1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
  
     | 
    
      /* Predictive commoning.
   Copyright (C) 2005-2017 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
/* This file implements the predictive commoning optimization.  Predictive
   commoning can be viewed as CSE around a loop, and with some improvements,
   as generalized strength reduction-- i.e., reusing values computed in
   earlier iterations of a loop in the later ones.  So far, the pass only
   handles the most useful case, that is, reusing values of memory references.
   If you think this is all just a special case of PRE, you are sort of right;
   however, concentrating on loops is simpler, and makes it possible to
   incorporate data dependence analysis to detect the opportunities, perform
   loop unrolling to avoid copies together with renaming immediately,
   and if needed, we could also take register pressure into account.
   Let us demonstrate what is done on an example:
   for (i = 0; i < 100; i++)
     {
       a[i+2] = a[i] + a[i+1];
       b[10] = b[10] + i;
       c[i] = c[99 - i];
       d[i] = d[i + 1];
     }
   1) We find data references in the loop, and split them to mutually
      independent groups (i.e., we find components of a data dependence
      graph).  We ignore read-read dependences whose distance is not constant.
      (TODO -- we could also ignore antidependences).  In this example, we
      find the following groups:
      a[i]{read}, a[i+1]{read}, a[i+2]{write}
      b[10]{read}, b[10]{write}
      c[99 - i]{read}, c[i]{write}
      d[i + 1]{read}, d[i]{write}
   2) Inside each of the group, we verify several conditions:
      a) all the references must differ in indices only, and the indices
	 must all have the same step
      b) the references must dominate loop latch (and thus, they must be
	 ordered by dominance relation).
      c) the distance of the indices must be a small multiple of the step
      We are then able to compute the difference of the references (# of
      iterations before they point to the same place as the first of them).
      Also, in case there are writes in the loop, we split the groups into
      chains whose head is the write whose values are used by the reads in
      the same chain.  The chains are then processed independently,
      making the further transformations simpler.  Also, the shorter chains
      need the same number of registers, but may require lower unrolling
      factor in order to get rid of the copies on the loop latch.
      In our example, we get the following chains (the chain for c is invalid).
      a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
      b[10]{read,+0}, b[10]{write,+0}
      d[i + 1]{read,+0}, d[i]{write,+1}
   3) For each read, we determine the read or write whose value it reuses,
      together with the distance of this reuse.  I.e. we take the last
      reference before it with distance 0, or the last of the references
      with the smallest positive distance to the read.  Then, we remove
      the references that are not used in any of these chains, discard the
      empty groups, and propagate all the links so that they point to the
      single root reference of the chain (adjusting their distance
      appropriately).  Some extra care needs to be taken for references with
      step 0.  In our example (the numbers indicate the distance of the
      reuse),
      a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
      b[10] --> (*) 1, b[10] (*)
   4) The chains are combined together if possible.  If the corresponding
      elements of two chains are always combined together with the same
      operator, we remember just the result of this combination, instead
      of remembering the values separately.  We may need to perform
      reassociation to enable combining, for example
      e[i] + f[i+1] + e[i+1] + f[i]
      can be reassociated as
      (e[i] + f[i]) + (e[i+1] + f[i+1])
      and we can combine the chains for e and f into one chain.
   5) For each root reference (end of the chain) R, let N be maximum distance
      of a reference reusing its value.  Variables R0 up to RN are created,
      together with phi nodes that transfer values from R1 .. RN to
      R0 .. R(N-1).
      Initial values are loaded to R0..R(N-1) (in case not all references
      must necessarily be accessed and they may trap, we may fail here;
      TODO sometimes, the loads could be guarded by a check for the number
      of iterations).  Values loaded/stored in roots are also copied to
      RN.  Other reads are replaced with the appropriate variable Ri.
      Everything is put to SSA form.
      As a small improvement, if R0 is dead after the root (i.e., all uses of
      the value with the maximum distance dominate the root), we can avoid
      creating RN and use R0 instead of it.
      In our example, we get (only the parts concerning a and b are shown):
      for (i = 0; i < 100; i++)
	{
	  f = phi (a[0], s);
	  s = phi (a[1], f);
	  x = phi (b[10], x);
	  f = f + s;
	  a[i+2] = f;
	  x = x + i;
	  b[10] = x;
	}
   6) Factor F for unrolling is determined as the smallest common multiple of
      (N + 1) for each root reference (N for references for that we avoided
      creating RN).  If F and the loop is small enough, loop is unrolled F
      times.  The stores to RN (R0) in the copies of the loop body are
      periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
      be coalesced and the copies can be eliminated.
      TODO -- copy propagation and other optimizations may change the live
      ranges of the temporary registers and prevent them from being coalesced;
      this may increase the register pressure.
      In our case, F = 2 and the (main loop of the) result is
      for (i = 0; i < ...; i += 2)
        {
          f = phi (a[0], f);
          s = phi (a[1], s);
          x = phi (b[10], x);
          f = f + s;
          a[i+2] = f;
          x = x + i;
          b[10] = x;
          s = s + f;
          a[i+3] = s;
          x = x + i;
          b[10] = x;
       }
   TODO -- stores killing other stores can be taken into account, e.g.,
   for (i = 0; i < n; i++)
     {
       a[i] = 1;
       a[i+2] = 2;
     }
   can be replaced with
   t0 = a[0];
   t1 = a[1];
   for (i = 0; i < n; i++)
     {
       a[i] = 1;
       t2 = 2;
       t0 = t1;
       t1 = t2;
     }
   a[n] = t0;
   a[n+1] = t1;
   The interesting part is that this would generalize store motion; still, since
   sm is performed elsewhere, it does not seem that important.
   Predictive commoning can be generalized for arbitrary computations (not
   just memory loads), and also nontrivial transfer functions (e.g., replacing
   i * i with ii_last + 2 * i + 1), to generalize strength reduction.  */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "alias.h"
#include "fold-const.h"
#include "cfgloop.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-into-ssa.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "params.h"
#include "tree-affine.h"
#include "builtins.h"
/* The maximum number of iterations between the considered memory
   references.  */
#define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
/* Data references (or phi nodes that carry data reference values across
   loop iterations).  */
typedef struct dref_d
{
  /* The reference itself.  */
  struct data_reference *ref;
  /* The statement in that the reference appears.  */
  gimple *stmt;
  /* In case that STMT is a phi node, this field is set to the SSA name
     defined by it in replace_phis_by_defined_names (in order to avoid
     pointing to phi node that got reallocated in the meantime).  */
  tree name_defined_by_phi;
  /* Distance of the reference from the root of the chain (in number of
     iterations of the loop).  */
  unsigned distance;
  /* Number of iterations offset from the first reference in the component.  */
  widest_int offset;
  /* Number of the reference in a component, in dominance ordering.  */
  unsigned pos;
  /* True if the memory reference is always accessed when the loop is
     entered.  */
  unsigned always_accessed : 1;
} *dref;
/* Type of the chain of the references.  */
enum chain_type
{
  /* The addresses of the references in the chain are constant.  */
  CT_INVARIANT,
  /* There are only loads in the chain.  */
  CT_LOAD,
  /* Root of the chain is store, the rest are loads.  */
  CT_STORE_LOAD,
  /* A combination of two chains.  */
  CT_COMBINATION
};
/* Chains of data references.  */
typedef struct chain
{
  /* Type of the chain.  */
  enum chain_type type;
  /* For combination chains, the operator and the two chains that are
     combined, and the type of the result.  */
  enum tree_code op;
  tree rslt_type;
  struct chain *ch1, *ch2;
  /* The references in the chain.  */
  vec<dref> refs;
  /* The maximum distance of the reference in the chain from the root.  */
  unsigned length;
  /* The variables used to copy the value throughout iterations.  */
