1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- E X P _ P A K D --
-- --
-- S p e c --
-- --
-- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- Expand routines for manipulation of packed arrays
with Rtsfind; use Rtsfind;
with Types; use Types;
package Exp_Pakd is
-------------------------------------
-- Implementation of Packed Arrays --
-------------------------------------
-- When a packed array (sub)type is frozen, we create a corresponding
-- type that will be used to hold the bits of the packed value, and store
-- the entity for this type in the Packed_Array_Impl_Type field of the
-- E_Array_Type or E_Array_Subtype entity for the packed array.
-- This packed array type has the name xxxPn, where xxx is the name
-- of the packed type, and n is the component size. The expanded
-- declaration declares a type that is one of the following:
-- For an unconstrained array with component size 1,2,4 or any other
-- odd component size. These are the cases in which we do not need
-- to align the underlying array.
-- type xxxPn is new Packed_Bytes1;
-- For an unconstrained array with component size that is divisible
-- by 2, but not divisible by 4 (other than 2 itself). These are the
-- cases in which we can generate better code if the underlying array
-- is 2-byte aligned (see System.Pack_14 in file s-pack14 for example).
-- type xxxPn is new Packed_Bytes2;
-- For an unconstrained array with component size that is divisible
-- by 4, other than powers of 2 (which either come under the 1,2,4
-- exception above, or are not packed at all). These are cases where
-- we can generate better code if the underlying array is 4-byte
-- aligned (see System.Pack_20 in file s-pack20 for example).
-- type xxxPn is new Packed_Bytes4;
-- For a constrained array with a static index type where the number
-- of bits does not exceed the size of Unsigned:
-- type xxxPn is new Unsigned range 0 .. 2 ** nbits - 1;
-- For a constrained array with a static index type where the number
-- of bits is greater than the size of Unsigned, but does not exceed
-- the size of Long_Long_Unsigned:
-- type xxxPn is new Long_Long_Unsigned range 0 .. 2 ** nbits - 1;
-- For all other constrained arrays, we use one of
-- type xxxPn is new Packed_Bytes1 (0 .. m);
-- type xxxPn is new Packed_Bytes2 (0 .. m);
-- type xxxPn is new Packed_Bytes4 (0 .. m);
-- where m is calculated (from the length of the original packed array)
-- to hold the required number of bits, and the choice of the particular
-- Packed_Bytes{1,2,4} type is made on the basis of alignment needs as
-- described above for the unconstrained case.
-- When a variable of packed array type is allocated, gigi will allocate
-- the amount of space indicated by the corresponding packed array type.
-- However, we do NOT attempt to rewrite the types of any references or
-- to retype the variable itself, since this would cause all kinds of
-- semantic problems in the front end (remember that expansion proceeds
-- at the same time as analysis).
-- For an indexed reference to a packed array, we simply convert the
-- reference to the appropriate equivalent reference to the object
-- of the packed array type (using unchecked conversion).
-- In some cases (for internally generated types, and for the subtypes
-- for record fields that depend on a discriminant), the corresponding
-- packed type cannot be easily generated in advance. In these cases,
-- we generate the required subtype on the fly at the reference point.
-- For the modular case, any unused bits are initialized to zero, and
-- all operations maintain these bits as zero (where necessary all
-- unchecked conversions from corresponding array values require
-- these bits to be clear, which is done automatically by gigi).
-- For the array cases, there can be unused bits in the last byte, and
-- these are neither initialized, nor treated specially in operations
-- (i.e. it is allowable for these bits to be clobbered, e.g. by not).
---------------------------
-- Endian Considerations --
---------------------------
-- The standard does not specify the way in which bits are numbered in
-- a packed array. There are two reasonable rules for deciding this:
-- Store the first bit at right end (low order) word. This means
-- that the scaled subscript can be used directly as a left shift
-- count (if we put bit 0 at the left end, then we need an extra
-- subtract to compute the shift count).
-- Layout the bits so that if the packed boolean array is overlaid on
-- a record, using unchecked conversion, then bit 0 of the array is
-- the same as the bit numbered bit 0 in a record representation
-- clause applying to the record. For example:
-- type Rec is record
-- C : Bits4;
-- D : Bits7;
-- E : Bits5;
-- end record;
-- for Rec use record
-- C at 0 range 0 .. 3;
-- D at 0 range 4 .. 10;
-- E at 0 range 11 .. 15;
-- end record;
-- type P16 is array (0 .. 15) of Boolean;
-- pragma Pack (P16);
-- Now if we use unchecked conversion to convert a value of the record
-- type to the packed array type, according to this second criterion,
-- we would expect field D to occupy bits 4..10 of the Boolean array.
