1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
|
/* This file is part of the Intel(R) Cilk(TM) Plus support
This file contains routines to handle Array Notation expression
handling routines in the C Compiler.
Copyright (C) 2013-2017 Free Software Foundation, Inc.
Contributed by Balaji V. Iyer <balaji.v.iyer@intel.com>,
Intel Corporation.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The Array Notation Transformation Technique:
An array notation expression has 4 major components:
1. The array name
2. Start Index
3. Number of elements we need to access (we call it length)
4. Stride
For example, A[0:5:2], implies that we are accessing A[0], A[2], A[4],
A[6] and A[8]. The user is responsible to make sure the access length does
not step outside the array's size.
In this section, I highlight the overall method on how array notations are
broken up into C/C++ code. Almost all the functions follows this overall
technique:
Let's say we have an array notation in a statement like this:
A[St1:Ln:Str1] = B[St2:Ln:Str2] + <NON ARRAY_NOTATION_STMT>
where St{1,2} = Starting index,
Ln = Number of elements we need to access,
and Str{1,2} = the stride.
Note: The length of both the array notation expressions must be the same.
The above expression is broken into the following
(with the help of c_finish_loop function from c-typeck.c):
Tmp_Var = 0;
goto compare_label:
body_label:
A[St1+Tmp_Var*Str1] = B[St1+Tmp_Var*Str2] + <NON ARRAY_NOTATION_STMT>;
Tmp_Var++;
compare_label:
if (Tmp_Var < Ln)
goto body_label;
else
goto exit_label;
exit_label:
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "c-tree.h"
#include "gimple-expr.h"
#include "tree-iterator.h"
/* If *VALUE is not of type INTEGER_CST, PARM_DECL or VAR_DECL, then map it
to a variable and then set *VALUE to the new variable. */
static inline void
make_triplet_val_inv (location_t loc, tree *value)
{
tree var, new_exp;
if (TREE_CODE (*value) != INTEGER_CST
&& TREE_CODE (*value) != PARM_DECL
&& !VAR_P (*value))
{
var = build_decl (loc, VAR_DECL, NULL_TREE, integer_type_node);
new_exp = build_modify_expr (loc, var, TREE_TYPE (var), NOP_EXPR, loc,
*value, TREE_TYPE (*value));
add_stmt (new_exp);
*value = var;
}
}
/* Populates the INCR and CMP vectors with the increment (of type POSTINCREMENT
or POSTDECREMENT) and comparison (of TYPE GT_EXPR or LT_EXPR) expressions,
using data from LENGTH, COUNT_DOWN, and VAR. INCR and CMP vectors are of
size RANK. */
static void
create_cmp_incr (location_t loc, vec<an_loop_parts> *node, size_t rank,
vec<vec<an_parts> > an_info)
{
for (size_t ii = 0; ii < rank; ii++)
{
tree var = (*node)[ii].var;
tree length = an_info[0][ii].length;
(*node)[ii].incr = build_unary_op (loc, POSTINCREMENT_EXPR, var, false);
(*node)[ii].cmp = build2 (LT_EXPR, boolean_type_node, var, length);
}
}
/* Returns a vector of size RANK that contains an array ref that is derived from
array notation triplet parameters stored in VALUE, START, STRIDE. IS_VECTOR
is used to check if the data stored at its corresponding location is an
array notation. VAR is the induction variable passed in by the caller.
For example: For an array notation A[5:10:2], the vector start will be
of size 1 holding '5', stride of same size as start but holding the value of
as 2, is_vector as true and count_down as false. Let's assume VAR is 'x'
This function returns a vector of size 1 with the following data:
A[5 + (x * 2)] .
*/
static vec<tree, va_gc> *
create_array_refs (location_t loc, vec<vec<an_parts> > an_info,
vec<an_loop_parts> an_loop_info, size_t size, size_t rank)
{
tree ind_mult, ind_incr;
vec<tree, va_gc> *array_operand = NULL;
for (size_t ii = 0; ii < size; ii++)
if (an_info[ii][0].is_vector)
{
tree array_opr = an_info[ii][rank - 1].value;
for (int s_jj = rank - 1; s_jj >= 0; s_jj--)
{
tree var = an_loop_info[s_jj].var;
tree stride = an_info[ii][s_jj].stride;
tree start = an_info[ii][s_jj].start;
ind_mult = build2 (MULT_EXPR, TREE_TYPE (var), var, stride);
ind_incr = build2 (PLUS_EXPR, TREE_TYPE (var), start, ind_mult);
array_opr = build_array_ref (loc, array_opr, ind_incr);
}
vec_safe_push (array_operand, array_opr);
}
else
/* This is just a dummy node to make sure both the list sizes for both
array list and array operand list are the same. */
vec_safe_push (array_operand, integer_one_node);
return array_operand;
}
/* Replaces all the scalar expressions in *NODE. Returns a STATEMENT_LIST that
holds the NODE along with variables that holds the results of the invariant
expressions. */
tree
replace_invariant_exprs (tree *node)
{
size_t ix = 0;
tree node_list = NULL_TREE;
tree t = NULL_TREE, new_var = NULL_TREE, new_node;
struct inv_list data;
data.list_values = NULL;
data.replacement = NULL;
data.additional_tcodes = NULL;
walk_tree (node, find_inv_trees, (void *)&data, NULL);
if (vec_safe_length (data.list_values))
{
node_list = push_stmt_list ();
for (ix = 0; vec_safe_iterate (data.list_values, ix, &t); ix++)
{
new_var = build_decl (EXPR_LOCATION (t), VAR_DECL, NULL_TREE,
TREE_TYPE (t));
gcc_assert (new_var != NULL_TREE && new_var != error_mark_node);
new_node = build2 (MODIFY_EXPR, TREE_TYPE (t), new_var, t);
add_stmt (new_node);
vec_safe_push (data.replacement, new_var);
}
walk_tree (node, replace_inv_trees, (void *)&data, NULL);
node_list = pop_stmt_list (node_list);
}
return node_list;
}
/* Given a CALL_EXPR to an array notation built-in function in
AN_BUILTIN_FN, replace the call with the appropriate loop and
computation. Return the computation in *NEW_VAR.
