GNATprove should treat specially, because the axiomatization of
-- this unit is given by the user instead of being automatically
-- generated.
-- pragma Annotate (GNATprove, External_Axiomatization);
function Is_Annotate_Pragma_For_External_Axiomatization
(N : Node_Id) return Boolean
is
Name_GNATprove : constant String :=
"gnatprove";
Name_External_Axiomatization : constant String :=
"external_axiomatization";
-- Special names
begin
if Nkind (N) = N_Pragma
and then Get_Pragma_Id (N) = Pragma_Annotate
and then List_Length (Pragma_Argument_Associations (N)) = 2
then
declare
Arg1 : constant Node_Id :=
First (Pragma_Argument_Associations (N));
Arg2 : constant Node_Id := Next (Arg1);
Nam1 : Name_Id;
Nam2 : Name_Id;
begin
-- Fill in Name_Buffer with Name_GNATprove first, and then with
-- Name_External_Axiomatization so that Name_Find returns the
-- corresponding name. This takes care of all possible casings.
Name_Len := 0;
Add_Str_To_Name_Buffer (Name_GNATprove);
Nam1 := Name_Find;
Name_Len := 0;
Add_Str_To_Name_Buffer (Name_External_Axiomatization);
Nam2 := Name_Find;
return Chars (Get_Pragma_Arg (Arg1)) = Nam1
and then
Chars (Get_Pragma_Arg (Arg2)) = Nam2;
end;
else
return False;
end if;
end Is_Annotate_Pragma_For_External_Axiomatization;
-- Local variables
Decl : Node_Id;
Vis_Decls : List_Id;
N : Node_Id;
-- Start of processing for Has_Annotate_Pragma_For_External_Axiomatization
begin
if Nkind (Parent (E)) = N_Defining_Program_Unit_Name then
Decl := Parent (Parent (E));
else
Decl := Parent (E);
end if;
Vis_Decls := Visible_Declarations (Decl);
N := First (Vis_Decls);
while Present (N) loop
-- Skip declarations generated by the frontend. Skip all pragmas
-- that are not the desired Annotate pragma. Stop the search on
-- the first non-pragma source declaration.
if Comes_From_Source (N) then
if Nkind (N) = N_Pragma then
if Is_Annotate_Pragma_For_External_Axiomatization (N) then
return True;
end if;
else
return False;
end if;
end if;
Next (N);
end loop;
return False;
end Has_Annotate_Pragma_For_External_Axiomatization;
--------------------
-- Homonym_Number --
--------------------
function Homonym_Number (Subp : Entity_Id) return Nat is
Count : Nat;
Hom : Entity_Id;
begin
Count := 1;
Hom := Homonym (Subp);
while Present (Hom) loop
if Scope (Hom) = Scope (Subp) then
Count := Count + 1;
end if;
Hom := Homonym (Hom);
end loop;
return Count;
end Homonym_Number;
-----------------------------------
-- In_Library_Level_Package_Body --
-----------------------------------
function In_Library_Level_Package_Body (Id : Entity_Id) return Boolean is
begin
-- First determine whether the entity appears at the library level, then
-- look at the containing unit.
if Is_Library_Level_Entity (Id) then
declare
Container : constant Node_Id := Cunit (Get_Source_Unit (Id));
begin
return Nkind (Unit (Container)) = N_Package_Body;
end;
end if;
return False;
end In_Library_Level_Package_Body;
------------------------------
-- In_Unconditional_Context --
------------------------------
function In_Unconditional_Context (Node : Node_Id) return Boolean is
P : Node_Id;
begin
P := Node;
while Present (P) loop
case Nkind (P) is
when N_Subprogram_Body => return True;
when N_If_Statement => return False;
when N_Loop_Statement => return False;
when N_Case_Statement => return False;
when others => P := Parent (P);
end case;
end loop;
return False;
end In_Unconditional_Context;
-------------------
-- Insert_Action --
-------------------
procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
begin
if Present (Ins_Action) then
Insert_Actions (Assoc_Node, New_List (Ins_Action));
end if;
end Insert_Action;
-- Version with check(s) suppressed
procedure Insert_Action
(Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
is
begin
Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
end Insert_Action;
-------------------------
-- Insert_Action_After --
-------------------------
procedure Insert_Action_After
(Assoc_Node : Node_Id;
Ins_Action : Node_Id)
is
begin
Insert_Actions_After (Assoc_Node, New_List (Ins_Action));
end Insert_Action_After;
--------------------
-- Insert_Actions --
--------------------
procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
N : Node_Id;
P : Node_Id;
Wrapped_Node : Node_Id := Empty;
begin
if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
return;
end if;
-- Ignore insert of actions from inside default expression (or other
-- similar "spec expression") in the special spec-expression analyze
-- mode. Any insertions at this point have no relevance, since we are
-- only doing the analyze to freeze the types of any static expressions.
-- See section "Handling of Default Expressions" in the spec of package
-- Sem for further details.
if In_Spec_Expression then
return;
end if;
-- If the action derives from stuff inside a record, then the actions
-- are attached to the current scope, to be inserted and analyzed on
-- exit from the scope. The reason for this is that we may also be
-- generating freeze actions at the same time, and they must eventually
-- be elaborated in the correct order.
if Is_Record_Type (Current_Scope)
and then not Is_Frozen (Current_Scope)
then
if No (Scope_Stack.Table
(Scope_Stack.Last).Pending_Freeze_Actions)
then
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
Ins_Actions;
else
Append_List
(Ins_Actions,
Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
end if;
return;
end if;
-- We now intend to climb up the tree to find the right point to
-- insert the actions. We start at Assoc_Node, unless this node is a
-- subexpression in which case we start with its parent. We do this for
-- two reasons. First it speeds things up. Second, if Assoc_Node is
-- itself one of the special nodes like N_And_Then, then we assume that
-- an initial request to insert actions for such a node does not expect
-- the actions to get deposited in the node for later handling when the
-- node is expanded, since clearly the node is being dealt with by the
-- caller. Note that in the subexpression case, N is always the child we
-- came from.
-- N_Raise_xxx_Error is an annoying special case, it is a statement
-- if it has type Standard_Void_Type, and a subexpression otherwise.
-- Procedure calls, and similarly procedure attribute references, are
-- also statements.
if Nkind (Assoc_Node) in N_Subexpr
and then (Nkind (Assoc_Node) not in N_Raise_xxx_Error
or else Etype (Assoc_Node) /= Standard_Void_Type)
and then Nkind (Assoc_Node) /= N_Procedure_Call_Statement
and then (Nkind (Assoc_Node) /= N_Attribute_Reference
or else not Is_Procedure_Attribute_Name
(Attribute_Name (Assoc_Node)))
then
N := Assoc_Node;
P := Parent (Assoc_Node);
-- Non-subexpression case. Note that N is initially Empty in this case
-- (N is only guaranteed Non-Empty in the subexpr case).
else
N := Empty;
P := Assoc_Node;
end if;
-- Capture root of the transient scope
if Scope_Is_Transient then
Wrapped_Node := Node_To_Be_Wrapped;
end if;
loop
pragma Assert (Present (P));
-- Make sure that inserted actions stay in the transient scope
if Present (Wrapped_Node) and then N = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
return;
end if;
case Nkind (P) is
-- Case of right operand of AND THEN or OR ELSE. Put the actions
-- in the Actions field of the right operand. They will be moved
-- out further when the AND THEN or OR ELSE operator is expanded.
-- Nothing special needs to be done for the left operand since
-- in that case the actions are executed unconditionally.
when N_Short_Circuit =>
if N = Right_Opnd (P) then
-- We are now going to either append the actions to the
-- actions field of the short-circuit operation. We will
-- also analyze the actions now.
-- This analysis is really too early, the proper thing would
-- be to just park them there now, and only analyze them if
-- we find we really need them, and to it at the proper
-- final insertion point. However attempting to this proved
-- tricky, so for now we just kill current values before and
-- after the analyze call to make sure we avoid peculiar
-- optimizations from this out of order insertion.
Kill_Current_Values;
-- If P has already been expanded, we can't park new actions
-- on it, so we need to expand them immediately, introducing
-- an Expression_With_Actions. N can't be an expression
-- with actions, or else then the actions would have been
-- inserted at an inner level.
if Analyzed (P) then
pragma Assert (Nkind (N) /= N_Expression_With_Actions);
Rewrite (N,
Make_Expression_With_Actions (Sloc (N),
Actions => Ins_Actions,
Expression => Relocate_Node (N)));
Analyze_And_Resolve (N);
elsif Present (Actions (P)) then
Insert_List_After_And_Analyze
(Last (Actions (P)), Ins_Actions);
else
Set_Actions (P, Ins_Actions);
Analyze_List (Actions (P));
end if;
Kill_Current_Values;
return;
end if;
-- Then or Else dependent expression of an if expression. Add
-- actions to Then_Actions or Else_Actions field as appropriate.
-- The actions will be moved further out when the if is expanded.
when N_If_Expression =>
declare
ThenX : constant Node_Id := Next (First (Expressions (P)));
ElseX : constant Node_Id := Next (ThenX);
begin
-- If the enclosing expression is already analyzed, as
-- is the case for nested elaboration checks, insert the
-- conditional further out.
if Analyzed (P) then
null;
-- Actions belong to the then expression, temporarily place
-- them as Then_Actions of the if expression. They will be
-- moved to the proper place later when the if expression
-- is expanded.
elsif N = ThenX then
if Present (Then_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Then_Actions (P)), Ins_Actions);
else
Set_Then_Actions (P, Ins_Actions);
Analyze_List (Then_Actions (P));
end if;
return;
-- Actions belong to the else expression, temporarily place
-- them as Else_Actions of the if expression. They will be
-- moved to the proper place later when the if expression
-- is expanded.
elsif N = ElseX then
if Present (Else_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Else_Actions (P)), Ins_Actions);
else
Set_Else_Actions (P, Ins_Actions);
Analyze_List (Else_Actions (P));
end if;
return;
-- Actions belong to the condition. In this case they are
-- unconditionally executed, and so we can continue the
-- search for the proper insert point.
else
null;
end if;
end;
-- Alternative of case expression, we place the action in the
-- Actions field of the case expression alternative, this will
-- be handled when the case expression is expanded.
when N_Case_Expression_Alternative =>
if Present (Actions (P)) then
Insert_List_After_And_Analyze
(Last (Actions (P)), Ins_Actions);
else
Set_Actions (P, Ins_Actions);
Analyze_List (Actions (P));
end if;
return;
-- Case of appearing within an Expressions_With_Actions node. When
-- the new actions come from the expression of the expression with
-- actions, they must be added to the existing actions. The other
-- alternative is when the new actions are related to one of the
-- existing actions of the expression with actions, and should
-- never reach here: if actions are inserted on a statement
-- within the Actions of an expression with actions, or on some
-- sub-expression of such a statement, then the outermost proper
-- insertion point is right before the statement, and we should
-- never climb up as far as the N_Expression_With_Actions itself.
when N_Expression_With_Actions =>
if N = Expression (P) then
if Is_Empty_List (Actions (P)) then
Append_List_To (Actions (P), Ins_Actions);
Analyze_List (Actions (P));
else
Insert_List_After_And_Analyze
(Last (Actions (P)), Ins_Actions);
end if;
return;
else
raise Program_Error;
end if;
-- Case of appearing in the condition of a while expression or
-- elsif. We insert the actions into the Condition_Actions field.
-- They will be moved further out when the while loop or elsif
-- is analyzed.
when N_Elsif_Part
| N_Iteration_Scheme
=>
if N = Condition (P) then
if Present (Condition_Actions (P)) then
Insert_List_After_And_Analyze
(Last (Condition_Actions (P)), Ins_Actions);
else
Set_Condition_Actions (P, Ins_Actions);
-- Set the parent of the insert actions explicitly. This
-- is not a syntactic field, but we need the parent field
-- set, in particular so that freeze can understand that
-- it is dealing with condition actions, and properly
-- insert the freezing actions.
Set_Parent (Ins_Actions, P);
Analyze_List (Condition_Actions (P));
end if;
return;
end if;
-- Statements, declarations, pragmas, representation clauses
when
-- Statements
N_Procedure_Call_Statement
| N_Statement_Other_Than_Procedure_Call
-- Pragmas
| N_Pragma
-- Representation_Clause
| N_At_Clause
| N_Attribute_Definition_Clause
| N_Enumeration_Representation_Clause
| N_Record_Representation_Clause
-- Declarations
| N_Abstract_Subprogram_Declaration
| N_Entry_Body
| N_Exception_Declaration
| N_Exception_Renaming_Declaration
| N_Expression_Function
| N_Formal_Abstract_Subprogram_Declaration
| N_Formal_Concrete_Subprogram_Declaration
| N_Formal_Object_Declaration
| N_Formal_Type_Declaration
| N_Full_Type_Declaration
| N_Function_Instantiation
| N_Generic_Function_Renaming_Declaration
| N_Generic_Package_Declaration
| N_Generic_Package_Renaming_Declaration
| N_Generic_Procedure_Renaming_Declaration
| N_Generic_Subprogram_Declaration
| N_Implicit_Label_Declaration
| N_Incomplete_Type_Declaration
| N_Number_Declaration
| N_Object_Declaration
| N_Object_Renaming_Declaration
| N_Package_Body
| N_Package_Body_Stub
| N_Package_Declaration
| N_Package_Instantiation
| N_Package_Renaming_Declaration
| N_Private_Extension_Declaration
| N_Private_Type_Declaration
| N_Procedure_Instantiation
| N_Protected_Body
| N_Protected_Body_Stub
| N_Protected_Type_Declaration
| N_Single_Task_Declaration
| N_Subprogram_Body
| N_Subprogram_Body_Stub
| N_Subprogram_Declaration
| N_Subprogram_Renaming_Declaration
| N_Subtype_Declaration
| N_Task_Body
| N_Task_Body_Stub
| N_Task_Type_Declaration
-- Use clauses can appear in lists of declarations
| N_Use_Package_Clause
| N_Use_Type_Clause
-- Freeze entity behaves like a declaration or statement
| N_Freeze_Entity
| N_Freeze_Generic_Entity
=>
-- Do not insert here if the item is not a list member (this
-- happens for example with a triggering statement, and the
-- proper approach is to insert before the entire select).
if not Is_List_Member (P) then
null;
-- Do not insert if parent of P is an N_Component_Association
-- node (i.e. we are in the context of an N_Aggregate or
-- N_Extension_Aggregate node. In this case we want to insert
-- before the entire aggregate.
elsif Nkind (Parent (P)) = N_Component_Association then
null;
-- Do not insert if the parent of P is either an N_Variant node
-- or an N_Record_Definition node, meaning in either case that
-- P is a member of a component list, and that therefore the
-- actions should be inserted outside the complete record
-- declaration.
elsif Nkind_In (Parent (P), N_Variant, N_Record_Definition) then
null;
-- Do not insert freeze nodes within the loop generated for
-- an aggregate, because they may be elaborated too late for
-- subsequent use in the back end: within a package spec the
-- loop is part of the elaboration procedure and is only
-- elaborated during the second pass.
-- If the loop comes from source, or the entity is local to the
-- loop itself it must remain within.
elsif Nkind (Parent (P)) = N_Loop_Statement
and then not Comes_From_Source (Parent (P))
and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
and then
Scope (Entity (First (Ins_Actions))) /= Current_Scope
then
null;
-- Otherwise we can go ahead and do the insertion
elsif P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
return;
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
return;
end if;
-- A special case, N_Raise_xxx_Error can act either as a statement
-- or a subexpression. We tell the difference by looking at the
-- Etype. It is set to Standard_Void_Type in the statement case.
when N_Raise_xxx_Error =>
if Etype (P) = Standard_Void_Type then
if P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
end if;
return;
-- In the subexpression case, keep climbing
else
null;
end if;
-- If a component association appears within a loop created for
-- an array aggregate, attach the actions to the association so
-- they can be subsequently inserted within the loop. For other
-- component associations insert outside of the aggregate. For
-- an association that will generate a loop, its Loop_Actions
-- attribute is already initialized (see exp_aggr.adb).
-- The list of Loop_Actions can in turn generate additional ones,
-- that are inserted before the associated node. If the associated
-- node is outside the aggregate, the new actions are collected
-- at the end of the Loop_Actions, to respect the order in which
-- they are to be elaborated.
when N_Component_Association
| N_Iterated_Component_Association
=>
if Nkind (Parent (P)) = N_Aggregate
and then Present (Loop_Actions (P))
then
if Is_Empty_List (Loop_Actions (P)) then
Set_Loop_Actions (P, Ins_Actions);
Analyze_List (Ins_Actions);
else
declare
Decl : Node_Id;
begin
-- Check whether these actions were generated by a
-- declaration that is part of the Loop_Actions for
-- the component_association.
Decl := Assoc_Node;
while Present (Decl) loop
exit when Parent (Decl) = P
and then Is_List_Member (Decl)
and then
List_Containing (Decl) = Loop_Actions (P);
Decl := Parent (Decl);
end loop;
if Present (Decl) then
Insert_List_Before_And_Analyze
(Decl, Ins_Actions);
else
Insert_List_After_And_Analyze
(Last (Loop_Actions (P)), Ins_Actions);
end if;
end;
end if;
return;
else
null;
end if;
-- Another special case, an attribute denoting a procedure call
when N_Attribute_Reference =>
if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
if P = Wrapped_Node then
Store_Before_Actions_In_Scope (Ins_Actions);
else
Insert_List_Before_And_Analyze (P, Ins_Actions);
end if;
return;
-- In the subexpression case, keep climbing
else
null;
end if;
-- A contract node should not belong to the tree
when N_Contract =>
raise Program_Error;
-- For all other node types, keep climbing tree
when N_Abortable_Part
| N_Accept_Alternative
| N_Access_Definition
| N_Access_Function_Definition
| N_Access_Procedure_Definition
| N_Access_To_Object_Definition
| N_Aggregate
| N_Allocator
| N_Aspect_Specification
| N_Case_Expression
| N_Case_Statement_Alternative
| N_Character_Literal
| N_Compilation_Unit
| N_Compilation_Unit_Aux
| N_Component_Clause
| N_Component_Declaration
| N_Component_Definition
| N_Component_List
| N_Constrained_Array_Definition
| N_Decimal_Fixed_Point_Definition
| N_Defining_Character_Literal
| N_Defining_Identifier
| N_Defining_Operator_Symbol
| N_Defining_Program_Unit_Name
| N_Delay_Alternative
| N_Delta_Aggregate
| N_Delta_Constraint
| N_Derived_Type_Definition
| N_Designator
| N_Digits_Constraint
| N_Discriminant_Association
| N_Discriminant_Specification
| N_Empty
| N_Entry_Body_Formal_Part
| N_Entry_Call_Alternative
| N_Entry_Declaration
| N_Entry_Index_Specification
| N_Enumeration_Type_Definition
| N_Error
| N_Exception_Handler
| N_Expanded_Name
| N_Explicit_Dereference
| N_Extension_Aggregate
| N_Floating_Point_Definition
| N_Formal_Decimal_Fixed_Point_Definition
| N_Formal_Derived_Type_Definition
| N_Formal_Discrete_Type_Definition
| N_Formal_Floating_Point_Definition
| N_Formal_Modular_Type_Definition
| N_Formal_Ordinary_Fixed_Point_Definition
| N_Formal_Package_Declaration
| N_Formal_Private_Type_Definition
| N_Formal_Incomplete_Type_Definition
| N_Formal_Signed_Integer_Type_Definition
| N_Function_Call
| N_Function_Specification
| N_Generic_Association
| N_Handled_Sequence_Of_Statements
| N_Identifier
| N_In
| N_Index_Or_Discriminant_Constraint
| N_Indexed_Component
| N_Integer_Literal
| N_Iterator_Specification
| N_Itype_Reference
| N_Label
| N_Loop_Parameter_Specification
| N_Mod_Clause
| N_Modular_Type_Definition
| N_Not_In
| N_Null
| N_Op_Abs
| N_Op_Add
| N_Op_And
| N_Op_Concat
| N_Op_Divide
| N_Op_Eq
| N_Op_Expon
| N_Op_Ge
| N_Op_Gt
| N_Op_Le
| N_Op_Lt
| N_Op_Minus
| N_Op_Mod
| N_Op_Multiply
| N_Op_Ne
| N_Op_Not
| N_Op_Or
| N_Op_Plus
| N_Op_Rem
| N_Op_Rotate_Left
| N_Op_Rotate_Right
| N_Op_Shift_Left
| N_Op_Shift_Right
| N_Op_Shift_Right_Arithmetic
| N_Op_Subtract
| N_Op_Xor
| N_Operator_Symbol
| N_Ordinary_Fixed_Point_Definition
| N_Others_Choice
| N_Package_Specification
| N_Parameter_Association
| N_Parameter_Specification
| N_Pop_Constraint_Error_Label
| N_Pop_Program_Error_Label
| N_Pop_Storage_Error_Label
| N_Pragma_Argument_Association
| N_Procedure_Specification
| N_Protected_Definition
| N_Push_Constraint_Error_Label
| N_Push_Program_Error_Label
| N_Push_Storage_Error_Label
| N_Qualified_Expression
| N_Quantified_Expression
| N_Raise_Expression
| N_Range
| N_Range_Constraint
| N_Real_Literal
| N_Real_Range_Specification
| N_Record_Definition
| N_Reference
| N_SCIL_Dispatch_Table_Tag_Init
| N_SCIL_Dispatching_Call
| N_SCIL_Membership_Test
| N_Selected_Component
| N_Signed_Integer_Type_Definition
| N_Single_Protected_Declaration
| N_Slice
| N_String_Literal
| N_Subtype_Indication
| N_Subunit
| N_Target_Name
| N_Task_Definition
| N_Terminate_Alternative
| N_Triggering_Alternative
| N_Type_Conversion
| N_Unchecked_Expression
| N_Unchecked_Type_Conversion
| N_Unconstrained_Array_Definition
| N_Unused_At_End
| N_Unused_At_Start
| N_Variant
| N_Variant_Part
| N_Validate_Unchecked_Conversion
| N_With_Clause
=>
null;
end case;
-- If we fall through above tests, keep climbing tree
N := P;
if Nkind (Parent (N)) = N_Subunit then
-- This is the proper body corresponding to a stub. Insertion must
-- be done at the point of the stub, which is in the declarative
-- part of the parent unit.
