1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 5 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Einfo; use Einfo;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Ch6; use Exp_Ch6;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Ghost; use Ghost;
with Lib; use Lib;
with Lib.Xref; use Lib.Xref;
with Namet; use Namet;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Restrict; use Restrict;
with Rident; use Rident;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Case; use Sem_Case;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch6; use Sem_Ch6;
with Sem_Ch8; use Sem_Ch8;
with Sem_Dim; use Sem_Dim;
with Sem_Disp; use Sem_Disp;
with Sem_Elab; use Sem_Elab;
with Sem_Eval; use Sem_Eval;
with Sem_Res; use Sem_Res;
with Sem_Type; use Sem_Type;
with Sem_Util; use Sem_Util;
with Sem_Warn; use Sem_Warn;
with Snames; use Snames;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Targparm; use Targparm;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
package body Sem_Ch5 is
Current_LHS : Node_Id := Empty;
-- Holds the left-hand side of the assignment statement being analyzed.
-- Used to determine the type of a target_name appearing on the RHS, for
-- AI12-0125 and the use of '@' as an abbreviation for the LHS.
Unblocked_Exit_Count : Nat := 0;
-- This variable is used when processing if statements, case statements,
-- and block statements. It counts the number of exit points that are not
-- blocked by unconditional transfer instructions: for IF and CASE, these
-- are the branches of the conditional; for a block, they are the statement
-- sequence of the block, and the statement sequences of any exception
-- handlers that are part of the block. When processing is complete, if
-- this count is zero, it means that control cannot fall through the IF,
-- CASE or block statement. This is used for the generation of warning
-- messages. This variable is recursively saved on entry to processing the
-- construct, and restored on exit.
procedure Preanalyze_Range (R_Copy : Node_Id);
-- Determine expected type of range or domain of iteration of Ada 2012
-- loop by analyzing separate copy. Do the analysis and resolution of the
-- copy of the bound(s) with expansion disabled, to prevent the generation
-- of finalization actions. This prevents memory leaks when the bounds
-- contain calls to functions returning controlled arrays or when the
-- domain of iteration is a container.
------------------------
-- Analyze_Assignment --
------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos which jump to the end of the routine and restore the
-- Ghost mode.
procedure Analyze_Assignment (N : Node_Id) is
Lhs : constant Node_Id := Name (N);
Rhs : constant Node_Id := Expression (N);
T1 : Entity_Id;
T2 : Entity_Id;
Decl : Node_Id;
procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
-- N is the node for the left hand side of an assignment, and it is not
-- a variable. This routine issues an appropriate diagnostic.
procedure Kill_Lhs;
-- This is called to kill current value settings of a simple variable
-- on the left hand side. We call it if we find any error in analyzing
-- the assignment, and at the end of processing before setting any new
-- current values in place.
procedure Set_Assignment_Type
(Opnd : Node_Id;
Opnd_Type : in out Entity_Id);
-- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
-- nominal subtype. This procedure is used to deal with cases where the
-- nominal subtype must be replaced by the actual subtype.
-------------------------------
-- Diagnose_Non_Variable_Lhs --
-------------------------------
procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
begin
-- Not worth posting another error if left hand side already flagged
-- as being illegal in some respect.
if Error_Posted (N) then
return;
-- Some special bad cases of entity names
elsif Is_Entity_Name (N) then
declare
Ent : constant Entity_Id := Entity (N);
begin
if Ekind (Ent) = E_In_Parameter then
Error_Msg_N
("assignment to IN mode parameter not allowed", N);
return;
-- Renamings of protected private components are turned into
-- constants when compiling a protected function. In the case
-- of single protected types, the private component appears
-- directly.
elsif (Is_Prival (Ent)
and then
(Ekind (Current_Scope) = E_Function
or else Ekind (Enclosing_Dynamic_Scope
(Current_Scope)) = E_Function))
or else
(Ekind (Ent) = E_Component
and then Is_Protected_Type (Scope (Ent)))
then
Error_Msg_N
("protected function cannot modify protected object", N);
return;
elsif Ekind (Ent) = E_Loop_Parameter then
Error_Msg_N ("assignment to loop parameter not allowed", N);
return;
end if;
end;
-- For indexed components, test prefix if it is in array. We do not
-- want to recurse for cases where the prefix is a pointer, since we
-- may get a message confusing the pointer and what it references.
elsif Nkind (N) = N_Indexed_Component
and then Is_Array_Type (Etype (Prefix (N)))
then
Diagnose_Non_Variable_Lhs (Prefix (N));
return;
-- Another special case for assignment to discriminant
elsif Nkind (N) = N_Selected_Component then
if Present (Entity (Selector_Name (N)))
and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
then
Error_Msg_N ("assignment to discriminant not allowed", N);
return;
-- For selection from record, diagnose prefix, but note that again
-- we only do this for a record, not e.g. for a pointer.
elsif Is_Record_Type (Etype (Prefix (N))) then
Diagnose_Non_Variable_Lhs (Prefix (N));
return;
end if;
end if;
-- If we fall through, we have no special message to issue
Error_Msg_N ("left hand side of assignment must be a variable", N);
end Diagnose_Non_Variable_Lhs;
--------------
-- Kill_Lhs --
--------------
procedure Kill_Lhs is
begin
if Is_Entity_Name (Lhs) then
declare
Ent : constant Entity_Id := Entity (Lhs);
begin
if Present (Ent) then
Kill_Current_Values (Ent);
end if;
end;
end if;
end Kill_Lhs;
-------------------------
-- Set_Assignment_Type --
-------------------------
procedure Set_Assignment_Type
(Opnd : Node_Id;
Opnd_Type : in out Entity_Id)
is
begin
Require_Entity (Opnd);
-- If the assignment operand is an in-out or out parameter, then we
-- get the actual subtype (needed for the unconstrained case). If the
-- operand is the actual in an entry declaration, then within the
-- accept statement it is replaced with a local renaming, which may
-- also have an actual subtype.
if Is_Entity_Name (Opnd)
and then (Ekind (Entity (Opnd)) = E_Out_Parameter
or else Ekind_In (Entity (Opnd),
E_In_Out_Parameter,
E_Generic_In_Out_Parameter)
or else
(Ekind (Entity (Opnd)) = E_Variable
and then Nkind (Parent (Entity (Opnd))) =
N_Object_Renaming_Declaration
and then Nkind (Parent (Parent (Entity (Opnd)))) =
N_Accept_Statement))
then
Opnd_Type := Get_Actual_Subtype (Opnd);
-- If assignment operand is a component reference, then we get the
-- actual subtype of the component for the unconstrained case.
elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
and then not Is_Unchecked_Union (Opnd_Type)
then
Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
if Present (Decl) then
Insert_Action (N, Decl);
Mark_Rewrite_Insertion (Decl);
Analyze (Decl);
Opnd_Type := Defining_Identifier (Decl);
Set_Etype (Opnd, Opnd_Type);
Freeze_Itype (Opnd_Type, N);
elsif Is_Constrained (Etype (Opnd)) then
Opnd_Type := Etype (Opnd);
end if;
-- For slice, use the constrained subtype created for the slice
elsif Nkind (Opnd) = N_Slice then
Opnd_Type := Etype (Opnd);
end if;
end Set_Assignment_Type;
-- Local variables
Mode : Ghost_Mode_Type;
-- Start of processing for Analyze_Assignment
begin
-- Save LHS for use in target names (AI12-125)
Current_LHS := Lhs;
Mark_Coextensions (N, Rhs);
-- Analyze the target of the assignment first in case the expression
-- contains references to Ghost entities. The checks that verify the
-- proper use of a Ghost entity need to know the enclosing context.
Analyze (Lhs);
-- An assignment statement is Ghost when the left hand side denotes a
-- Ghost entity. Set the mode now to ensure that any nodes generated
-- during analysis and expansion are properly marked as Ghost.
Mark_And_Set_Ghost_Assignment (N, Mode);
Analyze (Rhs);
-- Ensure that we never do an assignment on a variable marked as
-- as Safe_To_Reevaluate.
pragma Assert (not Is_Entity_Name (Lhs)
or else Ekind (Entity (Lhs)) /= E_Variable
or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
-- Start type analysis for assignment
T1 := Etype (Lhs);
-- In the most general case, both Lhs and Rhs can be overloaded, and we
-- must compute the intersection of the possible types on each side.
if Is_Overloaded (Lhs) then
declare
I : Interp_Index;
It : Interp;
begin
T1 := Any_Type;
Get_First_Interp (Lhs, I, It);
while Present (It.Typ) loop
-- An indexed component with generalized indexing is always
-- overloaded with the corresponding dereference. Discard the
-- interpretation that yields a reference type, which is not
-- assignable.
if Nkind (Lhs) = N_Indexed_Component
and then Present (Generalized_Indexing (Lhs))
and then Has_Implicit_Dereference (It.Typ)
then
null;
-- This may be a call to a parameterless function through an
-- implicit dereference, so discard interpretation as well.
elsif Is_Entity_Name (Lhs)
and then Has_Implicit_Dereference (It.Typ)
then
null;
elsif Has_Compatible_Type (Rhs, It.Typ) then
if T1 /= Any_Type then
-- An explicit dereference is overloaded if the prefix
-- is. Try to remove the ambiguity on the prefix, the
-- error will be posted there if the ambiguity is real.
if Nkind (Lhs) = N_Explicit_Dereference then
declare
PI : Interp_Index;
PI1 : Interp_Index := 0;
PIt : Interp;
Found : Boolean;
begin
Found := False;
Get_First_Interp (Prefix (Lhs), PI, PIt);
while Present (PIt.Typ) loop
if Is_Access_Type (PIt.Typ)
and then Has_Compatible_Type
(Rhs, Designated_Type (PIt.Typ))
then
if Found then
PIt :=
Disambiguate (Prefix (Lhs),
PI1, PI, Any_Type);
if PIt = No_Interp then
Error_Msg_N
("ambiguous left-hand side in "
& "assignment", Lhs);
exit;
else
Resolve (Prefix (Lhs), PIt.Typ);
end if;
exit;
else
Found := True;
PI1 := PI;
end if;
end if;
Get_Next_Interp (PI, PIt);
end loop;
end;
else
Error_Msg_N
("ambiguous left-hand side in assignment", Lhs);
exit;
end if;
else
T1 := It.Typ;
end if;
end if;
Get_Next_Interp (I, It);
end loop;
end;
if T1 = Any_Type then
Error_Msg_N
("no valid types for left-hand side for assignment", Lhs);
Kill_Lhs;
goto Leave;
end if;
end if;
-- The resulting assignment type is T1, so now we will resolve the left
-- hand side of the assignment using this determined type.
Resolve (Lhs, T1);
-- Cases where Lhs is not a variable
-- Cases where Lhs is not a variable. In an instance or an inlined body
-- no need for further check because assignment was legal in template.
if In_Inlined_Body then
null;
elsif not Is_Variable (Lhs) then
-- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
-- protected object.
declare
Ent : Entity_Id;
S : Entity_Id;
begin
if Ada_Version >= Ada_2005 then
-- Handle chains of renamings
Ent := Lhs;
while Nkind (Ent) in N_Has_Entity
and then Present (Entity (Ent))
and then Present (Renamed_Object (Entity (Ent)))
loop
Ent := Renamed_Object (Entity (Ent));
end loop;
if (Nkind (Ent) = N_Attribute_Reference
and then Attribute_Name (Ent) = Name_Priority)
-- Renamings of the attribute Priority applied to protected
-- objects have been previously expanded into calls to the
-- Get_Ceiling run-time subprogram.
or else Is_Expanded_Priority_Attribute (Ent)
then
-- The enclosing subprogram cannot be a protected function
S := Current_Scope;
while not (Is_Subprogram (S)
and then Convention (S) = Convention_Protected)
and then S /= Standard_Standard
loop
S := Scope (S);
end loop;
if Ekind (S) = E_Function
and then Convention (S) = Convention_Protected
then
Error_Msg_N
("protected function cannot modify protected object",
Lhs);
end if;
-- Changes of the ceiling priority of the protected object
-- are only effective if the Ceiling_Locking policy is in
-- effect (AARM D.5.2 (5/2)).
if Locking_Policy /= 'C' then
Error_Msg_N
("assignment to the attribute PRIORITY has no effect??",
Lhs);
Error_Msg_N
("\since no Locking_Policy has been specified??", Lhs);
end if;
goto Leave;
end if;
end if;
end;
Diagnose_Non_Variable_Lhs (Lhs);
goto Leave;
-- Error of assigning to limited type. We do however allow this in
-- certain cases where the front end generates the assignments.
elsif Is_Limited_Type (T1)
and then not Assignment_OK (Lhs)
and then not Assignment_OK (Original_Node (Lhs))
then
-- CPP constructors can only be called in declarations
if Is_CPP_Constructor_Call (Rhs) then
Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
else
Error_Msg_N
("left hand of assignment must not be limited type", Lhs);
Explain_Limited_Type (T1, Lhs);
end if;
goto Leave;
-- A class-wide type may be a limited view. This illegal case is not
-- caught by previous checks.
elsif Ekind (T1) = E_Class_Wide_Type and then From_Limited_With (T1) then
Error_Msg_NE ("invalid use of limited view of&", Lhs, T1);
goto Leave;
-- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
-- abstract. This is only checked when the assignment Comes_From_Source,
-- because in some cases the expander generates such assignments (such
-- in the _assign operation for an abstract type).
elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
Error_Msg_N
("target of assignment operation must not be abstract", Lhs);
end if;
-- Resolution may have updated the subtype, in case the left-hand side
-- is a private protected component. Use the correct subtype to avoid
-- scoping issues in the back-end.