The return value in *NEW_VAR will always be a scalar. If the
built-in is __sec_reduce_mutating, *NEW_VAR is set to NULL_TREE. */
static tree
fix_builtin_array_notation_fn (tree an_builtin_fn, tree *new_var)
{
tree new_var_type = NULL_TREE, func_parm, new_expr, new_yes_expr, new_no_expr;
tree array_ind_value = NULL_TREE, new_no_ind, new_yes_ind, new_no_list;
tree new_yes_list, new_cond_expr, new_var_init = NULL_TREE;
tree new_exp_init = NULL_TREE;
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0, rank = 0, ii = 0;
tree loop_init, array_op0;
tree identity_value = NULL_TREE, call_fn = NULL_TREE, new_call_expr, body;
location_t location = UNKNOWN_LOCATION;
tree loop_with_init = alloc_stmt_list ();
vec<vec<an_parts> > an_info = vNULL;
auto_vec<an_loop_parts> an_loop_info;
enum built_in_function an_type =
is_cilkplus_reduce_builtin (CALL_EXPR_FN (an_builtin_fn));
if (an_type == BUILT_IN_NONE)
return NULL_TREE;
/* Builtin call should contain at least one argument. */
if (call_expr_nargs (an_builtin_fn) == 0)
{
error_at (EXPR_LOCATION (an_builtin_fn), "Invalid builtin arguments");
return error_mark_node;
}
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
{
call_fn = CALL_EXPR_ARG (an_builtin_fn, 2);
if (TREE_CODE (call_fn) == ADDR_EXPR)
call_fn = TREE_OPERAND (call_fn, 0);
identity_value = CALL_EXPR_ARG (an_builtin_fn, 0);
func_parm = CALL_EXPR_ARG (an_builtin_fn, 1);
}
else
func_parm = CALL_EXPR_ARG (an_builtin_fn, 0);
/* Fully fold any EXCESSIVE_PRECISION EXPR that can occur in the function
parameter. */
func_parm = c_fully_fold (func_parm, false, NULL);
if (func_parm == error_mark_node)
return error_mark_node;
location = EXPR_LOCATION (an_builtin_fn);
if (!find_rank (location, an_builtin_fn, an_builtin_fn, true, &rank))
return error_mark_node;
if (rank == 0)
{
error_at (location, "Invalid builtin arguments");
return error_mark_node;
}
else if (rank > 1
&& (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND))
{
error_at (location, "__sec_reduce_min_ind or __sec_reduce_max_ind cannot"
" have arrays with dimension greater than 1");
return error_mark_node;
}
extract_array_notation_exprs (func_parm, true, &array_list);
list_size = vec_safe_length (array_list);
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN:
new_var_type = TREE_TYPE ((*array_list)[0]);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO:
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO:
new_var_type = integer_type_node;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND:
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND:
new_var_type = integer_type_node;
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE:
if (call_fn && identity_value)
new_var_type = TREE_TYPE ((*array_list)[0]);
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING:
new_var_type = NULL_TREE;
break;
default:
gcc_unreachable ();
}
an_loop_info.safe_grow_cleared (rank);
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
loop_init = alloc_stmt_list ();
for (ii = 0; ii < rank; ii++)
{
an_loop_info[ii].var = create_tmp_var (integer_type_node);
an_loop_info[ii].ind_init =
build_modify_expr (location, an_loop_info[ii].var,
TREE_TYPE (an_loop_info[ii].var), NOP_EXPR,
location,
build_int_cst (TREE_TYPE (an_loop_info[ii].var), 0),
TREE_TYPE (an_loop_info[ii].var));
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&func_parm, true, array_list, array_operand);
create_cmp_incr (location, &an_loop_info, rank, an_info);
if (an_type != BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
{
*new_var = build_decl (location, VAR_DECL, NULL_TREE, new_var_type);
gcc_assert (*new_var && *new_var != error_mark_node);
}
else
*new_var = NULL_TREE;
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND)
array_ind_value = build_decl (location, VAR_DECL, NULL_TREE,
TREE_TYPE (func_parm));
array_op0 = (*array_operand)[0];
if (INDIRECT_REF_P (array_op0))
array_op0 = TREE_OPERAND (array_op0, 0);
switch (an_type)
{
case BUILT_IN_CILKPLUS_SEC_REDUCE_ADD:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
new_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), PLUS_EXPR,
location, func_parm, TREE_TYPE (func_parm));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUL:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
new_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), MULT_EXPR,
location, func_parm, TREE_TYPE (func_parm));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_ZERO:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
/* Initially you assume everything is zero, now if we find a case where
it is NOT true, then we set the result to false. Otherwise
we just keep the previous value. */
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (TREE_TYPE (*new_var)),
TREE_TYPE (*new_var));
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_cond_expr = build2 (NE_EXPR, TREE_TYPE (func_parm), func_parm,
build_zero_cst (TREE_TYPE (func_parm)));
new_expr = build_conditional_expr
(location, new_cond_expr, false, new_yes_expr,
TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ALL_NONZERO:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
/* Initially you assume everything is non-zero, now if we find a case
where it is NOT true, then we set the result to false. Otherwise
we just keep the previous value. */
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (TREE_TYPE (*new_var)),
TREE_TYPE (*new_var));
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_cond_expr = build2 (EQ_EXPR, TREE_TYPE (func_parm), func_parm,
build_zero_cst (TREE_TYPE (func_parm)));
new_expr = build_conditional_expr
(location, new_cond_expr, false, new_yes_expr,
TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_ZERO:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
/* Initially we assume there are NO zeros in the list. When we find
a non-zero, we keep the previous value. If we find a zero, we
set the value to true. */
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_cond_expr = build2 (EQ_EXPR, TREE_TYPE (func_parm), func_parm,