P := Corresponding_Stub (Parent (N));
else
P := Parent (N);
end if;
end loop;
end Insert_Actions;
-- Version with check(s) suppressed
procedure Insert_Actions
(Assoc_Node : Node_Id;
Ins_Actions : List_Id;
Suppress : Check_Id)
is
begin
if Suppress = All_Checks then
declare
Sva : constant Suppress_Array := Scope_Suppress.Suppress;
begin
Scope_Suppress.Suppress := (others => True);
Insert_Actions (Assoc_Node, Ins_Actions);
Scope_Suppress.Suppress := Sva;
end;
else
declare
Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
begin
Scope_Suppress.Suppress (Suppress) := True;
Insert_Actions (Assoc_Node, Ins_Actions);
Scope_Suppress.Suppress (Suppress) := Svg;
end;
end if;
end Insert_Actions;
--------------------------
-- Insert_Actions_After --
--------------------------
procedure Insert_Actions_After
(Assoc_Node : Node_Id;
Ins_Actions : List_Id)
is
begin
if Scope_Is_Transient and then Assoc_Node = Node_To_Be_Wrapped then
Store_After_Actions_In_Scope (Ins_Actions);
else
Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
end if;
end Insert_Actions_After;
------------------------
-- Insert_Declaration --
------------------------
procedure Insert_Declaration (N : Node_Id; Decl : Node_Id) is
P : Node_Id;
begin
pragma Assert (Nkind (N) in N_Subexpr);
-- Climb until we find a procedure or a package
P := N;
loop
pragma Assert (Present (Parent (P)));
P := Parent (P);
if Is_List_Member (P) then
exit when Nkind_In (Parent (P), N_Package_Specification,
N_Subprogram_Body);
-- Special handling for handled sequence of statements, we must
-- insert in the statements not the exception handlers!
if Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements then
P := First (Statements (Parent (P)));
exit;
end if;
end if;
end loop;
-- Now do the insertion
Insert_Before (P, Decl);
Analyze (Decl);
end Insert_Declaration;
---------------------------------
-- Insert_Library_Level_Action --
---------------------------------
procedure Insert_Library_Level_Action (N : Node_Id) is
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
begin
Push_Scope (Cunit_Entity (Main_Unit));
-- ??? should this be Current_Sem_Unit instead of Main_Unit?
if No (Actions (Aux)) then
Set_Actions (Aux, New_List (N));
else
Append (N, Actions (Aux));
end if;
Analyze (N);
Pop_Scope;
end Insert_Library_Level_Action;
----------------------------------
-- Insert_Library_Level_Actions --
----------------------------------
procedure Insert_Library_Level_Actions (L : List_Id) is
Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
begin
if Is_Non_Empty_List (L) then
Push_Scope (Cunit_Entity (Main_Unit));
-- ??? should this be Current_Sem_Unit instead of Main_Unit?
if No (Actions (Aux)) then
Set_Actions (Aux, L);
Analyze_List (L);
else
Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
end if;
Pop_Scope;
end if;
end Insert_Library_Level_Actions;
----------------------
-- Inside_Init_Proc --
----------------------
function Inside_Init_Proc return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then S /= Standard_Standard loop
if Is_Init_Proc (S) then
return True;
else
S := Scope (S);
end if;
end loop;
return False;
end Inside_Init_Proc;
----------------------------
-- Is_All_Null_Statements --
----------------------------
function Is_All_Null_Statements (L : List_Id) return Boolean is
Stm : Node_Id;
begin
Stm := First (L);
while Present (Stm) loop
if Nkind (Stm) /= N_Null_Statement then
return False;
end if;
Next (Stm);
end loop;
return True;
end Is_All_Null_Statements;
--------------------------------------------------
-- Is_Displacement_Of_Object_Or_Function_Result --
--------------------------------------------------
function Is_Displacement_Of_Object_Or_Function_Result
(Obj_Id : Entity_Id) return Boolean
is
function Is_Controlled_Function_Call (N : Node_Id) return Boolean;
-- Determine if particular node denotes a controlled function call. The
-- call may have been heavily expanded.
function Is_Displace_Call (N : Node_Id) return Boolean;
-- Determine whether a particular node is a call to Ada.Tags.Displace.
-- The call might be nested within other actions such as conversions.
function Is_Source_Object (N : Node_Id) return Boolean;
-- Determine whether a particular node denotes a source object
---------------------------------
-- Is_Controlled_Function_Call --
---------------------------------
function Is_Controlled_Function_Call (N : Node_Id) return Boolean is
Expr : Node_Id := Original_Node (N);
begin
-- When a function call appears in Object.Operation format, the
-- original representation has several possible forms depending on
-- the availability and form of actual parameters:
-- Obj.Func N_Selected_Component
-- Obj.Func (Actual) N_Indexed_Component
-- Obj.Func (Formal => Actual) N_Function_Call, whose Name is an
-- N_Selected_Component
loop
if Nkind (Expr) = N_Function_Call then
Expr := Name (Expr);
-- "Obj.Func (Actual)" case
elsif Nkind (Expr) = N_Indexed_Component then
Expr := Prefix (Expr);
-- "Obj.Func" or "Obj.Func (Formal => Actual) case
elsif Nkind (Expr) = N_Selected_Component then
Expr := Selector_Name (Expr);
else
exit;
end if;
end loop;
return
Nkind (Expr) in N_Has_Entity
and then Present (Entity (Expr))
and then Ekind (Entity (Expr)) = E_Function
and then Needs_Finalization (Etype (Entity (Expr)));
end Is_Controlled_Function_Call;
----------------------
-- Is_Displace_Call --
----------------------
function Is_Displace_Call (N : Node_Id) return Boolean is
Call : Node_Id := N;
begin
-- Strip various actions which may precede a call to Displace
loop
if Nkind (Call) = N_Explicit_Dereference then
Call := Prefix (Call);
elsif Nkind_In (Call, N_Type_Conversion,
N_Unchecked_Type_Conversion)
then
Call := Expression (Call);
else
exit;
end if;
end loop;
return
Present (Call)
and then Nkind (Call) = N_Function_Call
and then Is_RTE (Entity (Name (Call)), RE_Displace);
end Is_Displace_Call;
----------------------
-- Is_Source_Object --
----------------------
function Is_Source_Object (N : Node_Id) return Boolean is
begin
return
Present (N)
and then Nkind (N) in N_Has_Entity
and then Is_Object (Entity (N))
and then Comes_From_Source (N);
end Is_Source_Object;
-- Local variables
Decl : constant Node_Id := Parent (Obj_Id);
Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
Orig_Decl : constant Node_Id := Original_Node (Decl);
-- Start of processing for Is_Displacement_Of_Object_Or_Function_Result
begin
-- Case 1:
-- Obj : CW_Type := Function_Call (...);
-- rewritten into:
-- Tmp : ... := Function_Call (...)'reference;
-- Obj : CW_Type renames (... Ada.Tags.Displace (Tmp));
-- where the return type of the function and the class-wide type require
-- dispatch table pointer displacement.
-- Case 2:
-- Obj : CW_Type := Src_Obj;
-- rewritten into:
-- Obj : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
-- where the type of the source object and the class-wide type require
-- dispatch table pointer displacement.
return
Nkind (Decl) = N_Object_Renaming_Declaration
and then Nkind (Orig_Decl) = N_Object_Declaration
and then Comes_From_Source (Orig_Decl)
and then Is_Class_Wide_Type (Obj_Typ)
and then Is_Displace_Call (Renamed_Object (Obj_Id))
and then
(Is_Controlled_Function_Call (Expression (Orig_Decl))
or else Is_Source_Object (Expression (Orig_Decl)));
end Is_Displacement_Of_Object_Or_Function_Result;
------------------------------
-- Is_Finalizable_Transient --
------------------------------
function Is_Finalizable_Transient
(Decl : Node_Id;
Rel_Node : Node_Id) return Boolean
is
Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean;
-- Determine whether transient object Trans_Id is initialized either
-- by a function call which returns an access type or simply renames
-- another pointer.
function Initialized_By_Aliased_BIP_Func_Call
(Trans_Id : Entity_Id) return Boolean;
-- Determine whether transient object Trans_Id is initialized by a
-- build-in-place function call where the BIPalloc parameter is of
-- value 1 and BIPaccess is not null. This case creates an aliasing
-- between the returned value and the value denoted by BIPaccess.
function Is_Aliased
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean;
-- Determine whether transient object Trans_Id has been renamed or
-- aliased through 'reference in the statement list starting from
-- First_Stmt.
function Is_Allocated (Trans_Id : Entity_Id) return Boolean;
-- Determine whether transient object Trans_Id is allocated on the heap
function Is_Iterated_Container
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean;
-- Determine whether transient object Trans_Id denotes a container which
-- is in the process of being iterated in the statement list starting
-- from First_Stmt.
---------------------------
-- Initialized_By_Access --
---------------------------
function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean is
Expr : constant Node_Id := Expression (Parent (Trans_Id));
begin
return
Present (Expr)
and then Nkind (Expr) /= N_Reference
and then Is_Access_Type (Etype (Expr));
end Initialized_By_Access;
------------------------------------------
-- Initialized_By_Aliased_BIP_Func_Call --
------------------------------------------
function Initialized_By_Aliased_BIP_Func_Call
(Trans_Id : Entity_Id) return Boolean
is
Call : Node_Id := Expression (Parent (Trans_Id));
begin
-- Build-in-place calls usually appear in 'reference format
if Nkind (Call) = N_Reference then
Call := Prefix (Call);
end if;
if Is_Build_In_Place_Function_Call (Call) then
declare
Access_Nam : Name_Id := No_Name;
Access_OK : Boolean := False;
Actual : Node_Id;
Alloc_Nam : Name_Id := No_Name;
Alloc_OK : Boolean := False;
Formal : Node_Id;
Func_Id : Entity_Id;
Param : Node_Id;
begin
-- Examine all parameter associations of the function call
Param := First (Parameter_Associations (Call));
while Present (Param) loop
if Nkind (Param) = N_Parameter_Association
and then Nkind (Selector_Name (Param)) = N_Identifier
then
Actual := Explicit_Actual_Parameter (Param);
Formal := Selector_Name (Param);
-- Construct the names of formals BIPaccess and BIPalloc
-- using the function name retrieved from an arbitrary
-- formal.
if Access_Nam = No_Name
and then Alloc_Nam = No_Name
and then Present (Entity (Formal))
then
Func_Id := Scope (Entity (Formal));
Access_Nam :=
New_External_Name (Chars (Func_Id),
BIP_Formal_Suffix (BIP_Object_Access));
Alloc_Nam :=
New_External_Name (Chars (Func_Id),
BIP_Formal_Suffix (BIP_Alloc_Form));
end if;
-- A match for BIPaccess => Temp has been found
if Chars (Formal) = Access_Nam
and then Nkind (Actual) /= N_Null
then
Access_OK := True;
end if;
-- A match for BIPalloc => 1 has been found
if Chars (Formal) = Alloc_Nam
and then Nkind (Actual) = N_Integer_Literal
and then Intval (Actual) = Uint_1
then
Alloc_OK := True;
end if;
end if;
Next (Param);
end loop;
return Access_OK and Alloc_OK;
end;
end if;
return False;
end Initialized_By_Aliased_BIP_Func_Call;
----------------
-- Is_Aliased --
----------------
function Is_Aliased
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean
is
function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id;
-- Given an object renaming declaration, retrieve the entity of the
-- renamed name. Return Empty if the renamed name is anything other
-- than a variable or a constant.
-------------------------
-- Find_Renamed_Object --
-------------------------
function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id is
Ren_Obj : Node_Id := Empty;
function Find_Object (N : Node_Id) return Traverse_Result;
-- Try to detect an object which is either a constant or a
-- variable.
-----------------
-- Find_Object --
-----------------
function Find_Object (N : Node_Id) return Traverse_Result is
begin
-- Stop the search once a constant or a variable has been
-- detected.
if Nkind (N) = N_Identifier
and then Present (Entity (N))
and then Ekind_In (Entity (N), E_Constant, E_Variable)
then
Ren_Obj := Entity (N);
return Abandon;
end if;
return OK;
end Find_Object;
procedure Search is new Traverse_Proc (Find_Object);
-- Local variables
Typ : constant Entity_Id := Etype (Defining_Identifier (Ren_Decl));
-- Start of processing for Find_Renamed_Object
begin
-- Actions related to dispatching calls may appear as renamings of
-- tags. Do not process this type of renaming because it does not
-- use the actual value of the object.
if not Is_RTE (Typ, RE_Tag_Ptr) then
Search (Name (Ren_Decl));
end if;
return Ren_Obj;
end Find_Renamed_Object;
-- Local variables
Expr : Node_Id;
Ren_Obj : Entity_Id;
Stmt : Node_Id;
-- Start of processing for Is_Aliased
begin
-- A controlled transient object is not considered aliased when it
-- appears inside an expression_with_actions node even when there are
-- explicit aliases of it:
-- do
-- Trans_Id : Ctrl_Typ ...; -- transient object
-- Alias : ... := Trans_Id; -- object is aliased
-- Val : constant Boolean :=
-- ... Alias ...; -- aliasing ends
-- <finalize Trans_Id> -- object safe to finalize
-- in Val end;
-- Expansion ensures that all aliases are encapsulated in the actions
-- list and do not leak to the expression by forcing the evaluation
-- of the expression.
if Nkind (Rel_Node) = N_Expression_With_Actions then
return False;
-- Otherwise examine the statements after the controlled transient
-- object and look for various forms of aliasing.
else
Stmt := First_Stmt;
while Present (Stmt) loop
if Nkind (Stmt) = N_Object_Declaration then
Expr := Expression (Stmt);
-- Aliasing of the form:
-- Obj : ... := Trans_Id'reference;
if Present (Expr)
and then Nkind (Expr) = N_Reference
and then Nkind (Prefix (Expr)) = N_Identifier
and then Entity (Prefix (Expr)) = Trans_Id
then
return True;
end if;
elsif Nkind (Stmt) = N_Object_Renaming_Declaration then
Ren_Obj := Find_Renamed_Object (Stmt);
-- Aliasing of the form:
-- Obj : ... renames ... Trans_Id ...;
if Present (Ren_Obj) and then Ren_Obj = Trans_Id then
return True;
end if;
end if;
Next (Stmt);
end loop;
return False;
end if;
end Is_Aliased;
------------------
-- Is_Allocated --
------------------
function Is_Allocated (Trans_Id : Entity_Id) return Boolean is
Expr : constant Node_Id := Expression (Parent (Trans_Id));
begin
return
Is_Access_Type (Etype (Trans_Id))
and then Present (Expr)
and then Nkind (Expr) = N_Allocator;
end Is_Allocated;
---------------------------
-- Is_Iterated_Container --
---------------------------
function Is_Iterated_Container
(Trans_Id : Entity_Id;
First_Stmt : Node_Id) return Boolean
is
Aspect : Node_Id;
Call : Node_Id;
Iter : Entity_Id;
Param : Node_Id;
Stmt : Node_Id;
Typ : Entity_Id;
begin
-- It is not possible to iterate over containers in non-Ada 2012 code
if Ada_Version < Ada_2012 then
return False;
end if;
Typ := Etype (Trans_Id);
-- Handle access type created for secondary stack use
if Is_Access_Type (Typ) then
Typ := Designated_Type (Typ);
end if;
-- Look for aspect Default_Iterator. It may be part of a type
-- declaration for a container, or inherited from a base type
-- or parent type.
Aspect := Find_Value_Of_Aspect (Typ, Aspect_Default_Iterator);
if Present (Aspect) then
Iter := Entity (Aspect);
-- Examine the statements following the container object and
-- look for a call to the default iterate routine where the
-- first parameter is the transient. Such a call appears as:
-- It : Access_To_CW_Iterator :=
-- Iterate (Tran_Id.all, ...)'reference;
Stmt := First_Stmt;
while Present (Stmt) loop
-- Detect an object declaration which is initialized by a
-- secondary stack function call.
if Nkind (Stmt) = N_Object_Declaration
and then Present (Expression (Stmt))
and then Nkind (Expression (Stmt)) = N_Reference
and then Nkind (Prefix (Expression (Stmt))) = N_Function_Call
then
Call := Prefix (Expression (Stmt));
-- The call must invoke the default iterate routine of
-- the container and the transient object must appear as
-- the first actual parameter. Skip any calls whose names
-- are not entities.
if Is_Entity_Name (Name (Call))
and then Entity (Name (Call)) = Iter
and then Present (Parameter_Associations (Call))
then
Param := First (Parameter_Associations (Call));
if Nkind (Param) = N_Explicit_Dereference
and then Entity (Prefix (Param)) = Trans_Id
then
return True;
end if;
end if;
end if;
Next (Stmt);
end loop;
end if;
return False;
end Is_Iterated_Container;
-- Local variables
Desig : Entity_Id := Obj_Typ;
-- Start of processing for Is_Finalizable_Transient
begin
-- Handle access types
if Is_Access_Type (Desig) then
Desig := Available_View (Designated_Type (Desig));
end if;
return
Ekind_In (Obj_Id, E_Constant, E_Variable)
and then Needs_Finalization (Desig)
and then Requires_Transient_Scope (Desig)
and then Nkind (Rel_Node) /= N_Simple_Return_Statement
-- Do not consider a transient object that was already processed
and then not Is_Finalized_Transient (Obj_Id)
-- Do not consider renamed or 'reference-d transient objects because
-- the act of renaming extends the object's lifetime.
and then not Is_Aliased (Obj_Id, Decl)
-- Do not consider transient objects allocated on the heap since
-- they are attached to a finalization master.
and then not Is_Allocated (Obj_Id)
-- If the transient object is a pointer, check that it is not
-- initialized by a function that returns a pointer or acts as a
-- renaming of another pointer.
and then
(not Is_Access_Type (Obj_Typ)
or else not Initialized_By_Access (Obj_Id))
-- Do not consider transient objects which act as indirect aliases
-- of build-in-place function results.
and then not Initialized_By_Aliased_BIP_Func_Call (Obj_Id)
-- Do not consider conversions of tags to class-wide types
and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
-- Do not consider iterators because those are treated as normal
-- controlled objects and are processed by the usual finalization
-- machinery. This avoids the double finalization of an iterator.
and then not Is_Iterator (Desig)
-- Do not consider containers in the context of iterator loops. Such
-- transient objects must exist for as long as the loop is around,
-- otherwise any operation carried out by the iterator will fail.
and then not Is_Iterated_Container (Obj_Id, Decl);
end Is_Finalizable_Transient;
---------------------------------
-- Is_Fully_Repped_Tagged_Type --
---------------------------------
function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is
U : constant Entity_Id := Underlying_Type (T);
Comp : Entity_Id;
begin
if No (U) or else not Is_Tagged_Type (U) then
return False;
elsif Has_Discriminants (U) then
return False;
elsif not Has_Specified_Layout (U) then
return False;
end if;
-- Here we have a tagged type, see if it has any unlayed out fields
-- other than a possible tag and parent fields. If so, we return False.