T1 := Etype (Lhs);
-- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
-- type. For example:
-- limited with P;
-- package Pkg is
-- type Acc is access P.T;
-- end Pkg;
-- with Pkg; use Acc;
-- procedure Example is
-- A, B : Acc;
-- begin
-- A.all := B.all; -- ERROR
-- end Example;
if Nkind (Lhs) = N_Explicit_Dereference
and then Ekind (T1) = E_Incomplete_Type
then
Error_Msg_N ("invalid use of incomplete type", Lhs);
Kill_Lhs;
goto Leave;
end if;
-- Now we can complete the resolution of the right hand side
Set_Assignment_Type (Lhs, T1);
Resolve (Rhs, T1);
-- If the right-hand side contains target names, expansion has been
-- disabled to prevent expansion that might move target names out of
-- the context of the assignment statement. Restore the expander mode
-- now so that assignment statement can be properly expanded.
if Nkind (N) = N_Assignment_Statement and then Has_Target_Names (N) then
Expander_Mode_Restore;
end if;
-- This is the point at which we check for an unset reference
Check_Unset_Reference (Rhs);
Check_Unprotected_Access (Lhs, Rhs);
-- Remaining steps are skipped if Rhs was syntactically in error
if Rhs = Error then
Kill_Lhs;
goto Leave;
end if;
T2 := Etype (Rhs);
if not Covers (T1, T2) then
Wrong_Type (Rhs, Etype (Lhs));
Kill_Lhs;
goto Leave;
end if;
-- Ada 2005 (AI-326): In case of explicit dereference of incomplete
-- types, use the non-limited view if available
if Nkind (Rhs) = N_Explicit_Dereference
and then Is_Tagged_Type (T2)
and then Has_Non_Limited_View (T2)
then
T2 := Non_Limited_View (T2);
end if;
Set_Assignment_Type (Rhs, T2);
if Total_Errors_Detected /= 0 then
if No (T1) then
T1 := Any_Type;
end if;
if No (T2) then
T2 := Any_Type;
end if;
end if;
if T1 = Any_Type or else T2 = Any_Type then
Kill_Lhs;
goto Leave;
end if;
-- If the rhs is class-wide or dynamically tagged, then require the lhs
-- to be class-wide. The case where the rhs is a dynamically tagged call
-- to a dispatching operation with a controlling access result is
-- excluded from this check, since the target has an access type (and
-- no tag propagation occurs in that case).
if (Is_Class_Wide_Type (T2)
or else (Is_Dynamically_Tagged (Rhs)
and then not Is_Access_Type (T1)))
and then not Is_Class_Wide_Type (T1)
then
Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
elsif Is_Class_Wide_Type (T1)
and then not Is_Class_Wide_Type (T2)
and then not Is_Tag_Indeterminate (Rhs)
and then not Is_Dynamically_Tagged (Rhs)
then
Error_Msg_N ("dynamically tagged expression required!", Rhs);
end if;
-- Propagate the tag from a class-wide target to the rhs when the rhs
-- is a tag-indeterminate call.
if Is_Tag_Indeterminate (Rhs) then
if Is_Class_Wide_Type (T1) then
Propagate_Tag (Lhs, Rhs);
elsif Nkind (Rhs) = N_Function_Call
and then Is_Entity_Name (Name (Rhs))
and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
then
Error_Msg_N
("call to abstract function must be dispatching", Name (Rhs));
elsif Nkind (Rhs) = N_Qualified_Expression
and then Nkind (Expression (Rhs)) = N_Function_Call
and then Is_Entity_Name (Name (Expression (Rhs)))
and then
Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
then
Error_Msg_N
("call to abstract function must be dispatching",
Name (Expression (Rhs)));
end if;
end if;
-- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
-- apply an implicit conversion of the rhs to that type to force
-- appropriate static and run-time accessibility checks. This applies
-- as well to anonymous access-to-subprogram types that are component
-- subtypes or formal parameters.
if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
if Is_Local_Anonymous_Access (T1)
or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
-- Handle assignment to an Ada 2012 stand-alone object
-- of an anonymous access type.
or else (Ekind (T1) = E_Anonymous_Access_Type
and then Nkind (Associated_Node_For_Itype (T1)) =
N_Object_Declaration)
then
Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
Analyze_And_Resolve (Rhs, T1);
end if;
end if;
-- Ada 2005 (AI-231): Assignment to not null variable
if Ada_Version >= Ada_2005
and then Can_Never_Be_Null (T1)
and then not Assignment_OK (Lhs)
then
-- Case where we know the right hand side is null
if Known_Null (Rhs) then
Apply_Compile_Time_Constraint_Error
(N => Rhs,
Msg =>
"(Ada 2005) null not allowed in null-excluding objects??",
Reason => CE_Null_Not_Allowed);
-- We still mark this as a possible modification, that's necessary
-- to reset Is_True_Constant, and desirable for xref purposes.
Note_Possible_Modification (Lhs, Sure => True);
goto Leave;
-- If we know the right hand side is non-null, then we convert to the
-- target type, since we don't need a run time check in that case.
elsif not Can_Never_Be_Null (T2) then
Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
Analyze_And_Resolve (Rhs, T1);
end if;
end if;
if Is_Scalar_Type (T1) then
Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
-- For array types, verify that lengths match. If the right hand side
-- is a function call that has been inlined, the assignment has been
-- rewritten as a block, and the constraint check will be applied to the
-- assignment within the block.
elsif Is_Array_Type (T1)
and then (Nkind (Rhs) /= N_Type_Conversion
or else Is_Constrained (Etype (Rhs)))
and then (Nkind (Rhs) /= N_Function_Call
or else Nkind (N) /= N_Block_Statement)
then
-- Assignment verifies that the length of the Lsh and Rhs are equal,
-- but of course the indexes do not have to match. If the right-hand
-- side is a type conversion to an unconstrained type, a length check
-- is performed on the expression itself during expansion. In rare
-- cases, the redundant length check is computed on an index type
-- with a different representation, triggering incorrect code in the
-- back end.
Apply_Length_Check (Rhs, Etype (Lhs));
else
-- Discriminant checks are applied in the course of expansion
null;
end if;
-- Note: modifications of the Lhs may only be recorded after
-- checks have been applied.
Note_Possible_Modification (Lhs, Sure => True);
-- ??? a real accessibility check is needed when ???
-- Post warning for redundant assignment or variable to itself
if Warn_On_Redundant_Constructs
-- We only warn for source constructs
and then Comes_From_Source (N)
-- Where the object is the same on both sides
and then Same_Object (Lhs, Original_Node (Rhs))
-- But exclude the case where the right side was an operation that
-- got rewritten (e.g. JUNK + K, where K was known to be zero). We
-- don't want to warn in such a case, since it is reasonable to write
-- such expressions especially when K is defined symbolically in some
-- other package.
and then Nkind (Original_Node (Rhs)) not in N_Op
then
if Nkind (Lhs) in N_Has_Entity then
Error_Msg_NE -- CODEFIX
("?r?useless assignment of & to itself!", N, Entity (Lhs));
else
Error_Msg_N -- CODEFIX
("?r?useless assignment of object to itself!", N);
end if;
end if;
-- Check for non-allowed composite assignment
if not Support_Composite_Assign_On_Target
and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
then
Error_Msg_CRT ("composite assignment", N);
end if;
-- Check elaboration warning for left side if not in elab code
if not In_Subprogram_Or_Concurrent_Unit then
Check_Elab_Assign (Lhs);
end if;
-- Set Referenced_As_LHS if appropriate. We only set this flag if the
-- assignment is a source assignment in the extended main source unit.
-- We are not interested in any reference information outside this
-- context, or in compiler generated assignment statements.
if Comes_From_Source (N)
and then In_Extended_Main_Source_Unit (Lhs)
then
Set_Referenced_Modified (Lhs, Out_Param => False);
end if;
-- RM 7.3.2 (12/3): An assignment to a view conversion (from a type
-- to one of its ancestors) requires an invariant check. Apply check
-- only if expression comes from source, otherwise it will be applied
-- when value is assigned to source entity.
if Nkind (Lhs) = N_Type_Conversion
and then Has_Invariants (Etype (Expression (Lhs)))
and then Comes_From_Source (Expression (Lhs))
then
Insert_After (N, Make_Invariant_Call (Expression (Lhs)));
end if;
-- Final step. If left side is an entity, then we may be able to reset
-- the current tracked values to new safe values. We only have something
-- to do if the left side is an entity name, and expansion has not
-- modified the node into something other than an assignment, and of
-- course we only capture values if it is safe to do so.
if Is_Entity_Name (Lhs)
and then Nkind (N) = N_Assignment_Statement
then
declare
Ent : constant Entity_Id := Entity (Lhs);
begin
if Safe_To_Capture_Value (N, Ent) then
-- If simple variable on left side, warn if this assignment
-- blots out another one (rendering it useless). We only do
-- this for source assignments, otherwise we can generate bogus
-- warnings when an assignment is rewritten as another
-- assignment, and gets tied up with itself.
-- There may have been a previous reference to a component of
-- the variable, which in general removes the Last_Assignment
-- field of the variable to indicate a relevant use of the
-- previous assignment. However, if the assignment is to a
-- subcomponent the reference may not have registered, because
-- it is not possible to determine whether the context is an
-- assignment. In those cases we generate a Deferred_Reference,
-- to be used at the end of compilation to generate the right
-- kind of reference, and we suppress a potential warning for
-- a useless assignment, which might be premature. This may
-- lose a warning in rare cases, but seems preferable to a
-- misleading warning.
if Warn_On_Modified_Unread
and then Is_Assignable (Ent)
and then Comes_From_Source (N)
and then In_Extended_Main_Source_Unit (Ent)
and then not Has_Deferred_Reference (Ent)
then
Warn_On_Useless_Assignment (Ent, N);
end if;
-- If we are assigning an access type and the left side is an
-- entity, then make sure that the Is_Known_[Non_]Null flags
-- properly reflect the state of the entity after assignment.
if Is_Access_Type (T1) then
if Known_Non_Null (Rhs) then
Set_Is_Known_Non_Null (Ent, True);
elsif Known_Null (Rhs)
and then not Can_Never_Be_Null (Ent)
then
Set_Is_Known_Null (Ent, True);
else
Set_Is_Known_Null (Ent, False);
if not Can_Never_Be_Null (Ent) then
Set_Is_Known_Non_Null (Ent, False);
end if;
end if;
-- For discrete types, we may be able to set the current value
-- if the value is known at compile time.
elsif Is_Discrete_Type (T1)
and then Compile_Time_Known_Value (Rhs)
then
Set_Current_Value (Ent, Rhs);
else
Set_Current_Value (Ent, Empty);
end if;
-- If not safe to capture values, kill them
else
Kill_Lhs;
end if;
end;
end if;
-- If assigning to an object in whole or in part, note location of
-- assignment in case no one references value. We only do this for
-- source assignments, otherwise we can generate bogus warnings when an
-- assignment is rewritten as another assignment, and gets tied up with
-- itself.
declare
Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
begin
if Present (Ent)
and then Safe_To_Capture_Value (N, Ent)
and then Nkind (N) = N_Assignment_Statement
and then Warn_On_Modified_Unread
and then Is_Assignable (Ent)
and then Comes_From_Source (N)
and then In_Extended_Main_Source_Unit (Ent)
then
Set_Last_Assignment (Ent, Lhs);
end if;
end;
Analyze_Dimension (N);
<<Leave>>
Current_LHS := Empty;
Restore_Ghost_Mode (Mode);
end Analyze_Assignment;
-----------------------------
-- Analyze_Block_Statement --
-----------------------------
procedure Analyze_Block_Statement (N : Node_Id) is
procedure Install_Return_Entities (Scop : Entity_Id);
-- Install all entities of return statement scope Scop in the visibility
-- chain except for the return object since its entity is reused in a
-- renaming.
-----------------------------
-- Install_Return_Entities --
-----------------------------
procedure Install_Return_Entities (Scop : Entity_Id) is
Id : Entity_Id;
begin
Id := First_Entity (Scop);
while Present (Id) loop
-- Do not install the return object
if not Ekind_In (Id, E_Constant, E_Variable)
or else not Is_Return_Object (Id)
then
Install_Entity (Id);
end if;
Next_Entity (Id);
end loop;
end Install_Return_Entities;
-- Local constants and variables
Decls : constant List_Id := Declarations (N);
Id : constant Node_Id := Identifier (N);
HSS : constant Node_Id := Handled_Statement_Sequence (N);
Is_BIP_Return_Statement : Boolean;
-- Start of processing for Analyze_Block_Statement
begin
-- In SPARK mode, we reject block statements. Note that the case of
-- block statements generated by the expander is fine.
if Nkind (Original_Node (N)) = N_Block_Statement then
Check_SPARK_05_Restriction ("block statement is not allowed", N);
end if;
-- If no handled statement sequence is present, things are really messed
-- up, and we just return immediately (defence against previous errors).
if No (HSS) then
Check_Error_Detected;
return;
end if;
-- Detect whether the block is actually a rewritten return statement of
-- a build-in-place function.