build_zero_cst (TREE_TYPE (func_parm)));
new_expr = build_conditional_expr
(location, new_cond_expr, false, new_yes_expr,
TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_ANY_NONZERO:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
/* Initially we assume there are NO non-zeros in the list. When we find
a zero, we keep the previous value. If we find a non-zero, we set
the value to true. */
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_one_cst (new_var_type), new_var_type);
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_cond_expr = build2 (NE_EXPR, TREE_TYPE (func_parm), func_parm,
build_zero_cst (TREE_TYPE (func_parm)));
new_expr = build_conditional_expr
(location, new_cond_expr, false, new_yes_expr,
TREE_TYPE (new_yes_expr), new_no_expr, TREE_TYPE (new_no_expr));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX:
if (TYPE_MIN_VALUE (new_var_type))
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, TYPE_MIN_VALUE (new_var_type), new_var_type);
else
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, func_parm, new_var_type);
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, func_parm, TREE_TYPE (*new_var));
new_expr = build_conditional_expr
(location,
build2 (LT_EXPR, TREE_TYPE (*new_var), *new_var, func_parm), false,
new_yes_expr, TREE_TYPE (*new_var), new_no_expr, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN:
if (TYPE_MAX_VALUE (new_var_type))
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, TYPE_MAX_VALUE (new_var_type), new_var_type);
else
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, func_parm, new_var_type);
new_no_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_yes_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, func_parm, TREE_TYPE (*new_var));
new_expr = build_conditional_expr
(location,
build2 (GT_EXPR, TREE_TYPE (*new_var), *new_var, func_parm), false,
new_yes_expr, TREE_TYPE (*new_var), new_no_expr, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
new_exp_init = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR, location, func_parm, TREE_TYPE (func_parm));
new_no_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_no_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, array_ind_value, TREE_TYPE (array_ind_value));
if (list_size > 1)
{
new_yes_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, an_loop_info[0].var, TREE_TYPE (an_loop_info[0].var));
new_yes_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, func_parm, TREE_TYPE ((*array_operand)[0]));
}
else
{
new_yes_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, TREE_OPERAND (array_op0, 1),
TREE_TYPE (TREE_OPERAND (array_op0, 1)));
new_yes_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, func_parm, TREE_TYPE (TREE_OPERAND (array_op0, 1)));
}
new_yes_list = alloc_stmt_list ();
append_to_statement_list (new_yes_ind, &new_yes_list);
append_to_statement_list (new_yes_expr, &new_yes_list);
new_no_list = alloc_stmt_list ();
append_to_statement_list (new_no_ind, &new_no_list);
append_to_statement_list (new_no_expr, &new_no_list);
new_expr = build_conditional_expr
(location,
build2 (LE_EXPR, TREE_TYPE (array_ind_value), array_ind_value,
func_parm),
false,
new_yes_list, TREE_TYPE (*new_var), new_no_list, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, build_zero_cst (new_var_type), new_var_type);
new_exp_init = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR, location, func_parm, TREE_TYPE (func_parm));
new_no_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, *new_var, TREE_TYPE (*new_var));
new_no_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, array_ind_value, TREE_TYPE (array_ind_value));
if (list_size > 1)
{
new_yes_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, an_loop_info[0].var, TREE_TYPE (an_loop_info[0].var));
new_yes_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, func_parm, TREE_TYPE (array_op0));
}
else
{
new_yes_ind = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, TREE_OPERAND (array_op0, 1),
TREE_TYPE (TREE_OPERAND (array_op0, 1)));
new_yes_expr = build_modify_expr
(location, array_ind_value, TREE_TYPE (array_ind_value),
NOP_EXPR,
location, func_parm, TREE_TYPE (TREE_OPERAND (array_op0, 1)));
}
new_yes_list = alloc_stmt_list ();
append_to_statement_list (new_yes_ind, &new_yes_list);
append_to_statement_list (new_yes_expr, &new_yes_list);
new_no_list = alloc_stmt_list ();
append_to_statement_list (new_no_ind, &new_no_list);
append_to_statement_list (new_no_expr, &new_no_list);
new_expr = build_conditional_expr
(location,
build2 (GE_EXPR, TREE_TYPE (array_ind_value), array_ind_value,
func_parm),
false,
new_yes_list, TREE_TYPE (*new_var), new_no_list, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE:
new_var_init = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, identity_value, new_var_type);
new_call_expr = build_call_expr (call_fn, 2, *new_var, func_parm);
new_expr = build_modify_expr
(location, *new_var, TREE_TYPE (*new_var), NOP_EXPR,
location, new_call_expr, TREE_TYPE (*new_var));
break;
case BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING:
new_expr = build_call_expr (call_fn, 2, identity_value, func_parm);
break;
default:
gcc_unreachable ();
break;
}
for (ii = 0; ii < rank; ii++)
append_to_statement_list (an_loop_info[ii].ind_init, &loop_init);
if (an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MAX_IND
|| an_type == BUILT_IN_CILKPLUS_SEC_REDUCE_MIN_IND)
append_to_statement_list (new_exp_init, &loop_init);
if (an_type != BUILT_IN_CILKPLUS_SEC_REDUCE_MUTATING)
append_to_statement_list (new_var_init, &loop_init);
append_to_statement_list_force (loop_init, &loop_with_init);
body = new_expr;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
c_finish_loop (location, an_loop_info[ii].cmp, an_loop_info[ii].incr,
body, NULL_TREE, NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
release_vec_vec (an_info);
return loop_with_init;
}
/* Returns a loop with ARRAY_REF inside it with an appropriate modify expr.