Comp := First_Component (U);
while Present (Comp) loop
if not Is_Tag (Comp)
and then Chars (Comp) /= Name_uParent
and then No (Component_Clause (Comp))
then
return False;
else
Next_Component (Comp);
end if;
end loop;
-- All components are layed out
return True;
end Is_Fully_Repped_Tagged_Type;
----------------------------------
-- Is_Library_Level_Tagged_Type --
----------------------------------
function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
begin
return Is_Tagged_Type (Typ) and then Is_Library_Level_Entity (Typ);
end Is_Library_Level_Tagged_Type;
--------------------------
-- Is_Non_BIP_Func_Call --
--------------------------
function Is_Non_BIP_Func_Call (Expr : Node_Id) return Boolean is
begin
-- The expected call is of the format
--
-- Func_Call'reference
return
Nkind (Expr) = N_Reference
and then Nkind (Prefix (Expr)) = N_Function_Call
and then not Is_Build_In_Place_Function_Call (Prefix (Expr));
end Is_Non_BIP_Func_Call;
------------------------------------
-- Is_Object_Access_BIP_Func_Call --
------------------------------------
function Is_Object_Access_BIP_Func_Call
(Expr : Node_Id;
Obj_Id : Entity_Id) return Boolean
is
Access_Nam : Name_Id := No_Name;
Actual : Node_Id;
Call : Node_Id;
Formal : Node_Id;
Param : Node_Id;
begin
-- Build-in-place calls usually appear in 'reference format. Note that
-- the accessibility check machinery may add an extra 'reference due to
-- side effect removal.
Call := Expr;
while Nkind (Call) = N_Reference loop
Call := Prefix (Call);
end loop;
if Nkind_In (Call, N_Qualified_Expression,
N_Unchecked_Type_Conversion)
then
Call := Expression (Call);
end if;
if Is_Build_In_Place_Function_Call (Call) then
-- Examine all parameter associations of the function call
Param := First (Parameter_Associations (Call));
while Present (Param) loop
if Nkind (Param) = N_Parameter_Association
and then Nkind (Selector_Name (Param)) = N_Identifier
then
Formal := Selector_Name (Param);
Actual := Explicit_Actual_Parameter (Param);
-- Construct the name of formal BIPaccess. It is much easier to
-- extract the name of the function using an arbitrary formal's
-- scope rather than the Name field of Call.
if Access_Nam = No_Name and then Present (Entity (Formal)) then
Access_Nam :=
New_External_Name
(Chars (Scope (Entity (Formal))),
BIP_Formal_Suffix (BIP_Object_Access));
end if;
-- A match for BIPaccess => Obj_Id'Unrestricted_Access has been
-- found.
if Chars (Formal) = Access_Nam
and then Nkind (Actual) = N_Attribute_Reference
and then Attribute_Name (Actual) = Name_Unrestricted_Access
and then Nkind (Prefix (Actual)) = N_Identifier
and then Entity (Prefix (Actual)) = Obj_Id
then
return True;
end if;
end if;
Next (Param);
end loop;
end if;
return False;
end Is_Object_Access_BIP_Func_Call;
----------------------------------
-- Is_Possibly_Unaligned_Object --
----------------------------------
function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
T : constant Entity_Id := Etype (N);
begin
-- If renamed object, apply test to underlying object
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
end if;
-- Tagged and controlled types and aliased types are always aligned, as
-- are concurrent types.
if Is_Aliased (T)
or else Has_Controlled_Component (T)
or else Is_Concurrent_Type (T)
or else Is_Tagged_Type (T)
or else Is_Controlled (T)
then
return False;
end if;
-- If this is an element of a packed array, may be unaligned
if Is_Ref_To_Bit_Packed_Array (N) then
return True;
end if;
-- Case of indexed component reference: test whether prefix is unaligned
if Nkind (N) = N_Indexed_Component then
return Is_Possibly_Unaligned_Object (Prefix (N));
-- Case of selected component reference
elsif Nkind (N) = N_Selected_Component then
declare
P : constant Node_Id := Prefix (N);
C : constant Entity_Id := Entity (Selector_Name (N));
M : Nat;
S : Nat;
begin
-- If component reference is for an array with non-static bounds,
-- then it is always aligned: we can only process unaligned arrays
-- with static bounds (more precisely compile time known bounds).
if Is_Array_Type (T)
and then not Compile_Time_Known_Bounds (T)
then
return False;
end if;
-- If component is aliased, it is definitely properly aligned
if Is_Aliased (C) then
return False;
end if;
-- If component is for a type implemented as a scalar, and the
-- record is packed, and the component is other than the first
-- component of the record, then the component may be unaligned.
if Is_Packed (Etype (P))
and then Represented_As_Scalar (Etype (C))
and then First_Entity (Scope (C)) /= C
then
return True;
end if;
-- Compute maximum possible alignment for T
-- If alignment is known, then that settles things
if Known_Alignment (T) then
M := UI_To_Int (Alignment (T));
-- If alignment is not known, tentatively set max alignment
else
M := Ttypes.Maximum_Alignment;
-- We can reduce this if the Esize is known since the default
-- alignment will never be more than the smallest power of 2
-- that does not exceed this Esize value.
if Known_Esize (T) then
S := UI_To_Int (Esize (T));
while (M / 2) >= S loop
M := M / 2;
end loop;
end if;
end if;
-- The following code is historical, it used to be present but it
-- is too cautious, because the front-end does not know the proper
-- default alignments for the target. Also, if the alignment is
-- not known, the front end can't know in any case. If a copy is
-- needed, the back-end will take care of it. This whole section
-- including this comment can be removed later ???
-- If the component reference is for a record that has a specified
-- alignment, and we either know it is too small, or cannot tell,
-- then the component may be unaligned.
-- What is the following commented out code ???
-- if Known_Alignment (Etype (P))
-- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
-- and then M > Alignment (Etype (P))
-- then
-- return True;
-- end if;
-- Case of component clause present which may specify an
-- unaligned position.
if Present (Component_Clause (C)) then
-- Otherwise we can do a test to make sure that the actual
-- start position in the record, and the length, are both
-- consistent with the required alignment. If not, we know
-- that we are unaligned.
declare
Align_In_Bits : constant Nat := M * System_Storage_Unit;
begin
if Component_Bit_Offset (C) mod Align_In_Bits /= 0
or else Esize (C) mod Align_In_Bits /= 0
then
return True;
end if;
end;
end if;
-- Otherwise, for a component reference, test prefix
return Is_Possibly_Unaligned_Object (P);
end;
-- If not a component reference, must be aligned
else
return False;
end if;
end Is_Possibly_Unaligned_Object;
---------------------------------
-- Is_Possibly_Unaligned_Slice --
---------------------------------
function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
begin
-- Go to renamed object
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
end if;
-- The reference must be a slice
if Nkind (N) /= N_Slice then
return False;
end if;
-- We only need to worry if the target has strict alignment
if not Target_Strict_Alignment then
return False;
end if;
-- If it is a slice, then look at the array type being sliced
declare
Sarr : constant Node_Id := Prefix (N);
-- Prefix of the slice, i.e. the array being sliced
Styp : constant Entity_Id := Etype (Prefix (N));
-- Type of the array being sliced
Pref : Node_Id;
Ptyp : Entity_Id;
begin
-- The problems arise if the array object that is being sliced
-- is a component of a record or array, and we cannot guarantee
-- the alignment of the array within its containing object.
-- To investigate this, we look at successive prefixes to see
-- if we have a worrisome indexed or selected component.
Pref := Sarr;
loop
-- Case of array is part of an indexed component reference
if Nkind (Pref) = N_Indexed_Component then
Ptyp := Etype (Prefix (Pref));
-- The only problematic case is when the array is packed, in
-- which case we really know nothing about the alignment of
-- individual components.
if Is_Bit_Packed_Array (Ptyp) then
return True;
end if;
-- Case of array is part of a selected component reference
elsif Nkind (Pref) = N_Selected_Component then
Ptyp := Etype (Prefix (Pref));
-- We are definitely in trouble if the record in question
-- has an alignment, and either we know this alignment is
-- inconsistent with the alignment of the slice, or we don't
-- know what the alignment of the slice should be.
if Known_Alignment (Ptyp)
and then (Unknown_Alignment (Styp)
or else Alignment (Styp) > Alignment (Ptyp))
then
return True;
end if;
-- We are in potential trouble if the record type is packed.
-- We could special case when we know that the array is the
-- first component, but that's not such a simple case ???
if Is_Packed (Ptyp) then
return True;
end if;
-- We are in trouble if there is a component clause, and
-- either we do not know the alignment of the slice, or
-- the alignment of the slice is inconsistent with the
-- bit position specified by the component clause.
declare
Field : constant Entity_Id := Entity (Selector_Name (Pref));
begin
if Present (Component_Clause (Field))
and then
(Unknown_Alignment (Styp)
or else
(Component_Bit_Offset (Field) mod
(System_Storage_Unit * Alignment (Styp))) /= 0)
then
return True;
end if;
end;
-- For cases other than selected or indexed components we know we
-- are OK, since no issues arise over alignment.
else
return False;
end if;
-- We processed an indexed component or selected component
-- reference that looked safe, so keep checking prefixes.
Pref := Prefix (Pref);
end loop;
end;
end Is_Possibly_Unaligned_Slice;
-------------------------------
-- Is_Related_To_Func_Return --
-------------------------------
function Is_Related_To_Func_Return (Id : Entity_Id) return Boolean is
Expr : constant Node_Id := Related_Expression (Id);
begin
return
Present (Expr)
and then Nkind (Expr) = N_Explicit_Dereference
and then Nkind (Parent (Expr)) = N_Simple_Return_Statement;
end Is_Related_To_Func_Return;
--------------------------------
-- Is_Ref_To_Bit_Packed_Array --
--------------------------------
function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
Result : Boolean;
Expr : Node_Id;
begin
if Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
end if;
if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
if Is_Bit_Packed_Array (Etype (Prefix (N))) then
Result := True;
else
Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
end if;
if Result and then Nkind (N) = N_Indexed_Component then
Expr := First (Expressions (N));
while Present (Expr) loop
Force_Evaluation (Expr);
Next (Expr);
end loop;
end if;
return Result;
else
return False;
end if;
end Is_Ref_To_Bit_Packed_Array;
--------------------------------
-- Is_Ref_To_Bit_Packed_Slice --
--------------------------------
function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
begin
if Nkind (N) = N_Type_Conversion then
return Is_Ref_To_Bit_Packed_Slice (Expression (N));
elsif Is_Entity_Name (N)
and then Is_Object (Entity (N))
and then Present (Renamed_Object (Entity (N)))
then
return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
elsif Nkind (N) = N_Slice
and then Is_Bit_Packed_Array (Etype (Prefix (N)))
then
return True;
elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
else
return False;
end if;
end Is_Ref_To_Bit_Packed_Slice;
-----------------------
-- Is_Renamed_Object --
-----------------------
function Is_Renamed_Object (N : Node_Id) return Boolean is
Pnod : constant Node_Id := Parent (N);
Kind : constant Node_Kind := Nkind (Pnod);
begin
if Kind = N_Object_Renaming_Declaration then
return True;
elsif Nkind_In (Kind, N_Indexed_Component, N_Selected_Component) then
return Is_Renamed_Object (Pnod);
else
return False;
end if;
end Is_Renamed_Object;
--------------------------------------
-- Is_Secondary_Stack_BIP_Func_Call --
--------------------------------------
function Is_Secondary_Stack_BIP_Func_Call (Expr : Node_Id) return Boolean is
Alloc_Nam : Name_Id := No_Name;
Actual : Node_Id;
Call : Node_Id := Expr;
Formal : Node_Id;
Param : Node_Id;
begin
-- Build-in-place calls usually appear in 'reference format. Note that
-- the accessibility check machinery may add an extra 'reference due to
-- side effect removal.
while Nkind (Call) = N_Reference loop
Call := Prefix (Call);
end loop;
if Nkind_In (Call, N_Qualified_Expression,
N_Unchecked_Type_Conversion)
then
Call := Expression (Call);
end if;
if Is_Build_In_Place_Function_Call (Call) then
-- Examine all parameter associations of the function call
Param := First (Parameter_Associations (Call));
while Present (Param) loop
if Nkind (Param) = N_Parameter_Association
and then Nkind (Selector_Name (Param)) = N_Identifier
then
Formal := Selector_Name (Param);
Actual := Explicit_Actual_Parameter (Param);
-- Construct the name of formal BIPalloc. It is much easier to
-- extract the name of the function using an arbitrary formal's
-- scope rather than the Name field of Call.
if Alloc_Nam = No_Name and then Present (Entity (Formal)) then
Alloc_Nam :=
New_External_Name
(Chars (Scope (Entity (Formal))),
BIP_Formal_Suffix (BIP_Alloc_Form));
end if;
-- A match for BIPalloc => 2 has been found
if Chars (Formal) = Alloc_Nam
and then Nkind (Actual) = N_Integer_Literal
and then Intval (Actual) = Uint_2
then
return True;
end if;
end if;
Next (Param);
end loop;
end if;
return False;
end Is_Secondary_Stack_BIP_Func_Call;
-------------------------------------
-- Is_Tag_To_Class_Wide_Conversion --
-------------------------------------
function Is_Tag_To_Class_Wide_Conversion
(Obj_Id : Entity_Id) return Boolean
is
Expr : constant Node_Id := Expression (Parent (Obj_Id));
begin
return
Is_Class_Wide_Type (Etype (Obj_Id))
and then Present (Expr)
and then Nkind (Expr) = N_Unchecked_Type_Conversion
and then Etype (Expression (Expr)) = RTE (RE_Tag);
end Is_Tag_To_Class_Wide_Conversion;
----------------------------
-- Is_Untagged_Derivation --
----------------------------
function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
begin
return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
or else
(Is_Private_Type (T) and then Present (Full_View (T))
and then not Is_Tagged_Type (Full_View (T))
and then Is_Derived_Type (Full_View (T))
and then Etype (Full_View (T)) /= T);
end Is_Untagged_Derivation;
---------------------------
-- Is_Volatile_Reference --
---------------------------
function Is_Volatile_Reference (N : Node_Id) return Boolean is
begin
-- Only source references are to be treated as volatile, internally
-- generated stuff cannot have volatile external effects.
if not Comes_From_Source (N) then
return False;
-- Never true for reference to a type
elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
return False;
-- Never true for a compile time known constant
elsif Compile_Time_Known_Value (N) then
return False;
-- True if object reference with volatile type
elsif Is_Volatile_Object (N) then
return True;
-- True if reference to volatile entity
elsif Is_Entity_Name (N) then
return Treat_As_Volatile (Entity (N));
-- True for slice of volatile array
elsif Nkind (N) = N_Slice then
return Is_Volatile_Reference (Prefix (N));
-- True if volatile component
elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
if (Is_Entity_Name (Prefix (N))
and then Has_Volatile_Components (Entity (Prefix (N))))
or else (Present (Etype (Prefix (N)))
and then Has_Volatile_Components (Etype (Prefix (N))))
then
return True;
else
return Is_Volatile_Reference (Prefix (N));
end if;
-- Otherwise false
else
return False;
end if;
end Is_Volatile_Reference;
--------------------
-- Kill_Dead_Code --
--------------------
procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
W : Boolean := Warn;
-- Set False if warnings suppressed
begin
if Present (N) then
Remove_Warning_Messages (N);
-- Generate warning if appropriate
if W then
-- We suppress the warning if this code is under control of an
-- if statement, whose condition is a simple identifier, and
-- either we are in an instance, or warnings off is set for this
-- identifier. The reason for killing it in the instance case is
-- that it is common and reasonable for code to be deleted in
-- instances for various reasons.
