1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 1 3 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Debug; use Debug;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Disp; use Exp_Disp;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Ghost; use Ghost;
with Lib; use Lib;
with Lib.Xref; use Lib.Xref;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Case; use Sem_Case;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Dim; use Sem_Dim;
with Sem_Disp; use Sem_Disp;
with Sem_Eval; use Sem_Eval;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sem_Warn; use Sem_Warn;
with Sinfo; use Sinfo;
with Sinput; use Sinput;
with Snames; use Snames;
with Stand; use Stand;
with Targparm; use Targparm;
with Ttypes; use Ttypes;
with Tbuild; use Tbuild;
with Urealp; use Urealp;
with Warnsw; use Warnsw;
with GNAT.Heap_Sort_G;
package body Sem_Ch13 is
SSU : constant Pos := System_Storage_Unit;
-- Convenient short hand for commonly used constant
-----------------------
-- Local Subprograms --
-----------------------
procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id);
-- Helper routine providing the original (pre-AI95-0133) behavior for
-- Adjust_Record_For_Reverse_Bit_Order.
procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
-- This routine is called after setting one of the sizes of type entity
-- Typ to Size. The purpose is to deal with the situation of a derived
-- type whose inherited alignment is no longer appropriate for the new
-- size value. In this case, we reset the Alignment to unknown.
procedure Build_Discrete_Static_Predicate
(Typ : Entity_Id;
Expr : Node_Id;
Nam : Name_Id);
-- Given a predicated type Typ, where Typ is a discrete static subtype,
-- whose predicate expression is Expr, tests if Expr is a static predicate,
-- and if so, builds the predicate range list. Nam is the name of the one
-- argument to the predicate function. Occurrences of the type name in the
-- predicate expression have been replaced by identifier references to this
-- name, which is unique, so any identifier with Chars matching Nam must be
-- a reference to the type. If the predicate is non-static, this procedure
-- returns doing nothing. If the predicate is static, then the predicate
-- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
-- rewritten as a canonicalized membership operation.
function Build_Export_Import_Pragma
(Asp : Node_Id;
Id : Entity_Id) return Node_Id;
-- Create the corresponding pragma for aspect Export or Import denoted by
-- Asp. Id is the related entity subject to the aspect. Return Empty when
-- the expression of aspect Asp evaluates to False or is erroneous.
function Build_Predicate_Function_Declaration
(Typ : Entity_Id) return Node_Id;
-- Build the declaration for a predicate function. The declaration is built
-- at the end of the declarative part containing the type definition, which
-- may be before the freeze point of the type. The predicate expression is
-- pre-analyzed at this point, to catch visibility errors.
procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
-- If Typ has predicates (indicated by Has_Predicates being set for Typ),
-- then either there are pragma Predicate entries on the rep chain for the
-- type (note that Predicate aspects are converted to pragma Predicate), or
-- there are inherited aspects from a parent type, or ancestor subtypes.
-- This procedure builds body for the Predicate function that tests these
-- predicates. N is the freeze node for the type. The spec of the function
-- is inserted before the freeze node, and the body of the function is
-- inserted after the freeze node. If the predicate expression has a least
-- one Raise_Expression, then this procedure also builds the M version of
-- the predicate function for use in membership tests.
procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
-- Called if both Storage_Pool and Storage_Size attribute definition
-- clauses (SP and SS) are present for entity Ent. Issue error message.
procedure Freeze_Entity_Checks (N : Node_Id);
-- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
-- to generate appropriate semantic checks that are delayed until this
-- point (they had to be delayed this long for cases of delayed aspects,
-- e.g. analysis of statically predicated subtypes in choices, for which
-- we have to be sure the subtypes in question are frozen before checking).
function Get_Alignment_Value (Expr : Node_Id) return Uint;
-- Given the expression for an alignment value, returns the corresponding
-- Uint value. If the value is inappropriate, then error messages are
-- posted as required, and a value of No_Uint is returned.
procedure Get_Interfacing_Aspects
(Iface_Asp : Node_Id;
Conv_Asp : out Node_Id;
EN_Asp : out Node_Id;
Expo_Asp : out Node_Id;
Imp_Asp : out Node_Id;
LN_Asp : out Node_Id;
Do_Checks : Boolean := False);
-- Given a single interfacing aspect Iface_Asp, retrieve other interfacing
-- aspects that apply to the same related entity. The aspects considered by
-- this routine are as follows:
--
-- Conv_Asp - aspect Convention
-- EN_Asp - aspect External_Name
-- Expo_Asp - aspect Export
-- Imp_Asp - aspect Import
-- LN_Asp - aspect Link_Name
--
-- When flag Do_Checks is set, this routine will flag duplicate uses of
-- aspects.
function Is_Operational_Item (N : Node_Id) return Boolean;
-- A specification for a stream attribute is allowed before the full type
-- is declared, as explained in AI-00137 and the corrigendum. Attributes
-- that do not specify a representation characteristic are operational
-- attributes.
function Is_Predicate_Static
(Expr : Node_Id;
Nam : Name_Id) return Boolean;
-- Given predicate expression Expr, tests if Expr is predicate-static in
-- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
-- name in the predicate expression have been replaced by references to
-- an identifier whose Chars field is Nam. This name is unique, so any
-- identifier with Chars matching Nam must be a reference to the type.
-- Returns True if the expression is predicate-static and False otherwise,
-- but is not in the business of setting flags or issuing error messages.
--
-- Only scalar types can have static predicates, so False is always
-- returned for non-scalar types.
--
-- Note: the RM seems to suggest that string types can also have static
-- predicates. But that really makes lttle sense as very few useful
-- predicates can be constructed for strings. Remember that:
--
-- "ABC" < "DEF"
--
-- is not a static expression. So even though the clearly faulty RM wording
-- allows the following:
--
-- subtype S is String with Static_Predicate => S < "DEF"
--
-- We can't allow this, otherwise we have predicate-static applying to a
-- larger class than static expressions, which was never intended.
procedure New_Stream_Subprogram
(N : Node_Id;
Ent : Entity_Id;
Subp : Entity_Id;
Nam : TSS_Name_Type);
-- Create a subprogram renaming of a given stream attribute to the
-- designated subprogram and then in the tagged case, provide this as a
-- primitive operation, or in the untagged case make an appropriate TSS
-- entry. This is more properly an expansion activity than just semantics,
-- but the presence of user-defined stream functions for limited types
-- is a legality check, which is why this takes place here rather than in
-- exp_ch13, where it was previously. Nam indicates the name of the TSS
-- function to be generated.
--
-- To avoid elaboration anomalies with freeze nodes, for untagged types
-- we generate both a subprogram declaration and a subprogram renaming
-- declaration, so that the attribute specification is handled as a
-- renaming_as_body. For tagged types, the specification is one of the
-- primitive specs.
procedure Resolve_Iterable_Operation
(N : Node_Id;
Cursor : Entity_Id;
Typ : Entity_Id;
Nam : Name_Id);
-- If the name of a primitive operation for an Iterable aspect is
-- overloaded, resolve according to required signature.
procedure Set_Biased
(E : Entity_Id;
N : Node_Id;
Msg : String;
Biased : Boolean := True);
-- If Biased is True, sets Has_Biased_Representation flag for E, and
-- outputs a warning message at node N if Warn_On_Biased_Representation is
-- is True. This warning inserts the string Msg to describe the construct
-- causing biasing.
---------------------------------------------------
-- Table for Validate_Compile_Time_Warning_Error --
---------------------------------------------------
-- The following table collects pragmas Compile_Time_Error and Compile_
-- Time_Warning for validation. Entries are made by calls to subprogram
-- Validate_Compile_Time_Warning_Error, and the call to the procedure
-- Validate_Compile_Time_Warning_Errors does the actual error checking
-- and posting of warning and error messages. The reason for this delayed
-- processing is to take advantage of back-annotations of attributes size
-- and alignment values performed by the back end.
-- Note: the reason we store a Source_Ptr value instead of a Node_Id is
-- that by the time Validate_Unchecked_Conversions is called, Sprint will
-- already have modified all Sloc values if the -gnatD option is set.
type CTWE_Entry is record
Eloc : Source_Ptr;
-- Source location used in warnings and error messages
Prag : Node_Id;
-- Pragma Compile_Time_Error or Compile_Time_Warning
Scope : Node_Id;
-- The scope which encloses the pragma
end record;
package Compile_Time_Warnings_Errors is new Table.Table (
Table_Component_Type => CTWE_Entry,
Table_Index_Type => Int,
Table_Low_Bound => 1,
Table_Initial => 50,
Table_Increment => 200,
Table_Name => "Compile_Time_Warnings_Errors");
----------------------------------------------
-- Table for Validate_Unchecked_Conversions --
----------------------------------------------
-- The following table collects unchecked conversions for validation.
-- Entries are made by Validate_Unchecked_Conversion and then the call
-- to Validate_Unchecked_Conversions does the actual error checking and
-- posting of warnings. The reason for this delayed processing is to take
-- advantage of back-annotations of size and alignment values performed by
-- the back end.
-- Note: the reason we store a Source_Ptr value instead of a Node_Id is
-- that by the time Validate_Unchecked_Conversions is called, Sprint will
-- already have modified all Sloc values if the -gnatD option is set.
type UC_Entry is record
Eloc : Source_Ptr; -- node used for posting warnings
Source : Entity_Id; -- source type for unchecked conversion
Target : Entity_Id; -- target type for unchecked conversion
Act_Unit : Entity_Id; -- actual function instantiated
end record;
package Unchecked_Conversions is new Table.Table (
Table_Component_Type => UC_Entry,
Table_Index_Type => Int,
Table_Low_Bound => 1,
Table_Initial => 50,
Table_Increment => 200,
Table_Name => "Unchecked_Conversions");
----------------------------------------
-- Table for Validate_Address_Clauses --
----------------------------------------
-- If an address clause has the form
-- for X'Address use Expr
-- where Expr has a value known at compile time or is of the form Y'Address
-- or recursively is a reference to a constant initialized with either of
-- these forms, and the value of Expr is not a multiple of X's alignment,
-- or if Y has a smaller alignment than X, then that merits a warning about
-- possible bad alignment. The following table collects address clauses of
-- this kind. We put these in a table so that they can be checked after the
-- back end has completed annotation of the alignments of objects, since we
-- can catch more cases that way.
type Address_Clause_Check_Record is record
N : Node_Id;
-- The address clause
X : Entity_Id;
-- The entity of the object subject to the address clause
A : Uint;
-- The value of the address in the first case
Y : Entity_Id;
-- The entity of the object being overlaid in the second case
Off : Boolean;
-- Whether the address is offset within Y in the second case
end record;
package Address_Clause_Checks is new Table.Table (
Table_Component_Type => Address_Clause_Check_Record,
Table_Index_Type => Int,
Table_Low_Bound => 1,
Table_Initial => 20,
Table_Increment => 200,
Table_Name => "Address_Clause_Checks");
-----------------------------------------
-- Adjust_Record_For_Reverse_Bit_Order --
-----------------------------------------
procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
Max_Machine_Scalar_Size : constant Uint :=
UI_From_Int
(Standard_Long_Long_Integer_Size);
-- We use this as the maximum machine scalar size
SSU : constant Uint := UI_From_Int (System_Storage_Unit);
CC : Node_Id;
Comp : Node_Id;
Num_CC : Natural;
begin
-- Processing here used to depend on Ada version: the behavior was
-- changed by AI95-0133. However this AI is a Binding interpretation,
-- so we now implement it even in Ada 95 mode. The original behavior
-- from unamended Ada 95 is still available for compatibility under
-- debugging switch -gnatd.
if Ada_Version < Ada_2005 and then Debug_Flag_Dot_P then
Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R);
return;
end if;
-- For Ada 2005, we do machine scalar processing, as fully described In
-- AI-133. This involves gathering all components which start at the
-- same byte offset and processing them together. Same approach is still
-- valid in later versions including Ada 2012.
-- This first loop through components does two things. First it deals
-- with the case of components with component clauses whose length is
-- greater than the maximum machine scalar size (either accepting them
-- or rejecting as needed). Second, it counts the number of components
-- with component clauses whose length does not exceed this maximum for
-- later processing.
Num_CC := 0;
Comp := First_Component_Or_Discriminant (R);
while Present (Comp) loop
CC := Component_Clause (Comp);
if Present (CC) then
declare
Fbit : constant Uint := Static_Integer (First_Bit (CC));
Lbit : constant Uint := Static_Integer (Last_Bit (CC));
begin
-- Case of component with last bit >= max machine scalar
if Lbit >= Max_Machine_Scalar_Size then
-- This is allowed only if first bit is zero, and last bit
-- + 1 is a multiple of storage unit size.
if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
-- This is the case to give a warning if enabled
if Warn_On_Reverse_Bit_Order then
Error_Msg_N
("info: multi-byte field specified with "
& "non-standard Bit_Order?V?", CC);
if Bytes_Big_Endian then
Error_Msg_N
("\bytes are not reversed "
& "(component is big-endian)?V?", CC);
else
Error_Msg_N
("\bytes are not reversed "
& "(component is little-endian)?V?", CC);
end if;
end if;
-- Give error message for RM 13.5.1(10) violation
else
Error_Msg_FE
("machine scalar rules not followed for&",
First_Bit (CC), Comp);
Error_Msg_Uint_1 := Lbit + 1;
Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
Error_Msg_F
("\last bit + 1 (^) exceeds maximum machine scalar "
& "size (^)", First_Bit (CC));
if (Lbit + 1) mod SSU /= 0 then
Error_Msg_Uint_1 := SSU;
Error_Msg_F
("\and is not a multiple of Storage_Unit (^) "
& "(RM 13.5.1(10))", First_Bit (CC));
else
Error_Msg_Uint_1 := Fbit;
Error_Msg_F
("\and first bit (^) is non-zero "
& "(RM 13.4.1(10))", First_Bit (CC));
end if;
end if;
-- OK case of machine scalar related component clause. For now,
-- just count them.
else
Num_CC := Num_CC + 1;
end if;
end;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
-- We need to sort the component clauses on the basis of the Position
-- values in the clause, so we can group clauses with the same Position
-- together to determine the relevant machine scalar size.
Sort_CC : declare
Comps : array (0 .. Num_CC) of Entity_Id;
-- Array to collect component and discriminant entities. The data
-- starts at index 1, the 0'th entry is for the sort routine.
function CP_Lt (Op1, Op2 : Natural) return Boolean;
-- Compare routine for Sort
procedure CP_Move (From : Natural; To : Natural);
-- Move routine for Sort
package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
MaxL : Uint;
-- Maximum last bit value of any component in this set
MSS : Uint;
-- Corresponding machine scalar size
Start : Natural;
Stop : Natural;
-- Start and stop positions in the component list of the set of
-- components with the same starting position (that constitute
-- components in a single machine scalar).
-----------
-- CP_Lt --
-----------
function CP_Lt (Op1, Op2 : Natural) return Boolean is
begin
return
Position (Component_Clause (Comps (Op1))) <
Position (Component_Clause (Comps (Op2)));
end CP_Lt;
-------------
-- CP_Move --
-------------
procedure CP_Move (From : Natural; To : Natural) is
begin
Comps (To) := Comps (From);
end CP_Move;
-- Start of processing for Sort_CC
begin
-- Collect the machine scalar relevant component clauses
Num_CC := 0;
Comp := First_Component_Or_Discriminant (R);
while Present (Comp) loop
declare
CC : constant Node_Id := Component_Clause (Comp);
begin
-- Collect only component clauses whose last bit is less than
-- machine scalar size. Any component clause whose last bit
-- exceeds this value does not take part in machine scalar
-- layout considerations. The test for Error_Posted makes sure
-- we exclude component clauses for which we already posted an
-- error.
if Present (CC)
and then not Error_Posted (Last_Bit (CC))
and then Static_Integer (Last_Bit (CC)) <
Max_Machine_Scalar_Size
then
Num_CC := Num_CC + 1;
Comps (Num_CC) := Comp;
end if;
end;
Next_Component_Or_Discriminant (Comp);
end loop;
-- Sort by ascending position number
Sorting.Sort (Num_CC);
-- We now have all the components whose size does not exceed the max
-- machine scalar value, sorted by starting position. In this loop we
-- gather groups of clauses starting at the same position, to process
-- them in accordance with AI-133.
Stop := 0;
while Stop < Num_CC loop
Start := Stop + 1;
Stop := Start;
MaxL :=
Static_Integer
(Last_Bit (Component_Clause (Comps (Start))));
while Stop < Num_CC loop
if Static_Integer
(Position (Component_Clause (Comps (Stop + 1)))) =
Static_Integer
(Position (Component_Clause (Comps (Stop))))
then
Stop := Stop + 1;
MaxL :=
UI_Max
(MaxL,
Static_Integer
(Last_Bit
(Component_Clause (Comps (Stop)))));
else
exit;
end if;
end loop;
-- Now we have a group of component clauses from Start to Stop
-- whose positions are identical, and MaxL is the maximum last
-- bit value of any of these components.
-- We need to determine the corresponding machine scalar size.
-- This loop assumes that machine scalar sizes are even, and that
-- each possible machine scalar has twice as many bits as the next
-- smaller one.
MSS := Max_Machine_Scalar_Size;
while MSS mod 2 = 0
and then (MSS / 2) >= SSU
and then (MSS / 2) > MaxL
loop
MSS := MSS / 2;
end loop;
-- Here is where we fix up the Component_Bit_Offset value to
-- account for the reverse bit order. Some examples of what needs
-- to be done for the case of a machine scalar size of 8 are:
-- First_Bit .. Last_Bit Component_Bit_Offset
-- old new old new
-- 0 .. 0 7 .. 7 0 7
-- 0 .. 1 6 .. 7 0 6
-- 0 .. 2 5 .. 7 0 5
-- 0 .. 7 0 .. 7 0 4
-- 1 .. 1 6 .. 6 1 6
-- 1 .. 4 3 .. 6 1 3
-- 4 .. 7 0 .. 3 4 0
-- The rule is that the first bit is obtained by subtracting the
-- old ending bit from machine scalar size - 1.
for C in Start .. Stop loop
declare
Comp : constant Entity_Id := Comps (C);
CC : constant Node_Id := Component_Clause (Comp);
LB : constant Uint := Static_Integer (Last_Bit (CC));
NFB : constant Uint := MSS - Uint_1 - LB;
NLB : constant Uint := NFB + Esize (Comp) - 1;
Pos : constant Uint := Static_Integer (Position (CC));
begin
if Warn_On_Reverse_Bit_Order then
Error_Msg_Uint_1 := MSS;
Error_Msg_N
("info: reverse bit order in machine scalar of "
& "length^?V?", First_Bit (CC));
Error_Msg_Uint_1 := NFB;
Error_Msg_Uint_2 := NLB;
if Bytes_Big_Endian then
Error_Msg_NE
("\big-endian range for component & is ^ .. ^?V?",
First_Bit (CC), Comp);
else
Error_Msg_NE
("\little-endian range for component & is ^ .. ^?V?",
First_Bit (CC), Comp);
end if;
end if;
Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
Set_Normalized_First_Bit (Comp, NFB mod SSU);
end;
end loop;
end loop;
end Sort_CC;
end Adjust_Record_For_Reverse_Bit_Order;
------------------------------------------------
-- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
------------------------------------------------
procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id) is
CC : Node_Id;
Comp : Node_Id;
begin
-- For Ada 95, we just renumber bits within a storage unit. We do the
-- same for Ada 83 mode, since we recognize the Bit_Order attribute in
-- Ada 83, and are free to add this extension.
Comp := First_Component_Or_Discriminant (R);
while Present (Comp) loop
CC := Component_Clause (Comp);
-- If component clause is present, then deal with the non-default
-- bit order case for Ada 95 mode.
-- We only do this processing for the base type, and in fact that
-- is important, since otherwise if there are record subtypes, we
-- could reverse the bits once for each subtype, which is wrong.
if Present (CC) and then Ekind (R) = E_Record_Type then
declare
CFB : constant Uint := Component_Bit_Offset (Comp);
CSZ : constant Uint := Esize (Comp);
CLC : constant Node_Id := Component_Clause (Comp);
Pos : constant Node_Id := Position (CLC);
FB : constant Node_Id := First_Bit (CLC);
Storage_Unit_Offset : constant Uint :=
CFB / System_Storage_Unit;
Start_Bit : constant Uint :=
CFB mod System_Storage_Unit;
begin
-- Cases where field goes over storage unit boundary
if Start_Bit + CSZ > System_Storage_Unit then
-- Allow multi-byte field but generate warning
if Start_Bit mod System_Storage_Unit = 0
and then CSZ mod System_Storage_Unit = 0
then
Error_Msg_N
("info: multi-byte field specified with non-standard "
& "Bit_Order?V?", CLC);
if Bytes_Big_Endian then
Error_Msg_N
("\bytes are not reversed "
& "(component is big-endian)?V?", CLC);
else
Error_Msg_N
("\bytes are not reversed "
& "(component is little-endian)?V?", CLC);
end if;
-- Do not allow non-contiguous field
else
Error_Msg_N
("attempt to specify non-contiguous field not "
& "permitted", CLC);
Error_Msg_N
("\caused by non-standard Bit_Order specified in "
& "legacy Ada 95 mode", CLC);
end if;
-- Case where field fits in one storage unit
else
-- Give warning if suspicious component clause
if Intval (FB) >= System_Storage_Unit
and then Warn_On_Reverse_Bit_Order
then
Error_Msg_N
("info: Bit_Order clause does not affect byte "
& "ordering?V?", Pos);
Error_Msg_Uint_1 :=
Intval (Pos) + Intval (FB) /
System_Storage_Unit;
Error_Msg_N
("info: position normalized to ^ before bit order "
& "interpreted?V?", Pos);
end if;
-- Here is where we fix up the Component_Bit_Offset value
-- to account for the reverse bit order. Some examples of
-- what needs to be done are:
-- First_Bit .. Last_Bit Component_Bit_Offset
-- old new old new
-- 0 .. 0 7 .. 7 0 7
-- 0 .. 1 6 .. 7 0 6
-- 0 .. 2 5 .. 7 0 5
-- 0 .. 7 0 .. 7 0 4
-- 1 .. 1 6 .. 6 1 6
-- 1 .. 4 3 .. 6 1 3
-- 4 .. 7 0 .. 3 4 0
-- The rule is that the first bit is is obtained by
-- subtracting the old ending bit from storage_unit - 1.
Set_Component_Bit_Offset (Comp,
(Storage_Unit_Offset * System_Storage_Unit) +
(System_Storage_Unit - 1) -
(Start_Bit + CSZ - 1));
Set_Normalized_First_Bit (Comp,
Component_Bit_Offset (Comp) mod System_Storage_Unit);
end if;
end;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end Adjust_Record_For_Reverse_Bit_Order_Ada_95;
-------------------------------------
-- Alignment_Check_For_Size_Change --
-------------------------------------
procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
begin
-- If the alignment is known, and not set by a rep clause, and is
-- inconsistent with the size being set, then reset it to unknown,
-- we assume in this case that the size overrides the inherited
-- alignment, and that the alignment must be recomputed.
if Known_Alignment (Typ)
and then not Has_Alignment_Clause (Typ)
and then Size mod (Alignment (Typ) * SSU) /= 0
then
Init_Alignment (Typ);
end if;
end Alignment_Check_For_Size_Change;
-------------------------------------
-- Analyze_Aspects_At_Freeze_Point --
-------------------------------------
procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
-- This routine analyzes an Aspect_Default_[Component_]Value denoted by
-- the aspect specification node ASN.
procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
-- As discussed in the spec of Aspects (see Aspect_Delay declaration),
-- a derived type can inherit aspects from its parent which have been
-- specified at the time of the derivation using an aspect, as in:
--
-- type A is range 1 .. 10
-- with Size => Not_Defined_Yet;
-- ..
-- type B is new A;
-- ..
-- Not_Defined_Yet : constant := 64;
--
-- In this example, the Size of A is considered to be specified prior
-- to the derivation, and thus inherited, even though the value is not
-- known at the time of derivation. To deal with this, we use two entity
-- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
-- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
-- the derived type (B here). If this flag is set when the derived type
-- is frozen, then this procedure is called to ensure proper inheritance
-- of all delayed aspects from the parent type. The derived type is E,
-- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
-- aspect specification node in the Rep_Item chain for the parent type.
procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
-- Given an aspect specification node ASN whose expression is an
-- optional Boolean, this routines creates the corresponding pragma
-- at the freezing point.
----------------------------------
-- Analyze_Aspect_Default_Value --
----------------------------------
procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
Ent : constant Entity_Id := Entity (ASN);
Expr : constant Node_Id := Expression (ASN);
Id : constant Node_Id := Identifier (ASN);
begin
Error_Msg_Name_1 := Chars (Id);
if not Is_Type (Ent) then
Error_Msg_N ("aspect% can only apply to a type", Id);
return;
elsif not Is_First_Subtype (Ent) then
Error_Msg_N ("aspect% cannot apply to subtype", Id);
return;
elsif A_Id = Aspect_Default_Value
and then not Is_Scalar_Type (Ent)
then
Error_Msg_N ("aspect% can only be applied to scalar type", Id);
return;
elsif A_Id = Aspect_Default_Component_Value then
if not Is_Array_Type (Ent) then
Error_Msg_N ("aspect% can only be applied to array type", Id);
return;
elsif not Is_Scalar_Type (Component_Type (Ent)) then
Error_Msg_N ("aspect% requires scalar components", Id);
return;
end if;
end if;
Set_Has_Default_Aspect (Base_Type (Ent));
if Is_Scalar_Type (Ent) then
Set_Default_Aspect_Value (Base_Type (Ent), Expr);
else
Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
end if;
end Analyze_Aspect_Default_Value;
---------------------------------
-- Inherit_Delayed_Rep_Aspects --
---------------------------------
procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
P : constant Entity_Id := Entity (ASN);
-- Entithy for parent type
N : Node_Id;
-- Item from Rep_Item chain
A : Aspect_Id;
begin
-- Loop through delayed aspects for the parent type
N := ASN;
while Present (N) loop
if Nkind (N) = N_Aspect_Specification then
exit when Entity (N) /= P;
if Is_Delayed_Aspect (N) then
A := Get_Aspect_Id (Chars (Identifier (N)));
-- Process delayed rep aspect. For Boolean attributes it is
-- not possible to cancel an attribute once set (the attempt
-- to use an aspect with xxx => False is an error) for a
-- derived type. So for those cases, we do not have to check
-- if a clause has been given for the derived type, since it
-- is harmless to set it again if it is already set.
case A is
-- Alignment
when Aspect_Alignment =>
if not Has_Alignment_Clause (E) then
Set_Alignment (E, Alignment (P));
end if;
-- Atomic
when Aspect_Atomic =>
if Is_Atomic (P) then
Set_Is_Atomic (E);
end if;
-- Atomic_Components
when Aspect_Atomic_Components =>
if Has_Atomic_Components (P) then
Set_Has_Atomic_Components (Base_Type (E));
end if;
-- Bit_Order
when Aspect_Bit_Order =>
if Is_Record_Type (E)
and then No (Get_Attribute_Definition_Clause
(E, Attribute_Bit_Order))
and then Reverse_Bit_Order (P)
then
Set_Reverse_Bit_Order (Base_Type (E));
end if;
-- Component_Size
when Aspect_Component_Size =>
if Is_Array_Type (E)
and then not Has_Component_Size_Clause (E)
then
Set_Component_Size
(Base_Type (E), Component_Size (P));
end if;
-- Machine_Radix
when Aspect_Machine_Radix =>
if Is_Decimal_Fixed_Point_Type (E)
and then not Has_Machine_Radix_Clause (E)
then
Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
end if;
-- Object_Size (also Size which also sets Object_Size)
when Aspect_Object_Size
| Aspect_Size
=>
if not Has_Size_Clause (E)
and then
No (Get_Attribute_Definition_Clause
(E, Attribute_Object_Size))
then
Set_Esize (E, Esize (P));
end if;
-- Pack
when Aspect_Pack =>
if not Is_Packed (E) then
Set_Is_Packed (Base_Type (E));
if Is_Bit_Packed_Array (P) then
Set_Is_Bit_Packed_Array (Base_Type (E));
Set_Packed_Array_Impl_Type
(E, Packed_Array_Impl_Type (P));
end if;
end if;
-- Scalar_Storage_Order
when Aspect_Scalar_Storage_Order =>
if (Is_Record_Type (E) or else Is_Array_Type (E))
and then No (Get_Attribute_Definition_Clause
(E, Attribute_Scalar_Storage_Order))
and then Reverse_Storage_Order (P)
then
Set_Reverse_Storage_Order (Base_Type (E));
-- Clear default SSO indications, since the aspect
-- overrides the default.
Set_SSO_Set_Low_By_Default (Base_Type (E), False);
Set_SSO_Set_High_By_Default (Base_Type (E), False);
end if;
-- Small
when Aspect_Small =>
if Is_Fixed_Point_Type (E)
and then not Has_Small_Clause (E)
then
Set_Small_Value (E, Small_Value (P));
end if;
-- Storage_Size
when Aspect_Storage_Size =>
if (Is_Access_Type (E) or else Is_Task_Type (E))
and then not Has_Storage_Size_Clause (E)
then
Set_Storage_Size_Variable
(Base_Type (E), Storage_Size_Variable (P));
end if;
-- Value_Size
when Aspect_Value_Size =>
-- Value_Size is never inherited, it is either set by
-- default, or it is explicitly set for the derived
-- type. So nothing to do here.
null;
-- Volatile
when Aspect_Volatile =>
if Is_Volatile (P) then
Set_Is_Volatile (E);
end if;
-- Volatile_Full_Access
when Aspect_Volatile_Full_Access =>
if Is_Volatile_Full_Access (P) then
Set_Is_Volatile_Full_Access (E);
end if;
-- Volatile_Components
when Aspect_Volatile_Components =>
if Has_Volatile_Components (P) then
Set_Has_Volatile_Components (Base_Type (E));
end if;
-- That should be all the Rep Aspects
when others =>
pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
null;
end case;
end if;
end if;
N := Next_Rep_Item (N);
end loop;
end Inherit_Delayed_Rep_Aspects;
-------------------------------------
-- Make_Pragma_From_Boolean_Aspect --
-------------------------------------
procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
Ident : constant Node_Id := Identifier (ASN);
A_Name : constant Name_Id := Chars (Ident);
A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
Ent : constant Entity_Id := Entity (ASN);
Expr : constant Node_Id := Expression (ASN);
Loc : constant Source_Ptr := Sloc (ASN);
procedure Check_False_Aspect_For_Derived_Type;
-- This procedure checks for the case of a false aspect for a derived
-- type, which improperly tries to cancel an aspect inherited from
-- the parent.
-----------------------------------------
-- Check_False_Aspect_For_Derived_Type --
-----------------------------------------
procedure Check_False_Aspect_For_Derived_Type is
Par : Node_Id;
begin
-- We are only checking derived types
if not Is_Derived_Type (E) then
return;
end if;
Par := Nearest_Ancestor (E);
case A_Id is
when Aspect_Atomic
| Aspect_Shared
=>
if not Is_Atomic (Par) then
return;
end if;
when Aspect_Atomic_Components =>
if not Has_Atomic_Components (Par) then
return;
end if;
when Aspect_Discard_Names =>
if not Discard_Names (Par) then
return;
end if;
when Aspect_Pack =>
if not Is_Packed (Par) then
return;
end if;
when Aspect_Unchecked_Union =>
if not Is_Unchecked_Union (Par) then
return;
end if;
when Aspect_Volatile =>
if not Is_Volatile (Par) then
return;
end if;
when Aspect_Volatile_Components =>
if not Has_Volatile_Components (Par) then
return;
end if;
when Aspect_Volatile_Full_Access =>
if not Is_Volatile_Full_Access (Par) then
return;
end if;
when others =>
return;
end case;
-- Fall through means we are canceling an inherited aspect
Error_Msg_Name_1 := A_Name;
Error_Msg_NE
("derived type& inherits aspect%, cannot cancel", Expr, E);
end Check_False_Aspect_For_Derived_Type;
-- Local variables
Prag : Node_Id;
-- Start of processing for Make_Pragma_From_Boolean_Aspect
begin
-- Note that we know Expr is present, because for a missing Expr
-- argument, we knew it was True and did not need to delay the
-- evaluation to the freeze point.
if Is_False (Static_Boolean (Expr)) then
Check_False_Aspect_For_Derived_Type;
else
Prag :=
Make_Pragma (Loc,
Pragma_Identifier =>
Make_Identifier (Sloc (Ident), Chars (Ident)),
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Sloc (Ident),
Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
Set_From_Aspect_Specification (Prag, True);
Set_Corresponding_Aspect (Prag, ASN);
Set_Aspect_Rep_Item (ASN, Prag);
Set_Is_Delayed_Aspect (Prag);
Set_Parent (Prag, ASN);
end if;
end Make_Pragma_From_Boolean_Aspect;
-- Local variables
A_Id : Aspect_Id;
ASN : Node_Id;
Ritem : Node_Id;
-- Start of processing for Analyze_Aspects_At_Freeze_Point
begin
-- Must be visible in current scope
if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
return;
end if;
-- Look for aspect specification entries for this entity
ASN := First_Rep_Item (E);
while Present (ASN) loop
if Nkind (ASN) = N_Aspect_Specification then
exit when Entity (ASN) /= E;
if Is_Delayed_Aspect (ASN) then
A_Id := Get_Aspect_Id (ASN);
case A_Id is
-- For aspects whose expression is an optional Boolean, make
-- the corresponding pragma at the freeze point.
when Boolean_Aspects
| Library_Unit_Aspects
=>
-- Aspects Export and Import require special handling.
-- Both are by definition Boolean and may benefit from
-- forward references, however their expressions are
-- treated as static. In addition, the syntax of their
-- corresponding pragmas requires extra "pieces" which
-- may also contain forward references. To account for
-- all of this, the corresponding pragma is created by
-- Analyze_Aspect_Export_Import, but is not analyzed as
-- the complete analysis must happen now.
if A_Id = Aspect_Export or else A_Id = Aspect_Import then
null;
-- Otherwise create a corresponding pragma
else
Make_Pragma_From_Boolean_Aspect (ASN);
end if;
-- Special handling for aspects that don't correspond to
-- pragmas/attributes.
when Aspect_Default_Value
| Aspect_Default_Component_Value
=>
-- Do not inherit aspect for anonymous base type of a
-- scalar or array type, because they apply to the first
-- subtype of the type, and will be processed when that
-- first subtype is frozen.
if Is_Derived_Type (E)
and then not Comes_From_Source (E)
and then E /= First_Subtype (E)
then
null;
else
Analyze_Aspect_Default_Value (ASN);
end if;
-- Ditto for iterator aspects, because the corresponding
-- attributes may not have been analyzed yet.
when Aspect_Constant_Indexing
| Aspect_Default_Iterator
| Aspect_Iterator_Element
| Aspect_Variable_Indexing
=>
Analyze (Expression (ASN));
if Etype (Expression (ASN)) = Any_Type then
Error_Msg_NE
("\aspect must be fully defined before & is frozen",
ASN, E);
end if;
when Aspect_Iterable =>
Validate_Iterable_Aspect (E, ASN);
when others =>
null;
end case;
Ritem := Aspect_Rep_Item (ASN);
if Present (Ritem) then
Analyze (Ritem);
end if;
end if;
end if;
Next_Rep_Item (ASN);
end loop;
-- This is where we inherit delayed rep aspects from our parent. Note
-- that if we fell out of the above loop with ASN non-empty, it means
-- we hit an aspect for an entity other than E, and it must be the
-- type from which we were derived.
if May_Inherit_Delayed_Rep_Aspects (E) then
Inherit_Delayed_Rep_Aspects (ASN);
end if;
end Analyze_Aspects_At_Freeze_Point;
-----------------------------------
-- Analyze_Aspect_Specifications --
-----------------------------------
procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
procedure Decorate (Asp : Node_Id; Prag : Node_Id);
-- Establish linkages between an aspect and its corresponding pragma
procedure Insert_Pragma
(Prag : Node_Id;
Is_Instance : Boolean := False);
-- Subsidiary to the analysis of aspects
-- Abstract_State
-- Attach_Handler
-- Contract_Cases
-- Depends
-- Ghost
-- Global
-- Initial_Condition
-- Initializes
-- Post
-- Pre
-- Refined_Depends
-- Refined_Global
-- Refined_State
-- SPARK_Mode
-- Warnings
-- Insert pragma Prag such that it mimics the placement of a source
-- pragma of the same kind. Flag Is_Generic should be set when the
-- context denotes a generic instance.
--------------
-- Decorate --
--------------
procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
begin
Set_Aspect_Rep_Item (Asp, Prag);
Set_Corresponding_Aspect (Prag, Asp);
Set_From_Aspect_Specification (Prag);
Set_Parent (Prag, Asp);
end Decorate;
-------------------
-- Insert_Pragma --
-------------------
procedure Insert_Pragma
(Prag : Node_Id;
Is_Instance : Boolean := False)
is
Aux : Node_Id;
Decl : Node_Id;
Decls : List_Id;
Def : Node_Id;
Inserted : Boolean := False;
begin
-- When the aspect appears on an entry, package, protected unit,
-- subprogram, or task unit body, insert the generated pragma at the
-- top of the body declarations to emulate the behavior of a source
-- pragma.
-- package body Pack with Aspect is
-- package body Pack is
-- pragma Prag;
if Nkind_In (N, N_Entry_Body,
N_Package_Body,
N_Protected_Body,
N_Subprogram_Body,
N_Task_Body)
then
Decls := Declarations (N);
if No (Decls) then
Decls := New_List;
Set_Declarations (N, Decls);
end if;
Prepend_To (Decls, Prag);
-- When the aspect is associated with a [generic] package declaration
-- insert the generated pragma at the top of the visible declarations
-- to emulate the behavior of a source pragma.
-- package Pack with Aspect is
-- package Pack is
-- pragma Prag;
elsif Nkind_In (N, N_Generic_Package_Declaration,
N_Package_Declaration)
then
Decls := Visible_Declarations (Specification (N));
if No (Decls) then
Decls := New_List;
Set_Visible_Declarations (Specification (N), Decls);
end if;
-- The visible declarations of a generic instance have the
-- following structure:
-- <renamings of generic formals>
-- <renamings of internally-generated spec and body>
-- <first source declaration>
-- Insert the pragma before the first source declaration by
-- skipping the instance "header" to ensure proper visibility of
-- all formals.
if Is_Instance then
Decl := First (Decls);
while Present (Decl) loop
if Comes_From_Source (Decl) then
Insert_Before (Decl, Prag);
Inserted := True;
exit;
else
Next (Decl);
end if;
end loop;
-- The pragma is placed after the instance "header"
if not Inserted then
Append_To (Decls, Prag);
end if;
-- Otherwise this is not a generic instance
else
Prepend_To (Decls, Prag);
end if;
-- When the aspect is associated with a protected unit declaration,
-- insert the generated pragma at the top of the visible declarations
-- the emulate the behavior of a source pragma.
-- protected [type] Prot with Aspect is
-- protected [type] Prot is
-- pragma Prag;
elsif Nkind (N) = N_Protected_Type_Declaration then
Def := Protected_Definition (N);
if No (Def) then
Def :=
Make_Protected_Definition (Sloc (N),
Visible_Declarations => New_List,
End_Label => Empty);
Set_Protected_Definition (N, Def);
end if;
Decls := Visible_Declarations (Def);
if No (Decls) then
Decls := New_List;
Set_Visible_Declarations (Def, Decls);
end if;
Prepend_To (Decls, Prag);
-- When the aspect is associated with a task unit declaration, insert
-- insert the generated pragma at the top of the visible declarations
-- the emulate the behavior of a source pragma.
-- task [type] Prot with Aspect is
-- task [type] Prot is
-- pragma Prag;
elsif Nkind (N) = N_Task_Type_Declaration then
Def := Task_Definition (N);
if No (Def) then
Def :=
Make_Task_Definition (Sloc (N),
Visible_Declarations => New_List,
End_Label => Empty);
Set_Task_Definition (N, Def);
end if;
Decls := Visible_Declarations (Def);
if No (Decls) then
Decls := New_List;
Set_Visible_Declarations (Def, Decls);
end if;
Prepend_To (Decls, Prag);
-- When the context is a library unit, the pragma is added to the
-- Pragmas_After list.
elsif Nkind (Parent (N)) = N_Compilation_Unit then
Aux := Aux_Decls_Node (Parent (N));
if No (Pragmas_After (Aux)) then
Set_Pragmas_After (Aux, New_List);
end if;
Prepend (Prag, Pragmas_After (Aux));
-- Default, the pragma is inserted after the context
else
Insert_After (N, Prag);
end if;
end Insert_Pragma;
-- Local variables
Aspect : Node_Id;
Aitem : Node_Id;
Ent : Node_Id;
L : constant List_Id := Aspect_Specifications (N);
Ins_Node : Node_Id := N;
-- Insert pragmas/attribute definition clause after this node when no
-- delayed analysis is required.
-- Start of processing for Analyze_Aspect_Specifications
begin
-- The general processing involves building an attribute definition
-- clause or a pragma node that corresponds to the aspect. Then in order
-- to delay the evaluation of this aspect to the freeze point, we attach
-- the corresponding pragma/attribute definition clause to the aspect
-- specification node, which is then placed in the Rep Item chain. In
-- this case we mark the entity by setting the flag Has_Delayed_Aspects
-- and we evaluate the rep item at the freeze point. When the aspect
-- doesn't have a corresponding pragma/attribute definition clause, then
-- its analysis is simply delayed at the freeze point.
-- Some special cases don't require delay analysis, thus the aspect is
-- analyzed right now.
-- Note that there is a special handling for Pre, Post, Test_Case,
-- Contract_Cases aspects. In these cases, we do not have to worry
-- about delay issues, since the pragmas themselves deal with delay
-- of visibility for the expression analysis. Thus, we just insert
-- the pragma after the node N.
pragma Assert (Present (L));
-- Loop through aspects
Aspect := First (L);
Aspect_Loop : while Present (Aspect) loop
Analyze_One_Aspect : declare
Expr : constant Node_Id := Expression (Aspect);
Id : constant Node_Id := Identifier (Aspect);
Loc : constant Source_Ptr := Sloc (Aspect);
Nam : constant Name_Id := Chars (Id);
A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
Anod : Node_Id;
Delay_Required : Boolean;
-- Set False if delay is not required
Eloc : Source_Ptr := No_Location;
-- Source location of expression, modified when we split PPC's. It
-- is set below when Expr is present.
procedure Analyze_Aspect_Convention;
-- Perform analysis of aspect Convention
procedure Analyze_Aspect_Export_Import;
-- Perform analysis of aspects Export or Import
procedure Analyze_Aspect_External_Link_Name;
-- Perform analysis of aspects External_Name or Link_Name
procedure Analyze_Aspect_Implicit_Dereference;
-- Perform analysis of the Implicit_Dereference aspects
procedure Make_Aitem_Pragma
(Pragma_Argument_Associations : List_Id;
Pragma_Name : Name_Id);
-- This is a wrapper for Make_Pragma used for converting aspects
-- to pragmas. It takes care of Sloc (set from Loc) and building
-- the pragma identifier from the given name. In addition the
-- flags Class_Present and Split_PPC are set from the aspect
-- node, as well as Is_Ignored. This routine also sets the
-- From_Aspect_Specification in the resulting pragma node to
-- True, and sets Corresponding_Aspect to point to the aspect.
-- The resulting pragma is assigned to Aitem.
-------------------------------
-- Analyze_Aspect_Convention --
-------------------------------
procedure Analyze_Aspect_Convention is
Conv : Node_Id;
Dummy_1 : Node_Id;
Dummy_2 : Node_Id;
Dummy_3 : Node_Id;
Expo : Node_Id;
Imp : Node_Id;
begin
-- Obtain all interfacing aspects that apply to the related
-- entity.