  vec<tree> vars;
  /* Initializers for the variables.  */
  vec<tree> inits;
  /* True if there is a use of a variable with the maximal distance
     that comes after the root in the loop.  */
  unsigned has_max_use_after : 1;
  /* True if all the memory references in the chain are always accessed.  */
  unsigned all_always_accessed : 1;
  /* True if this chain was combined together with some other chain.  */
  unsigned combined : 1;
} *chain_p;
/* Describes the knowledge about the step of the memory references in
   the component.  */
enum ref_step_type
{
  /* The step is zero.  */
  RS_INVARIANT,
  /* The step is nonzero.  */
  RS_NONZERO,
  /* The step may or may not be nonzero.  */
  RS_ANY
};
/* Components of the data dependence graph.  */
struct component
{
  /* The references in the component.  */
  vec<dref> refs;
  /* What we know about the step of the references in the component.  */
  enum ref_step_type comp_step;
  /* Next component in the list.  */
  struct component *next;
};
/* Bitmap of ssa names defined by looparound phi nodes covered by chains.  */
static bitmap looparound_phis;
/* Cache used by tree_to_aff_combination_expand.  */
static hash_map<tree, name_expansion *> *name_expansions;
/* Dumps data reference REF to FILE.  */
extern void dump_dref (FILE *, dref);
void
dump_dref (FILE *file, dref ref)
{
  if (ref->ref)
    {
      fprintf (file, "    ");
      print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
      fprintf (file, " (id %u%s)\n", ref->pos,
	       DR_IS_READ (ref->ref) ? "" : ", write");
      fprintf (file, "      offset ");
      print_decs (ref->offset, file);
      fprintf (file, "\n");
      fprintf (file, "      distance %u\n", ref->distance);
    }
  else
    {
      if (gimple_code (ref->stmt) == GIMPLE_PHI)
	fprintf (file, "    looparound ref\n");
      else
	fprintf (file, "    combination ref\n");
      fprintf (file, "      in statement ");
      print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
      fprintf (file, "\n");
      fprintf (file, "      distance %u\n", ref->distance);
    }
}
/* Dumps CHAIN to FILE.  */
extern void dump_chain (FILE *, chain_p);
void
dump_chain (FILE *file, chain_p chain)
{
  dref a;
  const char *chain_type;
  unsigned i;
  tree var;
  switch (chain->type)
    {
    case CT_INVARIANT:
      chain_type = "Load motion";
      break;
    case CT_LOAD:
      chain_type = "Loads-only";
      break;
    case CT_STORE_LOAD:
      chain_type = "Store-loads";
      break;
    case CT_COMBINATION:
      chain_type = "Combination";
      break;
    default:
      gcc_unreachable ();
    }
  fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
	   chain->combined ? " (combined)" : "");
  if (chain->type != CT_INVARIANT)
    fprintf (file, "  max distance %u%s\n", chain->length,
	     chain->has_max_use_after ? "" : ", may reuse first");
  if (chain->type == CT_COMBINATION)
    {
      fprintf (file, "  equal to %p %s %p in type ",
	       (void *) chain->ch1, op_symbol_code (chain->op),
	       (void *) chain->ch2);
      print_generic_expr (file, chain->rslt_type, TDF_SLIM);
      fprintf (file, "\n");
    }
  if (chain->vars.exists ())
    {
      fprintf (file, "  vars");
      FOR_EACH_VEC_ELT (chain->vars, i, var)
	{
	  fprintf (file, " ");
	  print_generic_expr (file, var, TDF_SLIM);
	}
      fprintf (file, "\n");
    }
  if (chain->inits.exists ())
    {
      fprintf (file, "  inits");
      FOR_EACH_VEC_ELT (chain->inits, i, var)
	{
	  fprintf (file, " ");
	  print_generic_expr (file, var, TDF_SLIM);
	}
      fprintf (file, "\n");
    }
  fprintf (file, "  references:\n");
  FOR_EACH_VEC_ELT (chain->refs, i, a)
    dump_dref (file, a);
  fprintf (file, "\n");
}
/* Dumps CHAINS to FILE.  */
extern void dump_chains (FILE *, vec<chain_p> );
void
dump_chains (FILE *file, vec<chain_p> chains)
{
  chain_p chain;
  unsigned i;
  FOR_EACH_VEC_ELT (chains, i, chain)
    dump_chain (file, chain);
}
/* Dumps COMP to FILE.  */
extern void dump_component (FILE *, struct component *);
void
dump_component (FILE *file, struct component *comp)
{
  dref a;
  unsigned i;
  fprintf (file, "Component%s:\n",
	   comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
  FOR_EACH_VEC_ELT (comp->refs, i, a)
    dump_dref (file, a);
  fprintf (file, "\n");
}
/* Dumps COMPS to FILE.  */
extern void dump_components (FILE *, struct component *);
void
dump_components (FILE *file, struct component *comps)
{
  struct component *comp;
  for (comp = comps; comp; comp = comp->next)
    dump_component (file, comp);
}
/* Frees a chain CHAIN.  */
static void
release_chain (chain_p chain)
{
  dref ref;
  unsigned i;
  if (chain == NULL)
    return;
  FOR_EACH_VEC_ELT (chain->refs, i, ref)
    free (ref);
  chain->refs.release ();
  chain->vars.release ();
  chain->inits.release ();
  free (chain);
}
/* Frees CHAINS.  */
static void
release_chains (vec<chain_p> chains)
{
  unsigned i;
  chain_p chain;
  FOR_EACH_VEC_ELT (chains, i, chain)
    release_chain (chain);
  chains.release ();
}
/* Frees a component COMP.  */
static void
release_component (struct component *comp)
{
  comp->refs.release ();
  free (comp);
}
/* Frees list of components COMPS.  */
static void
release_components (struct component *comps)
{
  struct component *act, *next;
  for (act = comps; act; act = next)
    {
      next = act->next;
      release_component (act);
    }
}
/* Finds a root of tree given by FATHERS containing A, and performs path
   shortening.  */
static unsigned
component_of (unsigned fathers[], unsigned a)
{
  unsigned root, n;
  for (root = a; root != fathers[root]; root = fathers[root])
    continue;
  for (; a != root; a = n)
    {
      n = fathers[a];
      fathers[a] = root;
    }
  return root;
}
/* Join operation for DFU.  FATHERS gives the tree, SIZES are sizes of the
   components, A and B are components to merge.  */
static void
merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
{
  unsigned ca = component_of (fathers, a);
  unsigned cb = component_of (fathers, b);
  if (ca == cb)
    return;
  if (sizes[ca] < sizes[cb])
    {
      sizes[cb] += sizes[ca];
      fathers[ca] = cb;
    }
  else
    {
      sizes[ca] += sizes[cb];
      fathers[cb] = ca;
    }
}
/* Returns true if A is a reference that is suitable for predictive commoning
   in the innermost loop that contains it.  REF_STEP is set according to the
   step of the reference A.  */
static bool
suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
{
  tree ref = DR_REF (a), step = DR_STEP (a);
  if (!step
      || TREE_THIS_VOLATILE (ref)
      || !is_gimple_reg_type (TREE_TYPE (ref))
      || tree_could_throw_p (ref))
    return false;
  if (integer_zerop (step))
    *ref_step = RS_INVARIANT;
  else if (integer_nonzerop (step))
    *ref_step = RS_NONZERO;
  else
    *ref_step = RS_ANY;
  return true;
}
/* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET.  */
static void
aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
{
  tree type = TREE_TYPE (DR_OFFSET (dr));
  aff_tree delta;
  tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
				  &name_expansions);
  aff_combination_const (&delta, type, wi::to_widest (DR_INIT (dr)));
  aff_combination_add (offset, &delta);
}
/* Determines number of iterations of the innermost enclosing loop before B
   refers to exactly the same location as A and stores it to OFF.  If A and
   B do not have the same step, they never meet, or anything else fails,
   returns false, otherwise returns true.  Both A and B are assumed to
   satisfy suitable_reference_p.  */
static bool
determine_offset (struct data_reference *a, struct data_reference *b,
		  widest_int *off)
{
  aff_tree diff, baseb, step;
  tree typea, typeb;
  /* Check that both the references access the location in the same type.  */
  typea = TREE_TYPE (DR_REF (a));
  typeb = TREE_TYPE (DR_REF (b));
  if (!useless_type_conversion_p (typeb, typea))
    return false;
  /* Check whether the base address and the step of both references is the
     same.  */
  if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
      || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
    return false;
  if (integer_zerop (DR_STEP (a)))
    {
      /* If the references have loop invariant address, check that they access
	 exactly the same location.  */
      *off = 0;
      return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
	      && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
    }
  /* Compare the offsets of the addresses, and check whether the difference
     is a multiple of step.  */
  aff_combination_dr_offset (a, &diff);
  aff_combination_dr_offset (b, &baseb);
  aff_combination_scale (&baseb, -1);
  aff_combination_add (&diff, &baseb);
  tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
				  &step, &name_expansions);
  return aff_combination_constant_multiple_p (&diff, &step, off);
}
/* Returns the last basic block in LOOP for that we are sure that