-- Could we use Is_Statically_Unevaluated here???
if Nkind (Parent (N)) = N_If_Statement then
declare
C : constant Node_Id := Condition (Parent (N));
begin
if Nkind (C) = N_Identifier
and then
(In_Instance
or else (Present (Entity (C))
and then Has_Warnings_Off (Entity (C))))
then
W := False;
end if;
end;
end if;
-- Generate warning if not suppressed
if W then
Error_Msg_F
("?t?this code can never be executed and has been deleted!",
N);
end if;
end if;
-- Recurse into block statements and bodies to process declarations
-- and statements.
if Nkind (N) = N_Block_Statement
or else Nkind (N) = N_Subprogram_Body
or else Nkind (N) = N_Package_Body
then
Kill_Dead_Code (Declarations (N), False);
Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
if Nkind (N) = N_Subprogram_Body then
Set_Is_Eliminated (Defining_Entity (N));
end if;
elsif Nkind (N) = N_Package_Declaration then
Kill_Dead_Code (Visible_Declarations (Specification (N)));
Kill_Dead_Code (Private_Declarations (Specification (N)));
-- ??? After this point, Delete_Tree has been called on all
-- declarations in Specification (N), so references to entities
-- therein look suspicious.
declare
E : Entity_Id := First_Entity (Defining_Entity (N));
begin
while Present (E) loop
if Ekind (E) = E_Operator then
Set_Is_Eliminated (E);
end if;
Next_Entity (E);
end loop;
end;
-- Recurse into composite statement to kill individual statements in
-- particular instantiations.
elsif Nkind (N) = N_If_Statement then
Kill_Dead_Code (Then_Statements (N));
Kill_Dead_Code (Elsif_Parts (N));
Kill_Dead_Code (Else_Statements (N));
elsif Nkind (N) = N_Loop_Statement then
Kill_Dead_Code (Statements (N));
elsif Nkind (N) = N_Case_Statement then
declare
Alt : Node_Id;
begin
Alt := First (Alternatives (N));
while Present (Alt) loop
Kill_Dead_Code (Statements (Alt));
Next (Alt);
end loop;
end;
elsif Nkind (N) = N_Case_Statement_Alternative then
Kill_Dead_Code (Statements (N));
-- Deal with dead instances caused by deleting instantiations
elsif Nkind (N) in N_Generic_Instantiation then
Remove_Dead_Instance (N);
end if;
end if;
end Kill_Dead_Code;
-- Case where argument is a list of nodes to be killed
procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
N : Node_Id;
W : Boolean;
begin
W := Warn;
if Is_Non_Empty_List (L) then
N := First (L);
while Present (N) loop
Kill_Dead_Code (N, W);
W := False;
Next (N);
end loop;
end if;
end Kill_Dead_Code;
------------------------
-- Known_Non_Negative --
------------------------
function Known_Non_Negative (Opnd : Node_Id) return Boolean is
begin
if Is_OK_Static_Expression (Opnd) and then Expr_Value (Opnd) >= 0 then
return True;
else
declare
Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
begin
return
Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
end;
end if;
end Known_Non_Negative;
--------------------
-- Known_Non_Null --
--------------------
function Known_Non_Null (N : Node_Id) return Boolean is
begin
-- Checks for case where N is an entity reference
if Is_Entity_Name (N) and then Present (Entity (N)) then
declare
E : constant Entity_Id := Entity (N);
Op : Node_Kind;
Val : Node_Id;
begin
-- First check if we are in decisive conditional
Get_Current_Value_Condition (N, Op, Val);
if Known_Null (Val) then
if Op = N_Op_Eq then
return False;
elsif Op = N_Op_Ne then
return True;
end if;
end if;
-- If OK to do replacement, test Is_Known_Non_Null flag
if OK_To_Do_Constant_Replacement (E) then
return Is_Known_Non_Null (E);
-- Otherwise if not safe to do replacement, then say so
else
return False;
end if;
end;
-- True if access attribute
elsif Nkind (N) = N_Attribute_Reference
and then Nam_In (Attribute_Name (N), Name_Access,
Name_Unchecked_Access,
Name_Unrestricted_Access)
then
return True;
-- True if allocator
elsif Nkind (N) = N_Allocator then
return True;
-- For a conversion, true if expression is known non-null
elsif Nkind (N) = N_Type_Conversion then
return Known_Non_Null (Expression (N));
-- Above are all cases where the value could be determined to be
-- non-null. In all other cases, we don't know, so return False.
else
return False;
end if;
end Known_Non_Null;
----------------
-- Known_Null --
----------------
function Known_Null (N : Node_Id) return Boolean is
begin
-- Checks for case where N is an entity reference
if Is_Entity_Name (N) and then Present (Entity (N)) then
declare
E : constant Entity_Id := Entity (N);
Op : Node_Kind;
Val : Node_Id;
begin
-- Constant null value is for sure null
if Ekind (E) = E_Constant
and then Known_Null (Constant_Value (E))
then
return True;
end if;
-- First check if we are in decisive conditional
Get_Current_Value_Condition (N, Op, Val);
if Known_Null (Val) then
if Op = N_Op_Eq then
return True;
elsif Op = N_Op_Ne then
return False;
end if;
end if;
-- If OK to do replacement, test Is_Known_Null flag
if OK_To_Do_Constant_Replacement (E) then
return Is_Known_Null (E);
-- Otherwise if not safe to do replacement, then say so
else
return False;
end if;
end;
-- True if explicit reference to null
elsif Nkind (N) = N_Null then
return True;
-- For a conversion, true if expression is known null
elsif Nkind (N) = N_Type_Conversion then
return Known_Null (Expression (N));
-- Above are all cases where the value could be determined to be null.
-- In all other cases, we don't know, so return False.
else
return False;
end if;
end Known_Null;
-----------------------------
-- Make_CW_Equivalent_Type --
-----------------------------
-- Create a record type used as an equivalent of any member of the class
-- which takes its size from exp.
-- Generate the following code:
-- type Equiv_T is record
-- _parent : T (List of discriminant constraints taken from Exp);
-- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
-- end Equiv_T;
--
-- ??? Note that this type does not guarantee same alignment as all
-- derived types
function Make_CW_Equivalent_Type
(T : Entity_Id;
E : Node_Id) return Entity_Id
is
Loc : constant Source_Ptr := Sloc (E);
Root_Typ : constant Entity_Id := Root_Type (T);
List_Def : constant List_Id := Empty_List;
Comp_List : constant List_Id := New_List;
Equiv_Type : Entity_Id;
Range_Type : Entity_Id;
Str_Type : Entity_Id;
Constr_Root : Entity_Id;
Sizexpr : Node_Id;
begin
-- If the root type is already constrained, there are no discriminants
-- in the expression.
if not Has_Discriminants (Root_Typ)
or else Is_Constrained (Root_Typ)
then
Constr_Root := Root_Typ;
-- At this point in the expansion, non-limited view of the type
-- must be available, otherwise the error will be reported later.
if From_Limited_With (Constr_Root)
and then Present (Non_Limited_View (Constr_Root))
then
Constr_Root := Non_Limited_View (Constr_Root);
end if;
else
Constr_Root := Make_Temporary (Loc, 'R');
-- subtype cstr__n is T (List of discr constraints taken from Exp)
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Constr_Root,
Subtype_Indication => Make_Subtype_From_Expr (E, Root_Typ)));
end if;
-- Generate the range subtype declaration
Range_Type := Make_Temporary (Loc, 'G');
if not Is_Interface (Root_Typ) then
-- subtype rg__xx is
-- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
Sizexpr :=
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix =>
OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
Attribute_Name => Name_Size),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Constr_Root, Loc),
Attribute_Name => Name_Object_Size));
else
-- subtype rg__xx is
-- Storage_Offset range 1 .. Expr'size / Storage_Unit
Sizexpr :=
Make_Attribute_Reference (Loc,
Prefix =>
OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
Attribute_Name => Name_Size);
end if;
Set_Paren_Count (Sizexpr, 1);
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Range_Type,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Offset), Loc),
Constraint => Make_Range_Constraint (Loc,
Range_Expression =>
Make_Range (Loc,
Low_Bound => Make_Integer_Literal (Loc, 1),
High_Bound =>
Make_Op_Divide (Loc,
Left_Opnd => Sizexpr,
Right_Opnd => Make_Integer_Literal (Loc,
Intval => System_Storage_Unit)))))));
-- subtype str__nn is Storage_Array (rg__x);
Str_Type := Make_Temporary (Loc, 'S');
Append_To (List_Def,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Str_Type,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Array), Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints =>
New_List (New_Occurrence_Of (Range_Type, Loc))))));
-- type Equiv_T is record
-- [ _parent : Tnn; ]
-- E : Str_Type;
-- end Equiv_T;
Equiv_Type := Make_Temporary (Loc, 'T');
Set_Ekind (Equiv_Type, E_Record_Type);
Set_Parent_Subtype (Equiv_Type, Constr_Root);
-- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
-- treatment for this type. In particular, even though _parent's type
-- is a controlled type or contains controlled components, we do not
-- want to set Has_Controlled_Component on it to avoid making it gain
-- an unwanted _controller component.
Set_Is_Class_Wide_Equivalent_Type (Equiv_Type);
-- A class-wide equivalent type does not require initialization
Set_Suppress_Initialization (Equiv_Type);
if not Is_Interface (Root_Typ) then
Append_To (Comp_List,
Make_Component_Declaration (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_uParent),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Occurrence_Of (Constr_Root, Loc))));
end if;
Append_To (Comp_List,
Make_Component_Declaration (Loc,
Defining_Identifier => Make_Temporary (Loc, 'C'),
Component_Definition =>
Make_Component_Definition (Loc,
Aliased_Present => False,
Subtype_Indication => New_Occurrence_Of (Str_Type, Loc))));
Append_To (List_Def,
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Equiv_Type,
Type_Definition =>
Make_Record_Definition (Loc,
Component_List =>
Make_Component_List (Loc,
Component_Items => Comp_List,
Variant_Part => Empty))));
-- Suppress all checks during the analysis of the expanded code to avoid
-- the generation of spurious warnings under ZFP run-time.
Insert_Actions (E, List_Def, Suppress => All_Checks);
return Equiv_Type;
end Make_CW_Equivalent_Type;
-------------------------
-- Make_Invariant_Call --
-------------------------
function Make_Invariant_Call (Expr : Node_Id) return Node_Id is
Loc : constant Source_Ptr := Sloc (Expr);
Typ : constant Entity_Id := Base_Type (Etype (Expr));
Proc_Id : Entity_Id;
begin
pragma Assert (Has_Invariants (Typ));
Proc_Id := Invariant_Procedure (Typ);
pragma Assert (Present (Proc_Id));
return
Make_Procedure_Call_Statement (Loc,
Name => New_Occurrence_Of (Proc_Id, Loc),
Parameter_Associations => New_List (Relocate_Node (Expr)));
end Make_Invariant_Call;
------------------------
-- Make_Literal_Range --
------------------------
function Make_Literal_Range
(Loc : Source_Ptr;
Literal_Typ : Entity_Id) return Node_Id
is
Lo : constant Node_Id :=
New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
Index : constant Entity_Id := Etype (Lo);
Hi : Node_Id;
Length_Expr : constant Node_Id :=
Make_Op_Subtract (Loc,
Left_Opnd =>
Make_Integer_Literal (Loc,
Intval => String_Literal_Length (Literal_Typ)),
Right_Opnd =>
Make_Integer_Literal (Loc, 1));
begin
Set_Analyzed (Lo, False);
if Is_Integer_Type (Index) then
Hi :=
Make_Op_Add (Loc,
Left_Opnd => New_Copy_Tree (Lo),
Right_Opnd => Length_Expr);
else
Hi :=
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Val,
Prefix => New_Occurrence_Of (Index, Loc),
Expressions => New_List (
Make_Op_Add (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Pos,
Prefix => New_Occurrence_Of (Index, Loc),
Expressions => New_List (New_Copy_Tree (Lo))),
Right_Opnd => Length_Expr)));
end if;
return
Make_Range (Loc,
Low_Bound => Lo,
High_Bound => Hi);
end Make_Literal_Range;
--------------------------
-- Make_Non_Empty_Check --
--------------------------
function Make_Non_Empty_Check
(Loc : Source_Ptr;
N : Node_Id) return Node_Id
is
begin
return
Make_Op_Ne (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Attribute_Name => Name_Length,
Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
Right_Opnd =>
Make_Integer_Literal (Loc, 0));
end Make_Non_Empty_Check;
-------------------------
-- Make_Predicate_Call --
-------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
function Make_Predicate_Call
(Typ : Entity_Id;
Expr : Node_Id;
Mem : Boolean := False) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Expr);
Call : Node_Id;
Func_Id : Entity_Id;
Mode : Ghost_Mode_Type;
begin
pragma Assert (Present (Predicate_Function (Typ)));
-- The related type may be subject to pragma Ghost. Set the mode now to
-- ensure that the call is properly marked as Ghost.
Set_Ghost_Mode (Typ, Mode);
-- Call special membership version if requested and available
if Mem and then Present (Predicate_Function_M (Typ)) then
Func_Id := Predicate_Function_M (Typ);
else
Func_Id := Predicate_Function (Typ);
end if;
-- Case of calling normal predicate function
Call :=
Make_Function_Call (Loc,
Name => New_Occurrence_Of (Func_Id, Loc),
Parameter_Associations => New_List (Relocate_Node (Expr)));
Restore_Ghost_Mode (Mode);
return Call;
end Make_Predicate_Call;
--------------------------
-- Make_Predicate_Check --
--------------------------
function Make_Predicate_Check
(Typ : Entity_Id;
Expr : Node_Id) return Node_Id
is
procedure Replace_Subtype_Reference (N : Node_Id);
-- Replace current occurrences of the subtype to which a dynamic
-- predicate applies, by the expression that triggers a predicate
-- check. This is needed for aspect Predicate_Failure, for which
-- we do not generate a wrapper procedure, but simply modify the
-- expression for the pragma of the predicate check.
--------------------------------
-- Replace_Subtype_Reference --
--------------------------------
procedure Replace_Subtype_Reference (N : Node_Id) is
begin
Rewrite (N, New_Copy_Tree (Expr));
-- We want to treat the node as if it comes from source, so
-- that ASIS will not ignore it.
Set_Comes_From_Source (N, True);
end Replace_Subtype_Reference;
procedure Replace_Subtype_References is
new Replace_Type_References_Generic (Replace_Subtype_Reference);
-- Local variables
Loc : constant Source_Ptr := Sloc (Expr);
Arg_List : List_Id;
Fail_Expr : Node_Id;
Nam : Name_Id;
-- Start of processing for Make_Predicate_Check
begin
-- If predicate checks are suppressed, then return a null statement. For
-- this call, we check only the scope setting. If the caller wants to
-- check a specific entity's setting, they must do it manually.
if Predicate_Checks_Suppressed (Empty) then
return Make_Null_Statement (Loc);
end if;
-- Do not generate a check within an internal subprogram (stream
-- functions and the like, including including predicate functions).
if Within_Internal_Subprogram then
return Make_Null_Statement (Loc);
end if;
-- Compute proper name to use, we need to get this right so that the
-- right set of check policies apply to the Check pragma we are making.
if Has_Dynamic_Predicate_Aspect (Typ) then
Nam := Name_Dynamic_Predicate;
elsif Has_Static_Predicate_Aspect (Typ) then
Nam := Name_Static_Predicate;
else
Nam := Name_Predicate;
end if;
Arg_List := New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Make_Identifier (Loc, Nam)),
Make_Pragma_Argument_Association (Loc,
Expression => Make_Predicate_Call (Typ, Expr)));
-- If subtype has Predicate_Failure defined, add the correponding
-- expression as an additional pragma parameter, after replacing
-- current instances with the expression being checked.
if Has_Aspect (Typ, Aspect_Predicate_Failure) then
Fail_Expr :=
New_Copy_Tree
(Expression (Find_Aspect (Typ, Aspect_Predicate_Failure)));
Replace_Subtype_References (Fail_Expr, Typ);
Append_To (Arg_List,
Make_Pragma_Argument_Association (Loc,
Expression => Fail_Expr));
end if;
return
Make_Pragma (Loc,
Chars => Name_Check,
Pragma_Argument_Associations => Arg_List);
end Make_Predicate_Check;
----------------------------
-- Make_Subtype_From_Expr --
----------------------------
-- 1. If Expr is an unconstrained array expression, creates
-- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
-- 2. If Expr is a unconstrained discriminated type expression, creates
-- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
-- 3. If Expr is class-wide, creates an implicit class-wide subtype
function Make_Subtype_From_Expr
(E : Node_Id;
Unc_Typ : Entity_Id;
Related_Id : Entity_Id := Empty) return Node_Id
is
List_Constr : constant List_Id := New_List;
Loc : constant Source_Ptr := Sloc (E);
D : Entity_Id;
Full_Exp : Node_Id;
Full_Subtyp : Entity_Id;
High_Bound : Entity_Id;
Index_Typ : Entity_Id;
Low_Bound : Entity_Id;
Priv_Subtyp : Entity_Id;
Utyp : Entity_Id;
begin
if Is_Private_Type (Unc_Typ)
and then Has_Unknown_Discriminants (Unc_Typ)
then
-- The caller requests a unique external name for both the private
-- and the full subtype.
if Present (Related_Id) then
Full_Subtyp :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Related_Id), 'C'));
Priv_Subtyp :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Related_Id), 'P'));
else
Full_Subtyp := Make_Temporary (Loc, 'C');
Priv_Subtyp := Make_Temporary (Loc, 'P');
end if;
-- Prepare the subtype completion. Use the base type to find the
-- underlying type because the type may be a generic actual or an
-- explicit subtype.
Utyp := Underlying_Type (Base_Type (Unc_Typ));
Full_Exp :=
Unchecked_Convert_To (Utyp, Duplicate_Subexpr_No_Checks (E));
Set_Parent (Full_Exp, Parent (E));
Insert_Action (E,
Make_Subtype_Declaration (Loc,
Defining_Identifier => Full_Subtyp,
Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
-- Define the dummy private subtype
Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
Set_Scope (Priv_Subtyp, Full_Subtyp);
Set_Is_Constrained (Priv_Subtyp);
Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
Set_Is_Itype (Priv_Subtyp);
Set_Associated_Node_For_Itype (Priv_Subtyp, E);
if Is_Tagged_Type (Priv_Subtyp) then
Set_Class_Wide_Type
(Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
Set_Direct_Primitive_Operations (Priv_Subtyp,
Direct_Primitive_Operations (Unc_Typ));
end if;
Set_Full_View (Priv_Subtyp, Full_Subtyp);
return New_Occurrence_Of (Priv_Subtyp, Loc);
elsif Is_Array_Type (Unc_Typ) then
Index_Typ := First_Index (Unc_Typ);
for J in 1 .. Number_Dimensions (Unc_Typ) loop
-- Capture the bounds of each index constraint in case the context
-- is an object declaration of an unconstrained type initialized
-- by a function call:
-- Obj : Unconstr_Typ := Func_Call;
-- This scenario requires secondary scope management and the index
-- constraint cannot depend on the temporary used to capture the
-- result of the function call.
-- SS_Mark;
-- Temp : Unconstr_Typ_Ptr := Func_Call'reference;
-- subtype S is Unconstr_Typ (Temp.all'First .. Temp.all'Last);
-- Obj : S := Temp.all;
-- SS_Release; -- Temp is gone at this point, bounds of S are
-- -- non existent.