The LHS and/or RHS will be array notation expressions that have a MODIFYCODE
Their locations are specified by LHS_LOC, RHS_LOC. The location of the
modify expression is location. The original type of LHS and RHS are passed
in LHS_ORIGTYPE and RHS_ORIGTYPE. */
tree
build_array_notation_expr (location_t location, tree lhs, tree lhs_origtype,
enum tree_code modifycode, location_t rhs_loc,
tree rhs, tree rhs_origtype)
{
bool found_builtin_fn = false;
tree array_expr_lhs = NULL_TREE, array_expr_rhs = NULL_TREE;
tree array_expr = NULL_TREE;
tree an_init = NULL_TREE;
auto_vec<tree> cond_expr;
tree body, loop_with_init = alloc_stmt_list();
tree scalar_mods = NULL_TREE;
vec<tree, va_gc> *rhs_array_operand = NULL, *lhs_array_operand = NULL;
size_t lhs_rank = 0, rhs_rank = 0;
size_t ii = 0;
vec<tree, va_gc> *lhs_list = NULL, *rhs_list = NULL;
tree new_modify_expr, new_var = NULL_TREE, builtin_loop = NULL_TREE;
size_t rhs_list_size = 0, lhs_list_size = 0;
vec<vec<an_parts> > lhs_an_info = vNULL, rhs_an_info = vNULL;
auto_vec<an_loop_parts> lhs_an_loop_info, rhs_an_loop_info;
/* If either of this is true, an error message must have been send out
already. Not necessary to send out multiple error messages. */
if (lhs == error_mark_node || rhs == error_mark_node)
return error_mark_node;
if (!find_rank (location, rhs, rhs, false, &rhs_rank))
return error_mark_node;
extract_array_notation_exprs (rhs, false, &rhs_list);
rhs_list_size = vec_safe_length (rhs_list);
an_init = push_stmt_list ();
if (rhs_rank)
{
scalar_mods = replace_invariant_exprs (&rhs);
if (scalar_mods)
add_stmt (scalar_mods);
}
for (ii = 0; ii < rhs_list_size; ii++)
{
tree rhs_node = (*rhs_list)[ii];
if (TREE_CODE (rhs_node) == CALL_EXPR)
{
builtin_loop = fix_builtin_array_notation_fn (rhs_node, &new_var);
if (builtin_loop == error_mark_node)
{
pop_stmt_list (an_init);
return error_mark_node;
}
else if (builtin_loop)
{
add_stmt (builtin_loop);
found_builtin_fn = true;
if (new_var)
{
vec<tree, va_gc> *rhs_sub_list = NULL, *new_var_list = NULL;
vec_safe_push (rhs_sub_list, rhs_node);
vec_safe_push (new_var_list, new_var);
replace_array_notations (&rhs, false, rhs_sub_list,
new_var_list);
}
}
}
}
lhs_rank = 0;
rhs_rank = 0;
if (!find_rank (location, lhs, lhs, true, &lhs_rank))
{
pop_stmt_list (an_init);
return error_mark_node;
}
if (!find_rank (location, rhs, rhs, true, &rhs_rank))
{
pop_stmt_list (an_init);
return error_mark_node;
}
if (lhs_rank == 0 && rhs_rank == 0)
{
if (found_builtin_fn)
{
new_modify_expr = build_modify_expr (location, lhs, lhs_origtype,
modifycode, rhs_loc, rhs,
rhs_origtype);
add_stmt (new_modify_expr);
pop_stmt_list (an_init);
return an_init;
}
else
{
pop_stmt_list (an_init);
return NULL_TREE;
}
}
rhs_list_size = 0;
rhs_list = NULL;
extract_array_notation_exprs (rhs, true, &rhs_list);
extract_array_notation_exprs (lhs, true, &lhs_list);
rhs_list_size = vec_safe_length (rhs_list);
lhs_list_size = vec_safe_length (lhs_list);
if (lhs_rank == 0 && rhs_rank != 0)
{
tree rhs_base = rhs;
if (TREE_CODE (rhs_base) == ARRAY_NOTATION_REF)
{
for (ii = 0; ii < (size_t) rhs_rank; ii++)
rhs_base = ARRAY_NOTATION_ARRAY (rhs);
error_at (location, "%qE cannot be scalar when %qE is not", lhs,
rhs_base);
return error_mark_node;
}
else
{
error_at (location, "%qE cannot be scalar when %qE is not", lhs,
rhs_base);
return error_mark_node;
}
}
if (lhs_rank != 0 && rhs_rank != 0 && lhs_rank != rhs_rank)
{
error_at (location, "rank mismatch between %qE and %qE", lhs, rhs);
pop_stmt_list (an_init);
return error_mark_node;
}
/* Here we assign the array notation components to variable so that we can
satisfy the exec once rule. */
for (ii = 0; ii < lhs_list_size; ii++)
{
tree array_node = (*lhs_list)[ii];
make_triplet_val_inv (location, &ARRAY_NOTATION_START (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_LENGTH (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_STRIDE (array_node));
}
for (ii = 0; ii < rhs_list_size; ii++)
if ((*rhs_list)[ii] && TREE_CODE ((*rhs_list)[ii]) == ARRAY_NOTATION_REF)
{
tree array_node = (*rhs_list)[ii];
make_triplet_val_inv (location, &ARRAY_NOTATION_START (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_LENGTH (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_STRIDE (array_node));
}
cond_expr.safe_grow_cleared (MAX (lhs_rank, rhs_rank));
lhs_an_loop_info.safe_grow_cleared (lhs_rank);
if (rhs_rank)
rhs_an_loop_info.safe_grow_cleared (rhs_rank);