   it is executed whenever the loop is entered.  */
static basic_block
last_always_executed_block (struct loop *loop)
{
  unsigned i;
  vec<edge> exits = get_loop_exit_edges (loop);
  edge ex;
  basic_block last = loop->latch;
  FOR_EACH_VEC_ELT (exits, i, ex)
    last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
  exits.release ();
  return last;
}
/* Splits dependence graph on DATAREFS described by DEPENDS to components.  */
static struct component *
split_data_refs_to_components (struct loop *loop,
			       vec<data_reference_p> datarefs,
			       vec<ddr_p> depends)
{
  unsigned i, n = datarefs.length ();
  unsigned ca, ia, ib, bad;
  unsigned *comp_father = XNEWVEC (unsigned, n + 1);
  unsigned *comp_size = XNEWVEC (unsigned, n + 1);
  struct component **comps;
  struct data_reference *dr, *dra, *drb;
  struct data_dependence_relation *ddr;
  struct component *comp_list = NULL, *comp;
  dref dataref;
  basic_block last_always_executed = last_always_executed_block (loop);
  FOR_EACH_VEC_ELT (datarefs, i, dr)
    {
      if (!DR_REF (dr))
	{
	  /* A fake reference for call or asm_expr that may clobber memory;
	     just fail.  */
	  goto end;
	}
      /* predcom pass isn't prepared to handle calls with data references.  */
      if (is_gimple_call (DR_STMT (dr)))
	goto end;
      dr->aux = (void *) (size_t) i;
      comp_father[i] = i;
      comp_size[i] = 1;
    }
  /* A component reserved for the "bad" data references.  */
  comp_father[n] = n;
  comp_size[n] = 1;
  FOR_EACH_VEC_ELT (datarefs, i, dr)
    {
      enum ref_step_type dummy;
      if (!suitable_reference_p (dr, &dummy))
	{
	  ia = (unsigned) (size_t) dr->aux;
	  merge_comps (comp_father, comp_size, n, ia);
	}
    }
  FOR_EACH_VEC_ELT (depends, i, ddr)
    {
      widest_int dummy_off;
      if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
	continue;
      dra = DDR_A (ddr);
      drb = DDR_B (ddr);
      ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
      ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
      if (ia == ib)
	continue;
      bad = component_of (comp_father, n);
      /* If both A and B are reads, we may ignore unsuitable dependences.  */
      if (DR_IS_READ (dra) && DR_IS_READ (drb))
	{
	  if (ia == bad || ib == bad
	      || !determine_offset (dra, drb, &dummy_off))
	    continue;
	}
      /* If A is read and B write or vice versa and there is unsuitable
	 dependence, instead of merging both components into a component
	 that will certainly not pass suitable_component_p, just put the
	 read into bad component, perhaps at least the write together with
	 all the other data refs in it's component will be optimizable.  */
      else if (DR_IS_READ (dra) && ib != bad)
	{
	  if (ia == bad)
	    continue;
	  else if (!determine_offset (dra, drb, &dummy_off))
	    {
	      merge_comps (comp_father, comp_size, bad, ia);
	      continue;
	    }
	}
      else if (DR_IS_READ (drb) && ia != bad)
	{
	  if (ib == bad)
	    continue;
	  else if (!determine_offset (dra, drb, &dummy_off))
	    {
	      merge_comps (comp_father, comp_size, bad, ib);
	      continue;
	    }
	}
      merge_comps (comp_father, comp_size, ia, ib);
    }
  comps = XCNEWVEC (struct component *, n);
  bad = component_of (comp_father, n);
  FOR_EACH_VEC_ELT (datarefs, i, dr)
    {
      ia = (unsigned) (size_t) dr->aux;
      ca = component_of (comp_father, ia);
      if (ca == bad)
	continue;
      comp = comps[ca];
      if (!comp)
	{
	  comp = XCNEW (struct component);
	  comp->refs.create (comp_size[ca]);
	  comps[ca] = comp;
	}
      dataref = XCNEW (struct dref_d);
      dataref->ref = dr;
      dataref->stmt = DR_STMT (dr);
      dataref->offset = 0;
      dataref->distance = 0;
      dataref->always_accessed
	      = dominated_by_p (CDI_DOMINATORS, last_always_executed,
				gimple_bb (dataref->stmt));
      dataref->pos = comp->refs.length ();
      comp->refs.quick_push (dataref);
    }
  for (i = 0; i < n; i++)
    {
      comp = comps[i];
      if (comp)
	{
	  comp->next = comp_list;
	  comp_list = comp;
	}
    }
  free (comps);
end:
  free (comp_father);
  free (comp_size);
  return comp_list;
}
/* Returns true if the component COMP satisfies the conditions
   described in 2) at the beginning of this file.  LOOP is the current
   loop.  */
static bool
suitable_component_p (struct loop *loop, struct component *comp)
{
  unsigned i;
  dref a, first;
  basic_block ba, bp = loop->header;
  bool ok, has_write = false;
  FOR_EACH_VEC_ELT (comp->refs, i, a)
    {
      ba = gimple_bb (a->stmt);
      if (!just_once_each_iteration_p (loop, ba))
	return false;
      gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
      bp = ba;
      if (DR_IS_WRITE (a->ref))
	has_write = true;
    }
  first = comp->refs[0];
  ok = suitable_reference_p (first->ref, &comp->comp_step);
  gcc_assert (ok);
  first->offset = 0;
  for (i = 1; comp->refs.iterate (i, &a); i++)
    {
      if (!determine_offset (first->ref, a->ref, &a->offset))
	return false;
      enum ref_step_type a_step;
      gcc_checking_assert (suitable_reference_p (a->ref, &a_step)
			   && a_step == comp->comp_step);
    }
  /* If there is a write inside the component, we must know whether the
     step is nonzero or not -- we would not otherwise be able to recognize
     whether the value accessed by reads comes from the OFFSET-th iteration
     or the previous one.  */
  if (has_write && comp->comp_step == RS_ANY)
    return false;
  return true;
}
/* Check the conditions on references inside each of components COMPS,
   and remove the unsuitable components from the list.  The new list
   of components is returned.  The conditions are described in 2) at
   the beginning of this file.  LOOP is the current loop.  */
static struct component *
filter_suitable_components (struct loop *loop, struct component *comps)
{
  struct component **comp, *act;
  for (comp = &comps; *comp; )
    {
      act = *comp;
      if (suitable_component_p (loop, act))
	comp = &act->next;
      else
	{
	  dref ref;
	  unsigned i;
	  *comp = act->next;
	  FOR_EACH_VEC_ELT (act->refs, i, ref)
	    free (ref);
	  release_component (act);
	}
    }
  return comps;
}
/* Compares two drefs A and B by their offset and position.  Callback for
   qsort.  */
static int
order_drefs (const void *a, const void *b)
{
  const dref *const da = (const dref *) a;
  const dref *const db = (const dref *) b;
  int offcmp = wi::cmps ((*da)->offset, (*db)->offset);
  if (offcmp != 0)
    return offcmp;
  return (*da)->pos - (*db)->pos;
}
/* Compares two drefs A and B by their position.  Callback for qsort.  */
static int
order_drefs_by_pos (const void *a, const void *b)
{
  const dref *const da = (const dref *) a;
  const dref *const db = (const dref *) b;
  return (*da)->pos - (*db)->pos;
}
/* Returns root of the CHAIN.  */
static inline dref
get_chain_root (chain_p chain)
{
  return chain->refs[0];
}
/* Adds REF to the chain CHAIN.  */
static void
add_ref_to_chain (chain_p chain, dref ref)
{
  dref root = get_chain_root (chain);
  gcc_assert (wi::les_p (root->offset, ref->offset));
  widest_int dist = ref->offset - root->offset;
  if (wi::leu_p (MAX_DISTANCE, dist))
    {
      free (ref);
      return;
    }
  gcc_assert (wi::fits_uhwi_p (dist));
  chain->refs.safe_push (ref);
  ref->distance = dist.to_uhwi ();
  if (ref->distance >= chain->length)
    {
      chain->length = ref->distance;
      chain->has_max_use_after = false;
    }
  if (ref->distance == chain->length
      && ref->pos > root->pos)
    chain->has_max_use_after = true;
  chain->all_always_accessed &= ref->always_accessed;
}
/* Returns the chain for invariant component COMP.  */
static chain_p
make_invariant_chain (struct component *comp)
{
  chain_p chain = XCNEW (struct chain);
  unsigned i;
  dref ref;
  chain->type = CT_INVARIANT;
  chain->all_always_accessed = true;
  FOR_EACH_VEC_ELT (comp->refs, i, ref)
    {
      chain->refs.safe_push (ref);
      chain->all_always_accessed &= ref->always_accessed;
    }
  return chain;
}
/* Make a new chain rooted at REF.  */
static chain_p
make_rooted_chain (dref ref)
{
  chain_p chain = XCNEW (struct chain);
  chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
  chain->refs.safe_push (ref);
  chain->all_always_accessed = ref->always_accessed;
  ref->distance = 0;
  return chain;
}
/* Returns true if CHAIN is not trivial.  */
static bool
nontrivial_chain_p (chain_p chain)
{
  return chain != NULL && chain->refs.length () > 1;
}
/* Returns the ssa name that contains the value of REF, or NULL_TREE if there
   is no such name.  */
static tree
name_for_ref (dref ref)
{
  tree name;
  if (is_gimple_assign (ref->stmt))
    {
      if (!ref->ref || DR_IS_READ (ref->ref))
	name = gimple_assign_lhs (ref->stmt);
      else
	name = gimple_assign_rhs1 (ref->stmt);
    }
  else
    name = PHI_RESULT (ref->stmt);
  return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
}
/* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