-- Generate:
-- Low_Bound : constant Base_Type (Index_Typ) := E'First (J);
Low_Bound := Make_Temporary (Loc, 'B');
Insert_Action (E,
Make_Object_Declaration (Loc,
Defining_Identifier => Low_Bound,
Object_Definition =>
New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
Constant_Present => True,
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Attribute_Name => Name_First,
Expressions => New_List (
Make_Integer_Literal (Loc, J)))));
-- Generate:
-- High_Bound : constant Base_Type (Index_Typ) := E'Last (J);
High_Bound := Make_Temporary (Loc, 'B');
Insert_Action (E,
Make_Object_Declaration (Loc,
Defining_Identifier => High_Bound,
Object_Definition =>
New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
Constant_Present => True,
Expression =>
Make_Attribute_Reference (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Attribute_Name => Name_Last,
Expressions => New_List (
Make_Integer_Literal (Loc, J)))));
Append_To (List_Constr,
Make_Range (Loc,
Low_Bound => New_Occurrence_Of (Low_Bound, Loc),
High_Bound => New_Occurrence_Of (High_Bound, Loc)));
Index_Typ := Next_Index (Index_Typ);
end loop;
elsif Is_Class_Wide_Type (Unc_Typ) then
declare
CW_Subtype : Entity_Id;
EQ_Typ : Entity_Id := Empty;
begin
-- A class-wide equivalent type is not needed on VM targets
-- because the VM back-ends handle the class-wide object
-- initialization itself (and doesn't need or want the
-- additional intermediate type to handle the assignment).
if Expander_Active and then Tagged_Type_Expansion then
-- If this is the class-wide type of a completion that is a
-- record subtype, set the type of the class-wide type to be
-- the full base type, for use in the expanded code for the
-- equivalent type. Should this be done earlier when the
-- completion is analyzed ???
if Is_Private_Type (Etype (Unc_Typ))
and then
Ekind (Full_View (Etype (Unc_Typ))) = E_Record_Subtype
then
Set_Etype (Unc_Typ, Base_Type (Full_View (Etype (Unc_Typ))));
end if;
EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
end if;
CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
Set_Equivalent_Type (CW_Subtype, EQ_Typ);
Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
return New_Occurrence_Of (CW_Subtype, Loc);
end;
-- Indefinite record type with discriminants
else
D := First_Discriminant (Unc_Typ);
while Present (D) loop
Append_To (List_Constr,
Make_Selected_Component (Loc,
Prefix => Duplicate_Subexpr_No_Checks (E),
Selector_Name => New_Occurrence_Of (D, Loc)));
Next_Discriminant (D);
end loop;
end if;
return
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Unc_Typ, Loc),
Constraint =>
Make_Index_Or_Discriminant_Constraint (Loc,
Constraints => List_Constr));
end Make_Subtype_From_Expr;
----------------------------
-- Matching_Standard_Type --
----------------------------
function Matching_Standard_Type (Typ : Entity_Id) return Entity_Id is
pragma Assert (Is_Scalar_Type (Typ));
Siz : constant Uint := Esize (Typ);
begin
-- Floating-point cases
if Is_Floating_Point_Type (Typ) then
if Siz <= Esize (Standard_Short_Float) then
return Standard_Short_Float;
elsif Siz <= Esize (Standard_Float) then
return Standard_Float;
elsif Siz <= Esize (Standard_Long_Float) then
return Standard_Long_Float;
elsif Siz <= Esize (Standard_Long_Long_Float) then
return Standard_Long_Long_Float;
else
raise Program_Error;
end if;
-- Integer cases (includes fixed-point types)
-- Unsigned integer cases (includes normal enumeration types)
elsif Is_Unsigned_Type (Typ) then
if Siz <= Esize (Standard_Short_Short_Unsigned) then
return Standard_Short_Short_Unsigned;
elsif Siz <= Esize (Standard_Short_Unsigned) then
return Standard_Short_Unsigned;
elsif Siz <= Esize (Standard_Unsigned) then
return Standard_Unsigned;
elsif Siz <= Esize (Standard_Long_Unsigned) then
return Standard_Long_Unsigned;
elsif Siz <= Esize (Standard_Long_Long_Unsigned) then
return Standard_Long_Long_Unsigned;
else
raise Program_Error;
end if;
-- Signed integer cases
else
if Siz <= Esize (Standard_Short_Short_Integer) then
return Standard_Short_Short_Integer;
elsif Siz <= Esize (Standard_Short_Integer) then
return Standard_Short_Integer;
elsif Siz <= Esize (Standard_Integer) then
return Standard_Integer;
elsif Siz <= Esize (Standard_Long_Integer) then
return Standard_Long_Integer;
elsif Siz <= Esize (Standard_Long_Long_Integer) then
return Standard_Long_Long_Integer;
else
raise Program_Error;
end if;
end if;
end Matching_Standard_Type;
-----------------------------
-- May_Generate_Large_Temp --
-----------------------------
-- At the current time, the only types that we return False for (i.e. where
-- we decide we know they cannot generate large temps) are ones where we
-- know the size is 256 bits or less at compile time, and we are still not
-- doing a thorough job on arrays and records ???
function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
begin
if not Size_Known_At_Compile_Time (Typ) then
return False;
elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
return False;
elsif Is_Array_Type (Typ)
and then Present (Packed_Array_Impl_Type (Typ))
then
return May_Generate_Large_Temp (Packed_Array_Impl_Type (Typ));
-- We could do more here to find other small types ???
else
return True;
end if;
end May_Generate_Large_Temp;
------------------------
-- Needs_Finalization --
------------------------
function Needs_Finalization (T : Entity_Id) return Boolean is
function Has_Some_Controlled_Component (Rec : Entity_Id) return Boolean;
-- If type is not frozen yet, check explicitly among its components,
-- because the Has_Controlled_Component flag is not necessarily set.
-----------------------------------
-- Has_Some_Controlled_Component --
-----------------------------------
function Has_Some_Controlled_Component
(Rec : Entity_Id) return Boolean
is
Comp : Entity_Id;
begin
if Has_Controlled_Component (Rec) then
return True;
elsif not Is_Frozen (Rec) then
if Is_Record_Type (Rec) then
Comp := First_Entity (Rec);
while Present (Comp) loop
if not Is_Type (Comp)
and then Needs_Finalization (Etype (Comp))
then
return True;
end if;
Next_Entity (Comp);
end loop;
return False;
else
return
Is_Array_Type (Rec)
and then Needs_Finalization (Component_Type (Rec));
end if;
else
return False;
end if;
end Has_Some_Controlled_Component;
-- Start of processing for Needs_Finalization
begin
-- Certain run-time configurations and targets do not provide support
-- for controlled types.
if Restriction_Active (No_Finalization) then
return False;
-- C++ types are not considered controlled. It is assumed that the
-- non-Ada side will handle their clean up.
elsif Convention (T) = Convention_CPP then
return False;
-- Never needs finalization if Disable_Controlled set
elsif Disable_Controlled (T) then
return False;
elsif Is_Class_Wide_Type (T) and then Disable_Controlled (Etype (T)) then
return False;
else
-- Class-wide types are treated as controlled because derivations
-- from the root type can introduce controlled components.
return Is_Class_Wide_Type (T)
or else Is_Controlled (T)
or else Has_Some_Controlled_Component (T)
or else
(Is_Concurrent_Type (T)
and then Present (Corresponding_Record_Type (T))
and then Needs_Finalization (Corresponding_Record_Type (T)));
end if;
end Needs_Finalization;
----------------------------
-- Needs_Constant_Address --
----------------------------
function Needs_Constant_Address
(Decl : Node_Id;
Typ : Entity_Id) return Boolean
is
begin
-- If we have no initialization of any kind, then we don't need to place
-- any restrictions on the address clause, because the object will be
-- elaborated after the address clause is evaluated. This happens if the
-- declaration has no initial expression, or the type has no implicit
-- initialization, or the object is imported.
-- The same holds for all initialized scalar types and all access types.
-- Packed bit arrays of size up to 64 are represented using a modular
-- type with an initialization (to zero) and can be processed like other
-- initialized scalar types.
-- If the type is controlled, code to attach the object to a
-- finalization chain is generated at the point of declaration, and
-- therefore the elaboration of the object cannot be delayed: the
-- address expression must be a constant.
if No (Expression (Decl))
and then not Needs_Finalization (Typ)
and then
(not Has_Non_Null_Base_Init_Proc (Typ)
or else Is_Imported (Defining_Identifier (Decl)))
then
return False;
elsif (Present (Expression (Decl)) and then Is_Scalar_Type (Typ))
or else Is_Access_Type (Typ)
or else
(Is_Bit_Packed_Array (Typ)
and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)))
then
return False;
else
-- Otherwise, we require the address clause to be constant because
-- the call to the initialization procedure (or the attach code) has
-- to happen at the point of the declaration.
-- Actually the IP call has been moved to the freeze actions anyway,
-- so maybe we can relax this restriction???
return True;
end if;
end Needs_Constant_Address;
----------------------------
-- New_Class_Wide_Subtype --
----------------------------
function New_Class_Wide_Subtype
(CW_Typ : Entity_Id;
N : Node_Id) return Entity_Id
is
Res : constant Entity_Id := Create_Itype (E_Void, N);
Res_Name : constant Name_Id := Chars (Res);
Res_Scope : constant Entity_Id := Scope (Res);
begin
Copy_Node (CW_Typ, Res);
Set_Comes_From_Source (Res, False);
Set_Sloc (Res, Sloc (N));
Set_Is_Itype (Res);
Set_Associated_Node_For_Itype (Res, N);
Set_Is_Public (Res, False); -- By default, may be changed below.
Set_Public_Status (Res);
Set_Chars (Res, Res_Name);
Set_Scope (Res, Res_Scope);
Set_Ekind (Res, E_Class_Wide_Subtype);
Set_Next_Entity (Res, Empty);
Set_Etype (Res, Base_Type (CW_Typ));
Set_Is_Frozen (Res, False);
Set_Freeze_Node (Res, Empty);
return (Res);
end New_Class_Wide_Subtype;
--------------------------------
-- Non_Limited_Designated_Type --
---------------------------------
function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
Desig : constant Entity_Id := Designated_Type (T);
begin
if Has_Non_Limited_View (Desig) then
return Non_Limited_View (Desig);
else
return Desig;
end if;
end Non_Limited_Designated_Type;
-----------------------------------
-- OK_To_Do_Constant_Replacement --
-----------------------------------
function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
ES : constant Entity_Id := Scope (E);
CS : Entity_Id;
begin
-- Do not replace statically allocated objects, because they may be
-- modified outside the current scope.
if Is_Statically_Allocated (E) then
return False;
-- Do not replace aliased or volatile objects, since we don't know what
-- else might change the value.
elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
return False;
-- Debug flag -gnatdM disconnects this optimization
elsif Debug_Flag_MM then
return False;
-- Otherwise check scopes
else
CS := Current_Scope;
loop
-- If we are in right scope, replacement is safe
if CS = ES then
return True;
-- Packages do not affect the determination of safety
elsif Ekind (CS) = E_Package then
exit when CS = Standard_Standard;
CS := Scope (CS);
-- Blocks do not affect the determination of safety
elsif Ekind (CS) = E_Block then
CS := Scope (CS);
-- Loops do not affect the determination of safety. Note that we
-- kill all current values on entry to a loop, so we are just
-- talking about processing within a loop here.
elsif Ekind (CS) = E_Loop then
CS := Scope (CS);
-- Otherwise, the reference is dubious, and we cannot be sure that
-- it is safe to do the replacement.
else
exit;
end if;
end loop;
return False;
end if;
end OK_To_Do_Constant_Replacement;
------------------------------------
-- Possible_Bit_Aligned_Component --
------------------------------------
function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
begin
-- Do not process an unanalyzed node because it is not yet decorated and
-- most checks performed below will fail.
if not Analyzed (N) then
return False;
end if;
case Nkind (N) is
-- Case of indexed component
when N_Indexed_Component =>
declare
P : constant Node_Id := Prefix (N);
Ptyp : constant Entity_Id := Etype (P);
begin
-- If we know the component size and it is less than 64, then
-- we are definitely OK. The back end always does assignment of
-- misaligned small objects correctly.
if Known_Static_Component_Size (Ptyp)
and then Component_Size (Ptyp) <= 64
then
return False;
-- Otherwise, we need to test the prefix, to see if we are
-- indexing from a possibly unaligned component.
else
return Possible_Bit_Aligned_Component (P);
end if;
end;
-- Case of selected component
when N_Selected_Component =>
declare
P : constant Node_Id := Prefix (N);
Comp : constant Entity_Id := Entity (Selector_Name (N));
begin
-- If there is no component clause, then we are in the clear
-- since the back end will never misalign a large component
-- unless it is forced to do so. In the clear means we need
-- only the recursive test on the prefix.
if Component_May_Be_Bit_Aligned (Comp) then
return True;
else
return Possible_Bit_Aligned_Component (P);
end if;
end;
-- For a slice, test the prefix, if that is possibly misaligned,
-- then for sure the slice is.
when N_Slice =>
return Possible_Bit_Aligned_Component (Prefix (N));
-- For an unchecked conversion, check whether the expression may
-- be bit-aligned.
when N_Unchecked_Type_Conversion =>
return Possible_Bit_Aligned_Component (Expression (N));
-- If we have none of the above, it means that we have fallen off the
-- top testing prefixes recursively, and we now have a stand alone
-- object, where we don't have a problem, unless this is a renaming,
-- in which case we need to look into the renamed object.
when others =>
if Is_Entity_Name (N)
and then Present (Renamed_Object (Entity (N)))
then
return
Possible_Bit_Aligned_Component (Renamed_Object (Entity (N)));
else
return False;
end if;
end case;
end Possible_Bit_Aligned_Component;
-----------------------------------------------
-- Process_Statements_For_Controlled_Objects --
-----------------------------------------------
procedure Process_Statements_For_Controlled_Objects (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
function Are_Wrapped (L : List_Id) return Boolean;
-- Determine whether list L contains only one statement which is a block
function Wrap_Statements_In_Block
(L : List_Id;
Scop : Entity_Id := Current_Scope) return Node_Id;
-- Given a list of statements L, wrap it in a block statement and return
-- the generated node. Scop is either the current scope or the scope of
-- the context (if applicable).
-----------------
-- Are_Wrapped --
-----------------
function Are_Wrapped (L : List_Id) return Boolean is
Stmt : constant Node_Id := First (L);
begin
return
Present (Stmt)
and then No (Next (Stmt))
and then Nkind (Stmt) = N_Block_Statement;
end Are_Wrapped;
------------------------------
-- Wrap_Statements_In_Block --
------------------------------
function Wrap_Statements_In_Block
(L : List_Id;
Scop : Entity_Id := Current_Scope) return Node_Id
is
Block_Id : Entity_Id;
Block_Nod : Node_Id;
Iter_Loop : Entity_Id;
begin
Block_Nod :=
Make_Block_Statement (Loc,
Declarations => No_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => L));
-- Create a label for the block in case the block needs to manage the
-- secondary stack. A label allows for flag Uses_Sec_Stack to be set.
Add_Block_Identifier (Block_Nod, Block_Id);
-- When wrapping the statements of an iterator loop, check whether
-- the loop requires secondary stack management and if so, propagate
-- the appropriate flags to the block. This ensures that the cursor
-- is properly cleaned up at each iteration of the loop.
Iter_Loop := Find_Enclosing_Iterator_Loop (Scop);
if Present (Iter_Loop) then
Set_Uses_Sec_Stack (Block_Id, Uses_Sec_Stack (Iter_Loop));
-- Secondary stack reclamation is suppressed when the associated
-- iterator loop contains a return statement which uses the stack.
Set_Sec_Stack_Needed_For_Return
(Block_Id, Sec_Stack_Needed_For_Return (Iter_Loop));
end if;
return Block_Nod;
end Wrap_Statements_In_Block;
-- Local variables
Block : Node_Id;
-- Start of processing for Process_Statements_For_Controlled_Objects
begin
-- Whenever a non-handled statement list is wrapped in a block, the
-- block must be explicitly analyzed to redecorate all entities in the
-- list and ensure that a finalizer is properly built.
case Nkind (N) is
when N_Conditional_Entry_Call
| N_Elsif_Part
| N_If_Statement
| N_Selective_Accept
=>
-- Check the "then statements" for elsif parts and if statements
if Nkind_In (N, N_Elsif_Part, N_If_Statement)
and then not Is_Empty_List (Then_Statements (N))
and then not Are_Wrapped (Then_Statements (N))
and then Requires_Cleanup_Actions
(Then_Statements (N), False, False)
then
Block := Wrap_Statements_In_Block (Then_Statements (N));
Set_Then_Statements (N, New_List (Block));
Analyze (Block);
end if;
-- Check the "else statements" for conditional entry calls, if
-- statements and selective accepts.
if Nkind_In (N, N_Conditional_Entry_Call,
N_If_Statement,
N_Selective_Accept)
and then not Is_Empty_List (Else_Statements (N))
and then not Are_Wrapped (Else_Statements (N))
and then Requires_Cleanup_Actions
(Else_Statements (N), False, False)
then
Block := Wrap_Statements_In_Block (Else_Statements (N));
Set_Else_Statements (N, New_List (Block));
Analyze (Block);
end if;
when N_Abortable_Part
| N_Accept_Alternative
| N_Case_Statement_Alternative
| N_Delay_Alternative
| N_Entry_Call_Alternative
| N_Exception_Handler
| N_Loop_Statement
| N_Triggering_Alternative
=>
if not Is_Empty_List (Statements (N))
and then not Are_Wrapped (Statements (N))
and then Requires_Cleanup_Actions (Statements (N), False, False)
then
if Nkind (N) = N_Loop_Statement
and then Present (Identifier (N))
then
Block :=
Wrap_Statements_In_Block
(L => Statements (N),
Scop => Entity (Identifier (N)));
else
Block := Wrap_Statements_In_Block (Statements (N));
end if;
Set_Statements (N, New_List (Block));
Analyze (Block);
end if;
when others =>
null;
end case;
end Process_Statements_For_Controlled_Objects;
------------------
-- Power_Of_Two --
------------------
function Power_Of_Two (N : Node_Id) return Nat is
Typ : constant Entity_Id := Etype (N);
pragma Assert (Is_Integer_Type (Typ));
Siz : constant Nat := UI_To_Int (Esize (Typ));
Val : Uint;
begin
if not Compile_Time_Known_Value (N) then
return 0;
else
Val := Expr_Value (N);
for J in 1 .. Siz - 1 loop
if Val = Uint_2 ** J then
return J;
end if;
end loop;
return 0;
end if;
end Power_Of_Two;
----------------------
-- Remove_Init_Call --
----------------------
function Remove_Init_Call
(Var : Entity_Id;
Rep_Clause : Node_Id) return Node_Id
is
Par : constant Node_Id := Parent (Var);
Typ : constant Entity_Id := Etype (Var);
Init_Proc : Entity_Id;
-- Initialization procedure for Typ
function Find_Init_Call_In_List (From : Node_Id) return Node_Id;
-- Look for init call for Var starting at From and scanning the
-- enclosing list until Rep_Clause or the end of the list is reached.
----------------------------
-- Find_Init_Call_In_List --
----------------------------
function Find_Init_Call_In_List (From : Node_Id) return Node_Id is
Init_Call : Node_Id;
begin
Init_Call := From;
while Present (Init_Call) and then Init_Call /= Rep_Clause loop
if Nkind (Init_Call) = N_Procedure_Call_Statement
and then Is_Entity_Name (Name (Init_Call))
and then Entity (Name (Init_Call)) = Init_Proc
then
return Init_Call;
end if;
Next (Init_Call);
end loop;
return Empty;
end Find_Init_Call_In_List;
Init_Call : Node_Id;
-- Start of processing for Find_Init_Call
begin
if Present (Initialization_Statements (Var)) then
Init_Call := Initialization_Statements (Var);
Set_Initialization_Statements (Var, Empty);
elsif not Has_Non_Null_Base_Init_Proc (Typ) then
-- No init proc for the type, so obviously no call to be found
return Empty;
else
-- We might be able to handle other cases below by just properly
-- setting Initialization_Statements at the point where the init proc
-- call is generated???
Init_Proc := Base_Init_Proc (Typ);
-- First scan the list containing the declaration of Var
Init_Call := Find_Init_Call_In_List (From => Next (Par));
-- If not found, also look on Var's freeze actions list, if any,
-- since the init call may have been moved there (case of an address
-- clause applying to Var).
if No (Init_Call) and then Present (Freeze_Node (Var)) then
Init_Call :=
Find_Init_Call_In_List (First (Actions (Freeze_Node (Var))));
end if;
-- If the initialization call has actuals that use the secondary
-- stack, the call may have been wrapped into a temporary block, in
-- which case the block itself has to be removed.
if No (Init_Call) and then Nkind (Next (Par)) = N_Block_Statement then
declare
Blk : constant Node_Id := Next (Par);
begin
if Present
(Find_Init_Call_In_List
(First (Statements (Handled_Statement_Sequence (Blk)))))
then
Init_Call := Blk;
end if;
end;
end if;
end if;
if Present (Init_Call) then
Remove (Init_Call);
end if;
return Init_Call;
end Remove_Init_Call;
-------------------------
-- Remove_Side_Effects --
-------------------------
procedure Remove_Side_Effects
(Exp : Node_Id;
Name_Req : Boolean := False;
Renaming_Req : Boolean := False;
Variable_Ref : Boolean := False;
Related_Id : Entity_Id := Empty;
Is_Low_Bound : Boolean := False;
Is_High_Bound : Boolean := False;
Check_Side_Effects : Boolean := True)
is
function Build_Temporary
(Loc : Source_Ptr;
Id : Character;
Related_Nod : Node_Id := Empty) return Entity_Id;
-- Create an external symbol of the form xxx_FIRST/_LAST if Related_Nod
-- is present (xxx is taken from the Chars field of Related_Nod),
-- otherwise it generates an internal temporary.