Is_BIP_Return_Statement :=
Present (Id)
and then Present (Entity (Id))
and then Ekind (Entity (Id)) = E_Return_Statement
and then Is_Build_In_Place_Function
(Return_Applies_To (Entity (Id)));
-- Normal processing with HSS present
declare
EH : constant List_Id := Exception_Handlers (HSS);
Ent : Entity_Id := Empty;
S : Entity_Id;
Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
-- Recursively save value of this global, will be restored on exit
begin
-- Initialize unblocked exit count for statements of begin block
-- plus one for each exception handler that is present.
Unblocked_Exit_Count := 1;
if Present (EH) then
Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
end if;
-- If a label is present analyze it and mark it as referenced
if Present (Id) then
Analyze (Id);
Ent := Entity (Id);
-- An error defense. If we have an identifier, but no entity, then
-- something is wrong. If previous errors, then just remove the
-- identifier and continue, otherwise raise an exception.
if No (Ent) then
Check_Error_Detected;
Set_Identifier (N, Empty);
else
Set_Ekind (Ent, E_Block);
Generate_Reference (Ent, N, ' ');
Generate_Definition (Ent);
if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
Set_Label_Construct (Parent (Ent), N);
end if;
end if;
end if;
-- If no entity set, create a label entity
if No (Ent) then
Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
Set_Parent (Ent, N);
end if;
Set_Etype (Ent, Standard_Void_Type);
Set_Block_Node (Ent, Identifier (N));
Push_Scope (Ent);
-- The block served as an extended return statement. Ensure that any
-- entities created during the analysis and expansion of the return
-- object declaration are once again visible.
if Is_BIP_Return_Statement then
Install_Return_Entities (Ent);
end if;
if Present (Decls) then
Analyze_Declarations (Decls);
Check_Completion;
Inspect_Deferred_Constant_Completion (Decls);
end if;
Analyze (HSS);
Process_End_Label (HSS, 'e', Ent);
-- If exception handlers are present, then we indicate that enclosing
-- scopes contain a block with handlers. We only need to mark non-
-- generic scopes.
if Present (EH) then
S := Scope (Ent);
loop
Set_Has_Nested_Block_With_Handler (S);
exit when Is_Overloadable (S)
or else Ekind (S) = E_Package
or else Is_Generic_Unit (S);
S := Scope (S);
end loop;
end if;
Check_References (Ent);
End_Scope;
if Unblocked_Exit_Count = 0 then
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
Check_Unreachable_Code (N);
else
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
end if;
end;
end Analyze_Block_Statement;
--------------------------------
-- Analyze_Compound_Statement --
--------------------------------
procedure Analyze_Compound_Statement (N : Node_Id) is
begin
Analyze_List (Actions (N));
end Analyze_Compound_Statement;
----------------------------
-- Analyze_Case_Statement --
----------------------------
procedure Analyze_Case_Statement (N : Node_Id) is
Exp : Node_Id;
Exp_Type : Entity_Id;
Exp_Btype : Entity_Id;
Last_Choice : Nat;
Others_Present : Boolean;
-- Indicates if Others was present
pragma Warnings (Off, Last_Choice);
-- Don't care about assigned value
Statements_Analyzed : Boolean := False;
-- Set True if at least some statement sequences get analyzed. If False
-- on exit, means we had a serious error that prevented full analysis of
-- the case statement, and as a result it is not a good idea to output
-- warning messages about unreachable code.
Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
-- Recursively save value of this global, will be restored on exit
procedure Non_Static_Choice_Error (Choice : Node_Id);
-- Error routine invoked by the generic instantiation below when the
-- case statement has a non static choice.
procedure Process_Statements (Alternative : Node_Id);
-- Analyzes the statements associated with a case alternative. Needed
-- by instantiation below.
package Analyze_Case_Choices is new
Generic_Analyze_Choices
(Process_Associated_Node => Process_Statements);
use Analyze_Case_Choices;
-- Instantiation of the generic choice analysis package
package Check_Case_Choices is new
Generic_Check_Choices
(Process_Empty_Choice => No_OP,
Process_Non_Static_Choice => Non_Static_Choice_Error,
Process_Associated_Node => No_OP);
use Check_Case_Choices;
-- Instantiation of the generic choice processing package
-----------------------------
-- Non_Static_Choice_Error --
-----------------------------
procedure Non_Static_Choice_Error (Choice : Node_Id) is
begin
Flag_Non_Static_Expr
("choice given in case statement is not static!", Choice);
end Non_Static_Choice_Error;
------------------------
-- Process_Statements --
------------------------
procedure Process_Statements (Alternative : Node_Id) is
Choices : constant List_Id := Discrete_Choices (Alternative);
Ent : Entity_Id;
begin
Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
Statements_Analyzed := True;
-- An interesting optimization. If the case statement expression
-- is a simple entity, then we can set the current value within an
-- alternative if the alternative has one possible value.
-- case N is
-- when 1 => alpha
-- when 2 | 3 => beta
-- when others => gamma
-- Here we know that N is initially 1 within alpha, but for beta and
-- gamma, we do not know anything more about the initial value.
if Is_Entity_Name (Exp) then
Ent := Entity (Exp);
if Ekind_In (Ent, E_Variable,
E_In_Out_Parameter,
E_Out_Parameter)
then
if List_Length (Choices) = 1
and then Nkind (First (Choices)) in N_Subexpr
and then Compile_Time_Known_Value (First (Choices))
then
Set_Current_Value (Entity (Exp), First (Choices));
end if;
Analyze_Statements (Statements (Alternative));
-- After analyzing the case, set the current value to empty
-- since we won't know what it is for the next alternative
-- (unless reset by this same circuit), or after the case.
Set_Current_Value (Entity (Exp), Empty);
return;
end if;
end if;
-- Case where expression is not an entity name of a variable
Analyze_Statements (Statements (Alternative));
end Process_Statements;
-- Start of processing for Analyze_Case_Statement
begin
Unblocked_Exit_Count := 0;
Exp := Expression (N);
Analyze (Exp);
-- The expression must be of any discrete type. In rare cases, the
-- expander constructs a case statement whose expression has a private
-- type whose full view is discrete. This can happen when generating
-- a stream operation for a variant type after the type is frozen,
-- when the partial of view of the type of the discriminant is private.
-- In that case, use the full view to analyze case alternatives.
if not Is_Overloaded (Exp)
and then not Comes_From_Source (N)
and then Is_Private_Type (Etype (Exp))
and then Present (Full_View (Etype (Exp)))
and then Is_Discrete_Type (Full_View (Etype (Exp)))
then
Resolve (Exp, Etype (Exp));
Exp_Type := Full_View (Etype (Exp));
else
Analyze_And_Resolve (Exp, Any_Discrete);
Exp_Type := Etype (Exp);
end if;
Check_Unset_Reference (Exp);
Exp_Btype := Base_Type (Exp_Type);
-- The expression must be of a discrete type which must be determinable
-- independently of the context in which the expression occurs, but
-- using the fact that the expression must be of a discrete type.
-- Moreover, the type this expression must not be a character literal
-- (which is always ambiguous) or, for Ada-83, a generic formal type.
-- If error already reported by Resolve, nothing more to do
if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
return;
elsif Exp_Btype = Any_Character then
Error_Msg_N
("character literal as case expression is ambiguous", Exp);
return;
elsif Ada_Version = Ada_83
and then (Is_Generic_Type (Exp_Btype)
or else Is_Generic_Type (Root_Type (Exp_Btype)))
then
Error_Msg_N
("(Ada 83) case expression cannot be of a generic type", Exp);
return;
end if;
-- If the case expression is a formal object of mode in out, then treat
-- it as having a nonstatic subtype by forcing use of the base type
-- (which has to get passed to Check_Case_Choices below). Also use base
-- type when the case expression is parenthesized.
if Paren_Count (Exp) > 0
or else (Is_Entity_Name (Exp)
and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
then
Exp_Type := Exp_Btype;
end if;
-- Call instantiated procedures to analyzwe and check discrete choices
Analyze_Choices (Alternatives (N), Exp_Type);
Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
-- Case statement with single OTHERS alternative not allowed in SPARK
if Others_Present and then List_Length (Alternatives (N)) = 1 then
Check_SPARK_05_Restriction
("OTHERS as unique case alternative is not allowed", N);
end if;
if Exp_Type = Universal_Integer and then not Others_Present then
Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
end if;
-- If all our exits were blocked by unconditional transfers of control,
-- then the entire CASE statement acts as an unconditional transfer of
-- control, so treat it like one, and check unreachable code. Skip this
-- test if we had serious errors preventing any statement analysis.
if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
Check_Unreachable_Code (N);
else
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
end if;
-- If the expander is active it will detect the case of a statically
-- determined single alternative and remove warnings for the case, but
-- if we are not doing expansion, that circuit won't be active. Here we
-- duplicate the effect of removing warnings in the same way, so that
-- we will get the same set of warnings in -gnatc mode.
if not Expander_Active
and then Compile_Time_Known_Value (Expression (N))
and then Serious_Errors_Detected = 0
then
declare
Chosen : constant Node_Id := Find_Static_Alternative (N);
Alt : Node_Id;
begin
Alt := First (Alternatives (N));
while Present (Alt) loop
if Alt /= Chosen then
Remove_Warning_Messages (Statements (Alt));
end if;
Next (Alt);
end loop;
end;
end if;
end Analyze_Case_Statement;
----------------------------
-- Analyze_Exit_Statement --
----------------------------
-- If the exit includes a name, it must be the name of a currently open
-- loop. Otherwise there must be an innermost open loop on the stack, to
-- which the statement implicitly refers.
-- Additionally, in SPARK mode:
-- The exit can only name the closest enclosing loop;
-- An exit with a when clause must be directly contained in a loop;
-- An exit without a when clause must be directly contained in an
-- if-statement with no elsif or else, which is itself directly contained
-- in a loop. The exit must be the last statement in the if-statement.
procedure Analyze_Exit_Statement (N : Node_Id) is
Target : constant Node_Id := Name (N);
Cond : constant Node_Id := Condition (N);
Scope_Id : Entity_Id;
U_Name : Entity_Id;
Kind : Entity_Kind;
begin
if No (Cond) then
Check_Unreachable_Code (N);
end if;
if Present (Target) then
Analyze (Target);
U_Name := Entity (Target);
if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
Error_Msg_N ("invalid loop name in exit statement", N);
return;
else
if Has_Loop_In_Inner_Open_Scopes (U_Name) then
Check_SPARK_05_Restriction
("exit label must name the closest enclosing loop", N);
end if;
Set_Has_Exit (U_Name);
end if;
else
U_Name := Empty;
end if;
for J in reverse 0 .. Scope_Stack.Last loop
Scope_Id := Scope_Stack.Table (J).Entity;
Kind := Ekind (Scope_Id);
if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
Set_Has_Exit (Scope_Id);
exit;
elsif Kind = E_Block
or else Kind = E_Loop
or else Kind = E_Return_Statement
then
null;
else
Error_Msg_N
("cannot exit from program unit or accept statement", N);
return;
end if;
end loop;
-- Verify that if present the condition is a Boolean expression
if Present (Cond) then
Analyze_And_Resolve (Cond, Any_Boolean);
Check_Unset_Reference (Cond);
end if;
-- In SPARK mode, verify that the exit statement respects the SPARK
-- restrictions.
if Present (Cond) then
if Nkind (Parent (N)) /= N_Loop_Statement then
Check_SPARK_05_Restriction
("exit with when clause must be directly in loop", N);
end if;
else
if Nkind (Parent (N)) /= N_If_Statement then
if Nkind (Parent (N)) = N_Elsif_Part then
Check_SPARK_05_Restriction
("exit must be in IF without ELSIF", N);
else
Check_SPARK_05_Restriction ("exit must be directly in IF", N);
end if;
elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
Check_SPARK_05_Restriction
("exit must be in IF directly in loop", N);
-- First test the presence of ELSE, so that an exit in an ELSE leads
-- to an error mentioning the ELSE.
elsif Present (Else_Statements (Parent (N))) then
Check_SPARK_05_Restriction ("exit must be in IF without ELSE", N);
-- An exit in an ELSIF does not reach here, as it would have been
-- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
elsif Present (Elsif_Parts (Parent (N))) then
Check_SPARK_05_Restriction ("exit must be in IF without ELSIF", N);
end if;
end if;
-- Chain exit statement to associated loop entity
Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
Set_First_Exit_Statement (Scope_Id, N);
-- Since the exit may take us out of a loop, any previous assignment
-- statement is not useless, so clear last assignment indications. It
-- is OK to keep other current values, since if the exit statement
-- does not exit, then the current values are still valid.