   iterations of the innermost enclosing loop).  */
static bool
valid_initializer_p (struct data_reference *ref,
		     unsigned distance, struct data_reference *root)
{
  aff_tree diff, base, step;
  widest_int off;
  /* Both REF and ROOT must be accessing the same object.  */
  if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
    return false;
  /* The initializer is defined outside of loop, hence its address must be
     invariant inside the loop.  */
  gcc_assert (integer_zerop (DR_STEP (ref)));
  /* If the address of the reference is invariant, initializer must access
     exactly the same location.  */
  if (integer_zerop (DR_STEP (root)))
    return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
	    && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
  /* Verify that this index of REF is equal to the root's index at
     -DISTANCE-th iteration.  */
  aff_combination_dr_offset (root, &diff);
  aff_combination_dr_offset (ref, &base);
  aff_combination_scale (&base, -1);
  aff_combination_add (&diff, &base);
  tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
				  &step, &name_expansions);
  if (!aff_combination_constant_multiple_p (&diff, &step, &off))
    return false;
  if (off != distance)
    return false;
  return true;
}
/* Finds looparound phi node of LOOP that copies the value of REF, and if its
   initial value is correct (equal to initial value of REF shifted by one
   iteration), returns the phi node.  Otherwise, NULL_TREE is returned.  ROOT
   is the root of the current chain.  */
static gphi *
find_looparound_phi (struct loop *loop, dref ref, dref root)
{
  tree name, init, init_ref;
  gphi *phi = NULL;
  gimple *init_stmt;
  edge latch = loop_latch_edge (loop);
  struct data_reference init_dr;
  gphi_iterator psi;
  if (is_gimple_assign (ref->stmt))
    {
      if (DR_IS_READ (ref->ref))
	name = gimple_assign_lhs (ref->stmt);
      else
	name = gimple_assign_rhs1 (ref->stmt);
    }
  else
    name = PHI_RESULT (ref->stmt);
  if (!name)
    return NULL;
  for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
    {
      phi = psi.phi ();
      if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
	break;
    }
  if (gsi_end_p (psi))
    return NULL;
  init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
  if (TREE_CODE (init) != SSA_NAME)
    return NULL;
  init_stmt = SSA_NAME_DEF_STMT (init);
  if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
    return NULL;
  gcc_assert (gimple_assign_lhs (init_stmt) == init);
  init_ref = gimple_assign_rhs1 (init_stmt);
  if (!REFERENCE_CLASS_P (init_ref)
      && !DECL_P (init_ref))
    return NULL;
  /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
     loop enclosing PHI).  */
  memset (&init_dr, 0, sizeof (struct data_reference));
  DR_REF (&init_dr) = init_ref;
  DR_STMT (&init_dr) = phi;
  if (!dr_analyze_innermost (&init_dr, loop))
    return NULL;
  if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
    return NULL;
  return phi;
}
/* Adds a reference for the looparound copy of REF in PHI to CHAIN.  */
static void
insert_looparound_copy (chain_p chain, dref ref, gphi *phi)
{
  dref nw = XCNEW (struct dref_d), aref;
  unsigned i;
  nw->stmt = phi;
  nw->distance = ref->distance + 1;
  nw->always_accessed = 1;
  FOR_EACH_VEC_ELT (chain->refs, i, aref)
    if (aref->distance >= nw->distance)
      break;
  chain->refs.safe_insert (i, nw);
  if (nw->distance > chain->length)
    {
      chain->length = nw->distance;
      chain->has_max_use_after = false;
    }
}
/* For references in CHAIN that are copied around the LOOP (created previously
   by PRE, or by user), add the results of such copies to the chain.  This
   enables us to remove the copies by unrolling, and may need less registers
   (also, it may allow us to combine chains together).  */
static void
add_looparound_copies (struct loop *loop, chain_p chain)
{
  unsigned i;
  dref ref, root = get_chain_root (chain);
  gphi *phi;
  FOR_EACH_VEC_ELT (chain->refs, i, ref)
    {
      phi = find_looparound_phi (loop, ref, root);
      if (!phi)
	continue;
      bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
      insert_looparound_copy (chain, ref, phi);
    }
}
/* Find roots of the values and determine distances in the component COMP.
   The references are redistributed into CHAINS.  LOOP is the current
   loop.  */
static void
determine_roots_comp (struct loop *loop,
		      struct component *comp,
		      vec<chain_p> *chains)
{
  unsigned i;
  dref a;
  chain_p chain = NULL;
  widest_int last_ofs = 0;
  /* Invariants are handled specially.  */
  if (comp->comp_step == RS_INVARIANT)
    {
      chain = make_invariant_chain (comp);
      chains->safe_push (chain);
      return;
    }
  comp->refs.qsort (order_drefs);
  FOR_EACH_VEC_ELT (comp->refs, i, a)
    {
      if (!chain || DR_IS_WRITE (a->ref)
	  || wi::leu_p (MAX_DISTANCE, a->offset - last_ofs))
	{
	  if (nontrivial_chain_p (chain))
	    {
	      add_looparound_copies (loop, chain);
	      chains->safe_push (chain);
	    }
	  else
	    release_chain (chain);
	  chain = make_rooted_chain (a);
	  last_ofs = a->offset;
	  continue;
	}
      add_ref_to_chain (chain, a);
    }
  if (nontrivial_chain_p (chain))
    {
      add_looparound_copies (loop, chain);
      chains->safe_push (chain);
    }
  else
    release_chain (chain);
}
/* Find roots of the values and determine distances in components COMPS, and
   separates the references to CHAINS.  LOOP is the current loop.  */
static void
determine_roots (struct loop *loop,
		 struct component *comps, vec<chain_p> *chains)
{
  struct component *comp;
  for (comp = comps; comp; comp = comp->next)
    determine_roots_comp (loop, comp, chains);
}
/* Replace the reference in statement STMT with temporary variable
   NEW_TREE.  If SET is true, NEW_TREE is instead initialized to the value of
   the reference in the statement.  IN_LHS is true if the reference
   is in the lhs of STMT, false if it is in rhs.  */
static void
replace_ref_with (gimple *stmt, tree new_tree, bool set, bool in_lhs)
{
  tree val;
  gassign *new_stmt;
  gimple_stmt_iterator bsi, psi;
  if (gimple_code (stmt) == GIMPLE_PHI)
    {
      gcc_assert (!in_lhs && !set);
      val = PHI_RESULT (stmt);
      bsi = gsi_after_labels (gimple_bb (stmt));
      psi = gsi_for_stmt (stmt);
      remove_phi_node (&psi, false);
      /* Turn the phi node into GIMPLE_ASSIGN.  */
      new_stmt = gimple_build_assign (val, new_tree);
      gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
      return;
    }
  /* Since the reference is of gimple_reg type, it should only
     appear as lhs or rhs of modify statement.  */
  gcc_assert (is_gimple_assign (stmt));
  bsi = gsi_for_stmt (stmt);
  /* If we do not need to initialize NEW_TREE, just replace the use of OLD.  */
  if (!set)
    {
      gcc_assert (!in_lhs);
      gimple_assign_set_rhs_from_tree (&bsi, new_tree);
      stmt = gsi_stmt (bsi);
      update_stmt (stmt);
      return;
    }
  if (in_lhs)
    {
      /* We have statement
	 OLD = VAL
	 If OLD is a memory reference, then VAL is gimple_val, and we transform
	 this to
	 OLD = VAL
	 NEW = VAL
	 Otherwise, we are replacing a combination chain,
	 VAL is the expression that performs the combination, and OLD is an
	 SSA name.  In this case, we transform the assignment to
	 OLD = VAL
	 NEW = OLD
	 */
      val = gimple_assign_lhs (stmt);
      if (TREE_CODE (val) != SSA_NAME)
	{
	  val = gimple_assign_rhs1 (stmt);
	  gcc_assert (gimple_assign_single_p (stmt));
	  if (TREE_CLOBBER_P (val))
	    val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
	  else
	    gcc_assert (gimple_assign_copy_p (stmt));
	}
    }
  else
    {
      /* VAL = OLD
	 is transformed to
	 VAL = OLD
	 NEW = VAL  */
      val = gimple_assign_lhs (stmt);
    }
  new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
  gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
}
/* Returns a memory reference to DR in the ITER-th iteration of
   the loop it was analyzed in.  Append init stmts to STMTS.  */
static tree
ref_at_iteration (data_reference_p dr, int iter, gimple_seq *stmts)
{
  tree off = DR_OFFSET (dr);
  tree coff = DR_INIT (dr);
  tree ref = DR_REF (dr);
  enum tree_code ref_code = ERROR_MARK;
  tree ref_type = NULL_TREE;
  tree ref_op1 = NULL_TREE;
  tree ref_op2 = NULL_TREE;
  if (iter == 0)
    ;
  else if (TREE_CODE (DR_STEP (dr)) == INTEGER_CST)
    coff = size_binop (PLUS_EXPR, coff,
		       size_binop (MULT_EXPR, DR_STEP (dr), ssize_int (iter)));
  else
    off = size_binop (PLUS_EXPR, off,
		      size_binop (MULT_EXPR, DR_STEP (dr), ssize_int (iter)));
  /* While data-ref analysis punts on bit offsets it still handles
     bitfield accesses at byte boundaries.  Cope with that.  Note that
     if the bitfield object also starts at a byte-boundary we can simply
     replicate the COMPONENT_REF, but we have to subtract the component's
     byte-offset from the MEM_REF address first.