Get_Interfacing_Aspects
(Iface_Asp => Aspect,
Conv_Asp => Dummy_1,
EN_Asp => Dummy_2,
Expo_Asp => Expo,
Imp_Asp => Imp,
LN_Asp => Dummy_3,
Do_Checks => True);
-- The related entity is subject to aspect Export or Import.
-- Do not process Convention now because it must be analysed
-- as part of Export or Import.
if Present (Expo) or else Present (Imp) then
return;
-- Otherwise Convention appears by itself
else
-- The aspect specifies a particular convention
if Present (Expr) then
Conv := New_Copy_Tree (Expr);
-- Otherwise assume convention Ada
else
Conv := Make_Identifier (Loc, Name_Ada);
end if;
-- Generate:
-- pragma Convention (<Conv>, <E>);
Make_Aitem_Pragma
(Pragma_Name => Name_Convention,
Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Conv),
Make_Pragma_Argument_Association (Loc,
Expression => New_Occurrence_Of (E, Loc))));
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
end if;
end Analyze_Aspect_Convention;
----------------------------------
-- Analyze_Aspect_Export_Import --
----------------------------------
procedure Analyze_Aspect_Export_Import is
Dummy_1 : Node_Id;
Dummy_2 : Node_Id;
Dummy_3 : Node_Id;
Expo : Node_Id;
Imp : Node_Id;
begin
-- Obtain all interfacing aspects that apply to the related
-- entity.
Get_Interfacing_Aspects
(Iface_Asp => Aspect,
Conv_Asp => Dummy_1,
EN_Asp => Dummy_2,
Expo_Asp => Expo,
Imp_Asp => Imp,
LN_Asp => Dummy_3,
Do_Checks => True);
-- The related entity cannot be subject to both aspects Export
-- and Import.
if Present (Expo) and then Present (Imp) then
Error_Msg_N
("incompatible interfacing aspects given for &", E);
Error_Msg_Sloc := Sloc (Expo);
Error_Msg_N ("\aspect `Export` #", E);
Error_Msg_Sloc := Sloc (Imp);
Error_Msg_N ("\aspect `Import` #", E);
end if;
-- A variable is most likely modified from the outside. Take
-- Take the optimistic approach to avoid spurious errors.
if Ekind (E) = E_Variable then
Set_Never_Set_In_Source (E, False);
end if;
-- Resolve the expression of an Import or Export here, and
-- require it to be of type Boolean and static. This is not
-- quite right, because in general this should be delayed,
-- but that seems tricky for these, because normally Boolean
-- aspects are replaced with pragmas at the freeze point in
-- Make_Pragma_From_Boolean_Aspect.
if not Present (Expr)
or else Is_True (Static_Boolean (Expr))
then
if A_Id = Aspect_Import then
Set_Has_Completion (E);
Set_Is_Imported (E);
-- An imported object cannot be explicitly initialized
if Nkind (N) = N_Object_Declaration
and then Present (Expression (N))
then
Error_Msg_N
("imported entities cannot be initialized "
& "(RM B.1(24))", Expression (N));
end if;
else
pragma Assert (A_Id = Aspect_Export);
Set_Is_Exported (E);
end if;
-- Create the proper form of pragma Export or Import taking
-- into account Conversion, External_Name, and Link_Name.
Aitem := Build_Export_Import_Pragma (Aspect, E);
-- Otherwise the expression is either False or erroneous. There
-- is no corresponding pragma.
else
Aitem := Empty;
end if;
end Analyze_Aspect_Export_Import;
---------------------------------------
-- Analyze_Aspect_External_Link_Name --
---------------------------------------
procedure Analyze_Aspect_External_Link_Name is
Dummy_1 : Node_Id;
Dummy_2 : Node_Id;
Dummy_3 : Node_Id;
Expo : Node_Id;
Imp : Node_Id;
begin
-- Obtain all interfacing aspects that apply to the related
-- entity.
Get_Interfacing_Aspects
(Iface_Asp => Aspect,
Conv_Asp => Dummy_1,
EN_Asp => Dummy_2,
Expo_Asp => Expo,
Imp_Asp => Imp,
LN_Asp => Dummy_3,
Do_Checks => True);
-- Ensure that aspect External_Name applies to aspect Export or
-- Import.
if A_Id = Aspect_External_Name then
if No (Expo) and then No (Imp) then
Error_Msg_N
("aspect `External_Name` requires aspect `Import` or "
& "`Export`", Aspect);
end if;
-- Otherwise ensure that aspect Link_Name applies to aspect
-- Export or Import.
else
pragma Assert (A_Id = Aspect_Link_Name);
if No (Expo) and then No (Imp) then
Error_Msg_N
("aspect `Link_Name` requires aspect `Import` or "
& "`Export`", Aspect);
end if;
end if;
end Analyze_Aspect_External_Link_Name;
-----------------------------------------
-- Analyze_Aspect_Implicit_Dereference --
-----------------------------------------
procedure Analyze_Aspect_Implicit_Dereference is
Disc : Entity_Id;
Parent_Disc : Entity_Id;
begin
if not Is_Type (E) or else not Has_Discriminants (E) then
Error_Msg_N
("aspect must apply to a type with discriminants", Expr);
elsif not Is_Entity_Name (Expr) then
Error_Msg_N
("aspect must name a discriminant of current type", Expr);
else
-- Discriminant type be an anonymous access type or an
-- anonymous access to subprogram.
-- Missing synchronized types???
Disc := First_Discriminant (E);
while Present (Disc) loop
if Chars (Expr) = Chars (Disc)
and then Ekind_In (Etype (Disc),
E_Anonymous_Access_Subprogram_Type,
E_Anonymous_Access_Type)
then
Set_Has_Implicit_Dereference (E);
Set_Has_Implicit_Dereference (Disc);
exit;
end if;
Next_Discriminant (Disc);
end loop;
-- Error if no proper access discriminant
if No (Disc) then
Error_Msg_NE ("not an access discriminant of&", Expr, E);
return;
end if;
end if;
-- For a type extension, check whether parent has a
-- reference discriminant, to verify that use is proper.
if Is_Derived_Type (E)
and then Has_Discriminants (Etype (E))
then
Parent_Disc := Get_Reference_Discriminant (Etype (E));
if Present (Parent_Disc)
and then Corresponding_Discriminant (Disc) /= Parent_Disc
then
Error_Msg_N
("reference discriminant does not match discriminant "
& "of parent type", Expr);
end if;
end if;
end Analyze_Aspect_Implicit_Dereference;
-----------------------
-- Make_Aitem_Pragma --
-----------------------
procedure Make_Aitem_Pragma
(Pragma_Argument_Associations : List_Id;
Pragma_Name : Name_Id)
is
Args : List_Id := Pragma_Argument_Associations;
begin
-- We should never get here if aspect was disabled
pragma Assert (not Is_Disabled (Aspect));
-- Certain aspects allow for an optional name or expression. Do
-- not generate a pragma with empty argument association list.
if No (Args) or else No (Expression (First (Args))) then
Args := No_List;
end if;
-- Build the pragma
Aitem :=
Make_Pragma (Loc,
Pragma_Argument_Associations => Args,
Pragma_Identifier =>
Make_Identifier (Sloc (Id), Pragma_Name),
Class_Present => Class_Present (Aspect),
Split_PPC => Split_PPC (Aspect));
-- Set additional semantic fields
if Is_Ignored (Aspect) then
Set_Is_Ignored (Aitem);
elsif Is_Checked (Aspect) then
Set_Is_Checked (Aitem);
end if;
Set_Corresponding_Aspect (Aitem, Aspect);
Set_From_Aspect_Specification (Aitem);
end Make_Aitem_Pragma;
-- Start of processing for Analyze_One_Aspect
begin
-- Skip aspect if already analyzed, to avoid looping in some cases
if Analyzed (Aspect) then
goto Continue;
end if;
-- Skip looking at aspect if it is totally disabled. Just mark it
-- as such for later reference in the tree. This also sets the
-- Is_Ignored and Is_Checked flags appropriately.
Check_Applicable_Policy (Aspect);
if Is_Disabled (Aspect) then
goto Continue;
end if;
-- Set the source location of expression, used in the case of
-- a failed precondition/postcondition or invariant. Note that
-- the source location of the expression is not usually the best
-- choice here. For example, it gets located on the last AND
-- keyword in a chain of boolean expressiond AND'ed together.
-- It is best to put the message on the first character of the
-- assertion, which is the effect of the First_Node call here.
if Present (Expr) then
Eloc := Sloc (First_Node (Expr));
end if;
-- Check restriction No_Implementation_Aspect_Specifications
if Implementation_Defined_Aspect (A_Id) then
Check_Restriction
(No_Implementation_Aspect_Specifications, Aspect);
end if;
-- Check restriction No_Specification_Of_Aspect
Check_Restriction_No_Specification_Of_Aspect (Aspect);
-- Mark aspect analyzed (actual analysis is delayed till later)
Set_Analyzed (Aspect);
Set_Entity (Aspect, E);
-- Build the reference to E that will be used in the built pragmas
Ent := New_Occurrence_Of (E, Sloc (Id));
if A_Id = Aspect_Attach_Handler
or else A_Id = Aspect_Interrupt_Handler
then
-- Decorate the reference as comming from the sources and force
-- its reanalysis to generate the reference to E; required to
-- avoid reporting spurious warning on E as unreferenced entity
-- (because aspects are not fully analyzed).
Set_Comes_From_Source (Ent, Comes_From_Source (Id));
Set_Entity (Ent, Empty);
Analyze (Ent);
end if;
-- Check for duplicate aspect. Note that the Comes_From_Source
-- test allows duplicate Pre/Post's that we generate internally
-- to escape being flagged here.
if No_Duplicates_Allowed (A_Id) then
Anod := First (L);
while Anod /= Aspect loop
if Comes_From_Source (Aspect)
and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
then
Error_Msg_Name_1 := Nam;
Error_Msg_Sloc := Sloc (Anod);
-- Case of same aspect specified twice
if Class_Present (Anod) = Class_Present (Aspect) then
if not Class_Present (Anod) then
Error_Msg_NE
("aspect% for & previously given#",
Id, E);
else
Error_Msg_NE
("aspect `%''Class` for & previously given#",
Id, E);
end if;
end if;
end if;
Next (Anod);
end loop;
end if;
-- Check some general restrictions on language defined aspects
if not Implementation_Defined_Aspect (A_Id) then
Error_Msg_Name_1 := Nam;
-- Not allowed for renaming declarations. Examine the original
-- node because a subprogram renaming may have been rewritten
-- as a body.
if Nkind (Original_Node (N)) in N_Renaming_Declaration then
Error_Msg_N
("aspect % not allowed for renaming declaration",
Aspect);
end if;
-- Not allowed for formal type declarations
if Nkind (N) = N_Formal_Type_Declaration then
Error_Msg_N
("aspect % not allowed for formal type declaration",
Aspect);
end if;
end if;
-- Copy expression for later processing by the procedures
-- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
Set_Entity (Id, New_Copy_Tree (Expr));
-- Set Delay_Required as appropriate to aspect
case Aspect_Delay (A_Id) is
when Always_Delay =>
Delay_Required := True;
when Never_Delay =>
Delay_Required := False;
when Rep_Aspect =>
-- If expression has the form of an integer literal, then
-- do not delay, since we know the value cannot change.
-- This optimization catches most rep clause cases.
-- For Boolean aspects, don't delay if no expression
if A_Id in Boolean_Aspects and then No (Expr) then
Delay_Required := False;
-- For non-Boolean aspects, don't delay if integer literal,
-- unless the aspect is Alignment, which affects the
-- freezing of an initialized object.
elsif A_Id not in Boolean_Aspects
and then A_Id /= Aspect_Alignment
and then Present (Expr)
and then Nkind (Expr) = N_Integer_Literal
then
Delay_Required := False;
-- All other cases are delayed
else
Delay_Required := True;
Set_Has_Delayed_Rep_Aspects (E);
end if;
end case;
-- Processing based on specific aspect
case A_Id is
when Aspect_Unimplemented =>
null; -- ??? temp for now
-- No_Aspect should be impossible
when No_Aspect =>
raise Program_Error;
-- Case 1: Aspects corresponding to attribute definition
-- clauses.
when Aspect_Address
| Aspect_Alignment
| Aspect_Bit_Order
| Aspect_Component_Size
| Aspect_Constant_Indexing
| Aspect_Default_Iterator
| Aspect_Dispatching_Domain
| Aspect_External_Tag
| Aspect_Input
| Aspect_Iterable
| Aspect_Iterator_Element
| Aspect_Machine_Radix
| Aspect_Object_Size
| Aspect_Output
| Aspect_Read
| Aspect_Scalar_Storage_Order
| Aspect_Secondary_Stack_Size
| Aspect_Simple_Storage_Pool
| Aspect_Size
| Aspect_Small
| Aspect_Storage_Pool
| Aspect_Stream_Size
| Aspect_Value_Size
| Aspect_Variable_Indexing
| Aspect_Write
=>
-- Indexing aspects apply only to tagged type
if (A_Id = Aspect_Constant_Indexing
or else
A_Id = Aspect_Variable_Indexing)
and then not (Is_Type (E)
and then Is_Tagged_Type (E))
then
Error_Msg_N
("indexing aspect can only apply to a tagged type",
Aspect);
goto Continue;
end if;
-- For the case of aspect Address, we don't consider that we
-- know the entity is never set in the source, since it is
-- is likely aliasing is occurring.
-- Note: one might think that the analysis of the resulting
-- attribute definition clause would take care of that, but
-- that's not the case since it won't be from source.
if A_Id = Aspect_Address then
Set_Never_Set_In_Source (E, False);
end if;
-- Correctness of the profile of a stream operation is
-- verified at the freeze point, but we must detect the
-- illegal specification of this aspect for a subtype now,
-- to prevent malformed rep_item chains.
if A_Id = Aspect_Input or else
A_Id = Aspect_Output or else
A_Id = Aspect_Read or else
A_Id = Aspect_Write
then
if not Is_First_Subtype (E) then
Error_Msg_N
("local name must be a first subtype", Aspect);
goto Continue;
-- If stream aspect applies to the class-wide type,
-- the generated attribute definition applies to the
-- class-wide type as well.
elsif Class_Present (Aspect) then
Ent :=
Make_Attribute_Reference (Loc,
Prefix => Ent,
Attribute_Name => Name_Class);
end if;
end if;
-- Construct the attribute definition clause
Aitem :=
Make_Attribute_Definition_Clause (Loc,
Name => Ent,
Chars => Chars (Id),
Expression => Relocate_Node (Expr));
-- If the address is specified, then we treat the entity as
-- referenced, to avoid spurious warnings. This is analogous
-- to what is done with an attribute definition clause, but
-- here we don't want to generate a reference because this
-- is the point of definition of the entity.
if A_Id = Aspect_Address then
Set_Referenced (E);
end if;
-- Case 2: Aspects corresponding to pragmas
-- Case 2a: Aspects corresponding to pragmas with two
-- arguments, where the first argument is a local name
-- referring to the entity, and the second argument is the
-- aspect definition expression.
-- Linker_Section/Suppress/Unsuppress
when Aspect_Linker_Section
| Aspect_Suppress
| Aspect_Unsuppress
=>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => New_Occurrence_Of (E, Loc)),
Make_Pragma_Argument_Association (Sloc (Expr),
Expression => Relocate_Node (Expr))),
Pragma_Name => Chars (Id));
-- Synchronization
-- Corresponds to pragma Implemented, construct the pragma
when Aspect_Synchronization =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => New_Occurrence_Of (E, Loc)),
Make_Pragma_Argument_Association (Sloc (Expr),
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Implemented);
-- Attach_Handler
when Aspect_Attach_Handler =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Sloc (Ent),
Expression => Ent),
Make_Pragma_Argument_Association (Sloc (Expr),
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Attach_Handler);
-- We need to insert this pragma into the tree to get proper
-- processing and to look valid from a placement viewpoint.
Insert_Pragma (Aitem);
goto Continue;
-- Dynamic_Predicate, Predicate, Static_Predicate
when Aspect_Dynamic_Predicate
| Aspect_Predicate
| Aspect_Static_Predicate
=>
-- These aspects apply only to subtypes
if not Is_Type (E) then
Error_Msg_N
("predicate can only be specified for a subtype",
Aspect);
goto Continue;
elsif Is_Incomplete_Type (E) then
Error_Msg_N
("predicate cannot apply to incomplete view", Aspect);
goto Continue;
end if;
-- Construct the pragma (always a pragma Predicate, with
-- flags recording whether it is static/dynamic). We also
-- set flags recording this in the type itself.
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Sloc (Ent),
Expression => Ent),
Make_Pragma_Argument_Association (Sloc (Expr),
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Predicate);
-- Mark type has predicates, and remember what kind of
-- aspect lead to this predicate (we need this to access
-- the right set of check policies later on).
Set_Has_Predicates (E);
if A_Id = Aspect_Dynamic_Predicate then
Set_Has_Dynamic_Predicate_Aspect (E);
-- If the entity has a dynamic predicate, any inherited
-- static predicate becomes dynamic as well, and the
-- predicate function includes the conjunction of both.
Set_Has_Static_Predicate_Aspect (E, False);
elsif A_Id = Aspect_Static_Predicate then
Set_Has_Static_Predicate_Aspect (E);
end if;
-- If the type is private, indicate that its completion
-- has a freeze node, because that is the one that will
-- be visible at freeze time.
if Is_Private_Type (E) and then Present (Full_View (E)) then
Set_Has_Predicates (Full_View (E));
if A_Id = Aspect_Dynamic_Predicate then
Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
elsif A_Id = Aspect_Static_Predicate then
Set_Has_Static_Predicate_Aspect (Full_View (E));
end if;
Set_Has_Delayed_Aspects (Full_View (E));
Ensure_Freeze_Node (Full_View (E));
end if;
-- Predicate_Failure
when Aspect_Predicate_Failure =>
-- This aspect applies only to subtypes
if not Is_Type (E) then
Error_Msg_N
("predicate can only be specified for a subtype",
Aspect);
goto Continue;
elsif Is_Incomplete_Type (E) then
Error_Msg_N
("predicate cannot apply to incomplete view", Aspect);
goto Continue;
end if;
-- Construct the pragma
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Sloc (Ent),
Expression => Ent),
Make_Pragma_Argument_Association (Sloc (Expr),
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Predicate_Failure);
Set_Has_Predicates (E);
-- If the type is private, indicate that its completion
-- has a freeze node, because that is the one that will
-- be visible at freeze time.
if Is_Private_Type (E) and then Present (Full_View (E)) then
Set_Has_Predicates (Full_View (E));
Set_Has_Delayed_Aspects (Full_View (E));
Ensure_Freeze_Node (Full_View (E));
end if;
-- Case 2b: Aspects corresponding to pragmas with two
-- arguments, where the second argument is a local name
-- referring to the entity, and the first argument is the
-- aspect definition expression.
-- Convention
when Aspect_Convention =>
Analyze_Aspect_Convention;
goto Continue;
-- External_Name, Link_Name
when Aspect_External_Name
| Aspect_Link_Name
=>
Analyze_Aspect_External_Link_Name;
goto Continue;
-- CPU, Interrupt_Priority, Priority
-- These three aspects can be specified for a subprogram spec
-- or body, in which case we analyze the expression and export
-- the value of the aspect.
-- Previously, we generated an equivalent pragma for bodies
-- (note that the specs cannot contain these pragmas). The
-- pragma was inserted ahead of local declarations, rather than
-- after the body. This leads to a certain duplication between
-- the processing performed for the aspect and the pragma, but
-- given the straightforward handling required it is simpler
-- to duplicate than to translate the aspect in the spec into
-- a pragma in the declarative part of the body.
when Aspect_CPU
| Aspect_Interrupt_Priority
| Aspect_Priority
=>
if Nkind_In (N, N_Subprogram_Body,
N_Subprogram_Declaration)
then
-- Analyze the aspect expression
Analyze_And_Resolve (Expr, Standard_Integer);
-- Interrupt_Priority aspect not allowed for main
-- subprograms. RM D.1 does not forbid this explicitly,
-- but RM J.15.11(6/3) does not permit pragma
-- Interrupt_Priority for subprograms.
if A_Id = Aspect_Interrupt_Priority then
Error_Msg_N
("Interrupt_Priority aspect cannot apply to "
& "subprogram", Expr);
-- The expression must be static
elsif not Is_OK_Static_Expression (Expr) then
Flag_Non_Static_Expr
("aspect requires static expression!", Expr);
-- Check whether this is the main subprogram. Issue a
-- warning only if it is obviously not a main program
-- (when it has parameters or when the subprogram is
-- within a package).
elsif Present (Parameter_Specifications
(Specification (N)))
or else not Is_Compilation_Unit (Defining_Entity (N))
then
-- See RM D.1(14/3) and D.16(12/3)
Error_Msg_N
("aspect applied to subprogram other than the "
& "main subprogram has no effect??", Expr);
-- Otherwise check in range and export the value
-- For the CPU aspect
elsif A_Id = Aspect_CPU then
if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
-- Value is correct so we export the value to make
-- it available at execution time.
Set_Main_CPU
(Main_Unit, UI_To_Int (Expr_Value (Expr)));
else
Error_Msg_N
("main subprogram CPU is out of range", Expr);
end if;
-- For the Priority aspect
elsif A_Id = Aspect_Priority then
if Is_In_Range (Expr, RTE (RE_Priority)) then
-- Value is correct so we export the value to make
-- it available at execution time.
Set_Main_Priority
(Main_Unit, UI_To_Int (Expr_Value (Expr)));
-- Ignore pragma if Relaxed_RM_Semantics to support
-- other targets/non GNAT compilers.
elsif not Relaxed_RM_Semantics then
Error_Msg_N
("main subprogram priority is out of range",
Expr);
end if;
end if;
-- Load an arbitrary entity from System.Tasking.Stages
-- or System.Tasking.Restricted.Stages (depending on
-- the supported profile) to make sure that one of these
-- packages is implicitly with'ed, since we need to have
-- the tasking run time active for the pragma Priority to
-- have any effect. Previously we with'ed the package
-- System.Tasking, but this package does not trigger the
-- required initialization of the run-time library.
declare
Discard : Entity_Id;
begin
if Restricted_Profile then
Discard := RTE (RE_Activate_Restricted_Tasks);
else
Discard := RTE (RE_Activate_Tasks);
end if;
end;
-- Handling for these aspects in subprograms is complete
goto Continue;
-- For tasks pass the aspect as an attribute
else
Aitem :=
Make_Attribute_Definition_Clause (Loc,
Name => Ent,
Chars => Chars (Id),
Expression => Relocate_Node (Expr));
end if;
-- Warnings
when Aspect_Warnings =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Sloc (Expr),
Expression => Relocate_Node (Expr)),
Make_Pragma_Argument_Association (Loc,
Expression => New_Occurrence_Of (E, Loc))),
Pragma_Name => Chars (Id));
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Case 2c: Aspects corresponding to pragmas with three
-- arguments.
-- Invariant aspects have a first argument that references the
-- entity, a second argument that is the expression and a third
-- argument that is an appropriate message.
-- Invariant, Type_Invariant
when Aspect_Invariant
| Aspect_Type_Invariant
=>
-- Analysis of the pragma will verify placement legality:
-- an invariant must apply to a private type, or appear in
-- the private part of a spec and apply to a completion.
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Sloc (Ent),
Expression => Ent),
Make_Pragma_Argument_Association (Sloc (Expr),
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Invariant);
-- Add message unless exception messages are suppressed
if not Opt.Exception_Locations_Suppressed then
Append_To (Pragma_Argument_Associations (Aitem),
Make_Pragma_Argument_Association (Eloc,
Chars => Name_Message,
Expression =>
Make_String_Literal (Eloc,
Strval => "failed invariant from "
& Build_Location_String (Eloc))));
end if;
-- For Invariant case, insert immediately after the entity
-- declaration. We do not have to worry about delay issues
-- since the pragma processing takes care of this.
Delay_Required := False;
-- Case 2d : Aspects that correspond to a pragma with one
-- argument.
-- Abstract_State
-- Aspect Abstract_State introduces implicit declarations for
-- all state abstraction entities it defines. To emulate this
-- behavior, insert the pragma at the beginning of the visible
-- declarations of the related package so that it is analyzed
-- immediately.
when Aspect_Abstract_State => Abstract_State : declare
Context : Node_Id := N;
begin
-- When aspect Abstract_State appears on a generic package,
-- it is propageted to the package instance. The context in
-- this case is the instance spec.
if Nkind (Context) = N_Package_Instantiation then
Context := Instance_Spec (Context);
end if;
if Nkind_In (Context, N_Generic_Package_Declaration,
N_Package_Declaration)
then
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Abstract_State);
Decorate (Aspect, Aitem);
Insert_Pragma
(Prag => Aitem,
Is_Instance =>
Is_Generic_Instance (Defining_Entity (Context)));
else
Error_Msg_NE
("aspect & must apply to a package declaration",
Aspect, Id);
end if;
goto Continue;
end Abstract_State;
-- Aspect Async_Readers is never delayed because it is
-- equivalent to a source pragma which appears after the
-- related object declaration.
when Aspect_Async_Readers =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Async_Readers);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Aspect Async_Writers is never delayed because it is
-- equivalent to a source pragma which appears after the
-- related object declaration.
when Aspect_Async_Writers =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Async_Writers);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Aspect Constant_After_Elaboration is never delayed because
-- it is equivalent to a source pragma which appears after the
-- related object declaration.
when Aspect_Constant_After_Elaboration =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name =>
Name_Constant_After_Elaboration);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Aspect Default_Internal_Condition is never delayed because
-- it is equivalent to a source pragma which appears after the
-- related private type. To deal with forward references, the
-- generated pragma is stored in the rep chain of the related
-- private type as types do not carry contracts. The pragma is
-- wrapped inside of a procedure at the freeze point of the
-- private type's full view.
when Aspect_Default_Initial_Condition =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name =>
Name_Default_Initial_Condition);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Default_Storage_Pool
when Aspect_Default_Storage_Pool =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name =>
Name_Default_Storage_Pool);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Depends
-- Aspect Depends is never delayed because it is equivalent to
-- a source pragma which appears after the related subprogram.
-- To deal with forward references, the generated pragma is
-- stored in the contract of the related subprogram and later
-- analyzed at the end of the declarative region. See routine
-- Analyze_Depends_In_Decl_Part for details.
when Aspect_Depends =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Depends);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Aspect Effecitve_Reads is never delayed because it is
-- equivalent to a source pragma which appears after the
-- related object declaration.
when Aspect_Effective_Reads =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Effective_Reads);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Aspect Effective_Writes is never delayed because it is
-- equivalent to a source pragma which appears after the
-- related object declaration.
when Aspect_Effective_Writes =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Effective_Writes);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Aspect Extensions_Visible is never delayed because it is
-- equivalent to a source pragma which appears after the
-- related subprogram.
when Aspect_Extensions_Visible =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Extensions_Visible);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Aspect Ghost is never delayed because it is equivalent to a
-- source pragma which appears at the top of [generic] package
-- declarations or after an object, a [generic] subprogram, or
-- a type declaration.
when Aspect_Ghost =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Ghost);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Global
-- Aspect Global is never delayed because it is equivalent to
-- a source pragma which appears after the related subprogram.
-- To deal with forward references, the generated pragma is
-- stored in the contract of the related subprogram and later
-- analyzed at the end of the declarative region. See routine
-- Analyze_Global_In_Decl_Part for details.
when Aspect_Global =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Global);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Initial_Condition
-- Aspect Initial_Condition is never delayed because it is
-- equivalent to a source pragma which appears after the
-- related package. To deal with forward references, the
-- generated pragma is stored in the contract of the related
-- package and later analyzed at the end of the declarative
-- region. See routine Analyze_Initial_Condition_In_Decl_Part
-- for details.
when Aspect_Initial_Condition => Initial_Condition : declare
Context : Node_Id := N;
begin
-- When aspect Initial_Condition appears on a generic
-- package, it is propageted to the package instance. The
-- context in this case is the instance spec.
if Nkind (Context) = N_Package_Instantiation then
Context := Instance_Spec (Context);
end if;
if Nkind_In (Context, N_Generic_Package_Declaration,
N_Package_Declaration)
then
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name =>
Name_Initial_Condition);
Decorate (Aspect, Aitem);
Insert_Pragma
(Prag => Aitem,
Is_Instance =>
Is_Generic_Instance (Defining_Entity (Context)));
-- Otherwise the context is illegal
else
Error_Msg_NE
("aspect & must apply to a package declaration",
Aspect, Id);
end if;
goto Continue;
end Initial_Condition;
-- Initializes
-- Aspect Initializes is never delayed because it is equivalent
-- to a source pragma appearing after the related package. To
-- deal with forward references, the generated pragma is stored
-- in the contract of the related package and later analyzed at
-- the end of the declarative region. For details, see routine
-- Analyze_Initializes_In_Decl_Part.
when Aspect_Initializes => Initializes : declare
Context : Node_Id := N;
begin
-- When aspect Initializes appears on a generic package,
-- it is propageted to the package instance. The context
-- in this case is the instance spec.
if Nkind (Context) = N_Package_Instantiation then
Context := Instance_Spec (Context);
end if;
if Nkind_In (Context, N_Generic_Package_Declaration,
N_Package_Declaration)
then
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Initializes);
Decorate (Aspect, Aitem);
Insert_Pragma
(Prag => Aitem,
Is_Instance =>
Is_Generic_Instance (Defining_Entity (Context)));
-- Otherwise the context is illegal
else
Error_Msg_NE
("aspect & must apply to a package declaration",
Aspect, Id);
end if;
goto Continue;
end Initializes;
-- Max_Queue_Length
when Aspect_Max_Queue_Length =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Max_Queue_Length);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Obsolescent
when Aspect_Obsolescent => declare
Args : List_Id;
begin
if No (Expr) then
Args := No_List;
else
Args := New_List (
Make_Pragma_Argument_Association (Sloc (Expr),
Expression => Relocate_Node (Expr)));
end if;
Make_Aitem_Pragma
(Pragma_Argument_Associations => Args,
Pragma_Name => Chars (Id));
end;
-- Part_Of
when Aspect_Part_Of =>
if Nkind_In (N, N_Object_Declaration,
N_Package_Instantiation)
or else Is_Single_Concurrent_Type_Declaration (N)
then
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Part_Of);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
else
Error_Msg_NE
("aspect & must apply to package instantiation, "
& "object, single protected type or single task type",
Aspect, Id);
end if;
goto Continue;
-- SPARK_Mode
when Aspect_SPARK_Mode =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_SPARK_Mode);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Refined_Depends
-- Aspect Refined_Depends is never delayed because it is
-- equivalent to a source pragma which appears in the
-- declarations of the related subprogram body. To deal with
-- forward references, the generated pragma is stored in the
-- contract of the related subprogram body and later analyzed
-- at the end of the declarative region. For details, see
-- routine Analyze_Refined_Depends_In_Decl_Part.
when Aspect_Refined_Depends =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Refined_Depends);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Refined_Global
-- Aspect Refined_Global is never delayed because it is
-- equivalent to a source pragma which appears in the
-- declarations of the related subprogram body. To deal with
-- forward references, the generated pragma is stored in the
-- contract of the related subprogram body and later analyzed
-- at the end of the declarative region. For details, see
-- routine Analyze_Refined_Global_In_Decl_Part.
when Aspect_Refined_Global =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Refined_Global);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Refined_Post
when Aspect_Refined_Post =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Refined_Post);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Refined_State
when Aspect_Refined_State =>
-- The corresponding pragma for Refined_State is inserted in
-- the declarations of the related package body. This action
-- synchronizes both the source and from-aspect versions of
-- the pragma.
if Nkind (N) = N_Package_Body then
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Refined_State);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
-- Otherwise the context is illegal
else
Error_Msg_NE
("aspect & must apply to a package body", Aspect, Id);
end if;
goto Continue;
-- Relative_Deadline
when Aspect_Relative_Deadline =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Relative_Deadline);
-- If the aspect applies to a task, the corresponding pragma
-- must appear within its declarations, not after.
if Nkind (N) = N_Task_Type_Declaration then
declare
Def : Node_Id;
V : List_Id;
begin
if No (Task_Definition (N)) then
Set_Task_Definition (N,
Make_Task_Definition (Loc,
Visible_Declarations => New_List,
End_Label => Empty));
end if;
Def := Task_Definition (N);
V := Visible_Declarations (Def);
if not Is_Empty_List (V) then
Insert_Before (First (V), Aitem);
else
Set_Visible_Declarations (Def, New_List (Aitem));
end if;
goto Continue;
end;
end if;
-- Aspect Volatile_Function is never delayed because it is
-- equivalent to a source pragma which appears after the
-- related subprogram.
when Aspect_Volatile_Function =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Volatile_Function);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Case 2e: Annotate aspect
when Aspect_Annotate =>
declare
Args : List_Id;
Pargs : List_Id;
Arg : Node_Id;
begin
-- The argument can be a single identifier
if Nkind (Expr) = N_Identifier then
-- One level of parens is allowed
if Paren_Count (Expr) > 1 then
Error_Msg_F ("extra parentheses ignored", Expr);
end if;
Set_Paren_Count (Expr, 0);
-- Add the single item to the list
Args := New_List (Expr);
-- Otherwise we must have an aggregate
elsif Nkind (Expr) = N_Aggregate then
-- Must be positional
if Present (Component_Associations (Expr)) then
Error_Msg_F
("purely positional aggregate required", Expr);
goto Continue;
end if;
-- Must not be parenthesized
if Paren_Count (Expr) /= 0 then
Error_Msg_F ("extra parentheses ignored", Expr);
end if;
-- List of arguments is list of aggregate expressions
Args := Expressions (Expr);
-- Anything else is illegal
else
Error_Msg_F ("wrong form for Annotate aspect", Expr);
goto Continue;
end if;
-- Prepare pragma arguments
Pargs := New_List;
Arg := First (Args);
while Present (Arg) loop
Append_To (Pargs,
Make_Pragma_Argument_Association (Sloc (Arg),
Expression => Relocate_Node (Arg)));
Next (Arg);
end loop;
Append_To (Pargs,
Make_Pragma_Argument_Association (Sloc (Ent),
Chars => Name_Entity,
Expression => Ent));
Make_Aitem_Pragma
(Pragma_Argument_Associations => Pargs,
Pragma_Name => Name_Annotate);
end;
-- Case 3 : Aspects that don't correspond to pragma/attribute
-- definition clause.
-- Case 3a: The aspects listed below don't correspond to
-- pragmas/attributes but do require delayed analysis.
-- Default_Value can only apply to a scalar type
when Aspect_Default_Value =>
if not Is_Scalar_Type (E) then
Error_Msg_N
("aspect Default_Value must apply to a scalar type", N);
end if;
Aitem := Empty;
-- Default_Component_Value can only apply to an array type
-- with scalar components.
when Aspect_Default_Component_Value =>
if not (Is_Array_Type (E)
and then Is_Scalar_Type (Component_Type (E)))
then
Error_Msg_N
("aspect Default_Component_Value can only apply to an "
& "array of scalar components", N);
end if;
Aitem := Empty;
-- Case 3b: The aspects listed below don't correspond to
-- pragmas/attributes and don't need delayed analysis.
-- Implicit_Dereference
-- For Implicit_Dereference, External_Name and Link_Name, only
-- the legality checks are done during the analysis, thus no
-- delay is required.
when Aspect_Implicit_Dereference =>
Analyze_Aspect_Implicit_Dereference;
goto Continue;
-- Dimension
when Aspect_Dimension =>
Analyze_Aspect_Dimension (N, Id, Expr);
goto Continue;
-- Dimension_System
when Aspect_Dimension_System =>
Analyze_Aspect_Dimension_System (N, Id, Expr);
goto Continue;
-- Case 4: Aspects requiring special handling
-- Pre/Post/Test_Case/Contract_Cases whose corresponding
-- pragmas take care of the delay.
-- Pre/Post
-- Aspects Pre/Post generate Precondition/Postcondition pragmas
-- with a first argument that is the expression, and a second
-- argument that is an informative message if the test fails.
-- This is inserted right after the declaration, to get the
-- required pragma placement. The processing for the pragmas
-- takes care of the required delay.
when Pre_Post_Aspects => Pre_Post : declare
Pname : Name_Id;
begin
if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
Pname := Name_Precondition;
else
Pname := Name_Postcondition;
end if;
-- Check that the class-wide predicate cannot be applied to
-- an operation of a synchronized type that is not a tagged
-- type. Other legality checks are performed when analyzing
-- the contract of the operation.
if Class_Present (Aspect)
and then Is_Concurrent_Type (Current_Scope)
and then not Is_Tagged_Type (Current_Scope)
and then Ekind_In (E, E_Entry, E_Function, E_Procedure)
then
Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
Error_Msg_N
("aspect % can only be specified for a primitive "
& "operation of a tagged type", Aspect);
goto Continue;
end if;
-- If the expressions is of the form A and then B, then
-- we generate separate Pre/Post aspects for the separate
-- clauses. Since we allow multiple pragmas, there is no
-- problem in allowing multiple Pre/Post aspects internally.
-- These should be treated in reverse order (B first and
-- A second) since they are later inserted just after N in
-- the order they are treated. This way, the pragma for A
-- ends up preceding the pragma for B, which may have an
-- importance for the error raised (either constraint error
-- or precondition error).
-- We do not do this for Pre'Class, since we have to put
-- these conditions together in a complex OR expression.
-- We do not do this in ASIS mode, as ASIS relies on the
-- original node representing the complete expression, when
-- retrieving it through the source aspect table.
if not ASIS_Mode
and then (Pname = Name_Postcondition
or else not Class_Present (Aspect))
then
while Nkind (Expr) = N_And_Then loop
Insert_After (Aspect,
Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
Identifier => Identifier (Aspect),
Expression => Relocate_Node (Left_Opnd (Expr)),
Class_Present => Class_Present (Aspect),
Split_PPC => True));
Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
Eloc := Sloc (Expr);
end loop;
end if;
-- Build the precondition/postcondition pragma
-- Add note about why we do NOT need Copy_Tree here???
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Eloc,
Chars => Name_Check,
Expression => Relocate_Node (Expr))),
Pragma_Name => Pname);
-- Add message unless exception messages are suppressed
if not Opt.Exception_Locations_Suppressed then
Append_To (Pragma_Argument_Associations (Aitem),
Make_Pragma_Argument_Association (Eloc,
Chars => Name_Message,
Expression =>
Make_String_Literal (Eloc,
Strval => "failed "
& Get_Name_String (Pname)
& " from "
& Build_Location_String (Eloc))));
end if;
Set_Is_Delayed_Aspect (Aspect);
-- For Pre/Post cases, insert immediately after the entity
-- declaration, since that is the required pragma placement.
-- Note that for these aspects, we do not have to worry
-- about delay issues, since the pragmas themselves deal
-- with delay of visibility for the expression analysis.
Insert_Pragma (Aitem);
goto Continue;
end Pre_Post;
-- Test_Case
when Aspect_Test_Case => Test_Case : declare
Args : List_Id;
Comp_Expr : Node_Id;
Comp_Assn : Node_Id;
New_Expr : Node_Id;
begin
Args := New_List;
if Nkind (Parent (N)) = N_Compilation_Unit then
Error_Msg_Name_1 := Nam;
Error_Msg_N ("incorrect placement of aspect `%`", E);
goto Continue;
end if;
if Nkind (Expr) /= N_Aggregate then
Error_Msg_Name_1 := Nam;
Error_Msg_NE
("wrong syntax for aspect `%` for &", Id, E);
goto Continue;
end if;
-- Make pragma expressions refer to the original aspect
-- expressions through the Original_Node link. This is used
-- in semantic analysis for ASIS mode, so that the original
-- expression also gets analyzed.
Comp_Expr := First (Expressions (Expr));
while Present (Comp_Expr) loop
New_Expr := Relocate_Node (Comp_Expr);
Append_To (Args,
Make_Pragma_Argument_Association (Sloc (Comp_Expr),
Expression => New_Expr));
Next (Comp_Expr);
end loop;
Comp_Assn := First (Component_Associations (Expr));
while Present (Comp_Assn) loop
if List_Length (Choices (Comp_Assn)) /= 1
or else
Nkind (First (Choices (Comp_Assn))) /= N_Identifier
then
Error_Msg_Name_1 := Nam;
Error_Msg_NE
("wrong syntax for aspect `%` for &", Id, E);
goto Continue;
end if;
Append_To (Args,
Make_Pragma_Argument_Association (Sloc (Comp_Assn),
Chars => Chars (First (Choices (Comp_Assn))),
Expression =>
Relocate_Node (Expression (Comp_Assn))));
Next (Comp_Assn);
end loop;
-- Build the test-case pragma
Make_Aitem_Pragma
(Pragma_Argument_Associations => Args,
Pragma_Name => Nam);
end Test_Case;
-- Contract_Cases
when Aspect_Contract_Cases =>
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Nam);
Decorate (Aspect, Aitem);
Insert_Pragma (Aitem);
goto Continue;
-- Case 5: Special handling for aspects with an optional
-- boolean argument.
-- In the delayed case, the corresponding pragma cannot be
-- generated yet because the evaluation of the boolean needs
-- to be delayed till the freeze point.
when Boolean_Aspects
| Library_Unit_Aspects
=>
Set_Is_Boolean_Aspect (Aspect);
-- Lock_Free aspect only apply to protected objects
if A_Id = Aspect_Lock_Free then
if Ekind (E) /= E_Protected_Type then
Error_Msg_Name_1 := Nam;
Error_Msg_N
("aspect % only applies to a protected object",
Aspect);
else
-- Set the Uses_Lock_Free flag to True if there is no
-- expression or if the expression is True. The
-- evaluation of this aspect should be delayed to the
-- freeze point (why???)
if No (Expr)
or else Is_True (Static_Boolean (Expr))
then
Set_Uses_Lock_Free (E);
end if;
Record_Rep_Item (E, Aspect);
end if;
goto Continue;
elsif A_Id = Aspect_Export or else A_Id = Aspect_Import then
Analyze_Aspect_Export_Import;
-- Disable_Controlled
elsif A_Id = Aspect_Disable_Controlled then
if Ekind (E) /= E_Record_Type
or else not Is_Controlled (E)
then
Error_Msg_N
("aspect % requires controlled record type", Aspect);
goto Continue;
end if;
-- If we're in a generic template, we don't want to try
-- to disable controlled types, because typical usage is
-- "Disable_Controlled => not <some_check>'Enabled", and
-- the value of Enabled is not known until we see a
-- particular instance. In such a context, we just need
-- to preanalyze the expression for legality.
if Expander_Active then
Analyze_And_Resolve (Expr, Standard_Boolean);
if not Present (Expr)
or else Is_True (Static_Boolean (Expr))
then
Set_Disable_Controlled (E);
end if;
elsif Serious_Errors_Detected = 0 then
Preanalyze_And_Resolve (Expr, Standard_Boolean);
end if;
goto Continue;
end if;
-- Library unit aspects require special handling in the case
-- of a package declaration, the pragma needs to be inserted
-- in the list of declarations for the associated package.