Kill_Current_Values (Last_Assignment_Only => True);
end Analyze_Exit_Statement;
----------------------------
-- Analyze_Goto_Statement --
----------------------------
procedure Analyze_Goto_Statement (N : Node_Id) is
Label : constant Node_Id := Name (N);
Scope_Id : Entity_Id;
Label_Scope : Entity_Id;
Label_Ent : Entity_Id;
begin
Check_SPARK_05_Restriction ("goto statement is not allowed", N);
-- Actual semantic checks
Check_Unreachable_Code (N);
Kill_Current_Values (Last_Assignment_Only => True);
Analyze (Label);
Label_Ent := Entity (Label);
-- Ignore previous error
if Label_Ent = Any_Id then
Check_Error_Detected;
return;
-- We just have a label as the target of a goto
elsif Ekind (Label_Ent) /= E_Label then
Error_Msg_N ("target of goto statement must be a label", Label);
return;
-- Check that the target of the goto is reachable according to Ada
-- scoping rules. Note: the special gotos we generate for optimizing
-- local handling of exceptions would violate these rules, but we mark
-- such gotos as analyzed when built, so this code is never entered.
elsif not Reachable (Label_Ent) then
Error_Msg_N ("target of goto statement is not reachable", Label);
return;
end if;
-- Here if goto passes initial validity checks
Label_Scope := Enclosing_Scope (Label_Ent);
for J in reverse 0 .. Scope_Stack.Last loop
Scope_Id := Scope_Stack.Table (J).Entity;
if Label_Scope = Scope_Id
or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
then
if Scope_Id /= Label_Scope then
Error_Msg_N
("cannot exit from program unit or accept statement", N);
end if;
return;
end if;
end loop;
raise Program_Error;
end Analyze_Goto_Statement;
--------------------------
-- Analyze_If_Statement --
--------------------------
-- A special complication arises in the analysis of if statements
-- The expander has circuitry to completely delete code that it can tell
-- will not be executed (as a result of compile time known conditions). In
-- the analyzer, we ensure that code that will be deleted in this manner
-- is analyzed but not expanded. This is obviously more efficient, but
-- more significantly, difficulties arise if code is expanded and then
-- eliminated (e.g. exception table entries disappear). Similarly, itypes
-- generated in deleted code must be frozen from start, because the nodes
-- on which they depend will not be available at the freeze point.
procedure Analyze_If_Statement (N : Node_Id) is
E : Node_Id;
Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
-- Recursively save value of this global, will be restored on exit
Save_In_Deleted_Code : Boolean;
Del : Boolean := False;
-- This flag gets set True if a True condition has been found, which
-- means that remaining ELSE/ELSIF parts are deleted.
procedure Analyze_Cond_Then (Cnode : Node_Id);
-- This is applied to either the N_If_Statement node itself or to an
-- N_Elsif_Part node. It deals with analyzing the condition and the THEN
-- statements associated with it.
-----------------------
-- Analyze_Cond_Then --
-----------------------
procedure Analyze_Cond_Then (Cnode : Node_Id) is
Cond : constant Node_Id := Condition (Cnode);
Tstm : constant List_Id := Then_Statements (Cnode);
begin
Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
Analyze_And_Resolve (Cond, Any_Boolean);
Check_Unset_Reference (Cond);
Set_Current_Value_Condition (Cnode);
-- If already deleting, then just analyze then statements
if Del then
Analyze_Statements (Tstm);
-- Compile time known value, not deleting yet
elsif Compile_Time_Known_Value (Cond) then
Save_In_Deleted_Code := In_Deleted_Code;
-- If condition is True, then analyze the THEN statements and set
-- no expansion for ELSE and ELSIF parts.
if Is_True (Expr_Value (Cond)) then
Analyze_Statements (Tstm);
Del := True;
Expander_Mode_Save_And_Set (False);
In_Deleted_Code := True;
-- If condition is False, analyze THEN with expansion off
else -- Is_False (Expr_Value (Cond))
Expander_Mode_Save_And_Set (False);
In_Deleted_Code := True;
Analyze_Statements (Tstm);
Expander_Mode_Restore;
In_Deleted_Code := Save_In_Deleted_Code;
end if;
-- Not known at compile time, not deleting, normal analysis
else
Analyze_Statements (Tstm);
end if;
end Analyze_Cond_Then;
-- Start of processing for Analyze_If_Statement
begin
-- Initialize exit count for else statements. If there is no else part,
-- this count will stay non-zero reflecting the fact that the uncovered
-- else case is an unblocked exit.
Unblocked_Exit_Count := 1;
Analyze_Cond_Then (N);
-- Now to analyze the elsif parts if any are present
if Present (Elsif_Parts (N)) then
E := First (Elsif_Parts (N));
while Present (E) loop
Analyze_Cond_Then (E);
Next (E);
end loop;
end if;
if Present (Else_Statements (N)) then
Analyze_Statements (Else_Statements (N));
end if;
-- If all our exits were blocked by unconditional transfers of control,
-- then the entire IF statement acts as an unconditional transfer of
-- control, so treat it like one, and check unreachable code.
if Unblocked_Exit_Count = 0 then
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
Check_Unreachable_Code (N);
else
Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
end if;
if Del then
Expander_Mode_Restore;
In_Deleted_Code := Save_In_Deleted_Code;
end if;
if not Expander_Active
and then Compile_Time_Known_Value (Condition (N))
and then Serious_Errors_Detected = 0
then
if Is_True (Expr_Value (Condition (N))) then
Remove_Warning_Messages (Else_Statements (N));
if Present (Elsif_Parts (N)) then
E := First (Elsif_Parts (N));
while Present (E) loop
Remove_Warning_Messages (Then_Statements (E));
Next (E);
end loop;
end if;
else
Remove_Warning_Messages (Then_Statements (N));
end if;
end if;
-- Warn on redundant if statement that has no effect
-- Note, we could also check empty ELSIF parts ???
if Warn_On_Redundant_Constructs
-- If statement must be from source
and then Comes_From_Source (N)
-- Condition must not have obvious side effect
and then Has_No_Obvious_Side_Effects (Condition (N))
-- No elsif parts of else part
and then No (Elsif_Parts (N))
and then No (Else_Statements (N))
-- Then must be a single null statement
and then List_Length (Then_Statements (N)) = 1
then
-- Go to original node, since we may have rewritten something as
-- a null statement (e.g. a case we could figure the outcome of).
declare
T : constant Node_Id := First (Then_Statements (N));
S : constant Node_Id := Original_Node (T);
begin
if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
Error_Msg_N ("if statement has no effect?r?", N);
end if;
end;
end if;
end Analyze_If_Statement;
----------------------------------------
-- Analyze_Implicit_Label_Declaration --
----------------------------------------
-- An implicit label declaration is generated in the innermost enclosing
-- declarative part. This is done for labels, and block and loop names.
-- Note: any changes in this routine may need to be reflected in
-- Analyze_Label_Entity.
procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
Id : constant Node_Id := Defining_Identifier (N);
begin
Enter_Name (Id);
Set_Ekind (Id, E_Label);
Set_Etype (Id, Standard_Void_Type);
Set_Enclosing_Scope (Id, Current_Scope);
end Analyze_Implicit_Label_Declaration;
------------------------------
-- Analyze_Iteration_Scheme --
------------------------------
procedure Analyze_Iteration_Scheme (N : Node_Id) is
Cond : Node_Id;
Iter_Spec : Node_Id;
Loop_Spec : Node_Id;
begin
-- For an infinite loop, there is no iteration scheme
if No (N) then
return;
end if;
Cond := Condition (N);
Iter_Spec := Iterator_Specification (N);
Loop_Spec := Loop_Parameter_Specification (N);
if Present (Cond) then
Analyze_And_Resolve (Cond, Any_Boolean);
Check_Unset_Reference (Cond);
Set_Current_Value_Condition (N);
elsif Present (Iter_Spec) then
Analyze_Iterator_Specification (Iter_Spec);
else
Analyze_Loop_Parameter_Specification (Loop_Spec);
end if;
end Analyze_Iteration_Scheme;
------------------------------------
-- Analyze_Iterator_Specification --
------------------------------------
procedure Analyze_Iterator_Specification (N : Node_Id) is
procedure Check_Reverse_Iteration (Typ : Entity_Id);
-- For an iteration over a container, if the loop carries the Reverse
-- indicator, verify that the container type has an Iterate aspect that
-- implements the reversible iterator interface.
function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id;
-- For containers with Iterator and related aspects, the cursor is
-- obtained by locating an entity with the proper name in the scope
-- of the type.
-----------------------------
-- Check_Reverse_Iteration --
-----------------------------
procedure Check_Reverse_Iteration (Typ : Entity_Id) is
begin
if Reverse_Present (N)
and then not Is_Array_Type (Typ)
and then not Is_Reversible_Iterator (Typ)
then
Error_Msg_NE
("container type does not support reverse iteration", N, Typ);
end if;
end Check_Reverse_Iteration;
---------------------
-- Get_Cursor_Type --
---------------------
function Get_Cursor_Type (Typ : Entity_Id) return Entity_Id is
Ent : Entity_Id;
begin
-- If iterator type is derived, the cursor is declared in the scope
-- of the parent type.
if Is_Derived_Type (Typ) then
Ent := First_Entity (Scope (Etype (Typ)));
else
Ent := First_Entity (Scope (Typ));
end if;
while Present (Ent) loop
exit when Chars (Ent) = Name_Cursor;
Next_Entity (Ent);
end loop;
if No (Ent) then
return Any_Type;
end if;
-- The cursor is the target of generated assignments in the
-- loop, and cannot have a limited type.
if Is_Limited_Type (Etype (Ent)) then
Error_Msg_N ("cursor type cannot be limited", N);
end if;
return Etype (Ent);
end Get_Cursor_Type;
-- Local variables
Def_Id : constant Node_Id := Defining_Identifier (N);
Iter_Name : constant Node_Id := Name (N);
Loc : constant Source_Ptr := Sloc (N);
Subt : constant Node_Id := Subtype_Indication (N);
Bas : Entity_Id;
Typ : Entity_Id;
-- Start of processing for Analyze_Iterator_Specification
begin
Enter_Name (Def_Id);
-- AI12-0151 specifies that when the subtype indication is present, it
-- must statically match the type of the array or container element.
-- To simplify this check, we introduce a subtype declaration with the
-- given subtype indication when it carries a constraint, and rewrite
-- the original as a reference to the created subtype entity.
if Present (Subt) then
if Nkind (Subt) = N_Subtype_Indication then
declare
S : constant Entity_Id := Make_Temporary (Sloc (Subt), 'S');
Decl : constant Node_Id :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => S,
Subtype_Indication => New_Copy_Tree (Subt));
begin
Insert_Before (Parent (Parent (N)), Decl);
Analyze (Decl);
Rewrite (Subt, New_Occurrence_Of (S, Sloc (Subt)));
end;
else
Analyze (Subt);
end if;
-- Save entity of subtype indication for subsequent check
Bas := Entity (Subt);
end if;
Preanalyze_Range (Iter_Name);
-- Set the kind of the loop variable, which is not visible within
-- the iterator name.
Set_Ekind (Def_Id, E_Variable);
-- Provide a link between the iterator variable and the container, for
-- subsequent use in cross-reference and modification information.
if Of_Present (N) then
Set_Related_Expression (Def_Id, Iter_Name);
-- For a container, the iterator is specified through the aspect
if not Is_Array_Type (Etype (Iter_Name)) then
declare
Iterator : constant Entity_Id :=
Find_Value_Of_Aspect
(Etype (Iter_Name), Aspect_Default_Iterator);
I : Interp_Index;
It : Interp;
begin
if No (Iterator) then
null; -- error reported below.
elsif not Is_Overloaded (Iterator) then
Check_Reverse_Iteration (Etype (Iterator));
-- If Iterator is overloaded, use reversible iterator if
-- one is available.
elsif Is_Overloaded (Iterator) then
Get_First_Interp (Iterator, I, It);
while Present (It.Nam) loop
if Ekind (It.Nam) = E_Function
and then Is_Reversible_Iterator (Etype (It.Nam))
then
Set_Etype (Iterator, It.Typ);
Set_Entity (Iterator, It.Nam);
exit;
end if;
Get_Next_Interp (I, It);
end loop;
Check_Reverse_Iteration (Etype (Iterator));
end if;
end;
end if;
end if;
-- If the domain of iteration is an expression, create a declaration for
-- it, so that finalization actions are introduced outside of the loop.