     Otherwise we simply build a BIT_FIELD_REF knowing that the bits
     start at offset zero.  */
  if (TREE_CODE (ref) == COMPONENT_REF
      && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
    {
      unsigned HOST_WIDE_INT boff;
      tree field = TREE_OPERAND (ref, 1);
      tree offset = component_ref_field_offset (ref);
      ref_type = TREE_TYPE (ref);
      boff = tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field));
      /* This can occur in Ada.  See the comment in get_bit_range.  */
      if (boff % BITS_PER_UNIT != 0
	  || !tree_fits_uhwi_p (offset))
	{
	  ref_code = BIT_FIELD_REF;
	  ref_op1 = DECL_SIZE (field);
	  ref_op2 = bitsize_zero_node;
	}
      else
	{
	  boff >>= LOG2_BITS_PER_UNIT;
	  boff += tree_to_uhwi (offset);
	  coff = size_binop (MINUS_EXPR, coff, ssize_int (boff));
	  ref_code = COMPONENT_REF;
	  ref_op1 = field;
	  ref_op2 = TREE_OPERAND (ref, 2);
	  ref = TREE_OPERAND (ref, 0);
	}
    }
  tree addr = fold_build_pointer_plus (DR_BASE_ADDRESS (dr), off);
  addr = force_gimple_operand_1 (unshare_expr (addr), stmts,
				 is_gimple_mem_ref_addr, NULL_TREE);
  tree alias_ptr = fold_convert (reference_alias_ptr_type (ref), coff);
  tree type = build_aligned_type (TREE_TYPE (ref),
				  get_object_alignment (ref));
  ref = build2 (MEM_REF, type, addr, alias_ptr);
  if (ref_type)
    ref = build3 (ref_code, ref_type, ref, ref_op1, ref_op2);
  return ref;
}
/* Get the initialization expression for the INDEX-th temporary variable
   of CHAIN.  */
static tree
get_init_expr (chain_p chain, unsigned index)
{
  if (chain->type == CT_COMBINATION)
    {
      tree e1 = get_init_expr (chain->ch1, index);
      tree e2 = get_init_expr (chain->ch2, index);
      return fold_build2 (chain->op, chain->rslt_type, e1, e2);
    }
  else
    return chain->inits[index];
}
/* Returns a new temporary variable used for the I-th variable carrying
   value of REF.  The variable's uid is marked in TMP_VARS.  */
static tree
predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
{
  tree type = TREE_TYPE (ref);
  /* We never access the components of the temporary variable in predictive
     commoning.  */
  tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
  bitmap_set_bit (tmp_vars, DECL_UID (var));
  return var;
}
/* Creates the variables for CHAIN, as well as phi nodes for them and
   initialization on entry to LOOP.  Uids of the newly created
   temporary variables are marked in TMP_VARS.  */
static void
initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
{
  unsigned i;
  unsigned n = chain->length;
  dref root = get_chain_root (chain);
  bool reuse_first = !chain->has_max_use_after;
  tree ref, init, var, next;
  gphi *phi;
  gimple_seq stmts;
  edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
  /* If N == 0, then all the references are within the single iteration.  And
     since this is an nonempty chain, reuse_first cannot be true.  */
  gcc_assert (n > 0 || !reuse_first);
  chain->vars.create (n + 1);
  if (chain->type == CT_COMBINATION)
    ref = gimple_assign_lhs (root->stmt);
  else
    ref = DR_REF (root->ref);
  for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
    {
      var = predcom_tmp_var (ref, i, tmp_vars);
      chain->vars.quick_push (var);
    }
  if (reuse_first)
    chain->vars.quick_push (chain->vars[0]);
  FOR_EACH_VEC_ELT (chain->vars, i, var)
    chain->vars[i] = make_ssa_name (var);
  for (i = 0; i < n; i++)
    {
      var = chain->vars[i];
      next = chain->vars[i + 1];
      init = get_init_expr (chain, i);
      init = force_gimple_operand (init, &stmts, true, NULL_TREE);
      if (stmts)
	gsi_insert_seq_on_edge_immediate (entry, stmts);
      phi = create_phi_node (var, loop->header);
      add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
      add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
    }
}
/* Create the variables and initialization statement for root of chain
   CHAIN.  Uids of the newly created temporary variables are marked
   in TMP_VARS.  */
static void
initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
{
  dref root = get_chain_root (chain);
  bool in_lhs = (chain->type == CT_STORE_LOAD
		 || chain->type == CT_COMBINATION);
  initialize_root_vars (loop, chain, tmp_vars);
  replace_ref_with (root->stmt,
		    chain->vars[chain->length],
		    true, in_lhs);
}
/* Initializes a variable for load motion for ROOT and prepares phi nodes and
   initialization on entry to LOOP if necessary.  The ssa name for the variable
   is stored in VARS.  If WRITTEN is true, also a phi node to copy its value
   around the loop is created.  Uid of the newly created temporary variable
   is marked in TMP_VARS.  INITS is the list containing the (single)
   initializer.  */
static void
initialize_root_vars_lm (struct loop *loop, dref root, bool written,
			 vec<tree> *vars, vec<tree> inits,
			 bitmap tmp_vars)
{
  unsigned i;
  tree ref = DR_REF (root->ref), init, var, next;
  gimple_seq stmts;
  gphi *phi;
  edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
  /* Find the initializer for the variable, and check that it cannot
     trap.  */
  init = inits[0];
  vars->create (written ? 2 : 1);
  var = predcom_tmp_var (ref, 0, tmp_vars);
  vars->quick_push (var);
  if (written)
    vars->quick_push ((*vars)[0]);
  FOR_EACH_VEC_ELT (*vars, i, var)
    (*vars)[i] = make_ssa_name (var);
  var = (*vars)[0];
  init = force_gimple_operand (init, &stmts, written, NULL_TREE);
  if (stmts)
    gsi_insert_seq_on_edge_immediate (entry, stmts);
  if (written)
    {
      next = (*vars)[1];
      phi = create_phi_node (var, loop->header);
      add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
      add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
    }
  else
    {
      gassign *init_stmt = gimple_build_assign (var, init);
      gsi_insert_on_edge_immediate (entry, init_stmt);
    }
}
/* Execute load motion for references in chain CHAIN.  Uids of the newly
   created temporary variables are marked in TMP_VARS.  */
static void
execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
{
  auto_vec<tree> vars;
  dref a;
  unsigned n_writes = 0, ridx, i;
  tree var;
  gcc_assert (chain->type == CT_INVARIANT);
  gcc_assert (!chain->combined);
  FOR_EACH_VEC_ELT (chain->refs, i, a)
    if (DR_IS_WRITE (a->ref))
      n_writes++;
  /* If there are no reads in the loop, there is nothing to do.  */
  if (n_writes == chain->refs.length ())
    return;
  initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
			   &vars, chain->inits, tmp_vars);
  ridx = 0;
  FOR_EACH_VEC_ELT (chain->refs, i, a)
    {
      bool is_read = DR_IS_READ (a->ref);
      if (DR_IS_WRITE (a->ref))
	{
	  n_writes--;
	  if (n_writes)
	    {
	      var = vars[0];
	      var = make_ssa_name (SSA_NAME_VAR (var));
	      vars[0] = var;
	    }
	  else
	    ridx = 1;
	}
      replace_ref_with (a->stmt, vars[ridx],
			!is_read, !is_read);
    }
}
/* Returns the single statement in that NAME is used, excepting
   the looparound phi nodes contained in one of the chains.  If there is no
   such statement, or more statements, NULL is returned.  */
static gimple *
single_nonlooparound_use (tree name)
{
  use_operand_p use;
  imm_use_iterator it;
  gimple *stmt, *ret = NULL;
  FOR_EACH_IMM_USE_FAST (use, it, name)
    {
      stmt = USE_STMT (use);
      if (gimple_code (stmt) == GIMPLE_PHI)
	{
	  /* Ignore uses in looparound phi nodes.  Uses in other phi nodes
	     could not be processed anyway, so just fail for them.  */
	  if (bitmap_bit_p (looparound_phis,
			    SSA_NAME_VERSION (PHI_RESULT (stmt))))
	    continue;
	  return NULL;
	}
      else if (is_gimple_debug (stmt))
	continue;
      else if (ret != NULL)
	return NULL;
      else
	ret = stmt;
    }
  return ret;
}
/* Remove statement STMT, as well as the chain of assignments in that it is
   used.  */
static void
remove_stmt (gimple *stmt)
{
  tree name;
  gimple *next;
  gimple_stmt_iterator psi;
  if (gimple_code (stmt) == GIMPLE_PHI)
    {
      name = PHI_RESULT (stmt);
      next = single_nonlooparound_use (name);
      reset_debug_uses (stmt);
      psi = gsi_for_stmt (stmt);
      remove_phi_node (&psi, true);
      if (!next
	  || !gimple_assign_ssa_name_copy_p (next)
	  || gimple_assign_rhs1 (next) != name)
	return;
      stmt = next;
    }
  while (1)
    {
      gimple_stmt_iterator bsi;
      bsi = gsi_for_stmt (stmt);
      name = gimple_assign_lhs (stmt);
      gcc_assert (TREE_CODE (name) == SSA_NAME);
      next = single_nonlooparound_use (name);
      reset_debug_uses (stmt);
      unlink_stmt_vdef (stmt);
      gsi_remove (&bsi, true);
      release_defs (stmt);
      if (!next
	  || !gimple_assign_ssa_name_copy_p (next)
	  || gimple_assign_rhs1 (next) != name)
	return;
      stmt = next;
    }
}
/* Perform the predictive commoning optimization for a chain CHAIN.
   Uids of the newly created temporary variables are marked in TMP_VARS.*/
static void
execute_pred_commoning_chain (struct loop *loop, chain_p chain,
			     bitmap tmp_vars)
{
  unsigned i;
  dref a;
  tree var;
  if (chain->combined)
    {
      /* For combined chains, just remove the statements that are used to
	 compute the values of the expression (except for the root one).