-- Although not required, this correspondence seems a highly desirable
-- property, and is one that GNAT decides to guarantee. For a little
-- endian machine, we can also meet the first requirement, but for a
-- big endian machine, it will be necessary to store the first bit of
-- a Boolean array in the left end (most significant) bit of the word.
-- This may cost an extra instruction on some machines, but we consider
-- that a worthwhile price to pay for the consistency.
-- One more important point arises in the case where we have a constrained
-- subtype of an unconstrained array. Take the case of 20 bits. For the
-- unconstrained representation, we would use an array of bytes:
-- Little-endian case
-- 8-7-6-5-4-3-2-1 16-15-14-13-12-11-10-9 x-x-x-x-20-19-18-17
-- Big-endian case
-- 1-2-3-4-5-6-7-8 9-10-11-12-13-14-15-16 17-18-19-20-x-x-x-x
-- For the constrained case, we use a 20-bit modular value, but in
-- general this value may well be stored in 32 bits. Let's look at
-- what it looks like:
-- Little-endian case
-- x-x-x-x-x-x-x-x-x-x-x-x-20-19-18-17-...-10-9-8-7-6-5-4-3-2-1
-- which stored in memory looks like
-- 8-7-...-2-1 16-15-...-10-9 x-x-x-x-20-19-18-17 x-x-x-x-x-x-x
-- An important rule is that the constrained and unconstrained cases
-- must have the same bit representation in memory, since we will often
-- convert from one to the other (e.g. when calling a procedure whose
-- formal is unconstrained). As we see, that criterion is met for the
-- little-endian case above. Now let's look at the big-endian case:
-- Big-endian case
-- x-x-x-x-x-x-x-x-x-x-x-x-1-2-3-4-5-6-7-8-9-10-...-17-18-19-20
-- which stored in memory looks like
-- x-x-x-x-x-x-x-x x-x-x-x-1-2-3-4 5-6-...11-12 13-14-...-19-20
-- That won't do, the representation value in memory is NOT the same in
-- the constrained and unconstrained case. The solution is to store the
-- modular value left-justified:
-- 1-2-3-4-5-6-7-8-9-10-...-17-18-19-20-x-x-x-x-x-x-x-x-x-x-x
-- which stored in memory looks like
-- 1-2-...-7-8 9-10-...15-16 17-18-19-20-x-x-x-x x-x-x-x-x-x-x-x
-- and now, we do indeed have the same representation for the memory
-- version in the constrained and unconstrained cases.
----------------------------------------------
-- Entity Tables for Packed Access Routines --
----------------------------------------------
-- For the cases of component size = 3,5-7,9-15,17-31,33-63 we call library
-- routines. These tables provide the entity for the proper routine. They
-- are exposed in the spec to allow checking for the presence of the needed
-- routine when an array is subject to pragma Pack.
type E_Array is array (Int range 01 .. 63) of RE_Id;
-- Array of Bits_nn entities. Note that we do not use library routines
-- for the 8-bit and 16-bit cases, but we still fill in the table, using
-- entries from System.Unsigned, because we also use this table for
-- certain special unchecked conversions in the big-endian case.