-- There is no issue of visibility delay for these aspects.
if A_Id in Library_Unit_Aspects
and then
Nkind_In (N, N_Package_Declaration,
N_Generic_Package_Declaration)
and then Nkind (Parent (N)) /= N_Compilation_Unit
-- Aspect is legal on a local instantiation of a library-
-- level generic unit.
and then not Is_Generic_Instance (Defining_Entity (N))
then
Error_Msg_N
("incorrect context for library unit aspect&", Id);
goto Continue;
end if;
-- Cases where we do not delay, includes all cases where the
-- expression is missing other than the above cases.
if not Delay_Required or else No (Expr) then
-- Exclude aspects Export and Import because their pragma
-- syntax does not map directly to a Boolean aspect.
if A_Id /= Aspect_Export
and then A_Id /= Aspect_Import
then
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Sloc (Ent),
Expression => Ent)),
Pragma_Name => Chars (Id));
end if;
Delay_Required := False;
-- In general cases, the corresponding pragma/attribute
-- definition clause will be inserted later at the freezing
-- point, and we do not need to build it now.
else
Aitem := Empty;
end if;
-- Storage_Size
-- This is special because for access types we need to generate
-- an attribute definition clause. This also works for single
-- task declarations, but it does not work for task type
-- declarations, because we have the case where the expression
-- references a discriminant of the task type. That can't use
-- an attribute definition clause because we would not have
-- visibility on the discriminant. For that case we must
-- generate a pragma in the task definition.
when Aspect_Storage_Size =>
-- Task type case
if Ekind (E) = E_Task_Type then
declare
Decl : constant Node_Id := Declaration_Node (E);
begin
pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
-- If no task definition, create one
if No (Task_Definition (Decl)) then
Set_Task_Definition (Decl,
Make_Task_Definition (Loc,
Visible_Declarations => Empty_List,
End_Label => Empty));
end if;
-- Create a pragma and put it at the start of the task
-- definition for the task type declaration.
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Loc,
Expression => Relocate_Node (Expr))),
Pragma_Name => Name_Storage_Size);
Prepend
(Aitem,
Visible_Declarations (Task_Definition (Decl)));
goto Continue;
end;
-- All other cases, generate attribute definition
else
Aitem :=
Make_Attribute_Definition_Clause (Loc,
Name => Ent,
Chars => Chars (Id),
Expression => Relocate_Node (Expr));
end if;
end case;
-- Attach the corresponding pragma/attribute definition clause to
-- the aspect specification node.
if Present (Aitem) then
Set_From_Aspect_Specification (Aitem);
end if;
-- In the context of a compilation unit, we directly put the
-- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
-- node (no delay is required here) except for aspects on a
-- subprogram body (see below) and a generic package, for which we
-- need to introduce the pragma before building the generic copy
-- (see sem_ch12), and for package instantiations, where the
-- library unit pragmas are better handled early.
if Nkind (Parent (N)) = N_Compilation_Unit
and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
then
declare
Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
begin
pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
-- For a Boolean aspect, create the corresponding pragma if
-- no expression or if the value is True.
if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
if Is_True (Static_Boolean (Expr)) then
Make_Aitem_Pragma
(Pragma_Argument_Associations => New_List (
Make_Pragma_Argument_Association (Sloc (Ent),
Expression => Ent)),
Pragma_Name => Chars (Id));
Set_From_Aspect_Specification (Aitem, True);
Set_Corresponding_Aspect (Aitem, Aspect);
else
goto Continue;
end if;
end if;
-- If the aspect is on a subprogram body (relevant aspect
-- is Inline), add the pragma in front of the declarations.
if Nkind (N) = N_Subprogram_Body then
if No (Declarations (N)) then
Set_Declarations (N, New_List);
end if;
Prepend (Aitem, Declarations (N));
elsif Nkind (N) = N_Generic_Package_Declaration then
if No (Visible_Declarations (Specification (N))) then
Set_Visible_Declarations (Specification (N), New_List);
end if;
Prepend (Aitem,
Visible_Declarations (Specification (N)));
elsif Nkind (N) = N_Package_Instantiation then
declare
Spec : constant Node_Id :=
Specification (Instance_Spec (N));
begin
if No (Visible_Declarations (Spec)) then
Set_Visible_Declarations (Spec, New_List);
end if;
Prepend (Aitem, Visible_Declarations (Spec));
end;
else
if No (Pragmas_After (Aux)) then
Set_Pragmas_After (Aux, New_List);
end if;
Append (Aitem, Pragmas_After (Aux));
end if;
goto Continue;
end;
end if;
-- The evaluation of the aspect is delayed to the freezing point.
-- The pragma or attribute clause if there is one is then attached
-- to the aspect specification which is put in the rep item list.
if Delay_Required then
if Present (Aitem) then
Set_Is_Delayed_Aspect (Aitem);
Set_Aspect_Rep_Item (Aspect, Aitem);
Set_Parent (Aitem, Aspect);
end if;
Set_Is_Delayed_Aspect (Aspect);
-- In the case of Default_Value, link the aspect to base type
-- as well, even though it appears on a first subtype. This is
-- mandated by the semantics of the aspect. Do not establish
-- the link when processing the base type itself as this leads
-- to a rep item circularity. Verify that we are dealing with
-- a scalar type to prevent cascaded errors.
if A_Id = Aspect_Default_Value
and then Is_Scalar_Type (E)
and then Base_Type (E) /= E
then
Set_Has_Delayed_Aspects (Base_Type (E));
Record_Rep_Item (Base_Type (E), Aspect);
end if;
Set_Has_Delayed_Aspects (E);
Record_Rep_Item (E, Aspect);
-- When delay is not required and the context is a package or a
-- subprogram body, insert the pragma in the body declarations.
elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
if No (Declarations (N)) then
Set_Declarations (N, New_List);
end if;
-- The pragma is added before source declarations
Prepend_To (Declarations (N), Aitem);
-- When delay is not required and the context is not a compilation
-- unit, we simply insert the pragma/attribute definition clause
-- in sequence.
elsif Present (Aitem) then
Insert_After (Ins_Node, Aitem);
Ins_Node := Aitem;
end if;
end Analyze_One_Aspect;
<<Continue>>
Next (Aspect);
end loop Aspect_Loop;
if Has_Delayed_Aspects (E) then
Ensure_Freeze_Node (E);
end if;
end Analyze_Aspect_Specifications;
---------------------------------------------------
-- Analyze_Aspect_Specifications_On_Body_Or_Stub --
---------------------------------------------------
procedure Analyze_Aspect_Specifications_On_Body_Or_Stub (N : Node_Id) is
Body_Id : constant Entity_Id := Defining_Entity (N);
procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
-- Body [stub] N has aspects, but they are not properly placed. Emit an
-- error message depending on the aspects involved. Spec_Id denotes the
-- entity of the corresponding spec.
--------------------------------
-- Diagnose_Misplaced_Aspects --
--------------------------------
procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
procedure Misplaced_Aspect_Error
(Asp : Node_Id;
Ref_Nam : Name_Id);
-- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
-- the name of the refined version of the aspect.
----------------------------
-- Misplaced_Aspect_Error --
----------------------------
procedure Misplaced_Aspect_Error
(Asp : Node_Id;
Ref_Nam : Name_Id)
is
Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
begin
-- The corresponding spec already contains the aspect in question
-- and the one appearing on the body must be the refined form:
-- procedure P with Global ...;
-- procedure P with Global ... is ... end P;
-- ^
-- Refined_Global
if Has_Aspect (Spec_Id, Asp_Id) then
Error_Msg_Name_1 := Asp_Nam;
-- Subunits cannot carry aspects that apply to a subprogram
-- declaration.
if Nkind (Parent (N)) = N_Subunit then
Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
-- Otherwise suggest the refined form
else
Error_Msg_Name_2 := Ref_Nam;
Error_Msg_N ("aspect % should be %", Asp);
end if;
-- Otherwise the aspect must appear on the spec, not on the body
-- procedure P;
-- procedure P with Global ... is ... end P;
else
Error_Msg_N
("aspect specification must appear on initial declaration",
Asp);
end if;
end Misplaced_Aspect_Error;
-- Local variables
Asp : Node_Id;
Asp_Nam : Name_Id;
-- Start of processing for Diagnose_Misplaced_Aspects
begin
-- Iterate over the aspect specifications and emit specific errors
-- where applicable.
Asp := First (Aspect_Specifications (N));
while Present (Asp) loop
Asp_Nam := Chars (Identifier (Asp));
-- Do not emit errors on aspects that can appear on a subprogram
-- body. This scenario occurs when the aspect specification list
-- contains both misplaced and properly placed aspects.
if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
null;
-- Special diagnostics for SPARK aspects
elsif Asp_Nam = Name_Depends then
Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
elsif Asp_Nam = Name_Global then
Misplaced_Aspect_Error (Asp, Name_Refined_Global);
elsif Asp_Nam = Name_Post then
Misplaced_Aspect_Error (Asp, Name_Refined_Post);
-- Otherwise a language-defined aspect is misplaced
else
Error_Msg_N
("aspect specification must appear on initial declaration",
Asp);
end if;
Next (Asp);
end loop;
end Diagnose_Misplaced_Aspects;
-- Local variables
Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
-- Start of processing for Analyze_Aspects_On_Body_Or_Stub
begin
-- Language-defined aspects cannot be associated with a subprogram body
-- [stub] if the subprogram has a spec. Certain implementation defined
-- aspects are allowed to break this rule (for all applicable cases, see
-- table Aspects.Aspect_On_Body_Or_Stub_OK).
if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
Diagnose_Misplaced_Aspects (Spec_Id);
else
Analyze_Aspect_Specifications (N, Body_Id);
end if;
end Analyze_Aspect_Specifications_On_Body_Or_Stub;
-----------------------
-- Analyze_At_Clause --
-----------------------
-- An at clause is replaced by the corresponding Address attribute
-- definition clause that is the preferred approach in Ada 95.
procedure Analyze_At_Clause (N : Node_Id) is
CS : constant Boolean := Comes_From_Source (N);
begin
-- This is an obsolescent feature
Check_Restriction (No_Obsolescent_Features, N);
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("?j?at clause is an obsolescent feature (RM J.7(2))", N);
Error_Msg_N
("\?j?use address attribute definition clause instead", N);
end if;
-- Rewrite as address clause
Rewrite (N,
Make_Attribute_Definition_Clause (Sloc (N),
Name => Identifier (N),
Chars => Name_Address,
Expression => Expression (N)));
-- We preserve Comes_From_Source, since logically the clause still comes
-- from the source program even though it is changed in form.
Set_Comes_From_Source (N, CS);
-- Analyze rewritten clause
Analyze_Attribute_Definition_Clause (N);
end Analyze_At_Clause;
-----------------------------------------
-- Analyze_Attribute_Definition_Clause --
-----------------------------------------
procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Nam : constant Node_Id := Name (N);
Attr : constant Name_Id := Chars (N);
Expr : constant Node_Id := Expression (N);
Id : constant Attribute_Id := Get_Attribute_Id (Attr);
Ent : Entity_Id;
-- The entity of Nam after it is analyzed. In the case of an incomplete
-- type, this is the underlying type.
U_Ent : Entity_Id;
-- The underlying entity to which the attribute applies. Generally this
-- is the Underlying_Type of Ent, except in the case where the clause
-- applies to the full view of an incomplete or private type, in which
-- case U_Ent is just a copy of Ent.
FOnly : Boolean := False;
-- Reset to True for subtype specific attribute (Alignment, Size)
-- and for stream attributes, i.e. those cases where in the call to
-- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
-- are checked. Note that the case of stream attributes is not clear
-- from the RM, but see AI95-00137. Also, the RM seems to disallow
-- Storage_Size for derived task types, but that is also clearly
-- unintentional.
procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
-- Common processing for 'Read, 'Write, 'Input and 'Output attribute
-- definition clauses.
function Duplicate_Clause return Boolean;
-- This routine checks if the aspect for U_Ent being given by attribute
-- definition clause N is for an aspect that has already been specified,
-- and if so gives an error message. If there is a duplicate, True is
-- returned, otherwise if there is no error, False is returned.
procedure Check_Indexing_Functions;
-- Check that the function in Constant_Indexing or Variable_Indexing
-- attribute has the proper type structure. If the name is overloaded,
-- check that some interpretation is legal.
procedure Check_Iterator_Functions;
-- Check that there is a single function in Default_Iterator attribute
-- has the proper type structure.
function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
-- Common legality check for the previous two
-----------------------------------
-- Analyze_Stream_TSS_Definition --
-----------------------------------
procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
Subp : Entity_Id := Empty;
I : Interp_Index;
It : Interp;
Pnam : Entity_Id;
Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
-- True for Read attribute, False for other attributes
function Has_Good_Profile
(Subp : Entity_Id;
Report : Boolean := False) return Boolean;
-- Return true if the entity is a subprogram with an appropriate
-- profile for the attribute being defined. If result is False and
-- Report is True, function emits appropriate error.
----------------------
-- Has_Good_Profile --
----------------------
function Has_Good_Profile
(Subp : Entity_Id;
Report : Boolean := False) return Boolean
is
Expected_Ekind : constant array (Boolean) of Entity_Kind :=
(False => E_Procedure, True => E_Function);
Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
F : Entity_Id;
Typ : Entity_Id;
begin
if Ekind (Subp) /= Expected_Ekind (Is_Function) then
return False;
end if;
F := First_Formal (Subp);
if No (F)
or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
or else Designated_Type (Etype (F)) /=
Class_Wide_Type (RTE (RE_Root_Stream_Type))
then
return False;
end if;
if not Is_Function then
Next_Formal (F);
declare
Expected_Mode : constant array (Boolean) of Entity_Kind :=
(False => E_In_Parameter,
True => E_Out_Parameter);
begin
if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
return False;
end if;
end;
Typ := Etype (F);
-- If the attribute specification comes from an aspect
-- specification for a class-wide stream, the parameter must be
-- a class-wide type of the entity to which the aspect applies.
if From_Aspect_Specification (N)
and then Class_Present (Parent (N))
and then Is_Class_Wide_Type (Typ)
then
Typ := Etype (Typ);
end if;
else
Typ := Etype (Subp);
end if;
-- Verify that the prefix of the attribute and the local name for
-- the type of the formal match, or one is the class-wide of the
-- other, in the case of a class-wide stream operation.
if Base_Type (Typ) = Base_Type (Ent)
or else (Is_Class_Wide_Type (Typ)
and then Typ = Class_Wide_Type (Base_Type (Ent)))
or else (Is_Class_Wide_Type (Ent)
and then Ent = Class_Wide_Type (Base_Type (Typ)))
then
null;
else
return False;
end if;
if Present (Next_Formal (F)) then
return False;
elsif not Is_Scalar_Type (Typ)
and then not Is_First_Subtype (Typ)
and then not Is_Class_Wide_Type (Typ)
then
if Report and not Is_First_Subtype (Typ) then
Error_Msg_N
("subtype of formal in stream operation must be a first "
& "subtype", Parameter_Type (Parent (F)));
end if;
return False;
else
return True;
end if;
end Has_Good_Profile;
-- Start of processing for Analyze_Stream_TSS_Definition
begin
FOnly := True;
if not Is_Type (U_Ent) then
Error_Msg_N ("local name must be a subtype", Nam);
return;
elsif not Is_First_Subtype (U_Ent) then
Error_Msg_N ("local name must be a first subtype", Nam);
return;
end if;
Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
-- If Pnam is present, it can be either inherited from an ancestor
-- type (in which case it is legal to redefine it for this type), or
-- be a previous definition of the attribute for the same type (in
-- which case it is illegal).
-- In the first case, it will have been analyzed already, and we
-- can check that its profile does not match the expected profile
-- for a stream attribute of U_Ent. In the second case, either Pnam
-- has been analyzed (and has the expected profile), or it has not
-- been analyzed yet (case of a type that has not been frozen yet
-- and for which the stream attribute has been set using Set_TSS).
if Present (Pnam)
and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
then
Error_Msg_Sloc := Sloc (Pnam);
Error_Msg_Name_1 := Attr;
Error_Msg_N ("% attribute already defined #", Nam);
return;
end if;
Analyze (Expr);
if Is_Entity_Name (Expr) then
if not Is_Overloaded (Expr) then
if Has_Good_Profile (Entity (Expr), Report => True) then
Subp := Entity (Expr);
end if;
else
Get_First_Interp (Expr, I, It);
while Present (It.Nam) loop
if Has_Good_Profile (It.Nam) then
Subp := It.Nam;
exit;
end if;
Get_Next_Interp (I, It);
end loop;
end if;
end if;
if Present (Subp) then
if Is_Abstract_Subprogram (Subp) then
Error_Msg_N ("stream subprogram must not be abstract", Expr);
return;
-- A stream subprogram for an interface type must be a null
-- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
-- of an interface is not an interface type (3.9.4 (6.b/2)).
elsif Is_Interface (U_Ent)
and then not Is_Class_Wide_Type (U_Ent)
and then not Inside_A_Generic
and then
(Ekind (Subp) = E_Function
or else
not Null_Present
(Specification
(Unit_Declaration_Node (Ultimate_Alias (Subp)))))
then
Error_Msg_N
("stream subprogram for interface type must be null "
& "procedure", Expr);
end if;
Set_Entity (Expr, Subp);
Set_Etype (Expr, Etype (Subp));
New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
else
Error_Msg_Name_1 := Attr;
Error_Msg_N ("incorrect expression for% attribute", Expr);
end if;
end Analyze_Stream_TSS_Definition;
------------------------------
-- Check_Indexing_Functions --
------------------------------
procedure Check_Indexing_Functions is
Indexing_Found : Boolean := False;
procedure Check_Inherited_Indexing;
-- For a derived type, check that no indexing aspect is specified
-- for the type if it is also inherited
procedure Check_One_Function (Subp : Entity_Id);
-- Check one possible interpretation. Sets Indexing_Found True if a
-- legal indexing function is found.
procedure Illegal_Indexing (Msg : String);
-- Diagnose illegal indexing function if not overloaded. In the
-- overloaded case indicate that no legal interpretation exists.
------------------------------
-- Check_Inherited_Indexing --
------------------------------
procedure Check_Inherited_Indexing is
Inherited : Node_Id;
begin
if Attr = Name_Constant_Indexing then
Inherited :=
Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
else pragma Assert (Attr = Name_Variable_Indexing);
Inherited :=
Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
end if;
if Present (Inherited) then
if Debug_Flag_Dot_XX then
null;
-- OK if current attribute_definition_clause is expansion of
-- inherited aspect.
elsif Aspect_Rep_Item (Inherited) = N then
null;
-- Indicate the operation that must be overridden, rather than
-- redefining the indexing aspect.
else
Illegal_Indexing
("indexing function already inherited from parent type");
Error_Msg_NE
("!override & instead",
N, Entity (Expression (Inherited)));
end if;
end if;
end Check_Inherited_Indexing;
------------------------
-- Check_One_Function --
------------------------
procedure Check_One_Function (Subp : Entity_Id) is
Default_Element : Node_Id;
Ret_Type : constant Entity_Id := Etype (Subp);
begin
if not Is_Overloadable (Subp) then
Illegal_Indexing ("illegal indexing function for type&");
return;
elsif Scope (Subp) /= Scope (Ent) then
if Nkind (Expr) = N_Expanded_Name then
-- Indexing function can't be declared elsewhere
Illegal_Indexing
("indexing function must be declared in scope of type&");
end if;
return;
elsif No (First_Formal (Subp)) then
Illegal_Indexing
("Indexing requires a function that applies to type&");
return;
elsif No (Next_Formal (First_Formal (Subp))) then
Illegal_Indexing
("indexing function must have at least two parameters");
return;
elsif Is_Derived_Type (Ent) then
Check_Inherited_Indexing;
end if;
if not Check_Primitive_Function (Subp) then
Illegal_Indexing
("Indexing aspect requires a function that applies to type&");
return;
end if;
-- If partial declaration exists, verify that it is not tagged.
if Ekind (Current_Scope) = E_Package
and then Has_Private_Declaration (Ent)
and then From_Aspect_Specification (N)
and then
List_Containing (Parent (Ent)) =
Private_Declarations
(Specification (Unit_Declaration_Node (Current_Scope)))
and then Nkind (N) = N_Attribute_Definition_Clause
then
declare
Decl : Node_Id;
begin
Decl :=
First (Visible_Declarations
(Specification
(Unit_Declaration_Node (Current_Scope))));
while Present (Decl) loop
if Nkind (Decl) = N_Private_Type_Declaration
and then Ent = Full_View (Defining_Identifier (Decl))
and then Tagged_Present (Decl)
and then No (Aspect_Specifications (Decl))
then
Illegal_Indexing
("Indexing aspect cannot be specified on full view "
& "if partial view is tagged");
return;
end if;
Next (Decl);
end loop;
end;
end if;
-- An indexing function must return either the default element of
-- the container, or a reference type. For variable indexing it
-- must be the latter.
Default_Element :=
Find_Value_Of_Aspect
(Etype (First_Formal (Subp)), Aspect_Iterator_Element);
if Present (Default_Element) then
Analyze (Default_Element);
if Is_Entity_Name (Default_Element)
and then not Covers (Entity (Default_Element), Ret_Type)
and then False
then
Illegal_Indexing
("wrong return type for indexing function");
return;
end if;
end if;
-- For variable_indexing the return type must be a reference type
if Attr = Name_Variable_Indexing then
if not Has_Implicit_Dereference (Ret_Type) then
Illegal_Indexing
("variable indexing must return a reference type");
return;
elsif Is_Access_Constant
(Etype (First_Discriminant (Ret_Type)))
then
Illegal_Indexing
("variable indexing must return an access to variable");
return;
end if;
else
if Has_Implicit_Dereference (Ret_Type)
and then not
Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
then
Illegal_Indexing
("constant indexing must return an access to constant");
return;
elsif Is_Access_Type (Etype (First_Formal (Subp)))
and then not Is_Access_Constant (Etype (First_Formal (Subp)))
then
Illegal_Indexing
("constant indexing must apply to an access to constant");
return;
end if;
end if;
-- All checks succeeded.
Indexing_Found := True;
end Check_One_Function;
-----------------------
-- Illegal_Indexing --
-----------------------
procedure Illegal_Indexing (Msg : String) is
begin
Error_Msg_NE (Msg, N, Ent);
end Illegal_Indexing;
-- Start of processing for Check_Indexing_Functions
begin
if In_Instance then
Check_Inherited_Indexing;
end if;
Analyze (Expr);
if not Is_Overloaded (Expr) then
Check_One_Function (Entity (Expr));
else
declare
I : Interp_Index;
It : Interp;
begin
Indexing_Found := False;
Get_First_Interp (Expr, I, It);
while Present (It.Nam) loop
-- Note that analysis will have added the interpretation
-- that corresponds to the dereference. We only check the
-- subprogram itself.
if Is_Overloadable (It.Nam) then
Check_One_Function (It.Nam);
end if;
Get_Next_Interp (I, It);
end loop;
end;
end if;
if not Indexing_Found and then not Error_Posted (N) then
Error_Msg_NE
("aspect Indexing requires a local function that "
& "applies to type&", Expr, Ent);
end if;
end Check_Indexing_Functions;
------------------------------
-- Check_Iterator_Functions --
------------------------------
procedure Check_Iterator_Functions is
function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
-- Check one possible interpretation for validity
----------------------------
-- Valid_Default_Iterator --
----------------------------
function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
Formal : Entity_Id;
begin
if not Check_Primitive_Function (Subp) then
return False;
-- The return type must be derived from a type in an instance
-- of Iterator.Interfaces, and thus its root type must have a
-- predefined name.
elsif Chars (Root_T) /= Name_Forward_Iterator
and then Chars (Root_T) /= Name_Reversible_Iterator
then
return False;
else
Formal := First_Formal (Subp);
end if;
-- False if any subsequent formal has no default expression
Formal := Next_Formal (Formal);
while Present (Formal) loop
if No (Expression (Parent (Formal))) then
return False;
end if;
Next_Formal (Formal);
end loop;
-- True if all subsequent formals have default expressions
return True;
end Valid_Default_Iterator;
-- Start of processing for Check_Iterator_Functions
begin
Analyze (Expr);
if not Is_Entity_Name (Expr) then
Error_Msg_N ("aspect Iterator must be a function name", Expr);
end if;
if not Is_Overloaded (Expr) then
if not Check_Primitive_Function (Entity (Expr)) then
Error_Msg_NE
("aspect Indexing requires a function that applies to type&",
Entity (Expr), Ent);
end if;
-- Flag the default_iterator as well as the denoted function.
if not Valid_Default_Iterator (Entity (Expr)) then
Error_Msg_N ("improper function for default iterator!", Expr);
end if;
else
declare
Default : Entity_Id := Empty;
I : Interp_Index;
It : Interp;
begin
Get_First_Interp (Expr, I, It);
while Present (It.Nam) loop
if not Check_Primitive_Function (It.Nam)
or else not Valid_Default_Iterator (It.Nam)
then
Remove_Interp (I);
elsif Present (Default) then
-- An explicit one should override an implicit one
if Comes_From_Source (Default) =
Comes_From_Source (It.Nam)
then
Error_Msg_N ("default iterator must be unique", Expr);
Error_Msg_Sloc := Sloc (Default);
Error_Msg_N ("\\possible interpretation#", Expr);
Error_Msg_Sloc := Sloc (It.Nam);
Error_Msg_N ("\\possible interpretation#", Expr);
elsif Comes_From_Source (It.Nam) then
Default := It.Nam;
end if;
else
Default := It.Nam;
end if;
Get_Next_Interp (I, It);
end loop;
if Present (Default) then
Set_Entity (Expr, Default);
Set_Is_Overloaded (Expr, False);
else
Error_Msg_N
("no interpretation is a valid default iterator!", Expr);
end if;
end;
end if;
end Check_Iterator_Functions;
-------------------------------
-- Check_Primitive_Function --
-------------------------------
function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
Ctrl : Entity_Id;
begin
if Ekind (Subp) /= E_Function then
return False;
end if;
if No (First_Formal (Subp)) then
return False;
else
Ctrl := Etype (First_Formal (Subp));
end if;
-- To be a primitive operation subprogram has to be in same scope.
if Scope (Ctrl) /= Scope (Subp) then
return False;
end if;
-- Type of formal may be the class-wide type, an access to such,
-- or an incomplete view.
if Ctrl = Ent
or else Ctrl = Class_Wide_Type (Ent)
or else
(Ekind (Ctrl) = E_Anonymous_Access_Type
and then (Designated_Type (Ctrl) = Ent
or else
Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
or else
(Ekind (Ctrl) = E_Incomplete_Type
and then Full_View (Ctrl) = Ent)
then
null;
else
return False;
end if;
return True;
end Check_Primitive_Function;
----------------------
-- Duplicate_Clause --
----------------------
function Duplicate_Clause return Boolean is
A : Node_Id;
begin
-- Nothing to do if this attribute definition clause comes from
-- an aspect specification, since we could not be duplicating an
-- explicit clause, and we dealt with the case of duplicated aspects
-- in Analyze_Aspect_Specifications.
if From_Aspect_Specification (N) then
return False;
end if;
-- Otherwise current clause may duplicate previous clause, or a
-- previously given pragma or aspect specification for the same
-- aspect.
A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
if Present (A) then
Error_Msg_Name_1 := Chars (N);
Error_Msg_Sloc := Sloc (A);
Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
return True;
end if;
return False;
end Duplicate_Clause;
-- Start of processing for Analyze_Attribute_Definition_Clause
begin
-- The following code is a defense against recursion. Not clear that
-- this can happen legitimately, but perhaps some error situations can
-- cause it, and we did see this recursion during testing.
if Analyzed (N) then
return;
else
Set_Analyzed (N, True);
end if;
Check_Restriction_No_Use_Of_Attribute (N);
-- Ignore some selected attributes in CodePeer mode since they are not
-- relevant in this context.
if CodePeer_Mode then
case Id is
-- Ignore Component_Size in CodePeer mode, to avoid changing the
-- internal representation of types by implicitly packing them.
when Attribute_Component_Size =>
Rewrite (N, Make_Null_Statement (Sloc (N)));
return;
when others =>
null;
end case;
end if;
-- Process Ignore_Rep_Clauses option
if Ignore_Rep_Clauses then
case Id is
-- The following should be ignored. They do not affect legality
-- and may be target dependent. The basic idea of -gnatI is to
-- ignore any rep clauses that may be target dependent but do not
-- affect legality (except possibly to be rejected because they
-- are incompatible with the compilation target).
when Attribute_Alignment
| Attribute_Bit_Order
| Attribute_Component_Size
| Attribute_Machine_Radix
| Attribute_Object_Size
| Attribute_Size
| Attribute_Small
| Attribute_Stream_Size
| Attribute_Value_Size
=>
Kill_Rep_Clause (N);
return;
-- The following should not be ignored, because in the first place
-- they are reasonably portable, and should not cause problems
-- in compiling code from another target, and also they do affect
-- legality, e.g. failing to provide a stream attribute for a type
-- may make a program illegal.
when Attribute_External_Tag
| Attribute_Input
| Attribute_Output
| Attribute_Read
| Attribute_Simple_Storage_Pool
| Attribute_Storage_Pool
| Attribute_Storage_Size
| Attribute_Write
=>
null;
-- We do not do anything here with address clauses, they will be
-- removed by Freeze later on, but for now, it works better to
-- keep then in the tree.
when Attribute_Address =>
null;
-- Other cases are errors ("attribute& cannot be set with
-- definition clause"), which will be caught below.
when others =>
null;
end case;
end if;
Analyze (Nam);
Ent := Entity (Nam);
if Rep_Item_Too_Early (Ent, N) then
return;
end if;
-- Rep clause applies to full view of incomplete type or private type if
-- we have one (if not, this is a premature use of the type). However,
-- certain semantic checks need to be done on the specified entity (i.e.
-- the private view), so we save it in Ent.
if Is_Private_Type (Ent)
and then Is_Derived_Type (Ent)
and then not Is_Tagged_Type (Ent)
and then No (Full_View (Ent))
then
-- If this is a private type whose completion is a derivation from
-- another private type, there is no full view, and the attribute
-- belongs to the type itself, not its underlying parent.
U_Ent := Ent;
elsif Ekind (Ent) = E_Incomplete_Type then
-- The attribute applies to the full view, set the entity of the
-- attribute definition accordingly.
Ent := Underlying_Type (Ent);
U_Ent := Ent;
Set_Entity (Nam, Ent);
else
U_Ent := Underlying_Type (Ent);
end if;
-- Avoid cascaded error
if Etype (Nam) = Any_Type then
return;
-- Must be declared in current scope or in case of an aspect
-- specification, must be visible in current scope.
elsif Scope (Ent) /= Current_Scope
and then
not (From_Aspect_Specification (N)
and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
then
Error_Msg_N ("entity must be declared in this scope", Nam);
return;
-- Must not be a source renaming (we do have some cases where the
-- expander generates a renaming, and those cases are OK, in such
-- cases any attribute applies to the renamed object as well).
elsif Is_Object (Ent)
and then Present (Renamed_Object (Ent))
then
-- Case of renamed object from source, this is an error
if Comes_From_Source (Renamed_Object (Ent)) then
Get_Name_String (Chars (N));
Error_Msg_Strlen := Name_Len;
Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
Error_Msg_N
("~ clause not allowed for a renaming declaration "
& "(RM 13.1(6))", Nam);
return;
-- For the case of a compiler generated renaming, the attribute
-- definition clause applies to the renamed object created by the
-- expander. The easiest general way to handle this is to create a
-- copy of the attribute definition clause for this object.
elsif Is_Entity_Name (Renamed_Object (Ent)) then
Insert_Action (N,
Make_Attribute_Definition_Clause (Loc,
Name =>
New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
Chars => Chars (N),
Expression => Duplicate_Subexpr (Expression (N))));
-- If the renamed object is not an entity, it must be a dereference
-- of an unconstrained function call, and we must introduce a new
-- declaration to capture the expression. This is needed in the case
-- of 'Alignment, where the original declaration must be rewritten.
else
pragma Assert
(Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
null;
end if;
-- If no underlying entity, use entity itself, applies to some
-- previously detected error cases ???
elsif No (U_Ent) then
U_Ent := Ent;
-- Cannot specify for a subtype (exception Object/Value_Size)
elsif Is_Type (U_Ent)
and then not Is_First_Subtype (U_Ent)
and then Id /= Attribute_Object_Size
and then Id /= Attribute_Value_Size
and then not From_At_Mod (N)
then
Error_Msg_N ("cannot specify attribute for subtype", Nam);
return;
end if;
Set_Entity (N, U_Ent);
-- Switch on particular attribute
case Id is
-------------
-- Address --
-------------
-- Address attribute definition clause
when Attribute_Address => Address : begin
-- A little error check, catch for X'Address use X'Address;
if Nkind (Nam) = N_Identifier
and then Nkind (Expr) = N_Attribute_Reference
and then Attribute_Name (Expr) = Name_Address
and then Nkind (Prefix (Expr)) = N_Identifier
and then Chars (Nam) = Chars (Prefix (Expr))
then
Error_Msg_NE
("address for & is self-referencing", Prefix (Expr), Ent);
return;
end if;
-- Not that special case, carry on with analysis of expression
Analyze_And_Resolve (Expr, RTE (RE_Address));
-- Even when ignoring rep clauses we need to indicate that the
-- entity has an address clause and thus it is legal to declare
-- it imported. Freeze will get rid of the address clause later.
if Ignore_Rep_Clauses then
if Ekind_In (U_Ent, E_Variable, E_Constant) then
Record_Rep_Item (U_Ent, N);
end if;
return;
end if;
if Duplicate_Clause then
null;
-- Case of address clause for subprogram
elsif Is_Subprogram (U_Ent) then
if Has_Homonym (U_Ent) then
Error_Msg_N
("address clause cannot be given for overloaded "
& "subprogram", Nam);
return;
end if;
-- For subprograms, all address clauses are permitted, and we
-- mark the subprogram as having a deferred freeze so that Gigi
-- will not elaborate it too soon.
-- Above needs more comments, what is too soon about???
Set_Has_Delayed_Freeze (U_Ent);
-- Case of address clause for entry
elsif Ekind (U_Ent) = E_Entry then
if Nkind (Parent (N)) = N_Task_Body then
Error_Msg_N
("entry address must be specified in task spec", Nam);
return;
end if;
-- For entries, we require a constant address
Check_Constant_Address_Clause (Expr, U_Ent);
-- Special checks for task types
if Is_Task_Type (Scope (U_Ent))
and then Comes_From_Source (Scope (U_Ent))
then
Error_Msg_N
("??entry address declared for entry in task type", N);
Error_Msg_N
("\??only one task can be declared of this type", N);
end if;
-- Entry address clauses are obsolescent
Check_Restriction (No_Obsolescent_Features, N);
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("?j?attaching interrupt to task entry is an obsolescent "
& "feature (RM J.7.1)", N);
Error_Msg_N
("\?j?use interrupt procedure instead", N);
end if;
-- Case of an address clause for a controlled object, which we
-- consider to be erroneous.
elsif Is_Controlled (Etype (U_Ent))
or else Has_Controlled_Component (Etype (U_Ent))
then
Error_Msg_NE
("??controlled object & must not be overlaid", Nam, U_Ent);
Error_Msg_N
("\??Program_Error will be raised at run time", Nam);
Insert_Action (Declaration_Node (U_Ent),
Make_Raise_Program_Error (Loc,
Reason => PE_Overlaid_Controlled_Object));
return;
-- Case of an address clause for a class-wide object, which is
-- considered erroneous.
elsif Is_Class_Wide_Type (Etype (U_Ent)) then
Error_Msg_NE
("??class-wide object & must not be overlaid", Nam, U_Ent);
Error_Msg_N
("\??Program_Error will be raised at run time", Nam);
Insert_Action (Declaration_Node (U_Ent),
Make_Raise_Program_Error (Loc,
Reason => PE_Overlaid_Controlled_Object));
return;
-- Case of address clause for a (non-controlled) object
elsif Ekind_In (U_Ent, E_Variable, E_Constant) then
declare
Expr : constant Node_Id := Expression (N);
O_Ent : Entity_Id;
Off : Boolean;
begin
-- Exported variables cannot have an address clause, because
-- this cancels the effect of the pragma Export.
if Is_Exported (U_Ent) then
Error_Msg_N
("cannot export object with address clause", Nam);
return;
end if;
Find_Overlaid_Entity (N, O_Ent, Off);
if Present (O_Ent) then
-- If the object overlays a constant object, mark it so
if Is_Constant_Object (O_Ent) then
Set_Overlays_Constant (U_Ent);
end if;
-- If the address clause is of the form:
-- for X'Address use Y'Address;
-- or
-- C : constant Address := Y'Address;
-- ...
-- for X'Address use C;
-- then we make an entry in the table to check the size
-- and alignment of the overlaying variable. But we defer
-- this check till after code generation to take full
-- advantage of the annotation done by the back end.
-- If the entity has a generic type, the check will be
-- performed in the instance if the actual type justifies
-- it, and we do not insert the clause in the table to
-- prevent spurious warnings.
-- Note: we used to test Comes_From_Source and only give
-- this warning for source entities, but we have removed
-- this test. It really seems bogus to generate overlays
-- that would trigger this warning in generated code.
-- Furthermore, by removing the test, we handle the
-- aspect case properly.
if Is_Object (O_Ent)
and then not Is_Generic_Type (Etype (U_Ent))
and then Address_Clause_Overlay_Warnings
then
Address_Clause_Checks.Append
((N, U_Ent, No_Uint, O_Ent, Off));
end if;
else
-- If this is not an overlay, mark a variable as being
-- volatile to prevent unwanted optimizations. It's a
-- conservative interpretation of RM 13.3(19) for the
-- cases where the compiler cannot detect potential
-- aliasing issues easily and it also covers the case
-- of an absolute address where the volatile aspect is
-- kind of implicit.
if Ekind (U_Ent) = E_Variable then
Set_Treat_As_Volatile (U_Ent);
end if;
-- Make an entry in the table for an absolute address as
-- above to check that the value is compatible with the
-- alignment of the object.
declare
Addr : constant Node_Id := Address_Value (Expr);
begin
if Compile_Time_Known_Value (Addr)
and then Address_Clause_Overlay_Warnings
then
Address_Clause_Checks.Append
((N, U_Ent, Expr_Value (Addr), Empty, False));
end if;
end;
end if;
-- Overlaying controlled objects is erroneous. Emit warning
-- but continue analysis because program is itself legal,
-- and back end must see address clause.
if Present (O_Ent)
and then (Has_Controlled_Component (Etype (O_Ent))
or else Is_Controlled (Etype (O_Ent)))
and then not Inside_A_Generic
then
Error_Msg_N
("??cannot use overlays with controlled objects", Expr);
Error_Msg_N
("\??Program_Error will be raised at run time", Expr);
Insert_Action (Declaration_Node (U_Ent),
Make_Raise_Program_Error (Loc,
Reason => PE_Overlaid_Controlled_Object));
-- Issue an unconditional warning for a constant overlaying
-- a variable. For the reverse case, we will issue it only
-- if the variable is modified.
elsif Ekind (U_Ent) = E_Constant
and then Present (O_Ent)
and then not Overlays_Constant (U_Ent)
and then Address_Clause_Overlay_Warnings
then
Error_Msg_N ("??constant overlays a variable", Expr);
-- Imported variables can have an address clause, but then
-- the import is pretty meaningless except to suppress
-- initializations, so we do not need such variables to
-- be statically allocated (and in fact it causes trouble
-- if the address clause is a local value).
elsif Is_Imported (U_Ent) then
Set_Is_Statically_Allocated (U_Ent, False);
end if;
-- We mark a possible modification of a variable with an
-- address clause, since it is likely aliasing is occurring.
Note_Possible_Modification (Nam, Sure => False);
-- Legality checks on the address clause for initialized
-- objects is deferred until the freeze point, because
-- a subsequent pragma might indicate that the object
-- is imported and thus not initialized. Also, the address
-- clause might involve entities that have yet to be
-- elaborated.
Set_Has_Delayed_Freeze (U_Ent);
-- If an initialization call has been generated for this
-- object, it needs to be deferred to after the freeze node
-- we have just now added, otherwise GIGI will see a
-- reference to the variable (as actual to the IP call)
-- before its definition.
declare
Init_Call : constant Node_Id :=
Remove_Init_Call (U_Ent, N);
begin
if Present (Init_Call) then
Append_Freeze_Action (U_Ent, Init_Call);
-- Reset Initialization_Statements pointer so that
-- if there is a pragma Import further down, it can
-- clear any default initialization.
Set_Initialization_Statements (U_Ent, Init_Call);
end if;
end;
-- Entity has delayed freeze, so we will generate an
-- alignment check at the freeze point unless suppressed.
if not Range_Checks_Suppressed (U_Ent)
and then not Alignment_Checks_Suppressed (U_Ent)
then
Set_Check_Address_Alignment (N);
end if;
-- Kill the size check code, since we are not allocating
-- the variable, it is somewhere else.
Kill_Size_Check_Code (U_Ent);
end;
-- Not a valid entity for an address clause
else
Error_Msg_N ("address cannot be given for &", Nam);
end if;
end Address;
---------------
-- Alignment --
---------------
-- Alignment attribute definition clause
when Attribute_Alignment => Alignment : declare
Align : constant Uint := Get_Alignment_Value (Expr);
Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
begin
FOnly := True;
if not Is_Type (U_Ent)
and then Ekind (U_Ent) /= E_Variable
and then Ekind (U_Ent) /= E_Constant
then
Error_Msg_N ("alignment cannot be given for &", Nam);
elsif Duplicate_Clause then
null;
elsif Align /= No_Uint then
Set_Has_Alignment_Clause (U_Ent);
-- Tagged type case, check for attempt to set alignment to a
-- value greater than Max_Align, and reset if so. This error
-- is suppressed in ASIS mode to allow for different ASIS
-- back ends or ASIS-based tools to query the illegal clause.
if Is_Tagged_Type (U_Ent)
and then Align > Max_Align
and then not ASIS_Mode
then
Error_Msg_N
("alignment for & set to Maximum_Aligment??", Nam);
Set_Alignment (U_Ent, Max_Align);
-- All other cases
else
Set_Alignment (U_Ent, Align);
end if;
-- For an array type, U_Ent is the first subtype. In that case,
-- also set the alignment of the anonymous base type so that
-- other subtypes (such as the itypes for aggregates of the
-- type) also receive the expected alignment.
if Is_Array_Type (U_Ent) then
Set_Alignment (Base_Type (U_Ent), Align);
end if;
end if;
end Alignment;
---------------
-- Bit_Order --
---------------
-- Bit_Order attribute definition clause
when Attribute_Bit_Order =>
if not Is_Record_Type (U_Ent) then
Error_Msg_N
("Bit_Order can only be defined for record type", Nam);
elsif Duplicate_Clause then
null;
else
Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
if Etype (Expr) = Any_Type then
return;
elsif not Is_OK_Static_Expression (Expr) then
Flag_Non_Static_Expr
("Bit_Order requires static expression!", Expr);
else
if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
end if;
end if;
end if;
--------------------
-- Component_Size --
--------------------
-- Component_Size attribute definition clause
when Attribute_Component_Size => Component_Size_Case : declare
Csize : constant Uint := Static_Integer (Expr);
Ctyp : Entity_Id;
Btype : Entity_Id;
Biased : Boolean;
New_Ctyp : Entity_Id;
Decl : Node_Id;
begin
if not Is_Array_Type (U_Ent) then
Error_Msg_N ("component size requires array type", Nam);
return;
end if;
Btype := Base_Type (U_Ent);
Ctyp := Component_Type (Btype);
if Duplicate_Clause then
null;
elsif Rep_Item_Too_Early (Btype, N) then
null;
elsif Csize /= No_Uint then
Check_Size (Expr, Ctyp, Csize, Biased);
-- For the biased case, build a declaration for a subtype that
-- will be used to represent the biased subtype that reflects
-- the biased representation of components. We need the subtype
-- to get proper conversions on referencing elements of the
-- array.
if Biased then
New_Ctyp :=
Make_Defining_Identifier (Loc,
Chars =>
New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => New_Ctyp,
Subtype_Indication =>
New_Occurrence_Of (Component_Type (Btype), Loc));
Set_Parent (Decl, N);
Analyze (Decl, Suppress => All_Checks);
Set_Has_Delayed_Freeze (New_Ctyp, False);
Set_Esize (New_Ctyp, Csize);
Set_RM_Size (New_Ctyp, Csize);
Init_Alignment (New_Ctyp);
Set_Is_Itype (New_Ctyp, True);
Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
Set_Component_Type (Btype, New_Ctyp);
Set_Biased (New_Ctyp, N, "component size clause");
end if;
Set_Component_Size (Btype, Csize);
-- Deal with warning on overridden size
if Warn_On_Overridden_Size
and then Has_Size_Clause (Ctyp)
and then RM_Size (Ctyp) /= Csize
then
Error_Msg_NE
("component size overrides size clause for&?S?", N, Ctyp);
end if;
Set_Has_Component_Size_Clause (Btype, True);
Set_Has_Non_Standard_Rep (Btype, True);
end if;
end Component_Size_Case;
-----------------------
-- Constant_Indexing --
-----------------------
when Attribute_Constant_Indexing =>
Check_Indexing_Functions;
---------
-- CPU --
---------
when Attribute_CPU =>
-- CPU attribute definition clause not allowed except from aspect
-- specification.
if From_Aspect_Specification (N) then
if not Is_Task_Type (U_Ent) then
Error_Msg_N ("CPU can only be defined for task", Nam);
elsif Duplicate_Clause then
null;
else
-- The expression must be analyzed in the special manner
-- described in "Handling of Default and Per-Object
-- Expressions" in sem.ads.