	 We delay this until after all chains are processed.  */
    }
  else
    {
      /* For non-combined chains, set up the variables that hold its value,
	 and replace the uses of the original references by these
	 variables.  */
      initialize_root (loop, chain, tmp_vars);
      for (i = 1; chain->refs.iterate (i, &a); i++)
	{
	  var = chain->vars[chain->length - a->distance];
	  replace_ref_with (a->stmt, var, false, false);
	}
    }
}
/* Determines the unroll factor necessary to remove as many temporary variable
   copies as possible.  CHAINS is the list of chains that will be
   optimized.  */
static unsigned
determine_unroll_factor (vec<chain_p> chains)
{
  chain_p chain;
  unsigned factor = 1, af, nfactor, i;
  unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
  FOR_EACH_VEC_ELT (chains, i, chain)
    {
      if (chain->type == CT_INVARIANT)
	continue;
      if (chain->combined)
	{
	  /* For combined chains, we can't handle unrolling if we replace
	     looparound PHIs.  */
	  dref a;
	  unsigned j;
	  for (j = 1; chain->refs.iterate (j, &a); j++)
	    if (gimple_code (a->stmt) == GIMPLE_PHI)
	      return 1;
	  continue;
	}
      /* The best unroll factor for this chain is equal to the number of
	 temporary variables that we create for it.  */
      af = chain->length;
      if (chain->has_max_use_after)
	af++;
      nfactor = factor * af / gcd (factor, af);
      if (nfactor <= max)
	factor = nfactor;
    }
  return factor;
}
/* Perform the predictive commoning optimization for CHAINS.
   Uids of the newly created temporary variables are marked in TMP_VARS.  */
static void
execute_pred_commoning (struct loop *loop, vec<chain_p> chains,
			bitmap tmp_vars)
{
  chain_p chain;
  unsigned i;
  FOR_EACH_VEC_ELT (chains, i, chain)
    {
      if (chain->type == CT_INVARIANT)
	execute_load_motion (loop, chain, tmp_vars);
      else
	execute_pred_commoning_chain (loop, chain, tmp_vars);
    }
  FOR_EACH_VEC_ELT (chains, i, chain)
    {
      if (chain->type == CT_INVARIANT)
	;
      else if (chain->combined)
	{
	  /* For combined chains, just remove the statements that are used to
	     compute the values of the expression (except for the root one).  */
	  dref a;
	  unsigned j;
	  for (j = 1; chain->refs.iterate (j, &a); j++)
	    remove_stmt (a->stmt);
	}
    }
  update_ssa (TODO_update_ssa_only_virtuals);
}
/* For each reference in CHAINS, if its defining statement is
   phi node, record the ssa name that is defined by it.  */
static void
replace_phis_by_defined_names (vec<chain_p> chains)
{
  chain_p chain;
  dref a;
  unsigned i, j;
  FOR_EACH_VEC_ELT (chains, i, chain)
    FOR_EACH_VEC_ELT (chain->refs, j, a)
      {
	if (gimple_code (a->stmt) == GIMPLE_PHI)
	  {
	    a->name_defined_by_phi = PHI_RESULT (a->stmt);
	    a->stmt = NULL;
	  }
      }
}
/* For each reference in CHAINS, if name_defined_by_phi is not
   NULL, use it to set the stmt field.  */
static void
replace_names_by_phis (vec<chain_p> chains)
{
  chain_p chain;
  dref a;
  unsigned i, j;
  FOR_EACH_VEC_ELT (chains, i, chain)
    FOR_EACH_VEC_ELT (chain->refs, j, a)
      if (a->stmt == NULL)
	{
	  a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
	  gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
	  a->name_defined_by_phi = NULL_TREE;
	}
}
/* Wrapper over execute_pred_commoning, to pass it as a callback
   to tree_transform_and_unroll_loop.  */
struct epcc_data
{
  vec<chain_p> chains;
  bitmap tmp_vars;
};
static void
execute_pred_commoning_cbck (struct loop *loop, void *data)
{
  struct epcc_data *const dta = (struct epcc_data *) data;
  /* Restore phi nodes that were replaced by ssa names before
     tree_transform_and_unroll_loop (see detailed description in
     tree_predictive_commoning_loop).  */
  replace_names_by_phis (dta->chains);
  execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
}
/* Base NAME and all the names in the chain of phi nodes that use it
   on variable VAR.  The phi nodes are recognized by being in the copies of
   the header of the LOOP.  */
static void
base_names_in_chain_on (struct loop *loop, tree name, tree var)
{
  gimple *stmt, *phi;
  imm_use_iterator iter;
  replace_ssa_name_symbol (name, var);
  while (1)
    {
      phi = NULL;
      FOR_EACH_IMM_USE_STMT (stmt, iter, name)
	{
	  if (gimple_code (stmt) == GIMPLE_PHI
	      && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
	    {
	      phi = stmt;
	      BREAK_FROM_IMM_USE_STMT (iter);
	    }
	}
      if (!phi)
	return;
      name = PHI_RESULT (phi);
      replace_ssa_name_symbol (name, var);
    }
}
/* Given an unrolled LOOP after predictive commoning, remove the
   register copies arising from phi nodes by changing the base
   variables of SSA names.  TMP_VARS is the set of the temporary variables
   for those we want to perform this.  */
static void
eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
{
  edge e;
  gphi *phi;
  gimple *stmt;
  tree name, use, var;
  gphi_iterator psi;
  e = loop_latch_edge (loop);
  for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
    {
      phi = psi.phi ();
      name = PHI_RESULT (phi);
      var = SSA_NAME_VAR (name);
      if (!var || !bitmap_bit_p (tmp_vars, DECL_UID (var)))
	continue;
      use = PHI_ARG_DEF_FROM_EDGE (phi, e);
      gcc_assert (TREE_CODE (use) == SSA_NAME);
      /* Base all the ssa names in the ud and du chain of NAME on VAR.  */
      stmt = SSA_NAME_DEF_STMT (use);
      while (gimple_code (stmt) == GIMPLE_PHI
	     /* In case we could not unroll the loop enough to eliminate
		all copies, we may reach the loop header before the defining
		statement (in that case, some register copies will be present
		in loop latch in the final code, corresponding to the newly
		created looparound phi nodes).  */
	     && gimple_bb (stmt) != loop->header)
	{
	  gcc_assert (single_pred_p (gimple_bb (stmt)));
	  use = PHI_ARG_DEF (stmt, 0);
	  stmt = SSA_NAME_DEF_STMT (use);
	}
      base_names_in_chain_on (loop, use, var);
    }
}
/* Returns true if CHAIN is suitable to be combined.  */
static bool
chain_can_be_combined_p (chain_p chain)
{
  return (!chain->combined
	  && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
}
/* Returns the modify statement that uses NAME.  Skips over assignment
   statements, NAME is replaced with the actual name used in the returned
   statement.  */
static gimple *
find_use_stmt (tree *name)
{
  gimple *stmt;
  tree rhs, lhs;
  /* Skip over assignments.  */
  while (1)
    {
      stmt = single_nonlooparound_use (*name);
      if (!stmt)
	return NULL;
      if (gimple_code (stmt) != GIMPLE_ASSIGN)
	return NULL;
      lhs = gimple_assign_lhs (stmt);
      if (TREE_CODE (lhs) != SSA_NAME)
	return NULL;
      if (gimple_assign_copy_p (stmt))
	{
	  rhs = gimple_assign_rhs1 (stmt);
	  if (rhs != *name)
	    return NULL;
	  *name = lhs;
	}
      else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
	       == GIMPLE_BINARY_RHS)
	return stmt;
      else
	return NULL;
    }
}
/* Returns true if we may perform reassociation for operation CODE in TYPE.  */
static bool
may_reassociate_p (tree type, enum tree_code code)
{
  if (FLOAT_TYPE_P (type)
      && !flag_unsafe_math_optimizations)
    return false;
  return (commutative_tree_code (code)
	  && associative_tree_code (code));
}
/* If the operation used in STMT is associative and commutative, go through the
   tree of the same operations and returns its root.  Distance to the root
   is stored in DISTANCE.  */
static gimple *
find_associative_operation_root (gimple *stmt, unsigned *distance)
{
  tree lhs;
  gimple *next;
  enum tree_code code = gimple_assign_rhs_code (stmt);
  tree type = TREE_TYPE (gimple_assign_lhs (stmt));
  unsigned dist = 0;
  if (!may_reassociate_p (type, code))
    return NULL;
  while (1)
    {
      lhs = gimple_assign_lhs (stmt);
      gcc_assert (TREE_CODE (lhs) == SSA_NAME);
      next = find_use_stmt (&lhs);
      if (!next
	  || gimple_assign_rhs_code (next) != code)
	break;
      stmt = next;
      dist++;
    }
  if (distance)
    *distance = dist;
  return stmt;
}
/* Returns the common statement in that NAME1 and NAME2 have a use.  If there
   is no such statement, returns NULL_TREE.  In case the operation used on
   NAME1 and NAME2 is associative and commutative, returns the root of the
   tree formed by this operation instead of the statement that uses NAME1 or
   NAME2.  */
static gimple *
find_common_use_stmt (tree *name1, tree *name2)
{
  gimple *stmt1, *stmt2;
  stmt1 = find_use_stmt (name1);
  if (!stmt1)
    return NULL;
  stmt2 = find_use_stmt (name2);