Bits_Id : constant E_Array :=
(01 => RE_Bits_1,
02 => RE_Bits_2,
03 => RE_Bits_03,
04 => RE_Bits_4,
05 => RE_Bits_05,
06 => RE_Bits_06,
07 => RE_Bits_07,
08 => RE_Unsigned_8,
09 => RE_Bits_09,
10 => RE_Bits_10,
11 => RE_Bits_11,
12 => RE_Bits_12,
13 => RE_Bits_13,
14 => RE_Bits_14,
15 => RE_Bits_15,
16 => RE_Unsigned_16,
17 => RE_Bits_17,
18 => RE_Bits_18,
19 => RE_Bits_19,
20 => RE_Bits_20,
21 => RE_Bits_21,
22 => RE_Bits_22,
23 => RE_Bits_23,
24 => RE_Bits_24,
25 => RE_Bits_25,
26 => RE_Bits_26,
27 => RE_Bits_27,
28 => RE_Bits_28,
29 => RE_Bits_29,
30 => RE_Bits_30,
31 => RE_Bits_31,
32 => RE_Unsigned_32,
33 => RE_Bits_33,
34 => RE_Bits_34,
35 => RE_Bits_35,
36 => RE_Bits_36,
37 => RE_Bits_37,
38 => RE_Bits_38,
39 => RE_Bits_39,
40 => RE_Bits_40,
41 => RE_Bits_41,
42 => RE_Bits_42,
43 => RE_Bits_43,
44 => RE_Bits_44,
45 => RE_Bits_45,
46 => RE_Bits_46,
47 => RE_Bits_47,
48 => RE_Bits_48,
49 => RE_Bits_49,
50 => RE_Bits_50,
51 => RE_Bits_51,
52 => RE_Bits_52,
53 => RE_Bits_53,
54 => RE_Bits_54,
55 => RE_Bits_55,
56 => RE_Bits_56,
57 => RE_Bits_57,
58 => RE_Bits_58,
59 => RE_Bits_59,
60 => RE_Bits_60,
61 => RE_Bits_61,
62 => RE_Bits_62,
63 => RE_Bits_63);
-- Array of Get routine entities. These are used to obtain an element from
-- a packed array. The N'th entry is used to obtain elements from a packed
-- array whose component size is N. RE_Null is used as a null entry, for
-- the cases where a library routine is not used.
Get_Id : constant E_Array :=
(01 => RE_Null,
02 => RE_Null,
03 => RE_Get_03,
04 => RE_Null,
05 => RE_Get_05,
06 => RE_Get_06,
07 => RE_Get_07,
08 => RE_Null,
09 => RE_Get_09,
10 => RE_Get_10,
11 => RE_Get_11,
12 => RE_Get_12,
13 => RE_Get_13,
14 => RE_Get_14,
15 => RE_Get_15,
16 => RE_Null,
17 => RE_Get_17,
18 => RE_Get_18,
19 => RE_Get_19,
20 => RE_Get_20,
21 => RE_Get_21,
22 => RE_Get_22,
23 => RE_Get_23,
24 => RE_Get_24,
25 => RE_Get_25,
26 => RE_Get_26,
27 => RE_Get_27,
28 => RE_Get_28,
29 => RE_Get_29,
30 => RE_Get_30,
31 => RE_Get_31,
32 => RE_Null,
33 => RE_Get_33,
34 => RE_Get_34,
35 => RE_Get_35,
36 => RE_Get_36,
37 => RE_Get_37,
38 => RE_Get_38,
39 => RE_Get_39,
40 => RE_Get_40,
41 => RE_Get_41,
42 => RE_Get_42,
43 => RE_Get_43,
44 => RE_Get_44,
45 => RE_Get_45,
46 => RE_Get_46,
47 => RE_Get_47,
48 => RE_Get_48,
49 => RE_Get_49,
50 => RE_Get_50,
51 => RE_Get_51,
52 => RE_Get_52,
53 => RE_Get_53,
54 => RE_Get_54,
55 => RE_Get_55,
56 => RE_Get_56,
57 => RE_Get_57,
58 => RE_Get_58,
59 => RE_Get_59,
60 => RE_Get_60,
61 => RE_Get_61,
62 => RE_Get_62,
63 => RE_Get_63);
-- Array of Get routine entities to be used in the case where the packed
-- array is itself a component of a packed structure, and therefore may not
-- be fully aligned. This only affects the even sizes, since for the odd
-- sizes, we do not get any fixed alignment in any case.