-- The visibility to the discriminants must be restored
Push_Scope_And_Install_Discriminants (U_Ent);
Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
Uninstall_Discriminants_And_Pop_Scope (U_Ent);
if not Is_OK_Static_Expression (Expr) then
Check_Restriction (Static_Priorities, Expr);
end if;
end if;
else
Error_Msg_N
("attribute& cannot be set with definition clause", N);
end if;
----------------------
-- Default_Iterator --
----------------------
when Attribute_Default_Iterator => Default_Iterator : declare
Func : Entity_Id;
Typ : Entity_Id;
begin
-- If target type is untagged, further checks are irrelevant
if not Is_Tagged_Type (U_Ent) then
Error_Msg_N
("aspect Default_Iterator applies to tagged type", Nam);
return;
end if;
Check_Iterator_Functions;
Analyze (Expr);
if not Is_Entity_Name (Expr)
or else Ekind (Entity (Expr)) /= E_Function
then
Error_Msg_N ("aspect Iterator must be a function", Expr);
return;
else
Func := Entity (Expr);
end if;
-- The type of the first parameter must be T, T'class, or a
-- corresponding access type (5.5.1 (8/3). If function is
-- parameterless label type accordingly.
if No (First_Formal (Func)) then
Typ := Any_Type;
else
Typ := Etype (First_Formal (Func));
end if;
if Typ = U_Ent
or else Typ = Class_Wide_Type (U_Ent)
or else (Is_Access_Type (Typ)
and then Designated_Type (Typ) = U_Ent)
or else (Is_Access_Type (Typ)
and then Designated_Type (Typ) =
Class_Wide_Type (U_Ent))
then
null;
else
Error_Msg_NE
("Default Iterator must be a primitive of&", Func, U_Ent);
end if;
end Default_Iterator;
------------------------
-- Dispatching_Domain --
------------------------
when Attribute_Dispatching_Domain =>
-- Dispatching_Domain attribute definition clause not allowed
-- except from aspect specification.
if From_Aspect_Specification (N) then
if not Is_Task_Type (U_Ent) then
Error_Msg_N
("Dispatching_Domain can only be defined for task", Nam);
elsif Duplicate_Clause then
null;
else
-- The expression must be analyzed in the special manner
-- described in "Handling of Default and Per-Object
-- Expressions" in sem.ads.
-- The visibility to the discriminants must be restored
Push_Scope_And_Install_Discriminants (U_Ent);
Preanalyze_Spec_Expression
(Expr, RTE (RE_Dispatching_Domain));
Uninstall_Discriminants_And_Pop_Scope (U_Ent);
end if;
else
Error_Msg_N
("attribute& cannot be set with definition clause", N);
end if;
------------------
-- External_Tag --
------------------
when Attribute_External_Tag =>
if not Is_Tagged_Type (U_Ent) then
Error_Msg_N ("should be a tagged type", Nam);
end if;
if Duplicate_Clause then
null;
else
Analyze_And_Resolve (Expr, Standard_String);
if not Is_OK_Static_Expression (Expr) then
Flag_Non_Static_Expr
("static string required for tag name!", Nam);
end if;
if not Is_Library_Level_Entity (U_Ent) then
Error_Msg_NE
("??non-unique external tag supplied for &", N, U_Ent);
Error_Msg_N
("\??same external tag applies to all subprogram calls",
N);
Error_Msg_N
("\??corresponding internal tag cannot be obtained", N);
end if;
end if;
--------------------------
-- Implicit_Dereference --
--------------------------
when Attribute_Implicit_Dereference =>
-- Legality checks already performed at the point of the type
-- declaration, aspect is not delayed.
null;
-----------
-- Input --
-----------
when Attribute_Input =>
Analyze_Stream_TSS_Definition (TSS_Stream_Input);
Set_Has_Specified_Stream_Input (Ent);
------------------------
-- Interrupt_Priority --
------------------------
when Attribute_Interrupt_Priority =>
-- Interrupt_Priority attribute definition clause not allowed
-- except from aspect specification.
if From_Aspect_Specification (N) then
if not Is_Concurrent_Type (U_Ent) then
Error_Msg_N
("Interrupt_Priority can only be defined for task and "
& "protected object", Nam);
elsif Duplicate_Clause then
null;
else
-- The expression must be analyzed in the special manner
-- described in "Handling of Default and Per-Object
-- Expressions" in sem.ads.
-- The visibility to the discriminants must be restored
Push_Scope_And_Install_Discriminants (U_Ent);
Preanalyze_Spec_Expression
(Expr, RTE (RE_Interrupt_Priority));
Uninstall_Discriminants_And_Pop_Scope (U_Ent);
-- Check the No_Task_At_Interrupt_Priority restriction
if Is_Task_Type (U_Ent) then
Check_Restriction (No_Task_At_Interrupt_Priority, N);
end if;
end if;
else
Error_Msg_N
("attribute& cannot be set with definition clause", N);
end if;
--------------
-- Iterable --
--------------
when Attribute_Iterable =>
Analyze (Expr);
if Nkind (Expr) /= N_Aggregate then
Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
end if;
declare
Assoc : Node_Id;
begin
Assoc := First (Component_Associations (Expr));
while Present (Assoc) loop
if not Is_Entity_Name (Expression (Assoc)) then
Error_Msg_N ("value must be a function", Assoc);
end if;
Next (Assoc);
end loop;
end;
----------------------
-- Iterator_Element --
----------------------
when Attribute_Iterator_Element =>
Analyze (Expr);
if not Is_Entity_Name (Expr)
or else not Is_Type (Entity (Expr))
then
Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
end if;
-------------------
-- Machine_Radix --
-------------------
-- Machine radix attribute definition clause
when Attribute_Machine_Radix => Machine_Radix : declare
Radix : constant Uint := Static_Integer (Expr);
begin
if not Is_Decimal_Fixed_Point_Type (U_Ent) then
Error_Msg_N ("decimal fixed-point type expected for &", Nam);
elsif Duplicate_Clause then
null;
elsif Radix /= No_Uint then
Set_Has_Machine_Radix_Clause (U_Ent);
Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
if Radix = 2 then
null;
elsif Radix = 10 then
Set_Machine_Radix_10 (U_Ent);
-- The following error is suppressed in ASIS mode to allow for
-- different ASIS back ends or ASIS-based tools to query the
-- illegal clause.
elsif not ASIS_Mode then
Error_Msg_N ("machine radix value must be 2 or 10", Expr);
end if;
end if;
end Machine_Radix;
-----------------
-- Object_Size --
-----------------
-- Object_Size attribute definition clause
when Attribute_Object_Size => Object_Size : declare
Size : constant Uint := Static_Integer (Expr);
Biased : Boolean;
pragma Warnings (Off, Biased);
begin
if not Is_Type (U_Ent) then
Error_Msg_N ("Object_Size cannot be given for &", Nam);
elsif Duplicate_Clause then
null;
else
Check_Size (Expr, U_Ent, Size, Biased);
-- The following errors are suppressed in ASIS mode to allow
-- for different ASIS back ends or ASIS-based tools to query
-- the illegal clause.
if ASIS_Mode then
null;
elsif Is_Scalar_Type (U_Ent) then
if Size /= 8 and then Size /= 16 and then Size /= 32
and then UI_Mod (Size, 64) /= 0
then
Error_Msg_N
("Object_Size must be 8, 16, 32, or multiple of 64",
Expr);
end if;
elsif Size mod 8 /= 0 then
Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
end if;
Set_Esize (U_Ent, Size);
Set_Has_Object_Size_Clause (U_Ent);
Alignment_Check_For_Size_Change (U_Ent, Size);
end if;
end Object_Size;
------------
-- Output --
------------
when Attribute_Output =>
Analyze_Stream_TSS_Definition (TSS_Stream_Output);
Set_Has_Specified_Stream_Output (Ent);
--------------
-- Priority --
--------------
when Attribute_Priority =>
-- Priority attribute definition clause not allowed except from
-- aspect specification.
if From_Aspect_Specification (N) then
if not (Is_Concurrent_Type (U_Ent)
or else Ekind (U_Ent) = E_Procedure)
then
Error_Msg_N
("Priority can only be defined for task and protected "
& "object", Nam);
elsif Duplicate_Clause then
null;
else
-- The expression must be analyzed in the special manner
-- described in "Handling of Default and Per-Object
-- Expressions" in sem.ads.
-- The visibility to the discriminants must be restored
Push_Scope_And_Install_Discriminants (U_Ent);
Preanalyze_Spec_Expression (Expr, Standard_Integer);
Uninstall_Discriminants_And_Pop_Scope (U_Ent);
if not Is_OK_Static_Expression (Expr) then
Check_Restriction (Static_Priorities, Expr);
end if;
end if;
else
Error_Msg_N
("attribute& cannot be set with definition clause", N);
end if;
----------
-- Read --
----------
when Attribute_Read =>
Analyze_Stream_TSS_Definition (TSS_Stream_Read);
Set_Has_Specified_Stream_Read (Ent);
--------------------------
-- Scalar_Storage_Order --
--------------------------
-- Scalar_Storage_Order attribute definition clause
when Attribute_Scalar_Storage_Order =>
if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
Error_Msg_N
("Scalar_Storage_Order can only be defined for record or "
& "array type", Nam);
elsif Duplicate_Clause then
null;
else
Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
if Etype (Expr) = Any_Type then
return;
elsif not Is_OK_Static_Expression (Expr) then
Flag_Non_Static_Expr
("Scalar_Storage_Order requires static expression!", Expr);
elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
-- Here for the case of a non-default (i.e. non-confirming)
-- Scalar_Storage_Order attribute definition.
if Support_Nondefault_SSO_On_Target then
Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
else
Error_Msg_N
("non-default Scalar_Storage_Order not supported on "
& "target", Expr);
end if;
end if;
-- Clear SSO default indications since explicit setting of the
-- order overrides the defaults.
Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
end if;
--------------------------
-- Secondary_Stack_Size --
--------------------------
when Attribute_Secondary_Stack_Size =>
-- Secondary_Stack_Size attribute definition clause not allowed
-- except from aspect specification.
if From_Aspect_Specification (N) then
if not Is_Task_Type (U_Ent) then
Error_Msg_N
("Secondary Stack Size can only be defined for task", Nam);
elsif Duplicate_Clause then
null;
else
Check_Restriction (No_Secondary_Stack, Expr);
-- The expression must be analyzed in the special manner
-- described in "Handling of Default and Per-Object
-- Expressions" in sem.ads.
-- The visibility to the discriminants must be restored
Push_Scope_And_Install_Discriminants (U_Ent);
Preanalyze_Spec_Expression (Expr, Any_Integer);
Uninstall_Discriminants_And_Pop_Scope (U_Ent);
if not Is_OK_Static_Expression (Expr) then
Check_Restriction (Static_Storage_Size, Expr);
end if;
end if;
else
Error_Msg_N
("attribute& cannot be set with definition clause", N);
end if;
----------
-- Size --
----------
-- Size attribute definition clause
when Attribute_Size => Size : declare
Size : constant Uint := Static_Integer (Expr);
Etyp : Entity_Id;
Biased : Boolean;
begin
FOnly := True;
if Duplicate_Clause then
null;
elsif not Is_Type (U_Ent)
and then Ekind (U_Ent) /= E_Variable
and then Ekind (U_Ent) /= E_Constant
then
Error_Msg_N ("size cannot be given for &", Nam);
elsif Is_Array_Type (U_Ent)
and then not Is_Constrained (U_Ent)
then
Error_Msg_N
("size cannot be given for unconstrained array", Nam);
elsif Size /= No_Uint then
if Is_Type (U_Ent) then
Etyp := U_Ent;
else
Etyp := Etype (U_Ent);
end if;
-- Check size, note that Gigi is in charge of checking that the
-- size of an array or record type is OK. Also we do not check
-- the size in the ordinary fixed-point case, since it is too
-- early to do so (there may be subsequent small clause that
-- affects the size). We can check the size if a small clause
-- has already been given.
if not Is_Ordinary_Fixed_Point_Type (U_Ent)
or else Has_Small_Clause (U_Ent)
then
Check_Size (Expr, Etyp, Size, Biased);
Set_Biased (U_Ent, N, "size clause", Biased);
end if;
-- For types set RM_Size and Esize if possible
if Is_Type (U_Ent) then
Set_RM_Size (U_Ent, Size);
-- For elementary types, increase Object_Size to power of 2,
-- but not less than a storage unit in any case (normally
-- this means it will be byte addressable).
-- For all other types, nothing else to do, we leave Esize
-- (object size) unset, the back end will set it from the
-- size and alignment in an appropriate manner.
-- In both cases, we check whether the alignment must be
-- reset in the wake of the size change.
if Is_Elementary_Type (U_Ent) then
if Size <= System_Storage_Unit then
Init_Esize (U_Ent, System_Storage_Unit);
elsif Size <= 16 then
Init_Esize (U_Ent, 16);
elsif Size <= 32 then
Init_Esize (U_Ent, 32);
else
Set_Esize (U_Ent, (Size + 63) / 64 * 64);
end if;
Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
else
Alignment_Check_For_Size_Change (U_Ent, Size);
end if;
-- For objects, set Esize only
else
-- The following error is suppressed in ASIS mode to allow
-- for different ASIS back ends or ASIS-based tools to query
-- the illegal clause.
if Is_Elementary_Type (Etyp)
and then Size /= System_Storage_Unit
and then Size /= System_Storage_Unit * 2
and then Size /= System_Storage_Unit * 4
and then Size /= System_Storage_Unit * 8
and then not ASIS_Mode
then
Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
Error_Msg_N
("size for primitive object must be a power of 2 in "
& "the range ^-^", N);
end if;
Set_Esize (U_Ent, Size);
end if;
Set_Has_Size_Clause (U_Ent);
end if;
end Size;
-----------
-- Small --
-----------
-- Small attribute definition clause
when Attribute_Small => Small : declare
Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
Small : Ureal;
begin
Analyze_And_Resolve (Expr, Any_Real);
if Etype (Expr) = Any_Type then
return;
elsif not Is_OK_Static_Expression (Expr) then
Flag_Non_Static_Expr
("small requires static expression!", Expr);
return;
else
Small := Expr_Value_R (Expr);
if Small <= Ureal_0 then
Error_Msg_N ("small value must be greater than zero", Expr);
return;
end if;
end if;
if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
Error_Msg_N
("small requires an ordinary fixed point type", Nam);
elsif Has_Small_Clause (U_Ent) then
Error_Msg_N ("small already given for &", Nam);
elsif Small > Delta_Value (U_Ent) then
Error_Msg_N
("small value must not be greater than delta value", Nam);
else
Set_Small_Value (U_Ent, Small);
Set_Small_Value (Implicit_Base, Small);
Set_Has_Small_Clause (U_Ent);
Set_Has_Small_Clause (Implicit_Base);
Set_Has_Non_Standard_Rep (Implicit_Base);
end if;
end Small;
------------------
-- Storage_Pool --
------------------
-- Storage_Pool attribute definition clause
when Attribute_Simple_Storage_Pool
| Attribute_Storage_Pool
=>
Storage_Pool : declare
Pool : Entity_Id;
T : Entity_Id;
begin
if Ekind (U_Ent) = E_Access_Subprogram_Type then
Error_Msg_N
("storage pool cannot be given for access-to-subprogram type",
Nam);
return;
elsif not Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
then
Error_Msg_N
("storage pool can only be given for access types", Nam);
return;
elsif Is_Derived_Type (U_Ent) then
Error_Msg_N
("storage pool cannot be given for a derived access type",
Nam);
elsif Duplicate_Clause then
return;
elsif Present (Associated_Storage_Pool (U_Ent)) then
Error_Msg_N ("storage pool already given for &", Nam);
return;
end if;
-- Check for Storage_Size previously given
declare
SS : constant Node_Id :=
Get_Attribute_Definition_Clause
(U_Ent, Attribute_Storage_Size);
begin
if Present (SS) then
Check_Pool_Size_Clash (U_Ent, N, SS);
end if;
end;
-- Storage_Pool case
if Id = Attribute_Storage_Pool then
Analyze_And_Resolve
(Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
-- In the Simple_Storage_Pool case, we allow a variable of any
-- simple storage pool type, so we Resolve without imposing an
-- expected type.
else
Analyze_And_Resolve (Expr);
if not Present (Get_Rep_Pragma
(Etype (Expr), Name_Simple_Storage_Pool_Type))
then
Error_Msg_N
("expression must be of a simple storage pool type", Expr);
end if;
end if;
if not Denotes_Variable (Expr) then
Error_Msg_N ("storage pool must be a variable", Expr);
return;
end if;
if Nkind (Expr) = N_Type_Conversion then
T := Etype (Expression (Expr));
else
T := Etype (Expr);
end if;
-- The Stack_Bounded_Pool is used internally for implementing
-- access types with a Storage_Size. Since it only work properly
-- when used on one specific type, we need to check that it is not
-- hijacked improperly:
-- type T is access Integer;
-- for T'Storage_Size use n;
-- type Q is access Float;
-- for Q'Storage_Size use T'Storage_Size; -- incorrect
if RTE_Available (RE_Stack_Bounded_Pool)
and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
then
Error_Msg_N ("non-shareable internal Pool", Expr);
return;
end if;
-- If the argument is a name that is not an entity name, then
-- we construct a renaming operation to define an entity of
-- type storage pool.
if not Is_Entity_Name (Expr)
and then Is_Object_Reference (Expr)
then
Pool := Make_Temporary (Loc, 'P', Expr);
declare
Rnode : constant Node_Id :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Pool,
Subtype_Mark =>
New_Occurrence_Of (Etype (Expr), Loc),
Name => Expr);
begin
-- If the attribute definition clause comes from an aspect
-- clause, then insert the renaming before the associated
-- entity's declaration, since the attribute clause has
-- not yet been appended to the declaration list.
if From_Aspect_Specification (N) then
Insert_Before (Parent (Entity (N)), Rnode);
else
Insert_Before (N, Rnode);
end if;
Analyze (Rnode);
Set_Associated_Storage_Pool (U_Ent, Pool);
end;
elsif Is_Entity_Name (Expr) then
Pool := Entity (Expr);
-- If pool is a renamed object, get original one. This can
-- happen with an explicit renaming, and within instances.
while Present (Renamed_Object (Pool))
and then Is_Entity_Name (Renamed_Object (Pool))
loop
Pool := Entity (Renamed_Object (Pool));
end loop;
if Present (Renamed_Object (Pool))
and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
then
Pool := Entity (Expression (Renamed_Object (Pool)));
end if;
Set_Associated_Storage_Pool (U_Ent, Pool);
elsif Nkind (Expr) = N_Type_Conversion
and then Is_Entity_Name (Expression (Expr))
and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
then
Pool := Entity (Expression (Expr));
Set_Associated_Storage_Pool (U_Ent, Pool);
else
Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
return;
end if;
end Storage_Pool;
------------------
-- Storage_Size --
------------------
-- Storage_Size attribute definition clause
when Attribute_Storage_Size => Storage_Size : declare
Btype : constant Entity_Id := Base_Type (U_Ent);
begin
if Is_Task_Type (U_Ent) then
-- Check obsolescent (but never obsolescent if from aspect)
if not From_Aspect_Specification (N) then
Check_Restriction (No_Obsolescent_Features, N);
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("?j?storage size clause for task is an obsolescent "
& "feature (RM J.9)", N);
Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
end if;
end if;
FOnly := True;
end if;
if not Is_Access_Type (U_Ent)
and then Ekind (U_Ent) /= E_Task_Type
then
Error_Msg_N ("storage size cannot be given for &", Nam);
elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
Error_Msg_N
("storage size cannot be given for a derived access type",
Nam);
elsif Duplicate_Clause then
null;
else
Analyze_And_Resolve (Expr, Any_Integer);
if Is_Access_Type (U_Ent) then
-- Check for Storage_Pool previously given
declare
SP : constant Node_Id :=
Get_Attribute_Definition_Clause
(U_Ent, Attribute_Storage_Pool);
begin
if Present (SP) then
Check_Pool_Size_Clash (U_Ent, SP, N);
end if;
end;
-- Special case of for x'Storage_Size use 0
if Is_OK_Static_Expression (Expr)
and then Expr_Value (Expr) = 0
then
Set_No_Pool_Assigned (Btype);
end if;
end if;
Set_Has_Storage_Size_Clause (Btype);
end if;
end Storage_Size;
-----------------
-- Stream_Size --
-----------------
when Attribute_Stream_Size => Stream_Size : declare
Size : constant Uint := Static_Integer (Expr);
begin
if Ada_Version <= Ada_95 then
Check_Restriction (No_Implementation_Attributes, N);
end if;
if Duplicate_Clause then
null;
elsif Is_Elementary_Type (U_Ent) then
-- The following errors are suppressed in ASIS mode to allow
-- for different ASIS back ends or ASIS-based tools to query
-- the illegal clause.
if ASIS_Mode then
null;
elsif Size /= System_Storage_Unit
and then Size /= System_Storage_Unit * 2
and then Size /= System_Storage_Unit * 4
and then Size /= System_Storage_Unit * 8
then
Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
Error_Msg_N
("stream size for elementary type must be a power of 2 "
& "and at least ^", N);
elsif RM_Size (U_Ent) > Size then
Error_Msg_Uint_1 := RM_Size (U_Ent);
Error_Msg_N
("stream size for elementary type must be a power of 2 "
& "and at least ^", N);
end if;
Set_Has_Stream_Size_Clause (U_Ent);
else
Error_Msg_N ("Stream_Size cannot be given for &", Nam);
end if;
end Stream_Size;
----------------
-- Value_Size --
----------------
-- Value_Size attribute definition clause
when Attribute_Value_Size => Value_Size : declare
Size : constant Uint := Static_Integer (Expr);
Biased : Boolean;
begin
if not Is_Type (U_Ent) then
Error_Msg_N ("Value_Size cannot be given for &", Nam);
elsif Duplicate_Clause then
null;
elsif Is_Array_Type (U_Ent)
and then not Is_Constrained (U_Ent)
then
Error_Msg_N
("Value_Size cannot be given for unconstrained array", Nam);
else
if Is_Elementary_Type (U_Ent) then
Check_Size (Expr, U_Ent, Size, Biased);
Set_Biased (U_Ent, N, "value size clause", Biased);
end if;
Set_RM_Size (U_Ent, Size);
end if;
end Value_Size;
-----------------------
-- Variable_Indexing --
-----------------------
when Attribute_Variable_Indexing =>
Check_Indexing_Functions;
-----------
-- Write --
-----------
when Attribute_Write =>
Analyze_Stream_TSS_Definition (TSS_Stream_Write);
Set_Has_Specified_Stream_Write (Ent);
-- All other attributes cannot be set
when others =>
Error_Msg_N
("attribute& cannot be set with definition clause", N);
end case;
-- The test for the type being frozen must be performed after any
-- expression the clause has been analyzed since the expression itself
-- might cause freezing that makes the clause illegal.
if Rep_Item_Too_Late (U_Ent, N, FOnly) then
return;
end if;
end Analyze_Attribute_Definition_Clause;
----------------------------
-- Analyze_Code_Statement --
----------------------------
procedure Analyze_Code_Statement (N : Node_Id) is
HSS : constant Node_Id := Parent (N);
SBody : constant Node_Id := Parent (HSS);
Subp : constant Entity_Id := Current_Scope;
Stmt : Node_Id;
Decl : Node_Id;
StmtO : Node_Id;
DeclO : Node_Id;
begin
-- Accept foreign code statements for CodePeer. The analysis is skipped
-- to avoid rejecting unrecognized constructs.
if CodePeer_Mode then
Set_Analyzed (N);
return;
end if;
-- Analyze and check we get right type, note that this implements the
-- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
-- the only way that Asm_Insn could possibly be visible.
Analyze_And_Resolve (Expression (N));
if Etype (Expression (N)) = Any_Type then
return;
elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
Error_Msg_N ("incorrect type for code statement", N);
return;
end if;
Check_Code_Statement (N);
-- Make sure we appear in the handled statement sequence of a subprogram
-- (RM 13.8(3)).
if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
or else Nkind (SBody) /= N_Subprogram_Body
then
Error_Msg_N
("code statement can only appear in body of subprogram", N);
return;
end if;
-- Do remaining checks (RM 13.8(3)) if not already done
if not Is_Machine_Code_Subprogram (Subp) then
Set_Is_Machine_Code_Subprogram (Subp);
-- No exception handlers allowed
if Present (Exception_Handlers (HSS)) then
Error_Msg_N
("exception handlers not permitted in machine code subprogram",
First (Exception_Handlers (HSS)));
end if;
-- No declarations other than use clauses and pragmas (we allow
-- certain internally generated declarations as well).
Decl := First (Declarations (SBody));
while Present (Decl) loop
DeclO := Original_Node (Decl);
if Comes_From_Source (DeclO)
and not Nkind_In (DeclO, N_Pragma,
N_Use_Package_Clause,
N_Use_Type_Clause,
N_Implicit_Label_Declaration)
then
Error_Msg_N
("this declaration not allowed in machine code subprogram",
DeclO);
end if;
Next (Decl);
end loop;
-- No statements other than code statements, pragmas, and labels.
-- Again we allow certain internally generated statements.
-- In Ada 2012, qualified expressions are names, and the code
-- statement is initially parsed as a procedure call.
Stmt := First (Statements (HSS));
while Present (Stmt) loop
StmtO := Original_Node (Stmt);
-- A procedure call transformed into a code statement is OK
if Ada_Version >= Ada_2012
and then Nkind (StmtO) = N_Procedure_Call_Statement
and then Nkind (Name (StmtO)) = N_Qualified_Expression
then
null;
elsif Comes_From_Source (StmtO)
and then not Nkind_In (StmtO, N_Pragma,
N_Label,
N_Code_Statement)
then
Error_Msg_N
("this statement is not allowed in machine code subprogram",
StmtO);
end if;
Next (Stmt);
end loop;
end if;
end Analyze_Code_Statement;
-----------------------------------------------
-- Analyze_Enumeration_Representation_Clause --
-----------------------------------------------
procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
Ident : constant Node_Id := Identifier (N);
Aggr : constant Node_Id := Array_Aggregate (N);
Enumtype : Entity_Id;
Elit : Entity_Id;
Expr : Node_Id;
Assoc : Node_Id;
Choice : Node_Id;
Val : Uint;
Err : Boolean := False;
-- Set True to avoid cascade errors and crashes on incorrect source code
Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
-- Allowed range of universal integer (= allowed range of enum lit vals)
Min : Uint;
Max : Uint;
-- Minimum and maximum values of entries
Max_Node : Node_Id;
-- Pointer to node for literal providing max value
begin
if Ignore_Rep_Clauses then
Kill_Rep_Clause (N);
return;
end if;
-- Ignore enumeration rep clauses by default in CodePeer mode,
-- unless -gnatd.I is specified, as a work around for potential false
-- positive messages.
if CodePeer_Mode and not Debug_Flag_Dot_II then
return;
end if;
-- First some basic error checks
Find_Type (Ident);
Enumtype := Entity (Ident);
if Enumtype = Any_Type
or else Rep_Item_Too_Early (Enumtype, N)
then
return;
else
Enumtype := Underlying_Type (Enumtype);
end if;
if not Is_Enumeration_Type (Enumtype) then
Error_Msg_NE
("enumeration type required, found}",
Ident, First_Subtype (Enumtype));
return;
end if;
-- Ignore rep clause on generic actual type. This will already have
-- been flagged on the template as an error, and this is the safest
-- way to ensure we don't get a junk cascaded message in the instance.
if Is_Generic_Actual_Type (Enumtype) then
return;
-- Type must be in current scope
elsif Scope (Enumtype) /= Current_Scope then
Error_Msg_N ("type must be declared in this scope", Ident);
return;
-- Type must be a first subtype
elsif not Is_First_Subtype (Enumtype) then
Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
return;
-- Ignore duplicate rep clause
elsif Has_Enumeration_Rep_Clause (Enumtype) then
Error_Msg_N ("duplicate enumeration rep clause ignored", N);
return;
-- Don't allow rep clause for standard [wide_[wide_]]character
elsif Is_Standard_Character_Type (Enumtype) then
Error_Msg_N ("enumeration rep clause not allowed for this type", N);
return;
-- Check that the expression is a proper aggregate (no parentheses)
elsif Paren_Count (Aggr) /= 0 then
Error_Msg
("extra parentheses surrounding aggregate not allowed",
First_Sloc (Aggr));
return;
-- All tests passed, so set rep clause in place
else
Set_Has_Enumeration_Rep_Clause (Enumtype);
Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
end if;
-- Now we process the aggregate. Note that we don't use the normal
-- aggregate code for this purpose, because we don't want any of the
-- normal expansion activities, and a number of special semantic
-- rules apply (including the component type being any integer type)
Elit := First_Literal (Enumtype);
-- First the positional entries if any
if Present (Expressions (Aggr)) then
Expr := First (Expressions (Aggr));
while Present (Expr) loop
if No (Elit) then
Error_Msg_N ("too many entries in aggregate", Expr);
return;
end if;
Val := Static_Integer (Expr);
-- Err signals that we found some incorrect entries processing
-- the list. The final checks for completeness and ordering are
-- skipped in this case.
if Val = No_Uint then
Err := True;
elsif Val < Lo or else Hi < Val then
Error_Msg_N ("value outside permitted range", Expr);
Err := True;
end if;
Set_Enumeration_Rep (Elit, Val);
Set_Enumeration_Rep_Expr (Elit, Expr);
Next (Expr);
Next (Elit);
end loop;
end if;
-- Now process the named entries if present
if Present (Component_Associations (Aggr)) then
Assoc := First (Component_Associations (Aggr));
while Present (Assoc) loop
Choice := First (Choices (Assoc));
if Present (Next (Choice)) then
Error_Msg_N
("multiple choice not allowed here", Next (Choice));
Err := True;
end if;
if Nkind (Choice) = N_Others_Choice then
Error_Msg_N ("others choice not allowed here", Choice);
Err := True;
elsif Nkind (Choice) = N_Range then
-- ??? should allow zero/one element range here
Error_Msg_N ("range not allowed here", Choice);
Err := True;
else
Analyze_And_Resolve (Choice, Enumtype);
if Error_Posted (Choice) then
Err := True;
end if;
if not Err then
if Is_Entity_Name (Choice)
and then Is_Type (Entity (Choice))
then
Error_Msg_N ("subtype name not allowed here", Choice);
Err := True;
-- ??? should allow static subtype with zero/one entry
elsif Etype (Choice) = Base_Type (Enumtype) then
if not Is_OK_Static_Expression (Choice) then
Flag_Non_Static_Expr
("non-static expression used for choice!", Choice);
Err := True;
else
Elit := Expr_Value_E (Choice);
if Present (Enumeration_Rep_Expr (Elit)) then
Error_Msg_Sloc :=
Sloc (Enumeration_Rep_Expr (Elit));
Error_Msg_NE
("representation for& previously given#",
Choice, Elit);
Err := True;
end if;
Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
Expr := Expression (Assoc);
Val := Static_Integer (Expr);
if Val = No_Uint then
Err := True;
elsif Val < Lo or else Hi < Val then
Error_Msg_N ("value outside permitted range", Expr);
Err := True;
end if;
Set_Enumeration_Rep (Elit, Val);
end if;
end if;
end if;
end if;
Next (Assoc);
end loop;
end if;
-- Aggregate is fully processed. Now we check that a full set of
-- representations was given, and that they are in range and in order.
-- These checks are only done if no other errors occurred.
if not Err then
Min := No_Uint;
Max := No_Uint;
Elit := First_Literal (Enumtype);
while Present (Elit) loop
if No (Enumeration_Rep_Expr (Elit)) then
Error_Msg_NE ("missing representation for&!", N, Elit);
else
Val := Enumeration_Rep (Elit);
if Min = No_Uint then
Min := Val;
end if;
if Val /= No_Uint then
if Max /= No_Uint and then Val <= Max then
Error_Msg_NE
("enumeration value for& not ordered!",
Enumeration_Rep_Expr (Elit), Elit);
end if;
Max_Node := Enumeration_Rep_Expr (Elit);
Max := Val;
end if;
-- If there is at least one literal whose representation is not
-- equal to the Pos value, then note that this enumeration type
-- has a non-standard representation.
if Val /= Enumeration_Pos (Elit) then
Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
end if;
end if;
Next (Elit);
end loop;
-- Now set proper size information
declare
Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
begin
if Has_Size_Clause (Enumtype) then
-- All OK, if size is OK now
if RM_Size (Enumtype) >= Minsize then
null;
else
-- Try if we can get by with biasing
Minsize :=
UI_From_Int (Minimum_Size (Enumtype, Biased => True));
-- Error message if even biasing does not work
if RM_Size (Enumtype) < Minsize then
Error_Msg_Uint_1 := RM_Size (Enumtype);
Error_Msg_Uint_2 := Max;
Error_Msg_N
("previously given size (^) is too small "
& "for this value (^)", Max_Node);
-- If biasing worked, indicate that we now have biased rep
else
Set_Biased
(Enumtype, Size_Clause (Enumtype), "size clause");
end if;
end if;
else
Set_RM_Size (Enumtype, Minsize);
Set_Enum_Esize (Enumtype);
end if;
Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
end;
end if;
-- We repeat the too late test in case it froze itself
if Rep_Item_Too_Late (Enumtype, N) then
null;
end if;
end Analyze_Enumeration_Representation_Clause;
----------------------------
-- Analyze_Free_Statement --
----------------------------
procedure Analyze_Free_Statement (N : Node_Id) is
begin
Analyze (Expression (N));
end Analyze_Free_Statement;
---------------------------
-- Analyze_Freeze_Entity --
---------------------------
procedure Analyze_Freeze_Entity (N : Node_Id) is
begin
Freeze_Entity_Checks (N);
end Analyze_Freeze_Entity;
-----------------------------------
-- Analyze_Freeze_Generic_Entity --
-----------------------------------
procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
E : constant Entity_Id := Entity (N);
begin
if not Is_Frozen (E) and then Has_Delayed_Aspects (E) then
Analyze_Aspects_At_Freeze_Point (E);
end if;
Freeze_Entity_Checks (N);
end Analyze_Freeze_Generic_Entity;
------------------------------------------
-- Analyze_Record_Representation_Clause --
------------------------------------------
-- Note: we check as much as we can here, but we can't do any checks
-- based on the position values (e.g. overlap checks) until freeze time
-- because especially in Ada 2005 (machine scalar mode), the processing
-- for non-standard bit order can substantially change the positions.
-- See procedure Check_Record_Representation_Clause (called from Freeze)
-- for the remainder of this processing.
procedure Analyze_Record_Representation_Clause (N : Node_Id) is
Ident : constant Node_Id := Identifier (N);
Biased : Boolean;
CC : Node_Id;
Comp : Entity_Id;
Fbit : Uint;
Hbit : Uint := Uint_0;
Lbit : Uint;
Ocomp : Entity_Id;
Posit : Uint;
Rectype : Entity_Id;
Recdef : Node_Id;
function Is_Inherited (Comp : Entity_Id) return Boolean;
-- True if Comp is an inherited component in a record extension
------------------
-- Is_Inherited --
------------------
function Is_Inherited (Comp : Entity_Id) return Boolean is
Comp_Base : Entity_Id;
begin
if Ekind (Rectype) = E_Record_Subtype then
Comp_Base := Original_Record_Component (Comp);
else
Comp_Base := Comp;
end if;
return Comp_Base /= Original_Record_Component (Comp_Base);
end Is_Inherited;
-- Local variables
Is_Record_Extension : Boolean;
-- True if Rectype is a record extension
CR_Pragma : Node_Id := Empty;
-- Points to N_Pragma node if Complete_Representation pragma present
-- Start of processing for Analyze_Record_Representation_Clause
begin
if Ignore_Rep_Clauses then
Kill_Rep_Clause (N);
return;
end if;
Find_Type (Ident);
Rectype := Entity (Ident);
if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
return;
else
Rectype := Underlying_Type (Rectype);
end if;
-- First some basic error checks
if not Is_Record_Type (Rectype) then
Error_Msg_NE
("record type required, found}", Ident, First_Subtype (Rectype));
return;
elsif Scope (Rectype) /= Current_Scope then
Error_Msg_N ("type must be declared in this scope", N);
return;
elsif not Is_First_Subtype (Rectype) then
Error_Msg_N ("cannot give record rep clause for subtype", N);
return;
elsif Has_Record_Rep_Clause (Rectype) then
Error_Msg_N ("duplicate record rep clause ignored", N);
return;
elsif Rep_Item_Too_Late (Rectype, N) then
return;
end if;
-- We know we have a first subtype, now possibly go to the anonymous
-- base type to determine whether Rectype is a record extension.
Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
Is_Record_Extension :=
Nkind (Recdef) = N_Derived_Type_Definition
and then Present (Record_Extension_Part (Recdef));
if Present (Mod_Clause (N)) then
declare
Loc : constant Source_Ptr := Sloc (N);
M : constant Node_Id := Mod_Clause (N);
P : constant List_Id := Pragmas_Before (M);
AtM_Nod : Node_Id;
Mod_Val : Uint;
pragma Warnings (Off, Mod_Val);
begin
Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
if Warn_On_Obsolescent_Feature then
Error_Msg_N
("?j?mod clause is an obsolescent feature (RM J.8)", N);
Error_Msg_N
("\?j?use alignment attribute definition clause instead", N);
end if;
if Present (P) then
Analyze_List (P);
end if;
-- In ASIS_Mode mode, expansion is disabled, but we must convert
-- the Mod clause into an alignment clause anyway, so that the
-- back end can compute and back-annotate properly the size and
-- alignment of types that may include this record.
-- This seems dubious, this destroys the source tree in a manner
-- not detectable by ASIS ???
if Operating_Mode = Check_Semantics and then ASIS_Mode then
AtM_Nod :=
Make_Attribute_Definition_Clause (Loc,
Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
Chars => Name_Alignment,
Expression => Relocate_Node (Expression (M)));
Set_From_At_Mod (AtM_Nod);
Insert_After (N, AtM_Nod);
Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
Set_Mod_Clause (N, Empty);
else
-- Get the alignment value to perform error checking
Mod_Val := Get_Alignment_Value (Expression (M));
end if;
end;
end if;
-- For untagged types, clear any existing component clauses for the
-- type. If the type is derived, this is what allows us to override
-- a rep clause for the parent. For type extensions, the representation
-- of the inherited components is inherited, so we want to keep previous
-- component clauses for completeness.
if not Is_Tagged_Type (Rectype) then
Comp := First_Component_Or_Discriminant (Rectype);
while Present (Comp) loop
Set_Component_Clause (Comp, Empty);
Next_Component_Or_Discriminant (Comp);
end loop;
end if;
-- All done if no component clauses
CC := First (Component_Clauses (N));
if No (CC) then
return;
end if;
-- A representation like this applies to the base type
Set_Has_Record_Rep_Clause (Base_Type (Rectype));
Set_Has_Non_Standard_Rep (Base_Type (Rectype));
Set_Has_Specified_Layout (Base_Type (Rectype));
-- Process the component clauses
while Present (CC) loop
-- Pragma
if Nkind (CC) = N_Pragma then
Analyze (CC);
-- The only pragma of interest is Complete_Representation
if Pragma_Name (CC) = Name_Complete_Representation then
CR_Pragma := CC;
end if;
-- Processing for real component clause
else
Posit := Static_Integer (Position (CC));
Fbit := Static_Integer (First_Bit (CC));
Lbit := Static_Integer (Last_Bit (CC));
if Posit /= No_Uint
and then Fbit /= No_Uint
and then Lbit /= No_Uint
then
if Posit < 0 then
Error_Msg_N ("position cannot be negative", Position (CC));
elsif Fbit < 0 then
Error_Msg_N ("first bit cannot be negative", First_Bit (CC));
-- The Last_Bit specified in a component clause must not be
-- less than the First_Bit minus one (RM-13.5.1(10)).
elsif Lbit < Fbit - 1 then
Error_Msg_N
("last bit cannot be less than first bit minus one",
Last_Bit (CC));
-- Values look OK, so find the corresponding record component
-- Even though the syntax allows an attribute reference for
-- implementation-defined components, GNAT does not allow the
-- tag to get an explicit position.
elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
if Attribute_Name (Component_Name (CC)) = Name_Tag then
Error_Msg_N ("position of tag cannot be specified", CC);
else
Error_Msg_N ("illegal component name", CC);
end if;
else
Comp := First_Entity (Rectype);
while Present (Comp) loop
exit when Chars (Comp) = Chars (Component_Name (CC));
Next_Entity (Comp);
end loop;
if No (Comp) then
-- Maybe component of base type that is absent from
-- statically constrained first subtype.
Comp := First_Entity (Base_Type (Rectype));
while Present (Comp) loop
exit when Chars (Comp) = Chars (Component_Name (CC));
Next_Entity (Comp);
end loop;
end if;
if No (Comp) then
Error_Msg_N
("component clause is for non-existent field", CC);
-- Ada 2012 (AI05-0026): Any name that denotes a
-- discriminant of an object of an unchecked union type
-- shall not occur within a record_representation_clause.
-- The general restriction of using record rep clauses on
-- Unchecked_Union types has now been lifted. Since it is
-- possible to introduce a record rep clause which mentions
-- the discriminant of an Unchecked_Union in non-Ada 2012
-- code, this check is applied to all versions of the
-- language.
elsif Ekind (Comp) = E_Discriminant
and then Is_Unchecked_Union (Rectype)
then
Error_Msg_N
("cannot reference discriminant of unchecked union",
Component_Name (CC));
elsif Is_Record_Extension and then Is_Inherited (Comp) then
Error_Msg_NE
("component clause not allowed for inherited "
& "component&", CC, Comp);
elsif Present (Component_Clause (Comp)) then
-- Diagnose duplicate rep clause, or check consistency
-- if this is an inherited component. In a double fault,
-- there may be a duplicate inconsistent clause for an
-- inherited component.
if Scope (Original_Record_Component (Comp)) = Rectype
or else Parent (Component_Clause (Comp)) = N
then
Error_Msg_Sloc := Sloc (Component_Clause (Comp));
Error_Msg_N ("component clause previously given#", CC);
else
declare
Rep1 : constant Node_Id := Component_Clause (Comp);
begin
if Intval (Position (Rep1)) /=
Intval (Position (CC))
or else Intval (First_Bit (Rep1)) /=
Intval (First_Bit (CC))
or else Intval (Last_Bit (Rep1)) /=
Intval (Last_Bit (CC))
then
Error_Msg_N
("component clause inconsistent with "
& "representation of ancestor", CC);
elsif Warn_On_Redundant_Constructs then
Error_Msg_N
("?r?redundant confirming component clause "
& "for component!", CC);
end if;
end;
end if;
-- Normal case where this is the first component clause we
-- have seen for this entity, so set it up properly.
else
-- Make reference for field in record rep clause and set
-- appropriate entity field in the field identifier.