---------------------
-- Build_Temporary --
---------------------
function Build_Temporary
(Loc : Source_Ptr;
Id : Character;
Related_Nod : Node_Id := Empty) return Entity_Id
is
Temp_Nam : Name_Id;
begin
-- The context requires an external symbol
if Present (Related_Id) then
if Is_Low_Bound then
Temp_Nam := New_External_Name (Chars (Related_Id), "_FIRST");
else pragma Assert (Is_High_Bound);
Temp_Nam := New_External_Name (Chars (Related_Id), "_LAST");
end if;
return Make_Defining_Identifier (Loc, Temp_Nam);
-- Otherwise generate an internal temporary
else
return Make_Temporary (Loc, Id, Related_Nod);
end if;
end Build_Temporary;
-- Local variables
Loc : constant Source_Ptr := Sloc (Exp);
Exp_Type : constant Entity_Id := Etype (Exp);
Svg_Suppress : constant Suppress_Record := Scope_Suppress;
Def_Id : Entity_Id;
E : Node_Id;
New_Exp : Node_Id;
Ptr_Typ_Decl : Node_Id;
Ref_Type : Entity_Id;
Res : Node_Id;
-- Start of processing for Remove_Side_Effects
begin
-- Handle cases in which there is nothing to do. In GNATprove mode,
-- removal of side effects is useful for the light expansion of
-- renamings. This removal should only occur when not inside a
-- generic and not doing a pre-analysis.
if not Expander_Active
and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
then
return;
-- Cannot generate temporaries if the invocation to remove side effects
-- was issued too early and the type of the expression is not resolved
-- (this happens because routines Duplicate_Subexpr_XX implicitly invoke
-- Remove_Side_Effects).
elsif No (Exp_Type)
or else Ekind (Exp_Type) = E_Access_Attribute_Type
then
return;
-- Nothing to do if prior expansion determined that a function call does
-- not require side effect removal.
elsif Nkind (Exp) = N_Function_Call
and then No_Side_Effect_Removal (Exp)
then
return;
-- No action needed for side-effect free expressions
elsif Check_Side_Effects
and then Side_Effect_Free (Exp, Name_Req, Variable_Ref)
then
return;
end if;
-- The remaining processing is done with all checks suppressed
-- Note: from now on, don't use return statements, instead do a goto
-- Leave, to ensure that we properly restore Scope_Suppress.Suppress.
Scope_Suppress.Suppress := (others => True);
-- If this is an elementary or a small not by-reference record type, and
-- we need to capture the value, just make a constant; this is cheap and
-- objects of both kinds of types can be bit aligned, so it might not be
-- possible to generate a reference to them. Likewise if this is not a
-- name reference, except for a type conversion because we would enter
-- an infinite recursion with Checks.Apply_Predicate_Check if the target
-- type has predicates (and type conversions need a specific treatment
-- anyway, see below). Also do it if we have a volatile reference and
-- Name_Req is not set (see comments for Side_Effect_Free).
if (Is_Elementary_Type (Exp_Type)
or else (Is_Record_Type (Exp_Type)
and then Known_Static_RM_Size (Exp_Type)
and then RM_Size (Exp_Type) <= 64
and then not Has_Discriminants (Exp_Type)
and then not Is_By_Reference_Type (Exp_Type)))
and then (Variable_Ref
or else (not Is_Name_Reference (Exp)
and then Nkind (Exp) /= N_Type_Conversion)
or else (not Name_Req
and then Is_Volatile_Reference (Exp)))
then
Def_Id := Build_Temporary (Loc, 'R', Exp);
Set_Etype (Def_Id, Exp_Type);
Res := New_Occurrence_Of (Def_Id, Loc);
-- If the expression is a packed reference, it must be reanalyzed and
-- expanded, depending on context. This is the case for actuals where
-- a constraint check may capture the actual before expansion of the
-- call is complete.
if Nkind (Exp) = N_Indexed_Component
and then Is_Packed (Etype (Prefix (Exp)))
then
Set_Analyzed (Exp, False);
Set_Analyzed (Prefix (Exp), False);
end if;
-- Generate:
-- Rnn : Exp_Type renames Expr;
if Renaming_Req then
E :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
Name => Relocate_Node (Exp));
-- Generate:
-- Rnn : constant Exp_Type := Expr;
else
E :=
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Constant_Present => True,
Expression => Relocate_Node (Exp));
Set_Assignment_OK (E);
end if;
Insert_Action (Exp, E);
-- If the expression has the form v.all then we can just capture the
-- pointer, and then do an explicit dereference on the result, but
-- this is not right if this is a volatile reference.
elsif Nkind (Exp) = N_Explicit_Dereference
and then not Is_Volatile_Reference (Exp)
then
Def_Id := Build_Temporary (Loc, 'R', Exp);
Res :=
Make_Explicit_Dereference (Loc, New_Occurrence_Of (Def_Id, Loc));
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition =>
New_Occurrence_Of (Etype (Prefix (Exp)), Loc),
Constant_Present => True,
Expression => Relocate_Node (Prefix (Exp))));
-- Similar processing for an unchecked conversion of an expression of
-- the form v.all, where we want the same kind of treatment.
elsif Nkind (Exp) = N_Unchecked_Type_Conversion
and then Nkind (Expression (Exp)) = N_Explicit_Dereference
then
Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
goto Leave;
-- If this is a type conversion, leave the type conversion and remove
-- the side effects in the expression. This is important in several
-- circumstances: for change of representations, and also when this is a
-- view conversion to a smaller object, where gigi can end up creating
-- its own temporary of the wrong size.
elsif Nkind (Exp) = N_Type_Conversion then
Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
-- Generating C code the type conversion of an access to constrained
-- array type into an access to unconstrained array type involves
-- initializing a fat pointer and the expression must be free of
-- side effects to safely compute its bounds.
if Modify_Tree_For_C
and then Is_Access_Type (Etype (Exp))
and then Is_Array_Type (Designated_Type (Etype (Exp)))
and then not Is_Constrained (Designated_Type (Etype (Exp)))
then
Def_Id := Build_Temporary (Loc, 'R', Exp);
Set_Etype (Def_Id, Exp_Type);
Res := New_Occurrence_Of (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Constant_Present => True,
Expression => Relocate_Node (Exp)));
else
goto Leave;
end if;
-- If this is an unchecked conversion that Gigi can't handle, make
-- a copy or a use a renaming to capture the value.
elsif Nkind (Exp) = N_Unchecked_Type_Conversion
and then not Safe_Unchecked_Type_Conversion (Exp)
then
if CW_Or_Has_Controlled_Part (Exp_Type) then
-- Use a renaming to capture the expression, rather than create
-- a controlled temporary.
Def_Id := Build_Temporary (Loc, 'R', Exp);
Res := New_Occurrence_Of (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
Name => Relocate_Node (Exp)));
else
Def_Id := Build_Temporary (Loc, 'R', Exp);
Set_Etype (Def_Id, Exp_Type);
Res := New_Occurrence_Of (Def_Id, Loc);
E :=
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Constant_Present => not Is_Variable (Exp),
Expression => Relocate_Node (Exp));
Set_Assignment_OK (E);
Insert_Action (Exp, E);
end if;
-- For expressions that denote names, we can use a renaming scheme.
-- This is needed for correctness in the case of a volatile object of
-- a non-volatile type because the Make_Reference call of the "default"
-- approach would generate an illegal access value (an access value
-- cannot designate such an object - see Analyze_Reference).
elsif Is_Name_Reference (Exp)
-- We skip using this scheme if we have an object of a volatile
-- type and we do not have Name_Req set true (see comments for
-- Side_Effect_Free).
and then (Name_Req or else not Treat_As_Volatile (Exp_Type))
then
Def_Id := Build_Temporary (Loc, 'R', Exp);
Res := New_Occurrence_Of (Def_Id, Loc);
Insert_Action (Exp,
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Def_Id,
Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
Name => Relocate_Node (Exp)));
-- If this is a packed reference, or a selected component with
-- a non-standard representation, a reference to the temporary
-- will be replaced by a copy of the original expression (see
-- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
-- elaborated by gigi, and is of course not to be replaced in-line
-- by the expression it renames, which would defeat the purpose of
-- removing the side-effect.
if Nkind_In (Exp, N_Selected_Component, N_Indexed_Component)
and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
then
null;
else
Set_Is_Renaming_Of_Object (Def_Id, False);
end if;
-- Avoid generating a variable-sized temporary, by generating the
-- reference just for the function call. The transformation could be
-- refined to apply only when the array component is constrained by a
-- discriminant???
elsif Nkind (Exp) = N_Selected_Component
and then Nkind (Prefix (Exp)) = N_Function_Call
and then Is_Array_Type (Exp_Type)
then
Remove_Side_Effects (Prefix (Exp), Name_Req, Variable_Ref);
goto Leave;
-- Otherwise we generate a reference to the expression
else
-- An expression which is in SPARK mode is considered side effect
-- free if the resulting value is captured by a variable or a
-- constant.
if GNATprove_Mode
and then Nkind (Parent (Exp)) = N_Object_Declaration
then
goto Leave;
-- When generating C code we cannot consider side effect free object
-- declarations that have discriminants and are initialized by means
-- of a function call since on this target there is no secondary
-- stack to store the return value and the expander may generate an
-- extra call to the function to compute the discriminant value. In
-- addition, for targets that have secondary stack, the expansion of
-- functions with side effects involves the generation of an access
-- type to capture the return value stored in the secondary stack;
-- by contrast when generating C code such expansion generates an
-- internal object declaration (no access type involved) which must
-- be identified here to avoid entering into a never-ending loop
-- generating internal object declarations.
elsif Modify_Tree_For_C
and then Nkind (Parent (Exp)) = N_Object_Declaration
and then
(Nkind (Exp) /= N_Function_Call
or else not Has_Discriminants (Exp_Type)
or else Is_Internal_Name
(Chars (Defining_Identifier (Parent (Exp)))))
then
goto Leave;
end if;
-- Special processing for function calls that return a limited type.
-- We need to build a declaration that will enable build-in-place
-- expansion of the call. This is not done if the context is already
-- an object declaration, to prevent infinite recursion.
-- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
-- to accommodate functions returning limited objects by reference.
if Ada_Version >= Ada_2005
and then Nkind (Exp) = N_Function_Call
and then Is_Limited_View (Etype (Exp))
and then Nkind (Parent (Exp)) /= N_Object_Declaration
then
declare
Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp);
Decl : Node_Id;
begin
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Obj,
Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
Expression => Relocate_Node (Exp));
Insert_Action (Exp, Decl);
Set_Etype (Obj, Exp_Type);
Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
goto Leave;
end;
end if;
Def_Id := Build_Temporary (Loc, 'R', Exp);
-- The regular expansion of functions with side effects involves the
-- generation of an access type to capture the return value found on
-- the secondary stack. Since SPARK (and why) cannot process access
-- types, use a different approach which ignores the secondary stack
-- and "copies" the returned object.
-- When generating C code, no need for a 'reference since the
-- secondary stack is not supported.
if GNATprove_Mode or Modify_Tree_For_C then
Res := New_Occurrence_Of (Def_Id, Loc);
Ref_Type := Exp_Type;
-- Regular expansion utilizing an access type and 'reference
else
Res :=
Make_Explicit_Dereference (Loc,
Prefix => New_Occurrence_Of (Def_Id, Loc));
-- Generate:
-- type Ann is access all <Exp_Type>;
Ref_Type := Make_Temporary (Loc, 'A');
Ptr_Typ_Decl :=
Make_Full_Type_Declaration (Loc,
Defining_Identifier => Ref_Type,
Type_Definition =>
Make_Access_To_Object_Definition (Loc,
All_Present => True,
Subtype_Indication =>
New_Occurrence_Of (Exp_Type, Loc)));
Insert_Action (Exp, Ptr_Typ_Decl);
end if;
E := Exp;
if Nkind (E) = N_Explicit_Dereference then
New_Exp := Relocate_Node (Prefix (E));
else
E := Relocate_Node (E);
-- Do not generate a 'reference in SPARK mode or C generation
-- since the access type is not created in the first place.
if GNATprove_Mode or Modify_Tree_For_C then
New_Exp := E;
-- Otherwise generate reference, marking the value as non-null
-- since we know it cannot be null and we don't want a check.
else
New_Exp := Make_Reference (Loc, E);
Set_Is_Known_Non_Null (Def_Id);
end if;
end if;
if Is_Delayed_Aggregate (E) then
-- The expansion of nested aggregates is delayed until the
-- enclosing aggregate is expanded. As aggregates are often
-- qualified, the predicate applies to qualified expressions as
-- well, indicating that the enclosing aggregate has not been
-- expanded yet. At this point the aggregate is part of a
-- stand-alone declaration, and must be fully expanded.
if Nkind (E) = N_Qualified_Expression then
Set_Expansion_Delayed (Expression (E), False);
Set_Analyzed (Expression (E), False);
else
Set_Expansion_Delayed (E, False);
end if;
Set_Analyzed (E, False);
end if;
-- Generating C code of object declarations that have discriminants
-- and are initialized by means of a function call we propagate the
-- discriminants of the parent type to the internally built object.
-- This is needed to avoid generating an extra call to the called
-- function.
-- For example, if we generate here the following declaration, it
-- will be expanded later adding an extra call to evaluate the value
-- of the discriminant (needed to compute the size of the object).
--
-- type Rec (D : Integer) is ...
-- Obj : constant Rec := SomeFunc;
if Modify_Tree_For_C
and then Nkind (Parent (Exp)) = N_Object_Declaration
and then Has_Discriminants (Exp_Type)
and then Nkind (Exp) = N_Function_Call
then
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Copy_Tree
(Object_Definition (Parent (Exp))),
Constant_Present => True,
Expression => New_Exp));
else
Insert_Action (Exp,
Make_Object_Declaration (Loc,
Defining_Identifier => Def_Id,
Object_Definition => New_Occurrence_Of (Ref_Type, Loc),
Constant_Present => True,
Expression => New_Exp));
end if;
end if;
-- Preserve the Assignment_OK flag in all copies, since at least one
-- copy may be used in a context where this flag must be set (otherwise
-- why would the flag be set in the first place).
Set_Assignment_OK (Res, Assignment_OK (Exp));
-- Finally rewrite the original expression and we are done
Rewrite (Exp, Res);
Analyze_And_Resolve (Exp, Exp_Type);
<<Leave>>
Scope_Suppress := Svg_Suppress;
end Remove_Side_Effects;
---------------------------
-- Represented_As_Scalar --
---------------------------
function Represented_As_Scalar (T : Entity_Id) return Boolean is
UT : constant Entity_Id := Underlying_Type (T);
begin
return Is_Scalar_Type (UT)
or else (Is_Bit_Packed_Array (UT)
and then Is_Scalar_Type (Packed_Array_Impl_Type (UT)));
end Represented_As_Scalar;
------------------------------
-- Requires_Cleanup_Actions --
------------------------------
function Requires_Cleanup_Actions
(N : Node_Id;
Lib_Level : Boolean) return Boolean
is
At_Lib_Level : constant Boolean :=
Lib_Level
and then Nkind_In (N, N_Package_Body,
N_Package_Specification);
-- N is at the library level if the top-most context is a package and
-- the path taken to reach N does not inlcude non-package constructs.
begin
case Nkind (N) is
when N_Accept_Statement
| N_Block_Statement
| N_Entry_Body
| N_Package_Body
| N_Protected_Body
| N_Subprogram_Body
| N_Task_Body
=>
return
Requires_Cleanup_Actions (Declarations (N), At_Lib_Level, True)
or else
(Present (Handled_Statement_Sequence (N))
and then
Requires_Cleanup_Actions
(Statements (Handled_Statement_Sequence (N)),
At_Lib_Level, True));
when N_Package_Specification =>
return
Requires_Cleanup_Actions
(Visible_Declarations (N), At_Lib_Level, True)
or else
Requires_Cleanup_Actions
(Private_Declarations (N), At_Lib_Level, True);
when others =>
return False;
end case;
end Requires_Cleanup_Actions;
------------------------------
-- Requires_Cleanup_Actions --
------------------------------
function Requires_Cleanup_Actions
(L : List_Id;
Lib_Level : Boolean;
Nested_Constructs : Boolean) return Boolean
is
Decl : Node_Id;
Expr : Node_Id;
Obj_Id : Entity_Id;
Obj_Typ : Entity_Id;
Pack_Id : Entity_Id;
Typ : Entity_Id;
begin
if No (L)
or else Is_Empty_List (L)
then
return False;
end if;
Decl := First (L);
while Present (Decl) loop
-- Library-level tagged types
if Nkind (Decl) = N_Full_Type_Declaration then
Typ := Defining_Identifier (Decl);
-- Ignored Ghost types do not need any cleanup actions because
-- they will not appear in the final tree.
if Is_Ignored_Ghost_Entity (Typ) then
null;
elsif Is_Tagged_Type (Typ)
and then Is_Library_Level_Entity (Typ)
and then Convention (Typ) = Convention_Ada
and then Present (Access_Disp_Table (Typ))
and then RTE_Available (RE_Unregister_Tag)
and then not Is_Abstract_Type (Typ)
and then not No_Run_Time_Mode
then
return True;
end if;
-- Regular object declarations
elsif Nkind (Decl) = N_Object_Declaration then
Obj_Id := Defining_Identifier (Decl);
Obj_Typ := Base_Type (Etype (Obj_Id));
Expr := Expression (Decl);
-- Bypass any form of processing for objects which have their
-- finalization disabled. This applies only to objects at the
-- library level.
if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
null;
-- Finalization of transient objects are treated separately in
-- order to handle sensitive cases. These include:
-- * Aggregate expansion
-- * If, case, and expression with actions expansion
-- * Transient scopes
-- If one of those contexts has marked the transient object as
-- ignored, do not generate finalization actions for it.
elsif Is_Finalized_Transient (Obj_Id)
or else Is_Ignored_Transient (Obj_Id)
then
null;
-- Ignored Ghost objects do not need any cleanup actions because
-- they will not appear in the final tree.
elsif Is_Ignored_Ghost_Entity (Obj_Id) then
null;
-- The expansion of iterator loops generates an object declaration
-- where the Ekind is explicitly set to loop parameter. This is to
-- ensure that the loop parameter behaves as a constant from user
-- code point of view. Such object are never controlled and do not
-- require cleanup actions. An iterator loop over a container of
-- controlled objects does not produce such object declarations.
elsif Ekind (Obj_Id) = E_Loop_Parameter then
return False;
-- The object is of the form:
-- Obj : [constant] Typ [:= Expr];
--
-- Do not process tag-to-class-wide conversions because they do
-- not yield an object. Do not process the incomplete view of a
-- deferred constant. Note that an object initialized by means
-- of a build-in-place function call may appear as a deferred
-- constant after expansion activities. These kinds of objects
-- must be finalized.
elsif not Is_Imported (Obj_Id)
and then Needs_Finalization (Obj_Typ)
and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
and then not (Ekind (Obj_Id) = E_Constant
and then not Has_Completion (Obj_Id)
and then No (BIP_Initialization_Call (Obj_Id)))
then
return True;
-- The object is of the form:
-- Obj : Access_Typ := Non_BIP_Function_Call'reference;
--
-- Obj : Access_Typ :=
-- BIP_Function_Call (BIPalloc => 2, ...)'reference;
elsif Is_Access_Type (Obj_Typ)
and then Needs_Finalization
(Available_View (Designated_Type (Obj_Typ)))
and then Present (Expr)
and then
(Is_Secondary_Stack_BIP_Func_Call (Expr)
or else
(Is_Non_BIP_Func_Call (Expr)
and then not Is_Related_To_Func_Return (Obj_Id)))
then
return True;
-- Processing for "hook" objects generated for transient objects
-- declared inside an Expression_With_Actions.
elsif Is_Access_Type (Obj_Typ)
and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
N_Object_Declaration
then
return True;
-- Processing for intermediate results of if expressions where
-- one of the alternatives uses a controlled function call.
elsif Is_Access_Type (Obj_Typ)
and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
N_Defining_Identifier
and then Present (Expr)
and then Nkind (Expr) = N_Null
then
return True;
-- Simple protected objects which use type System.Tasking.