cilkplus_extract_an_triplets (lhs_list, lhs_list_size, lhs_rank,
&lhs_an_info);
if (rhs_rank)
{
rhs_an_loop_info.safe_grow_cleared (rhs_rank);
cilkplus_extract_an_triplets (rhs_list, rhs_list_size, rhs_rank,
&rhs_an_info);
}
if (length_mismatch_in_expr_p (EXPR_LOCATION (lhs), lhs_an_info)
|| (rhs_rank
&& length_mismatch_in_expr_p (EXPR_LOCATION (rhs), rhs_an_info)))
{
pop_stmt_list (an_init);
goto error;
}
if (lhs_list_size > 0 && rhs_list_size > 0 && lhs_rank > 0 && rhs_rank > 0
&& TREE_CODE (lhs_an_info[0][0].length) == INTEGER_CST
&& rhs_an_info[0][0].length
&& TREE_CODE (rhs_an_info[0][0].length) == INTEGER_CST)
{
HOST_WIDE_INT l_length = int_cst_value (lhs_an_info[0][0].length);
HOST_WIDE_INT r_length = int_cst_value (rhs_an_info[0][0].length);
/* Length can be negative or positive. As long as the magnitude is OK,
then the array notation is valid. */
if (absu_hwi (l_length) != absu_hwi (r_length))
{
error_at (location, "length mismatch between LHS and RHS");
pop_stmt_list (an_init);
goto error;
}
}
for (ii = 0; ii < lhs_rank; ii++)
if (lhs_an_info[0][ii].is_vector)
{
lhs_an_loop_info[ii].var = create_tmp_var (integer_type_node);
lhs_an_loop_info[ii].ind_init = build_modify_expr
(location, lhs_an_loop_info[ii].var,
TREE_TYPE (lhs_an_loop_info[ii].var), NOP_EXPR,
location, build_zero_cst (TREE_TYPE (lhs_an_loop_info[ii].var)),
TREE_TYPE (lhs_an_loop_info[ii].var));
}
for (ii = 0; ii < rhs_rank; ii++)
{
/* When we have a polynomial, we assume that the indices are of type
integer. */
rhs_an_loop_info[ii].var = create_tmp_var (integer_type_node);
rhs_an_loop_info[ii].ind_init = build_modify_expr
(location, rhs_an_loop_info[ii].var,
TREE_TYPE (rhs_an_loop_info[ii].var), NOP_EXPR,
location, build_int_cst (TREE_TYPE (rhs_an_loop_info[ii].var), 0),
TREE_TYPE (rhs_an_loop_info[ii].var));
}
if (lhs_rank)
{
lhs_array_operand = create_array_refs
(location, lhs_an_info, lhs_an_loop_info, lhs_list_size, lhs_rank);
replace_array_notations (&lhs, true, lhs_list, lhs_array_operand);
array_expr_lhs = lhs;
}
if (rhs_array_operand)
vec_safe_truncate (rhs_array_operand, 0);
if (rhs_rank)
{
rhs_array_operand = create_array_refs
(location, rhs_an_info, rhs_an_loop_info, rhs_list_size, rhs_rank);
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
vec_safe_truncate (rhs_array_operand, 0);
rhs_array_operand = fix_sec_implicit_args (location, rhs_list,
rhs_an_loop_info, rhs_rank,
rhs);
if (!rhs_array_operand)
goto error;
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
}
else if (rhs_list_size > 0)
{
rhs_array_operand = fix_sec_implicit_args (location, rhs_list,
lhs_an_loop_info, lhs_rank,
lhs);
if (!rhs_array_operand)
goto error;
replace_array_notations (&rhs, true, rhs_list, rhs_array_operand);
}
array_expr_lhs = lhs;
array_expr_rhs = rhs;
array_expr = build_modify_expr (location, array_expr_lhs, lhs_origtype,
modifycode, rhs_loc, array_expr_rhs,
rhs_origtype);
create_cmp_incr (location, &lhs_an_loop_info, lhs_rank, lhs_an_info);
if (rhs_rank)
create_cmp_incr (location, &rhs_an_loop_info, rhs_rank, rhs_an_info);
for (ii = 0; ii < MAX (lhs_rank, rhs_rank); ii++)
if (ii < lhs_rank && ii < rhs_rank)
cond_expr[ii] = build2 (TRUTH_ANDIF_EXPR, boolean_type_node,
lhs_an_loop_info[ii].cmp,
rhs_an_loop_info[ii].cmp);
else if (ii < lhs_rank && ii >= rhs_rank)
cond_expr[ii] = lhs_an_loop_info[ii].cmp;
else
gcc_unreachable ();
an_init = pop_stmt_list (an_init);
append_to_statement_list_force (an_init, &loop_with_init);
body = array_expr;
for (ii = 0; ii < MAX (lhs_rank, rhs_rank); ii++)
{
tree incr_list = alloc_stmt_list ();
tree new_loop = push_stmt_list ();
if (lhs_rank)
add_stmt (lhs_an_loop_info[ii].ind_init);
if (rhs_rank)
add_stmt (rhs_an_loop_info[ii].ind_init);
if (lhs_rank)
append_to_statement_list_force (lhs_an_loop_info[ii].incr, &incr_list);
if (rhs_rank && rhs_an_loop_info[ii].incr)
append_to_statement_list_force (rhs_an_loop_info[ii].incr, &incr_list);
c_finish_loop (location, cond_expr[ii], incr_list, body, NULL_TREE,
NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
release_vec_vec (lhs_an_info);
release_vec_vec (rhs_an_info);
return loop_with_init;
error:
release_vec_vec (lhs_an_info);
release_vec_vec (rhs_an_info);
return error_mark_node;
}
/* Helper function for fix_conditional_array_notations. Encloses the
conditional statement passed in STMT with a loop around it
and replaces the condition in STMT with a ARRAY_REF tree-node to the array.