-- The declaration must be a renaming because the body of the loop may
-- assign to elements.
if not Is_Entity_Name (Iter_Name)
-- When the context is a quantified expression, the renaming
-- declaration is delayed until the expansion phase if we are
-- doing expansion.
and then (Nkind (Parent (N)) /= N_Quantified_Expression
or else Operating_Mode = Check_Semantics)
-- Do not perform this expansion for ASIS and when expansion is
-- disabled, where the temporary may hide the transformation of a
-- selected component into a prefixed function call, and references
-- need to see the original expression.
and then Expander_Active
then
declare
Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
Decl : Node_Id;
Act_S : Node_Id;
begin
-- If the domain of iteration is an array component that depends
-- on a discriminant, create actual subtype for it. Pre-analysis
-- does not generate the actual subtype of a selected component.
if Nkind (Iter_Name) = N_Selected_Component
and then Is_Array_Type (Etype (Iter_Name))
then
Act_S :=
Build_Actual_Subtype_Of_Component
(Etype (Selector_Name (Iter_Name)), Iter_Name);
Insert_Action (N, Act_S);
if Present (Act_S) then
Typ := Defining_Identifier (Act_S);
else
Typ := Etype (Iter_Name);
end if;
else
Typ := Etype (Iter_Name);
-- Verify that the expression produces an iterator
if not Of_Present (N) and then not Is_Iterator (Typ)
and then not Is_Array_Type (Typ)
and then No (Find_Aspect (Typ, Aspect_Iterable))
then
Error_Msg_N
("expect object that implements iterator interface",
Iter_Name);
end if;
end if;
-- Protect against malformed iterator
if Typ = Any_Type then
Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
return;
end if;
if not Of_Present (N) then
Check_Reverse_Iteration (Typ);
end if;
-- The name in the renaming declaration may be a function call.
-- Indicate that it does not come from source, to suppress
-- spurious warnings on renamings of parameterless functions,
-- a common enough idiom in user-defined iterators.
Decl :=
Make_Object_Renaming_Declaration (Loc,
Defining_Identifier => Id,
Subtype_Mark => New_Occurrence_Of (Typ, Loc),
Name =>
New_Copy_Tree (Iter_Name, New_Sloc => Loc));
Insert_Actions (Parent (Parent (N)), New_List (Decl));
Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
Set_Etype (Id, Typ);
Set_Etype (Name (N), Typ);
end;
-- Container is an entity or an array with uncontrolled components, or
-- else it is a container iterator given by a function call, typically
-- called Iterate in the case of predefined containers, even though
-- Iterate is not a reserved name. What matters is that the return type
-- of the function is an iterator type.
elsif Is_Entity_Name (Iter_Name) then
Analyze (Iter_Name);
if Nkind (Iter_Name) = N_Function_Call then
declare
C : constant Node_Id := Name (Iter_Name);
I : Interp_Index;
It : Interp;
begin
if not Is_Overloaded (Iter_Name) then
Resolve (Iter_Name, Etype (C));
else
Get_First_Interp (C, I, It);
while It.Typ /= Empty loop
if Reverse_Present (N) then
if Is_Reversible_Iterator (It.Typ) then
Resolve (Iter_Name, It.Typ);
exit;
end if;
elsif Is_Iterator (It.Typ) then
Resolve (Iter_Name, It.Typ);
exit;
end if;
Get_Next_Interp (I, It);
end loop;
end if;
end;
-- Domain of iteration is not overloaded
else
Resolve (Iter_Name, Etype (Iter_Name));
end if;
if not Of_Present (N) then
Check_Reverse_Iteration (Etype (Iter_Name));
end if;
end if;
-- Get base type of container, for proper retrieval of Cursor type
-- and primitive operations.
Typ := Base_Type (Etype (Iter_Name));
if Is_Array_Type (Typ) then
if Of_Present (N) then
Set_Etype (Def_Id, Component_Type (Typ));
-- The loop variable is aliased if the array components are
-- aliased.
Set_Is_Aliased (Def_Id, Has_Aliased_Components (Typ));
-- AI12-0047 stipulates that the domain (array or container)
-- cannot be a component that depends on a discriminant if the
-- enclosing object is mutable, to prevent a modification of the
-- dowmain of iteration in the course of an iteration.
-- If the object is an expression it has been captured in a
-- temporary, so examine original node.
if Nkind (Original_Node (Iter_Name)) = N_Selected_Component
and then Is_Dependent_Component_Of_Mutable_Object
(Original_Node (Iter_Name))
then
Error_Msg_N
("iterable name cannot be a discriminant-dependent "
& "component of a mutable object", N);
end if;
if Present (Subt)
and then
(Base_Type (Bas) /= Base_Type (Component_Type (Typ))
or else
not Subtypes_Statically_Match (Bas, Component_Type (Typ)))
then
Error_Msg_N
("subtype indication does not match component type", Subt);
end if;
-- Here we have a missing Range attribute
else
Error_Msg_N
("missing Range attribute in iteration over an array", N);
-- In Ada 2012 mode, this may be an attempt at an iterator
if Ada_Version >= Ada_2012 then
Error_Msg_NE
("\if& is meant to designate an element of the array, use OF",
N, Def_Id);
end if;
-- Prevent cascaded errors
Set_Ekind (Def_Id, E_Loop_Parameter);
Set_Etype (Def_Id, Etype (First_Index (Typ)));
end if;
-- Check for type error in iterator
elsif Typ = Any_Type then
return;
-- Iteration over a container
else
Set_Ekind (Def_Id, E_Loop_Parameter);
Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
-- OF present
if Of_Present (N) then
if Has_Aspect (Typ, Aspect_Iterable) then
declare
Elt : constant Entity_Id :=
Get_Iterable_Type_Primitive (Typ, Name_Element);
begin
if No (Elt) then
Error_Msg_N
("missing Element primitive for iteration", N);
else
Set_Etype (Def_Id, Etype (Elt));
end if;
end;
-- For a predefined container, The type of the loop variable is
-- the Iterator_Element aspect of the container type.
else
declare
Element : constant Entity_Id :=
Find_Value_Of_Aspect
(Typ, Aspect_Iterator_Element);
Iterator : constant Entity_Id :=
Find_Value_Of_Aspect
(Typ, Aspect_Default_Iterator);
Orig_Iter_Name : constant Node_Id :=
Original_Node (Iter_Name);
Cursor_Type : Entity_Id;
begin
if No (Element) then
Error_Msg_NE ("cannot iterate over&", N, Typ);
return;
else
Set_Etype (Def_Id, Entity (Element));
Cursor_Type := Get_Cursor_Type (Typ);
pragma Assert (Present (Cursor_Type));
-- If subtype indication was given, verify that it covers
-- the element type of the container.
if Present (Subt)
and then (not Covers (Bas, Etype (Def_Id))
or else not Subtypes_Statically_Match
(Bas, Etype (Def_Id)))
then
Error_Msg_N
("subtype indication does not match element type",
Subt);
end if;
-- If the container has a variable indexing aspect, the
-- element is a variable and is modifiable in the loop.
if Has_Aspect (Typ, Aspect_Variable_Indexing) then
Set_Ekind (Def_Id, E_Variable);
end if;
-- If the container is a constant, iterating over it
-- requires a Constant_Indexing operation.
if not Is_Variable (Iter_Name)
and then not Has_Aspect (Typ, Aspect_Constant_Indexing)
then
Error_Msg_N
("iteration over constant container require "
& "constant_indexing aspect", N);
-- The Iterate function may have an in_out parameter,
-- and a constant container is thus illegal.
elsif Present (Iterator)
and then Ekind (Entity (Iterator)) = E_Function
and then Ekind (First_Formal (Entity (Iterator))) /=
E_In_Parameter
and then not Is_Variable (Iter_Name)
then
Error_Msg_N ("variable container expected", N);
end if;
-- Detect a case where the iterator denotes a component
-- of a mutable object which depends on a discriminant.
-- Note that the iterator may denote a function call in
-- qualified form, in which case this check should not
-- be performed.
if Nkind (Orig_Iter_Name) = N_Selected_Component
and then
Present (Entity (Selector_Name (Orig_Iter_Name)))
and then Ekind_In
(Entity (Selector_Name (Orig_Iter_Name)),
E_Component,
E_Discriminant)
and then Is_Dependent_Component_Of_Mutable_Object
(Orig_Iter_Name)
then
Error_Msg_N
("container cannot be a discriminant-dependent "
& "component of a mutable object", N);
end if;
end if;
end;
end if;
-- IN iterator, domain is a range, or a call to Iterate function
else
-- For an iteration of the form IN, the name must denote an
-- iterator, typically the result of a call to Iterate. Give a
-- useful error message when the name is a container by itself.
-- The type may be a formal container type, which has to have
-- an Iterable aspect detailing the required primitives.
if Is_Entity_Name (Original_Node (Name (N)))
and then not Is_Iterator (Typ)
then
if Has_Aspect (Typ, Aspect_Iterable) then
null;
elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
Error_Msg_NE
("cannot iterate over&", Name (N), Typ);
else
Error_Msg_N
("name must be an iterator, not a container", Name (N));
end if;
if Has_Aspect (Typ, Aspect_Iterable) then
null;
else
Error_Msg_NE
("\to iterate directly over the elements of a container, "
& "write `of &`", Name (N), Original_Node (Name (N)));
-- No point in continuing analysis of iterator spec
return;
end if;
end if;
-- If the name is a call (typically prefixed) to some Iterate
-- function, it has been rewritten as an object declaration.
-- If that object is a selected component, verify that it is not
-- a component of an unconstrained mutable object.
if Nkind (Iter_Name) = N_Identifier
or else (not Expander_Active and Comes_From_Source (Iter_Name))
then
declare
Orig_Node : constant Node_Id := Original_Node (Iter_Name);
Iter_Kind : constant Node_Kind := Nkind (Orig_Node);
Obj : Node_Id;
begin
if Iter_Kind = N_Selected_Component then
Obj := Prefix (Orig_Node);
elsif Iter_Kind = N_Function_Call then
Obj := First_Actual (Orig_Node);
-- If neither, the name comes from source
else
Obj := Iter_Name;
end if;
if Nkind (Obj) = N_Selected_Component
and then Is_Dependent_Component_Of_Mutable_Object (Obj)
then
Error_Msg_N
("container cannot be a discriminant-dependent "
& "component of a mutable object", N);
end if;
end;
end if;
-- The result type of Iterate function is the classwide type of
-- the interface parent. We need the specific Cursor type defined
-- in the container package. We obtain it by name for a predefined
-- container, or through the Iterable aspect for a formal one.
if Has_Aspect (Typ, Aspect_Iterable) then
Set_Etype (Def_Id,
Get_Cursor_Type
(Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
Typ));
else
Set_Etype (Def_Id, Get_Cursor_Type (Typ));
Check_Reverse_Iteration (Etype (Iter_Name));
end if;
end if;
end if;
end Analyze_Iterator_Specification;
-------------------
-- Analyze_Label --
-------------------
-- Note: the semantic work required for analyzing labels (setting them as
-- reachable) was done in a prepass through the statements in the block,
-- so that forward gotos would be properly handled. See Analyze_Statements
-- for further details. The only processing required here is to deal with
-- optimizations that depend on an assumption of sequential control flow,
-- since of course the occurrence of a label breaks this assumption.
procedure Analyze_Label (N : Node_Id) is
pragma Warnings (Off, N);
begin
Kill_Current_Values;
end Analyze_Label;
--------------------------
-- Analyze_Label_Entity --
--------------------------
procedure Analyze_Label_Entity (E : Entity_Id) is
begin
Set_Ekind (E, E_Label);
Set_Etype (E, Standard_Void_Type);
Set_Enclosing_Scope (E, Current_Scope);
Set_Reachable (E, True);
end Analyze_Label_Entity;
------------------------------------------
-- Analyze_Loop_Parameter_Specification --
------------------------------------------
procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
Loop_Nod : constant Node_Id := Parent (Parent (N));
procedure Check_Controlled_Array_Attribute (DS : Node_Id);
-- If the bounds are given by a 'Range reference on a function call
-- that returns a controlled array, introduce an explicit declaration
-- to capture the bounds, so that the function result can be finalized
-- in timely fashion.
procedure Check_Predicate_Use (T : Entity_Id);
-- Diagnose Attempt to iterate through non-static predicate. Note that
-- a type with inherited predicates may have both static and dynamic
-- forms. In this case it is not sufficent to check the static predicate
-- function only, look for a dynamic predicate aspect as well.
function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
-- N is the node for an arbitrary construct. This function searches the
-- construct N to see if any expressions within it contain function
-- calls that use the secondary stack, returning True if any such call
-- is found, and False otherwise.
procedure Process_Bounds (R : Node_Id);
-- If the iteration is given by a range, create temporaries and
-- assignment statements block to capture the bounds and perform
-- required finalization actions in case a bound includes a function
-- call that uses the temporary stack. We first pre-analyze a copy of
-- the range in order to determine the expected type, and analyze and
-- resolve the original bounds.