-- Protected_Objects.Protection to manage their locks should be
-- treated as controlled since they require manual cleanup.
elsif Ekind (Obj_Id) = E_Variable
and then (Is_Simple_Protected_Type (Obj_Typ)
or else Has_Simple_Protected_Object (Obj_Typ))
then
return True;
end if;
-- Specific cases of object renamings
elsif Nkind (Decl) = N_Object_Renaming_Declaration then
Obj_Id := Defining_Identifier (Decl);
Obj_Typ := Base_Type (Etype (Obj_Id));
-- Bypass any form of processing for objects which have their
-- finalization disabled. This applies only to objects at the
-- library level.
if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
null;
-- Ignored Ghost object renamings do not need any cleanup actions
-- because they will not appear in the final tree.
elsif Is_Ignored_Ghost_Entity (Obj_Id) then
null;
-- Return object of a build-in-place function. This case is
-- recognized and marked by the expansion of an extended return
-- statement (see Expand_N_Extended_Return_Statement).
elsif Needs_Finalization (Obj_Typ)
and then Is_Return_Object (Obj_Id)
and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
then
return True;
-- Detect a case where a source object has been initialized by
-- a controlled function call or another object which was later
-- rewritten as a class-wide conversion of Ada.Tags.Displace.
-- Obj1 : CW_Type := Src_Obj;
-- Obj2 : CW_Type := Function_Call (...);
-- Obj1 : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
-- Tmp : ... := Function_Call (...)'reference;
-- Obj2 : CW_Type renames (... Ada.Tags.Displace (Tmp));
elsif Is_Displacement_Of_Object_Or_Function_Result (Obj_Id) then
return True;
end if;
-- Inspect the freeze node of an access-to-controlled type and look
-- for a delayed finalization master. This case arises when the
-- freeze actions are inserted at a later time than the expansion of
-- the context. Since Build_Finalizer is never called on a single
-- construct twice, the master will be ultimately left out and never
-- finalized. This is also needed for freeze actions of designated
-- types themselves, since in some cases the finalization master is
-- associated with a designated type's freeze node rather than that
-- of the access type (see handling for freeze actions in
-- Build_Finalization_Master).
elsif Nkind (Decl) = N_Freeze_Entity
and then Present (Actions (Decl))
then
Typ := Entity (Decl);
-- Freeze nodes for ignored Ghost types do not need cleanup
-- actions because they will never appear in the final tree.
if Is_Ignored_Ghost_Entity (Typ) then
null;
elsif ((Is_Access_Type (Typ)
and then not Is_Access_Subprogram_Type (Typ)
and then Needs_Finalization
(Available_View (Designated_Type (Typ))))
or else (Is_Type (Typ) and then Needs_Finalization (Typ)))
and then Requires_Cleanup_Actions
(Actions (Decl), Lib_Level, Nested_Constructs)
then
return True;
end if;
-- Nested package declarations
elsif Nested_Constructs
and then Nkind (Decl) = N_Package_Declaration
then
Pack_Id := Defining_Entity (Decl);
-- Do not inspect an ignored Ghost package because all code found
-- within will not appear in the final tree.
if Is_Ignored_Ghost_Entity (Pack_Id) then
null;
elsif Ekind (Pack_Id) /= E_Generic_Package
and then Requires_Cleanup_Actions
(Specification (Decl), Lib_Level)
then
return True;
end if;
-- Nested package bodies
elsif Nested_Constructs and then Nkind (Decl) = N_Package_Body then
-- Do not inspect an ignored Ghost package body because all code
-- found within will not appear in the final tree.
if Is_Ignored_Ghost_Entity (Defining_Entity (Decl)) then
null;
elsif Ekind (Corresponding_Spec (Decl)) /= E_Generic_Package
and then Requires_Cleanup_Actions (Decl, Lib_Level)
then
return True;
end if;
elsif Nkind (Decl) = N_Block_Statement
and then
-- Handle a rare case caused by a controlled transient object
-- created as part of a record init proc. The variable is wrapped
-- in a block, but the block is not associated with a transient
-- scope.
(Inside_Init_Proc
-- Handle the case where the original context has been wrapped in
-- a block to avoid interference between exception handlers and
-- At_End handlers. Treat the block as transparent and process its
-- contents.
or else Is_Finalization_Wrapper (Decl))
then
if Requires_Cleanup_Actions (Decl, Lib_Level) then
return True;
end if;
end if;
Next (Decl);
end loop;
return False;
end Requires_Cleanup_Actions;
------------------------------------
-- Safe_Unchecked_Type_Conversion --
------------------------------------
-- Note: this function knows quite a bit about the exact requirements of
-- Gigi with respect to unchecked type conversions, and its code must be
-- coordinated with any changes in Gigi in this area.
-- The above requirements should be documented in Sinfo ???
function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
Otyp : Entity_Id;
Ityp : Entity_Id;
Oalign : Uint;
Ialign : Uint;
Pexp : constant Node_Id := Parent (Exp);
begin
-- If the expression is the RHS of an assignment or object declaration
-- we are always OK because there will always be a target.
-- Object renaming declarations, (generated for view conversions of
-- actuals in inlined calls), like object declarations, provide an
-- explicit type, and are safe as well.
if (Nkind (Pexp) = N_Assignment_Statement
and then Expression (Pexp) = Exp)
or else Nkind_In (Pexp, N_Object_Declaration,
N_Object_Renaming_Declaration)
then
return True;
-- If the expression is the prefix of an N_Selected_Component we should
-- also be OK because GCC knows to look inside the conversion except if
-- the type is discriminated. We assume that we are OK anyway if the
-- type is not set yet or if it is controlled since we can't afford to
-- introduce a temporary in this case.
elsif Nkind (Pexp) = N_Selected_Component
and then Prefix (Pexp) = Exp
then
if No (Etype (Pexp)) then
return True;
else
return
not Has_Discriminants (Etype (Pexp))
or else Is_Constrained (Etype (Pexp));
end if;
end if;
-- Set the output type, this comes from Etype if it is set, otherwise we
-- take it from the subtype mark, which we assume was already fully
-- analyzed.
if Present (Etype (Exp)) then
Otyp := Etype (Exp);
else
Otyp := Entity (Subtype_Mark (Exp));
end if;
-- The input type always comes from the expression, and we assume this
-- is indeed always analyzed, so we can simply get the Etype.
Ityp := Etype (Expression (Exp));
-- Initialize alignments to unknown so far
Oalign := No_Uint;
Ialign := No_Uint;
-- Replace a concurrent type by its corresponding record type and each
-- type by its underlying type and do the tests on those. The original
-- type may be a private type whose completion is a concurrent type, so
-- find the underlying type first.
if Present (Underlying_Type (Otyp)) then
Otyp := Underlying_Type (Otyp);
end if;
if Present (Underlying_Type (Ityp)) then
Ityp := Underlying_Type (Ityp);
end if;
if Is_Concurrent_Type (Otyp) then
Otyp := Corresponding_Record_Type (Otyp);
end if;
if Is_Concurrent_Type (Ityp) then
Ityp := Corresponding_Record_Type (Ityp);
end if;
-- If the base types are the same, we know there is no problem since
-- this conversion will be a noop.
if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
return True;
-- Same if this is an upwards conversion of an untagged type, and there
-- are no constraints involved (could be more general???)
elsif Etype (Ityp) = Otyp
and then not Is_Tagged_Type (Ityp)
and then not Has_Discriminants (Ityp)
and then No (First_Rep_Item (Base_Type (Ityp)))
then
return True;
-- If the expression has an access type (object or subprogram) we assume
-- that the conversion is safe, because the size of the target is safe,
-- even if it is a record (which might be treated as having unknown size
-- at this point).
elsif Is_Access_Type (Ityp) then
return True;
-- If the size of output type is known at compile time, there is never
-- a problem. Note that unconstrained records are considered to be of
-- known size, but we can't consider them that way here, because we are
-- talking about the actual size of the object.
-- We also make sure that in addition to the size being known, we do not
-- have a case which might generate an embarrassingly large temp in
-- stack checking mode.
elsif Size_Known_At_Compile_Time (Otyp)
and then
(not Stack_Checking_Enabled
or else not May_Generate_Large_Temp (Otyp))
and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
then
return True;
-- If either type is tagged, then we know the alignment is OK so Gigi
-- will be able to use pointer punning.
elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
return True;
-- If either type is a limited record type, we cannot do a copy, so say
-- safe since there's nothing else we can do.
elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
return True;
-- Conversions to and from packed array types are always ignored and
-- hence are safe.
elsif Is_Packed_Array_Impl_Type (Otyp)
or else Is_Packed_Array_Impl_Type (Ityp)
then
return True;
end if;
-- The only other cases known to be safe is if the input type's
-- alignment is known to be at least the maximum alignment for the
-- target or if both alignments are known and the output type's
-- alignment is no stricter than the input's. We can use the component
-- type alignment for an array if a type is an unpacked array type.
if Present (Alignment_Clause (Otyp)) then
Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
elsif Is_Array_Type (Otyp)
and then Present (Alignment_Clause (Component_Type (Otyp)))
then
Oalign := Expr_Value (Expression (Alignment_Clause
(Component_Type (Otyp))));
end if;
if Present (Alignment_Clause (Ityp)) then
Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
elsif Is_Array_Type (Ityp)
and then Present (Alignment_Clause (Component_Type (Ityp)))
then
Ialign := Expr_Value (Expression (Alignment_Clause
(Component_Type (Ityp))));
end if;
if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
return True;
elsif Ialign /= No_Uint
and then Oalign /= No_Uint
and then Ialign <= Oalign
then
return True;
-- Otherwise, Gigi cannot handle this and we must make a temporary
else
return False;
end if;
end Safe_Unchecked_Type_Conversion;
---------------------------------
-- Set_Current_Value_Condition --
---------------------------------
-- Note: the implementation of this procedure is very closely tied to the
-- implementation of Get_Current_Value_Condition. Here we set required
-- Current_Value fields, and in Get_Current_Value_Condition, we interpret
-- them, so they must have a consistent view.
procedure Set_Current_Value_Condition (Cnode : Node_Id) is
procedure Set_Entity_Current_Value (N : Node_Id);
-- If N is an entity reference, where the entity is of an appropriate
-- kind, then set the current value of this entity to Cnode, unless
-- there is already a definite value set there.
procedure Set_Expression_Current_Value (N : Node_Id);
-- If N is of an appropriate form, sets an appropriate entry in current
-- value fields of relevant entities. Multiple entities can be affected
-- in the case of an AND or AND THEN.
------------------------------
-- Set_Entity_Current_Value --
------------------------------
procedure Set_Entity_Current_Value (N : Node_Id) is
begin
if Is_Entity_Name (N) then
declare
Ent : constant Entity_Id := Entity (N);
begin
-- Don't capture if not safe to do so
if not Safe_To_Capture_Value (N, Ent, Cond => True) then
return;
end if;
-- Here we have a case where the Current_Value field may need
-- to be set. We set it if it is not already set to a compile
-- time expression value.
-- Note that this represents a decision that one condition
-- blots out another previous one. That's certainly right if
-- they occur at the same level. If the second one is nested,
-- then the decision is neither right nor wrong (it would be
-- equally OK to leave the outer one in place, or take the new
-- inner one. Really we should record both, but our data
-- structures are not that elaborate.
if Nkind (Current_Value (Ent)) not in N_Subexpr then
Set_Current_Value (Ent, Cnode);
end if;
end;
end if;
end Set_Entity_Current_Value;
----------------------------------
-- Set_Expression_Current_Value --
----------------------------------
procedure Set_Expression_Current_Value (N : Node_Id) is
Cond : Node_Id;
begin
Cond := N;
-- Loop to deal with (ignore for now) any NOT operators present. The
-- presence of NOT operators will be handled properly when we call
-- Get_Current_Value_Condition.
while Nkind (Cond) = N_Op_Not loop
Cond := Right_Opnd (Cond);
end loop;
-- For an AND or AND THEN, recursively process operands
if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
Set_Expression_Current_Value (Left_Opnd (Cond));
Set_Expression_Current_Value (Right_Opnd (Cond));
return;
end if;
-- Check possible relational operator
if Nkind (Cond) in N_Op_Compare then
if Compile_Time_Known_Value (Right_Opnd (Cond)) then
Set_Entity_Current_Value (Left_Opnd (Cond));
elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
Set_Entity_Current_Value (Right_Opnd (Cond));
end if;
elsif Nkind_In (Cond,
N_Type_Conversion,
N_Qualified_Expression,
N_Expression_With_Actions)
then
Set_Expression_Current_Value (Expression (Cond));
-- Check possible boolean variable reference
else
Set_Entity_Current_Value (Cond);
end if;
end Set_Expression_Current_Value;
-- Start of processing for Set_Current_Value_Condition
begin
Set_Expression_Current_Value (Condition (Cnode));
end Set_Current_Value_Condition;
--------------------------
-- Set_Elaboration_Flag --
--------------------------
procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
Asn : Node_Id;
begin
if Present (Ent) then
-- Nothing to do if at the compilation unit level, because in this
-- case the flag is set by the binder generated elaboration routine.
if Nkind (Parent (N)) = N_Compilation_Unit then
null;
-- Here we do need to generate an assignment statement
else
Check_Restriction (No_Elaboration_Code, N);
Asn :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Ent, Loc),
Expression => Make_Integer_Literal (Loc, Uint_1));
if Nkind (Parent (N)) = N_Subunit then
Insert_After (Corresponding_Stub (Parent (N)), Asn);
else
Insert_After (N, Asn);
end if;
Analyze (Asn);
-- Kill current value indication. This is necessary because the
-- tests of this flag are inserted out of sequence and must not
-- pick up bogus indications of the wrong constant value.
Set_Current_Value (Ent, Empty);
-- If the subprogram is in the current declarative part and
-- 'access has been applied to it, generate an elaboration
-- check at the beginning of the declarations of the body.
if Nkind (N) = N_Subprogram_Body
and then Address_Taken (Spec_Id)
and then
Ekind_In (Scope (Spec_Id), E_Block, E_Procedure, E_Function)
then
declare
Loc : constant Source_Ptr := Sloc (N);
Decls : constant List_Id := Declarations (N);
Chk : Node_Id;
begin
-- No need to generate this check if first entry in the
-- declaration list is a raise of Program_Error now.
if Present (Decls)
and then Nkind (First (Decls)) = N_Raise_Program_Error
then
return;
end if;
-- Otherwise generate the check
Chk :=
Make_Raise_Program_Error (Loc,
Condition =>
Make_Op_Eq (Loc,
Left_Opnd => New_Occurrence_Of (Ent, Loc),
Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
Reason => PE_Access_Before_Elaboration);
if No (Decls) then
Set_Declarations (N, New_List (Chk));
else
Prepend (Chk, Decls);
end if;
Analyze (Chk);
end;
end if;
end if;
end if;
end Set_Elaboration_Flag;
----------------------------
-- Set_Renamed_Subprogram --
----------------------------
procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
begin
-- If input node is an identifier, we can just reset it
if Nkind (N) = N_Identifier then
Set_Chars (N, Chars (E));
Set_Entity (N, E);
-- Otherwise we have to do a rewrite, preserving Comes_From_Source
else
declare
CS : constant Boolean := Comes_From_Source (N);
begin
Rewrite (N, Make_Identifier (Sloc (N), Chars (E)));
Set_Entity (N, E);
Set_Comes_From_Source (N, CS);
Set_Analyzed (N, True);
end;
end if;
end Set_Renamed_Subprogram;
----------------------
-- Side_Effect_Free --
----------------------
function Side_Effect_Free
(N : Node_Id;
Name_Req : Boolean := False;
Variable_Ref : Boolean := False) return Boolean
is
Typ : constant Entity_Id := Etype (N);
-- Result type of the expression
function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
-- The argument N is a construct where the Prefix is dereferenced if it
-- is an access type and the result is a variable. The call returns True
-- if the construct is side effect free (not considering side effects in
-- other than the prefix which are to be tested by the caller).
function Within_In_Parameter (N : Node_Id) return Boolean;
-- Determines if N is a subcomponent of a composite in-parameter. If so,
-- N is not side-effect free when the actual is global and modifiable
-- indirectly from within a subprogram, because it may be passed by
-- reference. The front-end must be conservative here and assume that
-- this may happen with any array or record type. On the other hand, we
-- cannot create temporaries for all expressions for which this
-- condition is true, for various reasons that might require clearing up
-- ??? For example, discriminant references that appear out of place, or
-- spurious type errors with class-wide expressions. As a result, we
-- limit the transformation to loop bounds, which is so far the only
-- case that requires it.
-----------------------------
-- Safe_Prefixed_Reference --
-----------------------------
function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
begin
-- If prefix is not side effect free, definitely not safe
if not Side_Effect_Free (Prefix (N), Name_Req, Variable_Ref) then
return False;
-- If the prefix is of an access type that is not access-to-constant,
-- then this construct is a variable reference, which means it is to
-- be considered to have side effects if Variable_Ref is set True.
elsif Is_Access_Type (Etype (Prefix (N)))
and then not Is_Access_Constant (Etype (Prefix (N)))
and then Variable_Ref
then
-- Exception is a prefix that is the result of a previous removal
-- of side-effects.
return Is_Entity_Name (Prefix (N))
and then not Comes_From_Source (Prefix (N))
and then Ekind (Entity (Prefix (N))) = E_Constant
and then Is_Internal_Name (Chars (Entity (Prefix (N))));
-- If the prefix is an explicit dereference then this construct is a
-- variable reference, which means it is to be considered to have
-- side effects if Variable_Ref is True.
-- We do NOT exclude dereferences of access-to-constant types because
-- we handle them as constant view of variables.
elsif Nkind (Prefix (N)) = N_Explicit_Dereference
and then Variable_Ref
then
return False;
-- Note: The following test is the simplest way of solving a complex
-- problem uncovered by the following test (Side effect on loop bound
-- that is a subcomponent of a global variable:
-- with Text_Io; use Text_Io;
-- procedure Tloop is
-- type X is
-- record
-- V : Natural := 4;
-- S : String (1..5) := (others => 'a');
-- end record;
-- X1 : X;
-- procedure Modi;
-- generic
-- with procedure Action;
-- procedure Loop_G (Arg : X; Msg : String)
-- procedure Loop_G (Arg : X; Msg : String) is
-- begin
-- Put_Line ("begin loop_g " & Msg & " will loop till: "
-- & Natural'Image (Arg.V));
-- for Index in 1 .. Arg.V loop
-- Text_Io.Put_Line
-- (Natural'Image (Index) & " " & Arg.S (Index));
-- if Index > 2 then
-- Modi;
-- end if;
-- end loop;
-- Put_Line ("end loop_g " & Msg);
-- end;
-- procedure Loop1 is new Loop_G (Modi);
-- procedure Modi is
-- begin
-- X1.V := 1;
-- Loop1 (X1, "from modi");
-- end;
--
-- begin
-- Loop1 (X1, "initial");
-- end;
-- The output of the above program should be:
-- begin loop_g initial will loop till: 4
-- 1 a
-- 2 a
-- 3 a
-- begin loop_g from modi will loop till: 1
-- 1 a
-- end loop_g from modi
-- 4 a
-- begin loop_g from modi will loop till: 1
-- 1 a
-- end loop_g from modi
-- end loop_g initial
-- If a loop bound is a subcomponent of a global variable, a
-- modification of that variable within the loop may incorrectly
-- affect the execution of the loop.
elsif Nkind (Parent (Parent (N))) = N_Loop_Parameter_Specification
and then Within_In_Parameter (Prefix (N))
and then Variable_Ref
then
return False;
-- All other cases are side effect free
else
return True;
end if;
end Safe_Prefixed_Reference;
-------------------------
-- Within_In_Parameter --
-------------------------
function Within_In_Parameter (N : Node_Id) return Boolean is
begin
if not Comes_From_Source (N) then
return False;
elsif Is_Entity_Name (N) then
return Ekind (Entity (N)) = E_In_Parameter;
elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
return Within_In_Parameter (Prefix (N));
else
return False;
end if;
end Within_In_Parameter;
-- Start of processing for Side_Effect_Free
begin
-- If volatile reference, always consider it to have side effects
if Is_Volatile_Reference (N) then
return False;
end if;
-- Note on checks that could raise Constraint_Error. Strictly, if we
-- take advantage of 11.6, these checks do not count as side effects.