The condition must have an ARRAY_NOTATION_REF tree. An expansion of array
notation in STMT is returned in a STATEMENT_LIST. */
static tree
fix_conditional_array_notations_1 (tree stmt)
{
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0;
tree cond = NULL_TREE, builtin_loop = NULL_TREE, new_var = NULL_TREE;
size_t rank = 0, ii = 0;
tree loop_init;
location_t location = EXPR_LOCATION (stmt);
tree body = NULL_TREE, loop_with_init = alloc_stmt_list ();
vec<vec<an_parts> > an_info = vNULL;
auto_vec<an_loop_parts> an_loop_info;
if (TREE_CODE (stmt) == COND_EXPR)
cond = COND_EXPR_COND (stmt);
else if (TREE_CODE (stmt) == SWITCH_EXPR)
cond = SWITCH_COND (stmt);
else if (truth_value_p (TREE_CODE (stmt)))
cond = TREE_OPERAND (stmt, 0);
else
/* Otherwise dont even touch the statement. */
return stmt;
if (!find_rank (location, cond, cond, false, &rank))
return error_mark_node;
extract_array_notation_exprs (stmt, false, &array_list);
loop_init = push_stmt_list ();
for (ii = 0; ii < vec_safe_length (array_list); ii++)
{
tree array_node = (*array_list)[ii];
if (TREE_CODE (array_node) == CALL_EXPR)
{
builtin_loop = fix_builtin_array_notation_fn (array_node, &new_var);
if (builtin_loop == error_mark_node)
{
add_stmt (error_mark_node);
pop_stmt_list (loop_init);
return loop_init;
}
else if (builtin_loop)
{
vec <tree, va_gc>* sub_list = NULL, *new_var_list = NULL;
vec_safe_push (sub_list, array_node);
vec_safe_push (new_var_list, new_var);
add_stmt (builtin_loop);
replace_array_notations (&stmt, false, sub_list, new_var_list);
}
}
}
if (!find_rank (location, stmt, stmt, true, &rank))
{
pop_stmt_list (loop_init);
return error_mark_node;
}
if (rank == 0)
{
add_stmt (stmt);
pop_stmt_list (loop_init);
return loop_init;
}
extract_array_notation_exprs (stmt, true, &array_list);
if (vec_safe_length (array_list) == 0)
return stmt;
list_size = vec_safe_length (array_list);
an_loop_info.safe_grow_cleared (rank);
for (ii = 0; ii < list_size; ii++)
if ((*array_list)[ii]
&& TREE_CODE ((*array_list)[ii]) == ARRAY_NOTATION_REF)
{
tree array_node = (*array_list)[ii];
make_triplet_val_inv (location, &ARRAY_NOTATION_START (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_LENGTH (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_STRIDE (array_node));
}
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
for (ii = 0; ii < rank; ii++)
{
an_loop_info[ii].var = create_tmp_var (integer_type_node);
an_loop_info[ii].ind_init =
build_modify_expr (location, an_loop_info[ii].var,
TREE_TYPE (an_loop_info[ii].var), NOP_EXPR,
location,
build_int_cst (TREE_TYPE (an_loop_info[ii].var), 0),
TREE_TYPE (an_loop_info[ii].var));
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&stmt, true, array_list, array_operand);
create_cmp_incr (location, &an_loop_info, rank, an_info);
loop_init = pop_stmt_list (loop_init);
body = stmt;
append_to_statement_list_force (loop_init, &loop_with_init);
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
add_stmt (an_loop_info[ii].ind_init);
c_finish_loop (location, an_loop_info[ii].cmp, an_loop_info[ii].incr,
body, NULL_TREE, NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
release_vec_vec (an_info);
return loop_with_init;
}
/* Top-level function to replace ARRAY_NOTATION_REF in a conditional statement
in STMT. An expansion of array notation in STMT is returned as a
STATEMENT_LIST. */
tree
fix_conditional_array_notations (tree stmt)
{
if (TREE_CODE (stmt) == STATEMENT_LIST)
{
tree_stmt_iterator tsi;
for (tsi = tsi_start (stmt); !tsi_end_p (tsi); tsi_next (&tsi))
{
tree single_stmt = *tsi_stmt_ptr (tsi);
*tsi_stmt_ptr (tsi) =
fix_conditional_array_notations_1 (single_stmt);
}
return stmt;
}
else
return fix_conditional_array_notations_1 (stmt);
}
/* Create a struct c_expr that contains a loop with ARRAY_REF expr at location
LOCATION with the tree_code CODE and the array notation expr is
passed in ARG. Returns the fixed c_expr in ARG itself. */
struct c_expr
fix_array_notation_expr (location_t location, enum tree_code code,
struct c_expr arg)
{
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
size_t list_size = 0, rank = 0, ii = 0;
tree loop_init;
tree body, loop_with_init = alloc_stmt_list ();
vec<vec<an_parts> > an_info = vNULL;
auto_vec<an_loop_parts> an_loop_info;
if (!find_rank (location, arg.value, arg.value, false, &rank))
{
/* If this function returns a NULL, we convert the tree value in the
structure to error_mark_node and the parser should take care of the
rest. */
arg.value = error_mark_node;
return arg;
}
if (rank == 0)
return arg;
extract_array_notation_exprs (arg.value, true, &array_list);
if (vec_safe_length (array_list) == 0)
return arg;
list_size = vec_safe_length (array_list);
an_loop_info.safe_grow_cleared (rank);
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
loop_init = push_stmt_list ();
for (ii = 0; ii < rank; ii++)
{