--------------------------------------
-- Check_Controlled_Array_Attribute --
--------------------------------------
procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
begin
if Nkind (DS) = N_Attribute_Reference
and then Is_Entity_Name (Prefix (DS))
and then Ekind (Entity (Prefix (DS))) = E_Function
and then Is_Array_Type (Etype (Entity (Prefix (DS))))
and then
Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
and then Expander_Active
then
declare
Loc : constant Source_Ptr := Sloc (N);
Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
Indx : constant Entity_Id :=
Base_Type (Etype (First_Index (Arr)));
Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
Decl : Node_Id;
begin
Decl :=
Make_Subtype_Declaration (Loc,
Defining_Identifier => Subt,
Subtype_Indication =>
Make_Subtype_Indication (Loc,
Subtype_Mark => New_Occurrence_Of (Indx, Loc),
Constraint =>
Make_Range_Constraint (Loc, Relocate_Node (DS))));
Insert_Before (Loop_Nod, Decl);
Analyze (Decl);
Rewrite (DS,
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of (Subt, Loc),
Attribute_Name => Attribute_Name (DS)));
Analyze (DS);
end;
end if;
end Check_Controlled_Array_Attribute;
-------------------------
-- Check_Predicate_Use --
-------------------------
procedure Check_Predicate_Use (T : Entity_Id) is
begin
-- A predicated subtype is illegal in loops and related constructs
-- if the predicate is not static, or if it is a non-static subtype
-- of a statically predicated subtype.
if Is_Discrete_Type (T)
and then Has_Predicates (T)
and then (not Has_Static_Predicate (T)
or else not Is_Static_Subtype (T)
or else Has_Dynamic_Predicate_Aspect (T))
then
-- Seems a confusing message for the case of a static predicate
-- with a non-static subtype???
Bad_Predicated_Subtype_Use
("cannot use subtype& with non-static predicate for loop "
& "iteration", Discrete_Subtype_Definition (N),
T, Suggest_Static => True);
elsif Inside_A_Generic and then Is_Generic_Formal (T) then
Set_No_Dynamic_Predicate_On_Actual (T);
end if;
end Check_Predicate_Use;
------------------------------------
-- Has_Call_Using_Secondary_Stack --
------------------------------------
function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
function Check_Call (N : Node_Id) return Traverse_Result;
-- Check if N is a function call which uses the secondary stack
----------------
-- Check_Call --
----------------
function Check_Call (N : Node_Id) return Traverse_Result is
Nam : Node_Id;
Subp : Entity_Id;
Return_Typ : Entity_Id;
begin
if Nkind (N) = N_Function_Call then
Nam := Name (N);
-- Call using access to subprogram with explicit dereference
if Nkind (Nam) = N_Explicit_Dereference then
Subp := Etype (Nam);
-- Call using a selected component notation or Ada 2005 object
-- operation notation
elsif Nkind (Nam) = N_Selected_Component then
Subp := Entity (Selector_Name (Nam));
-- Common case
else
Subp := Entity (Nam);
end if;
Return_Typ := Etype (Subp);
if Is_Composite_Type (Return_Typ)
and then not Is_Constrained (Return_Typ)
then
return Abandon;
elsif Sec_Stack_Needed_For_Return (Subp) then
return Abandon;
end if;
end if;
-- Continue traversing the tree
return OK;
end Check_Call;
function Check_Calls is new Traverse_Func (Check_Call);
-- Start of processing for Has_Call_Using_Secondary_Stack
begin
return Check_Calls (N) = Abandon;
end Has_Call_Using_Secondary_Stack;
--------------------
-- Process_Bounds --
--------------------
procedure Process_Bounds (R : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
function One_Bound
(Original_Bound : Node_Id;
Analyzed_Bound : Node_Id;
Typ : Entity_Id) return Node_Id;
-- Capture value of bound and return captured value
---------------
-- One_Bound --
---------------
function One_Bound
(Original_Bound : Node_Id;
Analyzed_Bound : Node_Id;
Typ : Entity_Id) return Node_Id
is
Assign : Node_Id;
Decl : Node_Id;
Id : Entity_Id;
begin
-- If the bound is a constant or an object, no need for a separate
-- declaration. If the bound is the result of previous expansion
-- it is already analyzed and should not be modified. Note that
-- the Bound will be resolved later, if needed, as part of the
-- call to Make_Index (literal bounds may need to be resolved to
-- type Integer).
if Analyzed (Original_Bound) then
return Original_Bound;
elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
N_Character_Literal)
or else Is_Entity_Name (Analyzed_Bound)
then
Analyze_And_Resolve (Original_Bound, Typ);
return Original_Bound;
end if;
-- Normally, the best approach is simply to generate a constant
-- declaration that captures the bound. However, there is a nasty
-- case where this is wrong. If the bound is complex, and has a
-- possible use of the secondary stack, we need to generate a
-- separate assignment statement to ensure the creation of a block
-- which will release the secondary stack.
-- We prefer the constant declaration, since it leaves us with a
-- proper trace of the value, useful in optimizations that get rid
-- of junk range checks.
if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
Analyze_And_Resolve (Original_Bound, Typ);
-- Ensure that the bound is valid. This check should not be
-- generated when the range belongs to a quantified expression
-- as the construct is still not expanded into its final form.
if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
then
Ensure_Valid (Original_Bound);
end if;
Force_Evaluation (Original_Bound);
return Original_Bound;
end if;
Id := Make_Temporary (Loc, 'R', Original_Bound);
-- Here we make a declaration with a separate assignment
-- statement, and insert before loop header.
Decl :=
Make_Object_Declaration (Loc,
Defining_Identifier => Id,
Object_Definition => New_Occurrence_Of (Typ, Loc));
Assign :=
Make_Assignment_Statement (Loc,
Name => New_Occurrence_Of (Id, Loc),
Expression => Relocate_Node (Original_Bound));
Insert_Actions (Loop_Nod, New_List (Decl, Assign));
-- Now that this temporary variable is initialized we decorate it
-- as safe-to-reevaluate to inform to the backend that no further
-- asignment will be issued and hence it can be handled as side
-- effect free. Note that this decoration must be done when the
-- assignment has been analyzed because otherwise it will be
-- rejected (see Analyze_Assignment).
Set_Is_Safe_To_Reevaluate (Id);
Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
if Nkind (Assign) = N_Assignment_Statement then
return Expression (Assign);
else
return Original_Bound;
end if;
end One_Bound;
Hi : constant Node_Id := High_Bound (R);
Lo : constant Node_Id := Low_Bound (R);
R_Copy : constant Node_Id := New_Copy_Tree (R);
New_Hi : Node_Id;
New_Lo : Node_Id;
Typ : Entity_Id;
-- Start of processing for Process_Bounds
begin
Set_Parent (R_Copy, Parent (R));
Preanalyze_Range (R_Copy);
Typ := Etype (R_Copy);
-- If the type of the discrete range is Universal_Integer, then the
-- bound's type must be resolved to Integer, and any object used to
-- hold the bound must also have type Integer, unless the literal
-- bounds are constant-folded expressions with a user-defined type.
if Typ = Universal_Integer then
if Nkind (Lo) = N_Integer_Literal
and then Present (Etype (Lo))
and then Scope (Etype (Lo)) /= Standard_Standard
then
Typ := Etype (Lo);
elsif Nkind (Hi) = N_Integer_Literal
and then Present (Etype (Hi))
and then Scope (Etype (Hi)) /= Standard_Standard
then
Typ := Etype (Hi);
else
Typ := Standard_Integer;
end if;
end if;
Set_Etype (R, Typ);
New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
-- Propagate staticness to loop range itself, in case the
-- corresponding subtype is static.
if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
Rewrite (Low_Bound (R), New_Copy (New_Lo));
end if;
if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
Rewrite (High_Bound (R), New_Copy (New_Hi));
end if;
end Process_Bounds;
-- Local variables
DS : constant Node_Id := Discrete_Subtype_Definition (N);
Id : constant Entity_Id := Defining_Identifier (N);
DS_Copy : Node_Id;
-- Start of processing for Analyze_Loop_Parameter_Specification
begin
Enter_Name (Id);
-- We always consider the loop variable to be referenced, since the loop
-- may be used just for counting purposes.
Generate_Reference (Id, N, ' ');
-- Check for the case of loop variable hiding a local variable (used
-- later on to give a nice warning if the hidden variable is never
-- assigned).
declare
H : constant Entity_Id := Homonym (Id);
begin
if Present (H)
and then Ekind (H) = E_Variable
and then Is_Discrete_Type (Etype (H))
and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
then
Set_Hiding_Loop_Variable (H, Id);
end if;
end;
-- Loop parameter specification must include subtype mark in SPARK
if Nkind (DS) = N_Range then
Check_SPARK_05_Restriction
("loop parameter specification must include subtype mark", N);
end if;
-- Analyze the subtype definition and create temporaries for the bounds.
-- Do not evaluate the range when preanalyzing a quantified expression
-- because bounds expressed as function calls with side effects will be
-- incorrectly replicated.
if Nkind (DS) = N_Range
and then Expander_Active
and then Nkind (Parent (N)) /= N_Quantified_Expression
then
Process_Bounds (DS);
-- Either the expander not active or the range of iteration is a subtype
-- indication, an entity, or a function call that yields an aggregate or
-- a container.
else
DS_Copy := New_Copy_Tree (DS);
Set_Parent (DS_Copy, Parent (DS));
Preanalyze_Range (DS_Copy);
-- Ada 2012: If the domain of iteration is:
-- a) a function call,
-- b) an identifier that is not a type,
-- c) an attribute reference 'Old (within a postcondition),
-- d) an unchecked conversion or a qualified expression with
-- the proper iterator type.
-- then it is an iteration over a container. It was classified as
-- a loop specification by the parser, and must be rewritten now
-- to activate container iteration. The last case will occur within
-- an expanded inlined call, where the expansion wraps an actual in
-- an unchecked conversion when needed. The expression of the
-- conversion is always an object.
if Nkind (DS_Copy) = N_Function_Call
or else (Is_Entity_Name (DS_Copy)
and then not Is_Type (Entity (DS_Copy)))
or else (Nkind (DS_Copy) = N_Attribute_Reference
and then Nam_In (Attribute_Name (DS_Copy),
Name_Loop_Entry, Name_Old))
or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)
or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
or else (Nkind (DS_Copy) = N_Qualified_Expression
and then Is_Iterator (Etype (DS_Copy)))
then
-- This is an iterator specification. Rewrite it as such and
-- analyze it to capture function calls that may require
-- finalization actions.
declare
I_Spec : constant Node_Id :=
Make_Iterator_Specification (Sloc (N),
Defining_Identifier => Relocate_Node (Id),
Name => DS_Copy,
Subtype_Indication => Empty,
Reverse_Present => Reverse_Present (N));
Scheme : constant Node_Id := Parent (N);
begin
Set_Iterator_Specification (Scheme, I_Spec);
Set_Loop_Parameter_Specification (Scheme, Empty);
Analyze_Iterator_Specification (I_Spec);
-- In a generic context, analyze the original domain of
-- iteration, for name capture.
if not Expander_Active then
Analyze (DS);
end if;
-- Set kind of loop parameter, which may be used in the
-- subsequent analysis of the condition in a quantified
-- expression.
Set_Ekind (Id, E_Loop_Parameter);
return;
end;
-- Domain of iteration is not a function call, and is side-effect
-- free.
else
-- A quantified expression that appears in a pre/post condition
-- is pre-analyzed several times. If the range is given by an
-- attribute reference it is rewritten as a range, and this is
-- done even with expansion disabled. If the type is already set
-- do not reanalyze, because a range with static bounds may be
-- typed Integer by default.
if Nkind (Parent (N)) = N_Quantified_Expression
and then Present (Etype (DS))
then
null;
else
Analyze (DS);
end if;
end if;
end if;
if DS = Error then
return;
end if;
-- Some additional checks if we are iterating through a type
if Is_Entity_Name (DS)
and then Present (Entity (DS))
and then Is_Type (Entity (DS))
then
-- The subtype indication may denote the completion of an incomplete
-- type declaration.
if Ekind (Entity (DS)) = E_Incomplete_Type then
Set_Entity (DS, Get_Full_View (Entity (DS)));
Set_Etype (DS, Entity (DS));
end if;
Check_Predicate_Use (Entity (DS));
end if;
-- Error if not discrete type
if not Is_Discrete_Type (Etype (DS)) then
Wrong_Type (DS, Any_Discrete);
Set_Etype (DS, Any_Type);
end if;
Check_Controlled_Array_Attribute (DS);
if Nkind (DS) = N_Subtype_Indication then
Check_Predicate_Use (Entity (Subtype_Mark (DS)));
end if;
Make_Index (DS, N, In_Iter_Schm => True);
Set_Ekind (Id, E_Loop_Parameter);
-- A quantified expression which appears in a pre- or post-condition may
-- be analyzed multiple times. The analysis of the range creates several
-- itypes which reside in different scopes depending on whether the pre-
-- or post-condition has been expanded. Update the type of the loop
-- variable to reflect the proper itype at each stage of analysis.
if No (Etype (Id))
or else Etype (Id) = Any_Type
or else
(Present (Etype (Id))
and then Is_Itype (Etype (Id))
and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
and then Nkind (Original_Node (Parent (Loop_Nod))) =
N_Quantified_Expression)
then
Set_Etype (Id, Etype (DS));
end if;
-- Treat a range as an implicit reference to the type, to inhibit
-- spurious warnings.