  if (!stmt2)
    return NULL;
  if (stmt1 == stmt2)
    return stmt1;
  stmt1 = find_associative_operation_root (stmt1, NULL);
  if (!stmt1)
    return NULL;
  stmt2 = find_associative_operation_root (stmt2, NULL);
  if (!stmt2)
    return NULL;
  return (stmt1 == stmt2 ? stmt1 : NULL);
}
/* Checks whether R1 and R2 are combined together using CODE, with the result
   in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
   if it is true.  If CODE is ERROR_MARK, set these values instead.  */
static bool
combinable_refs_p (dref r1, dref r2,
		   enum tree_code *code, bool *swap, tree *rslt_type)
{
  enum tree_code acode;
  bool aswap;
  tree atype;
  tree name1, name2;
  gimple *stmt;
  name1 = name_for_ref (r1);
  name2 = name_for_ref (r2);
  gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
  stmt = find_common_use_stmt (&name1, &name2);
  if (!stmt
      /* A simple post-dominance check - make sure the combination
         is executed under the same condition as the references.  */
      || (gimple_bb (stmt) != gimple_bb (r1->stmt)
	  && gimple_bb (stmt) != gimple_bb (r2->stmt)))
    return false;
  acode = gimple_assign_rhs_code (stmt);
  aswap = (!commutative_tree_code (acode)
	   && gimple_assign_rhs1 (stmt) != name1);
  atype = TREE_TYPE (gimple_assign_lhs (stmt));
  if (*code == ERROR_MARK)
    {
      *code = acode;
      *swap = aswap;
      *rslt_type = atype;
      return true;
    }
  return (*code == acode
	  && *swap == aswap
	  && *rslt_type == atype);
}
/* Remove OP from the operation on rhs of STMT, and replace STMT with
   an assignment of the remaining operand.  */
static void
remove_name_from_operation (gimple *stmt, tree op)
{
  tree other_op;
  gimple_stmt_iterator si;
  gcc_assert (is_gimple_assign (stmt));
  if (gimple_assign_rhs1 (stmt) == op)
    other_op = gimple_assign_rhs2 (stmt);
  else
    other_op = gimple_assign_rhs1 (stmt);
  si = gsi_for_stmt (stmt);
  gimple_assign_set_rhs_from_tree (&si, other_op);
  /* We should not have reallocated STMT.  */
  gcc_assert (gsi_stmt (si) == stmt);
  update_stmt (stmt);
}
/* Reassociates the expression in that NAME1 and NAME2 are used so that they
   are combined in a single statement, and returns this statement.  */
static gimple *
reassociate_to_the_same_stmt (tree name1, tree name2)
{
  gimple *stmt1, *stmt2, *root1, *root2, *s1, *s2;
  gassign *new_stmt, *tmp_stmt;
  tree new_name, tmp_name, var, r1, r2;
  unsigned dist1, dist2;
  enum tree_code code;
  tree type = TREE_TYPE (name1);
  gimple_stmt_iterator bsi;
  stmt1 = find_use_stmt (&name1);
  stmt2 = find_use_stmt (&name2);
  root1 = find_associative_operation_root (stmt1, &dist1);
  root2 = find_associative_operation_root (stmt2, &dist2);
  code = gimple_assign_rhs_code (stmt1);
  gcc_assert (root1 && root2 && root1 == root2
	      && code == gimple_assign_rhs_code (stmt2));
  /* Find the root of the nearest expression in that both NAME1 and NAME2
     are used.  */
  r1 = name1;
  s1 = stmt1;
  r2 = name2;
  s2 = stmt2;
  while (dist1 > dist2)
    {
      s1 = find_use_stmt (&r1);
      r1 = gimple_assign_lhs (s1);
      dist1--;
    }
  while (dist2 > dist1)
    {
      s2 = find_use_stmt (&r2);
      r2 = gimple_assign_lhs (s2);
      dist2--;
    }
  while (s1 != s2)
    {
      s1 = find_use_stmt (&r1);
      r1 = gimple_assign_lhs (s1);
      s2 = find_use_stmt (&r2);
      r2 = gimple_assign_lhs (s2);
    }
  /* Remove NAME1 and NAME2 from the statements in that they are used
     currently.  */
  remove_name_from_operation (stmt1, name1);
  remove_name_from_operation (stmt2, name2);
  /* Insert the new statement combining NAME1 and NAME2 before S1, and
     combine it with the rhs of S1.  */
  var = create_tmp_reg (type, "predreastmp");
  new_name = make_ssa_name (var);
  new_stmt = gimple_build_assign (new_name, code, name1, name2);
  var = create_tmp_reg (type, "predreastmp");
  tmp_name = make_ssa_name (var);
  /* Rhs of S1 may now be either a binary expression with operation
     CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
     so that name1 or name2 was removed from it).  */
  tmp_stmt = gimple_build_assign (tmp_name, gimple_assign_rhs_code (s1),
				  gimple_assign_rhs1 (s1),
				  gimple_assign_rhs2 (s1));
  bsi = gsi_for_stmt (s1);
  gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
  s1 = gsi_stmt (bsi);
  update_stmt (s1);
  gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
  gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
  return new_stmt;
}
/* Returns the statement that combines references R1 and R2.  In case R1
   and R2 are not used in the same statement, but they are used with an
   associative and commutative operation in the same expression, reassociate
   the expression so that they are used in the same statement.  */
static gimple *
stmt_combining_refs (dref r1, dref r2)
{
  gimple *stmt1, *stmt2;
  tree name1 = name_for_ref (r1);
  tree name2 = name_for_ref (r2);
  stmt1 = find_use_stmt (&name1);
  stmt2 = find_use_stmt (&name2);
  if (stmt1 == stmt2)
    return stmt1;
  return reassociate_to_the_same_stmt (name1, name2);
}
/* Tries to combine chains CH1 and CH2 together.  If this succeeds, the
   description of the new chain is returned, otherwise we return NULL.  */
static chain_p
combine_chains (chain_p ch1, chain_p ch2)
{
  dref r1, r2, nw;
  enum tree_code op = ERROR_MARK;
  bool swap = false;
  chain_p new_chain;
  unsigned i;
  tree rslt_type = NULL_TREE;
  if (ch1 == ch2)
    return NULL;
  if (ch1->length != ch2->length)
    return NULL;
  if (ch1->refs.length () != ch2->refs.length ())
    return NULL;
  for (i = 0; (ch1->refs.iterate (i, &r1)
	       && ch2->refs.iterate (i, &r2)); i++)
    {
      if (r1->distance != r2->distance)
	return NULL;
      if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
	return NULL;
    }
  if (swap)
    std::swap (ch1, ch2);
  new_chain = XCNEW (struct chain);
  new_chain->type = CT_COMBINATION;
  new_chain->op = op;
  new_chain->ch1 = ch1;
  new_chain->ch2 = ch2;
  new_chain->rslt_type = rslt_type;
  new_chain->length = ch1->length;
  for (i = 0; (ch1->refs.iterate (i, &r1)
	       && ch2->refs.iterate (i, &r2)); i++)
    {
      nw = XCNEW (struct dref_d);
      nw->stmt = stmt_combining_refs (r1, r2);
      nw->distance = r1->distance;
      new_chain->refs.safe_push (nw);
    }
  ch1->combined = true;
  ch2->combined = true;
  return new_chain;
}
/* Recursively update position information of all offspring chains to ROOT
   chain's position information.  */
static void
update_pos_for_combined_chains (chain_p root)
{
  chain_p ch1 = root->ch1, ch2 = root->ch2;
  dref ref, ref1, ref2;
  for (unsigned j = 0; (root->refs.iterate (j, &ref)
			&& ch1->refs.iterate (j, &ref1)
			&& ch2->refs.iterate (j, &ref2)); ++j)
    ref1->pos = ref2->pos = ref->pos;
  if (ch1->type == CT_COMBINATION)
    update_pos_for_combined_chains (ch1);
  if (ch2->type == CT_COMBINATION)
    update_pos_for_combined_chains (ch2);
}
/* Returns true if statement S1 dominates statement S2.  */
static bool
pcom_stmt_dominates_stmt_p (gimple *s1, gimple *s2)
{
  basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
  if (!bb1 || s1 == s2)
    return true;
  if (bb1 == bb2)
    return gimple_uid (s1) < gimple_uid (s2);
  return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
}
/* Try to combine the CHAINS in LOOP.  */
static void
try_combine_chains (struct loop *loop, vec<chain_p> *chains)
{
  unsigned i, j;
  chain_p ch1, ch2, cch;
  auto_vec<chain_p> worklist;
  bool combined_p = false;
  FOR_EACH_VEC_ELT (*chains, i, ch1)
    if (chain_can_be_combined_p (ch1))
      worklist.safe_push (ch1);
  while (!worklist.is_empty ())
    {
      ch1 = worklist.pop ();
      if (!chain_can_be_combined_p (ch1))
	continue;
      FOR_EACH_VEC_ELT (*chains, j, ch2)
	{
	  if (!chain_can_be_combined_p (ch2))
	    continue;
	  cch = combine_chains (ch1, ch2);
	  if (cch)
	    {
	      worklist.safe_push (cch);
	      chains->safe_push (cch);
	      combined_p = true;
	      break;
	    }
	}
    }
  if (!combined_p)
    return;
  /* Setup UID for all statements in dominance order.  */
  basic_block *bbs = get_loop_body (loop);
  renumber_gimple_stmt_uids_in_blocks (bbs, loop->num_nodes);
  free (bbs);
  /* Re-association in combined chains may generate statements different to
     order of references of the original chain.  We need to keep references
     of combined chain in dominance order so that all uses will be inserted
     after definitions.  Note:
       A) This is necessary for all combined chains.