Generate_Reference
(Comp, Component_Name (CC), Set_Ref => False);
Set_Entity (Component_Name (CC), Comp);
-- Update Fbit and Lbit to the actual bit number
Fbit := Fbit + UI_From_Int (SSU) * Posit;
Lbit := Lbit + UI_From_Int (SSU) * Posit;
if Has_Size_Clause (Rectype)
and then RM_Size (Rectype) <= Lbit
then
Error_Msg_N
("bit number out of range of specified size",
Last_Bit (CC));
else
Set_Component_Clause (Comp, CC);
Set_Component_Bit_Offset (Comp, Fbit);
Set_Esize (Comp, 1 + (Lbit - Fbit));
Set_Normalized_First_Bit (Comp, Fbit mod SSU);
Set_Normalized_Position (Comp, Fbit / SSU);
if Warn_On_Overridden_Size
and then Has_Size_Clause (Etype (Comp))
and then RM_Size (Etype (Comp)) /= Esize (Comp)
then
Error_Msg_NE
("?S?component size overrides size clause for&",
Component_Name (CC), Etype (Comp));
end if;
-- This information is also set in the corresponding
-- component of the base type, found by accessing the
-- Original_Record_Component link if it is present.
Ocomp := Original_Record_Component (Comp);
if Hbit < Lbit then
Hbit := Lbit;
end if;
Check_Size
(Component_Name (CC),
Etype (Comp),
Esize (Comp),
Biased);
Set_Biased
(Comp, First_Node (CC), "component clause", Biased);
if Present (Ocomp) then
Set_Component_Clause (Ocomp, CC);
Set_Component_Bit_Offset (Ocomp, Fbit);
Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
Set_Normalized_Position (Ocomp, Fbit / SSU);
Set_Esize (Ocomp, 1 + (Lbit - Fbit));
Set_Normalized_Position_Max
(Ocomp, Normalized_Position (Ocomp));
-- Note: we don't use Set_Biased here, because we
-- already gave a warning above if needed, and we
-- would get a duplicate for the same name here.
Set_Has_Biased_Representation
(Ocomp, Has_Biased_Representation (Comp));
end if;
if Esize (Comp) < 0 then
Error_Msg_N ("component size is negative", CC);
end if;
end if;
end if;
end if;
end if;
end if;
Next (CC);
end loop;
-- Check missing components if Complete_Representation pragma appeared
if Present (CR_Pragma) then
Comp := First_Component_Or_Discriminant (Rectype);
while Present (Comp) loop
if No (Component_Clause (Comp)) then
Error_Msg_NE
("missing component clause for &", CR_Pragma, Comp);
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
-- Give missing components warning if required
elsif Warn_On_Unrepped_Components then
declare
Num_Repped_Components : Nat := 0;
Num_Unrepped_Components : Nat := 0;
begin
-- First count number of repped and unrepped components
Comp := First_Component_Or_Discriminant (Rectype);
while Present (Comp) loop
if Present (Component_Clause (Comp)) then
Num_Repped_Components := Num_Repped_Components + 1;
else
Num_Unrepped_Components := Num_Unrepped_Components + 1;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
-- We are only interested in the case where there is at least one
-- unrepped component, and at least half the components have rep
-- clauses. We figure that if less than half have them, then the
-- partial rep clause is really intentional. If the component
-- type has no underlying type set at this point (as for a generic
-- formal type), we don't know enough to give a warning on the
-- component.
if Num_Unrepped_Components > 0
and then Num_Unrepped_Components < Num_Repped_Components
then
Comp := First_Component_Or_Discriminant (Rectype);
while Present (Comp) loop
if No (Component_Clause (Comp))
and then Comes_From_Source (Comp)
and then Present (Underlying_Type (Etype (Comp)))
and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
or else Size_Known_At_Compile_Time
(Underlying_Type (Etype (Comp))))
and then not Has_Warnings_Off (Rectype)
-- Ignore discriminant in unchecked union, since it is
-- not there, and cannot have a component clause.
and then (not Is_Unchecked_Union (Rectype)
or else Ekind (Comp) /= E_Discriminant)
then
Error_Msg_Sloc := Sloc (Comp);
Error_Msg_NE
("?C?no component clause given for & declared #",
N, Comp);
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end if;
end;
end if;
end Analyze_Record_Representation_Clause;
-------------------------------------
-- Build_Discrete_Static_Predicate --
-------------------------------------
procedure Build_Discrete_Static_Predicate
(Typ : Entity_Id;
Expr : Node_Id;
Nam : Name_Id)
is
Loc : constant Source_Ptr := Sloc (Expr);
Non_Static : exception;
-- Raised if something non-static is found
Btyp : constant Entity_Id := Base_Type (Typ);
BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
-- Low bound and high bound value of base type of Typ
TLo : Uint;
THi : Uint;
-- Bounds for constructing the static predicate. We use the bound of the
-- subtype if it is static, otherwise the corresponding base type bound.
-- Note: a non-static subtype can have a static predicate.
type REnt is record
Lo, Hi : Uint;
end record;
-- One entry in a Rlist value, a single REnt (range entry) value denotes
-- one range from Lo to Hi. To represent a single value range Lo = Hi =
-- value.
type RList is array (Nat range <>) of REnt;
-- A list of ranges. The ranges are sorted in increasing order, and are
-- disjoint (there is a gap of at least one value between each range in
-- the table). A value is in the set of ranges in Rlist if it lies
-- within one of these ranges.
False_Range : constant RList :=
RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
-- An empty set of ranges represents a range list that can never be
-- satisfied, since there are no ranges in which the value could lie,
-- so it does not lie in any of them. False_Range is a canonical value
-- for this empty set, but general processing should test for an Rlist
-- with length zero (see Is_False predicate), since other null ranges
-- may appear which must be treated as False.
True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
-- Range representing True, value must be in the base range
function "and" (Left : RList; Right : RList) return RList;
-- And's together two range lists, returning a range list. This is a set
-- intersection operation.
function "or" (Left : RList; Right : RList) return RList;
-- Or's together two range lists, returning a range list. This is a set
-- union operation.
function "not" (Right : RList) return RList;
-- Returns complement of a given range list, i.e. a range list
-- representing all the values in TLo .. THi that are not in the input
-- operand Right.
function Build_Val (V : Uint) return Node_Id;
-- Return an analyzed N_Identifier node referencing this value, suitable
-- for use as an entry in the Static_Discrte_Predicate list. This node
-- is typed with the base type.
function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
-- Return an analyzed N_Range node referencing this range, suitable for
-- use as an entry in the Static_Discrete_Predicate list. This node is
-- typed with the base type.
function Get_RList (Exp : Node_Id) return RList;
-- This is a recursive routine that converts the given expression into a
-- list of ranges, suitable for use in building the static predicate.
function Is_False (R : RList) return Boolean;
pragma Inline (Is_False);
-- Returns True if the given range list is empty, and thus represents a
-- False list of ranges that can never be satisfied.
function Is_True (R : RList) return Boolean;
-- Returns True if R trivially represents the True predicate by having a
-- single range from BLo to BHi.
function Is_Type_Ref (N : Node_Id) return Boolean;
pragma Inline (Is_Type_Ref);
-- Returns if True if N is a reference to the type for the predicate in
-- the expression (i.e. if it is an identifier whose Chars field matches
-- the Nam given in the call). N must not be parenthesized, if the type
-- name appears in parens, this routine will return False.
function Lo_Val (N : Node_Id) return Uint;
-- Given an entry from a Static_Discrete_Predicate list that is either
-- a static expression or static range, gets either the expression value
-- or the low bound of the range.
function Hi_Val (N : Node_Id) return Uint;
-- Given an entry from a Static_Discrete_Predicate list that is either
-- a static expression or static range, gets either the expression value
-- or the high bound of the range.
function Membership_Entry (N : Node_Id) return RList;
-- Given a single membership entry (range, value, or subtype), returns
-- the corresponding range list. Raises Static_Error if not static.
function Membership_Entries (N : Node_Id) return RList;
-- Given an element on an alternatives list of a membership operation,
-- returns the range list corresponding to this entry and all following
-- entries (i.e. returns the "or" of this list of values).
function Stat_Pred (Typ : Entity_Id) return RList;
-- Given a type, if it has a static predicate, then return the predicate
-- as a range list, otherwise raise Non_Static.
-----------
-- "and" --
-----------
function "and" (Left : RList; Right : RList) return RList is
FEnt : REnt;
-- First range of result
SLeft : Nat := Left'First;
-- Start of rest of left entries
SRight : Nat := Right'First;
-- Start of rest of right entries
begin
-- If either range is True, return the other
if Is_True (Left) then
return Right;
elsif Is_True (Right) then
return Left;
end if;
-- If either range is False, return False
if Is_False (Left) or else Is_False (Right) then
return False_Range;
end if;
-- Loop to remove entries at start that are disjoint, and thus just
-- get discarded from the result entirely.
loop
-- If no operands left in either operand, result is false
if SLeft > Left'Last or else SRight > Right'Last then
return False_Range;
-- Discard first left operand entry if disjoint with right
elsif Left (SLeft).Hi < Right (SRight).Lo then
SLeft := SLeft + 1;
-- Discard first right operand entry if disjoint with left
elsif Right (SRight).Hi < Left (SLeft).Lo then
SRight := SRight + 1;
-- Otherwise we have an overlapping entry
else
exit;
end if;
end loop;
-- Now we have two non-null operands, and first entries overlap. The
-- first entry in the result will be the overlapping part of these
-- two entries.
FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
-- Now we can remove the entry that ended at a lower value, since its
-- contribution is entirely contained in Fent.
if Left (SLeft).Hi <= Right (SRight).Hi then
SLeft := SLeft + 1;
else
SRight := SRight + 1;
end if;
-- Compute result by concatenating this first entry with the "and" of
-- the remaining parts of the left and right operands. Note that if
-- either of these is empty, "and" will yield empty, so that we will
-- end up with just Fent, which is what we want in that case.
return
FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
end "and";
-----------
-- "not" --
-----------
function "not" (Right : RList) return RList is
begin
-- Return True if False range
if Is_False (Right) then
return True_Range;
end if;
-- Return False if True range
if Is_True (Right) then
return False_Range;
end if;
-- Here if not trivial case
declare
Result : RList (1 .. Right'Length + 1);
-- May need one more entry for gap at beginning and end
Count : Nat := 0;
-- Number of entries stored in Result
begin
-- Gap at start
if Right (Right'First).Lo > TLo then
Count := Count + 1;
Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
end if;
-- Gaps between ranges
for J in Right'First .. Right'Last - 1 loop
Count := Count + 1;
Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
end loop;
-- Gap at end
if Right (Right'Last).Hi < THi then
Count := Count + 1;
Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
end if;
return Result (1 .. Count);
end;
end "not";
----------
-- "or" --
----------
function "or" (Left : RList; Right : RList) return RList is
FEnt : REnt;
-- First range of result
SLeft : Nat := Left'First;
-- Start of rest of left entries
SRight : Nat := Right'First;
-- Start of rest of right entries
begin
-- If either range is True, return True
if Is_True (Left) or else Is_True (Right) then
return True_Range;
end if;
-- If either range is False (empty), return the other
if Is_False (Left) then
return Right;
elsif Is_False (Right) then
return Left;
end if;
-- Initialize result first entry from left or right operand depending
-- on which starts with the lower range.
if Left (SLeft).Lo < Right (SRight).Lo then
FEnt := Left (SLeft);
SLeft := SLeft + 1;
else
FEnt := Right (SRight);
SRight := SRight + 1;
end if;
-- This loop eats ranges from left and right operands that are
-- contiguous with the first range we are gathering.
loop
-- Eat first entry in left operand if contiguous or overlapped by
-- gathered first operand of result.
if SLeft <= Left'Last
and then Left (SLeft).Lo <= FEnt.Hi + 1
then
FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
SLeft := SLeft + 1;
-- Eat first entry in right operand if contiguous or overlapped by
-- gathered right operand of result.
elsif SRight <= Right'Last
and then Right (SRight).Lo <= FEnt.Hi + 1
then
FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
SRight := SRight + 1;
-- All done if no more entries to eat
else
exit;
end if;
end loop;
-- Obtain result as the first entry we just computed, concatenated
-- to the "or" of the remaining results (if one operand is empty,
-- this will just concatenate with the other
return
FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
end "or";
-----------------
-- Build_Range --
-----------------
function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
Result : Node_Id;
begin
Result :=
Make_Range (Loc,
Low_Bound => Build_Val (Lo),
High_Bound => Build_Val (Hi));
Set_Etype (Result, Btyp);
Set_Analyzed (Result);
return Result;
end Build_Range;
---------------
-- Build_Val --
---------------
function Build_Val (V : Uint) return Node_Id is
Result : Node_Id;
begin
if Is_Enumeration_Type (Typ) then
Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
else
Result := Make_Integer_Literal (Loc, V);
end if;
Set_Etype (Result, Btyp);
Set_Is_Static_Expression (Result);
Set_Analyzed (Result);
return Result;
end Build_Val;
---------------
-- Get_RList --
---------------
function Get_RList (Exp : Node_Id) return RList is
Op : Node_Kind;
Val : Uint;
begin
-- Static expression can only be true or false
if Is_OK_Static_Expression (Exp) then
if Expr_Value (Exp) = 0 then
return False_Range;
else
return True_Range;
end if;
end if;
-- Otherwise test node type
Op := Nkind (Exp);
case Op is
-- And
when N_And_Then
| N_Op_And
=>
return Get_RList (Left_Opnd (Exp))
and
Get_RList (Right_Opnd (Exp));
-- Or
when N_Op_Or
| N_Or_Else
=>
return Get_RList (Left_Opnd (Exp))
or
Get_RList (Right_Opnd (Exp));
-- Not
when N_Op_Not =>
return not Get_RList (Right_Opnd (Exp));
-- Comparisons of type with static value
when N_Op_Compare =>
-- Type is left operand
if Is_Type_Ref (Left_Opnd (Exp))
and then Is_OK_Static_Expression (Right_Opnd (Exp))
then
Val := Expr_Value (Right_Opnd (Exp));
-- Typ is right operand
elsif Is_Type_Ref (Right_Opnd (Exp))
and then Is_OK_Static_Expression (Left_Opnd (Exp))
then
Val := Expr_Value (Left_Opnd (Exp));
-- Invert sense of comparison
case Op is
when N_Op_Gt => Op := N_Op_Lt;
when N_Op_Lt => Op := N_Op_Gt;
when N_Op_Ge => Op := N_Op_Le;
when N_Op_Le => Op := N_Op_Ge;
when others => null;
end case;
-- Other cases are non-static
else
raise Non_Static;
end if;
-- Construct range according to comparison operation
case Op is
when N_Op_Eq =>
return RList'(1 => REnt'(Val, Val));
when N_Op_Ge =>
return RList'(1 => REnt'(Val, BHi));
when N_Op_Gt =>
return RList'(1 => REnt'(Val + 1, BHi));
when N_Op_Le =>
return RList'(1 => REnt'(BLo, Val));
when N_Op_Lt =>
return RList'(1 => REnt'(BLo, Val - 1));
when N_Op_Ne =>
return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
when others =>
raise Program_Error;
end case;
-- Membership (IN)
when N_In =>
if not Is_Type_Ref (Left_Opnd (Exp)) then
raise Non_Static;
end if;
if Present (Right_Opnd (Exp)) then
return Membership_Entry (Right_Opnd (Exp));
else
return Membership_Entries (First (Alternatives (Exp)));
end if;
-- Negative membership (NOT IN)
when N_Not_In =>
if not Is_Type_Ref (Left_Opnd (Exp)) then
raise Non_Static;
end if;
if Present (Right_Opnd (Exp)) then
return not Membership_Entry (Right_Opnd (Exp));
else
return not Membership_Entries (First (Alternatives (Exp)));
end if;
-- Function call, may be call to static predicate
when N_Function_Call =>
if Is_Entity_Name (Name (Exp)) then
declare
Ent : constant Entity_Id := Entity (Name (Exp));
begin
if Is_Predicate_Function (Ent)
or else
Is_Predicate_Function_M (Ent)
then
return Stat_Pred (Etype (First_Formal (Ent)));
end if;
end;
end if;
-- Other function call cases are non-static
raise Non_Static;
-- Qualified expression, dig out the expression
when N_Qualified_Expression =>
return Get_RList (Expression (Exp));
when N_Case_Expression =>
declare
Alt : Node_Id;
Choices : List_Id;
Dep : Node_Id;
begin
if not Is_Entity_Name (Expression (Expr))
or else Etype (Expression (Expr)) /= Typ
then
Error_Msg_N
("expression must denaote subtype", Expression (Expr));
return False_Range;
end if;
-- Collect discrete choices in all True alternatives
Choices := New_List;
Alt := First (Alternatives (Exp));
while Present (Alt) loop
Dep := Expression (Alt);
if not Is_OK_Static_Expression (Dep) then
raise Non_Static;
elsif Is_True (Expr_Value (Dep)) then
Append_List_To (Choices,
New_Copy_List (Discrete_Choices (Alt)));
end if;
Next (Alt);
end loop;
return Membership_Entries (First (Choices));
end;
-- Expression with actions: if no actions, dig out expression
when N_Expression_With_Actions =>
if Is_Empty_List (Actions (Exp)) then
return Get_RList (Expression (Exp));
else
raise Non_Static;
end if;
-- Xor operator
when N_Op_Xor =>
return (Get_RList (Left_Opnd (Exp))
and not Get_RList (Right_Opnd (Exp)))
or (Get_RList (Right_Opnd (Exp))
and not Get_RList (Left_Opnd (Exp)));
-- Any other node type is non-static
when others =>
raise Non_Static;
end case;
end Get_RList;
------------
-- Hi_Val --
------------
function Hi_Val (N : Node_Id) return Uint is
begin
if Is_OK_Static_Expression (N) then
return Expr_Value (N);
else
pragma Assert (Nkind (N) = N_Range);
return Expr_Value (High_Bound (N));
end if;
end Hi_Val;
--------------
-- Is_False --
--------------
function Is_False (R : RList) return Boolean is
begin
return R'Length = 0;
end Is_False;
-------------
-- Is_True --
-------------
function Is_True (R : RList) return Boolean is
begin
return R'Length = 1
and then R (R'First).Lo = BLo
and then R (R'First).Hi = BHi;
end Is_True;
-----------------
-- Is_Type_Ref --
-----------------
function Is_Type_Ref (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Identifier
and then Chars (N) = Nam
and then Paren_Count (N) = 0;
end Is_Type_Ref;
------------
-- Lo_Val --
------------
function Lo_Val (N : Node_Id) return Uint is
begin
if Is_OK_Static_Expression (N) then
return Expr_Value (N);
else
pragma Assert (Nkind (N) = N_Range);
return Expr_Value (Low_Bound (N));
end if;
end Lo_Val;
------------------------
-- Membership_Entries --
------------------------
function Membership_Entries (N : Node_Id) return RList is
begin
if No (Next (N)) then
return Membership_Entry (N);
else
return Membership_Entry (N) or Membership_Entries (Next (N));
end if;
end Membership_Entries;
----------------------
-- Membership_Entry --
----------------------
function Membership_Entry (N : Node_Id) return RList is
Val : Uint;
SLo : Uint;
SHi : Uint;
begin
-- Range case
if Nkind (N) = N_Range then
if not Is_OK_Static_Expression (Low_Bound (N))
or else
not Is_OK_Static_Expression (High_Bound (N))
then
raise Non_Static;
else
SLo := Expr_Value (Low_Bound (N));
SHi := Expr_Value (High_Bound (N));
return RList'(1 => REnt'(SLo, SHi));
end if;
-- Static expression case
elsif Is_OK_Static_Expression (N) then
Val := Expr_Value (N);
return RList'(1 => REnt'(Val, Val));
-- Identifier (other than static expression) case
else pragma Assert (Nkind (N) = N_Identifier);
-- Type case
if Is_Type (Entity (N)) then
-- If type has predicates, process them
if Has_Predicates (Entity (N)) then
return Stat_Pred (Entity (N));
-- For static subtype without predicates, get range
elsif Is_OK_Static_Subtype (Entity (N)) then
SLo := Expr_Value (Type_Low_Bound (Entity (N)));
SHi := Expr_Value (Type_High_Bound (Entity (N)));
return RList'(1 => REnt'(SLo, SHi));
-- Any other type makes us non-static
else
raise Non_Static;
end if;
-- Any other kind of identifier in predicate (e.g. a non-static
-- expression value) means this is not a static predicate.
else
raise Non_Static;
end if;
end if;
end Membership_Entry;
---------------
-- Stat_Pred --
---------------
function Stat_Pred (Typ : Entity_Id) return RList is
begin
-- Not static if type does not have static predicates
if not Has_Static_Predicate (Typ) then
raise Non_Static;
end if;
-- Otherwise we convert the predicate list to a range list
declare
Spred : constant List_Id := Static_Discrete_Predicate (Typ);
Result : RList (1 .. List_Length (Spred));
P : Node_Id;
begin
P := First (Static_Discrete_Predicate (Typ));
for J in Result'Range loop
Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
Next (P);
end loop;
return Result;
end;
end Stat_Pred;
-- Start of processing for Build_Discrete_Static_Predicate
begin
-- Establish bounds for the predicate
if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
TLo := Expr_Value (Type_Low_Bound (Typ));
else
TLo := BLo;
end if;
if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
THi := Expr_Value (Type_High_Bound (Typ));
else
THi := BHi;
end if;
-- Analyze the expression to see if it is a static predicate
declare
Ranges : constant RList := Get_RList (Expr);
-- Range list from expression if it is static
Plist : List_Id;
begin
-- Convert range list into a form for the static predicate. In the
-- Ranges array, we just have raw ranges, these must be converted
-- to properly typed and analyzed static expressions or range nodes.
-- Note: here we limit ranges to the ranges of the subtype, so that
-- a predicate is always false for values outside the subtype. That
-- seems fine, such values are invalid anyway, and considering them
-- to fail the predicate seems allowed and friendly, and furthermore
-- simplifies processing for case statements and loops.
Plist := New_List;
for J in Ranges'Range loop
declare
Lo : Uint := Ranges (J).Lo;
Hi : Uint := Ranges (J).Hi;
begin
-- Ignore completely out of range entry
if Hi < TLo or else Lo > THi then
null;
-- Otherwise process entry
else
-- Adjust out of range value to subtype range
if Lo < TLo then
Lo := TLo;
end if;
if Hi > THi then
Hi := THi;
end if;
-- Convert range into required form
Append_To (Plist, Build_Range (Lo, Hi));
end if;
end;
end loop;
-- Processing was successful and all entries were static, so now we
-- can store the result as the predicate list.
Set_Static_Discrete_Predicate (Typ, Plist);
-- The processing for static predicates put the expression into
-- canonical form as a series of ranges. It also eliminated
-- duplicates and collapsed and combined ranges. We might as well
-- replace the alternatives list of the right operand of the
-- membership test with the static predicate list, which will
-- usually be more efficient.
declare
New_Alts : constant List_Id := New_List;
Old_Node : Node_Id;
New_Node : Node_Id;
begin
Old_Node := First (Plist);
while Present (Old_Node) loop
New_Node := New_Copy (Old_Node);
if Nkind (New_Node) = N_Range then
Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
end if;
Append_To (New_Alts, New_Node);
Next (Old_Node);
end loop;
-- If empty list, replace by False
if Is_Empty_List (New_Alts) then
Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
-- Else replace by set membership test
else
Rewrite (Expr,
Make_In (Loc,
Left_Opnd => Make_Identifier (Loc, Nam),
Right_Opnd => Empty,
Alternatives => New_Alts));
-- Resolve new expression in function context
Install_Formals (Predicate_Function (Typ));
Push_Scope (Predicate_Function (Typ));
Analyze_And_Resolve (Expr, Standard_Boolean);
Pop_Scope;
end if;
end;
end;
-- If non-static, return doing nothing
exception
when Non_Static =>
return;
end Build_Discrete_Static_Predicate;
--------------------------------
-- Build_Export_Import_Pragma --
--------------------------------
function Build_Export_Import_Pragma
(Asp : Node_Id;
Id : Entity_Id) return Node_Id
is
Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
Expr : constant Node_Id := Expression (Asp);
Loc : constant Source_Ptr := Sloc (Asp);
Args : List_Id;
Conv : Node_Id;
Conv_Arg : Node_Id;
Dummy_1 : Node_Id;
Dummy_2 : Node_Id;
EN : Node_Id;
LN : Node_Id;
Prag : Node_Id;
Create_Pragma : Boolean := False;
-- This flag is set when the aspect form is such that it warrants the
-- creation of a corresponding pragma.
begin
if Present (Expr) then
if Error_Posted (Expr) then
null;
elsif Is_True (Expr_Value (Expr)) then
Create_Pragma := True;
end if;
-- Otherwise the aspect defaults to True
else
Create_Pragma := True;
end if;
-- Nothing to do when the expression is False or is erroneous
if not Create_Pragma then
return Empty;
end if;
-- Obtain all interfacing aspects that apply to the related entity
Get_Interfacing_Aspects
(Iface_Asp => Asp,
Conv_Asp => Conv,
EN_Asp => EN,
Expo_Asp => Dummy_1,
Imp_Asp => Dummy_2,
LN_Asp => LN);
Args := New_List;
-- Handle the convention argument
if Present (Conv) then
Conv_Arg := New_Copy_Tree (Expression (Conv));
-- Assume convention "Ada' when aspect Convention is missing
else
Conv_Arg := Make_Identifier (Loc, Name_Ada);
end if;
Append_To (Args,
Make_Pragma_Argument_Association (Loc,
Chars => Name_Convention,
Expression => Conv_Arg));
-- Handle the entity argument
Append_To (Args,
Make_Pragma_Argument_Association (Loc,
Chars => Name_Entity,
Expression => New_Occurrence_Of (Id, Loc)));
-- Handle the External_Name argument
if Present (EN) then
Append_To (Args,
Make_Pragma_Argument_Association (Loc,
Chars => Name_External_Name,
Expression => New_Copy_Tree (Expression (EN))));
end if;
-- Handle the Link_Name argument
if Present (LN) then
Append_To (Args,
Make_Pragma_Argument_Association (Loc,
Chars => Name_Link_Name,
Expression => New_Copy_Tree (Expression (LN))));
end if;
-- Generate:
-- pragma Export/Import
-- (Convention => <Conv>/Ada,
-- Entity => <Id>,
-- [External_Name => <EN>,]
-- [Link_Name => <LN>]);
Prag :=
Make_Pragma (Loc,
Pragma_Identifier =>
Make_Identifier (Loc, Chars (Identifier (Asp))),
Pragma_Argument_Associations => Args);
-- Decorate the relevant aspect and the pragma
Set_Aspect_Rep_Item (Asp, Prag);
Set_Corresponding_Aspect (Prag, Asp);
Set_From_Aspect_Specification (Prag);
Set_Parent (Prag, Asp);
if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
Set_Import_Pragma (Id, Prag);
end if;
return Prag;
end Build_Export_Import_Pragma;
-------------------------------
-- Build_Predicate_Functions --
-------------------------------
-- The procedures that are constructed here have the form:
-- function typPredicate (Ixxx : typ) return Boolean is
-- begin
-- return
-- typ1Predicate (typ1 (Ixxx))
-- and then typ2Predicate (typ2 (Ixxx))
-- and then ...;
-- exp1 and then exp2 and then ...
-- end typPredicate;
-- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
-- this is the point at which these expressions get analyzed, providing the
-- required delay, and typ1, typ2, are entities from which predicates are
-- inherited. Note that we do NOT generate Check pragmas, that's because we
-- use this function even if checks are off, e.g. for membership tests.
-- Note that the inherited predicates are evaluated first, as required by
-- AI12-0071-1.
-- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
-- the form of this return expression.
-- If the expression has at least one Raise_Expression, then we also build
-- the typPredicateM version of the function, in which any occurrence of a
-- Raise_Expression is converted to "return False".
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
Loc : constant Source_Ptr := Sloc (Typ);
Expr : Node_Id;
-- This is the expression for the result of the function. It is
-- is build by connecting the component predicates with AND THEN.
Expr_M : Node_Id;
-- This is the corresponding return expression for the Predicate_M
-- function. It differs in that raise expressions are marked for
-- special expansion (see Process_REs).
Object_Name : Name_Id;
-- Name for argument of Predicate procedure. Note that we use the same
-- name for both predicate functions. That way the reference within the
-- predicate expression is the same in both functions.
Object_Entity : Entity_Id;
-- Entity for argument of Predicate procedure
Object_Entity_M : Entity_Id;
-- Entity for argument of separate Predicate procedure when exceptions
-- are present in expression.
FDecl : Node_Id;
-- The function declaration
SId : Entity_Id;
-- Its entity
Raise_Expression_Present : Boolean := False;
-- Set True if Expr has at least one Raise_Expression
procedure Add_Condition (Cond : Node_Id);
-- Append Cond to Expr using "and then" (or just copy Cond to Expr if
-- Expr is empty).
procedure Add_Predicates;
-- Appends expressions for any Predicate pragmas in the rep item chain
-- Typ to Expr. Note that we look only at items for this exact entity.
-- Inheritance of predicates for the parent type is done by calling the
-- Predicate_Function of the parent type, using Add_Call above.
procedure Add_Call (T : Entity_Id);
-- Includes a call to the predicate function for type T in Expr if T
-- has predicates and Predicate_Function (T) is non-empty.
function Process_RE (N : Node_Id) return Traverse_Result;
-- Used in Process REs, tests if node N is a raise expression, and if
-- so, marks it to be converted to return False.
procedure Process_REs is new Traverse_Proc (Process_RE);
-- Marks any raise expressions in Expr_M to return False
function Test_RE (N : Node_Id) return Traverse_Result;
-- Used in Test_REs, tests one node for being a raise expression, and if
-- so sets Raise_Expression_Present True.
procedure Test_REs is new Traverse_Proc (Test_RE);
-- Tests to see if Expr contains any raise expressions
--------------
-- Add_Call --
--------------
procedure Add_Call (T : Entity_Id) is
Exp : Node_Id;
begin
if Present (T) and then Present (Predicate_Function (T)) then
Set_Has_Predicates (Typ);
-- Build the call to the predicate function of T
Exp :=
Make_Predicate_Call
(T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
-- "and"-in the call to evolving expression
Add_Condition (Exp);
-- Output info message on inheritance if required. Note we do not
-- give this information for generic actual types, since it is
-- unwelcome noise in that case in instantiations. We also
-- generally suppress the message in instantiations, and also
-- if it involves internal names.
if Opt.List_Inherited_Aspects
and then not Is_Generic_Actual_Type (Typ)
and then Instantiation_Depth (Sloc (Typ)) = 0
and then not Is_Internal_Name (Chars (T))
and then not Is_Internal_Name (Chars (Typ))
then
Error_Msg_Sloc := Sloc (Predicate_Function (T));
Error_Msg_Node_2 := T;
Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
end if;
end if;
end Add_Call;
-------------------
-- Add_Condition --
-------------------
procedure Add_Condition (Cond : Node_Id) is
begin
-- This is the first predicate expression
if No (Expr) then
Expr := Cond;
-- Otherwise concatenate to the existing predicate expressions by
-- using "and then".
else
Expr :=
Make_And_Then (Loc,
Left_Opnd => Relocate_Node (Expr),
Right_Opnd => Cond);
end if;
end Add_Condition;
--------------------
-- Add_Predicates --
--------------------
procedure Add_Predicates is
procedure Add_Predicate (Prag : Node_Id);
-- Concatenate the expression of predicate pragma Prag to Expr by
-- using a short circuit "and then" operator.
-------------------
-- Add_Predicate --
-------------------
procedure Add_Predicate (Prag : Node_Id) is
procedure Replace_Type_Reference (N : Node_Id);
-- Replace a single occurrence N of the subtype name with a
-- reference to the formal of the predicate function. N can be an
-- identifier referencing the subtype, or a selected component,
-- representing an appropriately qualified occurrence of the
-- subtype name.
procedure Replace_Type_References is
new Replace_Type_References_Generic (Replace_Type_Reference);
-- Traverse an expression changing every occurrence of an
-- identifier whose name matches the name of the subtype with a
-- reference to the formal parameter of the predicate function.
----------------------------
-- Replace_Type_Reference --
----------------------------
procedure Replace_Type_Reference (N : Node_Id) is
begin
Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
-- Use the Sloc of the usage name, not the defining name
Set_Etype (N, Typ);
Set_Entity (N, Object_Entity);
-- We want to treat the node as if it comes from source, so
-- that ASIS will not ignore it.
Set_Comes_From_Source (N, True);
end Replace_Type_Reference;
-- Local variables
Asp : constant Node_Id := Corresponding_Aspect (Prag);
Arg1 : Node_Id;
Arg2 : Node_Id;
-- Start of processing for Add_Predicate
begin
-- Extract the arguments of the pragma. The expression itself
-- is copied for use in the predicate function, to preserve the
-- original version for ASIS use.
Arg1 := First (Pragma_Argument_Associations (Prag));
Arg2 := Next (Arg1);
Arg1 := Get_Pragma_Arg (Arg1);
Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
-- When the predicate pragma applies to the current type or its
-- full view, replace all occurrences of the subtype name with
-- references to the formal parameter of the predicate function.
if Entity (Arg1) = Typ
or else Full_View (Entity (Arg1)) = Typ
then
Replace_Type_References (Arg2, Typ);
-- If the predicate pragma comes from an aspect, replace the
-- saved expression because we need the subtype references
-- replaced for the calls to Preanalyze_Spec_Expression in
-- Check_Aspect_At_xxx routines.
if Present (Asp) then
Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
end if;
-- "and"-in the Arg2 condition to evolving expression
Add_Condition (Relocate_Node (Arg2));
end if;
end Add_Predicate;
-- Local variables
Ritem : Node_Id;
-- Start of processing for Add_Predicates
begin
Ritem := First_Rep_Item (Typ);
while Present (Ritem) loop
if Nkind (Ritem) = N_Pragma
and then Pragma_Name (Ritem) = Name_Predicate
then
Add_Predicate (Ritem);
-- If the type is declared in an inner package it may be frozen
-- outside of the package, and the generated pragma has not been
-- analyzed yet, so capture the expression for the predicate
-- function at this point.
elsif Nkind (Ritem) = N_Aspect_Specification
and then Present (Aspect_Rep_Item (Ritem))
and then Scope (Typ) /= Current_Scope
then
declare
Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
begin
if Nkind (Prag) = N_Pragma
and then Pragma_Name (Prag) = Name_Predicate
then
Add_Predicate (Prag);
end if;
end;
end if;
Next_Rep_Item (Ritem);
end loop;
end Add_Predicates;
----------------
-- Process_RE --
----------------
function Process_RE (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Raise_Expression then
Set_Convert_To_Return_False (N);
return Skip;
else
return OK;
end if;
end Process_RE;
-------------
-- Test_RE --
-------------
function Test_RE (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Raise_Expression then
Raise_Expression_Present := True;
return Abandon;
else
return OK;
end if;
end Test_RE;
-- Local variables
Mode : Ghost_Mode_Type;
-- Start of processing for Build_Predicate_Functions
begin
-- Return if already built or if type does not have predicates
SId := Predicate_Function (Typ);
if not Has_Predicates (Typ)
or else (Present (SId) and then Has_Completion (SId))
then
return;
end if;
-- The related type may be subject to pragma Ghost. Set the mode now to
-- ensure that the predicate functions are properly marked as Ghost.
Set_Ghost_Mode (Typ, Mode);
-- Prepare to construct predicate expression
Expr := Empty;
if Present (SId) then
FDecl := Unit_Declaration_Node (SId);
else
FDecl := Build_Predicate_Function_Declaration (Typ);
SId := Defining_Entity (FDecl);
end if;
-- Recover name of formal parameter of function that replaces references
-- to the type in predicate expressions.
Object_Entity :=
Defining_Identifier
(First (Parameter_Specifications (Specification (FDecl))));
Object_Name := Chars (Object_Entity);
Object_Entity_M := Make_Defining_Identifier (Loc, Chars => Object_Name);
-- Add predicates for ancestor if present. These must come before the
-- ones for the current type, as required by AI12-0071-1.
declare
Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
begin
if Present (Atyp) then
Add_Call (Atyp);
end if;
end;
-- Add Predicates for the current type
Add_Predicates;
-- Case where predicates are present
if Present (Expr) then
-- Test for raise expression present
Test_REs (Expr);
-- If raise expression is present, capture a copy of Expr for use
-- in building the predicateM function version later on. For this
-- copy we replace references to Object_Entity by Object_Entity_M.
if Raise_Expression_Present then
declare
Map : constant Elist_Id := New_Elmt_List;
New_V : Entity_Id := Empty;
-- The unanalyzed expression will be copied and appear in
-- both functions. Normally expressions do not declare new
-- entities, but quantified expressions do, so we need to
-- create new entities for their bound variables, to prevent
-- multiple definitions in gigi.
function Reset_Loop_Variable (N : Node_Id)
return Traverse_Result;
procedure Collect_Loop_Variables is
new Traverse_Proc (Reset_Loop_Variable);
------------------------
-- Reset_Loop_Variable --
------------------------
function Reset_Loop_Variable (N : Node_Id)
return Traverse_Result
is
begin
if Nkind (N) = N_Iterator_Specification then
New_V := Make_Defining_Identifier
(Sloc (N), Chars (Defining_Identifier (N)));
Set_Defining_Identifier (N, New_V);
end if;
return OK;
end Reset_Loop_Variable;
begin
Append_Elmt (Object_Entity, Map);
Append_Elmt (Object_Entity_M, Map);
Expr_M := New_Copy_Tree (Expr, Map => Map);
Collect_Loop_Variables (Expr_M);
end;
end if;
-- Build the main predicate function
declare
SIdB : constant Entity_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), "Predicate"));
-- The entity for the function body
Spec : Node_Id;
FBody : Node_Id;
begin
-- The predicate function is shared between views of a type
if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
Set_Predicate_Function (Full_View (Typ), SId);
end if;
-- Build function body
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => SIdB,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Object_Name),
Parameter_Type =>
New_Occurrence_Of (Typ, Loc))),
Result_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc));
FBody :=
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => Expr))));
-- If declaration has not been analyzed yet, Insert declaration
-- before freeze node. Insert body itself after freeze node.
if not Analyzed (FDecl) then
Insert_Before_And_Analyze (N, FDecl);
end if;
Insert_After_And_Analyze (N, FBody);
-- Static predicate functions are always side-effect free, and
-- in most cases dynamic predicate functions are as well. Mark
-- them as such whenever possible, so redundant predicate checks
-- can be optimized. If there is a variable reference within the
-- expression, the function is not pure.
if Expander_Active then
Set_Is_Pure (SId,
Side_Effect_Free (Expr, Variable_Ref => True));
Set_Is_Inlined (SId);
end if;
end;
-- Test for raise expressions present and if so build M version
if Raise_Expression_Present then
declare
SId : constant Entity_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), "PredicateM"));
-- The entity for the function spec
SIdB : constant Entity_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), "PredicateM"));
-- The entity for the function body
Spec : Node_Id;
FBody : Node_Id;
FDecl : Node_Id;
BTemp : Entity_Id;
begin
-- Mark any raise expressions for special expansion
Process_REs (Expr_M);
-- Build function declaration
Set_Ekind (SId, E_Function);
Set_Is_Predicate_Function_M (SId);
Set_Predicate_Function_M (Typ, SId);
-- The predicate function is shared between views of a type
if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
Set_Predicate_Function_M (Full_View (Typ), SId);
end if;
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => SId,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Object_Entity_M,
Parameter_Type => New_Occurrence_Of (Typ, Loc))),
Result_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc));
FDecl :=
Make_Subprogram_Declaration (Loc,
Specification => Spec);
-- Build function body
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => SIdB,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Object_Name),
Parameter_Type =>
New_Occurrence_Of (Typ, Loc))),
Result_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc));
-- Build the body, we declare the boolean expression before
-- doing the return, because we are not really confident of
-- what happens if a return appears within a return.
BTemp :=
Make_Defining_Identifier (Loc,
Chars => New_Internal_Name ('B'));
FBody :=
Make_Subprogram_Body (Loc,
Specification => Spec,
Declarations => New_List (
Make_Object_Declaration (Loc,
Defining_Identifier => BTemp,
Constant_Present => True,
Object_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc),
Expression => Expr_M)),
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (
Make_Simple_Return_Statement (Loc,
Expression => New_Occurrence_Of (BTemp, Loc)))));
-- Insert declaration before freeze node and body after
Insert_Before_And_Analyze (N, FDecl);
Insert_After_And_Analyze (N, FBody);
end;
end if;
-- See if we have a static predicate. Note that the answer may be
-- yes even if we have an explicit Dynamic_Predicate present.
declare
PS : Boolean;
EN : Node_Id;
begin
if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
PS := False;
else
PS := Is_Predicate_Static (Expr, Object_Name);
end if;
-- Case where we have a predicate-static aspect
if PS then
-- We don't set Has_Static_Predicate_Aspect, since we can have
-- any of the three cases (Predicate, Dynamic_Predicate, or
-- Static_Predicate) generating a predicate with an expression
-- that is predicate-static. We just indicate that we have a
-- predicate that can be treated as static.
Set_Has_Static_Predicate (Typ);
-- For discrete subtype, build the static predicate list
if Is_Discrete_Type (Typ) then
Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
-- If we don't get a static predicate list, it means that we
-- have a case where this is not possible, most typically in
-- the case where we inherit a dynamic predicate. We do not
-- consider this an error, we just leave the predicate as
-- dynamic. But if we do succeed in building the list, then
-- we mark the predicate as static.
if No (Static_Discrete_Predicate (Typ)) then
Set_Has_Static_Predicate (Typ, False);
end if;
-- For real or string subtype, save predicate expression
elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
Set_Static_Real_Or_String_Predicate (Typ, Expr);
end if;
-- Case of dynamic predicate (expression is not predicate-static)
else
-- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
-- is only set if we have an explicit Dynamic_Predicate aspect
-- given. Here we may simply have a Predicate aspect where the
-- expression happens not to be predicate-static.
-- Emit an error when the predicate is categorized as static
-- but its expression is not predicate-static.
-- First a little fiddling to get a nice location for the
-- message. If the expression is of the form (A and then B),
-- where A is an inherited predicate, then use the right
-- operand for the Sloc. This avoids getting confused by a call
-- to an inherited predicate with a less convenient source
-- location.
EN := Expr;
while Nkind (EN) = N_And_Then
and then Nkind (Left_Opnd (EN)) = N_Function_Call
and then Is_Predicate_Function
(Entity (Name (Left_Opnd (EN))))
loop
EN := Right_Opnd (EN);
end loop;
-- Now post appropriate message
if Has_Static_Predicate_Aspect (Typ) then
if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
Error_Msg_F
("expression is not predicate-static (RM 3.2.4(16-22))",
EN);
else
Error_Msg_F
("static predicate requires scalar or string type", EN);
end if;
end if;
end if;
end;
end if;
Restore_Ghost_Mode (Mode);
end Build_Predicate_Functions;
------------------------------------------
-- Build_Predicate_Function_Declaration --
------------------------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
function Build_Predicate_Function_Declaration
(Typ : Entity_Id) return Node_Id
is
Loc : constant Source_Ptr := Sloc (Typ);
Func_Decl : Node_Id;
Func_Id : Entity_Id;
Mode : Ghost_Mode_Type;
Spec : Node_Id;
begin
-- The related type may be subject to pragma Ghost. Set the mode now to
-- ensure that the predicate functions are properly marked as Ghost.
Set_Ghost_Mode (Typ, Mode);
Func_Id :=
Make_Defining_Identifier (Loc,
Chars => New_External_Name (Chars (Typ), "Predicate"));
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => Func_Id,
Parameter_Specifications => New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Temporary (Loc, 'I'),
Parameter_Type => New_Occurrence_Of (Typ, Loc))),
Result_Definition =>
New_Occurrence_Of (Standard_Boolean, Loc));
Func_Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
Set_Ekind (Func_Id, E_Function);
Set_Etype (Func_Id, Standard_Boolean);
Set_Is_Internal (Func_Id);
Set_Is_Predicate_Function (Func_Id);
Set_Predicate_Function (Typ, Func_Id);
Insert_After (Parent (Typ), Func_Decl);
Analyze (Func_Decl);
Restore_Ghost_Mode (Mode);
return Func_Decl;
end Build_Predicate_Function_Declaration;
-----------------------------------------
-- Check_Aspect_At_End_Of_Declarations --
-----------------------------------------
procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
Ent : constant Entity_Id := Entity (ASN);
Ident : constant Node_Id := Identifier (ASN);
A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
End_Decl_Expr : constant Node_Id := Entity (Ident);
-- Expression to be analyzed at end of declarations
Freeze_Expr : constant Node_Id := Expression (ASN);
-- Expression from call to Check_Aspect_At_Freeze_Point.