Generate_Reference (Base_Type (Etype (DS)), N, ' ');
Set_Is_Known_Valid (Id, True);
-- The loop is not a declarative part, so the loop variable must be
-- frozen explicitly. Do not freeze while preanalyzing a quantified
-- expression because the freeze node will not be inserted into the
-- tree due to flag Is_Spec_Expression being set.
if Nkind (Parent (N)) /= N_Quantified_Expression then
declare
Flist : constant List_Id := Freeze_Entity (Id, N);
begin
if Is_Non_Empty_List (Flist) then
Insert_Actions (N, Flist);
end if;
end;
end if;
-- Case where we have a range or a subtype, get type bounds
if Nkind_In (DS, N_Range, N_Subtype_Indication)
and then not Error_Posted (DS)
and then Etype (DS) /= Any_Type
and then Is_Discrete_Type (Etype (DS))
then
declare
L : Node_Id;
H : Node_Id;
begin
if Nkind (DS) = N_Range then
L := Low_Bound (DS);
H := High_Bound (DS);
else
L :=
Type_Low_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
H :=
Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
end if;
-- Check for null or possibly null range and issue warning. We
-- suppress such messages in generic templates and instances,
-- because in practice they tend to be dubious in these cases. The
-- check applies as well to rewritten array element loops where a
-- null range may be detected statically.
if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
-- Suppress the warning if inside a generic template or
-- instance, since in practice they tend to be dubious in these
-- cases since they can result from intended parameterization.
if not Inside_A_Generic and then not In_Instance then
-- Specialize msg if invalid values could make the loop
-- non-null after all.
if Compile_Time_Compare
(L, H, Assume_Valid => False) = GT
then
-- Since we know the range of the loop is null, set the
-- appropriate flag to remove the loop entirely during
-- expansion.
Set_Is_Null_Loop (Loop_Nod);
if Comes_From_Source (N) then
Error_Msg_N
("??loop range is null, loop will not execute", DS);
end if;
-- Here is where the loop could execute because of
-- invalid values, so issue appropriate message and in
-- this case we do not set the Is_Null_Loop flag since
-- the loop may execute.
elsif Comes_From_Source (N) then
Error_Msg_N
("??loop range may be null, loop may not execute",
DS);
Error_Msg_N
("??can only execute if invalid values are present",
DS);
end if;
end if;
-- In either case, suppress warnings in the body of the loop,
-- since it is likely that these warnings will be inappropriate
-- if the loop never actually executes, which is likely.
Set_Suppress_Loop_Warnings (Loop_Nod);
-- The other case for a warning is a reverse loop where the
-- upper bound is the integer literal zero or one, and the
-- lower bound may exceed this value.
-- For example, we have
-- for J in reverse N .. 1 loop
-- In practice, this is very likely to be a case of reversing
-- the bounds incorrectly in the range.
elsif Reverse_Present (N)
and then Nkind (Original_Node (H)) = N_Integer_Literal
and then
(Intval (Original_Node (H)) = Uint_0
or else
Intval (Original_Node (H)) = Uint_1)
then
-- Lower bound may in fact be known and known not to exceed
-- upper bound (e.g. reverse 0 .. 1) and that's OK.
if Compile_Time_Known_Value (L)
and then Expr_Value (L) <= Expr_Value (H)
then
null;
-- Otherwise warning is warranted
else
Error_Msg_N ("??loop range may be null", DS);
Error_Msg_N ("\??bounds may be wrong way round", DS);
end if;
end if;
-- Check if either bound is known to be outside the range of the
-- loop parameter type, this is e.g. the case of a loop from
-- 20..X where the type is 1..19.
-- Such a loop is dubious since either it raises CE or it executes
-- zero times, and that cannot be useful!
if Etype (DS) /= Any_Type
and then not Error_Posted (DS)
and then Nkind (DS) = N_Subtype_Indication
and then Nkind (Constraint (DS)) = N_Range_Constraint
then
declare
LLo : constant Node_Id :=
Low_Bound (Range_Expression (Constraint (DS)));
LHi : constant Node_Id :=
High_Bound (Range_Expression (Constraint (DS)));
Bad_Bound : Node_Id := Empty;
-- Suspicious loop bound
begin
-- At this stage L, H are the bounds of the type, and LLo
-- Lhi are the low bound and high bound of the loop.
if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
or else
Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
then
Bad_Bound := LLo;
end if;
if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
or else
Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
then
Bad_Bound := LHi;
end if;
if Present (Bad_Bound) then
Error_Msg_N
("suspicious loop bound out of range of "
& "loop subtype??", Bad_Bound);
Error_Msg_N
("\loop executes zero times or raises "
& "Constraint_Error??", Bad_Bound);
end if;
end;
end if;
-- This declare block is about warnings, if we get an exception while
-- testing for warnings, we simply abandon the attempt silently. This
-- most likely occurs as the result of a previous error, but might
-- just be an obscure case we have missed. In either case, not giving
-- the warning is perfectly acceptable.
exception
when others => null;
end;
end if;
-- A loop parameter cannot be effectively volatile (SPARK RM 7.1.3(4)).
-- This check is relevant only when SPARK_Mode is on as it is not a
-- standard Ada legality check.
if SPARK_Mode = On and then Is_Effectively_Volatile (Id) then
Error_Msg_N ("loop parameter cannot be volatile", Id);
end if;
end Analyze_Loop_Parameter_Specification;
----------------------------
-- Analyze_Loop_Statement --
----------------------------
procedure Analyze_Loop_Statement (N : Node_Id) is
function Is_Container_Iterator (Iter : Node_Id) return Boolean;
-- Given a loop iteration scheme, determine whether it is an Ada 2012
-- container iteration.
function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
-- Determine whether loop statement N has been wrapped in a block to
-- capture finalization actions that may be generated for container
-- iterators. Prevents infinite recursion when block is analyzed.
-- Routine is a noop if loop is single statement within source block.
---------------------------
-- Is_Container_Iterator --
---------------------------
function Is_Container_Iterator (Iter : Node_Id) return Boolean is
begin
-- Infinite loop
if No (Iter) then
return False;
-- While loop
elsif Present (Condition (Iter)) then
return False;
-- for Def_Id in [reverse] Name loop
-- for Def_Id [: Subtype_Indication] of [reverse] Name loop
elsif Present (Iterator_Specification (Iter)) then
declare
Nam : constant Node_Id := Name (Iterator_Specification (Iter));
Nam_Copy : Node_Id;
begin
Nam_Copy := New_Copy_Tree (Nam);
Set_Parent (Nam_Copy, Parent (Nam));
Preanalyze_Range (Nam_Copy);
-- The only two options here are iteration over a container or
-- an array.
return not Is_Array_Type (Etype (Nam_Copy));
end;
-- for Def_Id in [reverse] Discrete_Subtype_Definition loop
else
declare
LP : constant Node_Id := Loop_Parameter_Specification (Iter);
DS : constant Node_Id := Discrete_Subtype_Definition (LP);
DS_Copy : Node_Id;
begin
DS_Copy := New_Copy_Tree (DS);
Set_Parent (DS_Copy, Parent (DS));
Preanalyze_Range (DS_Copy);
-- Check for a call to Iterate () or an expression with
-- an iterator type.
return
(Nkind (DS_Copy) = N_Function_Call
and then Needs_Finalization (Etype (DS_Copy)))
or else Is_Iterator (Etype (DS_Copy));
end;
end if;
end Is_Container_Iterator;
-------------------------
-- Is_Wrapped_In_Block --
-------------------------
function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
HSS : Node_Id;
Stat : Node_Id;
begin
-- Check if current scope is a block that is not a transient block.
if Ekind (Current_Scope) /= E_Block
or else No (Block_Node (Current_Scope))
then
return False;
else
HSS :=
Handled_Statement_Sequence (Parent (Block_Node (Current_Scope)));
-- Skip leading pragmas that may be introduced for invariant and
-- predicate checks.
Stat := First (Statements (HSS));
while Present (Stat) and then Nkind (Stat) = N_Pragma loop
Stat := Next (Stat);
end loop;
return Stat = N and then No (Next (Stat));
end if;
end Is_Wrapped_In_Block;
-- Local declarations
Id : constant Node_Id := Identifier (N);
Iter : constant Node_Id := Iteration_Scheme (N);
Loc : constant Source_Ptr := Sloc (N);
Ent : Entity_Id;
Stmt : Node_Id;
-- Start of processing for Analyze_Loop_Statement
begin
if Present (Id) then
-- Make name visible, e.g. for use in exit statements. Loop labels
-- are always considered to be referenced.
Analyze (Id);
Ent := Entity (Id);
-- Guard against serious error (typically, a scope mismatch when
-- semantic analysis is requested) by creating loop entity to
-- continue analysis.
if No (Ent) then
if Total_Errors_Detected /= 0 then
Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
else
raise Program_Error;
end if;
-- Verify that the loop name is hot hidden by an unrelated
-- declaration in an inner scope.
elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
Error_Msg_Sloc := Sloc (Ent);
Error_Msg_N ("implicit label declaration for & is hidden#", Id);
if Present (Homonym (Ent))
and then Ekind (Homonym (Ent)) = E_Label
then
Set_Entity (Id, Ent);
Set_Ekind (Ent, E_Loop);
end if;
else
Generate_Reference (Ent, N, ' ');
Generate_Definition (Ent);
-- If we found a label, mark its type. If not, ignore it, since it
-- means we have a conflicting declaration, which would already
-- have been diagnosed at declaration time. Set Label_Construct
-- of the implicit label declaration, which is not created by the
-- parser for generic units.
if Ekind (Ent) = E_Label then
Set_Ekind (Ent, E_Loop);
if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
Set_Label_Construct (Parent (Ent), N);
end if;
end if;
end if;
-- Case of no identifier present. Create one and attach it to the
-- loop statement for use as a scope and as a reference for later
-- expansions. Indicate that the label does not come from source,
-- and attach it to the loop statement so it is part of the tree,
-- even without a full declaration.
else
Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
Set_Etype (Ent, Standard_Void_Type);
Set_Identifier (N, New_Occurrence_Of (Ent, Loc));
Set_Parent (Ent, N);
Set_Has_Created_Identifier (N);
end if;
-- If the iterator specification has a syntactic error, transform
-- construct into an infinite loop to prevent a crash and perform
-- some analysis.
if Present (Iter)
and then Present (Iterator_Specification (Iter))
and then Error_Posted (Iterator_Specification (Iter))
then
Set_Iteration_Scheme (N, Empty);
Analyze (N);
return;
end if;
-- Iteration over a container in Ada 2012 involves the creation of a
-- controlled iterator object. Wrap the loop in a block to ensure the
-- timely finalization of the iterator and release of container locks.
-- The same applies to the use of secondary stack when obtaining an
-- iterator.
if Ada_Version >= Ada_2012
and then Is_Container_Iterator (Iter)
and then not Is_Wrapped_In_Block (N)
then
declare
Block_Nod : Node_Id;
Block_Id : Entity_Id;
begin
Block_Nod :=
Make_Block_Statement (Loc,
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Relocate_Node (N))));
Add_Block_Identifier (Block_Nod, Block_Id);
-- The expansion of iterator loops generates an iterator in order
-- to traverse the elements of a container:
-- Iter : <iterator type> := Iterate (Container)'reference;
-- The iterator is controlled and returned on the secondary stack.
-- The analysis of the call to Iterate establishes a transient
-- scope to deal with the secondary stack management, but never
-- really creates a physical block as this would kill the iterator
-- too early (see Wrap_Transient_Declaration). To address this
-- case, mark the generated block as needing secondary stack
-- management.
Set_Uses_Sec_Stack (Block_Id);
Rewrite (N, Block_Nod);
Analyze (N);
return;
end;
end if;
-- Kill current values on entry to loop, since statements in the body of
-- the loop may have been executed before the loop is entered. Similarly
-- we kill values after the loop, since we do not know that the body of
-- the loop was executed.
Kill_Current_Values;
Push_Scope (Ent);
Analyze_Iteration_Scheme (Iter);
-- Check for following case which merits a warning if the type E of is
-- a multi-dimensional array (and no explicit subscript ranges present).
-- for J in E'Range
-- for K in E'Range
if Present (Iter)
and then Present (Loop_Parameter_Specification (Iter))
then
declare
LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
DSD : constant Node_Id :=
Original_Node (Discrete_Subtype_Definition (LPS));
begin
if Nkind (DSD) = N_Attribute_Reference
and then Attribute_Name (DSD) = Name_Range
and then No (Expressions (DSD))
then
declare
Typ : constant Entity_Id := Etype (Prefix (DSD));
begin
if Is_Array_Type (Typ)
and then Number_Dimensions (Typ) > 1
and then Nkind (Parent (N)) = N_Loop_Statement
and then Present (Iteration_Scheme (Parent (N)))
then
declare
OIter : constant Node_Id :=
Iteration_Scheme (Parent (N));
OLPS : constant Node_Id :=
Loop_Parameter_Specification (OIter);
ODSD : constant Node_Id :=
Original_Node (Discrete_Subtype_Definition (OLPS));
begin
if Nkind (ODSD) = N_Attribute_Reference
and then Attribute_Name (ODSD) = Name_Range
and then No (Expressions (ODSD))
and then Etype (Prefix (ODSD)) = Typ
then
Error_Msg_Sloc := Sloc (ODSD);
Error_Msg_N
("inner range same as outer range#??", DSD);
end if;
end;
end if;
end;
end if;
end;
end if;
-- Analyze the statements of the body except in the case of an Ada 2012
-- iterator with the expander active. In this case the expander will do
-- a rewrite of the loop into a while loop. We will then analyze the
-- loop body when we analyze this while loop.