GetU_Id : constant E_Array :=
(01 => RE_Null,
02 => RE_Null,
03 => RE_Get_03,
04 => RE_Null,
05 => RE_Get_05,
06 => RE_GetU_06,
07 => RE_Get_07,
08 => RE_Null,
09 => RE_Get_09,
10 => RE_GetU_10,
11 => RE_Get_11,
12 => RE_GetU_12,
13 => RE_Get_13,
14 => RE_GetU_14,
15 => RE_Get_15,
16 => RE_Null,
17 => RE_Get_17,
18 => RE_GetU_18,
19 => RE_Get_19,
20 => RE_GetU_20,
21 => RE_Get_21,
22 => RE_GetU_22,
23 => RE_Get_23,
24 => RE_GetU_24,
25 => RE_Get_25,
26 => RE_GetU_26,
27 => RE_Get_27,
28 => RE_GetU_28,
29 => RE_Get_29,
30 => RE_GetU_30,
31 => RE_Get_31,
32 => RE_Null,
33 => RE_Get_33,
34 => RE_GetU_34,
35 => RE_Get_35,
36 => RE_GetU_36,
37 => RE_Get_37,
38 => RE_GetU_38,
39 => RE_Get_39,
40 => RE_GetU_40,
41 => RE_Get_41,
42 => RE_GetU_42,
43 => RE_Get_43,
44 => RE_GetU_44,
45 => RE_Get_45,
46 => RE_GetU_46,
47 => RE_Get_47,
48 => RE_GetU_48,
49 => RE_Get_49,
50 => RE_GetU_50,
51 => RE_Get_51,
52 => RE_GetU_52,
53 => RE_Get_53,
54 => RE_GetU_54,
55 => RE_Get_55,
56 => RE_GetU_56,
57 => RE_Get_57,
58 => RE_GetU_58,
59 => RE_Get_59,
60 => RE_GetU_60,
61 => RE_Get_61,
62 => RE_GetU_62,
63 => RE_Get_63);
-- Array of Set routine entities. These are used to assign an element of a
-- packed array. The N'th entry is used to assign elements for a packed
-- array whose component size is N. RE_Null is used as a null entry, for
-- the cases where a library routine is not used.
Set_Id : constant E_Array :=
(01 => RE_Null,
02 => RE_Null,
03 => RE_Set_03,
04 => RE_Null,
05 => RE_Set_05,
06 => RE_Set_06,
07 => RE_Set_07,
08 => RE_Null,
09 => RE_Set_09,
10 => RE_Set_10,
11 => RE_Set_11,
12 => RE_Set_12,
13 => RE_Set_13,
14 => RE_Set_14,
15 => RE_Set_15,
16 => RE_Null,
17 => RE_Set_17,
18 => RE_Set_18,
19 => RE_Set_19,
20 => RE_Set_20,
21 => RE_Set_21,
22 => RE_Set_22,
23 => RE_Set_23,
24 => RE_Set_24,
25 => RE_Set_25,
26 => RE_Set_26,
27 => RE_Set_27,
28 => RE_Set_28,
29 => RE_Set_29,
30 => RE_Set_30,
31 => RE_Set_31,
32 => RE_Null,
33 => RE_Set_33,
34 => RE_Set_34,
35 => RE_Set_35,
36 => RE_Set_36,
37 => RE_Set_37,
38 => RE_Set_38,
39 => RE_Set_39,
40 => RE_Set_40,
41 => RE_Set_41,
42 => RE_Set_42,
43 => RE_Set_43,
44 => RE_Set_44,
45 => RE_Set_45,
46 => RE_Set_46,
47 => RE_Set_47,
48 => RE_Set_48,
49 => RE_Set_49,
50 => RE_Set_50,
51 => RE_Set_51,
52 => RE_Set_52,
53 => RE_Set_53,
54 => RE_Set_54,
55 => RE_Set_55,
56 => RE_Set_56,
57 => RE_Set_57,
58 => RE_Set_58,
59 => RE_Set_59,
60 => RE_Set_60,
61 => RE_Set_61,
62 => RE_Set_62,
63 => RE_Set_63);
-- Array of Set routine entities to be used in the case where the packed
-- array is itself a component of a packed structure, and therefore may not
-- be fully aligned. This only affects the even sizes, since for the odd
-- sizes, we do not get any fixed alignment in any case.