T : constant Entity_Id := Etype (Original_Node (Freeze_Expr));
-- Type required for preanalyze call. We use the original expression to
-- get the proper type, to prevent cascaded errors when the expression
-- is constant-folded.
Err : Boolean;
-- Set False if error
-- On entry to this procedure, Entity (Ident) contains a copy of the
-- original expression from the aspect, saved for this purpose, and
-- but Expression (Ident) is a preanalyzed copy of the expression,
-- preanalyzed just after the freeze point.
procedure Check_Overloaded_Name;
-- For aspects whose expression is simply a name, this routine checks if
-- the name is overloaded or not. If so, it verifies there is an
-- interpretation that matches the entity obtained at the freeze point,
-- otherwise the compiler complains.
---------------------------
-- Check_Overloaded_Name --
---------------------------
procedure Check_Overloaded_Name is
begin
if not Is_Overloaded (End_Decl_Expr) then
Err := not Is_Entity_Name (End_Decl_Expr)
or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
else
Err := True;
declare
Index : Interp_Index;
It : Interp;
begin
Get_First_Interp (End_Decl_Expr, Index, It);
while Present (It.Typ) loop
if It.Nam = Entity (Freeze_Expr) then
Err := False;
exit;
end if;
Get_Next_Interp (Index, It);
end loop;
end;
end if;
end Check_Overloaded_Name;
-- Start of processing for Check_Aspect_At_End_Of_Declarations
begin
-- In an instance we do not perform the consistency check between freeze
-- point and end of declarations, because it was done already in the
-- analysis of the generic. Furthermore, the delayed analysis of an
-- aspect of the instance may produce spurious errors when the generic
-- is a child unit that references entities in the parent (which might
-- not be in scope at the freeze point of the instance).
if In_Instance then
return;
-- Case of aspects Dimension, Dimension_System and Synchronization
elsif A_Id = Aspect_Synchronization then
return;
-- Case of stream attributes, just have to compare entities. However,
-- the expression is just a name (possibly overloaded), and there may
-- be stream operations declared for unrelated types, so we just need
-- to verify that one of these interpretations is the one available at
-- at the freeze point.
elsif A_Id = Aspect_Input or else
A_Id = Aspect_Output or else
A_Id = Aspect_Read or else
A_Id = Aspect_Write
then
Analyze (End_Decl_Expr);
Check_Overloaded_Name;
elsif A_Id = Aspect_Variable_Indexing or else
A_Id = Aspect_Constant_Indexing or else
A_Id = Aspect_Default_Iterator or else
A_Id = Aspect_Iterator_Element
then
-- Make type unfrozen before analysis, to prevent spurious errors
-- about late attributes.
Set_Is_Frozen (Ent, False);
Analyze (End_Decl_Expr);
Set_Is_Frozen (Ent, True);
-- If the end of declarations comes before any other freeze
-- point, the Freeze_Expr is not analyzed: no check needed.
if Analyzed (Freeze_Expr) and then not In_Instance then
Check_Overloaded_Name;
else
Err := False;
end if;
-- All other cases
else
-- Indicate that the expression comes from an aspect specification,
-- which is used in subsequent analysis even if expansion is off.
Set_Parent (End_Decl_Expr, ASN);
-- In a generic context the aspect expressions have not been
-- preanalyzed, so do it now. There are no conformance checks
-- to perform in this case.
if No (T) then
Check_Aspect_At_Freeze_Point (ASN);
return;
-- The default values attributes may be defined in the private part,
-- and the analysis of the expression may take place when only the
-- partial view is visible. The expression must be scalar, so use
-- the full view to resolve.
elsif (A_Id = Aspect_Default_Value
or else
A_Id = Aspect_Default_Component_Value)
and then Is_Private_Type (T)
then
Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
else
Preanalyze_Spec_Expression (End_Decl_Expr, T);
end if;
Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
end if;
-- Output error message if error. Force error on aspect specification
-- even if there is an error on the expression itself.
if Err then
Error_Msg_NE
("!visibility of aspect for& changes after freeze point",
ASN, Ent);
Error_Msg_NE
("info: & is frozen here, aspects evaluated at this point??",
Freeze_Node (Ent), Ent);
end if;
end Check_Aspect_At_End_Of_Declarations;
----------------------------------
-- Check_Aspect_At_Freeze_Point --
----------------------------------
procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
Ident : constant Node_Id := Identifier (ASN);
-- Identifier (use Entity field to save expression)
A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
T : Entity_Id := Empty;
-- Type required for preanalyze call
begin
-- On entry to this procedure, Entity (Ident) contains a copy of the
-- original expression from the aspect, saved for this purpose.
-- On exit from this procedure Entity (Ident) is unchanged, still
-- containing that copy, but Expression (Ident) is a preanalyzed copy
-- of the expression, preanalyzed just after the freeze point.
-- Make a copy of the expression to be preanalyzed
Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
-- Find type for preanalyze call
case A_Id is
-- No_Aspect should be impossible
when No_Aspect =>
raise Program_Error;
-- Aspects taking an optional boolean argument
when Boolean_Aspects
| Library_Unit_Aspects
=>
T := Standard_Boolean;
-- Aspects corresponding to attribute definition clauses
when Aspect_Address =>
T := RTE (RE_Address);
when Aspect_Attach_Handler =>
T := RTE (RE_Interrupt_ID);
when Aspect_Bit_Order
| Aspect_Scalar_Storage_Order
=>
T := RTE (RE_Bit_Order);
when Aspect_Convention =>
return;
when Aspect_CPU =>
T := RTE (RE_CPU_Range);
-- Default_Component_Value is resolved with the component type
when Aspect_Default_Component_Value =>
T := Component_Type (Entity (ASN));
when Aspect_Default_Storage_Pool =>
T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
-- Default_Value is resolved with the type entity in question
when Aspect_Default_Value =>
T := Entity (ASN);
when Aspect_Dispatching_Domain =>
T := RTE (RE_Dispatching_Domain);
when Aspect_External_Tag =>
T := Standard_String;
when Aspect_External_Name =>
T := Standard_String;
when Aspect_Link_Name =>
T := Standard_String;
when Aspect_Interrupt_Priority
| Aspect_Priority
=>
T := Standard_Integer;
when Aspect_Relative_Deadline =>
T := RTE (RE_Time_Span);
when Aspect_Secondary_Stack_Size =>
T := Standard_Integer;
when Aspect_Small =>
T := Universal_Real;
-- For a simple storage pool, we have to retrieve the type of the
-- pool object associated with the aspect's corresponding attribute
-- definition clause.
when Aspect_Simple_Storage_Pool =>
T := Etype (Expression (Aspect_Rep_Item (ASN)));
when Aspect_Storage_Pool =>
T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
when Aspect_Alignment
| Aspect_Component_Size
| Aspect_Machine_Radix
| Aspect_Object_Size
| Aspect_Size
| Aspect_Storage_Size
| Aspect_Stream_Size
| Aspect_Value_Size
=>
T := Any_Integer;
when Aspect_Linker_Section =>
T := Standard_String;
when Aspect_Synchronization =>
return;
-- Special case, the expression of these aspects is just an entity
-- that does not need any resolution, so just analyze.
when Aspect_Input
| Aspect_Output
| Aspect_Read
| Aspect_Suppress
| Aspect_Unsuppress
| Aspect_Warnings
| Aspect_Write
=>
Analyze (Expression (ASN));
return;
-- Same for Iterator aspects, where the expression is a function
-- name. Legality rules are checked separately.
when Aspect_Constant_Indexing
| Aspect_Default_Iterator
| Aspect_Iterator_Element
| Aspect_Variable_Indexing
=>
Analyze (Expression (ASN));
return;
-- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
when Aspect_Iterable =>
T := Entity (ASN);
declare
Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
Assoc : Node_Id;
Expr : Node_Id;
begin
if Cursor = Any_Type then
return;
end if;
Assoc := First (Component_Associations (Expression (ASN)));
while Present (Assoc) loop
Expr := Expression (Assoc);
Analyze (Expr);
if not Error_Posted (Expr) then
Resolve_Iterable_Operation
(Expr, Cursor, T, Chars (First (Choices (Assoc))));
end if;
Next (Assoc);
end loop;
end;
return;
-- Invariant/Predicate take boolean expressions
when Aspect_Dynamic_Predicate
| Aspect_Invariant
| Aspect_Predicate
| Aspect_Static_Predicate
| Aspect_Type_Invariant
=>
T := Standard_Boolean;
when Aspect_Predicate_Failure =>
T := Standard_String;
-- Here is the list of aspects that don't require delay analysis
when Aspect_Abstract_State
| Aspect_Annotate
| Aspect_Async_Readers
| Aspect_Async_Writers
| Aspect_Constant_After_Elaboration
| Aspect_Contract_Cases
| Aspect_Default_Initial_Condition
| Aspect_Depends
| Aspect_Dimension
| Aspect_Dimension_System
| Aspect_Effective_Reads
| Aspect_Effective_Writes
| Aspect_Extensions_Visible
| Aspect_Ghost
| Aspect_Global
| Aspect_Implicit_Dereference
| Aspect_Initial_Condition
| Aspect_Initializes
| Aspect_Max_Queue_Length
| Aspect_Obsolescent
| Aspect_Part_Of
| Aspect_Post
| Aspect_Postcondition
| Aspect_Pre
| Aspect_Precondition
| Aspect_Refined_Depends
| Aspect_Refined_Global
| Aspect_Refined_Post
| Aspect_Refined_State
| Aspect_SPARK_Mode
| Aspect_Test_Case
| Aspect_Unimplemented
| Aspect_Volatile_Function
=>
raise Program_Error;
end case;
-- Do the preanalyze call
Preanalyze_Spec_Expression (Expression (ASN), T);
end Check_Aspect_At_Freeze_Point;
-----------------------------------
-- Check_Constant_Address_Clause --
-----------------------------------
procedure Check_Constant_Address_Clause
(Expr : Node_Id;
U_Ent : Entity_Id)
is
procedure Check_At_Constant_Address (Nod : Node_Id);
-- Checks that the given node N represents a name whose 'Address is
-- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
-- address value is the same at the point of declaration of U_Ent and at
-- the time of elaboration of the address clause.
procedure Check_Expr_Constants (Nod : Node_Id);
-- Checks that Nod meets the requirements for a constant address clause
-- in the sense of the enclosing procedure.
procedure Check_List_Constants (Lst : List_Id);
-- Check that all elements of list Lst meet the requirements for a
-- constant address clause in the sense of the enclosing procedure.
-------------------------------
-- Check_At_Constant_Address --
-------------------------------
procedure Check_At_Constant_Address (Nod : Node_Id) is
begin
if Is_Entity_Name (Nod) then
if Present (Address_Clause (Entity ((Nod)))) then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_NE
("address for& cannot depend on another address clause! "
& "(RM 13.1(22))!", Nod, U_Ent);
elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
and then Sloc (U_Ent) < Sloc (Entity (Nod))
then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_Node_2 := U_Ent;
Error_Msg_NE
("\& must be defined before & (RM 13.1(22))!",
Nod, Entity (Nod));
end if;
elsif Nkind (Nod) = N_Selected_Component then
declare
T : constant Entity_Id := Etype (Prefix (Nod));
begin
if (Is_Record_Type (T)
and then Has_Discriminants (T))
or else
(Is_Access_Type (T)
and then Is_Record_Type (Designated_Type (T))
and then Has_Discriminants (Designated_Type (T)))
then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_N
("\address cannot depend on component of discriminated "
& "record (RM 13.1(22))!", Nod);
else
Check_At_Constant_Address (Prefix (Nod));
end if;
end;
elsif Nkind (Nod) = N_Indexed_Component then
Check_At_Constant_Address (Prefix (Nod));
Check_List_Constants (Expressions (Nod));
else
Check_Expr_Constants (Nod);
end if;
end Check_At_Constant_Address;
--------------------------
-- Check_Expr_Constants --
--------------------------
procedure Check_Expr_Constants (Nod : Node_Id) is
Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
Ent : Entity_Id := Empty;
begin
if Nkind (Nod) in N_Has_Etype
and then Etype (Nod) = Any_Type
then
return;
end if;
case Nkind (Nod) is
when N_Empty
| N_Error
=>
return;
when N_Expanded_Name
| N_Identifier
=>
Ent := Entity (Nod);
-- We need to look at the original node if it is different
-- from the node, since we may have rewritten things and
-- substituted an identifier representing the rewrite.
if Original_Node (Nod) /= Nod then
Check_Expr_Constants (Original_Node (Nod));
-- If the node is an object declaration without initial
-- value, some code has been expanded, and the expression
-- is not constant, even if the constituents might be
-- acceptable, as in A'Address + offset.
if Ekind (Ent) = E_Variable
and then
Nkind (Declaration_Node (Ent)) = N_Object_Declaration
and then
No (Expression (Declaration_Node (Ent)))
then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
-- If entity is constant, it may be the result of expanding
-- a check. We must verify that its declaration appears
-- before the object in question, else we also reject the
-- address clause.
elsif Ekind (Ent) = E_Constant
and then In_Same_Source_Unit (Ent, U_Ent)
and then Sloc (Ent) > Loc_U_Ent
then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
end if;
return;
end if;
-- Otherwise look at the identifier and see if it is OK
if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
or else Is_Type (Ent)
then
return;
elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
-- This is the case where we must have Ent defined before
-- U_Ent. Clearly if they are in different units this
-- requirement is met since the unit containing Ent is
-- already processed.
if not In_Same_Source_Unit (Ent, U_Ent) then
return;
-- Otherwise location of Ent must be before the location
-- of U_Ent, that's what prior defined means.
elsif Sloc (Ent) < Loc_U_Ent then
return;
else
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_Node_2 := U_Ent;
Error_Msg_NE
("\& must be defined before & (RM 13.1(22))!",
Nod, Ent);
end if;
elsif Nkind (Original_Node (Nod)) = N_Function_Call then
Check_Expr_Constants (Original_Node (Nod));
else
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
if Comes_From_Source (Ent) then
Error_Msg_NE
("\reference to variable& not allowed"
& " (RM 13.1(22))!", Nod, Ent);
else
Error_Msg_N
("non-static expression not allowed"
& " (RM 13.1(22))!", Nod);
end if;
end if;
when N_Integer_Literal =>
-- If this is a rewritten unchecked conversion, in a system
-- where Address is an integer type, always use the base type
-- for a literal value. This is user-friendly and prevents
-- order-of-elaboration issues with instances of unchecked
-- conversion.
if Nkind (Original_Node (Nod)) = N_Function_Call then
Set_Etype (Nod, Base_Type (Etype (Nod)));
end if;
when N_Character_Literal
| N_Real_Literal
| N_String_Literal
=>
return;
when N_Range =>
Check_Expr_Constants (Low_Bound (Nod));
Check_Expr_Constants (High_Bound (Nod));
when N_Explicit_Dereference =>
Check_Expr_Constants (Prefix (Nod));
when N_Indexed_Component =>
Check_Expr_Constants (Prefix (Nod));
Check_List_Constants (Expressions (Nod));
when N_Slice =>
Check_Expr_Constants (Prefix (Nod));
Check_Expr_Constants (Discrete_Range (Nod));
when N_Selected_Component =>
Check_Expr_Constants (Prefix (Nod));
when N_Attribute_Reference =>
if Nam_In (Attribute_Name (Nod), Name_Address,
Name_Access,
Name_Unchecked_Access,
Name_Unrestricted_Access)
then
Check_At_Constant_Address (Prefix (Nod));
else
Check_Expr_Constants (Prefix (Nod));
Check_List_Constants (Expressions (Nod));
end if;
when N_Aggregate =>
Check_List_Constants (Component_Associations (Nod));
Check_List_Constants (Expressions (Nod));
when N_Component_Association =>
Check_Expr_Constants (Expression (Nod));
when N_Extension_Aggregate =>
Check_Expr_Constants (Ancestor_Part (Nod));
Check_List_Constants (Component_Associations (Nod));
Check_List_Constants (Expressions (Nod));
when N_Null =>
return;
when N_Binary_Op
| N_Membership_Test
| N_Short_Circuit
=>
Check_Expr_Constants (Left_Opnd (Nod));
Check_Expr_Constants (Right_Opnd (Nod));
when N_Unary_Op =>
Check_Expr_Constants (Right_Opnd (Nod));
when N_Allocator
| N_Qualified_Expression
| N_Type_Conversion
| N_Unchecked_Type_Conversion
=>
Check_Expr_Constants (Expression (Nod));
when N_Function_Call =>
if not Is_Pure (Entity (Name (Nod))) then
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_NE
("\function & is not pure (RM 13.1(22))!",
Nod, Entity (Name (Nod)));
else
Check_List_Constants (Parameter_Associations (Nod));
end if;
when N_Parameter_Association =>
Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
when others =>
Error_Msg_NE
("invalid address clause for initialized object &!",
Nod, U_Ent);
Error_Msg_NE
("\must be constant defined before& (RM 13.1(22))!",
Nod, U_Ent);
end case;
end Check_Expr_Constants;
--------------------------
-- Check_List_Constants --
--------------------------
procedure Check_List_Constants (Lst : List_Id) is
Nod1 : Node_Id;
begin
if Present (Lst) then
Nod1 := First (Lst);
while Present (Nod1) loop
Check_Expr_Constants (Nod1);
Next (Nod1);
end loop;
end if;
end Check_List_Constants;
-- Start of processing for Check_Constant_Address_Clause
begin
-- If rep_clauses are to be ignored, no need for legality checks. In
-- particular, no need to pester user about rep clauses that violate the
-- rule on constant addresses, given that these clauses will be removed
-- by Freeze before they reach the back end. Similarly in CodePeer mode,
-- we want to relax these checks.
if not Ignore_Rep_Clauses and not CodePeer_Mode then
Check_Expr_Constants (Expr);
end if;
end Check_Constant_Address_Clause;
---------------------------
-- Check_Pool_Size_Clash --
---------------------------
procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
Post : Node_Id;
begin
-- We need to find out which one came first. Note that in the case of
-- aspects mixed with pragmas there are cases where the processing order
-- is reversed, which is why we do the check here.
if Sloc (SP) < Sloc (SS) then
Error_Msg_Sloc := Sloc (SP);
Post := SS;
Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
else
Error_Msg_Sloc := Sloc (SS);
Post := SP;
Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
end if;
Error_Msg_N
("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
end Check_Pool_Size_Clash;
----------------------------------------
-- Check_Record_Representation_Clause --
----------------------------------------
procedure Check_Record_Representation_Clause (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Ident : constant Node_Id := Identifier (N);
Rectype : Entity_Id;
Fent : Entity_Id;
CC : Node_Id;
Fbit : Uint;
Lbit : Uint;
Hbit : Uint := Uint_0;
Comp : Entity_Id;
Pcomp : Entity_Id;
Max_Bit_So_Far : Uint;
-- Records the maximum bit position so far. If all field positions
-- are monotonically increasing, then we can skip the circuit for
-- checking for overlap, since no overlap is possible.
Tagged_Parent : Entity_Id := Empty;
-- This is set in the case of a derived tagged type for which we have
-- Is_Fully_Repped_Tagged_Type True (indicating that all components are
-- positioned by record representation clauses). In this case we must
-- check for overlap between components of this tagged type, and the
-- components of its parent. Tagged_Parent will point to this parent
-- type. For all other cases Tagged_Parent is left set to Empty.
Parent_Last_Bit : Uint;
-- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
-- last bit position for any field in the parent type. We only need to
-- check overlap for fields starting below this point.
Overlap_Check_Required : Boolean;
-- Used to keep track of whether or not an overlap check is required
Overlap_Detected : Boolean := False;
-- Set True if an overlap is detected
Ccount : Natural := 0;
-- Number of component clauses in record rep clause
procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
-- Given two entities for record components or discriminants, checks
-- if they have overlapping component clauses and issues errors if so.
procedure Find_Component;
-- Finds component entity corresponding to current component clause (in
-- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
-- start/stop bits for the field. If there is no matching component or
-- if the matching component does not have a component clause, then
-- that's an error and Comp is set to Empty, but no error message is
-- issued, since the message was already given. Comp is also set to
-- Empty if the current "component clause" is in fact a pragma.
-----------------------------
-- Check_Component_Overlap --
-----------------------------
procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
CC1 : constant Node_Id := Component_Clause (C1_Ent);
CC2 : constant Node_Id := Component_Clause (C2_Ent);
begin
if Present (CC1) and then Present (CC2) then
-- Exclude odd case where we have two tag components in the same
-- record, both at location zero. This seems a bit strange, but
-- it seems to happen in some circumstances, perhaps on an error.
if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
return;
end if;
-- Here we check if the two fields overlap
declare
S1 : constant Uint := Component_Bit_Offset (C1_Ent);
S2 : constant Uint := Component_Bit_Offset (C2_Ent);
E1 : constant Uint := S1 + Esize (C1_Ent);
E2 : constant Uint := S2 + Esize (C2_Ent);
begin
if E2 <= S1 or else E1 <= S2 then
null;
else
Error_Msg_Node_2 := Component_Name (CC2);
Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
Error_Msg_Node_1 := Component_Name (CC1);
Error_Msg_N
("component& overlaps & #", Component_Name (CC1));
Overlap_Detected := True;
end if;
end;
end if;
end Check_Component_Overlap;
--------------------
-- Find_Component --
--------------------
procedure Find_Component is
procedure Search_Component (R : Entity_Id);
-- Search components of R for a match. If found, Comp is set
----------------------
-- Search_Component --
----------------------
procedure Search_Component (R : Entity_Id) is
begin
Comp := First_Component_Or_Discriminant (R);
while Present (Comp) loop
-- Ignore error of attribute name for component name (we
-- already gave an error message for this, so no need to
-- complain here)
if Nkind (Component_Name (CC)) = N_Attribute_Reference then
null;
else
exit when Chars (Comp) = Chars (Component_Name (CC));
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end Search_Component;
-- Start of processing for Find_Component
begin
-- Return with Comp set to Empty if we have a pragma
if Nkind (CC) = N_Pragma then
Comp := Empty;
return;
end if;
-- Search current record for matching component
Search_Component (Rectype);
-- If not found, maybe component of base type discriminant that is
-- absent from statically constrained first subtype.
if No (Comp) then
Search_Component (Base_Type (Rectype));
end if;
-- If no component, or the component does not reference the component
-- clause in question, then there was some previous error for which
-- we already gave a message, so just return with Comp Empty.
if No (Comp) or else Component_Clause (Comp) /= CC then
Check_Error_Detected;
Comp := Empty;
-- Normal case where we have a component clause
else
Fbit := Component_Bit_Offset (Comp);
Lbit := Fbit + Esize (Comp) - 1;
end if;
end Find_Component;
-- Start of processing for Check_Record_Representation_Clause
begin
Find_Type (Ident);
Rectype := Entity (Ident);
if Rectype = Any_Type then
return;
else
Rectype := Underlying_Type (Rectype);
end if;
-- See if we have a fully repped derived tagged type
declare
PS : constant Entity_Id := Parent_Subtype (Rectype);
begin
if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
Tagged_Parent := PS;
-- Find maximum bit of any component of the parent type
Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
Pcomp := First_Entity (Tagged_Parent);
while Present (Pcomp) loop
if Ekind_In (Pcomp, E_Discriminant, E_Component) then
if Component_Bit_Offset (Pcomp) /= No_Uint
and then Known_Static_Esize (Pcomp)
then
Parent_Last_Bit :=
UI_Max
(Parent_Last_Bit,
Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
end if;
else
-- Skip anonymous types generated for constrained array
-- or record components.
null;
end if;
Next_Entity (Pcomp);
end loop;
end if;
end;
-- All done if no component clauses
CC := First (Component_Clauses (N));
if No (CC) then
return;
end if;
-- If a tag is present, then create a component clause that places it
-- at the start of the record (otherwise gigi may place it after other
-- fields that have rep clauses).
Fent := First_Entity (Rectype);
if Nkind (Fent) = N_Defining_Identifier
and then Chars (Fent) = Name_uTag
then
Set_Component_Bit_Offset (Fent, Uint_0);
Set_Normalized_Position (Fent, Uint_0);
Set_Normalized_First_Bit (Fent, Uint_0);
Set_Normalized_Position_Max (Fent, Uint_0);
Init_Esize (Fent, System_Address_Size);
Set_Component_Clause (Fent,
Make_Component_Clause (Loc,
Component_Name => Make_Identifier (Loc, Name_uTag),
Position => Make_Integer_Literal (Loc, Uint_0),
First_Bit => Make_Integer_Literal (Loc, Uint_0),
Last_Bit =>
Make_Integer_Literal (Loc,
UI_From_Int (System_Address_Size))));
Ccount := Ccount + 1;
end if;
Max_Bit_So_Far := Uint_Minus_1;
Overlap_Check_Required := False;
-- Process the component clauses
while Present (CC) loop
Find_Component;
if Present (Comp) then
Ccount := Ccount + 1;
-- We need a full overlap check if record positions non-monotonic
if Fbit <= Max_Bit_So_Far then
Overlap_Check_Required := True;
end if;
Max_Bit_So_Far := Lbit;
-- Check bit position out of range of specified size
if Has_Size_Clause (Rectype)
and then RM_Size (Rectype) <= Lbit
then
Error_Msg_N
("bit number out of range of specified size",
Last_Bit (CC));
-- Check for overlap with tag component
else
if Is_Tagged_Type (Rectype)
and then Fbit < System_Address_Size
then
Error_Msg_NE
("component overlaps tag field of&",
Component_Name (CC), Rectype);
Overlap_Detected := True;
end if;
if Hbit < Lbit then
Hbit := Lbit;
end if;
end if;
-- Check parent overlap if component might overlap parent field
if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
while Present (Pcomp) loop
if not Is_Tag (Pcomp)
and then Chars (Pcomp) /= Name_uParent
then
Check_Component_Overlap (Comp, Pcomp);
end if;
Next_Component_Or_Discriminant (Pcomp);
end loop;
end if;
end if;
Next (CC);
end loop;
-- Now that we have processed all the component clauses, check for
-- overlap. We have to leave this till last, since the components can
-- appear in any arbitrary order in the representation clause.
-- We do not need this check if all specified ranges were monotonic,
-- as recorded by Overlap_Check_Required being False at this stage.
-- This first section checks if there are any overlapping entries at
-- all. It does this by sorting all entries and then seeing if there are
-- any overlaps. If there are none, then that is decisive, but if there
-- are overlaps, they may still be OK (they may result from fields in
-- different variants).
if Overlap_Check_Required then
Overlap_Check1 : declare
OC_Fbit : array (0 .. Ccount) of Uint;
-- First-bit values for component clauses, the value is the offset
-- of the first bit of the field from start of record. The zero
-- entry is for use in sorting.
OC_Lbit : array (0 .. Ccount) of Uint;
-- Last-bit values for component clauses, the value is the offset
-- of the last bit of the field from start of record. The zero
-- entry is for use in sorting.
OC_Count : Natural := 0;
-- Count of entries in OC_Fbit and OC_Lbit
function OC_Lt (Op1, Op2 : Natural) return Boolean;
-- Compare routine for Sort
procedure OC_Move (From : Natural; To : Natural);
-- Move routine for Sort
package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
-----------
-- OC_Lt --
-----------
function OC_Lt (Op1, Op2 : Natural) return Boolean is
begin
return OC_Fbit (Op1) < OC_Fbit (Op2);
end OC_Lt;
-------------
-- OC_Move --
-------------
procedure OC_Move (From : Natural; To : Natural) is
begin
OC_Fbit (To) := OC_Fbit (From);
OC_Lbit (To) := OC_Lbit (From);
end OC_Move;
-- Start of processing for Overlap_Check
begin
CC := First (Component_Clauses (N));
while Present (CC) loop
-- Exclude component clause already marked in error
if not Error_Posted (CC) then
Find_Component;
if Present (Comp) then
OC_Count := OC_Count + 1;
OC_Fbit (OC_Count) := Fbit;
OC_Lbit (OC_Count) := Lbit;
end if;
end if;
Next (CC);
end loop;
Sorting.Sort (OC_Count);
Overlap_Check_Required := False;
for J in 1 .. OC_Count - 1 loop
if OC_Lbit (J) >= OC_Fbit (J + 1) then
Overlap_Check_Required := True;
exit;
end if;
end loop;
end Overlap_Check1;
end if;
-- If Overlap_Check_Required is still True, then we have to do the full
-- scale overlap check, since we have at least two fields that do
-- overlap, and we need to know if that is OK since they are in
-- different variant, or whether we have a definite problem.
if Overlap_Check_Required then
Overlap_Check2 : declare
C1_Ent, C2_Ent : Entity_Id;
-- Entities of components being checked for overlap
Clist : Node_Id;
-- Component_List node whose Component_Items are being checked
Citem : Node_Id;
-- Component declaration for component being checked
begin
C1_Ent := First_Entity (Base_Type (Rectype));
-- Loop through all components in record. For each component check
-- for overlap with any of the preceding elements on the component
-- list containing the component and also, if the component is in
-- a variant, check against components outside the case structure.
-- This latter test is repeated recursively up the variant tree.
Main_Component_Loop : while Present (C1_Ent) loop
if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
goto Continue_Main_Component_Loop;
end if;
-- Skip overlap check if entity has no declaration node. This
-- happens with discriminants in constrained derived types.
-- Possibly we are missing some checks as a result, but that
-- does not seem terribly serious.
if No (Declaration_Node (C1_Ent)) then
goto Continue_Main_Component_Loop;
end if;
Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
-- Loop through component lists that need checking. Check the
-- current component list and all lists in variants above us.
Component_List_Loop : loop
-- If derived type definition, go to full declaration
-- If at outer level, check discriminants if there are any.
if Nkind (Clist) = N_Derived_Type_Definition then
Clist := Parent (Clist);
end if;
-- Outer level of record definition, check discriminants
if Nkind_In (Clist, N_Full_Type_Declaration,
N_Private_Type_Declaration)
then
if Has_Discriminants (Defining_Identifier (Clist)) then
C2_Ent :=
First_Discriminant (Defining_Identifier (Clist));
while Present (C2_Ent) loop
exit when C1_Ent = C2_Ent;
Check_Component_Overlap (C1_Ent, C2_Ent);
Next_Discriminant (C2_Ent);
end loop;
end if;
-- Record extension case
elsif Nkind (Clist) = N_Derived_Type_Definition then
Clist := Empty;
-- Otherwise check one component list
else
Citem := First (Component_Items (Clist));
while Present (Citem) loop
if Nkind (Citem) = N_Component_Declaration then
C2_Ent := Defining_Identifier (Citem);
exit when C1_Ent = C2_Ent;
Check_Component_Overlap (C1_Ent, C2_Ent);
end if;
Next (Citem);
end loop;
end if;
-- Check for variants above us (the parent of the Clist can
-- be a variant, in which case its parent is a variant part,
-- and the parent of the variant part is a component list
-- whose components must all be checked against the current
-- component for overlap).
if Nkind (Parent (Clist)) = N_Variant then
Clist := Parent (Parent (Parent (Clist)));
-- Check for possible discriminant part in record, this
-- is treated essentially as another level in the
-- recursion. For this case the parent of the component
-- list is the record definition, and its parent is the
-- full type declaration containing the discriminant
-- specifications.
elsif Nkind (Parent (Clist)) = N_Record_Definition then
Clist := Parent (Parent ((Clist)));
-- If neither of these two cases, we are at the top of
-- the tree.
else
exit Component_List_Loop;
end if;
end loop Component_List_Loop;
<<Continue_Main_Component_Loop>>
Next_Entity (C1_Ent);
end loop Main_Component_Loop;
end Overlap_Check2;
end if;
-- The following circuit deals with warning on record holes (gaps). We
-- skip this check if overlap was detected, since it makes sense for the
-- programmer to fix this illegality before worrying about warnings.
if not Overlap_Detected and Warn_On_Record_Holes then
Record_Hole_Check : declare
Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
-- Full declaration of record type
procedure Check_Component_List
(CL : Node_Id;
Sbit : Uint;
DS : List_Id);
-- Check component list CL for holes. The starting bit should be
-- Sbit. which is zero for the main record component list and set
-- appropriately for recursive calls for variants. DS is set to
-- a list of discriminant specifications to be included in the
-- consideration of components. It is No_List if none to consider.
--------------------------
-- Check_Component_List --
--------------------------
procedure Check_Component_List
(CL : Node_Id;
Sbit : Uint;
DS : List_Id)
is
Compl : Integer;
begin
Compl := Integer (List_Length (Component_Items (CL)));
if DS /= No_List then
Compl := Compl + Integer (List_Length (DS));
end if;
declare
Comps : array (Natural range 0 .. Compl) of Entity_Id;
-- Gather components (zero entry is for sort routine)
Ncomps : Natural := 0;
-- Number of entries stored in Comps (starting at Comps (1))
Citem : Node_Id;
-- One component item or discriminant specification
Nbit : Uint;
-- Starting bit for next component
CEnt : Entity_Id;
-- Component entity
Variant : Node_Id;
-- One variant
function Lt (Op1, Op2 : Natural) return Boolean;
-- Compare routine for Sort
procedure Move (From : Natural; To : Natural);
-- Move routine for Sort
package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
--------
-- Lt --
--------
function Lt (Op1, Op2 : Natural) return Boolean is
begin
return Component_Bit_Offset (Comps (Op1))
<
Component_Bit_Offset (Comps (Op2));
end Lt;
----------
-- Move --
----------
procedure Move (From : Natural; To : Natural) is
begin
Comps (To) := Comps (From);
end Move;
begin
-- Gather discriminants into Comp
if DS /= No_List then
Citem := First (DS);
while Present (Citem) loop
if Nkind (Citem) = N_Discriminant_Specification then
declare
Ent : constant Entity_Id :=
Defining_Identifier (Citem);
begin
if Ekind (Ent) = E_Discriminant then
Ncomps := Ncomps + 1;
Comps (Ncomps) := Ent;
end if;
end;
end if;
Next (Citem);
end loop;
end if;
-- Gather component entities into Comp
Citem := First (Component_Items (CL));
while Present (Citem) loop
if Nkind (Citem) = N_Component_Declaration then
Ncomps := Ncomps + 1;
Comps (Ncomps) := Defining_Identifier (Citem);
end if;
Next (Citem);
end loop;
-- Now sort the component entities based on the first bit.
-- Note we already know there are no overlapping components.
Sorting.Sort (Ncomps);
-- Loop through entries checking for holes
Nbit := Sbit;
for J in 1 .. Ncomps loop
CEnt := Comps (J);
declare
CBO : constant Uint := Component_Bit_Offset (CEnt);
begin
-- Skip components with unknown offsets
if CBO /= No_Uint and then CBO >= 0 then
Error_Msg_Uint_1 := CBO - Nbit;
if Error_Msg_Uint_1 > 0 then
Error_Msg_NE
("?H?^-bit gap before component&",
Component_Name (Component_Clause (CEnt)),
CEnt);
end if;
Nbit := CBO + Esize (CEnt);
end if;
end;
end loop;
-- Process variant parts recursively if present
if Present (Variant_Part (CL)) then
Variant := First (Variants (Variant_Part (CL)));
while Present (Variant) loop
Check_Component_List
(Component_List (Variant), Nbit, No_List);
Next (Variant);
end loop;
end if;
end;
end Check_Component_List;
-- Start of processing for Record_Hole_Check
begin
declare
Sbit : Uint;
begin
if Is_Tagged_Type (Rectype) then
Sbit := UI_From_Int (System_Address_Size);
else
Sbit := Uint_0;
end if;
if Nkind (Decl) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Decl)) = N_Record_Definition
then
Check_Component_List
(Component_List (Type_Definition (Decl)),
Sbit,
Discriminant_Specifications (Decl));
end if;
end;
end Record_Hole_Check;
end if;
-- For records that have component clauses for all components, and whose
-- size is less than or equal to 32, we need to know the size in the
-- front end to activate possible packed array processing where the
-- component type is a record.
-- At this stage Hbit + 1 represents the first unused bit from all the
-- component clauses processed, so if the component clauses are
-- complete, then this is the length of the record.
-- For records longer than System.Storage_Unit, and for those where not
-- all components have component clauses, the back end determines the
-- length (it may for example be appropriate to round up the size
-- to some convenient boundary, based on alignment considerations, etc).
if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
-- Nothing to do if at least one component has no component clause
Comp := First_Component_Or_Discriminant (Rectype);
while Present (Comp) loop
exit when No (Component_Clause (Comp));
Next_Component_Or_Discriminant (Comp);
end loop;
-- If we fall out of loop, all components have component clauses
-- and so we can set the size to the maximum value.
if No (Comp) then
Set_RM_Size (Rectype, Hbit + 1);
end if;
end if;
end Check_Record_Representation_Clause;
----------------
-- Check_Size --
----------------
procedure Check_Size
(N : Node_Id;
T : Entity_Id;
Siz : Uint;
Biased : out Boolean)
is
procedure Size_Too_Small_Error (Min_Siz : Uint);
-- Emit an error concerning illegal size Siz. Min_Siz denotes the
-- minimum size.
--------------------------
-- Size_Too_Small_Error --
--------------------------
procedure Size_Too_Small_Error (Min_Siz : Uint) is
begin
-- This error is suppressed in ASIS mode to allow for different ASIS
-- back ends or ASIS-based tools to query the illegal clause.
if not ASIS_Mode then
Error_Msg_Uint_1 := Min_Siz;
Error_Msg_NE ("size for& too small, minimum allowed is ^", N, T);
end if;
end Size_Too_Small_Error;
-- Local variables
UT : constant Entity_Id := Underlying_Type (T);
M : Uint;
-- Start of processing for Check_Size
begin
Biased := False;
-- Reject patently improper size values
if Is_Elementary_Type (T)
and then Siz > UI_From_Int (Int'Last)
then
Error_Msg_N ("Size value too large for elementary type", N);
if Nkind (Original_Node (N)) = N_Op_Expon then
Error_Msg_N
("\maybe '* was meant, rather than '*'*", Original_Node (N));
end if;
end if;
-- Dismiss generic types
if Is_Generic_Type (T)
or else
Is_Generic_Type (UT)
or else
Is_Generic_Type (Root_Type (UT))
then
return;
-- Guard against previous errors
elsif No (UT) or else UT = Any_Type then
Check_Error_Detected;
return;
-- Check case of bit packed array
elsif Is_Array_Type (UT)
and then Known_Static_Component_Size (UT)
and then Is_Bit_Packed_Array (UT)
then
declare
Asiz : Uint;
Indx : Node_Id;
Ityp : Entity_Id;
begin
Asiz := Component_Size (UT);
Indx := First_Index (UT);
loop
Ityp := Etype (Indx);
-- If non-static bound, then we are not in the business of
-- trying to check the length, and indeed an error will be
-- issued elsewhere, since sizes of non-static array types
-- cannot be set implicitly or explicitly.
if not Is_OK_Static_Subtype (Ityp) then
return;
end if;
-- Otherwise accumulate next dimension
Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
Expr_Value (Type_Low_Bound (Ityp)) +
Uint_1);
Next_Index (Indx);
exit when No (Indx);
end loop;
if Asiz <= Siz then
return;
else
Size_Too_Small_Error (Asiz);
Set_Esize (T, Asiz);
Set_RM_Size (T, Asiz);
end if;
end;
-- All other composite types are ignored
elsif Is_Composite_Type (UT) then
return;
-- For fixed-point types, don't check minimum if type is not frozen,
-- since we don't know all the characteristics of the type that can
-- affect the size (e.g. a specified small) till freeze time.
elsif Is_Fixed_Point_Type (UT) and then not Is_Frozen (UT) then
null;
-- Cases for which a minimum check is required
else
-- Ignore if specified size is correct for the type
if Known_Esize (UT) and then Siz = Esize (UT) then
return;
end if;
-- Otherwise get minimum size
M := UI_From_Int (Minimum_Size (UT));
if Siz < M then
-- Size is less than minimum size, but one possibility remains
-- that we can manage with the new size if we bias the type.
M := UI_From_Int (Minimum_Size (UT, Biased => True));
if Siz < M then
Size_Too_Small_Error (M);
Set_Esize (T, M);
Set_RM_Size (T, M);
else
Biased := True;
end if;
end if;
end if;
end Check_Size;
--------------------------
-- Freeze_Entity_Checks --
--------------------------
procedure Freeze_Entity_Checks (N : Node_Id) is
procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
-- Inspect the primitive operations of type Typ and hide all pairs of
-- implicitly declared non-overridden non-fully conformant homographs
-- (Ada RM 8.3 12.3/2).
-------------------------------------
-- Hide_Non_Overridden_Subprograms --
-------------------------------------
procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
procedure Hide_Matching_Homographs
(Subp_Id : Entity_Id;
Start_Elmt : Elmt_Id);
-- Inspect a list of primitive operations starting with Start_Elmt
-- and find matching implicitly declared non-overridden non-fully
-- conformant homographs of Subp_Id. If found, all matches along
-- with Subp_Id are hidden from all visibility.
function Is_Non_Overridden_Or_Null_Procedure
(Subp_Id : Entity_Id) return Boolean;
-- Determine whether subprogram Subp_Id is implicitly declared non-
-- overridden subprogram or an implicitly declared null procedure.
------------------------------
-- Hide_Matching_Homographs --
------------------------------
procedure Hide_Matching_Homographs
(Subp_Id : Entity_Id;
Start_Elmt : Elmt_Id)
is
Prim : Entity_Id;
Prim_Elmt : Elmt_Id;
begin
Prim_Elmt := Start_Elmt;
while Present (Prim_Elmt) loop
Prim := Node (Prim_Elmt);
-- The current primitive is implicitly declared non-overridden
-- non-fully conformant homograph of Subp_Id. Both subprograms
-- must be hidden from visibility.
if Chars (Prim) = Chars (Subp_Id)
and then Is_Non_Overridden_Or_Null_Procedure (Prim)
and then not Fully_Conformant (Prim, Subp_Id)
then
Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
Set_Is_Immediately_Visible (Prim, False);
Set_Is_Potentially_Use_Visible (Prim, False);
Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
Set_Is_Immediately_Visible (Subp_Id, False);
Set_Is_Potentially_Use_Visible (Subp_Id, False);
end if;
Next_Elmt (Prim_Elmt);
end loop;
end Hide_Matching_Homographs;
-----------------------------------------
-- Is_Non_Overridden_Or_Null_Procedure --
-----------------------------------------
function Is_Non_Overridden_Or_Null_Procedure
(Subp_Id : Entity_Id) return Boolean
is
Alias_Id : Entity_Id;
begin
-- The subprogram is inherited (implicitly declared), it does not
-- override and does not cover a primitive of an interface.
if Ekind_In (Subp_Id, E_Function, E_Procedure)
and then Present (Alias (Subp_Id))
and then No (Interface_Alias (Subp_Id))
and then No (Overridden_Operation (Subp_Id))
then
Alias_Id := Alias (Subp_Id);
if Requires_Overriding (Alias_Id) then
return True;
elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
and then Null_Present (Parent (Alias_Id))
then
return True;
end if;
end if;
return False;
end Is_Non_Overridden_Or_Null_Procedure;
-- Local variables
Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
Prim : Entity_Id;
Prim_Elmt : Elmt_Id;
-- Start of processing for Hide_Non_Overridden_Subprograms
begin
-- Inspect the list of primitives looking for non-overridden
-- subprograms.
if Present (Prim_Ops) then
Prim_Elmt := First_Elmt (Prim_Ops);
while Present (Prim_Elmt) loop
Prim := Node (Prim_Elmt);
Next_Elmt (Prim_Elmt);
if Is_Non_Overridden_Or_Null_Procedure (Prim) then
Hide_Matching_Homographs
(Subp_Id => Prim,
Start_Elmt => Prim_Elmt);
end if;
end loop;
end if;
end Hide_Non_Overridden_Subprograms;
-- Local variables
E : constant Entity_Id := Entity (N);
Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
-- True in non-generic case. Some of the processing here is skipped
-- for the generic case since it is not needed. Basically in the
-- generic case, we only need to do stuff that might generate error
-- messages or warnings.