an_loop_info[ii].var = create_tmp_var (integer_type_node);
an_loop_info[ii].ind_init =
build_modify_expr (location, an_loop_info[ii].var,
TREE_TYPE (an_loop_info[ii].var), NOP_EXPR,
location,
build_int_cst (TREE_TYPE (an_loop_info[ii].var), 0),
TREE_TYPE (an_loop_info[ii].var));;
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&arg.value, true, array_list, array_operand);
create_cmp_incr (location, &an_loop_info, rank, an_info);
arg = default_function_array_read_conversion (location, arg);
if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR)
arg.value = build_unary_op (location, code, arg.value, false);
else if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
arg = parser_build_unary_op (location, code, arg);
loop_init = pop_stmt_list (loop_init);
append_to_statement_list_force (loop_init, &loop_with_init);
body = arg.value;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
add_stmt (an_loop_info[ii].ind_init);
c_finish_loop (location, an_loop_info[ii].cmp,
an_loop_info[ii].incr, body, NULL_TREE,
NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
arg.value = loop_with_init;
release_vec_vec (an_info);
return arg;
}
/* Replaces array notations in a void function call arguments in ARG and returns
a STATEMENT_LIST. */
static tree
fix_array_notation_call_expr (tree arg)
{
vec<tree, va_gc> *array_list = NULL, *array_operand = NULL;
tree new_var = NULL_TREE;
size_t list_size = 0, rank = 0, ii = 0;
tree loop_init;
tree body, loop_with_init = alloc_stmt_list ();
location_t location = UNKNOWN_LOCATION;
vec<vec<an_parts> > an_info = vNULL;
auto_vec<an_loop_parts> an_loop_info;
if (TREE_CODE (arg) == CALL_EXPR
&& is_cilkplus_reduce_builtin (CALL_EXPR_FN (arg)))
{
loop_init = fix_builtin_array_notation_fn (arg, &new_var);
/* We are ignoring the new var because either the user does not want to
capture it OR he is using sec_reduce_mutating function. */
return loop_init;
}
if (!find_rank (location, arg, arg, false, &rank))
return error_mark_node;
if (rank == 0)
return arg;
extract_array_notation_exprs (arg, true, &array_list);
if (vec_safe_length (array_list) == 0)
return arg;
list_size = vec_safe_length (array_list);
location = EXPR_LOCATION (arg);
an_loop_info.safe_grow_cleared (rank);
loop_init = push_stmt_list ();
for (ii = 0; ii < list_size; ii++)
if ((*array_list)[ii]
&& TREE_CODE ((*array_list)[ii]) == ARRAY_NOTATION_REF)
{
tree array_node = (*array_list)[ii];
make_triplet_val_inv (location, &ARRAY_NOTATION_START (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_LENGTH (array_node));
make_triplet_val_inv (location, &ARRAY_NOTATION_STRIDE (array_node));
}
cilkplus_extract_an_triplets (array_list, list_size, rank, &an_info);
if (length_mismatch_in_expr_p (location, an_info))
{
pop_stmt_list (loop_init);
return error_mark_node;
}
for (ii = 0; ii < rank; ii++)
{
an_loop_info[ii].var = create_tmp_var (integer_type_node);
an_loop_info[ii].ind_init =
build_modify_expr (location, an_loop_info[ii].var,
TREE_TYPE (an_loop_info[ii].var), NOP_EXPR, location,
build_int_cst (TREE_TYPE (an_loop_info[ii].var), 0),
TREE_TYPE (an_loop_info[ii].var));
}
array_operand = create_array_refs (location, an_info, an_loop_info,
list_size, rank);
replace_array_notations (&arg, true, array_list, array_operand);
create_cmp_incr (location, &an_loop_info, rank, an_info);
loop_init = pop_stmt_list (loop_init);
append_to_statement_list_force (loop_init, &loop_with_init);
body = arg;
for (ii = 0; ii < rank; ii++)
{
tree new_loop = push_stmt_list ();
add_stmt (an_loop_info[ii].ind_init);
c_finish_loop (location, an_loop_info[ii].cmp, an_loop_info[ii].incr,
body, NULL_TREE, NULL_TREE, true);
body = pop_stmt_list (new_loop);
}
append_to_statement_list_force (body, &loop_with_init);
release_vec_vec (an_info);
return loop_with_init;
}
/* Expands the built-in functions in a return. EXPR is a RETURN_EXPR with
a built-in reduction function. This function returns the expansion code for
the built-in function. */
static tree
fix_return_expr (tree expr)
{
tree new_mod_list, new_var, new_mod, retval_expr, retval_type;
location_t loc = EXPR_LOCATION (expr);
new_mod_list = alloc_stmt_list ();
retval_expr = TREE_OPERAND (expr, 0);
retval_type = TREE_TYPE (TREE_OPERAND (retval_expr, 1));
new_var = build_decl (loc, VAR_DECL, NULL_TREE, TREE_TYPE (retval_expr));
new_mod = build_array_notation_expr (loc, new_var, TREE_TYPE (new_var),
NOP_EXPR, loc,
TREE_OPERAND (retval_expr, 1),
retval_type);
TREE_OPERAND (retval_expr, 1) = new_var;
TREE_OPERAND (expr, 0) = retval_expr;
append_to_statement_list_force (new_mod, &new_mod_list);
append_to_statement_list_force (expr, &new_mod_list);
return new_mod_list;
}
/* Callback for walk_tree. Expands all array notations in *TP. *WALK_SUBTREES
is set to 1 unless *TP contains no array notation expressions. */
static tree
expand_array_notations (tree *tp, int *walk_subtrees, void *)