       B) This is only necessary for ZERO distance references because other
	  references inherit value from loop carried PHIs.
     We first update position information for all combined chains.  */
  dref ref;
  for (i = 0; chains->iterate (i, &ch1); ++i)
    {
      if (ch1->type != CT_COMBINATION || ch1->combined)
	continue;
      for (j = 0; ch1->refs.iterate (j, &ref); ++j)
	ref->pos = gimple_uid (ref->stmt);
      update_pos_for_combined_chains (ch1);
    }
  /* Then sort references according to newly updated position information.  */
  for (i = 0; chains->iterate (i, &ch1); ++i)
    {
      if (ch1->type != CT_COMBINATION && !ch1->combined)
	continue;
      /* Find the first reference with non-ZERO distance.  */
      if (ch1->length == 0)
	j = ch1->refs.length();
      else
	{
	  for (j = 0; ch1->refs.iterate (j, &ref); ++j)
	    if (ref->distance != 0)
	      break;
	}
      /* Sort all ZERO distance references by position.  */
      qsort (&ch1->refs[0], j, sizeof (ch1->refs[0]), order_drefs_by_pos);
      if (ch1->combined)
	continue;
      /* For ZERO length chain, has_max_use_after must be true since root
	 combined stmt must dominates others.  */
      if (ch1->length == 0)
	{
	  ch1->has_max_use_after = true;
	  continue;
	}
      /* Check if there is use at max distance after root for combined chains
	 and set flag accordingly.  */
      ch1->has_max_use_after = false;
      gimple *root_stmt = get_chain_root (ch1)->stmt;
      for (j = 1; ch1->refs.iterate (j, &ref); ++j)
	{
	  if (ref->distance == ch1->length
	      && !pcom_stmt_dominates_stmt_p (ref->stmt, root_stmt))
	    {
	      ch1->has_max_use_after = true;
	      break;
	    }
	}
    }
}
/* Prepare initializers for CHAIN in LOOP.  Returns false if this is
   impossible because one of these initializers may trap, true otherwise.  */
static bool
prepare_initializers_chain (struct loop *loop, chain_p chain)
{
  unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
  struct data_reference *dr = get_chain_root (chain)->ref;
  tree init;
  dref laref;
  edge entry = loop_preheader_edge (loop);
  /* Find the initializers for the variables, and check that they cannot
     trap.  */
  chain->inits.create (n);
  for (i = 0; i < n; i++)
    chain->inits.quick_push (NULL_TREE);
  /* If we have replaced some looparound phi nodes, use their initializers
     instead of creating our own.  */
  FOR_EACH_VEC_ELT (chain->refs, i, laref)
    {
      if (gimple_code (laref->stmt) != GIMPLE_PHI)
	continue;
      gcc_assert (laref->distance > 0);
      chain->inits[n - laref->distance] 
	= PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry);
    }
  for (i = 0; i < n; i++)
    {
      gimple_seq stmts = NULL;
      if (chain->inits[i] != NULL_TREE)
	continue;
      init = ref_at_iteration (dr, (int) i - n, &stmts);
      if (!chain->all_always_accessed && tree_could_trap_p (init))
	{
	  gimple_seq_discard (stmts);
	  return false;
	}
      if (stmts)
	gsi_insert_seq_on_edge_immediate (entry, stmts);
      chain->inits[i] = init;
    }
  return true;
}
/* Prepare initializers for CHAINS in LOOP, and free chains that cannot
   be used because the initializers might trap.  */
static void
prepare_initializers (struct loop *loop, vec<chain_p> chains)
{
  chain_p chain;
  unsigned i;
  for (i = 0; i < chains.length (); )
    {
      chain = chains[i];
      if (prepare_initializers_chain (loop, chain))
	i++;
      else
	{
	  release_chain (chain);
	  chains.unordered_remove (i);
	}
    }
}
/* Performs predictive commoning for LOOP.  Returns true if LOOP was
   unrolled.  */
static bool
tree_predictive_commoning_loop (struct loop *loop)
{
  vec<data_reference_p> datarefs;
  vec<ddr_p> dependences;
  struct component *components;
  vec<chain_p> chains = vNULL;
  unsigned unroll_factor;
  struct tree_niter_desc desc;
  bool unroll = false;
  edge exit;
  bitmap tmp_vars;
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Processing loop %d\n",  loop->num);
  /* Nothing for predicitive commoning if loop only iterates 1 time.  */
  if (get_max_loop_iterations_int (loop) == 0)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Loop iterates only 1 time, nothing to do.\n");
      return false;
    }
  /* Find the data references and split them into components according to their
     dependence relations.  */
  auto_vec<loop_p, 3> loop_nest;
  dependences.create (10);
  datarefs.create (10);
  if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
					   &dependences))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Cannot analyze data dependencies\n");
      free_data_refs (datarefs);
      free_dependence_relations (dependences);
      return false;
    }
  if (dump_file && (dump_flags & TDF_DETAILS))
    dump_data_dependence_relations (dump_file, dependences);
  components = split_data_refs_to_components (loop, datarefs, dependences);
  loop_nest.release ();
  free_dependence_relations (dependences);
  if (!components)
    {
      free_data_refs (datarefs);
      free_affine_expand_cache (&name_expansions);
      return false;
    }
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Initial state:\n\n");
      dump_components (dump_file, components);
    }
  /* Find the suitable components and split them into chains.  */
  components = filter_suitable_components (loop, components);
  tmp_vars = BITMAP_ALLOC (NULL);
  looparound_phis = BITMAP_ALLOC (NULL);
  determine_roots (loop, components, &chains);
  release_components (components);
  if (!chains.exists ())
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Predictive commoning failed: no suitable chains\n");
      goto end;
    }
  prepare_initializers (loop, chains);
  /* Try to combine the chains that are always worked with together.  */
  try_combine_chains (loop, &chains);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Before commoning:\n\n");
      dump_chains (dump_file, chains);
    }
  /* Determine the unroll factor, and if the loop should be unrolled, ensure
     that its number of iterations is divisible by the factor.  */
  unroll_factor = determine_unroll_factor (chains);
  scev_reset ();
  unroll = (unroll_factor > 1
	    && can_unroll_loop_p (loop, unroll_factor, &desc));
  exit = single_dom_exit (loop);
  /* Execute the predictive commoning transformations, and possibly unroll the
     loop.  */
  if (unroll)
    {
      struct epcc_data dta;
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
      dta.chains = chains;
      dta.tmp_vars = tmp_vars;
      update_ssa (TODO_update_ssa_only_virtuals);
      /* Cfg manipulations performed in tree_transform_and_unroll_loop before
	 execute_pred_commoning_cbck is called may cause phi nodes to be
	 reallocated, which is a problem since CHAINS may point to these
	 statements.  To fix this, we store the ssa names defined by the
	 phi nodes here instead of the phi nodes themselves, and restore
	 the phi nodes in execute_pred_commoning_cbck.  A bit hacky.  */
      replace_phis_by_defined_names (chains);
      tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
				      execute_pred_commoning_cbck, &dta);
      eliminate_temp_copies (loop, tmp_vars);
    }
  else
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Executing predictive commoning without unrolling.\n");
      execute_pred_commoning (loop, chains, tmp_vars);
    }
end: ;
  release_chains (chains);
  free_data_refs (datarefs);
  BITMAP_FREE (tmp_vars);
  BITMAP_FREE (looparound_phis);
  free_affine_expand_cache (&name_expansions);
  return unroll;
}
/* Runs predictive commoning.  */
unsigned
tree_predictive_commoning (void)
{
  bool unrolled = false;
  struct loop *loop;
  unsigned ret = 0;
  initialize_original_copy_tables ();
  FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
    if (optimize_loop_for_speed_p (loop))
      {
	unrolled |= tree_predictive_commoning_loop (loop);
      }
  if (unrolled)
    {
      scev_reset ();
      ret = TODO_cleanup_cfg;
    }
  free_original_copy_tables ();
  return ret;
}
/* Predictive commoning Pass.  */
static unsigned
run_tree_predictive_commoning (struct function *fun)
{
  if (number_of_loops (fun) <= 1)
    return 0;
  return tree_predictive_commoning ();
}
namespace {
const pass_data pass_data_predcom =
{
  GIMPLE_PASS, /* type */
  "pcom", /* name */
  OPTGROUP_LOOP, /* optinfo_flags */
  TV_PREDCOM, /* tv_id */
  PROP_cfg, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_update_ssa_only_virtuals, /* todo_flags_finish */
};
class pass_predcom : public gimple_opt_pass
{
public:
  pass_predcom (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_predcom, ctxt)
  {}
  /* opt_pass methods: */
  virtual bool gate (function *) { return flag_predictive_commoning != 0; }
  virtual unsigned int execute (function *fun)
    {
      return run_tree_predictive_commoning (fun);
    }
}; // class pass_predcom
} // anon namespace
gimple_opt_pass *
make_pass_predcom (gcc::context *ctxt)
{
  return new pass_predcom (ctxt);
}
 
     |