-- Start of processing for Freeze_Entity_Checks
begin
-- Remember that we are processing a freezing entity. Required to
-- ensure correct decoration of internal entities associated with
-- interfaces (see New_Overloaded_Entity).
Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
-- For tagged types covering interfaces add internal entities that link
-- the primitives of the interfaces with the primitives that cover them.
-- Note: These entities were originally generated only when generating
-- code because their main purpose was to provide support to initialize
-- the secondary dispatch tables. They are now generated also when
-- compiling with no code generation to provide ASIS the relationship
-- between interface primitives and tagged type primitives. They are
-- also used to locate primitives covering interfaces when processing
-- generics (see Derive_Subprograms).
-- This is not needed in the generic case
if Ada_Version >= Ada_2005
and then Non_Generic_Case
and then Ekind (E) = E_Record_Type
and then Is_Tagged_Type (E)
and then not Is_Interface (E)
and then Has_Interfaces (E)
then
-- This would be a good common place to call the routine that checks
-- overriding of interface primitives (and thus factorize calls to
-- Check_Abstract_Overriding located at different contexts in the
-- compiler). However, this is not possible because it causes
-- spurious errors in case of late overriding.
Add_Internal_Interface_Entities (E);
end if;
-- After all forms of overriding have been resolved, a tagged type may
-- be left with a set of implicitly declared and possibly erroneous
-- abstract subprograms, null procedures and subprograms that require
-- overriding. If this set contains fully conformant homographs, then
-- one is chosen arbitrarily (already done during resolution), otherwise
-- all remaining non-fully conformant homographs are hidden from
-- visibility (Ada RM 8.3 12.3/2).
if Is_Tagged_Type (E) then
Hide_Non_Overridden_Subprograms (E);
end if;
-- Check CPP types
if Ekind (E) = E_Record_Type
and then Is_CPP_Class (E)
and then Is_Tagged_Type (E)
and then Tagged_Type_Expansion
then
if CPP_Num_Prims (E) = 0 then
-- If the CPP type has user defined components then it must import
-- primitives from C++. This is required because if the C++ class
-- has no primitives then the C++ compiler does not added the _tag
-- component to the type.
if First_Entity (E) /= Last_Entity (E) then
Error_Msg_N
("'C'P'P type must import at least one primitive from C++??",
E);
end if;
end if;
-- Check that all its primitives are abstract or imported from C++.
-- Check also availability of the C++ constructor.
declare
Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
Elmt : Elmt_Id;
Error_Reported : Boolean := False;
Prim : Node_Id;
begin
Elmt := First_Elmt (Primitive_Operations (E));
while Present (Elmt) loop
Prim := Node (Elmt);
if Comes_From_Source (Prim) then
if Is_Abstract_Subprogram (Prim) then
null;
elsif not Is_Imported (Prim)
or else Convention (Prim) /= Convention_CPP
then
Error_Msg_N
("primitives of 'C'P'P types must be imported from C++ "
& "or abstract??", Prim);
elsif not Has_Constructors
and then not Error_Reported
then
Error_Msg_Name_1 := Chars (E);
Error_Msg_N
("??'C'P'P constructor required for type %", Prim);
Error_Reported := True;
end if;
end if;
Next_Elmt (Elmt);
end loop;
end;
end if;
-- Check Ada derivation of CPP type
if Expander_Active -- why? losing errors in -gnatc mode???
and then Present (Etype (E)) -- defend against errors
and then Tagged_Type_Expansion
and then Ekind (E) = E_Record_Type
and then Etype (E) /= E
and then Is_CPP_Class (Etype (E))
and then CPP_Num_Prims (Etype (E)) > 0
and then not Is_CPP_Class (E)
and then not Has_CPP_Constructors (Etype (E))
then
-- If the parent has C++ primitives but it has no constructor then
-- check that all the primitives are overridden in this derivation;
-- otherwise the constructor of the parent is needed to build the
-- dispatch table.
declare
Elmt : Elmt_Id;
Prim : Node_Id;
begin
Elmt := First_Elmt (Primitive_Operations (E));
while Present (Elmt) loop
Prim := Node (Elmt);
if not Is_Abstract_Subprogram (Prim)
and then No (Interface_Alias (Prim))
and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
then
Error_Msg_Name_1 := Chars (Etype (E));
Error_Msg_N
("'C'P'P constructor required for parent type %", E);
exit;
end if;
Next_Elmt (Elmt);
end loop;
end;
end if;
Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
-- If we have a type with predicates, build predicate function. This is
-- not needed in the generic case, nor within TSS subprograms and other
-- predefined primitives.
if Is_Type (E)
and then Non_Generic_Case
and then not Within_Internal_Subprogram
and then Has_Predicates (E)
then
Build_Predicate_Functions (E, N);
end if;
-- If type has delayed aspects, this is where we do the preanalysis at
-- the freeze point, as part of the consistent visibility check. Note
-- that this must be done after calling Build_Predicate_Functions or
-- Build_Invariant_Procedure since these subprograms fix occurrences of
-- the subtype name in the saved expression so that they will not cause
-- trouble in the preanalysis.
-- This is also not needed in the generic case
if Non_Generic_Case
and then Has_Delayed_Aspects (E)
and then Scope (E) = Current_Scope
then
-- Retrieve the visibility to the discriminants in order to properly
-- analyze the aspects.
Push_Scope_And_Install_Discriminants (E);
declare
Ritem : Node_Id;
begin
-- Look for aspect specification entries for this entity
Ritem := First_Rep_Item (E);
while Present (Ritem) loop
if Nkind (Ritem) = N_Aspect_Specification
and then Entity (Ritem) = E
and then Is_Delayed_Aspect (Ritem)
then
Check_Aspect_At_Freeze_Point (Ritem);
end if;
Next_Rep_Item (Ritem);
end loop;
end;
Uninstall_Discriminants_And_Pop_Scope (E);
end if;
-- For a record type, deal with variant parts. This has to be delayed
-- to this point, because of the issue of statically predicated
-- subtypes, which we have to ensure are frozen before checking
-- choices, since we need to have the static choice list set.
if Is_Record_Type (E) then
Check_Variant_Part : declare
D : constant Node_Id := Declaration_Node (E);
T : Node_Id;
C : Node_Id;
VP : Node_Id;
Others_Present : Boolean;
pragma Warnings (Off, Others_Present);
-- Indicates others present, not used in this case
procedure Non_Static_Choice_Error (Choice : Node_Id);
-- Error routine invoked by the generic instantiation below when
-- the variant part has a non static choice.
procedure Process_Declarations (Variant : Node_Id);
-- Processes declarations associated with a variant. We analyzed
-- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
-- but we still need the recursive call to Check_Choices for any
-- nested variant to get its choices properly processed. This is
-- also where we expand out the choices if expansion is active.
package Variant_Choices_Processing is new
Generic_Check_Choices
(Process_Empty_Choice => No_OP,
Process_Non_Static_Choice => Non_Static_Choice_Error,
Process_Associated_Node => Process_Declarations);
use Variant_Choices_Processing;
-----------------------------
-- Non_Static_Choice_Error --
-----------------------------
procedure Non_Static_Choice_Error (Choice : Node_Id) is
begin
Flag_Non_Static_Expr
("choice given in variant part is not static!", Choice);
end Non_Static_Choice_Error;
--------------------------
-- Process_Declarations --
--------------------------
procedure Process_Declarations (Variant : Node_Id) is
CL : constant Node_Id := Component_List (Variant);
VP : Node_Id;
begin
-- Check for static predicate present in this variant
if Has_SP_Choice (Variant) then
-- Here we expand. You might expect to find this call in
-- Expand_N_Variant_Part, but that is called when we first
-- see the variant part, and we cannot do this expansion
-- earlier than the freeze point, since for statically
-- predicated subtypes, the predicate is not known till
-- the freeze point.
-- Furthermore, we do this expansion even if the expander
-- is not active, because other semantic processing, e.g.
-- for aggregates, requires the expanded list of choices.
-- If the expander is not active, then we can't just clobber
-- the list since it would invalidate the ASIS -gnatct tree.
-- So we have to rewrite the variant part with a Rewrite
-- call that replaces it with a copy and clobber the copy.
if not Expander_Active then
declare
NewV : constant Node_Id := New_Copy (Variant);
begin
Set_Discrete_Choices
(NewV, New_Copy_List (Discrete_Choices (Variant)));
Rewrite (Variant, NewV);
end;
end if;
Expand_Static_Predicates_In_Choices (Variant);
end if;
-- We don't need to worry about the declarations in the variant
-- (since they were analyzed by Analyze_Choices when we first
-- encountered the variant), but we do need to take care of
-- expansion of any nested variants.
if not Null_Present (CL) then
VP := Variant_Part (CL);
if Present (VP) then
Check_Choices
(VP, Variants (VP), Etype (Name (VP)), Others_Present);
end if;
end if;
end Process_Declarations;
-- Start of processing for Check_Variant_Part
begin
-- Find component list
C := Empty;
if Nkind (D) = N_Full_Type_Declaration then
T := Type_Definition (D);
if Nkind (T) = N_Record_Definition then
C := Component_List (T);
elsif Nkind (T) = N_Derived_Type_Definition
and then Present (Record_Extension_Part (T))
then
C := Component_List (Record_Extension_Part (T));
end if;
end if;
-- Case of variant part present
if Present (C) and then Present (Variant_Part (C)) then
VP := Variant_Part (C);
-- Check choices
Check_Choices
(VP, Variants (VP), Etype (Name (VP)), Others_Present);
-- If the last variant does not contain the Others choice,
-- replace it with an N_Others_Choice node since Gigi always
-- wants an Others. Note that we do not bother to call Analyze
-- on the modified variant part, since its only effect would be
-- to compute the Others_Discrete_Choices node laboriously, and
-- of course we already know the list of choices corresponding
-- to the others choice (it's the list we're replacing).
-- We only want to do this if the expander is active, since
-- we do not want to clobber the ASIS tree.
if Expander_Active then
declare
Last_Var : constant Node_Id :=
Last_Non_Pragma (Variants (VP));
Others_Node : Node_Id;
begin
if Nkind (First (Discrete_Choices (Last_Var))) /=
N_Others_Choice
then
Others_Node := Make_Others_Choice (Sloc (Last_Var));
Set_Others_Discrete_Choices
(Others_Node, Discrete_Choices (Last_Var));
Set_Discrete_Choices
(Last_Var, New_List (Others_Node));
end if;
end;
end if;
end if;
end Check_Variant_Part;
end if;
end Freeze_Entity_Checks;
-------------------------
-- Get_Alignment_Value --
-------------------------
function Get_Alignment_Value (Expr : Node_Id) return Uint is
Align : constant Uint := Static_Integer (Expr);
begin
if Align = No_Uint then
return No_Uint;
elsif Align <= 0 then
-- This error is suppressed in ASIS mode to allow for different ASIS
-- back ends or ASIS-based tools to query the illegal clause.
if not ASIS_Mode then
Error_Msg_N ("alignment value must be positive", Expr);
end if;
return No_Uint;
else
for J in Int range 0 .. 64 loop
declare
M : constant Uint := Uint_2 ** J;
begin
exit when M = Align;
if M > Align then
-- This error is suppressed in ASIS mode to allow for
-- different ASIS back ends or ASIS-based tools to query the
-- illegal clause.
if not ASIS_Mode then
Error_Msg_N ("alignment value must be power of 2", Expr);
end if;
return No_Uint;
end if;
end;
end loop;
return Align;
end if;
end Get_Alignment_Value;
-----------------------------
-- Get_Interfacing_Aspects --
-----------------------------
procedure Get_Interfacing_Aspects
(Iface_Asp : Node_Id;
Conv_Asp : out Node_Id;
EN_Asp : out Node_Id;
Expo_Asp : out Node_Id;
Imp_Asp : out Node_Id;
LN_Asp : out Node_Id;
Do_Checks : Boolean := False)
is
procedure Save_Or_Duplication_Error
(Asp : Node_Id;
To : in out Node_Id);
-- Save the value of aspect Asp in node To. If To already has a value,
-- then this is considered a duplicate use of aspect. Emit an error if
-- flag Do_Checks is set.
-------------------------------
-- Save_Or_Duplication_Error --
-------------------------------
procedure Save_Or_Duplication_Error
(Asp : Node_Id;
To : in out Node_Id)
is
begin
-- Detect an extra aspect and issue an error
if Present (To) then
if Do_Checks then
Error_Msg_Name_1 := Chars (Identifier (Asp));
Error_Msg_Sloc := Sloc (To);
Error_Msg_N ("aspect % previously given #", Asp);
end if;
-- Otherwise capture the aspect
else
To := Asp;
end if;
end Save_Or_Duplication_Error;
-- Local variables
Asp : Node_Id;
Asp_Id : Aspect_Id;
-- The following variables capture each individual aspect
Conv : Node_Id := Empty;
EN : Node_Id := Empty;
Expo : Node_Id := Empty;
Imp : Node_Id := Empty;
LN : Node_Id := Empty;
-- Start of processing for Get_Interfacing_Aspects
begin
-- The input interfacing aspect should reside in an aspect specification
-- list.
pragma Assert (Is_List_Member (Iface_Asp));
-- Examine the aspect specifications of the related entity. Find and
-- capture all interfacing aspects. Detect duplicates and emit errors
-- if applicable.
Asp := First (List_Containing (Iface_Asp));
while Present (Asp) loop
Asp_Id := Get_Aspect_Id (Asp);
if Asp_Id = Aspect_Convention then
Save_Or_Duplication_Error (Asp, Conv);
elsif Asp_Id = Aspect_External_Name then
Save_Or_Duplication_Error (Asp, EN);
elsif Asp_Id = Aspect_Export then
Save_Or_Duplication_Error (Asp, Expo);
elsif Asp_Id = Aspect_Import then
Save_Or_Duplication_Error (Asp, Imp);
elsif Asp_Id = Aspect_Link_Name then
Save_Or_Duplication_Error (Asp, LN);
end if;
Next (Asp);
end loop;
Conv_Asp := Conv;
EN_Asp := EN;
Expo_Asp := Expo;
Imp_Asp := Imp;
LN_Asp := LN;
end Get_Interfacing_Aspects;
-------------------------------------
-- Inherit_Aspects_At_Freeze_Point --
-------------------------------------
procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
(Rep_Item : Node_Id) return Boolean;
-- This routine checks if Rep_Item is either a pragma or an aspect
-- specification node whose correponding pragma (if any) is present in
-- the Rep Item chain of the entity it has been specified to.
--------------------------------------------------
-- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
--------------------------------------------------
function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
(Rep_Item : Node_Id) return Boolean
is
begin
return
Nkind (Rep_Item) = N_Pragma
or else Present_In_Rep_Item
(Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
-- Start of processing for Inherit_Aspects_At_Freeze_Point
begin
-- A representation item is either subtype-specific (Size and Alignment
-- clauses) or type-related (all others). Subtype-specific aspects may
-- differ for different subtypes of the same type (RM 13.1.8).
-- A derived type inherits each type-related representation aspect of
-- its parent type that was directly specified before the declaration of
-- the derived type (RM 13.1.15).
-- A derived subtype inherits each subtype-specific representation
-- aspect of its parent subtype that was directly specified before the
-- declaration of the derived type (RM 13.1.15).
-- The general processing involves inheriting a representation aspect
-- from a parent type whenever the first rep item (aspect specification,
-- attribute definition clause, pragma) corresponding to the given
-- representation aspect in the rep item chain of Typ, if any, isn't
-- directly specified to Typ but to one of its parents.
-- ??? Note that, for now, just a limited number of representation
-- aspects have been inherited here so far. Many of them are
-- still inherited in Sem_Ch3. This will be fixed soon. Here is
-- a non- exhaustive list of aspects that likely also need to
-- be moved to this routine: Alignment, Component_Alignment,
-- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
-- Preelaborable_Initialization, RM_Size and Small.
-- In addition, Convention must be propagated from base type to subtype,
-- because the subtype may have been declared on an incomplete view.
if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
return;
end if;
-- Ada_05/Ada_2005
if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
(Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
then
Set_Is_Ada_2005_Only (Typ);
end if;
-- Ada_12/Ada_2012
if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
(Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
then
Set_Is_Ada_2012_Only (Typ);
end if;
-- Atomic/Shared
if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
(Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
then
Set_Is_Atomic (Typ);
Set_Is_Volatile (Typ);
Set_Treat_As_Volatile (Typ);
end if;
-- Convention
if Is_Record_Type (Typ)
and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
then
Set_Convention (Typ, Convention (Base_Type (Typ)));
end if;
-- Default_Component_Value
-- Verify that there is no rep_item declared for the type, and there
-- is one coming from an ancestor.
if Is_Array_Type (Typ)
and then Is_Base_Type (Typ)
and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
and then Has_Rep_Item (Typ, Name_Default_Component_Value)
then
Set_Default_Aspect_Component_Value (Typ,
Default_Aspect_Component_Value
(Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
end if;
-- Default_Value
if Is_Scalar_Type (Typ)
and then Is_Base_Type (Typ)
and then not Has_Rep_Item (Typ, Name_Default_Value, False)
and then Has_Rep_Item (Typ, Name_Default_Value)
then
Set_Has_Default_Aspect (Typ);
Set_Default_Aspect_Value (Typ,
Default_Aspect_Value
(Entity (Get_Rep_Item (Typ, Name_Default_Value))));
end if;
-- Discard_Names
if not Has_Rep_Item (Typ, Name_Discard_Names, False)
and then Has_Rep_Item (Typ, Name_Discard_Names)
and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
(Get_Rep_Item (Typ, Name_Discard_Names))
then
Set_Discard_Names (Typ);
end if;
-- Volatile
if not Has_Rep_Item (Typ, Name_Volatile, False)
and then Has_Rep_Item (Typ, Name_Volatile)
and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
(Get_Rep_Item (Typ, Name_Volatile))
then
Set_Is_Volatile (Typ);
Set_Treat_As_Volatile (Typ);
end if;
-- Volatile_Full_Access
if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
(Get_Rep_Item (Typ, Name_Volatile_Full_Access))
then
Set_Is_Volatile_Full_Access (Typ);
Set_Is_Volatile (Typ);
Set_Treat_As_Volatile (Typ);
end if;
-- Inheritance for derived types only
if Is_Derived_Type (Typ) then
declare
Bas_Typ : constant Entity_Id := Base_Type (Typ);
Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
begin
-- Atomic_Components
if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
and then Has_Rep_Item (Typ, Name_Atomic_Components)
and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
(Get_Rep_Item (Typ, Name_Atomic_Components))
then
Set_Has_Atomic_Components (Imp_Bas_Typ);
end if;
-- Volatile_Components
if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
and then Has_Rep_Item (Typ, Name_Volatile_Components)
and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
(Get_Rep_Item (Typ, Name_Volatile_Components))
then
Set_Has_Volatile_Components (Imp_Bas_Typ);
end if;
-- Finalize_Storage_Only
if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
then
Set_Finalize_Storage_Only (Bas_Typ);
end if;
-- Universal_Aliasing
if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
(Get_Rep_Item (Typ, Name_Universal_Aliasing))
then
Set_Universal_Aliasing (Imp_Bas_Typ);
end if;
-- Bit_Order
if Is_Record_Type (Typ) then
if not Has_Rep_Item (Typ, Name_Bit_Order, False)
and then Has_Rep_Item (Typ, Name_Bit_Order)
then
Set_Reverse_Bit_Order (Bas_Typ,
Reverse_Bit_Order (Entity (Name
(Get_Rep_Item (Typ, Name_Bit_Order)))));
end if;
end if;
-- Scalar_Storage_Order
-- Note: the aspect is specified on a first subtype, but recorded
-- in a flag of the base type!
if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
and then Typ = Bas_Typ
then
-- For a type extension, always inherit from parent; otherwise
-- inherit if no default applies. Note: we do not check for
-- an explicit rep item on the parent type when inheriting,
-- because the parent SSO may itself have been set by default.
if not Has_Rep_Item (First_Subtype (Typ),
Name_Scalar_Storage_Order, False)
and then (Is_Tagged_Type (Bas_Typ)
or else not (SSO_Set_Low_By_Default (Bas_Typ)
or else
SSO_Set_High_By_Default (Bas_Typ)))
then
Set_Reverse_Storage_Order (Bas_Typ,
Reverse_Storage_Order
(Implementation_Base_Type (Etype (Bas_Typ))));
-- Clear default SSO indications, since the inherited aspect
-- which was set explicitly overrides the default.
Set_SSO_Set_Low_By_Default (Bas_Typ, False);
Set_SSO_Set_High_By_Default (Bas_Typ, False);
end if;
end if;
end;
end if;
end Inherit_Aspects_At_Freeze_Point;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Address_Clause_Checks.Init;
Compile_Time_Warnings_Errors.Init;
Unchecked_Conversions.Init;
if AAMP_On_Target then
Independence_Checks.Init;
end if;
end Initialize;
---------------------------
-- Install_Discriminants --
---------------------------
procedure Install_Discriminants (E : Entity_Id) is
Disc : Entity_Id;
Prev : Entity_Id;
begin
Disc := First_Discriminant (E);
while Present (Disc) loop
Prev := Current_Entity (Disc);
Set_Current_Entity (Disc);
Set_Is_Immediately_Visible (Disc);
Set_Homonym (Disc, Prev);
Next_Discriminant (Disc);
end loop;
end Install_Discriminants;
-------------------------
-- Is_Operational_Item --
-------------------------
function Is_Operational_Item (N : Node_Id) return Boolean is
begin
if Nkind (N) /= N_Attribute_Definition_Clause then
return False;
else
declare
Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
begin
-- List of operational items is given in AARM 13.1(8.mm/1).
-- It is clearly incomplete, as it does not include iterator
-- aspects, among others.
return Id = Attribute_Constant_Indexing
or else Id = Attribute_Default_Iterator
or else Id = Attribute_Implicit_Dereference
or else Id = Attribute_Input
or else Id = Attribute_Iterator_Element
or else Id = Attribute_Iterable
or else Id = Attribute_Output
or else Id = Attribute_Read
or else Id = Attribute_Variable_Indexing
or else Id = Attribute_Write
or else Id = Attribute_External_Tag;
end;
end if;
end Is_Operational_Item;
-------------------------
-- Is_Predicate_Static --
-------------------------
-- Note: the basic legality of the expression has already been checked, so
-- we don't need to worry about cases or ranges on strings for example.
function Is_Predicate_Static
(Expr : Node_Id;
Nam : Name_Id) return Boolean
is
function All_Static_Case_Alternatives (L : List_Id) return Boolean;
-- Given a list of case expression alternatives, returns True if all
-- the alternatives are static (have all static choices, and a static
-- expression).
function All_Static_Choices (L : List_Id) return Boolean;
-- Returns true if all elements of the list are OK static choices
-- as defined below for Is_Static_Choice. Used for case expression
-- alternatives and for the right operand of a membership test. An
-- others_choice is static if the corresponding expression is static.
-- The staticness of the bounds is checked separately.
function Is_Static_Choice (N : Node_Id) return Boolean;
-- Returns True if N represents a static choice (static subtype, or
-- static subtype indication, or static expression, or static range).
--
-- Note that this is a bit more inclusive than we actually need
-- (in particular membership tests do not allow the use of subtype
-- indications). But that doesn't matter, we have already checked
-- that the construct is legal to get this far.
function Is_Type_Ref (N : Node_Id) return Boolean;
pragma Inline (Is_Type_Ref);
-- Returns True if N is a reference to the type for the predicate in the
-- expression (i.e. if it is an identifier whose Chars field matches the
-- Nam given in the call). N must not be parenthesized, if the type name
-- appears in parens, this routine will return False.
--
-- The routine also returns True for function calls generated during the
-- expansion of comparison operators on strings, which are intended to
-- be legal in static predicates, and are converted into calls to array
-- comparison routines in the body of the corresponding predicate
-- function.
----------------------------------
-- All_Static_Case_Alternatives --
----------------------------------
function All_Static_Case_Alternatives (L : List_Id) return Boolean is
N : Node_Id;
begin
N := First (L);
while Present (N) loop
if not (All_Static_Choices (Discrete_Choices (N))
and then Is_OK_Static_Expression (Expression (N)))
then
return False;
end if;
Next (N);
end loop;
return True;
end All_Static_Case_Alternatives;
------------------------
-- All_Static_Choices --
------------------------
function All_Static_Choices (L : List_Id) return Boolean is
N : Node_Id;
begin
N := First (L);
while Present (N) loop
if not Is_Static_Choice (N) then
return False;
end if;
Next (N);
end loop;
return True;
end All_Static_Choices;
----------------------
-- Is_Static_Choice --
----------------------
function Is_Static_Choice (N : Node_Id) return Boolean is
begin
return Nkind (N) = N_Others_Choice
or else Is_OK_Static_Expression (N)
or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
and then Is_OK_Static_Subtype (Entity (N)))
or else (Nkind (N) = N_Subtype_Indication
and then Is_OK_Static_Subtype (Entity (N)))
or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
end Is_Static_Choice;
-----------------
-- Is_Type_Ref --
-----------------
function Is_Type_Ref (N : Node_Id) return Boolean is
begin
return (Nkind (N) = N_Identifier
and then Chars (N) = Nam
and then Paren_Count (N) = 0)
or else Nkind (N) = N_Function_Call;
end Is_Type_Ref;
-- Start of processing for Is_Predicate_Static
begin
-- Predicate_Static means one of the following holds. Numbers are the
-- corresponding paragraph numbers in (RM 3.2.4(16-22)).
-- 16: A static expression
if Is_OK_Static_Expression (Expr) then
return True;
-- 17: A membership test whose simple_expression is the current
-- instance, and whose membership_choice_list meets the requirements
-- for a static membership test.
elsif Nkind (Expr) in N_Membership_Test
and then ((Present (Right_Opnd (Expr))
and then Is_Static_Choice (Right_Opnd (Expr)))
or else
(Present (Alternatives (Expr))
and then All_Static_Choices (Alternatives (Expr))))
then
return True;
-- 18. A case_expression whose selecting_expression is the current
-- instance, and whose dependent expressions are static expressions.
elsif Nkind (Expr) = N_Case_Expression
and then Is_Type_Ref (Expression (Expr))
and then All_Static_Case_Alternatives (Alternatives (Expr))
then
return True;
-- 19. A call to a predefined equality or ordering operator, where one
-- operand is the current instance, and the other is a static
-- expression.
-- Note: the RM is clearly wrong here in not excluding string types.
-- Without this exclusion, we would allow expressions like X > "ABC"
-- to be considered as predicate-static, which is clearly not intended,
-- since the idea is for predicate-static to be a subset of normal
-- static expressions (and "DEF" > "ABC" is not a static expression).
-- However, we do allow internally generated (not from source) equality
-- and inequality operations to be valid on strings (this helps deal
-- with cases where we transform A in "ABC" to A = "ABC).
-- In fact, it appears that the intent of the ARG is to extend static
-- predicates to strings, and that the extension should probably apply
-- to static expressions themselves. The code below accepts comparison
-- operators that apply to static strings.
elsif Nkind (Expr) in N_Op_Compare
and then ((Is_Type_Ref (Left_Opnd (Expr))
and then Is_OK_Static_Expression (Right_Opnd (Expr)))
or else
(Is_Type_Ref (Right_Opnd (Expr))
and then Is_OK_Static_Expression (Left_Opnd (Expr))))
then
return True;
-- 20. A call to a predefined boolean logical operator, where each
-- operand is predicate-static.
elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
or else
(Nkind (Expr) = N_Op_Not
and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
then
return True;
-- 21. A short-circuit control form where both operands are
-- predicate-static.
elsif Nkind (Expr) in N_Short_Circuit
and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
then
return True;
-- 22. A parenthesized predicate-static expression. This does not
-- require any special test, since we just ignore paren levels in
-- all the cases above.
-- One more test that is an implementation artifact caused by the fact
-- that we are analyzing not the original expression, but the generated
-- expression in the body of the predicate function. This can include
-- references to inherited predicates, so that the expression we are
-- processing looks like:
-- xxPredicate (typ (Inns)) and then expression
-- Where the call is to a Predicate function for an inherited predicate.
-- We simply ignore such a call, which could be to either a dynamic or
-- a static predicate. Note that if the parent predicate is dynamic then
-- eventually this type will be marked as dynamic, but you are allowed
-- to specify a static predicate for a subtype which is inheriting a
-- dynamic predicate, so the static predicate validation here ignores
-- the inherited predicate even if it is dynamic.
-- In all cases, a static predicate can only apply to a scalar type.
elsif Nkind (Expr) = N_Function_Call
and then Is_Predicate_Function (Entity (Name (Expr)))
and then Is_Scalar_Type (Etype (First_Entity (Entity (Name (Expr)))))
then
return True;
-- That's an exhaustive list of tests, all other cases are not
-- predicate-static, so we return False.
else
return False;
end if;
end Is_Predicate_Static;
---------------------
-- Kill_Rep_Clause --
---------------------
procedure Kill_Rep_Clause (N : Node_Id) is
begin
pragma Assert (Ignore_Rep_Clauses);
-- Note: we use Replace rather than Rewrite, because we don't want
-- ASIS to be able to use Original_Node to dig out the (undecorated)
-- rep clause that is being replaced.
Replace (N, Make_Null_Statement (Sloc (N)));
-- The null statement must be marked as not coming from source. This is
-- so that ASIS ignores it, and also the back end does not expect bogus
-- "from source" null statements in weird places (e.g. in declarative
-- regions where such null statements are not allowed).
Set_Comes_From_Source (N, False);
end Kill_Rep_Clause;
------------------
-- Minimum_Size --
------------------
function Minimum_Size
(T : Entity_Id;
Biased : Boolean := False) return Nat
is
Lo : Uint := No_Uint;
Hi : Uint := No_Uint;
LoR : Ureal := No_Ureal;
HiR : Ureal := No_Ureal;
LoSet : Boolean := False;
HiSet : Boolean := False;
B : Uint;
S : Nat;
Ancest : Entity_Id;
R_Typ : constant Entity_Id := Root_Type (T);
begin
-- If bad type, return 0
if T = Any_Type then
return 0;
-- For generic types, just return zero. There cannot be any legitimate
-- need to know such a size, but this routine may be called with a
-- generic type as part of normal processing.
elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
return 0;
-- Access types (cannot have size smaller than System.Address)
elsif Is_Access_Type (T) then
return System_Address_Size;
-- Floating-point types
elsif Is_Floating_Point_Type (T) then
return UI_To_Int (Esize (R_Typ));
-- Discrete types
elsif Is_Discrete_Type (T) then
-- The following loop is looking for the nearest compile time known
-- bounds following the ancestor subtype chain. The idea is to find
-- the most restrictive known bounds information.
Ancest := T;
loop
if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
return 0;
end if;
if not LoSet then
if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
LoSet := True;
exit when HiSet;
end if;
end if;
if not HiSet then
if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
HiSet := True;
exit when LoSet;
end if;
end if;
Ancest := Ancestor_Subtype (Ancest);
if No (Ancest) then
Ancest := Base_Type (T);
if Is_Generic_Type (Ancest) then
return 0;
end if;
end if;
end loop;
-- Fixed-point types. We can't simply use Expr_Value to get the
-- Corresponding_Integer_Value values of the bounds, since these do not
-- get set till the type is frozen, and this routine can be called
-- before the type is frozen. Similarly the test for bounds being static
-- needs to include the case where we have unanalyzed real literals for
-- the same reason.
elsif Is_Fixed_Point_Type (T) then
-- The following loop is looking for the nearest compile time known
-- bounds following the ancestor subtype chain. The idea is to find
-- the most restrictive known bounds information.
Ancest := T;
loop
if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
return 0;
end if;
-- Note: In the following two tests for LoSet and HiSet, it may
-- seem redundant to test for N_Real_Literal here since normally
-- one would assume that the test for the value being known at
-- compile time includes this case. However, there is a glitch.
-- If the real literal comes from folding a non-static expression,
-- then we don't consider any non- static expression to be known
-- at compile time if we are in configurable run time mode (needed
-- in some cases to give a clearer definition of what is and what
-- is not accepted). So the test is indeed needed. Without it, we
-- would set neither Lo_Set nor Hi_Set and get an infinite loop.
if not LoSet then
if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
then
LoR := Expr_Value_R (Type_Low_Bound (Ancest));
LoSet := True;
exit when HiSet;
end if;
end if;
if not HiSet then
if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
then
HiR := Expr_Value_R (Type_High_Bound (Ancest));
HiSet := True;
exit when LoSet;
end if;
end if;
Ancest := Ancestor_Subtype (Ancest);
if No (Ancest) then
Ancest := Base_Type (T);
if Is_Generic_Type (Ancest) then
return 0;
end if;
end if;
end loop;
Lo := UR_To_Uint (LoR / Small_Value (T));
Hi := UR_To_Uint (HiR / Small_Value (T));
-- No other types allowed
else
raise Program_Error;
end if;
-- Fall through with Hi and Lo set. Deal with biased case
if (Biased
and then not Is_Fixed_Point_Type (T)
and then not (Is_Enumeration_Type (T)
and then Has_Non_Standard_Rep (T)))
or else Has_Biased_Representation (T)
then
Hi := Hi - Lo;
Lo := Uint_0;
end if;
-- Null range case, size is always zero. We only do this in the discrete
-- type case, since that's the odd case that came up. Probably we should
-- also do this in the fixed-point case, but doing so causes peculiar
-- gigi failures, and it is not worth worrying about this incredibly
-- marginal case (explicit null-range fixed-point type declarations)???
if Lo > Hi and then Is_Discrete_Type (T) then
S := 0;
-- Signed case. Note that we consider types like range 1 .. -1 to be
-- signed for the purpose of computing the size, since the bounds have
-- to be accommodated in the base type.
elsif Lo < 0 or else Hi < 0 then
S := 1;
B := Uint_1;
-- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
-- Note that we accommodate the case where the bounds cross. This
-- can happen either because of the way the bounds are declared
-- or because of the algorithm in Freeze_Fixed_Point_Type.
while Lo < -B
or else Hi < -B
or else Lo >= B
or else Hi >= B
loop
B := Uint_2 ** S;
S := S + 1;
end loop;
-- Unsigned case
else
-- If both bounds are positive, make sure that both are represen-
-- table in the case where the bounds are crossed. This can happen
-- either because of the way the bounds are declared, or because of
-- the algorithm in Freeze_Fixed_Point_Type.
if Lo > Hi then
Hi := Lo;
end if;
-- S = size, (can accommodate 0 .. (2**size - 1))
S := 0;
while Hi >= Uint_2 ** S loop
S := S + 1;
end loop;
end if;
return S;
end Minimum_Size;
---------------------------
-- New_Stream_Subprogram --
---------------------------
procedure New_Stream_Subprogram
(N : Node_Id;
Ent : Entity_Id;
Subp : Entity_Id;
Nam : TSS_Name_Type)
is
Loc : constant Source_Ptr := Sloc (N);
Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
Subp_Id : Entity_Id;
Subp_Decl : Node_Id;
F : Entity_Id;
Etyp : Entity_Id;
Defer_Declaration : constant Boolean :=
Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
-- For a tagged type, there is a declaration for each stream attribute
-- at the freeze point, and we must generate only a completion of this
-- declaration. We do the same for private types, because the full view
-- might be tagged. Otherwise we generate a declaration at the point of
-- the attribute definition clause. If the attribute definition comes
-- from an aspect specification the declaration is part of the freeze
-- actions of the type.
function Build_Spec return Node_Id;
-- Used for declaration and renaming declaration, so that this is
-- treated as a renaming_as_body.
----------------
-- Build_Spec --
----------------
function Build_Spec return Node_Id is
Out_P : constant Boolean := (Nam = TSS_Stream_Read);
Formals : List_Id;
Spec : Node_Id;
T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
begin
Subp_Id := Make_Defining_Identifier (Loc, Sname);
-- S : access Root_Stream_Type'Class
Formals := New_List (
Make_Parameter_Specification (Loc,
Defining_Identifier =>
Make_Defining_Identifier (Loc, Name_S),
Parameter_Type =>
Make_Access_Definition (Loc,
Subtype_Mark =>
New_Occurrence_Of (
Designated_Type (Etype (F)), Loc))));
if Nam = TSS_Stream_Input then
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => Subp_Id,
Parameter_Specifications => Formals,
Result_Definition => T_Ref);
else
-- V : [out] T
Append_To (Formals,
Make_Parameter_Specification (Loc,
Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
Out_Present => Out_P,
Parameter_Type => T_Ref));
Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Subp_Id,
Parameter_Specifications => Formals);
end if;
return Spec;
end Build_Spec;
-- Start of processing for New_Stream_Subprogram
begin
F := First_Formal (Subp);
if Ekind (Subp) = E_Procedure then
Etyp := Etype (Next_Formal (F));
else
Etyp := Etype (Subp);
end if;
-- Prepare subprogram declaration and insert it as an action on the
-- clause node. The visibility for this entity is used to test for
-- visibility of the attribute definition clause (in the sense of
-- 8.3(23) as amended by AI-195).
if not Defer_Declaration then
Subp_Decl :=
Make_Subprogram_Declaration (Loc,
Specification => Build_Spec);
-- For a tagged type, there is always a visible declaration for each
-- stream TSS (it is a predefined primitive operation), and the
-- completion of this declaration occurs at the freeze point, which is
-- not always visible at places where the attribute definition clause is
-- visible. So, we create a dummy entity here for the purpose of
-- tracking the visibility of the attribute definition clause itself.
else
Subp_Id :=
Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
Subp_Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Subp_Id,
Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
end if;
if not Defer_Declaration
and then From_Aspect_Specification (N)
and then Has_Delayed_Freeze (Ent)
then
Append_Freeze_Action (Ent, Subp_Decl);
else
Insert_Action (N, Subp_Decl);
Set_Entity (N, Subp_Id);
end if;
Subp_Decl :=
Make_Subprogram_Renaming_Declaration (Loc,
Specification => Build_Spec,
Name => New_Occurrence_Of (Subp, Loc));
if Defer_Declaration then
Set_TSS (Base_Type (Ent), Subp_Id);
else
if From_Aspect_Specification (N) then
Append_Freeze_Action (Ent, Subp_Decl);
else
Insert_Action (N, Subp_Decl);
end if;
Copy_TSS (Subp_Id, Base_Type (Ent));
end if;
end New_Stream_Subprogram;
------------------------------------------
-- Push_Scope_And_Install_Discriminants --
------------------------------------------
procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
begin
if Has_Discriminants (E) then
Push_Scope (E);
-- Make the discriminants visible for type declarations and protected
-- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
if Nkind (Parent (E)) /= N_Subtype_Declaration then
Install_Discriminants (E);
end if;
end if;
end Push_Scope_And_Install_Discriminants;
------------------------
-- Rep_Item_Too_Early --
------------------------
function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
begin
-- Cannot apply non-operational rep items to generic types
if Is_Operational_Item (N) then
return False;
elsif Is_Type (T)
and then Is_Generic_Type (Root_Type (T))
and then (Nkind (N) /= N_Pragma
or else Get_Pragma_Id (N) /= Pragma_Convention)
then
Error_Msg_N ("representation item not allowed for generic type", N);
return True;
end if;
-- Otherwise check for incomplete type
if Is_Incomplete_Or_Private_Type (T)
and then No (Underlying_Type (T))
and then
(Nkind (N) /= N_Pragma
or else Get_Pragma_Id (N) /= Pragma_Import)
then
Error_Msg_N
("representation item must be after full type declaration", N);
return True;
-- If the type has incomplete components, a representation clause is
-- illegal but stream attributes and Convention pragmas are correct.
elsif Has_Private_Component (T) then
if Nkind (N) = N_Pragma then
return False;
else
Error_Msg_N
("representation item must appear after type is fully defined",
N);
return True;
end if;
else
return False;
end if;
end Rep_Item_Too_Early;
-----------------------
-- Rep_Item_Too_Late --
-----------------------
function Rep_Item_Too_Late
(T : Entity_Id;
N : Node_Id;
FOnly : Boolean := False) return Boolean
is
S : Entity_Id;
Parent_Type : Entity_Id;
procedure No_Type_Rep_Item;
-- Output message indicating that no type-related aspects can be
-- specified due to some property of the parent type.
procedure Too_Late;
-- Output message for an aspect being specified too late
-- Note that neither of the above errors is considered a serious one,
-- since the effect is simply that we ignore the representation clause
-- in these cases.
-- Is this really true? In any case if we make this change we must
-- document the requirement in the spec of Rep_Item_Too_Late that
-- if True is returned, then the rep item must be completely ignored???
----------------------
-- No_Type_Rep_Item --
----------------------
procedure No_Type_Rep_Item is
begin
Error_Msg_N ("|type-related representation item not permitted!", N);
end No_Type_Rep_Item;
--------------
-- Too_Late --
--------------
procedure Too_Late is
begin
-- Other compilers seem more relaxed about rep items appearing too
-- late. Since analysis tools typically don't care about rep items
-- anyway, no reason to be too strict about this.
if not Relaxed_RM_Semantics then
Error_Msg_N ("|representation item appears too late!", N);
end if;
end Too_Late;
-- Start of processing for Rep_Item_Too_Late
begin
-- First make sure entity is not frozen (RM 13.1(9))
if Is_Frozen (T)
-- Exclude imported types, which may be frozen if they appear in a
-- representation clause for a local type.
and then not From_Limited_With (T)
-- Exclude generated entities (not coming from source). The common
-- case is when we generate a renaming which prematurely freezes the
-- renamed internal entity, but we still want to be able to set copies
-- of attribute values such as Size/Alignment.
and then Comes_From_Source (T)
then
-- A self-referential aspect is illegal if it forces freezing the
-- entity before the corresponding pragma has been analyzed.
if Nkind_In (N, N_Attribute_Definition_Clause, N_Pragma)
and then From_Aspect_Specification (N)
then
Error_Msg_NE
("aspect specification causes premature freezing of&", N, T);
Set_Has_Delayed_Freeze (T, False);
return True;
end if;
Too_Late;
S := First_Subtype (T);
if Present (Freeze_Node (S)) then
if not Relaxed_RM_Semantics then
Error_Msg_NE
("??no more representation items for }", Freeze_Node (S), S);
end if;
end if;
return True;
-- Check for case of untagged derived type whose parent either has
-- primitive operations, or is a by reference type (RM 13.1(10)). In
-- this case we do not output a Too_Late message, since there is no
-- earlier point where the rep item could be placed to make it legal.
elsif Is_Type (T)
and then not FOnly
and then Is_Derived_Type (T)
and then not Is_Tagged_Type (T)
then
Parent_Type := Etype (Base_Type (T));
if Has_Primitive_Operations (Parent_Type) then
No_Type_Rep_Item;
if not Relaxed_RM_Semantics then
Error_Msg_NE
("\parent type & has primitive operations!", N, Parent_Type);
end if;
return True;
elsif Is_By_Reference_Type (Parent_Type) then
No_Type_Rep_Item;
if not Relaxed_RM_Semantics then
Error_Msg_NE
("\parent type & is a by reference type!", N, Parent_Type);
end if;
return True;
end if;
end if;
-- No error, but one more warning to consider. The RM (surprisingly)
-- allows this pattern:
-- type S is ...
-- primitive operations for S
-- type R is new S;
-- rep clause for S
-- Meaning that calls on the primitive operations of S for values of
-- type R may require possibly expensive implicit conversion operations.