{
if (!contains_array_notation_expr (*tp))
{
*walk_subtrees = 0;
return NULL_TREE;
}
*walk_subtrees = 1;
switch (TREE_CODE (*tp))
{
case TRUTH_ORIF_EXPR:
case TRUTH_ANDIF_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_XOR_EXPR:
case TRUTH_NOT_EXPR:
case COND_EXPR:
*tp = fix_conditional_array_notations (*tp);
break;
case MODIFY_EXPR:
{
location_t loc = EXPR_HAS_LOCATION (*tp) ? EXPR_LOCATION (*tp) :
UNKNOWN_LOCATION;
tree lhs = TREE_OPERAND (*tp, 0);
tree rhs = TREE_OPERAND (*tp, 1);
location_t rhs_loc = EXPR_HAS_LOCATION (rhs) ? EXPR_LOCATION (rhs) :
UNKNOWN_LOCATION;
*tp = build_array_notation_expr (loc, lhs, TREE_TYPE (lhs), NOP_EXPR,
rhs_loc, rhs, TREE_TYPE (rhs));
}
break;
case DECL_EXPR:
{
tree x = DECL_EXPR_DECL (*tp);
if (DECL_INITIAL (x))
{
location_t loc = DECL_SOURCE_LOCATION (x);
tree lhs = x;
tree rhs = DECL_INITIAL (x);
DECL_INITIAL (x) = NULL;
tree new_modify_expr = build_modify_expr (loc, lhs,
TREE_TYPE (lhs),
NOP_EXPR,
loc, rhs,
TREE_TYPE(rhs));
expand_array_notations (&new_modify_expr, walk_subtrees, NULL);
*tp = new_modify_expr;
}
}
break;
case CALL_EXPR:
*tp = fix_array_notation_call_expr (*tp);
break;
case RETURN_EXPR:
*tp = fix_return_expr (*tp);
break;
case COMPOUND_EXPR:
if (TREE_CODE (TREE_OPERAND (*tp, 0)) == SAVE_EXPR)
{
/* In here we are calling expand_array_notations because
we need to be able to catch the return value and check if
it is an error_mark_node. */
expand_array_notations (&TREE_OPERAND (*tp, 1), walk_subtrees, NULL);
/* SAVE_EXPR cannot have an error_mark_node inside it. This check
will make sure that if there is an error in expanding of
array notations (e.g. rank mismatch) then replace the entire
SAVE_EXPR with an error_mark_node. */
if (TREE_OPERAND (*tp, 1) == error_mark_node)
*tp = error_mark_node;
}
break;
case ARRAY_NOTATION_REF:
/* If we are here, then we are dealing with cases like this:
A[:];
A[x:y:z];
A[x:y];
Replace those with just void zero node. */
*tp = void_node;
default:
break;
}
return NULL_TREE;
}
/* Walks through tree node T and expands all array notations in its subtrees.
The return value is the same type as T but with all array notations
replaced with appropriate ARRAY_REFS with a loop around it. */
tree
expand_array_notation_exprs (tree t)
{
walk_tree (&t, expand_array_notations, NULL, NULL);
return t;
}
/* This handles expression of the form "a[i:j:k]" or "a[:]" or "a[i:j]," which
denotes an array notation expression. If a is a variable or a member, then
we generate a ARRAY_NOTATION_REF front-end tree and return it.
This tree is broken down to ARRAY_REF toward the end of parsing.
ARRAY_NOTATION_REF tree holds the START_INDEX, LENGTH, STRIDE and the TYPE
of ARRAY_REF. Restrictions on START_INDEX, LENGTH and STRIDE is same as that
of the index field passed into ARRAY_REF. The only additional restriction
is that, unlike index in ARRAY_REF, stride, length and start_index cannot
contain ARRAY_NOTATIONS. */
tree
build_array_notation_ref (location_t loc, tree array, tree start_index,
tree length, tree stride, tree type)
{
tree array_ntn_tree = NULL_TREE;
size_t stride_rank = 0, length_rank = 0, start_rank = 0;
if (!INTEGRAL_TYPE_P (TREE_TYPE (start_index)))
{
error_at (loc,
"start-index of array notation triplet is not an integer");
return error_mark_node;
}
if (!INTEGRAL_TYPE_P (TREE_TYPE (length)))
{
error_at (loc, "length of array notation triplet is not an integer");
return error_mark_node;
}
/* The stride is an optional field. */
if (stride && !INTEGRAL_TYPE_P (TREE_TYPE (stride)))
{
error_at (loc, "stride of array notation triplet is not an integer");
return error_mark_node;
}
if (!stride)
{
if (TREE_CONSTANT (start_index) && TREE_CONSTANT (length)
&& tree_int_cst_lt (length, start_index))
stride = build_int_cst (TREE_TYPE (start_index), -1);
else
stride = build_int_cst (TREE_TYPE (start_index), 1);
}
if (!find_rank (loc, start_index, start_index, false, &start_rank))
return error_mark_node;
if (!find_rank (loc, length, length, false, &length_rank))
return error_mark_node;
if (!find_rank (loc, stride, stride, false, &stride_rank))
return error_mark_node;
if (start_rank != 0)
{
error_at (loc, "rank of an array notation triplet's start-index is not "
"zero");
return error_mark_node;
}
if (length_rank != 0)
{
error_at (loc, "rank of an array notation triplet's length is not zero");
return error_mark_node;
}
if (stride_rank != 0)
{
error_at (loc, "rank of array notation triplet's stride is not zero");
return error_mark_node;
}
array_ntn_tree = build4 (ARRAY_NOTATION_REF, NULL_TREE, NULL_TREE, NULL_TREE,
NULL_TREE, NULL_TREE);
ARRAY_NOTATION_ARRAY (array_ntn_tree) = array;
ARRAY_NOTATION_START (array_ntn_tree) = start_index;
ARRAY_NOTATION_LENGTH (array_ntn_tree) = length;
ARRAY_NOTATION_STRIDE (array_ntn_tree) = stride;
TREE_TYPE (array_ntn_tree) = type;
return array_ntn_tree;
}
|