-- However, we would prefer to consider that they are side effects,
-- since the back end CSE does not work very well on expressions which
-- can raise Constraint_Error. On the other hand if we don't consider
-- them to be side effect free, then we get some awkward expansions
-- in -gnato mode, resulting in code insertions at a point where we
-- do not have a clear model for performing the insertions.
-- Special handling for entity names
if Is_Entity_Name (N) then
-- A type reference is always side effect free
if Is_Type (Entity (N)) then
return True;
-- Variables are considered to be a side effect if Variable_Ref
-- is set or if we have a volatile reference and Name_Req is off.
-- If Name_Req is True then we can't help returning a name which
-- effectively allows multiple references in any case.
elsif Is_Variable (N, Use_Original_Node => False) then
return not Variable_Ref
and then (not Is_Volatile_Reference (N) or else Name_Req);
-- Any other entity (e.g. a subtype name) is definitely side
-- effect free.
else
return True;
end if;
-- A value known at compile time is always side effect free
elsif Compile_Time_Known_Value (N) then
return True;
-- A variable renaming is not side-effect free, because the renaming
-- will function like a macro in the front-end in some cases, and an
-- assignment can modify the component designated by N, so we need to
-- create a temporary for it.
-- The guard testing for Entity being present is needed at least in
-- the case of rewritten predicate expressions, and may well also be
-- appropriate elsewhere. Obviously we can't go testing the entity
-- field if it does not exist, so it's reasonable to say that this is
-- not the renaming case if it does not exist.
elsif Is_Entity_Name (Original_Node (N))
and then Present (Entity (Original_Node (N)))
and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
and then Ekind (Entity (Original_Node (N))) /= E_Constant
then
declare
RO : constant Node_Id :=
Renamed_Object (Entity (Original_Node (N)));
begin
-- If the renamed object is an indexed component, or an
-- explicit dereference, then the designated object could
-- be modified by an assignment.
if Nkind_In (RO, N_Indexed_Component,
N_Explicit_Dereference)
then
return False;
-- A selected component must have a safe prefix
elsif Nkind (RO) = N_Selected_Component then
return Safe_Prefixed_Reference (RO);
-- In all other cases, designated object cannot be changed so
-- we are side effect free.
else
return True;
end if;
end;
-- Remove_Side_Effects generates an object renaming declaration to
-- capture the expression of a class-wide expression. In VM targets
-- the frontend performs no expansion for dispatching calls to
-- class- wide types since they are handled by the VM. Hence, we must
-- locate here if this node corresponds to a previous invocation of
-- Remove_Side_Effects to avoid a never ending loop in the frontend.
elsif not Tagged_Type_Expansion
and then not Comes_From_Source (N)
and then Nkind (Parent (N)) = N_Object_Renaming_Declaration
and then Is_Class_Wide_Type (Typ)
then
return True;
-- Generating C the type conversion of an access to constrained array
-- type into an access to unconstrained array type involves initializing
-- a fat pointer and the expression cannot be assumed to be free of side
-- effects since it must referenced several times to compute its bounds.
elsif Modify_Tree_For_C
and then Nkind (N) = N_Type_Conversion
and then Is_Access_Type (Typ)
and then Is_Array_Type (Designated_Type (Typ))
and then not Is_Constrained (Designated_Type (Typ))
then
return False;
end if;
-- For other than entity names and compile time known values,
-- check the node kind for special processing.
case Nkind (N) is
-- An attribute reference is side effect free if its expressions
-- are side effect free and its prefix is side effect free or
-- is an entity reference.
-- Is this right? what about x'first where x is a variable???
when N_Attribute_Reference =>
return
Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
and then Attribute_Name (N) /= Name_Input
and then (Is_Entity_Name (Prefix (N))
or else Side_Effect_Free
(Prefix (N), Name_Req, Variable_Ref));
-- A binary operator is side effect free if and both operands are
-- side effect free. For this purpose binary operators include
-- membership tests and short circuit forms.
when N_Binary_Op
| N_Membership_Test
| N_Short_Circuit
=>
return Side_Effect_Free (Left_Opnd (N), Name_Req, Variable_Ref)
and then
Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
-- An explicit dereference is side effect free only if it is
-- a side effect free prefixed reference.
when N_Explicit_Dereference =>
return Safe_Prefixed_Reference (N);
-- An expression with action is side effect free if its expression
-- is side effect free and it has no actions.
when N_Expression_With_Actions =>
return
Is_Empty_List (Actions (N))
and then Side_Effect_Free
(Expression (N), Name_Req, Variable_Ref);
-- A call to _rep_to_pos is side effect free, since we generate
-- this pure function call ourselves. Moreover it is critically
-- important to make this exception, since otherwise we can have
-- discriminants in array components which don't look side effect
-- free in the case of an array whose index type is an enumeration
-- type with an enumeration rep clause.
-- All other function calls are not side effect free
when N_Function_Call =>
return
Nkind (Name (N)) = N_Identifier
and then Is_TSS (Name (N), TSS_Rep_To_Pos)
and then Side_Effect_Free
(First (Parameter_Associations (N)),
Name_Req, Variable_Ref);
-- An IF expression is side effect free if it's of a scalar type, and
-- all its components are all side effect free (conditions and then
-- actions and else actions). We restrict to scalar types, since it
-- is annoying to deal with things like (if A then B else C)'First
-- where the type involved is a string type.
when N_If_Expression =>
return
Is_Scalar_Type (Typ)
and then Side_Effect_Free
(Expressions (N), Name_Req, Variable_Ref);
-- An indexed component is side effect free if it is a side
-- effect free prefixed reference and all the indexing
-- expressions are side effect free.
when N_Indexed_Component =>
return
Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
and then Safe_Prefixed_Reference (N);
-- A type qualification is side effect free if the expression
-- is side effect free.
when N_Qualified_Expression =>
return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
-- A selected component is side effect free only if it is a side
-- effect free prefixed reference.
when N_Selected_Component =>
return Safe_Prefixed_Reference (N);
-- A range is side effect free if the bounds are side effect free
when N_Range =>
return Side_Effect_Free (Low_Bound (N), Name_Req, Variable_Ref)
and then
Side_Effect_Free (High_Bound (N), Name_Req, Variable_Ref);
-- A slice is side effect free if it is a side effect free
-- prefixed reference and the bounds are side effect free.
when N_Slice =>
return
Side_Effect_Free (Discrete_Range (N), Name_Req, Variable_Ref)
and then Safe_Prefixed_Reference (N);
-- A type conversion is side effect free if the expression to be
-- converted is side effect free.
when N_Type_Conversion =>
return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
-- A unary operator is side effect free if the operand
-- is side effect free.
when N_Unary_Op =>
return Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
-- An unchecked type conversion is side effect free only if it
-- is safe and its argument is side effect free.
when N_Unchecked_Type_Conversion =>
return
Safe_Unchecked_Type_Conversion (N)
and then Side_Effect_Free
(Expression (N), Name_Req, Variable_Ref);
-- An unchecked expression is side effect free if its expression
-- is side effect free.
when N_Unchecked_Expression =>
return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
-- A literal is side effect free
when N_Character_Literal
| N_Integer_Literal
| N_Real_Literal
| N_String_Literal
=>
return True;
-- We consider that anything else has side effects. This is a bit
-- crude, but we are pretty close for most common cases, and we
-- are certainly correct (i.e. we never return True when the
-- answer should be False).
when others =>
return False;
end case;
end Side_Effect_Free;
-- A list is side effect free if all elements of the list are side
-- effect free.
function Side_Effect_Free
(L : List_Id;
Name_Req : Boolean := False;
Variable_Ref : Boolean := False) return Boolean
is
N : Node_Id;
begin
if L = No_List or else L = Error_List then
return True;
else
N := First (L);
while Present (N) loop
if not Side_Effect_Free (N, Name_Req, Variable_Ref) then
return False;
else
Next (N);
end if;
end loop;
return True;
end if;
end Side_Effect_Free;
----------------------------------
-- Silly_Boolean_Array_Not_Test --
----------------------------------
-- This procedure implements an odd and silly test. We explicitly check
-- for the case where the 'First of the component type is equal to the
-- 'Last of this component type, and if this is the case, we make sure
-- that constraint error is raised. The reason is that the NOT is bound
-- to cause CE in this case, and we will not otherwise catch it.
-- No such check is required for AND and OR, since for both these cases
-- False op False = False, and True op True = True. For the XOR case,
-- see Silly_Boolean_Array_Xor_Test.
-- Believe it or not, this was reported as a bug. Note that nearly always,
-- the test will evaluate statically to False, so the code will be
-- statically removed, and no extra overhead caused.
procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
CT : constant Entity_Id := Component_Type (T);
begin
-- The check we install is
-- constraint_error when
-- component_type'first = component_type'last
-- and then array_type'Length /= 0)
-- We need the last guard because we don't want to raise CE for empty
-- arrays since no out of range values result. (Empty arrays with a
-- component type of True .. True -- very useful -- even the ACATS
-- does not test that marginal case).
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_And_Then (Loc,
Left_Opnd =>
Make_Op_Eq (Loc,
Left_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_First),
Right_Opnd =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_Last)),
Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
Reason => CE_Range_Check_Failed));
end Silly_Boolean_Array_Not_Test;
----------------------------------
-- Silly_Boolean_Array_Xor_Test --
----------------------------------
-- This procedure implements an odd and silly test. We explicitly check
-- for the XOR case where the component type is True .. True, since this
-- will raise constraint error. A special check is required since CE
-- will not be generated otherwise (cf Expand_Packed_Not).
-- No such check is required for AND and OR, since for both these cases
-- False op False = False, and True op True = True, and no check is
-- required for the case of False .. False, since False xor False = False.
-- See also Silly_Boolean_Array_Not_Test
procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
Loc : constant Source_Ptr := Sloc (N);
CT : constant Entity_Id := Component_Type (T);
begin
-- The check we install is
-- constraint_error when
-- Boolean (component_type'First)
-- and then Boolean (component_type'Last)
-- and then array_type'Length /= 0)
-- We need the last guard because we don't want to raise CE for empty
-- arrays since no out of range values result (Empty arrays with a
-- component type of True .. True -- very useful -- even the ACATS
-- does not test that marginal case).
Insert_Action (N,
Make_Raise_Constraint_Error (Loc,
Condition =>
Make_And_Then (Loc,
Left_Opnd =>
Make_And_Then (Loc,
Left_Opnd =>
Convert_To (Standard_Boolean,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_First)),
Right_Opnd =>
Convert_To (Standard_Boolean,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (CT, Loc),
Attribute_Name => Name_Last))),
Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
Reason => CE_Range_Check_Failed));
end Silly_Boolean_Array_Xor_Test;
--------------------------
-- Target_Has_Fixed_Ops --
--------------------------
Integer_Sized_Small : Ureal;
-- Set to 2.0 ** -(Integer'Size - 1) the first time that this function is
-- called (we don't want to compute it more than once).
Long_Integer_Sized_Small : Ureal;
-- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this function
-- is called (we don't want to compute it more than once)
First_Time_For_THFO : Boolean := True;
-- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
function Target_Has_Fixed_Ops
(Left_Typ : Entity_Id;
Right_Typ : Entity_Id;
Result_Typ : Entity_Id) return Boolean
is
function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
-- Return True if the given type is a fixed-point type with a small
-- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
-- an absolute value less than 1.0. This is currently limited to
-- fixed-point types that map to Integer or Long_Integer.
------------------------
-- Is_Fractional_Type --
------------------------
function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
begin
if Esize (Typ) = Standard_Integer_Size then
return Small_Value (Typ) = Integer_Sized_Small;
elsif Esize (Typ) = Standard_Long_Integer_Size then
return Small_Value (Typ) = Long_Integer_Sized_Small;
else
return False;
end if;
end Is_Fractional_Type;
-- Start of processing for Target_Has_Fixed_Ops
begin
-- Return False if Fractional_Fixed_Ops_On_Target is false
if not Fractional_Fixed_Ops_On_Target then
return False;
end if;
-- Here the target has Fractional_Fixed_Ops, if first time, compute
-- standard constants used by Is_Fractional_Type.
if First_Time_For_THFO then
First_Time_For_THFO := False;
Integer_Sized_Small :=
UR_From_Components
(Num => Uint_1,
Den => UI_From_Int (Standard_Integer_Size - 1),
Rbase => 2);
Long_Integer_Sized_Small :=
UR_From_Components
(Num => Uint_1,
Den => UI_From_Int (Standard_Long_Integer_Size - 1),
Rbase => 2);
end if;
-- Return True if target supports fixed-by-fixed multiply/divide for
-- fractional fixed-point types (see Is_Fractional_Type) and the operand
-- and result types are equivalent fractional types.
return Is_Fractional_Type (Base_Type (Left_Typ))
and then Is_Fractional_Type (Base_Type (Right_Typ))
and then Is_Fractional_Type (Base_Type (Result_Typ))
and then Esize (Left_Typ) = Esize (Right_Typ)
and then Esize (Left_Typ) = Esize (Result_Typ);
end Target_Has_Fixed_Ops;
------------------------------------------
-- Type_May_Have_Bit_Aligned_Components --
------------------------------------------
function Type_May_Have_Bit_Aligned_Components
(Typ : Entity_Id) return Boolean
is
begin
-- Array type, check component type
if Is_Array_Type (Typ) then
return
Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
-- Record type, check components
elsif Is_Record_Type (Typ) then
declare
E : Entity_Id;
begin
E := First_Component_Or_Discriminant (Typ);
while Present (E) loop
if Component_May_Be_Bit_Aligned (E)
or else Type_May_Have_Bit_Aligned_Components (Etype (E))
then
return True;
end if;
Next_Component_Or_Discriminant (E);
end loop;
return False;
end;
-- Type other than array or record is always OK
else
return False;
end if;
end Type_May_Have_Bit_Aligned_Components;
-------------------------------
-- Update_Primitives_Mapping --
-------------------------------
procedure Update_Primitives_Mapping
(Inher_Id : Entity_Id;
Subp_Id : Entity_Id)
is
begin
Update_Primitives_Mapping_Of_Types
(Par_Typ => Find_Dispatching_Type (Inher_Id),
Deriv_Typ => Find_Dispatching_Type (Subp_Id));
end Update_Primitives_Mapping;
----------------------------------------
-- Update_Primitives_Mapping_Of_Types --
----------------------------------------
procedure Update_Primitives_Mapping_Of_Types
(Par_Typ : Entity_Id;
Deriv_Typ : Entity_Id)
is
procedure Add_Primitive (Prim : Entity_Id);
-- Find a primitive in the inheritance/overriding chain starting from
-- Prim whose dispatching type is parent type Par_Typ and add a mapping
-- between the result and primitive Prim.
-------------------
-- Add_Primitive --
-------------------
procedure Add_Primitive (Prim : Entity_Id) is
function Ancestor_Primitive (Subp : Entity_Id) return Entity_Id;
-- Return the next ancestor primitive in the inheritance/overriding
-- chain of subprogram Subp. Return Empty if no such primitive is
-- available.
------------------------
-- Ancestor_Primitive --
------------------------
function Ancestor_Primitive (Subp : Entity_Id) return Entity_Id is
Inher_Prim : constant Entity_Id := Alias (Subp);
Over_Prim : constant Entity_Id := Overridden_Operation (Subp);
begin
-- The current subprogram overrides an ancestor primitive
if Present (Over_Prim) then
return Over_Prim;
-- The current subprogram is an internally generated alias of an
-- inherited ancestor primitive.
elsif Present (Inher_Prim) then
return Inher_Prim;
-- Otherwise the current subprogram is the root of the inheritance
-- or overriding chain.
else
return Empty;
end if;
end Ancestor_Primitive;
-- Local variables
Par_Prim : Entity_Id;
-- Start of processing for Add_Primitive
begin
-- Inspect both the inheritance chain through the Alias attribute and
-- the overriding chain through the Overridden_Operation looking for
-- an ancestor primitive with the appropriate dispatching type.
Par_Prim := Prim;
while Present (Par_Prim) loop
exit when Find_Dispatching_Type (Par_Prim) = Par_Typ;
Par_Prim := Ancestor_Primitive (Par_Prim);
end loop;
-- Create a mapping of the form:
-- Parent type primitive -> derived type primitive
if Present (Par_Prim) then
Primitives_Mapping.Set (Par_Prim, Prim);
end if;
end Add_Primitive;
-- Local variables
Deriv_Prim : Entity_Id;
Par_Prim : Entity_Id;
Par_Prims : Elist_Id;
Prim_Elmt : Elmt_Id;
-- Start of processing for Update_Primitives_Mapping_Of_Types
begin
-- Nothing to do if there are no types to work with
if No (Par_Typ) or else No (Deriv_Typ) then
return;
-- Nothing to do if the mapping already exists
elsif Primitives_Mapping.Get (Par_Typ) = Deriv_Typ then
return;
end if;
-- Create a mapping of the form:
-- Parent type -> Derived type
-- to prevent any subsequent attempts to produce the same relations.
Primitives_Mapping.Set (Par_Typ, Deriv_Typ);
-- Inspect the primitives of the derived type and determine whether they
-- relate to the primitives of the parent type. If there is a meaningful
-- relation, create a mapping of the form:
-- Parent type primitive -> Derived type primitive
if Present (Direct_Primitive_Operations (Deriv_Typ)) then
Prim_Elmt := First_Elmt (Direct_Primitive_Operations (Deriv_Typ));
while Present (Prim_Elmt) loop
Deriv_Prim := Node (Prim_Elmt);
if Is_Subprogram (Deriv_Prim)
and then Find_Dispatching_Type (Deriv_Prim) = Deriv_Typ
then
Add_Primitive (Deriv_Prim);
end if;
Next_Elmt (Prim_Elmt);
end loop;
end if;
-- If the parent operation is an interface operation, the overriding
-- indicator is not present. Instead, we get from the interface
-- operation the primitive of the current type that implements it.
if Is_Interface (Par_Typ) then
Par_Prims := Collect_Primitive_Operations (Par_Typ);
if Present (Par_Prims) then
Prim_Elmt := First_Elmt (Par_Prims);
while Present (Prim_Elmt) loop
Par_Prim := Node (Prim_Elmt);
Deriv_Prim :=
Find_Primitive_Covering_Interface (Deriv_Typ, Par_Prim);
if Present (Deriv_Prim) then
Primitives_Mapping.Set (Par_Prim, Deriv_Prim);
end if;
Next_Elmt (Prim_Elmt);
end loop;
end if;
end if;
end Update_Primitives_Mapping_Of_Types;
----------------------------------
-- Within_Case_Or_If_Expression --
----------------------------------
function Within_Case_Or_If_Expression (N : Node_Id) return Boolean is
Par : Node_Id;
begin
-- Locate an enclosing case or if expression. Note that these constructs
-- can be expanded into Expression_With_Actions, hence the test of the
-- original node.
Par := Parent (N);
while Present (Par) loop
if Nkind_In (Original_Node (Par), N_Case_Expression,
N_If_Expression)
then
return True;
-- Prevent the search from going too far
elsif Is_Body_Or_Package_Declaration (Par) then
return False;
end if;
Par := Parent (Par);
end loop;
return False;
end Within_Case_Or_If_Expression;
--------------------------------
-- Within_Internal_Subprogram --
--------------------------------
function Within_Internal_Subprogram return Boolean is
S : Entity_Id;
begin
S := Current_Scope;
while Present (S) and then not Is_Subprogram (S) loop
S := Scope (S);
end loop;
return Present (S)
and then Get_TSS_Name (S) /= TSS_Null
and then not Is_Predicate_Function (S)
and then not Is_Predicate_Function_M (S);
end Within_Internal_Subprogram;
end Exp_Util;
|