SetU_Id : constant E_Array :=
(01 => RE_Null,
02 => RE_Null,
03 => RE_Set_03,
04 => RE_Null,
05 => RE_Set_05,
06 => RE_SetU_06,
07 => RE_Set_07,
08 => RE_Null,
09 => RE_Set_09,
10 => RE_SetU_10,
11 => RE_Set_11,
12 => RE_SetU_12,
13 => RE_Set_13,
14 => RE_SetU_14,
15 => RE_Set_15,
16 => RE_Null,
17 => RE_Set_17,
18 => RE_SetU_18,
19 => RE_Set_19,
20 => RE_SetU_20,
21 => RE_Set_21,
22 => RE_SetU_22,
23 => RE_Set_23,
24 => RE_SetU_24,
25 => RE_Set_25,
26 => RE_SetU_26,
27 => RE_Set_27,
28 => RE_SetU_28,
29 => RE_Set_29,
30 => RE_SetU_30,
31 => RE_Set_31,
32 => RE_Null,
33 => RE_Set_33,
34 => RE_SetU_34,
35 => RE_Set_35,
36 => RE_SetU_36,
37 => RE_Set_37,
38 => RE_SetU_38,
39 => RE_Set_39,
40 => RE_SetU_40,
41 => RE_Set_41,
42 => RE_SetU_42,
43 => RE_Set_43,
44 => RE_SetU_44,
45 => RE_Set_45,
46 => RE_SetU_46,
47 => RE_Set_47,
48 => RE_SetU_48,
49 => RE_Set_49,
50 => RE_SetU_50,
51 => RE_Set_51,
52 => RE_SetU_52,
53 => RE_Set_53,
54 => RE_SetU_54,
55 => RE_Set_55,
56 => RE_SetU_56,
57 => RE_Set_57,
58 => RE_SetU_58,
59 => RE_Set_59,
60 => RE_SetU_60,
61 => RE_Set_61,
62 => RE_SetU_62,
63 => RE_Set_63);
-----------------
-- Subprograms --
-----------------
procedure Create_Packed_Array_Impl_Type (Typ : Entity_Id);
-- Typ is a array type or subtype to which pragma Pack applies. If the
-- Packed_Array_Impl_Type field of Typ is already set, then the call has
-- no effect, otherwise a suitable type or subtype is created and stored in
-- the Packed_Array_Impl_Type field of Typ. This created type is an Itype
-- so that Gigi will simply elaborate and freeze the type on first use
-- (which is typically the definition of the corresponding array type).
--
-- Note: although this routine is included in the expander package for
-- packed types, it is actually called unconditionally from Freeze,
-- whether or not expansion (and code generation) is enabled. We do this
-- since we want gigi to be able to properly compute type characteristics
-- (for the Data Decomposition Annex of ASIS, and possible other future
-- uses) even if code generation is not active. Strictly this means that
-- this procedure is not part of the expander, but it seems appropriate
-- to keep it together with the other expansion routines that have to do
-- with packed array types.
procedure Expand_Packed_Boolean_Operator (N : Node_Id);
-- N is an N_Op_And, N_Op_Or or N_Op_Xor node whose operand type is a
-- packed boolean array. This routine expands the appropriate operations
-- to carry out the logical operation on the packed arrays. It handles
-- both the modular and array representation cases.
procedure Expand_Packed_Element_Reference (N : Node_Id);
-- N is an N_Indexed_Component node whose prefix is a packed array. In
-- the bit packed case, this routine can only be used for the expression
-- evaluation case, not the assignment case, since the result is not a
-- variable. See Expand_Bit_Packed_Element_Set for how the assignment case
-- is handled in the bit packed case. For the enumeration case, the result
-- of this call is always a variable, so the call can be used for both the
-- expression evaluation and assignment cases.
procedure Expand_Bit_Packed_Element_Set (N : Node_Id);
-- N is an N_Assignment_Statement node whose name is an indexed
-- component of a bit-packed array. This procedure rewrites the entire
-- assignment statement with appropriate code to set the referenced
-- bits of the packed array type object. Note that this procedure is
-- used only for the bit-packed case, not for the enumeration case.
procedure Expand_Packed_Eq (N : Node_Id);
-- N is an N_Op_Eq node where the operands are packed arrays whose
-- representation is an array-of-bytes type (the case where a modular
-- type is used for the representation does not require any special
-- handling, because in the modular case, unused bits are zeroes.
procedure Expand_Packed_Not (N : Node_Id);
-- N is an N_Op_Not node where the operand is packed array of Boolean
-- in standard representation (i.e. component size is one bit). This
-- procedure expands the corresponding not operation. Note that the
-- non-standard representation case is handled by using a loop through
-- elements generated by the normal non-packed circuitry.
function Involves_Packed_Array_Reference (N : Node_Id) return Boolean;
-- N is the node for a name. This function returns true if the name
-- involves a packed array reference. A node involves a packed array
-- reference if it is itself an indexed component referring to a bit-
-- packed array, or it is a selected component whose prefix involves
-- a packed array reference.
procedure Expand_Packed_Address_Reference (N : Node_Id);
-- The node N is an attribute reference for the 'Address reference, where
-- the prefix involves a packed array reference. This routine expands the
-- necessary code for performing the address reference in this case.
procedure Expand_Packed_Bit_Reference (N : Node_Id);
-- The node N is an attribute reference for the 'Bit reference, where the
-- prefix involves a packed array reference. This routine expands the
-- necessary code for performing the bit reference in this case.
end Exp_Pakd;
|