-- This is not an error, but is worth a warning.
if not Relaxed_RM_Semantics and then Is_Type (T) then
declare
DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
begin
if Present (DTL)
and then Has_Primitive_Operations (Base_Type (T))
-- For now, do not generate this warning for the case of aspect
-- specification using Ada 2012 syntax, since we get wrong
-- messages we do not understand. The whole business of derived
-- types and rep items seems a bit confused when aspects are
-- used, since the aspects are not evaluated till freeze time.
and then not From_Aspect_Specification (N)
then
Error_Msg_Sloc := Sloc (DTL);
Error_Msg_N
("representation item for& appears after derived type "
& "declaration#??", N);
Error_Msg_NE
("\may result in implicit conversions for primitive "
& "operations of&??", N, T);
Error_Msg_NE
("\to change representations when called with arguments "
& "of type&??", N, DTL);
end if;
end;
end if;
-- No error, link item into head of chain of rep items for the entity,
-- but avoid chaining if we have an overloadable entity, and the pragma
-- is one that can apply to multiple overloaded entities.
if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
declare
Pname : constant Name_Id := Pragma_Name (N);
begin
if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
Name_External, Name_Interface)
then
return False;
end if;
end;
end if;
Record_Rep_Item (T, N);
return False;
end Rep_Item_Too_Late;
-------------------------------------
-- Replace_Type_References_Generic --
-------------------------------------
procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
TName : constant Name_Id := Chars (T);
function Replace_Type_Ref (N : Node_Id) return Traverse_Result;
-- Processes a single node in the traversal procedure below, checking
-- if node N should be replaced, and if so, doing the replacement.
function Visible_Component (Comp : Name_Id) return Entity_Id;
-- Given an identifier in the expression, check whether there is a
-- discriminant or component of the type that is directy visible, and
-- rewrite it as the corresponding selected component of the formal of
-- the subprogram. The entity is located by a sequential search, which
-- seems acceptable given the typical size of component lists and check
-- expressions. Possible optimization ???
----------------------
-- Replace_Type_Ref --
----------------------
function Replace_Type_Ref (N : Node_Id) return Traverse_Result is
Loc : constant Source_Ptr := Sloc (N);
procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id);
-- Add the proper prefix to a reference to a component of the type
-- when it is not already a selected component.
----------------
-- Add_Prefix --
----------------
procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id) is
begin
Rewrite (Ref,
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (T, Loc),
Selector_Name => New_Occurrence_Of (Comp, Loc)));
Replace_Type_Reference (Prefix (Ref));
end Add_Prefix;
-- Local variables
Comp : Entity_Id;
Pref : Node_Id;
Scop : Entity_Id;
-- Start of processing for Replace_Type_Ref
begin
if Nkind (N) = N_Identifier then
-- If not the type name, check whether it is a reference to some
-- other type, which must be frozen before the predicate function
-- is analyzed, i.e. before the freeze node of the type to which
-- the predicate applies.
if Chars (N) /= TName then
if Present (Current_Entity (N))
and then Is_Type (Current_Entity (N))
then
Freeze_Before (Freeze_Node (T), Current_Entity (N));
end if;
-- The components of the type are directly visible and can
-- be referenced without a prefix.
if Nkind (Parent (N)) = N_Selected_Component then
null;
-- In expression C (I), C may be a directly visible function
-- or a visible component that has an array type. Disambiguate
-- by examining the component type.
elsif Nkind (Parent (N)) = N_Indexed_Component
and then N = Prefix (Parent (N))
then
Comp := Visible_Component (Chars (N));
if Present (Comp) and then Is_Array_Type (Etype (Comp)) then
Add_Prefix (N, Comp);
end if;
else
Comp := Visible_Component (Chars (N));
if Present (Comp) then
Add_Prefix (N, Comp);
end if;
end if;
return Skip;
-- Otherwise do the replacement and we are done with this node
else
Replace_Type_Reference (N);
return Skip;
end if;
-- Case of selected component (which is what a qualification looks
-- like in the unanalyzed tree, which is what we have.
elsif Nkind (N) = N_Selected_Component then
-- If selector name is not our type, keeping going (we might still
-- have an occurrence of the type in the prefix).
if Nkind (Selector_Name (N)) /= N_Identifier
or else Chars (Selector_Name (N)) /= TName
then
return OK;
-- Selector name is our type, check qualification
else
-- Loop through scopes and prefixes, doing comparison
Scop := Current_Scope;
Pref := Prefix (N);
loop
-- Continue if no more scopes or scope with no name
if No (Scop) or else Nkind (Scop) not in N_Has_Chars then
return OK;
end if;
-- Do replace if prefix is an identifier matching the scope
-- that we are currently looking at.
if Nkind (Pref) = N_Identifier
and then Chars (Pref) = Chars (Scop)
then
Replace_Type_Reference (N);
return Skip;
end if;
-- Go check scope above us if prefix is itself of the form
-- of a selected component, whose selector matches the scope
-- we are currently looking at.
if Nkind (Pref) = N_Selected_Component
and then Nkind (Selector_Name (Pref)) = N_Identifier
and then Chars (Selector_Name (Pref)) = Chars (Scop)
then
Scop := Scope (Scop);
Pref := Prefix (Pref);
-- For anything else, we don't have a match, so keep on
-- going, there are still some weird cases where we may
-- still have a replacement within the prefix.
else
return OK;
end if;
end loop;
end if;
-- Continue for any other node kind
else
return OK;
end if;
end Replace_Type_Ref;
procedure Replace_Type_Refs is new Traverse_Proc (Replace_Type_Ref);
-----------------------
-- Visible_Component --
-----------------------
function Visible_Component (Comp : Name_Id) return Entity_Id is
E : Entity_Id;
begin
-- Types with nameable components are records and discriminated
-- private types.
if Ekind (T) = E_Record_Type
or else (Is_Private_Type (T) and then Has_Discriminants (T))
then
E := First_Entity (T);
while Present (E) loop
if Comes_From_Source (E) and then Chars (E) = Comp then
return E;
end if;
Next_Entity (E);
end loop;
end if;
-- Nothing by that name, or type has no components.
return Empty;
end Visible_Component;
-- Start of processing for Replace_Type_References_Generic
begin
Replace_Type_Refs (N);
end Replace_Type_References_Generic;
--------------------------------
-- Resolve_Aspect_Expressions --
--------------------------------
procedure Resolve_Aspect_Expressions (E : Entity_Id) is
ASN : Node_Id;
A_Id : Aspect_Id;
Expr : Node_Id;
function Resolve_Name (N : Node_Id) return Traverse_Result;
-- Verify that all identifiers in the expression, with the exception
-- of references to the current entity, denote visible entities. This
-- is done only to detect visibility errors, as the expression will be
-- properly analyzed/expanded during analysis of the predicate function
-- body. We omit quantified expressions from this test, given that they
-- introduce a local identifier that would require proper expansion to
-- handle properly.
-- In ASIS_Mode we preserve the entity in the source because there is
-- no subsequent expansion to decorate the tree.
------------------
-- Resolve_Name --
------------------
function Resolve_Name (N : Node_Id) return Traverse_Result is
begin
if Nkind (N) = N_Selected_Component then
if Nkind (Prefix (N)) = N_Identifier
and then Chars (Prefix (N)) /= Chars (E)
then
Find_Selected_Component (N);
end if;
return Skip;
elsif Nkind (N) = N_Identifier and then Chars (N) /= Chars (E) then
Find_Direct_Name (N);
if True or else not ASIS_Mode then -- ????
Set_Entity (N, Empty);
end if;
elsif Nkind (N) = N_Quantified_Expression then
return Skip;
end if;
return OK;
end Resolve_Name;
procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
-- Start of processing for Resolve_Aspect_Expressions
begin
ASN := First_Rep_Item (E);
while Present (ASN) loop
if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
A_Id := Get_Aspect_Id (ASN);
Expr := Expression (ASN);
case A_Id is
-- For now we only deal with aspects that do not generate
-- subprograms, or that may mention current instances of
-- types. These will require special handling (???TBD).
when Aspect_Invariant
| Aspect_Predicate
| Aspect_Predicate_Failure
=>
null;
when Aspect_Dynamic_Predicate
| Aspect_Static_Predicate
=>
-- Build predicate function specification and preanalyze
-- expression after type replacement.
if No (Predicate_Function (E)) then
declare
FDecl : constant Node_Id :=
Build_Predicate_Function_Declaration (E);
pragma Unreferenced (FDecl);
begin
Resolve_Aspect_Expression (Expr);
end;
end if;
when Pre_Post_Aspects =>
null;
when Aspect_Iterable =>
if Nkind (Expr) = N_Aggregate then
declare
Assoc : Node_Id;
begin
Assoc := First (Component_Associations (Expr));
while Present (Assoc) loop
Find_Direct_Name (Expression (Assoc));
Next (Assoc);
end loop;
end;
end if;
when others =>
if Present (Expr) then
case Aspect_Argument (A_Id) is
when Expression
| Optional_Expression
=>
Analyze_And_Resolve (Expression (ASN));
when Name
| Optional_Name
=>
if Nkind (Expr) = N_Identifier then
Find_Direct_Name (Expr);
elsif Nkind (Expr) = N_Selected_Component then
Find_Selected_Component (Expr);
end if;
end case;
end if;
end case;
end if;
ASN := Next_Rep_Item (ASN);
end loop;
end Resolve_Aspect_Expressions;
-------------------------
-- Same_Representation --
-------------------------
function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
T1 : constant Entity_Id := Underlying_Type (Typ1);
T2 : constant Entity_Id := Underlying_Type (Typ2);
begin
-- A quick check, if base types are the same, then we definitely have
-- the same representation, because the subtype specific representation
-- attributes (Size and Alignment) do not affect representation from
-- the point of view of this test.
if Base_Type (T1) = Base_Type (T2) then
return True;
elsif Is_Private_Type (Base_Type (T2))
and then Base_Type (T1) = Full_View (Base_Type (T2))
then
return True;
end if;
-- Tagged types never have differing representations
if Is_Tagged_Type (T1) then
return True;
end if;
-- Representations are definitely different if conventions differ
if Convention (T1) /= Convention (T2) then
return False;
end if;
-- Representations are different if component alignments or scalar
-- storage orders differ.
if (Is_Record_Type (T1) or else Is_Array_Type (T1))
and then
(Is_Record_Type (T2) or else Is_Array_Type (T2))
and then
(Component_Alignment (T1) /= Component_Alignment (T2)
or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
then
return False;
end if;
-- For arrays, the only real issue is component size. If we know the
-- component size for both arrays, and it is the same, then that's
-- good enough to know we don't have a change of representation.
if Is_Array_Type (T1) then
if Known_Component_Size (T1)
and then Known_Component_Size (T2)
and then Component_Size (T1) = Component_Size (T2)
then
return True;
end if;
end if;
-- Types definitely have same representation if neither has non-standard
-- representation since default representations are always consistent.
-- If only one has non-standard representation, and the other does not,
-- then we consider that they do not have the same representation. They
-- might, but there is no way of telling early enough.
if Has_Non_Standard_Rep (T1) then
if not Has_Non_Standard_Rep (T2) then
return False;
end if;
else
return not Has_Non_Standard_Rep (T2);
end if;
-- Here the two types both have non-standard representation, and we need
-- to determine if they have the same non-standard representation.
-- For arrays, we simply need to test if the component sizes are the
-- same. Pragma Pack is reflected in modified component sizes, so this
-- check also deals with pragma Pack.
if Is_Array_Type (T1) then
return Component_Size (T1) = Component_Size (T2);
-- Tagged types always have the same representation, because it is not
-- possible to specify different representations for common fields.
elsif Is_Tagged_Type (T1) then
return True;
-- Case of record types
elsif Is_Record_Type (T1) then
-- Packed status must conform
if Is_Packed (T1) /= Is_Packed (T2) then
return False;
-- Otherwise we must check components. Typ2 maybe a constrained
-- subtype with fewer components, so we compare the components
-- of the base types.
else
Record_Case : declare
CD1, CD2 : Entity_Id;
function Same_Rep return Boolean;
-- CD1 and CD2 are either components or discriminants. This
-- function tests whether they have the same representation.
--------------
-- Same_Rep --
--------------
function Same_Rep return Boolean is
begin
if No (Component_Clause (CD1)) then
return No (Component_Clause (CD2));
else
-- Note: at this point, component clauses have been
-- normalized to the default bit order, so that the
-- comparison of Component_Bit_Offsets is meaningful.
return
Present (Component_Clause (CD2))
and then
Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
and then
Esize (CD1) = Esize (CD2);
end if;
end Same_Rep;
-- Start of processing for Record_Case
begin
if Has_Discriminants (T1) then
-- The number of discriminants may be different if the
-- derived type has fewer (constrained by values). The
-- invisible discriminants retain the representation of
-- the original, so the discrepancy does not per se
-- indicate a different representation.
CD1 := First_Discriminant (T1);
CD2 := First_Discriminant (T2);
while Present (CD1) and then Present (CD2) loop
if not Same_Rep then
return False;
else
Next_Discriminant (CD1);
Next_Discriminant (CD2);
end if;
end loop;
end if;
CD1 := First_Component (Underlying_Type (Base_Type (T1)));
CD2 := First_Component (Underlying_Type (Base_Type (T2)));
while Present (CD1) loop
if not Same_Rep then
return False;
else
Next_Component (CD1);
Next_Component (CD2);
end if;
end loop;
return True;
end Record_Case;
end if;
-- For enumeration types, we must check each literal to see if the
-- representation is the same. Note that we do not permit enumeration
-- representation clauses for Character and Wide_Character, so these
-- cases were already dealt with.
elsif Is_Enumeration_Type (T1) then
Enumeration_Case : declare
L1, L2 : Entity_Id;
begin
L1 := First_Literal (T1);
L2 := First_Literal (T2);
while Present (L1) loop
if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
return False;
else
Next_Literal (L1);
Next_Literal (L2);
end if;
end loop;
return True;
end Enumeration_Case;
-- Any other types have the same representation for these purposes
else
return True;
end if;
end Same_Representation;
--------------------------------
-- Resolve_Iterable_Operation --
--------------------------------
procedure Resolve_Iterable_Operation
(N : Node_Id;
Cursor : Entity_Id;
Typ : Entity_Id;
Nam : Name_Id)
is
Ent : Entity_Id;
F1 : Entity_Id;
F2 : Entity_Id;
begin
if not Is_Overloaded (N) then
if not Is_Entity_Name (N)
or else Ekind (Entity (N)) /= E_Function
or else Scope (Entity (N)) /= Scope (Typ)
or else No (First_Formal (Entity (N)))
or else Etype (First_Formal (Entity (N))) /= Typ
then
Error_Msg_N ("iterable primitive must be local function name "
& "whose first formal is an iterable type", N);
return;
end if;
Ent := Entity (N);
F1 := First_Formal (Ent);
if Nam = Name_First then
-- First (Container) => Cursor
if Etype (Ent) /= Cursor then
Error_Msg_N ("primitive for First must yield a curosr", N);
end if;
elsif Nam = Name_Next then
-- Next (Container, Cursor) => Cursor
F2 := Next_Formal (F1);
if Etype (F2) /= Cursor
or else Etype (Ent) /= Cursor
or else Present (Next_Formal (F2))
then
Error_Msg_N ("no match for Next iterable primitive", N);
end if;
elsif Nam = Name_Has_Element then
-- Has_Element (Container, Cursor) => Boolean
F2 := Next_Formal (F1);
if Etype (F2) /= Cursor
or else Etype (Ent) /= Standard_Boolean
or else Present (Next_Formal (F2))
then
Error_Msg_N ("no match for Has_Element iterable primitive", N);
end if;
elsif Nam = Name_Element then
F2 := Next_Formal (F1);
if No (F2)
or else Etype (F2) /= Cursor
or else Present (Next_Formal (F2))
then
Error_Msg_N ("no match for Element iterable primitive", N);
end if;
null;
else
raise Program_Error;
end if;
else
-- Overloaded case: find subprogram with proper signature.
-- Caller will report error if no match is found.
declare
I : Interp_Index;
It : Interp;
begin
Get_First_Interp (N, I, It);
while Present (It.Typ) loop
if Ekind (It.Nam) = E_Function
and then Scope (It.Nam) = Scope (Typ)
and then Etype (First_Formal (It.Nam)) = Typ
then
F1 := First_Formal (It.Nam);
if Nam = Name_First then
if Etype (It.Nam) = Cursor
and then No (Next_Formal (F1))
then
Set_Entity (N, It.Nam);
exit;
end if;
elsif Nam = Name_Next then
F2 := Next_Formal (F1);
if Present (F2)
and then No (Next_Formal (F2))
and then Etype (F2) = Cursor
and then Etype (It.Nam) = Cursor
then
Set_Entity (N, It.Nam);
exit;
end if;
elsif Nam = Name_Has_Element then
F2 := Next_Formal (F1);
if Present (F2)
and then No (Next_Formal (F2))
and then Etype (F2) = Cursor
and then Etype (It.Nam) = Standard_Boolean
then
Set_Entity (N, It.Nam);
F2 := Next_Formal (F1);
exit;
end if;
elsif Nam = Name_Element then
F2 := Next_Formal (F1);
if Present (F2)
and then No (Next_Formal (F2))
and then Etype (F2) = Cursor
then
Set_Entity (N, It.Nam);
exit;
end if;
end if;
end if;
Get_Next_Interp (I, It);
end loop;
end;
end if;
end Resolve_Iterable_Operation;
----------------
-- Set_Biased --
----------------
procedure Set_Biased
(E : Entity_Id;
N : Node_Id;
Msg : String;
Biased : Boolean := True)
is
begin
if Biased then
Set_Has_Biased_Representation (E);
if Warn_On_Biased_Representation then
Error_Msg_NE
("?B?" & Msg & " forces biased representation for&", N, E);
end if;
end if;
end Set_Biased;
--------------------
-- Set_Enum_Esize --
--------------------
procedure Set_Enum_Esize (T : Entity_Id) is
Lo : Uint;
Hi : Uint;
Sz : Nat;
begin
Init_Alignment (T);
-- Find the minimum standard size (8,16,32,64) that fits
Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
if Lo < 0 then
if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
Sz := Standard_Character_Size; -- May be > 8 on some targets
elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
Sz := 16;
elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
Sz := 32;
else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
Sz := 64;
end if;
else
if Hi < Uint_2**08 then
Sz := Standard_Character_Size; -- May be > 8 on some targets
elsif Hi < Uint_2**16 then
Sz := 16;
elsif Hi < Uint_2**32 then
Sz := 32;
else pragma Assert (Hi < Uint_2**63);
Sz := 64;
end if;
end if;
-- That minimum is the proper size unless we have a foreign convention
-- and the size required is 32 or less, in which case we bump the size
-- up to 32. This is required for C and C++ and seems reasonable for
-- all other foreign conventions.
if Has_Foreign_Convention (T)
and then Esize (T) < Standard_Integer_Size
-- Don't do this if Short_Enums on target
and then not Target_Short_Enums
then
Init_Esize (T, Standard_Integer_Size);
else
Init_Esize (T, Sz);
end if;
end Set_Enum_Esize;
-----------------------------
-- Uninstall_Discriminants --
-----------------------------
procedure Uninstall_Discriminants (E : Entity_Id) is
Disc : Entity_Id;
Prev : Entity_Id;
Outer : Entity_Id;
begin
-- Discriminants have been made visible for type declarations and
-- protected type declarations, not for subtype declarations.
if Nkind (Parent (E)) /= N_Subtype_Declaration then
Disc := First_Discriminant (E);
while Present (Disc) loop
if Disc /= Current_Entity (Disc) then
Prev := Current_Entity (Disc);
while Present (Prev)
and then Present (Homonym (Prev))
and then Homonym (Prev) /= Disc
loop
Prev := Homonym (Prev);
end loop;
else
Prev := Empty;
end if;
Set_Is_Immediately_Visible (Disc, False);
Outer := Homonym (Disc);
while Present (Outer) and then Scope (Outer) = E loop
Outer := Homonym (Outer);
end loop;
-- Reset homonym link of other entities, but do not modify link
-- between entities in current scope, so that the back end can
-- have a proper count of local overloadings.
if No (Prev) then
Set_Name_Entity_Id (Chars (Disc), Outer);
elsif Scope (Prev) /= Scope (Disc) then
Set_Homonym (Prev, Outer);
end if;
Next_Discriminant (Disc);
end loop;
end if;
end Uninstall_Discriminants;
-------------------------------------------
-- Uninstall_Discriminants_And_Pop_Scope --
-------------------------------------------
procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
begin
if Has_Discriminants (E) then
Uninstall_Discriminants (E);
Pop_Scope;
end if;
end Uninstall_Discriminants_And_Pop_Scope;
------------------------------
-- Validate_Address_Clauses --
------------------------------
procedure Validate_Address_Clauses is
function Offset_Value (Expr : Node_Id) return Uint;
-- Given an Address attribute reference, return the value in bits of its
-- offset from the first bit of the underlying entity, or 0 if it is not
-- known at compile time.
------------------
-- Offset_Value --
------------------
function Offset_Value (Expr : Node_Id) return Uint is
N : Node_Id := Prefix (Expr);
Off : Uint;
Val : Uint := Uint_0;
begin
-- Climb the prefix chain and compute the cumulative offset
loop
if Is_Entity_Name (N) then
return Val;
elsif Nkind (N) = N_Selected_Component then
Off := Component_Bit_Offset (Entity (Selector_Name (N)));
if Off /= No_Uint and then Off >= Uint_0 then
Val := Val + Off;
N := Prefix (N);
else
return Uint_0;
end if;
elsif Nkind (N) = N_Indexed_Component then
Off := Indexed_Component_Bit_Offset (N);
if Off /= No_Uint then
Val := Val + Off;
N := Prefix (N);
else
return Uint_0;
end if;
else
return Uint_0;
end if;
end loop;
end Offset_Value;
-- Start of processing for Validate_Address_Clauses
begin
for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
declare
ACCR : Address_Clause_Check_Record
renames Address_Clause_Checks.Table (J);
Expr : Node_Id;
X_Alignment : Uint;
Y_Alignment : Uint;
X_Size : Uint;
Y_Size : Uint;
X_Offs : Uint;
begin
-- Skip processing of this entry if warning already posted
if not Address_Warning_Posted (ACCR.N) then
Expr := Original_Node (Expression (ACCR.N));
-- Get alignments, sizes and offset, if any
X_Alignment := Alignment (ACCR.X);
X_Size := Esize (ACCR.X);
if Present (ACCR.Y) then
Y_Alignment := Alignment (ACCR.Y);
Y_Size := Esize (ACCR.Y);
end if;
if ACCR.Off
and then Nkind (Expr) = N_Attribute_Reference
and then Attribute_Name (Expr) = Name_Address
then
X_Offs := Offset_Value (Expr);
else
X_Offs := Uint_0;
end if;
-- Check for known value not multiple of alignment
if No (ACCR.Y) then
if not Alignment_Checks_Suppressed (ACCR.X)
and then X_Alignment /= 0
and then ACCR.A mod X_Alignment /= 0
then
Error_Msg_NE
("??specified address for& is inconsistent with "
& "alignment", ACCR.N, ACCR.X);
Error_Msg_N
("\??program execution may be erroneous (RM 13.3(27))",
ACCR.N);
Error_Msg_Uint_1 := X_Alignment;
Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
end if;
-- Check for large object overlaying smaller one
elsif Y_Size > Uint_0
and then X_Size > Uint_0
and then X_Offs + X_Size > Y_Size
then
Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
Error_Msg_N
("\??program execution may be erroneous", ACCR.N);
Error_Msg_Uint_1 := X_Size;
Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
Error_Msg_Uint_1 := Y_Size;
Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
if Y_Size >= X_Size then
Error_Msg_Uint_1 := X_Offs;
Error_Msg_NE ("\??but offset of & is ^", ACCR.N, ACCR.X);
end if;
-- Check for inadequate alignment, both of the base object
-- and of the offset, if any. We only do this check if the
-- run-time Alignment_Check is active. No point in warning
-- if this check has been suppressed (or is suppressed by
-- default in the non-strict alignment machine case).
-- Note: we do not check the alignment if we gave a size
-- warning, since it would likely be redundant.
elsif not Alignment_Checks_Suppressed (ACCR.X)
and then Y_Alignment /= Uint_0
and then
(Y_Alignment < X_Alignment
or else
(ACCR.Off
and then Nkind (Expr) = N_Attribute_Reference
and then Attribute_Name (Expr) = Name_Address
and then Has_Compatible_Alignment
(ACCR.X, Prefix (Expr), True) /=
Known_Compatible))
then
Error_Msg_NE
("??specified address for& may be inconsistent with "
& "alignment", ACCR.N, ACCR.X);
Error_Msg_N
("\??program execution may be erroneous (RM 13.3(27))",
ACCR.N);
Error_Msg_Uint_1 := X_Alignment;
Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
Error_Msg_Uint_1 := Y_Alignment;
Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
if Y_Alignment >= X_Alignment then
Error_Msg_N
("\??but offset is not multiple of alignment", ACCR.N);
end if;
end if;
end if;
end;
end loop;
end Validate_Address_Clauses;
-----------------------------------------
-- Validate_Compile_Time_Warning_Error --
-----------------------------------------
procedure Validate_Compile_Time_Warning_Error (N : Node_Id) is
begin
Compile_Time_Warnings_Errors.Append
(New_Val => CTWE_Entry'(Eloc => Sloc (N),
Scope => Current_Scope,
Prag => N));
end Validate_Compile_Time_Warning_Error;
------------------------------------------
-- Validate_Compile_Time_Warning_Errors --
------------------------------------------
procedure Validate_Compile_Time_Warning_Errors is
procedure Set_Scope (S : Entity_Id);
-- Install all enclosing scopes of S along with S itself
procedure Unset_Scope (S : Entity_Id);
-- Uninstall all enclosing scopes of S along with S itself
---------------
-- Set_Scope --
---------------
procedure Set_Scope (S : Entity_Id) is
begin
if S /= Standard_Standard then
Set_Scope (Scope (S));
end if;
Push_Scope (S);
end Set_Scope;
-----------------
-- Unset_Scope --
-----------------
procedure Unset_Scope (S : Entity_Id) is
begin
if S /= Standard_Standard then
Unset_Scope (Scope (S));
end if;
Pop_Scope;
end Unset_Scope;
-- Start of processing for Validate_Compile_Time_Warning_Errors
begin
Expander_Mode_Save_And_Set (False);
In_Compile_Time_Warning_Or_Error := True;
for N in Compile_Time_Warnings_Errors.First ..
Compile_Time_Warnings_Errors.Last
loop
declare
T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
begin
Set_Scope (T.Scope);
Reset_Analyzed_Flags (T.Prag);
Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
Unset_Scope (T.Scope);
end;
end loop;
In_Compile_Time_Warning_Or_Error := False;
Expander_Mode_Restore;
end Validate_Compile_Time_Warning_Errors;
---------------------------
-- Validate_Independence --
---------------------------
procedure Validate_Independence is
SU : constant Uint := UI_From_Int (System_Storage_Unit);
N : Node_Id;
E : Entity_Id;
IC : Boolean;
Comp : Entity_Id;
Addr : Node_Id;
P : Node_Id;
procedure Check_Array_Type (Atyp : Entity_Id);
-- Checks if the array type Atyp has independent components, and
-- if not, outputs an appropriate set of error messages.
procedure No_Independence;
-- Output message that independence cannot be guaranteed
function OK_Component (C : Entity_Id) return Boolean;
-- Checks one component to see if it is independently accessible, and
-- if so yields True, otherwise yields False if independent access
-- cannot be guaranteed. This is a conservative routine, it only
-- returns True if it knows for sure, it returns False if it knows
-- there is a problem, or it cannot be sure there is no problem.
procedure Reason_Bad_Component (C : Entity_Id);
-- Outputs continuation message if a reason can be determined for
-- the component C being bad.
----------------------
-- Check_Array_Type --
----------------------
procedure Check_Array_Type (Atyp : Entity_Id) is
Ctyp : constant Entity_Id := Component_Type (Atyp);
begin
-- OK if no alignment clause, no pack, and no component size
if not Has_Component_Size_Clause (Atyp)
and then not Has_Alignment_Clause (Atyp)
and then not Is_Packed (Atyp)
then
return;
end if;
-- Case of component size is greater than or equal to 64 and the
-- alignment of the array is at least as large as the alignment
-- of the component. We are definitely OK in this situation.
if Known_Component_Size (Atyp)
and then Component_Size (Atyp) >= 64
and then Known_Alignment (Atyp)
and then Known_Alignment (Ctyp)
and then Alignment (Atyp) >= Alignment (Ctyp)
then
return;
end if;
-- Check actual component size
if not Known_Component_Size (Atyp)
or else not (Addressable (Component_Size (Atyp))
and then Component_Size (Atyp) < 64)
or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
then
No_Independence;
-- Bad component size, check reason
if Has_Component_Size_Clause (Atyp) then
P := Get_Attribute_Definition_Clause
(Atyp, Attribute_Component_Size);
if Present (P) then
Error_Msg_Sloc := Sloc (P);
Error_Msg_N ("\because of Component_Size clause#", N);
return;
end if;
end if;
if Is_Packed (Atyp) then
P := Get_Rep_Pragma (Atyp, Name_Pack);
if Present (P) then
Error_Msg_Sloc := Sloc (P);
Error_Msg_N ("\because of pragma Pack#", N);
return;
end if;
end if;
-- No reason found, just return
return;
end if;
-- Array type is OK independence-wise
return;
end Check_Array_Type;
---------------------
-- No_Independence --
---------------------
procedure No_Independence is
begin
if Pragma_Name (N) = Name_Independent then
Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
else
Error_Msg_NE
("independent components cannot be guaranteed for&", N, E);
end if;
end No_Independence;
------------------
-- OK_Component --
------------------
function OK_Component (C : Entity_Id) return Boolean is
Rec : constant Entity_Id := Scope (C);
Ctyp : constant Entity_Id := Etype (C);
begin
-- OK if no component clause, no Pack, and no alignment clause
if No (Component_Clause (C))
and then not Is_Packed (Rec)
and then not Has_Alignment_Clause (Rec)
then
return True;
end if;
-- Here we look at the actual component layout. A component is
-- addressable if its size is a multiple of the Esize of the
-- component type, and its starting position in the record has
-- appropriate alignment, and the record itself has appropriate
-- alignment to guarantee the component alignment.
-- Make sure sizes are static, always assume the worst for any
-- cases where we cannot check static values.
if not (Known_Static_Esize (C)
and then
Known_Static_Esize (Ctyp))
then
return False;
end if;
-- Size of component must be addressable or greater than 64 bits
-- and a multiple of bytes.
if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
return False;
end if;
-- Check size is proper multiple
if Esize (C) mod Esize (Ctyp) /= 0 then
return False;
end if;
-- Check alignment of component is OK
if not Known_Component_Bit_Offset (C)
or else Component_Bit_Offset (C) < Uint_0
or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
then
return False;
end if;
-- Check alignment of record type is OK
if not Known_Alignment (Rec)
or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
then
return False;
end if;
-- All tests passed, component is addressable
return True;
end OK_Component;
--------------------------
-- Reason_Bad_Component --
--------------------------
procedure Reason_Bad_Component (C : Entity_Id) is
Rec : constant Entity_Id := Scope (C);
Ctyp : constant Entity_Id := Etype (C);
begin
-- If component clause present assume that's the problem
if Present (Component_Clause (C)) then
Error_Msg_Sloc := Sloc (Component_Clause (C));
Error_Msg_N ("\because of Component_Clause#", N);
return;
end if;
-- If pragma Pack clause present, assume that's the problem
if Is_Packed (Rec) then
P := Get_Rep_Pragma (Rec, Name_Pack);
if Present (P) then
Error_Msg_Sloc := Sloc (P);
Error_Msg_N ("\because of pragma Pack#", N);
return;
end if;
end if;
-- See if record has bad alignment clause
if Has_Alignment_Clause (Rec)
and then Known_Alignment (Rec)
and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
then
P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
if Present (P) then
Error_Msg_Sloc := Sloc (P);
Error_Msg_N ("\because of Alignment clause#", N);
end if;
end if;
-- Couldn't find a reason, so return without a message
return;
end Reason_Bad_Component;
-- Start of processing for Validate_Independence
begin
for J in Independence_Checks.First .. Independence_Checks.Last loop
N := Independence_Checks.Table (J).N;
E := Independence_Checks.Table (J).E;
IC := Pragma_Name (N) = Name_Independent_Components;
-- Deal with component case
if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
if not OK_Component (E) then
No_Independence;
Reason_Bad_Component (E);
goto Continue;
end if;
end if;
-- Deal with record with Independent_Components
if IC and then Is_Record_Type (E) then
Comp := First_Component_Or_Discriminant (E);
while Present (Comp) loop
if not OK_Component (Comp) then
No_Independence;
Reason_Bad_Component (Comp);
goto Continue;
end if;
Next_Component_Or_Discriminant (Comp);
end loop;
end if;
-- Deal with address clause case
if Is_Object (E) then
Addr := Address_Clause (E);
if Present (Addr) then
No_Independence;
Error_Msg_Sloc := Sloc (Addr);
Error_Msg_N ("\because of Address clause#", N);
goto Continue;
end if;
end if;
-- Deal with independent components for array type
if IC and then Is_Array_Type (E) then
Check_Array_Type (E);
end if;
-- Deal with independent components for array object
if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
Check_Array_Type (Etype (E));
end if;
<<Continue>> null;
end loop;
end Validate_Independence;
------------------------------
-- Validate_Iterable_Aspect --
------------------------------
procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
Assoc : Node_Id;
Expr : Node_Id;
Prim : Node_Id;
Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
First_Id : Entity_Id;
Next_Id : Entity_Id;
Has_Element_Id : Entity_Id;
Element_Id : Entity_Id;
begin
-- If previous error aspect is unusable
if Cursor = Any_Type then
return;
end if;
First_Id := Empty;
Next_Id := Empty;
Has_Element_Id := Empty;
Element_Id := Empty;
-- Each expression must resolve to a function with the proper signature
Assoc := First (Component_Associations (Expression (ASN)));
while Present (Assoc) loop
Expr := Expression (Assoc);
Analyze (Expr);
Prim := First (Choices (Assoc));
if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
Error_Msg_N ("illegal name in association", Prim);
elsif Chars (Prim) = Name_First then
Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
First_Id := Entity (Expr);
elsif Chars (Prim) = Name_Next then
Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
Next_Id := Entity (Expr);
elsif Chars (Prim) = Name_Has_Element then
Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
Has_Element_Id := Entity (Expr);
elsif Chars (Prim) = Name_Element then
Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
Element_Id := Entity (Expr);
else
Error_Msg_N ("invalid name for iterable function", Prim);
end if;
Next (Assoc);
end loop;
if No (First_Id) then
Error_Msg_N ("match for First primitive not found", ASN);
elsif No (Next_Id) then
Error_Msg_N ("match for Next primitive not found", ASN);
elsif No (Has_Element_Id) then
Error_Msg_N ("match for Has_Element primitive not found", ASN);
elsif No (Element_Id) then
null; -- Optional.
end if;
end Validate_Iterable_Aspect;
-----------------------------------
-- Validate_Unchecked_Conversion --
-----------------------------------
procedure Validate_Unchecked_Conversion
(N : Node_Id;
Act_Unit : Entity_Id)
is
Source : Entity_Id;
Target : Entity_Id;
Vnode : Node_Id;
begin
-- Obtain source and target types. Note that we call Ancestor_Subtype
-- here because the processing for generic instantiation always makes
-- subtypes, and we want the original frozen actual types.
-- If we are dealing with private types, then do the check on their
-- fully declared counterparts if the full declarations have been
-- encountered (they don't have to be visible, but they must exist).
Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
if Is_Private_Type (Source)
and then Present (Underlying_Type (Source))
then
Source := Underlying_Type (Source);
end if;
Target := Ancestor_Subtype (Etype (Act_Unit));
-- If either type is generic, the instantiation happens within a generic
-- unit, and there is nothing to check. The proper check will happen
-- when the enclosing generic is instantiated.
if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
return;
end if;
if Is_Private_Type (Target)
and then Present (Underlying_Type (Target))
then
Target := Underlying_Type (Target);
end if;
-- Source may be unconstrained array, but not target, except in relaxed
-- semantics mode.
if Is_Array_Type (Target)
and then not Is_Constrained (Target)
and then not Relaxed_RM_Semantics
then
Error_Msg_N
("unchecked conversion to unconstrained array not allowed", N);
return;
end if;
-- Warn if conversion between two different convention pointers
if Is_Access_Type (Target)
and then Is_Access_Type (Source)
and then Convention (Target) /= Convention (Source)
and then Warn_On_Unchecked_Conversion
then
-- Give warnings for subprogram pointers only on most targets
if Is_Access_Subprogram_Type (Target)
or else Is_Access_Subprogram_Type (Source)
then
Error_Msg_N
("?z?conversion between pointers with different conventions!",
N);
end if;
end if;
-- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
-- warning when compiling GNAT-related sources.
if Warn_On_Unchecked_Conversion
and then not In_Predefined_Unit (N)
and then RTU_Loaded (Ada_Calendar)
and then (Chars (Source) = Name_Time
or else
Chars (Target) = Name_Time)
then
-- If Ada.Calendar is loaded and the name of one of the operands is
-- Time, there is a good chance that this is Ada.Calendar.Time.
declare
Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
begin
pragma Assert (Present (Calendar_Time));
if Source = Calendar_Time or else Target = Calendar_Time then
Error_Msg_N
("?z?representation of 'Time values may change between "
& "'G'N'A'T versions", N);
end if;
end;
end if;
-- Make entry in unchecked conversion table for later processing by
-- Validate_Unchecked_Conversions, which will check sizes and alignments
-- (using values set by the back end where possible). This is only done
-- if the appropriate warning is active.
if Warn_On_Unchecked_Conversion then
Unchecked_Conversions.Append
(New_Val => UC_Entry'(Eloc => Sloc (N),
Source => Source,
Target => Target,
Act_Unit => Act_Unit));
-- If both sizes are known statically now, then back-end annotation
-- is not required to do a proper check but if either size is not
-- known statically, then we need the annotation.
if Known_Static_RM_Size (Source)
and then
Known_Static_RM_Size (Target)
then
null;
else
Back_Annotate_Rep_Info := True;
end if;
end if;
-- If unchecked conversion to access type, and access type is declared
-- in the same unit as the unchecked conversion, then set the flag
-- No_Strict_Aliasing (no strict aliasing is implicit here)
if Is_Access_Type (Target) and then
In_Same_Source_Unit (Target, N)
then
Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
end if;
-- Generate N_Validate_Unchecked_Conversion node for back end in case
-- the back end needs to perform special validation checks.
-- Shouldn't this be in Exp_Ch13, since the check only gets done if we
-- have full expansion and the back end is called ???
Vnode :=
Make_Validate_Unchecked_Conversion (Sloc (N));
Set_Source_Type (Vnode, Source);
Set_Target_Type (Vnode, Target);
-- If the unchecked conversion node is in a list, just insert before it.
-- If not we have some strange case, not worth bothering about.
if Is_List_Member (N) then
Insert_After (N, Vnode);
end if;
end Validate_Unchecked_Conversion;
------------------------------------
-- Validate_Unchecked_Conversions --
------------------------------------
procedure Validate_Unchecked_Conversions is
begin
for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
declare
T : UC_Entry renames Unchecked_Conversions.Table (N);
Act_Unit : constant Entity_Id := T.Act_Unit;
Eloc : constant Source_Ptr := T.Eloc;
Source : constant Entity_Id := T.Source;
Target : constant Entity_Id := T.Target;
Source_Siz : Uint;
Target_Siz : Uint;
begin
-- Skip if function marked as warnings off
if Warnings_Off (Act_Unit) then
goto Continue;
end if;
-- This validation check, which warns if we have unequal sizes for
-- unchecked conversion, and thus potentially implementation
-- dependent semantics, is one of the few occasions on which we
-- use the official RM size instead of Esize. See description in
-- Einfo "Handling of Type'Size Values" for details.
if Serious_Errors_Detected = 0
and then Known_Static_RM_Size (Source)
and then Known_Static_RM_Size (Target)
-- Don't do the check if warnings off for either type, note the
-- deliberate use of OR here instead of OR ELSE to get the flag
-- Warnings_Off_Used set for both types if appropriate.
and then not (Has_Warnings_Off (Source)
or
Has_Warnings_Off (Target))
then
Source_Siz := RM_Size (Source);
Target_Siz := RM_Size (Target);
if Source_Siz /= Target_Siz then
Error_Msg
("?z?types for unchecked conversion have different sizes!",
Eloc);
if All_Errors_Mode then
Error_Msg_Name_1 := Chars (Source);
Error_Msg_Uint_1 := Source_Siz;
Error_Msg_Name_2 := Chars (Target);
Error_Msg_Uint_2 := Target_Siz;
Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
if Is_Discrete_Type (Source)
and then
Is_Discrete_Type (Target)
then
if Source_Siz > Target_Siz then
Error_Msg
("\?z?^ high order bits of source will "
& "be ignored!", Eloc);
elsif Is_Unsigned_Type (Source) then
Error_Msg
("\?z?source will be extended with ^ high order "
& "zero bits!", Eloc);
else
Error_Msg
("\?z?source will be extended with ^ high order "
& "sign bits!", Eloc);
end if;
elsif Source_Siz < Target_Siz then
if Is_Discrete_Type (Target) then
if Bytes_Big_Endian then
Error_Msg
("\?z?target value will include ^ undefined "
& "low order bits!", Eloc);
else
Error_Msg
("\?z?target value will include ^ undefined "
& "high order bits!", Eloc);
end if;
else
Error_Msg
("\?z?^ trailing bits of target value will be "
& "undefined!", Eloc);
end if;
else pragma Assert (Source_Siz > Target_Siz);
if Is_Discrete_Type (Source) then
if Bytes_Big_Endian then
Error_Msg
("\?z?^ low order bits of source will be "
& "ignored!", Eloc);
else
Error_Msg
("\?z?^ high order bits of source will be "
& "ignored!", Eloc);
end if;
else
Error_Msg
("\?z?^ trailing bits of source will be "
& "ignored!", Eloc);
end if;
end if;
end if;
end if;
end if;
-- If both types are access types, we need to check the alignment.
-- If the alignment of both is specified, we can do it here.
if Serious_Errors_Detected = 0
and then Is_Access_Type (Source)
and then Is_Access_Type (Target)
and then Target_Strict_Alignment
and then Present (Designated_Type (Source))
and then Present (Designated_Type (Target))
then
declare
D_Source : constant Entity_Id := Designated_Type (Source);
D_Target : constant Entity_Id := Designated_Type (Target);
begin
if Known_Alignment (D_Source)
and then
Known_Alignment (D_Target)
then
declare
Source_Align : constant Uint := Alignment (D_Source);
Target_Align : constant Uint := Alignment (D_Target);
begin
if Source_Align < Target_Align
and then not Is_Tagged_Type (D_Source)
-- Suppress warning if warnings suppressed on either
-- type or either designated type. Note the use of
-- OR here instead of OR ELSE. That is intentional,
-- we would like to set flag Warnings_Off_Used in
-- all types for which warnings are suppressed.
and then not (Has_Warnings_Off (D_Source)
or
Has_Warnings_Off (D_Target)
or
Has_Warnings_Off (Source)
or
Has_Warnings_Off (Target))
then
Error_Msg_Uint_1 := Target_Align;
Error_Msg_Uint_2 := Source_Align;
Error_Msg_Node_1 := D_Target;
Error_Msg_Node_2 := D_Source;
Error_Msg
("?z?alignment of & (^) is stricter than "
& "alignment of & (^)!", Eloc);
Error_Msg
("\?z?resulting access value may have invalid "
& "alignment!", Eloc);
end if;
end;
end if;
end;
end if;
end;
<<Continue>>
null;
end loop;
end Validate_Unchecked_Conversions;
end Sem_Ch13;
|