1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
#!/usr/bin/env python3
#
# Script to analyze results of our branch prediction heuristics
#
# This file is part of GCC.
#
# GCC is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# GCC is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License
# along with GCC; see the file COPYING3. If not see
# <http://www.gnu.org/licenses/>. */
#
#
#
# This script is used to calculate two basic properties of the branch prediction
# heuristics - coverage and hitrate. Coverage is number of executions
# of a given branch matched by the heuristics and hitrate is probability
# that once branch is predicted as taken it is really taken.
#
# These values are useful to determine the quality of given heuristics.
# Hitrate may be directly used in predict.def.
#
# Usage:
# Step 1: Compile and profile your program. You need to use -fprofile-generate
# flag to get the profiles.
# Step 2: Make a reference run of the intrumented application.
# Step 3: Compile the program with collected profile and dump IPA profiles
# (-fprofile-use -fdump-ipa-profile-details)
# Step 4: Collect all generated dump files:
# find . -name '*.profile' | xargs cat > dump_file
# Step 5: Run the script:
# ./analyze_brprob.py dump_file
# and read results. Basically the following table is printed:
#
# HEURISTICS BRANCHES (REL) HITRATE COVERAGE (REL)
# early return (on trees) 3 0.2% 35.83% / 93.64% 66360 0.0%
# guess loop iv compare 8 0.6% 53.35% / 53.73% 11183344 0.0%
# call 18 1.4% 31.95% / 69.95% 51880179 0.2%
# loop guard 23 1.8% 84.13% / 84.85% 13749065956 42.2%
# opcode values positive (on trees) 42 3.3% 15.71% / 84.81% 6771097902 20.8%
# opcode values nonequal (on trees) 226 17.6% 72.48% / 72.84% 844753864 2.6%
# loop exit 231 18.0% 86.97% / 86.98% 8952666897 27.5%
# loop iterations 239 18.6% 91.10% / 91.10% 3062707264 9.4%
# DS theory 281 21.9% 82.08% / 83.39% 7787264075 23.9%
# no prediction 293 22.9% 46.92% / 70.70% 2293267840 7.0%
# guessed loop iterations 313 24.4% 76.41% / 76.41% 10782750177 33.1%
# first match 708 55.2% 82.30% / 82.31% 22489588691 69.0%
# combined 1282 100.0% 79.76% / 81.75% 32570120606 100.0%
#
#
# The heuristics called "first match" is a heuristics used by GCC branch
# prediction pass and it predicts 55.2% branches correctly. As you can,
# the heuristics has very good covertage (69.05%). On the other hand,
# "opcode values nonequal (on trees)" heuristics has good hirate, but poor
# coverage.
import sys
import os
import re
import argparse
from math import *
counter_aggregates = set(['combined', 'first match', 'DS theory',
'no prediction'])
hot_threshold = 10
def percentage(a, b):
return 100.0 * a / b
def average(values):
return 1.0 * sum(values) / len(values)
def average_cutoff(values, cut):
l = len(values)
skip = floor(l * cut / 2)
if skip > 0:
values.sort()
values = values[skip:-skip]
return average(values)
def median(values):
values.sort()
return values[int(len(values) / 2)]
class PredictDefFile:
def __init__(self, path):
self.path = path
self.predictors = {}
def parse_and_modify(self, heuristics, write_def_file):
lines = [x.rstrip() for x in open(self.path).readlines()]
p = None
modified_lines = []
for l in lines:
if l.startswith('DEF_PREDICTOR'):
m = re.match('.*"(.*)".*', l)
p = m.group(1)
elif l == '':
p = None
if p != None:
heuristic = [x for x in heuristics if x.name == p]
heuristic = heuristic[0] if len(heuristic) == 1 else None
m = re.match('.*HITRATE \(([^)]*)\).*', l)
if (m != None):
self.predictors[p] = int(m.group(1))
# modify the line
if heuristic != None:
new_line = (l[:m.start(1)]
+ str(round(heuristic.get_hitrate()))
+ l[m.end(1):])
l = new_line
p = None
elif 'PROB_VERY_LIKELY' in l:
self.predictors[p] = 100
modified_lines.append(l)
# save the file
if write_def_file:
with open(self.path, 'w+') as f:
for l in modified_lines:
f.write(l + '\n')
class Heuristics:
def __init__(self, count, hits, fits):
self.count = count
self.hits = hits
self.fits = fits
class Summary:
def __init__(self, name):
self.name = name
self.edges= []
def branches(self):
return len(self.edges)
def hits(self):
return sum([x.hits for x in self.edges])
def fits(self):
return sum([x.fits for x in self.edges])
def count(self):
return sum([x.count for x in self.edges])
def successfull_branches(self):
return len([x for x in self.edges if 2 * x.hits >= x.count])
def get_hitrate(self):
return 100.0 * self.hits() / self.count()
def get_branch_hitrate(self):
return 100.0 * self.successfull_branches() / self.branches()
def count_formatted(self):
v = self.count()
for unit in ['', 'k', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y']:
if v < 1000:
return "%3.2f%s" % (v, unit)
v /= 1000.0
return "%.1f%s" % (v, 'Y')
def count(self):
return sum([x.count for x in self.edges])