-- We need to do this delay because if the container is for indefinite
-- types the actual subtype of the components will only be determined
-- when the cursor declaration is analyzed.
-- If the expander is not active then we want to analyze the loop body
-- now even in the Ada 2012 iterator case, since the rewriting will not
-- be done. Insert the loop variable in the current scope, if not done
-- when analysing the iteration scheme. Set its kind properly to detect
-- improper uses in the loop body.
-- In GNATprove mode, we do one of the above depending on the kind of
-- loop. If it is an iterator over an array, then we do not analyze the
-- loop now. We will analyze it after it has been rewritten by the
-- special SPARK expansion which is activated in GNATprove mode. We need
-- to do this so that other expansions that should occur in GNATprove
-- mode take into account the specificities of the rewritten loop, in
-- particular the introduction of a renaming (which needs to be
-- expanded).
-- In other cases in GNATprove mode then we want to analyze the loop
-- body now, since no rewriting will occur. Within a generic the
-- GNATprove mode is irrelevant, we must analyze the generic for
-- non-local name capture.
if Present (Iter)
and then Present (Iterator_Specification (Iter))
then
if GNATprove_Mode
and then Is_Iterator_Over_Array (Iterator_Specification (Iter))
and then not Inside_A_Generic
then
null;
elsif not Expander_Active then
declare
I_Spec : constant Node_Id := Iterator_Specification (Iter);
Id : constant Entity_Id := Defining_Identifier (I_Spec);
begin
if Scope (Id) /= Current_Scope then
Enter_Name (Id);
end if;
-- In an element iterator, The loop parameter is a variable if
-- the domain of iteration (container or array) is a variable.
if not Of_Present (I_Spec)
or else not Is_Variable (Name (I_Spec))
then
Set_Ekind (Id, E_Loop_Parameter);
end if;
end;
Analyze_Statements (Statements (N));
end if;
else
-- Pre-Ada2012 for-loops and while loops.
Analyze_Statements (Statements (N));
end if;
-- When the iteration scheme of a loop contains attribute 'Loop_Entry,
-- the loop is transformed into a conditional block. Retrieve the loop.
Stmt := N;
if Subject_To_Loop_Entry_Attributes (Stmt) then
Stmt := Find_Loop_In_Conditional_Block (Stmt);
end if;
-- Finish up processing for the loop. We kill all current values, since
-- in general we don't know if the statements in the loop have been
-- executed. We could do a bit better than this with a loop that we
-- know will execute at least once, but it's not worth the trouble and
-- the front end is not in the business of flow tracing.
Process_End_Label (Stmt, 'e', Ent);
End_Scope;
Kill_Current_Values;
-- Check for infinite loop. Skip check for generated code, since it
-- justs waste time and makes debugging the routine called harder.
-- Note that we have to wait till the body of the loop is fully analyzed
-- before making this call, since Check_Infinite_Loop_Warning relies on
-- being able to use semantic visibility information to find references.
if Comes_From_Source (Stmt) then
Check_Infinite_Loop_Warning (Stmt);
end if;
-- Code after loop is unreachable if the loop has no WHILE or FOR and
-- contains no EXIT statements within the body of the loop.
if No (Iter) and then not Has_Exit (Ent) then
Check_Unreachable_Code (Stmt);
end if;
end Analyze_Loop_Statement;
----------------------------
-- Analyze_Null_Statement --
----------------------------
-- Note: the semantics of the null statement is implemented by a single
-- null statement, too bad everything isn't as simple as this.
procedure Analyze_Null_Statement (N : Node_Id) is
pragma Warnings (Off, N);
begin
null;
end Analyze_Null_Statement;
-------------------------
-- Analyze_Target_Name --
-------------------------
procedure Analyze_Target_Name (N : Node_Id) is
begin
if No (Current_LHS) then
Error_Msg_N ("target name can only appear within an assignment", N);
Set_Etype (N, Any_Type);
else
Set_Has_Target_Names (Parent (Current_LHS));
Set_Etype (N, Etype (Current_LHS));
-- Disable expansion for the rest of the analysis of the current
-- right-hand side. The enclosing assignment statement will be
-- rewritten during expansion, together with occurrences of the
-- target name.
if Expander_Active then
Expander_Mode_Save_And_Set (False);
end if;
end if;
end Analyze_Target_Name;
------------------------
-- Analyze_Statements --
------------------------
procedure Analyze_Statements (L : List_Id) is
S : Node_Id;
Lab : Entity_Id;
begin
-- The labels declared in the statement list are reachable from
-- statements in the list. We do this as a prepass so that any goto
-- statement will be properly flagged if its target is not reachable.
-- This is not required, but is nice behavior.
S := First (L);
while Present (S) loop
if Nkind (S) = N_Label then
Analyze (Identifier (S));
Lab := Entity (Identifier (S));
-- If we found a label mark it as reachable
if Ekind (Lab) = E_Label then
Generate_Definition (Lab);
Set_Reachable (Lab);
if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
Set_Label_Construct (Parent (Lab), S);
end if;
-- If we failed to find a label, it means the implicit declaration
-- of the label was hidden. A for-loop parameter can do this to
-- a label with the same name inside the loop, since the implicit
-- label declaration is in the innermost enclosing body or block
-- statement.
else
Error_Msg_Sloc := Sloc (Lab);
Error_Msg_N
("implicit label declaration for & is hidden#",
Identifier (S));
end if;
end if;
Next (S);
end loop;
-- Perform semantic analysis on all statements
Conditional_Statements_Begin;
S := First (L);
while Present (S) loop
Analyze (S);
-- Remove dimension in all statements
Remove_Dimension_In_Statement (S);
Next (S);
end loop;
Conditional_Statements_End;
-- Make labels unreachable. Visibility is not sufficient, because labels
-- in one if-branch for example are not reachable from the other branch,
-- even though their declarations are in the enclosing declarative part.
S := First (L);
while Present (S) loop
if Nkind (S) = N_Label then
Set_Reachable (Entity (Identifier (S)), False);
end if;
Next (S);
end loop;
end Analyze_Statements;
----------------------------
-- Check_Unreachable_Code --
----------------------------
procedure Check_Unreachable_Code (N : Node_Id) is
Error_Node : Node_Id;
P : Node_Id;
begin
if Is_List_Member (N) and then Comes_From_Source (N) then
declare
Nxt : Node_Id;
begin
Nxt := Original_Node (Next (N));
-- Skip past pragmas
while Nkind (Nxt) = N_Pragma loop
Nxt := Original_Node (Next (Nxt));
end loop;
-- If a label follows us, then we never have dead code, since
-- someone could branch to the label, so we just ignore it, unless
-- we are in formal mode where goto statements are not allowed.
if Nkind (Nxt) = N_Label
and then not Restriction_Check_Required (SPARK_05)
then
return;
-- Otherwise see if we have a real statement following us
elsif Present (Nxt)
and then Comes_From_Source (Nxt)
and then Is_Statement (Nxt)
then
-- Special very annoying exception. If we have a return that
-- follows a raise, then we allow it without a warning, since
-- the Ada RM annoyingly requires a useless return here.
if Nkind (Original_Node (N)) /= N_Raise_Statement
or else Nkind (Nxt) /= N_Simple_Return_Statement
then
-- The rather strange shenanigans with the warning message
-- here reflects the fact that Kill_Dead_Code is very good
-- at removing warnings in deleted code, and this is one
-- warning we would prefer NOT to have removed.
Error_Node := Nxt;
-- If we have unreachable code, analyze and remove the
-- unreachable code, since it is useless and we don't
-- want to generate junk warnings.
-- We skip this step if we are not in code generation mode
-- or CodePeer mode.
-- This is the one case where we remove dead code in the
-- semantics as opposed to the expander, and we do not want
-- to remove code if we are not in code generation mode,
-- since this messes up the ASIS trees or loses useful
-- information in the CodePeer tree.
-- Note that one might react by moving the whole circuit to
-- exp_ch5, but then we lose the warning in -gnatc mode.
if Operating_Mode = Generate_Code
and then not CodePeer_Mode
then
loop
Nxt := Next (N);
-- Quit deleting when we have nothing more to delete
-- or if we hit a label (since someone could transfer
-- control to a label, so we should not delete it).
exit when No (Nxt) or else Nkind (Nxt) = N_Label;
-- Statement/declaration is to be deleted
Analyze (Nxt);
Remove (Nxt);
Kill_Dead_Code (Nxt);
end loop;
end if;
-- Now issue the warning (or error in formal mode)
if Restriction_Check_Required (SPARK_05) then
Check_SPARK_05_Restriction
("unreachable code is not allowed", Error_Node);
else
Error_Msg ("??unreachable code!", Sloc (Error_Node));
end if;
end if;
-- If the unconditional transfer of control instruction is the
-- last statement of a sequence, then see if our parent is one of
-- the constructs for which we count unblocked exits, and if so,
-- adjust the count.
else
P := Parent (N);
-- Statements in THEN part or ELSE part of IF statement
if Nkind (P) = N_If_Statement then
null;
-- Statements in ELSIF part of an IF statement
elsif Nkind (P) = N_Elsif_Part then
P := Parent (P);
pragma Assert (Nkind (P) = N_If_Statement);
-- Statements in CASE statement alternative
elsif Nkind (P) = N_Case_Statement_Alternative then
P := Parent (P);
pragma Assert (Nkind (P) = N_Case_Statement);
-- Statements in body of block
elsif Nkind (P) = N_Handled_Sequence_Of_Statements
and then Nkind (Parent (P)) = N_Block_Statement
then
-- The original loop is now placed inside a block statement
-- due to the expansion of attribute 'Loop_Entry. Return as
-- this is not a "real" block for the purposes of exit
-- counting.
if Nkind (N) = N_Loop_Statement
and then Subject_To_Loop_Entry_Attributes (N)
then
return;
end if;
-- Statements in exception handler in a block
elsif Nkind (P) = N_Exception_Handler
and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
and then Nkind (Parent (Parent (P))) = N_Block_Statement
then
null;
-- None of these cases, so return
else
return;
end if;
-- This was one of the cases we are looking for (i.e. the
-- parent construct was IF, CASE or block) so decrement count.
Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
end if;
end;
end if;
end Check_Unreachable_Code;
----------------------
-- Preanalyze_Range --
----------------------
procedure Preanalyze_Range (R_Copy : Node_Id) is
Save_Analysis : constant Boolean := Full_Analysis;
Typ : Entity_Id;
begin
Full_Analysis := False;
Expander_Mode_Save_And_Set (False);
Analyze (R_Copy);
if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
-- Apply preference rules for range of predefined integer types, or
-- diagnose true ambiguity.
declare
I : Interp_Index;
It : Interp;
Found : Entity_Id := Empty;
begin
Get_First_Interp (R_Copy, I, It);
while Present (It.Typ) loop
if Is_Discrete_Type (It.Typ) then
if No (Found) then
Found := It.Typ;
else
if Scope (Found) = Standard_Standard then
null;
elsif Scope (It.Typ) = Standard_Standard then
Found := It.Typ;
else
-- Both of them are user-defined
Error_Msg_N
("ambiguous bounds in range of iteration", R_Copy);
Error_Msg_N ("\possible interpretations:", R_Copy);
Error_Msg_NE ("\\} ", R_Copy, Found);
Error_Msg_NE ("\\} ", R_Copy, It.Typ);
exit;
end if;
end if;
end if;
Get_Next_Interp (I, It);
end loop;
end;
end if;
-- Subtype mark in iteration scheme
if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
null;
-- Expression in range, or Ada 2012 iterator
elsif Nkind (R_Copy) in N_Subexpr then
Resolve (R_Copy);
Typ := Etype (R_Copy);
if Is_Discrete_Type (Typ) then
null;
-- Check that the resulting object is an iterable container
elsif Has_Aspect (Typ, Aspect_Iterator_Element)
or else Has_Aspect (Typ, Aspect_Constant_Indexing)
or else Has_Aspect (Typ, Aspect_Variable_Indexing)
then
null;
-- The expression may yield an implicit reference to an iterable
-- container. Insert explicit dereference so that proper type is
-- visible in the loop.
elsif Has_Implicit_Dereference (Etype (R_Copy)) then
declare
Disc : Entity_Id;
begin
Disc := First_Discriminant (Typ);
while Present (Disc) loop
if Has_Implicit_Dereference (Disc) then
Build_Explicit_Dereference (R_Copy, Disc);
exit;
end if;
Next_Discriminant (Disc);
end loop;
end;
end if;
end if;
Expander_Mode_Restore;
Full_Analysis := Save_Analysis;
end Preanalyze_Range;
end Sem_Ch5;
|