def print(self, branches_max, count_max, predict_def):
# filter out most hot edges (if requested)
self.edges = sorted(self.edges, reverse = True, key = lambda x: x.count)
if args.coverage_threshold != None:
threshold = args.coverage_threshold * self.count() / 100
edges = [x for x in self.edges if x.count < threshold]
if len(edges) != 0:
self.edges = edges
predicted_as = None
if predict_def != None and self.name in predict_def.predictors:
predicted_as = predict_def.predictors[self.name]
print('%-40s %8i %5.1f%% %11.2f%% %7.2f%% / %6.2f%% %14i %8s %5.1f%%' %
(self.name, self.branches(),
percentage(self.branches(), branches_max),
self.get_branch_hitrate(),
self.get_hitrate(),
percentage(self.fits(), self.count()),
self.count(), self.count_formatted(),
percentage(self.count(), count_max)), end = '')
if predicted_as != None:
print('%12i%% %5.1f%%' % (predicted_as,
self.get_hitrate() - predicted_as), end = '')
else:
print(' ' * 20, end = '')
# print details about the most important edges
if args.coverage_threshold == None:
edges = [x for x in self.edges[:100] if x.count * hot_threshold > self.count()]
if args.verbose:
for c in edges:
r = 100.0 * c.count / self.count()
print(' %.0f%%:%d' % (r, c.count), end = '')
elif len(edges) > 0:
print(' %0.0f%%:%d' % (100.0 * sum([x.count for x in edges]) / self.count(), len(edges)), end = '')
print()
class Profile:
def __init__(self, filename):
self.filename = filename
self.heuristics = {}
self.niter_vector = []
def add(self, name, prediction, count, hits):
if not name in self.heuristics:
self.heuristics[name] = Summary(name)
s = self.heuristics[name]
if prediction < 50:
hits = count - hits
remaining = count - hits
fits = max(hits, remaining)
s.edges.append(Heuristics(count, hits, fits))
def add_loop_niter(self, niter):
if niter > 0:
self.niter_vector.append(niter)
def branches_max(self):
return max([v.branches() for k, v in self.heuristics.items()])
def count_max(self):
return max([v.count() for k, v in self.heuristics.items()])
def print_group(self, sorting, group_name, heuristics, predict_def):
count_max = self.count_max()
branches_max = self.branches_max()
sorter = lambda x: x.branches()
if sorting == 'branch-hitrate':
sorter = lambda x: x.get_branch_hitrate()
elif sorting == 'hitrate':
sorter = lambda x: x.get_hitrate()
elif sorting == 'coverage':
sorter = lambda x: x.count
elif sorting == 'name':
sorter = lambda x: x.name.lower()
print('%-40s %8s %6s %12s %18s %14s %8s %6s %12s %6s %s' %
('HEURISTICS', 'BRANCHES', '(REL)',
'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)',
'predict.def', '(REL)', 'HOT branches (>%d%%)' % hot_threshold))
for h in sorted(heuristics, key = sorter):
h.print(branches_max, count_max, predict_def)
def dump(self, sorting):
heuristics = self.heuristics.values()
if len(heuristics) == 0:
print('No heuristics available')
return
predict_def = None
if args.def_file != None:
predict_def = PredictDefFile(args.def_file)
predict_def.parse_and_modify(heuristics, args.write_def_file)
special = list(filter(lambda x: x.name in counter_aggregates,
heuristics))
normal = list(filter(lambda x: x.name not in counter_aggregates,
heuristics))
self.print_group(sorting, 'HEURISTICS', normal, predict_def)
print()
self.print_group(sorting, 'HEURISTIC AGGREGATES', special, predict_def)
if len(self.niter_vector) > 0:
print ('\nLoop count: %d' % len(self.niter_vector)),
print(' avg. # of iter: %.2f' % average(self.niter_vector))
print(' median # of iter: %.2f' % median(self.niter_vector))
for v in [1, 5, 10, 20, 30]:
cut = 0.01 * v
print(' avg. (%d%% cutoff) # of iter: %.2f'
% (v, average_cutoff(self.niter_vector, cut)))
parser = argparse.ArgumentParser()
parser.add_argument('dump_file', metavar = 'dump_file',
help = 'IPA profile dump file')
parser.add_argument('-s', '--sorting', dest = 'sorting',
choices = ['branches', 'branch-hitrate', 'hitrate', 'coverage', 'name'],
default = 'branches')
parser.add_argument('-d', '--def-file', help = 'path to predict.def')
parser.add_argument('-w', '--write-def-file', action = 'store_true',
help = 'Modify predict.def file in order to set new numbers')
parser.add_argument('-c', '--coverage-threshold', type = int,
help = 'Ignore edges that have percentage coverage >= coverage-threshold')
parser.add_argument('-v', '--verbose', action = 'store_true', help = 'Print verbose informations')
args = parser.parse_args()
profile = Profile(args.dump_file)
loop_niter_str = ';; profile-based iteration count: '
for l in open(args.dump_file):
if l.startswith(';;heuristics;'):
parts = l.strip().split(';')
assert len(parts) == 8
name = parts[3]
prediction = float(parts[6])
count = int(parts[4])
hits = int(parts[5])
profile.add(name, prediction, count, hits)
elif l.startswith(loop_niter_str):
v = int(l[len(loop_niter_str):])
profile.add_loop_niter(v)
profile.dump(args.sorting)
|